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a b s t r a c t 

Antibiotic resistance genes (ARGs) have been reported to threaten the public health of beachgoers world- 

wide. Although ARG monitoring and beach guidelines are necessary, substantial efforts are required 

for ARG sampling and analysis. Accordingly, in this study, we predicted ARGs occurrence that are pri- 

marily found on the coast after rainfall using a conventional long short-term memory (LSTM), LSTM- 

convolutional neural network (CNN) hybrid model, and input attention (IA)-LSTM. To develop the mod- 

els, 10 categories of environmental data collected at 30-min intervals and concentration data of 4 types 

of major ARGs (i.e., aac(6 ′ -Ib-cr ), bla TEM 

, sul 1, and tet X) obtained at the Gwangalli Beach in South Ko- 

rea, between 2018 and 2019 were used. When individually predicting ARGs occurrence, the conventional 

L STM and IA-L STM exhibited poor R 2 values during training and testing. In contrast, the LSTM-CNN exhib- 

ited a 2–6-times improvement in accuracy over those of the conventional L STM and IA-L STM. However, 

when predicting all ARGs occurrence simultaneously, the IA-LSTM model exhibited a superior perfor- 

mance overall compared to that of LSTM-CNN. Additionally, the influence of environmental variables on 

prediction was investigated using the IA-LSTM model, and the ranges of input variables that affect each 

ARG were identified. Consequently, this study demonstrated the possibility of predicting the occurrence 

and distribution of major ARGs at the beach based on various environmental variables, and the results 

are expected to contribute to management of ARG occurrence at a recreational beach. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The emergence of antibiotic resistance genes (ARGs) as aquatic 

nvironment contaminants ( Pruden et al., 2006 ) has become a sig- 

ificant global threat to human public health. ARGs are released 

rom landfills or sludge through runoff, and they can flow into 

ecreational areas along the coast ( Zhang et al., 2016b ). Specifically, 

ecreational beaches are susceptible to ARG contamination through 

arious sources such as wastewater treatment plants ( Proia et al., 

018 ), animal feed mills ( Fang et al., 2018 ), and storm runoff

 Joy et al., 2013 ). Hence, in a previous study, surfers were found to

e 4.2 times more likely to be exposed to ARGs than non-surfers 

n the swimming areas in England ( Leonard et al., 2018 ). The rain-
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all effect is known to naturally dilute ARGs; however, ARGs are 

ot sufficiently managed in marine environments because of cur- 

ent global wastewater management practices ( Bedri et al., 2015 ; 

aw and Tang, 2016 ). 

Monitoring of ARGs at recreational beaches is required for 

each user safety. However, ARG monitoring has the following 

imitations. Conventional analysis methods are time-consuming; it 

akes 5.2 d on average to verify incubation results ( McAdam et al., 

012 ). Current molecular biological techniques such as quantita- 

ive polymerase chain reaction (qPCR) have been used to identify 

nd quantify certain ARGs ( de Castro et al., 2014 ; Schmieder and 

dwards, 2012 ). Although qPCR is simpler and faster compared 

o conventional techniques such as the culture method or tradi- 

ional PCR ( Kralik and Ricchi, 2017 ; Smith and Osborn, 2009 ), reg-

lar monitoring is restricted due to the high cost of qPCR analysis 

 Sakthivel et al., 2012 ). Although multiplex PCR has been devel- 

ped to save time and effort by reacting multiple single PCRs si- 

https://doi.org/10.1016/j.watres.2021.117001
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- 
ultaneously, it is less accurate because it responds to nonspecific 

mplification products ( Jansen et al., 2011 ; Sakthivel et al., 2012 ). 

herefore, for preemptive responses within a limited timeframe for 

RG occurrences at beaches, prediction through modeling can be 

ore efficient than through monitoring. 

Long short-term memory (LSTM), a type of recurrent neural 

etwork (RNN), has been widely used as an efficient tool to sim- 

late and predict water quality due to an ability to extract fea- 

ures from time-series data ( lin Hsu et al., 1997 ). For example, 

arzegar et al. (2020) recently utilized L STM and L STM hybrid 

odels to predict water quality variables in a lake. An advan- 

age of LSTM is that it can use memory to learn features over 

ime. Accordingly, it is considered a suitable neural network (NN) 

or predicting pollutant distributions and water quality over time 

 Wang et al., 2019 ; Wang et al., 2017 ). On the other hand, hydro-

ogical models suffer from higher uncertainties because of their in- 

bility to simulate complex mechanistic relationships among envi- 

onmental variables ( Abimbola et al., 2020 ). Although deep learn- 

ng models are black box models, they can improve performance 

y training from observation data ( Andrychowicz et al., 2016 ) and 

imulate nonlinear phenomena occurring in the environment. In 

articular, deep learning models have been widely used to enhance 

he prediction performance of hydrological models ( Parmar et al., 

017 ; Sumi et al, 2012 ). Therefore, hypothetically, it is expected 

hat the accuracy of deep learning will be higher than that of hy- 

rological models to predict ARGs at a recreational beach of Korea 

ffected by rain in a short period. 

Based on the collected literature, however, the potential of 

STM has yet to be utilized to estimate ARGs released into the 

nvironment. We previously observed the occurrence of ARGs at 

 combined sewer overflow (CSO) site in Gwangalli Beach over 

ime, which varied in relation to rainfall and tides ( Jang et al., 

021 ). Recreational activities at the beach are concentrated in the 

ummer and the beach is annually affected by monsoon weather. 

herefore, ARG prediction is significant for preserving the health 

f beachgoers, and the application of LSTM would be promising 

n predicting the occurrence of ARGs over time. Therefore, in this 

tudy, we propose an approach based on NN techniques to predict 

RGs occurrence quickly and accurately for managing and monitor- 

ng their occurrence in beach environments. This study compared 

onventional LSTM, LSTM-convolutional NN (CNN), and input at- 

ention (IA)-LSTM models ( Fig. 1 ) with the following objectives: 1) 

o propose applicable models for predicting four major ARGs (i.e., 

ac(6 ′ -Ib-cr ), bla TEM 

, sul 1, and tet X) at a recreational beach, 2) to

ompare model accuracies when predicting single ARG individually 

nd multiple ARGs simultaneously, and 3) to determine critical en- 

ironmental features for predicting ARG occurrences. 

. Material and methods 

.1. Sampling location and period 

Gwangalli Beach, a popular beach in South Korea, was selected 

s the study area. The eastern coast of Gwangalli Beach is adja- 

ent to the Suyeong River estuary, which consists of urban areas 

nd has a wastewater treatment plant and several sewer outlets 

long the river ( Fig. 2 ). The total area of the beach is 82 0 0 0 m 

2 ;

he beach is 1.4 km in length and 25–110 m in width along the 

oastline ( Choi et al., 2016 ). Seawater samplings were conducted 

t a CSO outfall on the right side of the beach ( Fig. 2 ). Surface

eawater samples (within 1 m in depth) were automatically col- 

ected using an ISCO 6712 portable water sampler (Teledyne ISCO 

nc., USA) during the dry season and rainfall events from June 2018 

o September 2019 ( Table 1 ). In total, 218 samples were collected, 

nd they were kept in the dark at 4 °C in containers until they were

retreated for ARG analysis. 
2 
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Fig. 1. Summary diagram for predicting ARGs at a recreational beach. 

Fig. 2. Map of study area and sampling site in Gwangalli Beach in Busan, South 

Korea. CSO, combined sewer overflows. 
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.2. Data acquisition 

.2.1. Environmental variables 

A total of ten categories of environmental data including seven 

ategories of meteorological variables (i.e., cumulative rainfall for 

 h and 3 h, wind direction, wind speed, air pressure, air temper- 

ture, and relative humidity) and three categories of aquatic vari- 

bles (i.e., water temperature, tides, and salinity) were used to de- 

elop the models. A total of 1,446 data points were collected at 

0-min intervals for model training, and the number of data points 

or each event and their trends are summarized in Table 1 and Fig. 

1, respectively. Rainfall data for all sampling events were obtained 
3 
rom the Korea Meteorological Administration (KMA) ( KMA, 2015 ). 

ecause antecedent rainfall has previously been found to be an im- 

ortant environmental factor for bacteria occurrence in Gwangalli 

each ( Park et al., 2018 ), cumulative rainfall data for 1 hour and

 hours were used as input variables for the model development. 

he total rainfall for each wet season and maximum rainfall in- 

ensity in an hour are presented ( Table 1 ). Other meteorological 

ata were also collected from the KMA while aquatic environmen- 

al data were obtained from the South Korea Hydrographic and 

ceanographic Agency ( KHOA, 2020 ). 

.2.2. Enumeration of ARGs 

Seawater samples (50–500 mL) were filtered through 0.45- μm 

embrane filters (Nylon, Whatman) in a vacuum to determine 

elative abundance of ARG. The membranes were stored in 2-mL 

ubes, and the tubes were kept at −20 °C until analysis. Sample de- 

xyribonucleic acid (DNA) was extracted from the membrane fil- 

ers using an Exgene TM soil kit (GeneAll Biotechnology, South Ko- 

ea) according to manufacturer instructions. The ARGs were quan- 

ified using a CFX96 Touch 

TM Real-Time PCR Detection System 

Bio-Rad, USA) and 20 μL of a master mix consisting of the follow- 

ng materials: 10 μL of KAPA SYBR® FAST qPCR kits (KAPA Biosys- 

ems, USA), 8.2 μL of PCR-grade water, 0.8 μL of primer (0.4 μL 

f forward + 0.4 μL of reverse), and 1 μL of DNA template. Each 

aster mix containing the target DNA was amplified for 39 cycles 

sing the following three steps: 3 min at 95 °C for denaturation, 

 min at the optimal temperature of each target gene for anneal- 

ng, and 10 s at 72 °C for elongation ( Jang et al., 2017 ; Shin et al.,

019 ). The target ARGs in this study were aac(6 ′ -Ib-cr), bla TEM 

, sul 1,

nd tet X, which were the most frequently found on the beach in a 

revious study ( Jang et al., 2021 ). For each target gene, the opti-

al annealing temperatures were 66.0 °C for aac(6 ′ -Ib-cr) , 44.0 °C 

or bla TEM 

, 56.0 °C for sul 1, and 61.0 °C for tet X ( Jang et al., 2017 ).

he ARG abundances were quantified based on standard curves 

enerated using a 10-fold serial dilution of the plasmid DNA. Four 
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Fig. 3. Structure of LSTM-CNN hybrid model for time step 1 to t , which is suggested in this study. (a) and (b) indicate the input and LSTM layers of the conventional LSTM, 

respectively. On the LSTM layer, X t and Y t are the input and output at time t , respectively. Cell state ( C t ) records past information through three gates ( f, i , and o ), sigmoid 

( σ ), and the activate function ( F Act ). (c) LSTM output is loaded into the 1D CNN and convoluted based on the optimized filter size and activation function type. (d) ARG 

prediction values are derived from the fully connected layer. 
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RGs were detected in 218 samples, and their temporal trends are 

isplayed in Fig. S2. 

.3. Data-driven modeling 

Three models were used to predict single and multi-ARGs as 

escribed in Fig. 1 . Each model was developed with the meteo- 

ological variables (i.e., cumulative rainfall for 1 h and 3 h, wind 

irection, wind speed, air pressure, air temperature, and relative 

umidity) and aquatic variables (i.e., water temperature, tides, and 

alinity) as input data and four ARG abundances as output data. 

oreover, the hyperparameters such as the batch size, lookback, 

earning rate, and weight matrix sizes in LSTM and CNN, and ac- 

ivation functions for LSTM and CNN for each model were deter- 

ined by a Bayesian optimization algorithm as described in the 

upplementary information. 

.3.1. Conventional LSTM 

LSTM was developed by Hochreiter and Schmidhuber (1997) to 

rocess long sequential data and extract its temporal features. In 

STM, the flow of information is controlled by the “gate” mecha- 

ism ( Fig. 3 a and b). These gates control the incoming and outgo- 

ng information in an L STM unit. L STM employs three gate types 

hat are named based on the function they perform (i.e., the out- 

ut gate ( �o ), forget gate ( � f ), and input gate ( �i )). In addition to

ates, LSTM also has “memory”, which is responsible for the flow 

f information across time. The gates interact with the memory 

o either remove or add information to the memory. The memory 

s also called the “state.” There are two types of states within an 

STM unit: the cell state ( c t ) and hidden state ( h t ). At each time

tep, an LSTM unit generates two outputs that are representative 

f the cell and hidden states, which are given in the Fig. 3 b and

quations below ( Hochreiter and Schmidhuber, 1997 ). 

˜ 
 t = tanh ( W c [ h t−1 , X t ] + b c ) , (1) 

f = σ
(
W f [ c t−1 , X t ] + b f 

)
, (2) 
4 
o = σ ( W o [ c t−1 , X t ] + b o ) , (3) 

i = σ ( W i [ c t−1 , X t ] + b i ) , (4) 

 t = �i ∗ ˜ C t + � f ∗ c t−1 , (5) 

 t = �o ∗ tanh c t (6) 

At time step t , an LSTM model generates a candidate cell ( ̃  C t ), 

hich is used to update the cell state ( c t ) Eqs. (1) and (5) . A vector

f the output of the previous cell ( h t−1 ) and the current input ( X t )

re multiplied by the weight of the candidate cell ( W c ), and gener- 

tes ˜ C t with bias ( b c ) using the hyperbolic tangent ( tanh ) function 

q. (1) . In Eqs. (2) –(4) , W and b are the weights and biases of the

ates, respectively, which are learnable parameters. A vector of the 

revious cell state ( c t−1 ) and X t is multiplied by the weight of each 

ate (i.e., W f , W o , and W i ), and the gates are calculated using the 

igmoid function ( σ ). The outputs are produced as c t and hidden 

tates ( h t ) using the candidate cell and the gates Eqs. (5) and (6) .

 t is then used in a fully connected network to obtain the final 

odel predictions. 

In this study, we used a “many-to-many” scenario, which cal- 

ulate the outputs at each time step, so that the number of out- 

uts represent the number of input. This differs from “many-to- 

ne” scenario which produces an output only at the last time step. 

urthermore, the number of information (i.e., cell state and hidden 

tate) in the past is called the “lookback”, and in the present study, 

ookback 1 represents the information of 30 minutes ago. 

.3.2. LSTM-CNN hybrid model 

We applied a one-dimensional (1D) CNN ( Fukushima, 1979 ) to 

he output sequence of the LSTM model to enhance the prediction 

erformance by further extracting features from the LSTM output 



J. Jang, A. Abbas, M. Kim et al. Water Research 196 (2021) 117001 

Fig. 4. Structure of IA-LSTM model suggested in this study. (a) IA model layer was adopted from the DA-RNN proposed by Qin et al. (2017) . x n indicates the original inputs 

of n number of input features, and a k t represents the attention weight for the k -th input at time t . Each attention weight is given to the original input by tensor product ( �). 

(b) Driving inputs ( ̃ X t ) calculated from the IA layer are used instead of the original LSTM inputs for prediction. 

Table 2 

Optimized hyperparameters for ARG prediction with conventional LSTM and LSTM-CNN. 

ARGs LSTM CNN 

Batch size Lookback Learning rate LSTM units Activation 

function 

Filter size Activation 

function 

(a) Single ARGs prediction with conventional LSTM 

bla TEM 24 8 1.00E-07 128 ReLU N/A N/A 

(b) Single ARGs prediction with LSTM-CNN 

aac(6’-Ib-cr) 12 16 9.59E-07 256 ReLU 128 ReLU 

bla TEM 4 16 3.04E-07 64 ReLU 256 ReLU 

sul 1 4 14 9.30E-07 64 Tanh 128 Tanh 

tet X 24 16 9.70E-07 256 ReLU 128 Tanh 

(c) Multi-ARGs prediction with LSTM-CNN 

aac(6’-Ib-cr) + bla TEM + sul 1 + tet X 4 16 3.82E-07 64 ReLU 128 ReLU 

∗ ReLU and Tanh indicate Rectified Linear Unit and hyperbolic tangent, respectively. N/A: not available 
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 Fig. 3 ). At each time step, the output of the LSTM model is the in-

ut into the next model, the 1D CNN ( Fig. 3 c). 1D CNN can extract

eatures by convolving a weight matrix with the inputs ( Eq. 7 ). 

he size of the weight matrix determines the total number of pa- 

ameters in the CNN while the size of the convolution operation 

s based on the kernel size. The convolution output was further 

odified by applying a non-linear activation function. The values 

f these hyperparameters were obtained using Bayesian optimiza- 

ion, and they are provided in Table 2 . The CNN layer was fol-

owed by a maximum pooling layer ( Eq. 8 ) to reduce the output 

ize. Finally, we applied a fully connected layer to obtain the fi- 

al prediction from the model according to the below equations 

 Fukushima, 1979 ). 

 = f 

(∑ 

x ∗ w + b 

)
(7) 

 = max ( 0 , x ) (8) 

here x and y indicate the input and output of the CNN, respec- 

ively. w is the weight matrix, and b is the bias. The activation 

unction ( f ) used in each model is indicated in Table 2 . 

.3.3. IA-LSTM model 

The LSTM model can extract temporal features from inputs. 

owever, not all of the inputs into an LSTM are equally important. 

odel performance can be enhanced if it focuses on more relevant 

nputs. To account for this, many researchers have proposed an “at- 

ention” mechanism that forces the NN to focus on a certain part 
5 
f the input ( Luong et al., 2015 ). One example is the dual-stage at-

ention mechanism (DA-RNN), which was designed for time series 

rediction problems ( Qin et al., 2017 ). In DA-RNN, the “input atten- 

ion (IA)” is first applied, which allows the model to focus on rel- 

vant inputs. In the second stage, “temporal attention” is applied, 

hich assists the model in selecting relevant data from the history. 

n this study, we used an IA mechanism in combination with LSTM 

s illustrated in Fig. 4 . The purpose of IA is to adaptively select rel-

vant driving input data. IA-LSTM is not a black box model unlike 

ther deep learning models in that it can calculate the importance 

f input variable on the model according to the below equations 

 Qin et al., 2017 ). 

 

k 
t = v T e tanh ( W e ) 

[
h t−1 ; s t−1 + U e x 

k 
]

(9) 

k 
t = 

exp 
(
e k t 

)
∑ n 

i =1 exp 
(
e i t 

) (10) 

˜ 
 t = 

(
a 1 t x 

1 
t , a 2 t x 

2 
t , . . . a n t x n t 

)
(11) 

Given n number of input features, the attention weight for the 

 -th input a k t is calculated using the hidden and cell states of LSTM 

ccording to Eq. (10) . The parameters U e , v T e , and W e are calibrated 

uring the training process. Eq. (10) is a softmax function that re- 

urns an array of attention weights that sum to one Chollet, 2018 ). 

he attention weights for each input are then used to extract the 

riving inputs ˜ X t according to Eq. (11) . The more relevant driving 

nputs are amplified by their higher weights while the less im- 

ortant ones are reduced to smaller corresponding weights. These 
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Fig. 5. Conventional LSTM results for bla TEM . (a) Loss curves during training and testing. (b) Scatter plot and (c) time series plot comparing observations and model predic- 

tions. 
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nputs are then used as inputs into LSTM to extract the tempo- 

al features. Thus, instead of using the original inputs X t Eqs. (1) –

4) , the IA mechanism uses ˜ X t within LSTM. The remainder of this 

odel is similar to that of the conventional LSTM as described in 

ection 2.3.1 , which produces the final model prediction. 

.3.4. Model training 

The predictions from each model were used to calculate the 

odel “loss” values by comparing them with the observed ARG 

alues. To reduce this value, a gradient-based learning mechanism 

alled “backpropagation” was used ( Rumelhart et al., 1986 ). During 

ackpropagation, the model weights are updated to reduce the loss 

alue. The weight changes are controlled by the learning rate pa- 

ameter. We used the adaptive motion estimation, Adam optimizer 

 Kingma and Ba, 2014 ), an adaptive learning rate algorithm. This 

lgorithm adjusts the learning rate during the training process and 

as been used in many deep learning benchmarks ( Gregor et al., 

015 ; Xu et al., 2015 ). The NN was designed to produce continuous

redictions even though the observed ARG values were sparsely 

istributed. Because the observed ARG was not available at the 30- 

inute time step, we calculated the loss value using predictions 

hat correspond to available observations. Predictions for which 

o corresponding observations were available were not used for 

odel training. This was achieved using a masking layer that in- 

ormed the model about the availability or unavailability of obser- 

ations. In this manner, it was possible to train the models using 

0-minute input data and sparsely observed target data. The total 
6 
atasets were divided into 70% for training and 30% for validation. 

o improve the performance, training and validation datasets were 

andomly selected for training on the entire dataset. 

The RNN-based models we used in this study require histori- 

al input data for single- step prediction. The number of historical 

teps used by the models for making predictions is known as look- 

ack steps ( Chollet, 2018 ). By increasing the length of the lookback 

teps, we can feed more historical data to the NN to make predic- 

ions. In this study, we optimized the value of these lookback steps 

uring hyperparameter optimization. 

The variation in the observed ARG at the beach was very signif- 

cant. This is evident from the very high standard deviations and 

ariances (Fig. S3). To account for this large variation, we trans- 

ormed the ARG values on logarithmic scale with a base of 10. This 

s because log transformation can reduce the effect of outliers from 

he data ( Singh and Kingsbury, 2017 ). It has been reported that log 

ransformation can improve the performance of data-driven mod- 

ls when the data contain outliers ( Zheng and Casari, 2018 ). 

We used Tensorflow API version 1.15 ( Abadi et al., 2016 ) in the

ython programming language to build the models. The models 

ere trained using an Intel® Core TM i7-8700 processor with an 

VIDIA GeForce GTX 1060 graphic card, 6 Gigabytes of dedicated 

PU memory, and 32 Gigabytes of random access memory. 

.3.5. Hyperparameter optimization 

We used a Bayesian optimization algorithm with Gaussian pro- 

esses as a surrogate function to optimize the hyperparameters, 
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Fig. 6. (a) Scatter plots with trend lines (b) timeseries plots of observations and model predictions for single ARG LSTM-CNN predictions. 
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ncluding the batch size, lookback, learning rate, and weight ma- 

rix sizes in LSTM and CNN, and activation functions for LSTM and 

NN. The convergence, evaluation and objective plots for each op- 

imization are exhibited with more information on the hyperpa- 

ameter optimization in the supplementary information. 

.3.6. Performance evaluation 

Out of the 218 ARG samples, we used 150 to train the NN, and

he remaining 68 were used to evaluate the model performance. 

e used the mean absolute error (MSE) to train the model. We 

lso evaluated the model performance using the coefficient of de- 

ermination (R 

2 ), root MSE (RMSE), and percent bias (PBIAS). The 

quations to calculate these metrics are as follows: 

MSE = 

√ ∑ n 
i =1 ( o i − p i ) 

2 

n 

, (12) 

 BIAS = 

∑ n 
i =1 o i − p i ∑ n 

i =1 o i 
× 100 (13) 

here o i and p i are the observed and predicted data, respectively, 

nd n indicates the number of datasets. Because the neural net- 

ork was trained with logarithmically transformed data, the per- 

ormance metrics reported in this study were calculated and inter- 

reted on logarithmic scale. 
7 
. Results and discussion 

.1. Hyperparameter optimization 

.1.1. Hyperparameter optimization for single ARG prediction 

By comparing the partial dependence plots in objective plots of 

ll the models (Figs. S4 and S5), we can infer that the learning rate 

as the most sensitive parameter during optimization. In contrast, 

he activation function in the CNN layer was the least sensitive pa- 

ameter for the NN across models. The optimization results also 

emonstrated that a higher lookback value resulted in a greater 

eduction in the model test MSEs in all cases except for bla TEM 

. 

o uniform trend for batch size can be inferred for all the mod- 

ls except for bla TEM 

, where a smaller batch size of four resulted 

n the maximum improvement in performance. For LSTM units, 

 higher value resulted in an improved performance for sul 1 and 

et X, which exhibited a maximum improvement in performance 

ith 256 LSTM units. For bla TEM 

, the optimum number of LSTM 

nits was 64, and a smaller number of LSTM units improved the 

odel performance. The optimized values of all parameters for the 

 STM-CNN and IA-L STM models are listed in Tables 2 and 3 , re-

pectively. In this analysis, the batch size was adjusted to 4, 8, 12, 

nd 24. The results demonstrate that various batch sizes were se- 
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Table 3 

Optimized hyperparameters for ARG prediction with IA-LSTM. 

ARGs Batch size Lookback Learning rate LSTM units Activation function 

input attention prediction 

(a) Single ARGs prediction with input attention-LSTM 

aac(6 ′ -Ib-cr) 8 20 9.94E-04 16 ReLU ELU 

bla TEM 24 14 5.39E-04 64 ELU Tanh 

sul 1 12 19 3.39E-04 16 ReLU Tanh 

tet X 24 19 9.90E-04 32 none ELU 

(b) Multi-ARGs prediction with input attention-LSTM 

aac(6 ′ -Ib-cr) 12 6 8.55E-04 32 ELU ELU 

bla TEM 64 LeakyReLU LeakyReLU 

sul 1 16 ReLU ReLU 

tet X 64 ReLU ReLU 

∗ ReLU, ELU, and Tanh indicate Rectified Linear Unit, Exponential Linear Unit, and hyperbolic tangent, respectively. 
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Table 4 

Model performances for single and multi-ARG prediction. 

aac(6 ′ -Ib-cr) bla TEM sul 1 tet X 

train test train test train test train test 

(a) Single ARGs prediction with conventional LSTM 

R 2 N/A N/A 0.09 0.16 N/A N/A N/A N/A 

RMSE N/A N/A 0.68 0.61 N/A N/A N/A N/A 

PBIAS N/A N/A -0.18 1.00 N/A N/A N/A N/A 

(b) Single ARGs prediction with LSTM-CNN 

R 2 0.69 0.57 0.50 0.32 0.63 0.38 0.87 0.65 

RMSE 0.89 1.02 0.50 0.61 0.46 0.53 0.46 0.71 

PBIAS 1.67 1.78 0.36 1.23 -0.27 0.97 0.81 1.11 

(c) Multi-ARGs prediction with LSTM-CNN 

R 2 0.65 0.55 0.20 0.15 0.52 0.35 0.67 0.56 

RMSE 0.87 0.97 0.63 0.68 0.48 0.50 0.72 0.80 

PBIAS -0.02 1.89 0.67 1.84 0.18 0.63 -0.06 0.78 

(d) Single ARGs prediction with IA -LSTM 

R 2 0.86 0.41 0.16 0.15 0.62 0.09 0.61 0.49 

RMSE 0.06 0.14 0.98 0.96 0.09 0.13 0.14 0.16 

PBIAS -1.21 1.44 10.51 9.71 1.47 -3.22 -2.26 3.03 

(e) Multi-ARGs prediction with IA-LSTM 

R 2 0.68 0.44 0.35 0.31 0.37 0.27 0.80 0.67 

RMSE 0.10 0.14 0.12 0.13 0.12 0.12 0.09 0.13 

PBIAS 1.22 -0.41 -0.32 -1.77 -1.19 -3.07 -2.67 -6.35 

∗ N/A: not available 
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ected to test model efficiency in single ARGs prediction, and the 

atch sizes in the LSTM-CNN model were smaller compared to 

hose of the conventional LSTM or IA-LSTM models ( Table 2 ). In 

eep learning, the smaller the batch size, the greater the variation 

 Keskar et al., 2016 ); thereby, smaller batch sizes appear to provide 

ufficient variances for calculating the gradient descent in LSTM- 

NN. 

.1.2. Hyperparameter optimization for multi-ARG prediction 

For multi-ARG NN prediction with LSTM-CNN, the hyperparam- 

ters were obtained using the Bayesian optimization method, and 

hey are provided in Table 2 . The top row in Fig. S4e show the

ariation in objective function with change in each hyperparame- 

er. The steepest slope for learning rate shows its change caused 

ighest variations in objective functions. Thus, the learning rate 

an be considered as the most sensitive hyperparameter for this 

odel. In the LSTM-CNN model, the Rectified Linear Unit (ReLU) 

ctivation function was the most effective for both LSTM and the 

NN layer. A smaller batch size of 4 and 64 LSTM units resulted 

n improved model performance compared to that with higher pa- 

ameter values. Due to structural differences within the LSTM-CNN 

odel, the LSTM unit and activation function were assigned dif- 

erently to each ARG in the LSTM-CNN. The optimized hyperpa- 

ameters for the LSTM-CNN are presented in Table 3 without the 

onvergence, evaluation, and objective plots. 

.2. ARG prediction results 

.2.1. Single ARG prediction with conventional LSTM 

The conventional LSTM was expected to be useful for predict- 

ng ARGs at a recreational beach because ARGs have been reported 

o occur during rainfall events instead of immediately after rain- 

all (Fig. S2). In this study, single ARG ( bla TEM 

) prediction was first

ested using conventional LSTM after optimization. The model was 

rained for 25,0 0 0 epochs with optimized hyperparameters, and 

he loss curves of the training and testing are displayed in Fig. 5 a.

o select the final model, we chose the model where test loss be- 

an increasing with further training since the increase in test loss 

ndicates overfitting. After this point, we ignored further decreases 

n training loss. Fig. 5 b and c display the scatter and time series

lots of the observed and predicted values, respectively. Their per- 

ormances were evaluated using R 

2 , RMSE, and PBIAS ( Table 4 a). 

he R 

2 values were 0.09 and 0.16 for training and testing, respec- 

ively, demonstrating that the conventional LSTM model did not 

dequately capture the features of the bla TEM 

occurrence even af- 

er optimization. In this case, increasing training or adding layers 

id not improve the model performance supporting previous re- 

orts that increasing NN complexity does not necessarily improve 

he performance compared to simple NNs ( Makridakis et al., 2018 ). 
8 
verall, conventional LSTM did not effectively capture the occur- 

ence patterns of ARGs. Therefore, we combined LSTM with CNN 

nstead of predicting the other ARGs with LSTM. 

.2.2. Single and multi-ARG prediction with LSTM-CNN hybrid model 

Each single ARG prediction model was trained with hyperpa- 

ameters obtained from optimization. Each model was trained for 

0,0 0 0 epochs, and then the performance was evaluated using a 

est dataset because all models achieved their optimal performance 

efore 10,0 0 0 epochs. The training and test losses of the models 

re displayed in Fig. S6a–S6d. We observed that the test losses for 

ac(6 ′ -Ib-cr ) and tet X began increasing much earlier than those for 

la TEM 

and sul 1. The minimum test losses for aac(6 ′ -Ib-cr ) and tet X

ere achieved after training the model for 2,843 epochs and 6,461 

pochs, respectively. For all models, the MSE values sufficiently 

redicted each single ARG; however, the training losses continued 

o decrease demonstrating signs of overfitting, as is evident from 

he rising test loss curves. R 

2 and PBIAS were also measured dur- 

ng training and testing to evaluate model performances ( Table 4 b). 

he R 

2 values ranged from 0.50 to 0.87 for training and from 0.32 

o 0.65 for testing. The greater NN training accuracy compared to 

hat of testing indicates that the NNs were overfitted as presented 

n the loss curves. PBIAS is a relative error from the observations; 

hereby, a positive value indicates overprediction, and a negative 

alue demonstrates underprediction. In our models, the PBIAS pre- 

ented values between 0.27 % and 1.78 % in both the training and 
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Fig. 7. (a) Scatter plots with trend lines (b) timeseries plots of observations and model predictions for multi-ARG LSTM-CNN predictions. 
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esting results. These values can be considered “very good” lev- 

ls for NNs with no bias in the average tendency of predictions 

or observations according to the hydrological criteria proposed by 

oriasi et al. (2015) . Comparisons of the observed and predicted 

RGs are presented as scatter and time series plots in Fig. 6 a and

, respectively. Overall, the optimal performance was achieved for 

et X while the worst performance was obtained for bla TEM 

. 

Compared to conventional L STM, L STM-CNN exhibits a 2–6 

imes improved accuracy in bla TEM 

prediction ( Table 2 a and b). 

he convolution models for sequence data were more successful 

hen combined with an RNN in previous studies ( Barzegar et al., 

020 ; Lee et al., 2017 ). However, those studies applied LSTM 

fter the CNN for prediction. Our LSTM-CNN model differs in 

hat the LSTM output was applied to the CNN. In LSTM-CNN, 

he CNN appears to have played a role in extracting local fea- 

ures from the LSTM outputs. It has already been reported by 

arzegar et al. (2020) that LSTM can be trained to extract long- 

erm dependencies, and the CNN can extract time-invariant fea- 

ures, thereby improving model predictability. The proposed LSTM- 

NN model is presumed to exhibit the advantages of both models. 

verall, the proposed LSTM-CNN model captures information from 

rratic and complex changes in ARGs more effectively than that of 

he conventional LSTM model. 
9 
The performance metrics of multi-ARG prediction NN for train- 

ng and test datasets are provided in Table 4 c. During model train- 

ng, we calculated the loss function after each epoch for both train- 

ng and test data which is plotted in Fig. S6e. Correlations between 

he observed and predicted values are illustrated as scatter and 

ime series plots in Fig. 7 a and b, respectively. Model performance 

as been listed for each ARG, although the models predicted all 

our ARGs simultaneously. The performance metrics for each ARG 

eclined compared to those of their corresponding single ARG pre- 

iction models. This is due to the higher learning capacity of sin- 

le ARG prediction models. In contrast, the multi-ARG prediction 

Ns had to learn the complex and differing behaviors of all ARGs. 

hus, the performance deteriorated when the NN predicted multi- 

le ARGs. Nevertheless, we can conclude that the predictive values 

greed with the observation values of the multi-prediction model 

ndicating that this model performed well in simultaneously pre- 

icting multiple ARGs. Our result reveals the potential of applying 

he LSTM-CNN hybrid model in predicting multi-ARGs at a recre- 

tional beach setting, which can provide a reliable foundation for 

ater policies. The optimal test performance was obtained for tet X 

hile the poorest performance was obtained for bla TEM 

. This is 

imilar to single ARG prediction models, where the bla TEM 

model 

xhibited the highest RMSE compared to that of the other ARG 
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Fig. 8. (a) Scatter plots with trend lines (b) timeseries plots of observations and model predictions for single ARG IA-LSTM predictions. 
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rediction models. The low predictive performance for bla TEM 

may 

e attributed to improper variables such as the skewness of the 

la TEM 

observations (Table S1). If the dataset follows a normal dis- 

ribution, the prediction ability of the model can increase with- 

ut ignoring the tail parts in the distribution. According to a pre- 

ious study, datasets with a skewness rage of -2 to + 2 are consid-

red to follow a normal distribution ( George and Mallery, 2010 ). 

or bla TEM 

, the skewness value was within the range of a nor- 

al distribution, but it was close to the threshold indicating that 

he bla TEM 

dataset is slightly skewed to the right compared to 

he other ARG datasets. Thus, it appears that this slightly skewed 

ataset may have affected the training and prediction of bla TEM 

. 

.2.3. Single and multi-ARG prediction with IA-LSTM model 

Scatter and time series plots are presented in Figs. 8 a and 

, respectively, to demonstrate the correlations between observa- 

ions and predictions for single ARGs using IA-LSTM. The perfor- 

ance metrics for single ARG prediction obtained using IA-LSTM 

re displayed in Table 4 d. The R 

2 values of single ARGs predic- 

ions using IA-LSTM were between 0.16 and 0.86 during train- 

ng and 0.09 and 0.49 during testing. Additionally, for aac(6 ′ -Ib- 

r) and sul 1 predicted using IA-LSTM, overfitting was expected be- 

ause the R 

2 training values were larger than those of testing. 

or bla predicted using IA-LSTM, the performance was consid- 
TEM 

10 
rably worse, which can be attributed to inappropriate inputs as 

entioned above. The IA-LSTM predictions verified that all ARGs, 

xcept for bla TEM 

, were “very good” based on the PBIAS values 

 Moriasi et al., 2015 ). 

The multi-ARGs predictions demonstrated that the perfor- 

ances of aac(6 ′ -Ib-cr) and sul 1 with IA-LSTM were worse than 

hose of the single ARG predictions ( Table 4 e). However, the 

erformances of bla TEM 

and tet X in multi-ARG predictions us- 

ng IA-LSTM improved compared to those of the single ARGs 

redictions. It is uncommon to exhibit superior performance in 

ulti-prediction compared to individual prediction. Higher accu- 

acy in multi-prediction may be because the weights can be al- 

ocated to significant inputs when learning weights. IA-LSTM re- 

ies on an attention mechanism to learn the weights of each time 

tage ( Bahdanau et al., 2016 ). The attention mechanism can sup- 

ress noisy or unnecessary inputs by using an attention weight 

 Qin et al., 2017 ). In particular, when predicting aac(6 ′ -Ib-cr) with 

A-LSTM, the model predicted a value twice that observed during 

he largest rainfall (17.5 mm) between June 26, 2018, and June 30, 

018 ( Fig. 9 b). In addition, for other ARGs such as sul 1 and tet X,

he IA-LSTM also tended to predict much larger values than obser- 

ations during the largest rainfall. These suggest that the IA-LSTM 

odel predictions allocated the weights to rainfall as one of signif- 

cant inputs when learning weights. 
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Fig. 9. (a) Scatter plots with trend lines (b) timeseries plots of observations and model predictions for multi-ARG IA-LSTM predictions. 
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All R 

2 values, except for aac(6 ′ -Ib-cr) in training, were lower 

han those of LSTM-CNN for single ARG predictions ( Table 4 e). 

n the case of multi-ARG prediction, IA-LSTM could predict multi- 

le ARGs simultaneously with higher accuracy than that of LSTM- 

NN. Notably, the performance of NN for bla TEM 

with IA-LSTM was 

uperior to that of LSTM-CNN during both training and testing. 

ith IA-LSTM, the multi-prediction performance was higher than 

hat of LSTM-CNN because the attention weight was focused on 

he most relevant information, thereby maximizing the informa- 

ion characteristics ( Qin et al., 2017 ). When training NNs under 

omplex conditions that consider the characteristics of all ARGs, 

ttention weights in IA-LSTM can likely extract features more ef- 

ectively than the weights of LSTM or CNN. Plots of single and 

ulti-ARG predictions during model training and testing for IA- 

STM are displayed in Figs. 8 and 9 . Table S2 shows the Shannon

ntropy ( Cover, 1999 ) values of the predicted ARG from the LSTM- 

NN and IA-LSTM models. We observed that for LSTM-CNN based 

odels, the entropy of the predicted arrays is larger than those 

f observed. Entropy is a measure of uncertainty and chaos in a 

ystem ( Sanei and Chambers, 2013 ). In time-series data, it quan- 

ifies the degree of complexity ( Kumar and Dewal, 2011 ). Based 

pon these results we conclude that, IA-LSTM is a more favorable 

ethod than LSTM-CNN in predicting multi-ARGs, while LSTM- 

NN is more suitable for predicting single ARGs. 
11 
.3. Important variables for ARG prediction 

Input variables are important factors in determining model 

ccuracy. However, the conventional LSTM and LSTM-CNN hy- 

rid models are uninterpretable in the importance of input vari- 

bles due to the blackbox effect. One of the advantages of us- 

ng attention-based models is that they allow us to interpret the 

odel. The plots of attention weights with respect to lookback for 

ifferent inputs represent, which input was more relevant in decid- 

ng model’s output. A higher attention weight for an input feature 

hows that the model focused more on this input in predicting the 

utput. Since the attention weights also vary with lookback, they 

lso show which previous value of an input was more important 

n model’s prediction. Three input variables (i.e., rainfall, tides, and 

alinity) that affect ARG prediction were selected. This was based 

n previous studies that found that ARGs were affected by rainfall 

nd tidal level ( Jang et al., 2021 ) and relatively higher abundances 

f ARGs were found in upstream with low salinity ( Lee et al., 2017 ;

aron et al., 2018 ). Although the variables related to wind and tem- 

erature were also used as input to increase prediction ability, the 

ignificance of these variables was lower than that of the three 

ariables. This may be because this study targeted the recreational 

eason of the beach (May-September). Had we considered monitor- 

ng in other seasons, the variables affecting the ARG concentration 
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Fig. 10. Importance of input variables such as (a) rainfall, (b) tide, and (c) salinity for prediction of ARGs. The color bars represent importance of each variable. Lookback 

time is the time of the historical data used by Neural Network to predict next value. 
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ould have been different. Fig. 10 displays the importance of the 

nput variable according to the lookback time. The closer an im- 

ortance is to the yellow side, the more likely it is that lookback 

ime affects the prediction while the closer an importance is to the 

lue side, the less impact lookback time has on it. Based on atten- 

ion weights, rainfall substantially affected predictions with vari- 

us lookback times depending on the ARG: rainfall data of 2.5–5 

 ago was important for aac(6’-Ib-cr) and tet X, while 7.5–10 h ago 

or bla TEM 

and both ~7.5 h and 10 h ago for sul 1 ( Fig. 10 a). The
12 
reviously reported network analysis showed that aac(6’-Ib-cr) and 

et X were associated with bacterial communities during and after 

ainfall, but bla TEM 

and sul 1 showed relevant to bacterial commu- 

ities only after rainfall ( Jang et al., 2021 ). Based on this result, we

ssume that bla TEM 

and sul 1 were affected by a relatively long lag 

or rainfall, possibly due to slow gene transfer among bacteria. 

One of the main features of ARG prediction is the time delay 

etween rainfall and ARG outflow by CSOs. As illustrated in the 

ime series results, both L STM-CNN and IA-L STM respond to the 
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elayed ARG release after the rainfall ( Figs. 6 b, 7 b, 8 b, and 9 b).

ompared to our previous study where total ARGs were found to 

e released after 5–7 h of rainfall at Gwangalli Beach ( Jang et al.,

021 ), all ARGs exhibited a similar release tendency. The tide data 

lso demonstrated that different lookback times affected the ARG 

redictions ( Fig. 10 b). Tidal data from 7.5–10 h prior corresponded 

ith the rainfall data and appeared to affect tet X prediction. For 

eaches with CSOs, the tide is one of the most influential sources 

f ARG occurrence. As previously reported, Gwangalli Beach ex- 

ibits a semi-diurnal tidal cycle; thereby, ARGs are introduced to 

he coast through CSOs during the ebb tide ( Jang et al., 2021 ;

 Kim et al., 2020 ) . Accordingly, the prediction of tet X is affected

y the tidal cycle of Gwangalli Beach. Additionally, 4 h of tidal data 

ffected both aac(6 ′ -Ib-cr) and bla TEM 

predictions, but the sul 1 pre- 

iction appeared to be affected by the overall tidal data, not the 

pecific lookback time. These results imply that both aac(6 ′ -Ib-cr) 

nd bla TEM 

prediction was sensitive to shorter tidal changes at in- 

ervals of 4 h while sul 1 prediction was predominantly affected by 

he overall tidal data. Lastly, salinity data within 5 h prior were the 

ost influential for all ARGs predictions ( Fig. 10 c). The NNs were 

ensitive to changes in salinity because these ARGs commonly oc- 

ur in water bodies with lower salinity levels; aac(6 ′ -Ib-cr), bla TEM 

, 

nd sul 1 are frequently detected species in livestock industries in 

outh Korea ( Lee et al., 2017 ), and tetracycline-resistance genes 

e.g., tet X) are frequently found in human feces ( Baron et al., 2018 ).

n addition, it is assumed that the inflow of freshwater by rain- 

all affected the ARG predictions, as prediction sensitivity corre- 

ponded to rainfall periods. 

. Conclusions 

The goal of this study was to improve the accuracy of pre- 

ictions for ARG occurrence and to identify the variables that af- 

ect these predictions. Thus, in this study, the conventional LSTM, 

 STM-CNN hybrid, and IA-L STM models were compared to predict 

RGs occurrence according to environmental variables. The pri- 

ary results of this study are as follows: 

1) The sequential convergence of LSTM and CNN resulted in 

improved performance compared to that of conventional 

LSTM to predict single ARGs. We show that the use of CNN 

on the output of LSTM enhances model’s performance by ex- 

tracting local features.. 

2) IA-LSTM was not able to outperform LSTM-CNN in predict- 

ing single ARGs; however, it exhibited superior performance 

in predicting multi-ARGs. The attention weights of IA-LSTM 

helps the model to focus on decisive features when it is nec- 

essary to learn more complex features. 

3) Unlike the LSTM and LSTM-CNN blackbox models, the im- 

portance of input variables that affect the prediction can be 

identified using IA-LSTM. 

4) ARGs occurrence predictions were sensitive to input vari- 

ables in different lookback ranges. Therefore, we identified 

the time-dependency ranges within the input sequences that 

each ARG prediction relies on. 

Throughout this study, deep learning model has demonstrated 

ts performance on prediction of ARGs occurrence. This study also 

rovides useful information on selection of proper deep learning 

echniques for predicting microbial water quality at a beach. 
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