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Abstract

Microinstabilities play important roles in both entropy generation and particle acceleration in collisionless shocks.
Recent studies have suggested that in the transition region of quasi-perpendicular (Q⊥) shocks in the high-beta
(β= Pgas/PB) intracluster medium (ICM), the ion temperature anisotropy due to the reflected-gyrating ions could
trigger the Alfvén ion cyclotron (AIC) instability and the ion-mirror instability, while the electron temperature
anisotropy induced by magnetic field compression could excite the whistler instability and the electron-mirror
instability. Adopting the numerical estimates for ion and electron temperature anisotropies found in the particle-in-
cell (PIC) simulations of Q⊥ shocks with sonic Mach numbers, Ms= 2–3, we carry out a linear stability analysis
for these microinstabilities. The kinetic properties of the microinstabilities and the ensuing plasma waves on both
ion and electron scales are described for wide ranges of parameters, including β and the ion-to-electron mass ratio.
In addition, the nonlinear evolution of the induced plasma waves are examined by performing 2D PIC simulations
with periodic boundary conditions. We find that for β≈ 20–100, the AIC instability could induce ion-scale waves
and generate shock surface ripples in supercritical shocks above the AIC critical Mach number, »M 2.3AIC* . Also,
electron-scale waves are generated primarily by the whistler instability in these high-β shocks. The resulting
multiscale waves from electron to ion scales are thought to be essential in the electron injection to diffusive shock
acceleration in Q⊥ shocks in the ICM.

Unified Astronomy Thesaurus concepts: Shocks (2086); Plasma astrophysics (1261)

1. Introduction

Major mergers of galaxy clusters are known to drive weak
shocks with sonic Mach numbers, Ms 3, in the hot intracluster
medium (ICM) of high β (e.g., Ryu et al. 2003; Skillman et al.
2008; Vazza et al. 2009; Hong et al. 2014; Ha et al. 2018). Here,
the plasma beta, β=Pgas/PB, is the ratio of the gas pressure to the
magnetic pressure. The radiative signatures of such shocks have
been detected in X-ray and radio observations (e.g., Brüggen et al.
2012; Brunetti & Jones 2014). In the case of so-called radio relics,
the radio emission has been interpreted as the synchrotron
radiation from relativistic electrons accelerated via diffusive shock
acceleration (DSA) in merger-driven shocks (see van Weeren
et al. 2019 for a review).

To explain the origin of radio relics, this DSA model requires
an electron preacceleration mechanism because postshock thermal
electrons do not have momenta large enough to participate in the
standard DSA process, in which cosmic-ray (CR) electrons diffuse
across the shock (Kang et al. 2012). Because the width of the
shock transition layer is comparable to the gyroradius of
postshock thermal ions, thermal electrons need to be energized
to the so-called injection momentum, pinj∼ a few× pi,th. Here,

=p m k T2i,th i B i2 is the ion thermal momentum in the
postshock gas of temperature Ti2, mi is the ion mass, and kB is
the Boltzmann constant. For shocks in the solar wind, the electron
injection is observed preferentially at the quasi-perpendicular (Q⊥)
configuration with θBn 45°, where θBn is the shock obliquity
angle between the shock normal and the upstream magnetic field

direction (e.g., Gosling et al. 1989; Burgess 2006; Oka et al.
2006).
The electron preacceleration has been a key outstanding

problem in understanding the production of CR electrons in
weak ICM shocks. Previous studies have shown that, in low-Ms,
high-β Q⊥ shocks, thermal electrons could be preaccelerated
primarily through the Fermi-like acceleration in the shock foot
(Matsukiyo et al. 2011; Guo et al. 2014a, 2014b; Kang et al.
2019) and the stochastic shock drift acceleration (SSDA) in the
shock transition region (Katou & Amano 2019; Niemiec et al.
2019; Trotta & Burgess 2019). Although it has been shown that
the electron preacceleration would be enhanced by preexisting
strong magnetic fluctuations in the low-β (∼1) regime (e.g., Guo
& Giacalone 2015; Trotta et al. 2020), the effect of such
turbulence on high-β ICM shocks has yet to be investigated and
will not be considered here.
Both the Fermi-like acceleration and SSDA mechanisms rely

on the various microinstabilities triggered by the ion and electron
temperature anisotropies in the shock structure (Gary 1993). If
TeP> Te⊥, for example, the electron firehose instability (EFI) can
grow with the following two branches: the nonresonant, parallel-
propagating mode with left-hand circular polarization (LHCP) and
the resonant, nonpropagating, oblique mode (Gary & Nishimura
2003). Hereafter, the subscripts P and ⊥ denote the parallel and
perpendicular directions to the background magnetic field, B0,
respectively. Under the condition of Te⊥> TeP, by contrast, the
whistler instability and the electron-mirror (e-mirror) instability
can be triggered (Scharer & Trivelpiece 1967; Gary 1992;
Hellinger & Štverák 2018). The most unstable whistler mode
propagates in the direction parallel to B0 with right-hand circular
polarization (RHCP), while the e-mirror mode is nonpropagating
and has the maximum growth rate at the wavevector direction
oblique with respect to B0. In the case of Ti⊥> TiP, the Alfvén ion
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cyclotron instability (AIC, or the proton cyclotron instability) and
the ion-mirror (i-mirror) instability may become unstable (Winske
& Quest 1988; Gary 1993; Gary et al. 1997; Burgess 2006). The
fastest-growing mode of the AIC instability propagates in the
direction parallel to B0 with LHCP, while the i-mirror mode is
nonpropagating and has the maximum growth rate at the
wavevector direction oblique with respect to B0. Table 1
summarizes these linear properties of the instabilities driven by
perpendicular temperature anisotropies, which are relevant for the
present study.

In the foot of Q⊥ shocks, the shock-reflected electrons
backstream mainly along the upstream magnetic field and induce
an electron parallel anisotropy (TeP> Te⊥), which could trigger
the EFI and facilitate the Fermi-like preacceleration (Guo et al.
2014b; Kang et al. 2019; Kim et al. 2020). In the transition region
behind the shock ramp, on the other hand, the AIC and i-mirror
instabilities can be triggered by the ion perpendicular anisotropy
(Ti⊥> TiP) mainly due to the shock-reflected ions advected
downstream, while the whistler and e-mirror instabilities can be
excited by the electron perpendicular anisotropy (Te⊥> TeP)
mainly due to magnetic field compression at the shock ramp (Guo
et al. 2017; Katou & Amano 2019). Such multiscale waves from
electron to ion scales are essential in the electron preacceleration
via the SSDA (Matsukiyo & Matsumoto 2015; Niemiec et al.
2019; Trotta & Burgess 2019).

Using two-dimensional (2D) particle-in-cell (PIC) simula-
tions for β≈ 20–100 Q⊥ shocks, Kang et al. (2019) showed
that the Fermi-like preacceleration involving multiple cycles of
shock drift acceleration (SDA) in the shock foot could be
effective only in supercritical shocks with Ms greater than the
EFI critical Mach number, »M 2.3ef* . However, they argued
that the electron preacceleration may not proceed all the way to
pinj because the EFI-driven waves are limited to electron scales.
Niemiec et al. (2019), on the other hand, performed a PIC
simulation for Ms= 3 shock with β= 5 in a 2D domain large
enough to include ion-scale fluctuations and suggested that
electrons could be energized beyond pinj via the SSDA due to
stochastic pitch-angle scattering off the multiscale waves
excited in the shock transition zone.

Furthermore, Trotta & Burgess (2019) found that in β≈ 1
plasmas, the AIC instability is triggered, and the ensuing electron
preacceleration operates only in supercritical shocks with Alfvénic
Mach number greater than the critical Mach number, »M 3.5AIC* .
In a separate paper (Ha et al. 2021, HKRK2021 hereafter), we
report a similar study of β≈ 20–100 shocks, which is design to
explore through 2D PIC simulations how the multiscale waves
excited mainly by the AIC and whistler instabilities in the shock
transition can assist the electron injection to DSA in ICM shocks.

In this paper, adopting the numerical estimates for the
temperature anisotropies in the transition region of the
simulated shocks of HKRK2021,3 we first perform a linear
stability analysis for microinstabilities for wide ranges of
parameters such as Ms= 2–3, β= 1–100, and the ion-to-
electron mass ratio mi/me= 50–1836. This approach allows us
to identify the most dominant modes of possible microinst-
abilities and to evaluate their linear properties for the set of
realistic parameters pertaining to ICM shocks. Hence, this kind
of analysis on kinetic scales can provide crucial insights for
theoretical modelings and/or larger-scale simulations of
particle acceleration at weak high-β shocks. However, one of
the limitations of PIC simulations is that they can follow kinetic
plasma processes mainly at the low end of temporal and spatial
scales owing to severe requirements of computational resources
(e.g., Pohl et al. 2020).
In addition, adopting the same setup as in the linear analysis

but only for the models with β= 50 and mi/me= 50, we carry
out 2D PIC simulations with periodic boundary conditions
(periodic-box simulations hereafter) to study the nonlinear
evolution of the plasma waves excited by such microinstabil-
ities. Note that throughout the paper. we refer to two different
sets of PIC simulations: (1) the “periodic-box simulations” are
designed to study the nonlinear evolution of the excited plasma
waves in the same setup as in the linear analysis and will be
presented in Section 3. (2) The “shock simulations” reported
in HKRK2021 provide the numerical estimates for the ion and
electron temperature anisotropies in the shock transition zone.
The paper is organized as follows. Section 2 describes the

linear analysis of the AIC, whistler, and mirror instabilities. In
Section 3, we present the evolution of the waves driven by
these instabilities in 2D periodic-box simulations. In Section 4,
the implication of our work for the shock criticality and shock
surface ripples is discussed. A brief summary is given in
Section 5.

2. Linear Analysis

2.1. Basic Equations

We consider a homogeneous, collisionless, magnetized
plasma, which is specified by the density and temperature
of ions and electrons, ni, ne, Ti, Te, and the background
magnetic field B0. The linear dispersion relation of general

Table 1
Linear Properties of the Instabilities Driven by Perpendicular Temperature Anisotropies

Instability AIC Whistler Ion-mirror Electron-mirror

Free energy source Ti⊥ > TiP Te⊥ > TeP Ti⊥ > TiP Te⊥ > TeP
Propagation angle with γm

a parallel parallel oblique oblique
Wavenumber ck/ωpi � 1 ck/ωpe � 1 ck/ωpi � 1 ck/ωpe � 1
Wave frequency 0 < ωr < Ωci Ωci < ωr < Ωce ωr = 0 ωr = 0
Wave polarization LHCPb RHCPb Nonpropagating Nonpropagating

Notes.
a
γm is the maximum growth rate.

b LHCP (RHCP) stands for left-hand (right-hand) circular polarization.

3 In HKRK2021 and hereafter, the transition zone is defined as the
downstream region of rL,i behind the shock ramp, where » Wr uL,i 0 ci

up is
the gyroradius of incoming ions; u0 is the preshock flow speed defined in the
downstream rest frame, and Wci

up is the gyrofrequency in the upstream. Both the
first and second overshoots and the accompanying undershoot are included in
this zone, beyond which the downstream states satisfy the canonical Rankine–
Hugoniot relation (see Figure 1 of HKRK2021).
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electromagnetic (EM) modes is given as
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where the dielectric tensor, òij, is determined by the plasma
parameters and the velocity distribution functions (VDFs) of
particles. Here, ki and kj are the components of the wavevector k.
Then, the complex frequency, ω=ωr+ iγ,4 can be calculated as a
function of the wavenumber, k, and the propagating angle, θ,
between k and B0. Without loss of generality, we set =B B z0 0 ˆ
along the+z direction and = +k k x k zx zˆ ˆ in the x–z plane, as
schematically illustrated in Figure 1(a).

In order to compute òij, we adopt the VDFs with bi-
Maxwellian distributions for ions and electrons:
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where = +v̂ v vx y
2 2 and vP= vz. The subscript a denotes e or i

defined as the electron or ion species, respectively. Here, n0 is the
number density of electrons or ions, which satisfies the charge
neutrality condition, i.e., n0= ne= ni. The parallel and perpend-
icular (to B0) thermal velocities are =v k T m2Ta a aB  and

=^ ^v k T m2Ta B a a , respectively. Then, the perpendicular
temperature anisotropy of each particle species is given as

º =^ ^ T T v va a a Ta Ta
2 2

 . The schematic configuration of the
thermal velocity ellipsoid for a bi-Maxwellian VDF with the
temperature anisotropy a is shown in Figure 1(b). As a

increases, the thermal velocity surface in the velocity space
deviates further away from the spherical shape. Under these
considerations, òij is given as Equation (3) in Kim et al. (2020)
without the bulk drift velocities. We note that in the shock
simulations of HKRK2021, the VDFs of ions and electrons in the
transition zone are likely nongyrotropic and non-Maxwellian
due to the SDA-reflected ions and electrons accelerated via the
gradient-B drift (see Figure 4 of Guo et al. 2014a). However, we
expect the effects of non-Maxwellian VDFs on the linear
predictions would be only marginal because the fractions of

particles in the suprathermal tail are on order of 10−2 for ions
and= 10−2 for electrons in the downstream region of the fiducial
Ms= 3 shock model (Kang et al. 2019).
For n0, B0, TaP, and Ta⊥ of the homogeneous background

plasma, we adopt the numerical values, averaged over the
transition zone of the simulated shocks of HKRK2021, where
the preshock conditions are specified with the typical parameters
of high-β ICM plasmas, nICM= 10−4 cm−3, kBTICM= (kBTi+
kBTe)/2= 8.6 KeV, and βICM= 20–100. Again, in the shock
simulations, both the ion and electron distributions are spatially
nonuniform in the transition zone, where the flow structure
oscillates with overshoots and undershoots in the longitudinal
direction and ripples in the transverse direction. Hence, we focus
on qualitative analyses of the instabilities rather than making
precise quantitative predictions.
Throughout the paper, the plasma beta, b p= n k T B8a a B a 0

2,
the plasma frequency, w p= n e m4 a apa

2 2 , and the gyrofre-
quency, Ωca= eB0/mac, for electrons and ions are used. Note
that in HKRK2021 the results are expressed in terms of the
upstream parameters, »n n r0

up
0 and »B B r0

up
0 , where r is

the density compression ratio across the shock ramp. So, for
example, w w» rpa

up
pa and W » W rca

up
ca .

Plasma waves are characterized with the growth rate, γ, and
the real frequency, ωr, which are calculated by solving the
dispersion relation in Equation (1) for wavevector k. If the
propagation angle of the wave with the maximum growth rate,
γm, is θm≈ 0°, the wave mode is called “parallel-propagating.”
If θm? 0°, it is “oblique-propagating.” If the wave frequency,
ωr≈ 0, the mode is “nonpropagating.” The wave polarization,
P, can also be estimated using the solution of the dispersion
relation as follows:

w
d d
d d

º
-
+

+ -

+ -
P

E E

E E
sign , 3r( ) ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣
( )

where d d dº w wE E i Ek k
x y
, , (Verscharen & Chandran 2013).

The LHCP corresponds to P=−1, whereas the RHCP
corresponds to P=+1. Waves are in general elliptically
polarized with P≠±1. In the case of the nonpropagating mode
(ωr= 0), P= 0 (see Table 1).

2.2. Linear Properties of AIC, Whistler, and Mirror
Instabilities

In this section, we report the results of the linear stability
analysis for the microinstabilities triggered by the ion and
electron temperature anisotropies in the transition region of
high-β Q⊥ shocks. The first column of Table 2 lists the model
name, which is assigned with the two parameters, the shock
Mach number, Ms, and β (≈ βe+ βi) in the shock transition
region. For example, the LM3.0β50 model has Ms= 3.0 and
β≈ 50. The values of the parameters, βe, βi, e, and  i, are
listed in columns 3–6 of the table. For the models of
β≈ 20–100 and the mass ratio mi/me= 50, they are obtained
with n0, B0, TaP, and Ta⊥ estimated by averaging the numerical
values over the transition region in the simulated shocks with
Ms= 2–3 and βup= 20–100 of HKRK2021.5 Considering the
uncertainties in averaging over nonlinear structures with

Figure 1. (a) Coordinate system employed in the present study. The
background magnetic field, =B B z0 0 ˆ, is parallel to the +ẑ direction, while
the wavevector, = +k k x k zx zˆ ˆ, lies in the x–z plane. The wave propagation
angle, θ, is the angle between B0 and k. (b) Schematic configuration showing
the velocity ellipsoid of a bi-Maxwellian VDF with a temperature anisotropy
a, where a denotes either “ion” or “electron.”

4 The quantity i is the imaginary unit, and not the coordinate component nor
ion species.

5 Note that βup for the shock models in HKRK2021 represents the plasma
beta of the upstream, preshock plasmas, while β for the linear analysis models
in Table 2 is the plasma beta in the shock transition zone. We found that
β ≈ βup for the simulated shocks, although, in general, the plasma beta of the
far downstream region is higher than βup.
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overshoot/undershoot oscillations, they are given only up to
two significant figures.

For the models with higher mass ratios, LM3.0β50-m100 with
mi/me= 100 and LM3.0β50-m1836 with mi/me= 1836, the
parameters for the LM3.0β50 model (βe= 19, βi= 31, = 1.2e ,
and = 2.0i ) are used only for the linear analysis. Also, we
carried out two additional shock simulations for M3.0β1 with
β= 1 and M3.0β5 with β= 5, which were not considered
in HKRK2021, in order to obtain the parameters to be used for
LM3.0β1 and LM3.0β5. Our fiducial models have mi/me= 50,
which is adopted in order to ease the requirements of
computational resources for the periodic-box PIC simulations
that will be described in Section 3.

The linear predictions for the AIC, whistler, i-mirror, and
e-mirror instabilities are given in columns 8–11 of Table 2. The
three numbers inside the parentheses present the linear properties
of the fastest-growing mode: (γm/Ωci,ckm/ωpi,θm) for the AIC and
i-mirror instabilities, and (γm/Ωce,ckm/ωpe,θm) for the whistler and
e-mirror instabilities. Here, km is the wavenumber that has the
maximum growth rate γm at θm, and θm is given in units of
degrees. For a clear distinction between the ion- and electron-
mirror modes, in columns 10–11, the γm of each mirror mode,
obtained with either isotropic electrons (i.e., = 1e , > 1i ) or
isotropic ions (i.e., = 1i , > 1e ), is shown. Note that “stable”
means that waves cannot grow because γm< 0, and “quasi-stable”
corresponds to γm/Ωci< 10−2.

Figure 2 shows the linear analysis results for the LM3.0β50-
m1836 model. For the adopted parameters, ωpe/Ωce= 26.
Panels (a)–(c) display the growth (or damping) rate at θm of the
AIC, whistler, and mirror instabilities, respectively, as a
function of the wavenumber. To make a uniform comparison,
γ and k are normalized with Ωci and ωpi/c, respectively, for
both the ion-driven and electron-driven instabilities. Note that
in panel (c) both γ and k are given in logarithmic scales in order
to show both the i-mirror and e-mirror modes in the same
panel. To examine the effects of  i and e separately and also
their combination, we present the black dashed lines for the
case with both the ion and electron anisotropies, the red solid

lines with the ion anisotropy only, and the blue solid lines with
the electron anisotropy only.
The AIC instability induces quasi-parallel modes with

θm= 0°. Although > 1i is the main free energy source that
drives the AIC instability, we find that > 1e reduces the
growth rate (see the red and black lines in panel (a) and also
Ahmadi et al. 2016). By contrast, the whistler instability is
unstable for > 1e , and the growth rate is independent of  i.
The whistler mode is also quasi-parallel-propagating with
θm= 0°. The mirror modes, on the other hand, are highly
oblique with θm= 64° for LM3.0β50-m1836. The e-mirror
mode (blue) at high k (ck/ωpi> 0.3) grows much faster than the
i-mirror mode (red) at low k (ck/ωpi< 0.3). With both > 1i
and > 1e , a mixture of the two mirror modes appears in the
intermediate-k regime (ck/ωpi∼ 0.3).
In the LM3.0β50-m1836 model, the maximum growth rates

are given in the following order:

g g g g> , 4WI EM AIC IM ( ) 

where γWI, γEM, γAIC, and gIM are the maximum growth rates of
the whistler, e-mirror, AIC, and i-mirror instabilities, respectively.
Note that, in general, γWI> γEM (Gary & Karimabadi 2006), and
g g>AIC IM under space plasma conditions with low β and large
temperature anisotropies (Gary 1992, 1993).
The real frequency, ωr/Ωci, at θm for the mixed case ( = 1.2e

and = 2.0i ) is shown in panels (d)–(f) of Figure 2. The AIC-
driven mode has ωr/Ωci∼ 0.25–0.5 for ck/ωpi∼ 0.1–0.4, while
the whistler mode has ωr/Ωci∼ 80–350 for ck/ωpi∼ 5–20. The
mirror modes are nonpropagating or purely growing with ωr= 0.
Moreover, the polarization, calculated using the solutions of the
dispersion relation, is P=−1, +1, and 0 for the AIC, whistler,
and mirror instabilities, respectively, as expected.

2.3. Parameter Dependence of Linear Properties

As listed in Table 2, we consider a number of models to
explore the dependence on mi/me and β. The upper panels of
Figure 3 show the linear predictions for the models with

Table 2
Model Parameters and Linear Predictions

Model Name Ms βe
a βi

a e
a  i

a mi/me AICb Whistlerc Ion-mirrorb Electron-mirrorc

LM2.0β20 2.0 9.7 10.3 1.1 1.1 50 stable stable stable stable
LM2.0β50 2.0 24 26 1.1 1.2 50 stable (0.013,0.20,0) quasi-stable (0.0029,0.14,69)
LM2.0β100 2.0 48 52 1.1 1.2 50 quasi-stable (0.035,0.20,0) (0.015,0.14,62) (0.008,0.15,56)

LM2.3β20 2.3 8.4 12 1.1 1.5 50 (0.041,0.21,0) (0.0016,0.26,0) (0.04,0.28,63) stable
LM2.3β50 2.3 22 28 1.2 1.5 50 (0.048,0.15,0) (0.03,0.24,0) (0.054,0.21,61) (0.0074,0.18,67)
LM2.3β100 2.3 44 56 1.2 1.5 50 (0.053,0.11,0) (0.056,0.24,0) (0.063,0.16,58) (0.016,0.17,61)

LM3.0β1 3.0 0.48 0.52 1.2 1.2 50 stable stable stable stable
LM3.0β5 3.0 1.9 3.1 1.2 2.0 50 (0.065,0.40,0) (0.005,0.39,0) (0.032,0.41,63) stable
LM3.0β20 3.0 7.5 13 1.2 2.0 50 (0.127,0.29,0) (0.0156,0.30,0) (0.094,0.32,56) (0.0016,0.17,74)
LM3.0β50 3.0 19 31 1.2 2.0 50 (0.145,0.20,0) (0.059,0.29,0) (0.11,0.23,55) (0.015,0.22,64)
LM3.0β100 3.0 38 62 1.2 2.0 50 (0.156,0.15,0) (0.10,0.29,0) (0.12,0.18,54) (0.03,0.21,56)

LM3.0β50-m100 3.0 19 31 1.2 2.0 100 (0.145,0.20,0) (0.065,0.29,0) (0.11,0.23,55) (0.016,0.22,64)
LM3.0β50-m1836 3.0 19 31 1.2 2.0 1836 (0.145,0.20,0) (0.072,0.29,0) (0.12,0.24,55) (0.016,0.22,64)

Notes.
a The quantities, βe, βi, e, and  i, are obtained by averaging the numerical values over the transition zone in the simulated Q⊥ shocks presented in HKRK2021.
b Linear predictions for the fastest-growing mode of the ion-driven instabilities, (γm/Ωci,ckm/ωpi,θm), normalized with the ion gyro- and plasma frequencies. θm is
given in units of degree.
c Linear predictions for the fastest-growing mode of the electron-driven instabilities, (γm/Ωce,ckm/ωpe,θm), normalized with the electron gyro- and plasma frequencies.
θm is given in units of degrees.
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Figure 2. (a)–(c) Linear growth rate, γ, at the propagation angle of the fastest-growing mode, θm, for the AIC, whistler, and mirror modes, respectively, as a function
of the wavenumber k for the LM3.0β50-m1836 model. To examine separately the electron mode (blue) and the ion mode (red), the cases of = 1.2e and = 1.0i
(blue) and = 1.0e and = 2.0i (red) are shown. The black dashed lines show the mixed-mode case, in which = 1.2e and = 2.0i . In panel (c), both γ and k
are plotted in logarithmic scales. (d)–(f) Real frequency, ωr, for the same case as the black dashed lines in the upper panels. Note that γ and ωr are normalized by Ωci,
and k is normalized by ωpi/c, uniformly for both the ion and electron modes.

Figure 3. Dependence of the linear growth rate, γ, on mi/me (top) and β (bottom); γ at the propagation angle of the fastest-growing mode, θm, is given as a function of
the wavenumber k. The model parameters are listed in Table 2. Note that for the mirror modes, θm depends on β, but not on mi/me.
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Ms= 3, β= 50, and mi/me= 50–1836, while the lower panels
are for the models with Ms= 3, mi/me= 50, and β= 1–100.
For a higher mass ratio, electrons go through more gyromotions
per the ion gyrotime, W-

ci
1. Nevertheless, γAIC/Ωci and γEM/Ωce

are almost independent of mi/me. In the case of the whistler and
i-mirror instabilities, on the other hand, overall, the normalized
growth rates are slightly lower for smaller mi/me. Also, the
damping rate for the whistler instability is slightly higher for
smaller mi/me in the small wavenumber regime (ck/ωpe∼ 0.1).
As a result, the growth of the whistler and i-mirror instabilities
may be somewhat suppressed in the shock simulations with
reduced mass ratios. However, even in the case of mi/me= 50,
this effect is expected to only be minor, because the inequality
in Equation (4) is still valid and the changes of km and θm are
negligible (see Table 2).

The plasma beta is another important parameter that affects the
stability of the system. Note that the anisotropy parameters, e

and  i, are almost independent of β for β≈ 20–100, the range
relevant for ICM shocks (see Table 2), although they tend to
increase slightly with increasing β in the second digit to the right
of the decimal point. In the low-β case (LM3.0β1), = 1.2i is
significantly smaller than that of other high-β models due to the
strong magnetization of ions. This is because  i in the shock
transition is closely related to the fraction of reflected ions. On the

other hand,e in the shock transition is not substantially affected
by β, because it is mainly determined by the magnetic field
compression rather than the fraction of reflected electrons. Given
the same temperature anisotropies, the growth of the instabilities
tends to be suppressed by strong magnetic fields at low-β plasmas.
As can be seen in the lower panels of Figure 3, the peak values of
either γm/Ωci for the ion-driven modes or γm/Ωce for the electron-
driven modes increase with increasing β. For the AIC, whistler,
and i-mirror instabilities, γm/Ωci or γm/Ωce occurs at smaller
ck/ωpi or ck/ωpe, for higher β. But such a trend is not obvious in
the case of the e-mirror mode.
In the high-β cases (β≈ 20–100) with Ms= 3, all of the AIC,

whistler, i-mirror, and e-mirror waves can be triggered, as shown
in the lower panels of Figure 3, leading to the generation of
multiscale waves from electron to ion scales. On the other hand, in
the LM3.0β5 model (red solid lines), the e-mirror mode is stable,
but other modes are unstable. In the LM3.0β1 model (gray solid
lines), all instabilities are stable with negative growth rates.
The sonic Mach number, Ms, is the key parameter that

determines the temperature anisotropies in the transition of
high-β ICM shocks (β≈ 20–100), because the ion reflection
fraction and the magnetic field compression are closely related
to Ms. Figure 4 shows the growth rates of the instabilities for
Ms= 2.0 (black), 2.3 (red), and 3.0 (blue) in the cases of

Figure 4. Dependence of the linear growth rate, γ, on Ms and β; γ at the propagation angle of the fastest-growing mode, θm, is given as a function of the wavenumber
k. In each panel, the black, red, and blue lines show the results for Ms = 2.0, 2.3, and 3.0, respectively. The plasma beta varies as β = 20 (top), 50 (middle), and 100
(bottom). The model parameters are listed in Table 2. Note that for the mirror modes, θm depends on β.
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β= 20 (top), 50 (middle), and 100 (bottom). As Ms increases,
both e and  i increase, so all the modes grow faster and km
shifts toward larger k, regardless of β.

Note that the AIC and whistler modes have γm at θm= 0
independent of Ms, whereas θm decreases with increasing Ms

for the i-mirror and e-mirror modes (see also Table 2). In
LM2.0β50 and LM2.0β100, the AIC instability is stable or
quasi-stable, while the whistler and mirror modes can grow. In
the case of LM2.0β20, all of the instabilities are stable (see
black lines in top panels). In the models with Ms= 2.3–3 (red
and blue lines), on the other hand, the four instabilities are
unstable, and hence multiscale plasma waves can be generated.

The parameter dependence can be summarized as follows.
(1) For the AIC mode, the maximum normalized growth rate,
γm/Ωca, and the corresponding normalized wavenumber,
ckm/ωpa, are almost independent of mi/me. For the whistler,
i-mirror, and e-mirror modes, on the other hand, γm/Ωca is only
slightly enhanced for larger mi/me, whereas ckm/ωpa exhibits
almost no dependence. (2) For all the modes, the overall trend
shows that γm/Ωca is higher and ckm/ωpa is smaller for higher
β. (3) For all the modes, γm/Ωca is higher and ckm/ωpa is larger
for higher-Ms cases with larger e and larger  i.

3. Nonlinear Evolution of Induced Waves in Periodic-box
Simulations

3.1. Numerical Setup

To investigate the development and nonlinear evolution of
the instabilities, we performed 2D PIC simulations with
periodic boundary conditions for the three fiducial models,
LM2.0β50, LM2.3β50, and LM3.0β50, with the same setup
described in Section 2.1. Electrons and ions are prescribed with
bi-Maxwellian VDFs with βe, βi, e, and  i given in Table 2.
As noted before, here mi/me= 50 is employed due to
computational limitations, but at least the early, linear-stage
development of the plasma instabilities under consideration is
expected to depend rather weakly on the mass ratio.

We point out that the setup for these 2D periodic-box
simulations should intrinsically differ from the condition in the
transition zone of shocks in the following aspects. (1) The
initial distributions of ions and electrons are allowed to relax in
the periodic-box simulations. By contrast, the shock-reflected
ions and electrons are continuously convected into the
transition zone behind the shock ramp, leading to the
continuous excitation of the instabilities. (2) Homogeneous
spatial distributions and bi-Maxwellian VDFs are assumed for
the periodic-box simulations. On the other hand, as noted in
Section 2.1, both the ion and electron distributions are spatially
nonuniform and the VDFs of ions and electrons contain
suprathermal tails in the shock transition region. Nevertheless,
periodic-box simulations like ours are often used to investigate
the nonlinear evolution and properties of microinstabilities in
either the upstream or downstream region near the shock (e.g.,
Scholer et al. 2000; Guo et al. 2014b; Trotta et al. 2020).

The simulations were carried out using a parallelized EM PIC
code, TRISTAN-MP (Buneman 1993; Spitkovsky 2005). The
simulation domain is a square of box size Lx= Lz= 84.8c/
ωpi= 600c/ωpe in the x–z plane, which consists of grid cells of
Δx=Δz= 0.1c/ωpe. In each cell, 32 particles (16 for ions and 16
for electrons) are placed. The time step of the simulations is

wD = -t 0.045 pe
1, and the simulations ran up to = W-t 130end ci

1.
Interpreting the results of our PIC simulations could be limited by

numerical noises and aliases due to a finite number of
macroparticles on discretized grids (e.g., Pohl et al. 2020).
However, we expect that the overall results of the PIC simulations
are reasonably converged, judging from the previous studies (Guo
et al. 2014b; Kang et al. 2019; Kim et al. 2020).

3.2. Results of Periodic-box Simulations

With the inequality in Equation (4), we expect that the
whistler mode grows much faster than other modes, resulting in
the relaxation of e during the early stage. As the whistler and
e-mirror modes grow and then decay on the timescale of
τWI≡ 1/γWI, the AIC and i-mirror modes become dominant
later on the timescale of τAIC≡ 1/γAIC.
Figure 5 shows the magnetic field fluctuations, δBy (upper

panels) and δBz (lower panels), in the x–z plane (simulation
plane) at three different times in the LM3.0β50 model. Here,
the growth timescales, τWI and τAIC, are estimated with the γm
of each mode in Table 2. At t∼ τWI, the transverse component,
δBy, appears on electron scales, and the waves containing it
propagate parallel to B0 in panel (a), but the longitudinal
component, δBz, does not grow significantly in panel (d). In this
early stage, the dominant mode is the whistler mode, while the
e-mirror mode is too weak to be clearly identified. As e
decreases in time due to the electron scattering off the excited
waves, the whistler waves decay as shown in panel (b). On the
timescale of τAIC, both the AIC and i-mirror instabilities grow
and become dominant. It is clear that the AIC-driven waves,
shown in panel (c), are parallel-propagating, while the i-mirror-
driven waves, shown in panel (f), are oblique-propagating; the
blue arrow in the bottom-left corner of panel (f) denotes the
wavevector of the i-mirror-driven mode with the maximum
growth rate.
Figure 6 shows the time evolution of the power spectrum

for the magnetic field fluctuations, d kBy
2 ( ), for LM2.0β50,

LM2.3β50, and LM3.0β50 at t∼ τWI, t∼ 3τWI, and t∼ τAIC.
Again, the growth timescale of each mode is estimated with γm
listed in Table 2, except for the LM2.0β50 model, in which the
AIC instability is stable and so the output time of panel (i) is
chosen at the evolutionary stage similar to that of LM2.3β50.
In the cases of Ms= 2.3 and 3, whistler waves are excited
dominantly at quasi-parallel-propagating angles at t∼ τWI.
After the initial linear stage, the energy of the whistler waves is
transferred to smaller wavenumbers and the waves gradually
decay, as shown in panels (b) and (e). On the timescale
of∼ τAIC, AIC waves and i-mirror waves appear dominantly at
quasi-parallel and highly oblique angles, respectively, as shown
in panels (c) and (f). This is consistent with the evolutionary
behavior that we have described in Figure 5. For the AIC and
whistler instabilities, the linear predictions for km with the
maximum growth rate (gray star symbols) agree reasonably
well with the peak locations of the magnetic power spectrum
realized in the PIC simulations. But the linear estimates for the
i-mirror mode are slightly off because γm is obtained without
electron anisotropy, as stated in Section 2.2. In summary, the
results of the periodic-box simulations are quite consistent with
the linear predictions described earlier. Also, we note that the
results of our PIC simulations are in good agreement with those
of Ahmadi et al. (2016), in which PIC simulations were carried
out to explore the evolution of the instabilities due to the
temperature anisotropies in space plasmas with β∼ 1. The
bottom panels of Figure 6 confirm that waves do not grow
noticeably in the LM2.0β50 model.
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In these periodic-box simulations, the electron-scale waves
develop first and then decay as e is relaxed in the early stage,
followed by the growth of the ion-scale waves due to i. In the
shock transition region, by contrast, temperature anisotropies
are to be supplied continuously by newly reflected-gyrating
ions and magnetic field compression, hence multiscale plasma
waves from electron to ion scales are expected to be
simultaneously present.

4. Implications for Shock Simulations

4.1. Shock Criticality

As mentioned in the introduction, the Fermi-like accelera-
tion, which relies on the upstream waves excited by the EFI, is
effective only for supercritical shocks with »M M 2.3s EFI* in
β≈ 20–100 plasma (Guo et al. 2014b; Kang et al. 2019). The
SSDA, which depends on the multiscale waves excited mainly
by the AIC and whistler instabilities, is thought to occur in
supercritical shocks with »M M 3.5s AIC* in β≈ 1 plasmas
(Trotta & Burgess 2019) and »M M 2.3s AIC* in β≈ 20–100
plasmas (HKRK2021). We suggest that both MEFI* and MAIC* are
related to the sonic critical Mach number, Ms*, for ion
reflection, because the structure of collisionless shocks is
governed primarily by the dynamics of shock-reflected ions.

Table 3 summarizes the shock criticality of the simulated
shock models and the stability of the linear analysis models.
The first column lists the name of the simulated shock models
considered in HKRK2021 and the two additional models for
low-β shocks performed for this study. The shock criticality of
each model is given in the second column. The name of the
corresponding linear analysis models is given in the third
column, while the last four columns show the stability for the

four instabilities (see also Table 2). We note that the name of
the shock models includes βup in the preshock, upstream
plasmas, while that of the linear analysis models includes β in
the shock transition zone given in Table 2.
As discussed in Sections 2 and 3, in β≈ 20–100 plasmas,

the AIC instability operates for Ms 2.3, while whistler waves
are induced regardless of Ms. In the M3.0β5 model, the
e-mirror mode is stable, while the other three modes are
unstable. This is in good agreement with the 2D simulation of
an Ms= 5 and β= 5 shock reported earlier by Niemiec et al.
(2019). In the M3.0β1 model, by contrast,  i is smaller than
that of high-β models, and all four instability modes are
suppressed by strong magnetization. This is consistent with the
results of »M 3.5AIC* for shocks with β≈ 1 presented by Trotta
& Burgess (2019).

4.2. Shock Surface Rippling

Another important feature of supercritical shocks above
MAIC* is the shock surface rippling. According to previous shock
simulations (e.g., Lowe & Burgess 2003; Matsukiyo &
Matsumoto 2015; Niemiec et al. 2019; Trotta & Burgess 2019),
the rippling has the characteristics of AIC waves with the
fastest-growing mode at θm∼ 0, the propagation speed close
to the local Alfvén speed, and the wavelengths of∼λAIC
(≈30c/ωpi). In fact, shock ripples have been observed at
Earth’s bow shock and interplanetary shocks inside the
heliosphere and investigated extensively in space physics
(e.g., Winske & Quest 1988; Moullard et al. 2006; Johlander
et al. 2016). At the interplanetary shocks, ripples on scales even
larger than λAIC have been detected as well and are thought to
be triggered by the upstream magnetic structures produced by
backstreaming ions (Kajdič et al. 2019).

Figure 5. Magnetic field fluctuations, δBy (top) and δBz (bottom), in the periodic-box simulation for the LM3.0β50 model, plotted in the x–z plane. At early times,
t ∼ (1 − 3)τWI, shown in panels (a)–(b) and (d)–(e), electron-scale waves are excited by the whistler and e-mirror instabilities, while ion-scale waves are generated by
the AIC and i-mirror instabilities at t ∼ τAIC shown in panels (c) and (f). Note that the 2D domain with w´ c84.8 84.8 pe

2[ ]( ) is shown in panels (a)–(b) and (d)–(e),
while the 2D domain with w´ c84.8 84.8 pi

2[ ]( ) is shown in panels (c) and (f). The black arrows indicate the direction of the background magnetic field, B0, while the
blue arrow in panel (f) shows the direction of wave propagation, k, for the i-mirror mode with the maximum growth rate.
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The parallel-propagating AIC and whistler waves in homo-
geneous plasmas are purely electromagnetic and incompressible,
with both the electric and magnetic wavevectors pointing normal
to B0. The fluctuating magnetic fields of oblique mirror modes, on
the other hand, have a substantial longitudinal component, that is,
δB has a significant component parallel to B0 (Gary 1993).
Because the density fluctuations are proportional to the parallel
electric and magnetic field fluctuations (Hojo et al. 1993), we
expect to see only weak ion-density fluctuations due to the
i-mirror mode in our 2D periodic-box simulations.

Panel (b) of Figure 7 displays the variations of the ion
density, [〈ni− n0〉x,avg/n0]≈±0.01, averaged over the x direc-
tion in the periodic-box simulation for the LM3.0β50 model.
Panel (a) shows the fluctuations of the transverse component of
B0, [〈By− B0〉x,avg/B0]≈± 0.4, which have a relatively large
amplitude due to the AIC-driven waves. It shows that even after
the AIC-driven waves have fully grown, they have little effect on
the ion-density fluctuations.

However, the ion-density fluctuations of the rippling waves
propagating along the shock surface behind the shock ramp are
rather significant in the shock simulation for the M3.0β50
model in HKRK2021. Panel (c) shows that both the variations
of [〈ni− n0〉x,avg/n0]≈±0.1 and [〈By− B0〉x,avg/B0]≈±0.1
have similar amplitudes; the fluctuations of ni are much larger
than those of the linear prediction expected for the parallel-
propagating AIC mode. Note that here the quantities are
averaged along the x direction over the shock transition zone
including the first and second overshoot oscillations behind the
ramp. Hence, the basic assumptions of the linear theory, such
as the homogeneous background, charge neutrality, and zero
net current, are likely to be violated in this region.
We point out that such large-amplitude fluctuations of ni,

comparable to the fluctuations of By, were previously
recognized in the 2D hybrid simulations of supercritical,
perpendicular shocks presented in Winske & Quest (1988). The
authors suggested that the large compressive waves might
result from nonlinear effects in addition to oblique i-mirror

Figure 6. Power spectra of the magnetic field fluctuations, d kBy
2 ( ), in the periodic-box simulations for LM3.0β50 (top), LM2.3β50 (middle), and LM2.0β50 (bottom),

plotted in the kP–k⊥ (that is, kz–kx) plane. The results are shown at t ∼ τWI (left), t ∼ 3τWI (middle), and t ∼ τAIC (right). See the text for the remarks on τAIC for
LM2.0β50. The gray star symbol marks the location of the maximum linear growth rate, γm, estimated from the linear analysis. In the models with Ms � 2.3, AIC,
whistler, and i-mirror waves appear, while those waves do not grow substantially in the model with Ms = 2.
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modes. The effects due to nonlinear couplings between various
wave modes could be significant as well (e.g., Shukla & Stenflo
1985; Verscharen & Marsch 2011; Marsch & Verscharen
2011). Therefore, the pure AIC-driven waves in the shock
transition could have been modified by such possible
nonlinearities, leading to the enhancement of ion-density
fluctuations.

5. Summary

In supercritical Q⊥ shocks, a substantial fraction of incoming
ions and electrons are reflected, and the transverse components
of magnetic fields are amplified at the shock ramp. The
reflected-gyrating ions and the amplified magnetic fields induce
the ion and electron perpendicular temperature anisotropies,  i
and e, respectively, in the shock transition region (Guo et al.
2017). They in turn trigger various microinstabilities including
the AIC, whistler, i-mirror, and e-mirror instabilities (e.g.,
Winske & Quest 1988; Lowe & Burgess 2003; Guo et al.
2017). The kinetic properties of these four instabilities are
summarized in Table 1. The multiscale plasma waves generated
by these microinstabilities are thought to be crucial for electron
preacceleration via the SSDA (e.g., Katou & Amano 2019;
Niemiec et al. 2019; Trotta & Burgess 2019).

In this work, adopting the numerical estimates for the ion and
electron temperature anisotropies found in the 2D PIC simulations
of Q⊥ shocks with Ms= 2–3 (see Table 2), we have carried out
the kinetic linear analysis of the microinstabilities for wide ranges
of parameters, β= 1–100 and mi/me= 50–1836. The linear
predictions for the fastest-growing mode, γm, km, θm, of each
instability are given in Table 2. In addition, in order to investigate
the development and nonlinear evolution of the waves induced by
the microinstabilities, we have performed 2D PIC simulations
with periodic boundary conditions for the three fiducial models,
LM2.0β50, LM2.3β50, and LM3.0β50. Finally, the results were
also compared with the 2D PIC simulations for ICM shocks
reported in HKRK2021.

The main results can be summarized as follows:

1. In the LM3.0β50-m1836 model with the real mass ratio,
which represents a typical supercritical ICM shock, the
maximum growth rates of the four instabilities have the
following order: g g g g>WI EM AIC IM  (Figure 2).
Hence, the parallel-propagating AIC and whistler waves
are expected to be more dominant than the oblique-
propagating mirror waves.

2. In the LM2.0β50 model, which represents a subcritical
ICM shock, by contrast, the AIC mode is stable (Table 2),
so mainly electron-scale whistler waves are generated.

3. The maximum normalized growth rates for the AIC and
e-mirror instabilities, γAIC/Ωci and γEM/Ωce, are almost
independent of mi/me, while γWI/Ωce for the whistler
instability and g WIM ci for the i-mirror instability are
slightly lower for smaller mi/me (Figure 3).

4. For all four instabilities, the maximum normalized growth
rates increase with increasing β (Figure 3).

5. As the sonic Mach number Ms increases, both e and  i
increase, all modes grow faster, and the km of each mode
shifts toward larger k, regardless of β in the range of
β≈ 20–100 (Figure 4).

6. The critical sonic Mach number to trigger the AIC instability
in the shock transition is ~M 2.3AIC* for β≈ 20–100. It is
similar to the EFI critical number suggested in our previous
study, that is, » »M M 2.3AIC ef* * (Kang et al. 2019). For
β= 1, on the other hand, M 3AIC* is slightly higher,
because the AIC mode is suppressed by the strong
magnetization of ions (Hellinger & Mangeney 1997; Trotta
& Burgess 2019).

7. The 2D periodic-box simulations confirm the linear
predictions. In the early stage of∼τWI, electron-scale
waves develop and then decay as e is relaxed, followed
by the growth of ion-scale waves on the timescale
of∼τAIC (Figures 5 and 6).

8. The rippling waves propagating along the shock surface
have the characteristics of AIC waves. Although the AIC
waves are parallel-propagating, electromagnetic, and
incompressible in the linear regime, the amplitudes of
the longitudinal magnetic field and ion-density fluctua-
tions associated with the overshoots in the shock
transition are similar and of the order of 10% according
to the shock simulation for the M3.0β50 model
(Figure 7). It is expected that the inhomogeneity in the
shock transition and the nonlinear effects could lead to
the generation of such large-amplitude fluctuations of the
ion density along the shock surface.

In conclusion, our results support well the suggestion for the
generation of multiscale plasma waves via various microinst-
abilities in the transition region of high-β, supercritical,
Q⊥ shocks (Guo et al. 2017; Katou & Amano 2019; Niemiec
et al. 2019; Trotta & Burgess 2019). A detailed description of
the shock structure and the electron preacceleration in such

Table 3
Shock Criticality of the Simulated Shock Models and Stability of the Linear Analysis Models

Simulated Shock Model Shock Criticality Linear Analysis Model AIC WI Ion-mirror Electron-mirror

M2.0β20 sub LM2.0β20 stable stable stable stable
M2.0β50 sub LM2.0β50 stable unstable quasi-stable unstable
M2.0β100 sub LM2.0β100 quasi-stable unstable unstable unstable

M2.3β20 super LM2.3β20 unstable unstable unstable stable
M2.3β50 super LM2.3β50 unstable unstable unstable unstable
M2.3β100 super LM2.3β100 unstable unstable unstable unstable

M3.0β1 sub LM3.0β1 stable stable stable stable
M3.0β5 super LM3.0β5 unstable unstable unstable stable
M3.0β20 super LM3.0β20 unstable unstable unstable unstable
M3.0β50 super LM3.0β50 unstable unstable unstable unstable
M3.0β100 super LM3.0β100 unstable unstable unstable unstable
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ICM shocks, realized in 2D PIC simulations, is reported
in HKRK2021.
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