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COMPUTATIONAL STUDIES OF GRAPHENE AND SILICENE FOR DNA BASE DETECTION 

 

An abstract of the thesis by 

Mukesh Tumbapo 

Graphene’s success for nanopore DNA sequencing has shown that it is possible to explore other 

potential single- and few-atom thick layers of elemental 2D materials beyond graphene (e.g. 

phosphorene and silicene), and also that these materials can exhibit fascinating and technologically 

useful properties for DNA base detection that are superior to those of graphene. The buckled 

honeycomb structure, tunable bandgap, and high thermal stability of silicene makes it an ideal 

material that can be used for designing the active components of nanodevices for biosensing 

applications such rapid sequencing of DNA. Additionally, the tunable bandgap of silicene provides 

versatile electronic and thermal properties allowing silicene to be tuned into both a semi-metallic 

material and a semiconducting material. Due to the remarkable properties of silicene, it is therefore 

extremely important to perform exploratory studies to determine silicene’s ability to detect 

individual DNA bases as this material is being sought after by many experimental groups as a 

promising alternative to graphene for designing nano-bioelectronic devices for high-speed DNA 

sequencing. In this thesis, using density functional theory (DFT), we studied the interaction of 

DNA bases with finite-size nanomaterials from silicene and graphene. To determine the potential 

of monolayer silicene  as a DNA sensing material, we performed first-principal calculations based 

on two device concepts, namely, nanoribbon and nanopore devices. Due to the differences in 

structural and electronic properties of DNA bases, each base is expected to have a unique 

interaction with the silicene, or graphene monolayer material and  this interaction was modeled 

and quantified using density functional theory. In this research, we found that silicene devices have 

lower binding energies compared to graphene devices, reflecting the minimal sticking of DNA 
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bases to silicene’s surface in the optimized structures. We noticed a significant change in bandgap 

for DNA bases using silicene nanopore device  compared to graphene  devices. Furthermore, the 

silicene devices with DNA bases show a greater change in density of state signal compared to 

graphene. We also observed that the silicene nanopore device performs better than the graphene 

nanopore device. These findings support the idea of silicene being a potential candidate material 

for advanced DNA base detection using the transverse tunneling current modality. We hope that 

the findings of this research will provide useful insights that can serve as a guidance to 

experimentalists and material scientists working in the field. Ideas for future research include 

examining this system using a periodic calculation; simulate a real device and calculate the current 

spectrum; and expanding the research to include other single-layer materials such as transition-

metal dichalcogenides, and Van der Waals heterostructures.   
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CHAPTER 1 

INTRODUCTION 

The vital and important genetic information hidden within the sequence of bases in DNA has 

caused a high demand of fast and cost friendly DNA sequencing methods. The ability to sequence 

the DNA is expected to help  in the diagnosis and treatment of various diseases and eventually for 

revolutionization of personalized medicine[1][2].  In search of cost friendly methods, nano devices 

(for e.g. nanopores and nanoribbons) from various materials have been intensely studied with the 

goal of finding the best material than can be used for cost-effective and rapid DNA sequencing. 

Starting a few decades ago, nanopore based sequencing methods were first introduced by 

Kasianowicz et al[3] with the use of biological nanopores such as the 𝞪-hemolysin protein pore 

inserted into a lipid membrane. While tremendous success in the field of single-molecule analysis 

was accomplished with biological nanopores, they suffer from several challenges that limit their 

use for single-base detection: 1) biological nanopores are very sensitive to temperature, PH, and 

applied voltage, making them unsuitable for practical applications[4], 2) most biological 

nanopores such as α-hemolysin are typically more than 10 – 20 nm thick (which is equivalent to 

about 30 – 60 DNA bases) [5], which makes it difficult to detect individual bases-specific 

modulation in ion currents or transverse tunneling currents as multiple base pairs interact with the 

pore/gap simultaneously [5][6]. Due to the disadvantage of biological nanopores, a second 

generation of nanopores emerged. These are called solid-state nanopores. Solid-state nanopores 

fabricated on membranes such as Si3N4 [7], SiO2 [8], Al2O3 [9], and plastic [10] have been 

extensively used for DNA sequencing. For example, nanopores in silicon nitride membranes have 

been used to distinguish single- and double-stranded DNA (dsDNA) [11], and different 

polynucleotides [12]; and were able to detect DNA folding [13]. Furthermore, solid-state 
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nanopores have also been shown to detect proteins [14] and have been used to elucidate the 

dynamics of protein folding [15]–[17], as well as extract the protein’s shape in real-time [18]. 

While solid state nanopores are advantageous over biological nanopores in terms of stability and 

robustness, they are too thick (10 – 20 nm) which makes single-base detection impossible. 

Furthermore, the fast speed of DNA translocation (107 bases/s in solid-state nanopores) makes 

single-base resolution using ionic currents challenging [19]. 

The emergence of ultrathin two-dimensional (2D) crystals such as graphene and transition metal 

dichalcogenides (TMDs) over the past two decades [19]–[21] has created new opportunities and 

potentials in the field of nanopore DNA sequencing. The single-layer nature of 2D materials is 

comparable to the size of the DNA base [20]–[22]. Hence these materials show strong promise to 

provide the necessary resolution at the single-base level [23], [24]. Graphene nanopores and 

nanogaps have been successfully used for DNA sequencing [25], [26]. While the single-layer 

nature of graphene provides the optimal thickness (0.34 nm) for single-base resolution [20], the 

major hindrance is the hydrophobic nature of graphene’s surface. Because of the strong π-π 

interactions between graphene and the DNA, bases stick its surface [27], [28] leading to a 

significant reduction in translocation speed due to pore clogging [29]. Furthermore, the 

coexistence of different bases on the surface and pore makes single-base discrimination difficult 

[29]. Another issue is the problem of orientational fluctuations of nucleobases during DNA 

translocation through a graphene nanopore. This can give rise to overlapping current contributions 

from different bases [28]. It has been shown that the ionic blockade signal shows noise for DNA 

translocation through a single-layer graphene nanopore [28]. The origin of this noise has been 

attributed to the atomic thickness of the pore. It is notable that a nanopore in a three-layer graphite 

structure, which has a thickness ~1 nm, shows a better signal-to-noise ratio (SNR) [28]–[30]. The 
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lack of a bandgap in pristine graphene makes it undesirable for use in electronic-based detection 

modalities such as tunneling current or field-effect transistors (FETs) [19]. 

With all the disadvantages of graphene nanopores, most efforts have recently focused on 2D 

materials beyond graphene. Among these, MoS2 is the most widely studied for sequencing 

applications, mainly due to the ease of fabrication of MoS2 devices [22], [31], [32]. Several 

theoretical and experimental studies have demonstrated sequencing using single-layer nanopores 

of MoS2 [31], [33]–[35]. These studies reveal that MoS2 performs better than graphene. For 

instance, improved SNR, non-stickiness of DNA to MoS2 surface, and the presence of an intrinsic 

bandgap makes it suitable for use in advanced sequencing devices such as FETs [19], [31]. WS2 

has also been investigated for sensing properties and it showed properties similar to MoS2 [1]. 

Hexagonal boron (hBN) has also been explored as an alternative to graphene[36], [37]. 

The field of nanopore sequencing using 2D materials has already witnessed tremendous success. 

While single-base detection has been realized using these materials, most of the studies performed 

so far were based on probing ionic current variations caused by the blocking of nanopore by 

different bases during DNA translocation. The ionic current method is capable of achieving single-

base resolution only at low translocation speeds due to low bandwidth for recording ionic current 

[31], [38]. Also, to the best of our knowledge, among the large family of 2D materials, only 

graphene, hBN, MoS2, and WS2 have been investigated for DNA sequencing [31]. At this stage, it 

is not clear what solid-state nanopore material will be able to meet the challenges for single-base 

resolution. Thus, it is critical to continue to carry out explorative studies to identify new nanopore 

materials that could potentially emerge as the best candidate material. 
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This signifies the need for exploration of different 2D materials beyond graphene. This research 

will focus on a promising elemental 2D crystal called silicene. The goal of this project is  to 

perform computational studies on silicene nanomaterials with the purpose of quantifying it’s 

ability for detecting DNA bases using advanced detection principles such as tunneling current or 

field-effect transistor device. The buckled honeycomb lattice of silicene, large tunable bandgap, 

and single atom thickness  makes silicene to be a potential alternative to graphene for high speed 

DNA sequencing  and it is expected to bring new opportunities into the field of single-molecule 

analysis using 2D materials. 

 Most of the research performed for DNA base detection using graphene was based on probing 

ionic current blockade signal. But due to the atomic thickness of 2D materials, it has been shown 

that ionic current blockade signal shows noise for DNA translocation through a single layer 

graphene nanopore[31][39]. Since the thickness of monolayer silicene is comparable to that of 

graphene, one would expect similar noise levels in the ionic current signal for silicene as well. 

However, silicene’s direct bandgap of 1.194 to 1.979 eV [40], allows us to focus on advanced 

detection concepts such as the transverse tunneling current method which probes electronic current 

as opposed to ionic current, and hence expected to produce a higher signal-to-noise ratio. As 

sequencing by tunneling current has been achieved using solid state pores[41], [42], this method 

is therefore a viable option worth further exploration for silicene as well. The thickness of silicene 

may cause noise in ionic blockade signal but the important aspect of these atomic thick layers (<1 

nm) is, it allows us to perform sequencing at single base resolution. Whereas other 2D material 

such as MoS2, WS2, hBN have larger thicknesses (≅ 1 nm) as compare to silicene (≅ 0.29 nm), 

which is very close to the thickness of DNA bases (0.35 nm). The other major issue with graphene 

nanopore based detection was sticking of bases on the edges of pore during the translocation 
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process, complicating the tunneling current signal and making the detection of individual bases to 

be difficult. So, developing a device that can hold the base firmly without sticking is beneficial 

rather than engineering non sticky pore in graphene itself[31][8], [43], [44]. 

In a typical nanopore device experiment, single stranded DNA (ssDNA) or RNA molecules are 

driven electrophoretically through a nanopore (1 to 2 nm wide) created in a 2D material. During 

translocation, the DNA nucleobases with the pore, thus modulating the transverse tunneling 

current, as shown in Figure 1. The tunneling current is expected to change with each base due to 

the change in the structural and electronic properties of each base[1][45][46].  

 

Figure 1:  Diagram showing the sample model of SNP and SNR device. 

Another device principle is based on modulation of transverse current due to physisorption of DNA 

bases on the surface of nanoribbons from 2D materials, as shown in Figure 1. 
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In this research instead of modeling the entire ssDNA (which is computationally very expensive 

for electronic-based first-principle calculations), we modeled the interaction of individual DNA 

bases with the corresponding 2D nanomaterial. This approach mimics the interaction of bases with 

nanopore or nanoribbon during a translocation or physisorption experiment and has been used in 

several computational studies. Using density functional theory simulations, we will model and 

study the interaction of DNA bases with nanopore and nanoribbon structures from silicene. To 

evaluate the performance of our 2D systems for DNA base identification using the tunneling 

current effect, we shall calculate three important device performance metrics, namely, the binding 

energy, bandgap, and density of states [28][33][45]. We shall compare our results with graphene, 

which is the most widely studied 2D material for DNA sequencing applications. 

This thesis is organized as follows. In chapter 2, we discuss about  DNA sequencing principles. In 

chapter 3, we discuss several two-dimensional materials that could be used for DNA base 

detection. In Chapter 4, we present an overview of density functional theory and the computational 

methods used in our studies. In Chapter 5, we studied the interaction of graphene nanomaterials 

with DNA bases. In Chapter 6, we studied the interaction of silicene nanomaterials with DNA 

bases. In Chapter 7, we present a summary of the thesis, conclusions, and perspectives. 

 

 

 

 

 

 



7 
 

CHAPTER 2 

DNA SEQUENCING PRINCIPLES 

DNA sequencing is the method to sequence the nucleobases within the DNA. There are four 

nucleobases in DNA, that is Adenine, Cytosine, Guanine and Thymine. The pattern of these bases 

is believed to carry all the genetic information and DNA sequencing helps to decode this 

information. This information further helps to understand the functioning of genes and helps to 

detect certain genetic changes that can lead to various health conditions, for instance cancer 

induction. The ability to sequence the DNA in a fast and cost effective manner is therefore an 

important technological problem whose solution can serve as a game changer in the diagnosis and 

treatment of certain genetic diseases, and subsequently in personalized medicine. 

Several theoretical and computational studies have been performed by different research groups 

to evaluate the potential of 2D materials as candidate materials for rapid and high-resolution 

sequencing of the DNA. Most of these studies were based on the detection of ionic current 

modulations during DNA translocation through a nanopore created in a 2D material. The major 

drawback with the ionic current method is the low signal to noise ration which makes the 

identification of individual bases to be very difficult. Recently, much effort has been focused on 

using advanced detection methods that probe electronic current, as opposed to ionic current [33]. 

Electronic-based detection methods are believed to produce signal to noise ratios that are stronger 

and less susceptible to orientational fluctuations of DNA bases during tunneling. Two of the most 

widely studied electronic-based detection methods are transverse current modulations due to 

interaction of DNA bases with nanopore during DNA translocation [28], [33], and transverse 

current modulations due to physisorption of DNA bases on the surface of nanoribbons from 

various 2D materials[45]. 
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In this research, we will focus on using DFT to model and study the interaction of DNA bases with 

nanopores and nanoribbons from graphene and silicene. We shall use the results from graphene to 

benchmark of silicene studies, since graphene is the most widely studied 2D materials for DNA 

sequencing applications. 

A model of silicene nanopore (SNP) and silicene nanoribbon (SNR) device concepts is shown in 

figure 1. It consists of left and right electrodes connecting in a circuit, where the applied bias 

voltage (Vb) will create an electric field and that will cause the motion of electrons in the active 

region of the device.  Due to the physical gap in the nanopore (Figure 1a), the transport of electrons 

through the pore is governed by quantum  tunneling. For the physisorption device concept (Figure 

1b), the transverse current flowing through the nanoribbon is modulated by interaction of different 

DNA bases with nanoribbon surface. Thus, when the nanoribbon wide is made very small 

(comparable to interbase distance within the DNA), spatial resolution of DNA bases can be 

achieved by measuring the distinct current signal produced by each base. 

In this research instead of modeling the whole device, we will mostly focus on the active region 

and study the interactions of SNP and SNR in presence of different bases. Based on changes of 

bandgap, binding energy and density of states (DOS), a clear understanding of the interaction is 

made, and a criterion for detection is evaluated. For instance, we will show later that the DOS is a 

direct measure of the tunneling current, since the tunneling current is proportional to the DOS. 

Also, the binding energy provides valuable information to quantify the strength of interaction 

between DNA bases and nanopore or nanoribbon. The greater the binding energy, the greater the 

ability of the bases to stick to the nanopore or nanoribbon surface, which could then lead to a noisy 

signal and decrease in speed of translocation. 



9 
 

2.1 DNA 

DNA (deoxyribonucleic acid) is a molecule composed of two polynucleotide chains that coils 

around each other to form a double helix structure. This structure carries the genetic information 

from one offspring to another, such as instructions for development, growth, functioning, 

reproduction etc. The two polynucleotides chains are composed of simpler monomeric units called 

nucleotides. Nucleotides are composed of one of four nucleobases ( Adenine, Cytosine, Thymine, 

Guanine), a sugar and a phosphate group[46]. Nucleotides form  covalent bonds with one another 

(linking the sugar molecule of one and the phosphate group of the other) and creates a chain like 

structure giving rise to the  sugar-phosphate backbone of the DNA[47]. The nucleobases from one 

strand are bound together with those of the other strand by hydrogen bonding interactions in a 

complimentary base-pair arrangement( Adenine bonds with Thymine and Cytosine bonds with 

Guanine), which runs in opposite direction forming a double helix structure. It is the sequence of 

nucleobases along the backbone that encodes the genetic information and DNA sequencing is the 

technique of determining the sequence of these nucleic acids  in the DNA structure. The molecular 

geometries of the four nucleobases in a DNA molecule are shown in Figure 2. 
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Figure 2: Four different types of DNA bases  (a) Guanine, (b) Adenine, (c) Cytosine, (d) Thymine. 

The white solid spheres represents the hydrogen atom, grey for the carbon atom, red for oxygen 

atom and blue for nitrogen atom. 

 

To decode this information, we perform computational studies using density functional theory to 

study the interaction of nucleobases with nanomaterials from monolayer graphene and silicene. 

For this purpose, we will perform electron base detection which probes modulations in the 

transverse tunneling current due to interaction of the channel (graphene and silicene) with the 

different nucleobases. The detection of electron tunneling current is a quantum phenomenon and 

is believed to produce enhanced signal to noise ratio compared to the ion-blockade method which 

probes the modulation of ionic current during translocation of DNA through nanopore and is very 

susceptible to noise due to orientational fluctuations of nucleobases during translocation. In the 

tunneling method, electrons have a non-zero probability to tunnel through the single layer 

graphene and silicene channel material. Furthermore, the tunneling current is believed to be 

significantly modulated as a result of interaction of the silicene with the different bases[48]. 
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The structure of DNA bases is shown in Figure 2. From Figure 2, we can see the structure of bases 

are different from each other and they are likely to interact differently with nanopores and 

nanoribbon from single-layer silicene and graphene. 

2.2 IMPORTANCE OF DNA SEQUENCING 

DNA sequencing plays a pivotal role in mapping out the human genome. This information helps 

to understand the functioning of genes, and any alterations that could be induced to the genes. . 

The primary purpose of sequencing one’s genome is to obtain information of medical value for 

future care. It can provide genetic variants which leads to disease or can increase the risk of disease 

development, even in asymptomatic people[1]. The solution to DNA sequencing could lead to cost 

effective  methods that could, in turn, produce advancement in the field of genomics and 

personalized medicine(pharmacogenomics)[2]. 
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CHAPTER 3 

TWO DIMENSIONAL MATERIALS 

Two-dimensional (2D) materials are often referred to  as single layer materials. They have a single 

layer of atoms expanding in two-dimension giving rise to a large surface area and atomic-size 

thickness. This unique property of 2D-materials make them ideal materials for studying the 

adsorption of biomolecules on their surface via π-π stacking. The ultrathin nature and other unique 

properties such as  high electrical conductivity, tunable optoelectronic properties, and high 

mobility shows the possibility of advanced sensing device application [25]. Additionally, the 

single layer nature of 2D materials is comparable to the size of DNA base (0.34nm) and hence 

these materials have the potential to produce  the necessary resolution at the single base level. A 

list of some of the 2D materials with their thickness is shown in the Table 1. The thickness of these 

2D materials seem to vary, only the well-known graphene seems to have fixed thickness, but as 

these materials are considered one atomic thick layer, the diameter of atom is considered as the 

thickness of these 2D materials. 

 

Table 1:  Thickness and shape of some elemental 2D-materials[49-51]. 

There has been lots of research interest in exploring the potential of using 2D-materials for DNA 

sequencing. Most of the research conducted so far were mostly based on graphene. Due to the 

strong interaction of graphene with DNA bases, bases stick on graphene surface or graphene 

nanopore due to π – π interactions, leading to a significant reduction in translocation speed and 

2D- materials Strucutre Thickness( Å ) Buckling distance(∆) (Å) Bond length (Å)

Graphene honeycomb 3.350 0.000 1.420

Silicene buckled honeycomb 2.940 0.450 2.350

Germanene buckled honeycomb 4.220 0.737 2.460

Phosphorene puckered honeycomb 2.8 ± 1.5 nm (2–7 layers) 0.300 2.11–2.43 
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pore-clogging. Also the coexistence of different bases on the surface and pore makes single-base 

detection difficult [1][8]. Furthermore, the overlapping current contributions from different bases, 

and lack of bandgap in pristine graphene makes it undesirable for use in electronic base detection. 

This signifies the need of extending these studies to other elemental 2D materials [25]. This 

research will focus on exploring the potential of silicene as a DNA sequencing material[49]. We 

shall benchmark our results by comparing silicene to graphene as it is the most widely studied 

material for DNA sequencing. For each of these sensing materials, we will perform a 

comprehensive computational study based on two main detection principles: 

1. Modulations of tunneling current through nanopore created in 2D material in the presence 

of the different DNA bases. 

2. Changes in 2D membrane current due to the physisorption of DNA bases onto the surface 

of the 2D material.  

In this research, instead of calculating the current directly, we shall compute  density of states from 

the output of our DFT calculations.  As shown in Eq. (1), the tunneling current is proportional to 

the density of states [28]. Hence any changes in the density of state is likely to result in changes in 

the tunneling current. So, we will calculate the density of state plot for all the device systems in 

the presence of different DNA bases. This would enable us to quantify the changes in 2D materials 

properties induced by its interaction with the different DNA bases.  The tunneling current can be 

modelled using this equation, 

 
I(E, Vb) =  

e

πћ
∫ dÉ
E

0

 DOS(E − E) ́  
(1) 

Here, DOS is the density of state, I is the current, E the energy and Vb the applied bias voltage. 
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CHAPTER 4 

DFT AND COMPUTATIONAL METHODS 

DFT stands for density functional theory. It is a computational modeling method used for  studying 

the electronic structure of atoms, molecules, polymers, nanostructures and crystals [50].  The 

hypothesis behind the DFT is to use a physically observable quantity (electron density) that allows 

us to construct the Hamiltonian of the system and then use it to solve for ground state wave function 

and energy levels of the system. In 1964, Pierre Hohenberg and Walter Kohn put forth the first 

firm theoretical framework of DFT signifying that all information in a system is contained in the 

physically observable quantity , that is, the ‘electron density’, which is a simple function of three 

coordinates. The electron density which minimizes the total energy for a given system is the ground 

state electron density, according to the variational principle. 

4.1 IMPLIFICATION OF DENSITY FUNCTIONAL THEORY 

Density functional theory is a computational quantum mechanical model for solving the 

Schrodinger wave equation for many body systems (systems consisting of nuclei and electrons). 

The numerical implementation of DFT is  made possible by the Born-Oppenheimer approximation. 

Under this approximation, the nuclei and electronic degrees of freedom can be separated (this 

approximation is justifiable because the nuclear mass is thousands of times larger than the 

electronic mass, which means electron kinetic energies are thousands of times larger than nuclear 

kinetic energies). This allows us to express the total wave function of the system as a product of 

the electronic and nuclear wave functions. The electronic Schrodinger equation can then be solved  

while keeping the nuclei fixed. The calculated ground state electronic energy (which depends on 

the nuclear coordinates) is then used to compute the nuclear potential energy, from which the 

forces acting on each nucleus can be computed. Without the Born-Oppenheimer approximation, 
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the implementation of DFT would be impossible (except for very small molecules) even with the 

use of powerful supercomputers . 

A simple diagram illustrating  the geometry optimization process and calculation of molecular 

energy levels using  DFT is shown in Figure 3. The geometry optimization process involves two 

main steps, the self-consistent field cycle, and the optimize cycle. The self-consistent field cycle 

start with an initial guess of the electron density, which is obtained from the initial geometry of 

molecule and the ground state atomic wave functions (orbitals) of all the atoms in the system. The 

initial electron density is then used to calculate the effective electronic potential energy (at fixed 

nuclear coordinates). The effective potential for the system is used to solve Schrodinger wave 

equation. A wavefunction obtained from the solution of Schrodinger wave equation is used to 

calculate the new electron density using Eq. (2). 

 
ρ(r⃗, R⃗⃗⃗) = ∫ѱ(r⃗, r⃗́; R⃗⃗⃗)∗ ѱ(r,⃗⃗⃗ r;́⃗⃗⃗ R⃗⃗⃗) d3 r⃗́ 

 

      (2) 

where r⃗́ represents the coordinates of the remaining (N-1) electrons, and R⃗⃗⃗ represents all the 

nuclear coordinates. This process is repeated until the electron density is converged. The 

converged energy of the system is then used in the optimize cycle to compute the forces on the 

nuclei. During the optimize cycle, the energy gradient or the total force is calculated by taking the 

gradient of the total energy, which is used to adjust the relative position vector for each atom. The 

process is repeated in a cyclic manner until the total force on each nuclei becomes negligible or 

less than threshold value (specified by the force convergence criterion)  and thus the final 

optimized geometry is obtained for the molecular system. 
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Figure 3: Flow chart illustrating the DFT process for computing equilibrium geometry and 

quantized energy levels of a system. 
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4.2 COMPUTAIONAL METHODS AND HPC/BUDDY 

In condensed matter physics and materials sciences, computaional methods refer to the study of 

complex sytems by the means of computer simulations. These model are capable of harnessing 

high computing power for scientific research and enable the quantitative testing of competing 

theories. Results from these calcultions will provide useful insights that can serve as a guide to 

experimental researchers working in the field of DNA sequencing and allow to objectively 

compare competing theories of DNA sensing device using graphene and silicene. Also, 

computational research is relatively easy to conduct, is less expansive and works as a perfect base 

model to complement experimental research. In this research, we will use computational methods 

based on DFT to explore and analyze the capabalities  of graphene and silicene for  DNA sensing 

appllication. We will focus on two device concepts, namely, the nanopore and nanoribbion 

methods. DFT studies require large scale calculations and high-performance computing (HPC) 

resources. For example, a nanopore model of graphene with a base inside the pore has about 150 

atoms. With the availability of super-computer ‘Buddy’ at University of Central Oklahoma, it is 

feasible to conduct DFT studies for many body systems for the purpose of research. A 

Supercomputer is acomputer with a high level of performance. ‘Buddy’ in our case is made up of 

multiple smaller computers that sit in racks one on top of another, it operates at 32 teraflops, or 32 

trillion calculations per second. ‘Buddy’ allows multiple users to work simultaneously on large 

scale research problems. Buddy also supports research and education in computational sciences 

for students and, researchers across the state of Oklahoma. 

4.3 MOLECULAR EDITORS AND DFT SOFTWARE 

One of the main objective of this research is to explore the relm of computational research and 

develop computational skills. Justifying the objective, this research requires the knowledge and 
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ability to use different software and programming languages. Initially, molecular editors and 

visualizers such as Jmol, Avogadro, Nanotube modeler, Vesta, Macmolplot, and Maestro  were 

used to import, build and edit molecular geometries. For example all the nucleo bases shown in 

figure 2 were extracted from the molecular database using  Jmol software.The structures and CIF 

of graphene from Nanotube Modeler, and the CIF of silicene from the Crystallography Open 

Database (COD).  Molecular geometries were edited using Avogadro, Nanotube Modeler, Vesta, 

or Maestro. With the assistance from the HPC center of University, software like Filezilla, Putty 

were  installed and used to remotely connect with Buddy supercomputer. Notepad ++ was used to 

edit and create batch scripts and for editing the input files used running calculations for different  

molecular structures.The final step is to perfrom the actual DFT calculations. There are many 

quantum chemistry and materials science software packages for running DFT calculations such as 

GAMESS, Gaussian, Quantum Espresso. Some of these are specialized for extended periodic 

systems or finite-size molecular systems. In our research, we will model the active component of 

the DNA sensing device as a nanosystem with finite size. Hence we shall use the  Gaussian 

software package as it is the most popular and widely used DFT software for systems with finite 

size. 

The Gaussian software is a computational chemistry software that can be used to model complex 

chemical reactions, predict molecular energies,  model electronic structures,  and much more 

advanced calcualtions based on fundamental principles of quantum mechanics with a good level 

of accuracy. Geometry optimization calculations were performed using the B3LYP potential 

energy model and the 6-31G (d,p) basis set approximation for atomic orbitals. In the optimization 

process, the atomic centers were relaxed until the force on each atom is less than 0.02 eV/Å. This 
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force convergence criterion is quite reasonable and allows the calculations to be completed within 

a reasonble time. 

To illustrate how to run a geometry optimization calculation with the Gaussian software, we will 

consider the example of the DNA base Adenice. Starting with the XYZ file for Adenine (as shown 

in Figure 4a, the file was imported into the Avogadro software. A Gaussin input file was then 

generated using Avogadro as shown in  Figure 4b. XYZ file simply contains the xyz coordinates 

of all atoms in any molecule or element. The first line in xyz file denotes the total number of atoms 

in the system,  the second line is the title or name of the molecule. The rest of the content are the 

xyz coordinates of all atoms in the system. For the Gaussian input file in  Figure 4b, the first line 

of code represents the B3LYP level of theory, 6-31G (d,p) is the basis set and Opt is a keyword 

for running a geometry optimization calculation. After generating the Gaussian input file, a batch 

script file is then created for allocating computing resources and for submitting the caculations to 

buddy. This batch script file works as an envolope for input file and commands to run accordingly 

with the instruction from input file. The Figure 4c is a screenshot of the batch script file Adenine.sh 

used for running calculations on Adenine molecule. The batch script file is used to allocate 

resources (such as number of nodes, number of CPUs, DFT software to use, memory requirements, 

wall time, etc.) to be used for running DFT calculations for any given system. The batch scipt file 

also has an excecutatble command that is used to launch the calculation, and this includes the name 

of the Gaussian input file (Adenine.com – highlighted in blue in the input file) for the system of 

interest. Increasing the number of nodes used in batch script seem to enhance the calculation, but 

due to some limitations on the computing resources, we were limited to a maximum of 3 nodes 

per job.  
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Figure 4a: Screenshot of sample xyz file_(Adenine.xyz) of DNA base Adenine. 
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Figure 4b: Screenshot of sample gaussian input file (Adenine.com) for the DNA base Adenine.  

 

Figure 4c: Screenshot of sample Gaussian batch script file(Adenine.sh) for Adenine. 
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4.4 DFT CALCULATIONS FOR DNA BASES 

As demonstrated above, the DFT simulation of Adenine was followed by calculations on the other 

bases. All the criteria for the computation was kept constant, this allows us to compare the 

properties of bases such as bandgap, HOMO, LUMO and binding energy. A simple output data 

for all the bases were gathered and kept in Table 2. The bandgap was calculated using the Eq. (3). 

 

Table 2: Total energy, HOMO, LUMO, and bandgap for DNA bases using DFT. 

We observe from Table 2 that Thymine has the largest bandgap, and Guanine the least, while 

Adenine and Cytosine have approximately the same bandgap. 

 Egap = EHOMO − ELUMO (3) 

The HOMO state in Eq. (3) is highest occupied molecular orbital and the LUMO state is the lowest 

unoccupied molecular orbital. The bandgap energy is the minimum energy required to excite an 

electron from the HOMO state to the LUMO state. The bandgap is very critical for characterizing 

the electronic and optical properties of different materials [51]. 

 

 

 

 

Bases Total energy(eV) Homo(eV) Lumo(eV) Bandgap(eV)

Adenine -12716.354 -6.070 -0.692 5.378

Cytosine -10746.907 -6.142 -0.783 5.358

Guanine -14763.926 -5.602 -0.514 5.088

Thymine -12358.025 -6.569 -1.028 5.541

Gaussian output for DNA bases [B3LYP 6-31(d,p)]
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CHAPTER 5 

GRAPHENE 

Graphene consist of  a single-atom thick plane of carbon atoms, hence considered a 2D system.  It 

is also an alloptrope of carbon. Bonding in graphene is formed by sp2 hybridization in carbon 

atoms. This gives rise to the formation of 3 in-plane σ-bonds (formed by hybridization of the 2s, 

2px, and 2py carbon orbitals) and one π-bond formed by rem pz orbital, and perpendicular to the  

plane. Unlike the in-plane σ bonds, the π bonds overlap weakly, hence they are responsible for the 

electronic properties of graphene (high electrical conductivity and mobility). On the other hand, 3 

σ-bonds give rise to the honeycomb lattice structure and stability of graphene. The physical 

properties of graphene include a carbon to carbon bond length of 0.142nm, a planar density of 

0.77mg/m^2, an atomic thickness of 0.35nm, and a high transparency of  97.7% [52]. Graphene 

also has excellent electronic and optical properties such as high mobility, ballistic transport, width-

dependent tunable bandgap, flexible, stretchable, excellent thermal and electrical conductivities 

[1]. Given the remarkable properties and ultra thin nature, graphene provides  new opportunities 

for use as active component in nanodevices for DNA sequencing. For DNA sequencing using 

monolayer graphene, we will focus on two detection modalties, that is the nanopore device and 

the nanoribbon device. The basic theory of a sensing device is the expectation of modulations of 

tunneling current across the nanoribbon due to physisorption on DNA bases on the surface of the 

nanoribbon since each base interacts different with the nanonoribbon. Similarly, we can monitor 

changes in the in-plane due to translocation of DNA bases through the nanopore created in 

graphene.  

To explore graphene as sequencing material, a DFT simulation is performed using the Gaussian 

software package and orbital energies were calculated. Using the output from the DFT calculation, 
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the bandgap is calculated using Eq. (3) and with the help of Eq. (4), the binding energy is calculated 

for the different systems. 

 EBE = ESystem+base − ESystem − Ebase (4) 

Here, EBE is the binding energy for the system, Esystem+base is total energy of combined system 

for each base and system, Esystem total energy of system, and Ebase the total energy of the DNA 

base. All calculations were performed at the  B3LYP + 6-31G (d,p) level of theory with a force 

convergence criterion of 0.02 eV/Å.  

To compare and identify trends and pattern, charts were made for each systems with different 

bases. To better visualize the distribution of energy levels, the density of states (DOS) was plotted 

for each system. This is important because the tunneling current is proportional to the DOS (see 

Eq. (1)). The DOS can be computed using the Lorentzian function as:  

 

DOS(E) =  ∑
Γ

[Γ2 + (E − Ei)2]

N

i=0

 (5) 

where E is the energy, Ei are the molecular energy levels obtained from the DFT calculation, and 

Γ is the linewidth of the Lorentzian spectral function. In our calculations, we used Γ = 25 meV as 

this corresponds to the linewidth at room temperature. 

  

5.1 DNA SENSING USING GRAPHENE NANOPORE 

A sample nanopore device model is shown in Figure 1. As already discussed, we will be focusing 

on active region of the device. This region consists of the graphene nanopore and the DNA base 

at the center of the pore. A DFT simulation is performed using the Gaussian software package to 

calculate the transverse tunneling effect. The theory behind it is the possiblity that the electron can 
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hop through the nanodistance between the GNP and DNA base and give rise to the transverse 

tunneling current. The current in our case is evaluated in terms of density of states.  

Starting with the structure of graphene, a graphene sheet with 156 atoms and having dimensions 

of 19.96 nm by 17.87 nm (LxB) was constructed using the Nanotube Moduler software. It was 

then edited using the Maestro software and the pore was created in the middle, by deleteing the 

central carbon atoms. All the edges were terminated by adding  Hydrogen atoms to take care of 

the dangling bonds on carbon atoms at the edges. After deleting carbon atoms to create the 

nanopore, the GNP created consists of 141 atoms and the pore has the size of 1.03 nm by 1.039 

nm (LxB). Since the average size of DNA bases is about  0.7 nm, this pore is big enough to contain 

the bases and small enough to produce  strong signals. This process is followed by DFT calculation 

using the Gaussian software. To visualize the changes in structure of GNP, we plotted the stucture 

before and after geometry optimization. Figure 5 shows the changes in GNP structure after 

optimization. It shows that the bonds on the atoms at the edges of the structure have been shrunked 

in the process of optimization and the planar structure is lost. This is due to the fact that during the 

optimization process, the atoms are relaxed to equilibrium and this creates additional strain on the 

bonds, especially at the edges.   
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Figure 5:  Structure of GNP before and after geometry optimization ( grey color is for carbon atom 

and white for hydrogen ). 

From the simulation of Graphene nanopore,  a HOMO energy of -3.94 eV, LUMO of -2.8947 eV 

and bandgap of 1.048 eV was obtained. These results are shown in Table 3.  

 

Table 3: Gaussian output for the pristine GNP. 

To visualize the distribution of energy levels, a DOS plot is created for GNP. The DOS plot of 

GNP in figure 6 shows that GNP has a bandgap of 1.048 eV.  

2d_elements Total energy(eV) Homo(eV) Lumo(eV) Bandgap(eV)

GNP -89059.123 -3.943 -2.895 1.048

Gaussian output for Graphene nanopore
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Figure 6: Plot of density of state for pristineGNP.The dotted line indicates the position of the Fermi 

energy level for pristine GNP. 

After the initial calculation for pristine GNP, a combination of GNP with bases were created using 

the Maestro software and calculations with same criteria  were performed using the Gaussian 

software. Figure 7 below shows the structures of GNP with different bases after the geometry 

optimization. It can be observed that after the optimization, nucleo bases tend to shift towards the 

edges of the GNP which could lead to the bases sticking on the surface and edges of the GNP, a 

well known problem with graphene devices [28]. In the case of GNP+A, GNP+C and GNP+T, the 

bases seems to be out of plane, and this could affect the reading of bases when the ssDNA 

translocates through the nanopore and this can produce error in the sequencing experiment. 
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Figure 7: Optimized structures (top and side views) of GNP with different bases ( grey color 

represent carbon atom, white for hydrogen, blue for nitrogen and red for oxygen ). 

 

The results from this section are summarized in  Table 4. 

 

Table 4: Gaussian output  for  GNP+DNA bases (GNP +A for adenine, +C for cytosine, +G for 

guanine, +T for thymine). 

 

It can be seen that bandgap for all the combination ranges from 1.03 eV to 1.09 eV. Among all, 

GNP+C has the highest bandgap of 1.087 eV and GNP+A has the lowest bandgap 1.031 eV. The 

binding energy gives the strength of interaction between bases and GNP. A binding energy range 

of 0.42eV to -0.28eV was obtained from the calculations. To further investigate the bandgap and 

combination Total energy(eV) Homo(eV) Lumo(eV) Bandgap(eV) Binding energy(eV)

GNP+A -101775.838 -3.901 -2.870 1.031 -0.361

GNP+C -99806.448 -3.834 -2.746 1.088 -0.418

GNP+G -103823.480 -3.918 -2.851 1.067 -0.430

GNP+T -101417.430 -3.912 -2.862 1.049 -0.282

DNA bases inside graphene nano pore [B3LYP 6-31(d,p)]
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binding energy trend, we plotted the binding energy and bandgap for each base. In Figure 8, we 

can see that GNP+C stands out with highest energy gap and GNP+G  with highest binding energy. 

 

Figure 8: A chart comparing binding energy and bandgap of GNP+DNA bases. 

Further, to visualize the possible transition of energy states, the density of state plots were made. 

Figure 9 shows the density of states for different combination of bases and GNP with respect to 

density of state for GNP is ploted. This plot will allow us to visualize the change occurred when 

the transition from GNP to GNP+bases is made. A fermi energy level for GNP is shown in dash 

line, it is calulate by taking average of homo and lumo state for GNP. Looking at the plot, it can 

be observed that there is slight change in density of state for graphene nanopore with bases inside 

in comparision to pristine GNP. This change in density of state signifies the change in current. So, 

definitely it can be said that there is change in interaction with the addition of bases inside the 

pore. Also the GNP+T has lowest binding energy resembiling weak interaction, GNP+G has the 

highest binding energy and GNP+A and GNP+C in the middle further proofs the different 

interactions or the tunneling effects. 
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Figure 9: Plot of the density of states for DNA bases inside the GNP. The dotted lines indicate the 

positions of Fermi energy level for pristine GNP. We observe very small modulations in the DOS 

of the pristine GNP due to interaction with bases. 
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5.2 DNA SENSING USING GRAPHENE NANORIBBON ( PHYSISORPTION ) 

 

A sample model  of the GNR device is shown in Figure 1. In this process, the modulations of 

transverse current caused by physisorption of DNA bases onto the GNR surface is studied. For the 

purpose of this method, we  created a single layer graphene sheet of dimensions 1.357 nm X 1.049 

nm (LXB)  with a total of 64 atoms. Similarly, as with the graphene nanopore, the edges of the 

GNR were terminated by adding hydrogen atoms. All the input parameters (such as model of 

potential energy, basis set, and force convergence criterion)  for running the DFT calculations were 

kept constant for the GNP and GNR systems. The initial calculation for the pristine  GNR gives a 

HOMO energy of  -4.446 eV, a LUMO energy of -2.556 eV, and a bandgap of 1.891 eV, as shown 

on Table 5.  

 

Table 5: Gaussian outputs for pristine GNR system. 

Figure 10 shows the structure of the GNR before and after the geometry optimization process. 

From Figure 10, no noticable changes can be observed between the two structures. 

2d_elements Total energy(eV) Homo(eV) Lumo(eV) Bandgap(eV)

GNR -48001.312 -4.447 -2.556 1.891

Gaussian output for Graphene nano ribbon (physisorption)
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Figure 10: GNR before and after the optimization geometry calculation. 

To visualize the distribution of energy levels, a density of plot is created as shown on Figure 11. 

The HOMO and LUMO states are identified and a bandgap of 1.891 eV can be observed in the 

plot. 

 

Figure 11: Plot of density of states for pristine GNR showing the bandgap. The dotted lines indicate 

the position of the Fermi energy level for pristine GNR. 
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 Now after the initial calculations for the pristine GNR, the next step is to study the interaction of 

GNR with DNA bases. For this purpose, the DNA bases were placed above the surface of the 

optimized structure of GNR. The distance between the GNR and the DNA bases was adjusted to 

be 0.3 nm. The distance of  0.3 nm was choosen because we are interested in studying the process 

of physisorption (van der Waals interactions between base and GNR). If the bases are placed too 

close to the surface of the GNR, this would give rise to the formation of covalent bonds between 

the base and GNR. Sticking of bases on the surface of the surface of GNR is nonideal as this can 

significant decrease sequencing speed and produce errors in the read out as multiple bases interact 

with the GNR surface at any given time.  

 

Table 6: A table showing the total energy, HOMO, LUMO, bandgap and binding energy of the 

GNR+DNA base systems. 

 

Table 6 shows a summary of the results for all the calculations. The bandgap was observed to be 

in range of  1.882 eV to 1.89 eV, which is in range of 659 nm to 656 nm (in the wave length 

domain). The binding energy was more deviated from the range of  0.175 eV to  0.307 eV. To 

observe the relationship between  the bandgap and binidng energy, a comparision chart is created.  

Combination Total energy(eV) Homo(eV) Lumo(eV) Bandgap(eV) binding energy(eV)

GNR+A -60717.933 -4.798 -2.909 1.889 -0.267

GNR+C -58748.526 -4.238 -2.356 1.882 -0.307

GNR+G -62765.413 -4.594 -2.708 1.885 -0.175

GNR+T -60359.568 -4.567 -2.677 1.890 -0.230

Gaussian output for Physisorption opt geometry B3LYP 6-31(d,p))
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Figure 12: A chart comparing binding energy and bandgap of GNR+DNA bases. 

On the chart on Figure 12, only GNR+C shows  a distinct difference in bandgap and binding energy 

and distinguishable to rest of system. Generally, the modulations in the bandgap of the GNR due 

to physisorption of the DNA bases is very small. This shows that graphene is typically not a very 

good material for use in DNA sequencing by physisorption. 
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Figure 13: Optimized structures (top and side views) of GNR + bases( grey color represents carbon 

atom, white for hydrogen, blue for nitrogen and red for oxygen ). 

 

Looking at the structures on Figure 13, the equilibrium vertical distance of bases above GNR 

surface  are in the range of 0.244 nm to 0.260 nm. The minimum separation distance was measured 

to be 0.260 nm for GNR+G, 0.255 nm for GNR+A, 0.245 nm for GNR+C and 0.244 nm for 

GNR+T. As similar to GNP,  the bases seem to be move towards the edges of the GNR.  

A plot of the density of states is shown in Figure 14. The changes in density of states going from 

pristine to combined is more pronounce when compared to the  GNP (see Figure 11). This signifies 

the achieving of better signal in the physisorption process. Also the wider bandgap can be 

observed. 
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Figure 14: Plot of the density of states for DNA bases and GNR. The dotted lines indicate the 

positions of Fermi energy level for pristine GNR. 
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CHAPTER 6 

SILICENE 

Silicene is a two-dimensional crystal consisting of a single layer of silicon atom. Though there has 

been lots of speculation about the existence of free standing silicene, the first suggestive structure 

for silicene was observed in 2010 [53]. A pattern of silicene nanoribbon and silicene sheet 

deposited on silver crystal were studied using scanning tunneling microscope at atomic resolution. 

The study shows that silicene has a hexagon  honeycomb crystal structure. Silicene is an elemental 

2D material  consisting of silicon atoms, just as graphene consists of  carbon atoms. As silicon and 

carbon are both group IV elements, their allotropes  silicene and graphene possess similar 

characteristics and properties. Unlike graphene which is flat, silicene has a buckled hexagonal 

honeycomb structure. This can be due to weak the weak pi bond that arises from the large 

separation distance between silicon atoms in the hexagonal structure or pseudo-Jahn-Teller effect 

due to vibronic coupling between closely spaced, filled and empty electronic states [54].  The 

buckling in silicene provides the tunable bandgap in the presence of an external electric field [55]. 

A figure of buckled honeycomb structure is shown below. 

 

Figure 15: A single layered buckled honeycomb lattice of Silicene.  

 The above structure was optimized using DFT simulation. A clear honeycomb lattice can be seen 

in the Figure 15. The structure of silicene was created using  the VESTA software from the CIF of 
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silicene. The CIF file was obtained from the COD database and extended in two dimensions to get 

the buckled honeycomb lattice using VESTA. The optimized bond length between silicon atoms 

in silicene is reported  to be 0.2279 nm [56]. Our calculated Si-Si bond length after a geometry 

optimization calculation was in the range 0.228 nm to 0.236 nm, which agrees nicely with 

experimental values [59]. The calculated out of plane height was found to be 0.045 nm, which also 

agrees nicely with the experimental value of 0.044 nm reported by Cahangirov [57]. Unlike 

graphene which is flat honeycomb lattice with zero bandgap, silicene has a buckled honeycomb 

lattice structure with direct bandgap.  It is therefore important to explore the potential of silicene 

for DNA sequencing as this material might perform better than graphene.  Similar to graphene, we 

shall focus on two sensing methodologies, that is the silicene nanopore (SNP) and silicene 

nanoribbon (SNR) devices. 

6.1 DNA SENSING USING SILICENE NANOPORE 

 

DNA sequencing using silicene nanopore (SNP)  is similar what was already discussed for the 

graphene nanopore method. The model of the device is shown in Figure 1. A pore of length 13.45 

Å  and width 11.97 Å was created on the silicene sheet with a total of 160 atoms. Due to the 

buckled structure  of the silicene sheet, creating a symmetrical pore for silicene was not possible. 

All the edge atoms of the silicene sheet were terminated by adding hydrogen atoms. A geometry 

optimization calculation was performed for the pristine system B3LYP potential energy model and 

6-31G (d,p) basis set. The optimized geometry for the silicene pore is shown in Figure 16. 
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Figure 16: Silicene nanopore created using the Maestro software ( orange represents the silicon 

atom, and white for hydrogen ). 

 

The HOMO and LUMO orbital energies were obtained from the output file and the bandgap was 

calculated for the SNP system. The complete results are summerized in  Table 7.  

 

Table 7: A table showing total energy, homo, lumo and bandgap of Silicene nanopore. 

To visualize the energy levels of the system, a density of states plot was created  using the energies 

levels  from the output file. Figure 17 shows the DOS plot for SNP. The dash line indicates the 

position of the Fermi energy and a bandgap of  2.219 eV can be seen. 

2d_elements Total energy(eV) Homo(eV) Lumo(eV) Bandgap(eV)

Silicene_pore -600137.492 -5.255 -3.036 2.219

Gaussian output for Silicene nanopore
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Figure 17: Plot of density of states for pristine SNP showing a bandgap. The dotted line indicates 

the position of Fermi energy level for pristine SNP. 

 

After the initial calculations for pristine SNP, the next step is to create the structures of SNP+ DNA 

bases. The molecular editor software Maestro was used to insert the DNA bases inside the pore 

and create the structures. These structure were exported to the Avogadro software which was then 

used for generating Gaussian input files. A DFT calculation was then performed  for all the 

structures, that is SNP +A, SNP + C, SNP + G and SNP + T. The results for all the systems  are 

summeraized in the  Table 8. 

 

Table 8: A table summarizing the output results from the DFT calculation for DNA bases inside 

the silicene nanopore. 

combination Total energy(eV) Homo(eV) Lumo(eV) Bandgap(eV) Binding energy(eV)

Silicene_adenine -612854.059 -5.192 -3.124 2.068 -0.213

Silicene_cytosine -610884.705 -5.167 -3.069 2.098 -0.306

Silicene_guanine -614901.652 -5.246 -3.102 2.144 -0.234

Silicene_thymine -612495.739 -5.232 -3.055 2.176 -0.222

DNA bases inside silicene nano pore [B3LYP 6-31(d,p)]
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From Table 8, the bandgap  ranges from 2.068 eV to 2.176 eV and the binding energy ranges from 

-0.305 eV to -0.213 eV. The larger the binding energy, the stronger the   interaction between the 

bases and silicene pore. SNP+T has the highest bandgap of 2.176 eV and binding energy of -0.222 

eV, SNP+A has the lowest bandgap of 2.068 eV and binding energy of -0.213 eV. To visualize 

the the relationship between the  bandgap and binding energy, a plot was created. 

 

Figure 18: A chart comparing binding energy and bandgap of SNP+DNA bases. 

From Figure 18, the energy gap decreases  from SNP+G to SNP+A and then increases steadily 

from  SNP + A  to SNP + T. In the other hand, the binding energy lacks a clear trend.   

 The optimized geometry of the SNP with bases is shown in Figure 19. 
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Figure 19: Optimized structures (top and side views) of SNP + BASES ( gold color represents 

silicon atom, white hydrogen, blue nitrogen and red for oxygen ). 

 

From Figure 19, we observe  less displacement  of bases inside pore as compared to graphene. The 

bases seem to remain approximately  in plane with the silicene nanopore surface. Unlike GNP 

where basis move towards edges of the pore during translocation (see Figure 7), in SNP, the bases 

stay approximately in place. This indicates that the tendency of bases to stick on the edges of the 

SNP is minimal. This observation shows that SNP would produce a better read out of DNA bases 

and can be used for high speed sequencing compared to graphene where bases stick to edges of 

pore during translocation and slow down speed of translocation and can even cause pore clogging 

[28]. Next, we analyze the density of states. Figure 20 shows the density of states for the SNP + 

DNA base systems. 
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Figure 20: Plot of the density of states for DNA bases + SNP. The dotted lines indicate the positions 

of the Fermi energy level for pristine SNP. 

 

Looking at Figure 20, we observe that the change in bandgap and DOS is unique for each base. 

Also, the change in bandgap is large for the SNP device than the GNR device, again confirming 

the hypothesis that silicene might be a superior sensing material when compared to graphene.  

6.2 DNA SENSING USING SILICENE NANORIBBON (PHYSISORPTION) 

In this method, we study the modulations in the electronic properties of silicene nanoribbon (SNR) 

due to physisorption of DNA bases on its surface. 

First we created a silicene nanomaterial with width larger than the size of a DNA base. The SNR 

system  has 104 atoms, length of 21.84 Å in long and width of 20.73 Å. The structure is was then 

optimized using DFT. Figure 21 shows the top and lateral views of the optimized SNR. In the top 

view, a hexagonal structure can be observed, whereas the lateral view shows the  buckled shape. 
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Figure 21: An optimized structure of pristine SNR.  

From the DFT calculation for pristine SNR, a HOMO energy of -4.540 eV, LUMO energy of -

4.192 eV, and bandgap of 0.348 eV were obtained. 

 

Table 9: A table showing total energy, HOMO, LUMO and bandgap of pristine SNR.  

To visualize the molecular energy levels of the system, we plotted the density of states as shown 

in Figure 22. From Figure 22, we can notice a small bandgap of 0.348 eV for pristine SNR. 

2d_elements Total energy(eV) Homo(eV) Lumo(eV) Bandgap(eV)

SNR -520541.990 -4.540 -4.192 0.348

Gaussian output for Silicene nano ribbon (physisorption)
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Figure 22: Plot of density of state for pristine Silicene nano ribbon, showing the bandgap. The 

dotted line indicates the position of Fermi energy level for pristine SNR. 

 

After the initial DFT calculation for pristine SNR, we now turn our attention to SNR + DNA bases 

systems. DNA bases were kept at a distance of 0.3 nm above center of SNR sheet and DFT 

calculations were performed for each base. From the outputs,  the HOMO and LUMO states were 

identified and the bandgap and binding energies were calculated as shown in Table 10. 

 

Table 10: A table summarizing the output results from the DFT calculation for SNR + DNA bases. 

For silicene nanoribbon devices, the energy bandgap for the equilibrium system is  in the range of 

0.329 eV to 0.372 eV. Whereas the binding energy is in the range of 0.094 eV to 0.633 eV. Figure 

Combination Total energy(eV) Homo(eV) Lumo(eV) Bandgap(eV) binding energy(eV)

SNR+G -535306.409 -4.448 -4.118 0.329 -0.493

SNR+A -533258.524 -4.553 -4.181 0.372 -0.180

SNR+C -531289.530 -4.388 -4.022 0.366 -0.633

SNR+T -532900.109 -4.498 -4.154 0.344 -0.094

Gaussian output for Physisorption opt geometry B3LYP 6-31(d,p))
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23 shows the relationship between binding energy and bandgap for each of the DNA base. The 

binding energy for SNR+C is the highest among all followed by SNR+G, SNR+A, and SNR+T. 

On the other hand, the bandgap variation is such that SNR+G >SNR+T >SNR+C >SNR+A. 

 

Figure 23: A chart comparing binding energy and bandgap of SNR+DNA bases. 

To visualize and analyze the structural changes after the geometry optimization procedure, a figure 

was created combining all the systems. Figure 24 shows the final structures of all the SNR+base 

systems.  
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Figure 24: Optimized structures (top and side views) of SNR + BASES. 

In the optimized geometry, we noticed that  guanine and cytosine each sticks with to surface of the 

SNR and forms a covalent bond. Unlike gaunine and cytosine, no sticking was observed for 

adenine and thymine. The optimized vertical distance above surface of the SNR was calculated as 

0.365 nm and 0.325 nm for SNR+A and SNR+T, respectively. 

To visualize the distribution of energy states, the  density of states plot was created, as shown in 

Figure 25. From Figure 25, we observe small modulations in the DOS for the pristine SNR. The 

change is DOS for SNR seems to be smaller compared to the SNP device (see Figure 20). The 

differnce in density of state of pristine SNR to SNR+bases is less distinct, so we can conclude SNP 

to give more better current as compare to SNR. The bandgap for SNR in the presence of the DNA 

bases was comparable to those for the SNP system.  
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Figure 25: Plot of the density of states for DNA bases with SNR. The dotted lines indicate the 

positions of fermi energy level for pristine SNP. 
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CHAPTER 7 

RESULTS AND CONCLUSION 

In summary, DFT calculations were performed to evaluate the potential of silicene as a candidate 

material for DNA sequencing  using two detection principles, namely the nanopore and nanoribbon 

devices. As graphene is the mostly widely studied 2D material for DNA sequencing, we 

benchmarked our results by comparing with graphene. Starting with nanopore method, we 

observed that the magnitude of binding energies for graphene devices were higher than those for 

the silicene devices. This signifies stronger interaction that can cause more electrons to tunnel 

through nanopore, hence given rise to a better signal. 

For graphene nanopore, the binding energy varies as GNP+G > GNP+C > GNP+A > GNP+T, 

while for silicene, it varies as SNP+C > SNP+G >SNP+T > SNP+A. Figure 26 is a bar plot that 

shows the binding energy comparison for graphene and silicene nanopores for each DNA base.  

 

Table 11: Comparison of binding energy for graphene nanopore and silicene nanopore with DNA 

bases. 

GNP SNP

Guanine 0.430 0.234

Adenine 0.361 0.213

Cytosine 0.418 0.306

Thymine 0.282 0.222

Binding Energy (eV)
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Figure 26: Bar graph comparing the binding energies for graphene and silicene nanopores for 

different bases.  

 

From Figure 26, we observe that the binding energies for GNP is greater than those for SNP It 

was also observed that the displacement of bases in the nanopore (from initial central position 

before optimization) was greater for GNP compared to SNP. 

Another important property of interest is the bandgap. Table 12 shows the bandgap for GNP and 

SNP systems. The bandgaps obtained are higher in magnitude in SNP compared to GNP.  

 

Table 12: Comparison of bandgap for GNP and SNP with bases.  

GNP SNP

Pristine 1.048 2.219

Guanine 1.067 2.144

Adenine 1.031 2.068

Cytosine 1.088 2.098

Thymine 1.049 2.176

Band Gap (eV)
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To further investigate and quantify the interaction between GNP (and SNP) with bases, we 

calculated the change in bandgap (∆Egap) as; 

 ∆Egap = Egap
nanopore+bases

− Egap
nanopore

 (6) 

where Egap
nanopore+bases

 is the bandgap of the combined system, that is GNP+bases (or SNP+bases), 

and  Egap
nanopore

 is the bandgap of the pristine system. In our calculations, only the absolute value 

of the difference is reported, as we are only trying to compare the magnitude of the change. On  

Table 13, we see that the change in bandgap is generally larger for SNP compared to GNP. For 

SNP, the change in bandgap varies as of SNP+A > SNP+C > SNP+G > SNP+T, whereas for GNP, 

the sequence is GNP+C > GNP+G > GNP+A > GNP+T. Based on this result, one can conclude 

that silicene nanopore is more likely to produce a more distinguishable signal compared to 

graphene nanopore. 

 

Table 13: Energy gap comparison for GNP and SNP with bases. 

The other detection method studied is the nanoribbon (physisorption) technique. Table 14 and 

Table 15 shows the complete results for binding energy and bandgap for physisorption of graphene 

and silicene with bases. For graphene, it is seen that the GNR has a larger bandgap and relatively 

lower binding energy as compared to the GNP. Whereas, SNR has a lower bandgap, but similar 

GNP SNP

Guanine 0.019 0.074

Adenine 0.017 0.150

Cytosine 0.039 0.121

Thymine 0.001 0.042

Enery gap (∆E) (eV)
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range of binding energy as compared to SNP. We also observe from Table 14 that the binding 

energy is stronger in GNR (for adenine and thymine) compared to SNR. For cytosine and guanine, 

the binding energy in GNR is less compared to SNR. 

 

Table 14: Binding comparison between GNR and SNR with bases. 

 

Table 15: Bandgap comparison between GNR and SNR with bases. 

Another useful property of interest for physisorption is the minimum equilibrium vertical distance 

between bases and nanoribbon surface. Table 16 shows the minimum vertical distance for GNR 

and SNR. In the optimized geometry, we noticed that  guanine and cytosine each sticks to the 

surface of the SNR and forms a covalent bond. Unlike gaunine and cytosine, no sticking was 

observed for adenine and thymine. The optimized vertical distance above surface of the SNR was 

calculated as 0.365 nm and 0.325 nm for SNR+A and SNR+T, respectively. No sticking was 

observed for GNR. 

GNR SNR

Guanine 0.175 0.493

Adenine 0.267 0.180

Cytosine 0.307 0.633

Thymine 0.230 0.094

Binding Energy (eV)

GNR SNR

Pristine 1.891 0.348

Guanine 1.885 0.329

Adenine 1.889 0.372

Cytosine 1.882 0.366

Thymine 1.890 0.344

Band Gap (eV)
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This property  is  related to the binding energy, since binding energy is inversely proportional to 

distance. 

 

Table 16: Optimized minimum vertical distance of GNR and SNR with bases. 

Finally, we compare the change in energy gap for SNR and GNR, as shown in Table 17. In case 

of physisorption, with the available data, SNR seems to have better energy gap value to the GNR.  

 

Table 17: Energy gap comparison on GNR and SNR with bases. 

Considering all the results analyzed in this thesis, one could conclude that SNP is likely to produce 

stronger and distinguishable current signals for each DNA base when used in real devices, 

compared to GNP.  The sticking of bases on the surface of the SNR device makes it less suitable 

for use in practical applications. Future directions would involve extending these calculations to 

periodic systems and studying device properties such as current-voltage characteristics using the 

non-equilibrium Green’s function technique. We hope that the findings from this research has shed 

useful insights that can guide further experimental research and development in the field of DNA 

sequencing using 2D materials.  

SNR GNR

Guanine - 2.600

Adenine 3.650 2.550

Cytosine - 2.450

Thymine 3.250 2.440

Vertical distance in Å

GNR SNR

Guanine 0.005 0.019

Adenine 0.002 -0.024

Cytosine 0.009 -0.019

Thymine 0.001 0.004

Enery gap (∆E) (eV)
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Appendix A: Sample Input Files(silcene nanoribbon 104 atoms[silicene.com]) 

#n B3LYP/6-31G(d,p) Opt 

 

 Title 

 

0 1 

Si       -11.16170        7.82440       -0.02520 

Si       -11.17120        3.83070       -0.20890 

Si        -7.83840        5.83520        0.06240 

Si        -4.47510        7.78600        0.24630 

Si       -11.31270        0.00040        0.47080 

Si        -7.84980        1.87970        0.10080 

Si        -4.49250        3.86590        0.12750 

Si        -1.13070        5.83360        0.18160 

Si         2.24440        7.78070        0.17240 

Si       -11.17140       -3.82970       -0.20970 

Si        -7.84990       -1.87900        0.10060 

Si        -4.47290        0.00020        0.18420 

Si        -1.12050        1.94400        0.22250 

Si         2.23580        3.89680        0.23690 

Si         5.61250        5.83280        0.19120 

Si       -11.16240       -7.82360       -0.02590 

Si        -7.83890       -5.83470        0.06180 

Si        -4.49290       -3.86560        0.12720 

Si        -1.12070       -1.94390        0.22250 

Si         2.24070       -0.00020        0.27470 

Si         5.59850        1.97780        0.31030 

Si       -11.14870      -11.53210        1.11350 

Si        -7.80380       -9.76980        0.31570 
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Si        -4.47580       -7.78580        0.24590 

Si        -1.13130       -5.83360        0.18150 

Si         2.23530       -3.89690        0.23710 

Si         5.59830       -1.97850        0.31080 

Si        -4.39580      -11.69410        0.72560 

Si        -1.09690       -9.74880        0.16510 

Si         2.24370       -7.78090        0.17270 

Si         5.61190       -5.83310        0.19200 

Si         2.30410      -11.71890        0.29590 

Si         5.61170       -9.74940       -0.11920 

Si       -12.35590        5.84790       -0.43620 

Si        -8.95000        7.83730       -0.13820 

Si       -12.31250        1.81890       -0.67340 

Si        -8.95400        3.86020       -0.28700 

Si        -5.59850        5.84850       -0.19670 

Si        -2.24400        7.79920       -0.15660 

Si       -12.31250       -1.81770       -0.67390 

Si        -9.11650        0.00040       -0.24950 

Si        -5.61760        1.91560       -0.28790 

Si        -2.25180        3.88040       -0.23300 

Si         1.10720        5.83660       -0.20560 

Si         4.47710        7.76750       -0.24700 

Si       -12.35620       -5.84690       -0.43690 

Si        -8.95420       -3.85940       -0.28730 

Si        -5.61770       -1.91510       -0.28820 

Si        -2.23320        0.00010       -0.21180 

Si         1.12220        1.94250       -0.16420 

Si         4.46020        3.89280       -0.18720 

Si       -12.35610       -9.84840       -0.01090 
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Si        -8.95070       -7.83670       -0.13870 

Si        -5.59890       -5.84810       -0.19700 

Si        -2.25210       -3.88030       -0.23310 

Si         1.12200       -1.94260       -0.16430 

Si         4.50270       -0.00030       -0.02990 

Si        -9.00890      -11.78370        0.15810 

Si        -5.60170       -9.77070        0.10230 

Si        -2.24470       -7.79910       -0.15680 

Si         1.10670       -5.83680       -0.20530 

Si         4.45980       -3.89320       -0.18680 

Si        -2.28380      -11.72280       -0.31910 

Si         1.10780       -9.73690       -0.14180 

Si         4.47660       -7.76790       -0.24620 

Si         4.41200      -11.66960       -0.75660 

H        -11.89410      -12.82100        1.03720 

H        -11.01210      -11.15620        2.54700 

H         -5.18600      -12.89420        0.33270 

H         -4.21300      -11.72420        2.20330 

H          1.50580      -12.87500       -0.19950 

H          2.49330      -11.88620        1.76390 

H         -9.16100      -12.19110       -1.26690 

H         -8.23760      -12.84660        0.85950 

H         -2.47730      -11.87580       -1.78810 

H         -1.49600      -12.88980        0.16660 

H          4.21130      -11.69720       -2.23250 

H          5.19490      -12.87810       -0.37550 

H        -12.91790        5.91770       -1.81780 

H        -13.52180        5.82320        0.49320 

H        -12.48260        1.74470       -2.15950 
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H        -13.68810        2.04360       -0.13490 

H        -12.48230       -1.74340       -2.16000 

H        -13.68820       -2.04260       -0.13570 

H        -12.91810       -5.91650       -1.81860 

H        -13.52220       -5.82200        0.49240 

H        -12.65000      -10.28220       -1.40660 

H        -13.66220       -9.59410        0.65990 

H        -11.47150        8.23240        0.94820 

H        -11.55660        8.62100       -0.67290 

H         -4.65560        8.07780        1.29140 

H         -4.94720        8.61210       -0.30570 

H          2.07310        8.10410        1.20970 

H          1.77340        8.59260       -0.40110 

H         -8.55560        8.54420        0.60660 

H         -8.64010        8.32910       -1.07200 

H         -1.77220        8.59070        0.44420 

H         -2.06380        8.14520       -1.18510 

H          4.65170        7.97450       -1.31320 

H          6.51160        5.78360       -0.44060 

H          6.50820        1.92090       -0.30550 

H          6.50720       -2.00620       -0.30820 

H          6.51140       -5.85550       -0.44070 

H          6.49400       -9.70980       -0.77500 
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Appendix B: Sample Batch Script [silicene.sh] 

#!/bin/bash 

#SBATCH --job-name=g16 

#SBATCH --nodes=2 

#SBATCH --cpus-per-task=20 

#SBATCH --output=g16-%j.out 

#SBATCH --partition=general 

 

### Of the batch options, it is only recommnded to change "--job-name", "--nodes", and 

### "--output". Any other modifications may result in an error. 

 

### It is only recommneded to change the input file in the Gaussian command. If needed 

### more g16 options can be added. 

 

#Load Gaussian module 

module load Gaussian/g16 

 

#Gaussian scratch directory. 

export GAUSS_SCRDIR=/home/$USER/.gaustmp/$SLURM_JOBID 

mkdir -p $GAUSS_SCRDIR 

 

#Stop OpenMP from interfering with Gaussian's thread mechanism. 

export OMP_NUM_THREADS=1 

 

#Prepare node list for Linda 

for n in `scontrol show hostname | sort -u`; do 

  echo ${n} 

done | paste -s -d, > snodes.$SLURM_JOBID 
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#Run Gaussian. It is recommended to only change the input file here. If needed you can 

#raise the memory up to 60GB, but doing so may result in an error. 

g16 -m=40gb -p=${SLURM_CPUS_PER_TASK} -w=`cat snodes.$SLURM_JOBID` silicene104.com 

 

#Clean up nodes list 

rm snodes.$SLURM_JOBID 
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Appendix C: Sample DOS Mathematica Code[silicene.nb] 

data = Import["D:\\final_test\\dos\\snr\\silicene.dat"] 

 

erg = 27.2 Flatten[Drop[data, 1]] 

 

Homo = 27.2*(-0.16683) 

 

Lumo = 27.2*(-0.15405) 

 

-0.28287999999999996` 

Ef = (Homo + Lumo)/2 

 

\[Eta] = 25.0*10^-3; 

 

S[x_] := Total[\[Eta]/(\[Eta]^2 + (x - erg)^2)]; 

Plot[S[x], {x, -8, -1}, PlotRange -> All, Frame -> True,  

 Axes -> False, PlotStyle -> {Thick, Red}, GridLines -> {{Ef}, None},  

 GridLinesStyle -> Directive[Gray, Dashed]] 
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Appendix D: Scholarly Presentations from this Research 

1. Mukesh Tumbapo Matthew B. Henry,, and Benjamin O. Tayo, "Physisorption of DNA 

Bases on Nanoribbons from Graphene, Phosphorene and Silicene," 2020 Virtual Technical 

Meeting of the Oklahoma Academy of Sciences, November 6, 2020 (Contributor). 

2. Mukesh Tumbapo and Benjamin O. Tayo, "DNA Sequencing Using Monolayer Silicene: 

A Computational Study," 2020 National Society of Black Physicists Virtual Meeting, Oral 

Presentation, November 7, 2020. 

3. Mukesh Tumbapo and Benjamin O. Tayo, "Computational Studies of Monolayer Silicene 

for DNA Base Detection," 2020 Joint Texas APS Virtual meeting, Oral Presentation, Oral 

Presentation, November 13, 2020. 

4. Mukesh Tumbapo and Benjamin O. Tayo, "First-Principle Studies of Silicene 

Nanostructures for DNA Base Detection," 2020 American Physical Society Virtual 

Meeting, Oral Presentation, March 15 - 19, 2021. 

5. Mukesh Tumbapo, Matthew B. Henry, and Benjamin O. Tayo, "Phosphorene and Silicene 

Nanodevices for DNA Sequencing: Ab Initio Studies," 2020 American Physical Society 

Virtual Meeting, Oral Presentation, March 15 - 19, 2021 (Contributor). 
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