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Abstract: In this study, sensitivity equations are derived for recursive Newton-Euler 

dynamics using Denavit-Hartenberg (DH) moving coordinates. The dynamics and 

sensitivity equations depend on the 3×3 DH rotation matrices. Compared to recursive 

Lagrangian formulation, which depends on 4×4 DH transformation matrices, the recursive 

Newton-Euler formulation requires less computational effort. In addition, recursive 

Newton-Euler dynamics explicitly calculates internal joint forces that are not available in 

recursive Lagrangian formulation. The proposed formulation can handle both prismatic 

joints and revolute joints. More importantly, analytical sensitivities provide aid to dynamic 

motion predictions. Three numerical examples are presented to verify the efficacy of the 

proposed algorithms including two time-minimization trajectory-planning problems and 

one gait prediction problem. The example model setup, optimization formulation, and 

simulation results are presented. All three examples are successfully optimized using the 

proposed dynamics and sensitivity equations. The predicted kinematic and kinetic profiles 

are partially validated with the data in the literature. Finally, the recursive Newton-Euler 

dynamics and sensitivity equations are programmed using C++ with the latest math library 

(Eigen) for developing a general purpose motion prediction software.  
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NOMENCLATURE 

 

Symbol         Meaning 

(. )��  ��  left superscript ls indicates which reference coordinate frame the (.) is 

referred to, right subscript rs represents the local reference frame 

�	  
  coordinate rotation matrix that maps the coordinates referred to the 

referential coordinate frame � 	 , into the coordinates referred to the 

referential system � 
 , located at the origin of link k reference frame 

�	  	�  ≡ �	 local rotation matrix for link j, for simplicity if the coordinate rotation 

matrix left superscript refers just to the prior frame the right subscript 

corresponds to, the superscript could be dropped 

��  3 × 3 identity matrix 

��  3 × 3 zero matrix 

�	�  	   the local angular velocity of frame (j-1) in reference frame j 

�� 	�  	   the local angular acceleration of frame (j-1) in reference frame j 

�����  �0 0 1��
 

∆�	 delta angular velocity in jth coordinate that gives the difference between 

current joint angular velocity and prior joint angular velocity
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Symbol         Meaning 

∆�� 	 delta angular acceleration in jth coordinate that gives the difference 

between current joint angular acceleration and prior joint angular 

acceleration 

�	  local angular velocity of link j in local jth coordinate 

�� 	  local angular acceleration for link j in local jth coordinate 

!	�  	   the local joint position of frame (j-1) in reference frame j 

!�	�  	  the local joint translational velocity of frame (j-1) in reference frame j 

!"	�  	  the local joint translational acceleration of frame (j-1) in reference frame j 

∆!	 delta position in jth coordinate that gives the difference between current 

joint position and prior joint position 

∆!�	 delta translational velocity in jth coordinate that gives the difference 

between current joint translational velocity and prior joint translational 

velocity 

∆!"	 delta translational acceleration in jth coordinate that gives the difference 

between current joint translational acceleration and prior joint translational 

acceleration 

∆!#	 delta position of center of mass in jth coordinate that gives the difference 

between current link center of mass and prior link center of mass 

∆!� #	 delta translational velocity of center of mass in jth coordinate that gives 

the difference between current link translational velocity of center of mass 

and prior link translational velocity of center of mass 
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Symbol         Meaning 

∆!" #	 delta translational acceleration of center of mass in jth coordinate that 

gives the difference between current link translational acceleration of 

center of mass and prior link translational acceleration of center of mass 

!	  jth joint position in jth moving coordinate 

!�	  jth joint translational velocity in jth moving coordinate 

!"	  jth joint translational acceleration in jth moving coordinate 

!#	  position of center of mass of link j in jth moving coordinate 

!� #	  translational velocity of center of mass of link j in jth moving coordinate 

!" #	 translational acceleration of center of mass of link j in jth moving 

coordinate 

�	  $   global rotation matrix for link j 

%#	  inertial force acting on link j 

&	  angular momentum of link j 

'#	  inertial torque acting on link j 

%	(  internal force that link (j+1) exerts on link j (distal reaction of link j) 

'	(  internal torque that link (j+1) exerts on link j (distal reaction of link j) 

%	)  internal force that link j exerts on link (j-1) (proximal reaction of link j) 

'	)  internal torque that link j exerts on link (j-1) (proximal reaction of link j) 

%
* $    global external force applied at link k 

'
* $    global external moment applied at link k 

%	(*   distal reaction force of link j due to global external force 
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Symbol         Meaning 

'	(*+
  distal torque of link j due to global external force 

'	(*,  distal torque of link j due to global external moment 

-	  actuating torque component about the local . 	�  axis 

/	  actuating force component about the local . 	�  axis 

(. )�  transpose of (. ) 

(. )0  sensitivity for (. ) with respect to 10 
(. )02  sensitivity for (. ) with respect to 1�0 
(. )022  sensitivity for (. ) with respect to 1"0 
�	,	   derivative of local rotation matrix for link j with respect to 1	  
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CHAPTER I 

  

 

INTRODUCTION 

 

Various methods available in the literature for human motion study rely heavily on experiments. 

In contrast, dynamic motion prediction is a popular approach which only uses limited 

experimental data (Sohl and Bobrow, 2001; Lo et al., 2002; De Groote et al., 2016; Bj4"rkenstam 

et al., 2018; Xiang, 2019). Optimization-based motion prediction has wide applications in both 

robotics and biomechanics fields. For example, it was used for robot motion planning such as 

welding robot, assembling robot, and rescue robot. In biomechanics field, motion prediction is 

used to study pathological gait, surgical planning, and rehabilitation device design. In the 

optimization process, equations of motion (EOM) must be considered. Furthermore, development 

of sensitivity expressions of EOM with respect to the state variables is needed for gradient-based 

optimization to solve the problem efficiently and accurately (Xiang et al., 2009a). 

 

The recursive dynamics formulations show computational advantages over the traditional non-

recursive formulations (Fu et al., 1987; Shabana, 2010). Hollerbach (1980) and Toogood (1989) 

presented early work for recursive Lagrangian dynamics formulation. In contrast, Luh et al. 

(1980) and Featherstone (1987) demonstrated recursive Newton-Euler dynamics formulation. 

Both these formulations require linear order of 5(6) calculations, and recursive Newton-Euler 

formulation is more efficient than the recursive Lagrangian formulation. Fu et al. (1987) gave a 
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good summary and illustration of different recursive dynamics formulations for robot 

manipulators. Recently, screw and Lie groups theory were used to build the recursive Newton-

Euler dynamics equations (Müller, 2018). With the development of large-scale optimization 

software (Gill et al. 2002), sensitivity analysis for multibody dynamic system is becoming more 

important for dynamic motion planning. One efficient method for sensitivity analysis is to use 

symbolic automatic differentiation tool (Patterson et al., 2013; De Groote et al., 2016). The main 

idea of symbolic sensitivity analysis is straightforward, but the internal calculation is a black box 

to the user. Analytical sensitivity equations provide an alternative way for sensitivity analysis. 

Although the number of sensitivity equations are usually large, they can be derived systematically 

to obtain insight knowledge about the dynamics problem structure within the algorithm. 

Analytical sensitivities have been studied for recursive Lagrangian formulation, recursive 

Newton-Euler formulation, and recursive Kane’s equations. The different sensitivity formulations 

have different coordinates for EOM and the corresponding math operations are also different. 

Bj4"rkenstam et al. (2018) developed the recursive Lagrangian sensitivity equations based on Lie 

groups for inverse dynamic optimization of a box lifting motion. Xiang et al. (2009a) derived 

sensitivity equations for recursive Lagrangian dynamics using DH method, and later these 

sensitivities were used to predict human walking (Xiang et al., 2009b; Xiang, 2019) and lifting 

(Xiang et al., 2010, 2020). Sohl and Bobrow (2001), and Lee et al. (2005) proposed sensitivity 

analysis for recursive Newton-Euler dynamics using Lie groups and Lie algebras, and the motion 

of a branched under actuated robot manipulator was optimized. Similar recursive Newton-Euler 

method was investigated by Lo et al. (2002) to predict human motions. Anderson and Hsu (2002) 

also developed recursive sensitivity equations using a velocity-based projection coordinate 

method, recursive Kane’s equations for multibody dynamic system. 

 



3 

 

Various optimization formulations have been studied in the literature. Effect of different objective 

functions on maximizing the smoothness of the predicted motion pattern was investigated by 

Hsiang and McGorry (1997). Arjmand and Shirazi-Adl (2006) developed musculoskeletal models 

with the objective to calculate trunk muscle forces and joint internal loads by simultaneous 

consideration of recorded kinematics and equilibrium of joint loads. The multi-objective 

optimization (MOO) approach using a weighted sum method has been implemented for lifting 

motion prediction over the single objective optimization formulation with less prediction errors 

(Chang et al., 2001; Xiang et al., 2010). Song et al. (2016) showed about 18.9% improvement in 

motion prediction using MOO method. Xiang et al. (2012) studied four objective functions for 

lifting motion prediction including the dynamic effort, the balance criterion, the maximum shear 

force at spine joint and the maximum pressure force at spine joint. Minimization of muscle forces 

was used by Pedotti et al. (1978), later a general two-level optimization procedure for tuning a 

multi-joint kinematic model to a patient’s experimental movement data was proposed by Reinbolt 

et al. (2005). An outer level optimization modifies the model’s parameters (joint position and 

orientations) and repeated inner level optimizations modify the model’s degrees of freedom given 

the current parameters, with the goal of minimizing errors between model and experimental 

marker trajectories. The predictive dynamic approach was applied to asymmetric human walking 

prediction (Xiang et al., 2011), and the sensitivities of the system with respect to state variables 

were calculated. In addition, the gait analysis results were sensitive to the locations of the external 

forces (Silva et al., 2004). Ardestani et al. (2015) studied sensitivity of joint moments with 

respect to the variations of joint kinematics, highlighting the cause and effect of joint kinematics 

and the resultant joint moments which can lead to optimization of current rehabilitation 

treatments. Fourier Series (FS) function and Genetic Algorithm (GA) based optimization 

formulations are not limited by kinematics, so they can be used with various motion predictions 

(Yang et al., 2006). 
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Although different algorithms for sensitivity analysis of dynamic equations have been studied 

(Sohl and Bobrow, 2001; Lee et al., 2005; Anderson and Hsu, 2002; Xiang et al., 2009a; 

Bj4"rkenstam et al., 2018), limited work is found for inverse recursive Newton-Euler formulation 

with sensitivity analysis using DH moving coordinates. By using 3×3 DH rotation matrices and 

moving coordinates (Fu et al., 1987), recursive Newton-Euler formulation can not only efficiently 

and conveniently calculate joint actuating torques and forces but also the internal forces at the 

joints, a feature not presenting in recursive Lagrangian formulation (Xiang et al, 2009a). In 

addition, the recursive Newton-Euler formulation is based mostly on the calculation of vector 

products, which alleviates the computational complexity of multiplying numerous 4×4 DH 

transformation matrices for the recursive Lagrangian formulation (Fu et al., 1987). 

 

In this study, the general sensitivity algorithms for recursive Newton-Euler dynamic equations are 

presented. In the recursive formulation, the system kinematics propagates forward along the 

branch and the kinetics transfers back from end-effector to the origin. The developed sensitivities 

are used to solve the dynamic motion optimization problems for multibody dynamic system.  

Three numerical examples are presented to show the validity of the proposed algorithms. The first 

example is to minimize the total travel time for a two-link manipulator with revolute joints by 

given initial and final configurations subject to torque limits. The second example is a multi-

objective optimization (MOO) for a two-link manipulator with one prismatic and one revolute 

joint. The total travel time, actuating force, and actuating torque are minimized simultaneously. 

Both prismatic and revolute joints are tested for this simple two-link manipulator. After that, the 

proposed sensitivity equations are applied to a complicated gait problem using a 55 degree-of-

freedom (DOF) skeletal model. For these three examples, the acquired optimal travel time, 
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kinematics, and kinetics are compared with those in the literature. Finally, internal forces at 

different joints are also retrieved from the simulation, a benefit for Newton-Euler formulation. 

The general algorithm of moving coordinates (Fu et al., 1987) performs recursive forward 

kinematics and backward dynamics for a serial link system by using the Newton-Euler dynamics 

model. According to this model, the dynamics equilibrium is performed for each link at a time as 

a free body where appropriate forces and torques are introduced at the joints. Therefore, the 

interaction forces between adjacent links are accounted for, which are however not obtained by 

using the Lagrange’s model.
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CHAPTER II 

  

 

GENERAL ALGORITHM WITH MOVING COORDINATES 

 

This chapter discusses the general algorithm used for recursive Newton-Euler dynamics. One of 

the steps in EOM formulation for a multibody system is the choice of kinematics formalism. This 

task is twofold: selection of the reference frame and type of mathematical description. The 

coordinate reference frame may be selected between a global or base reference frame and local or 

moving reference frames. The mathematical description may be by 4 × 4 transformation 

matrices, or by position vectors and 3 × 3 rotation matrices, or by position vectors and angular 

velocity vectors. Another step is the choice of the dynamics formulation: Lagrangian dynamics or 

Newton-Euler dynamics. The general algorithm of moving coordinates (Fu et al., 1987) performs 

recursive forward kinematics and backward dynamics for a serial link system by using the 

Newton-Euler dynamics model. According to this model, the dynamics equilibrium is performed 

for each link at a time as a free body where appropriate forces and torques are introduced at the 

joints. Therefore, the interaction forces between adjacent links are accounted for, which are 

however not obtained by using the Lagrange’s model. 

Figure 2.1 shows free body diagram of a link, where the inertial force and toque at the center of 

mass are represented by %#	 and '#	 respectively, and the reaction forces and torques at the 

proximal and distal joints are represented by %) and '), and %( and '(, respectively. 
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Figure 2.1: Free body diagram of a link 

The equilibrium forces can be expressed as: 

 %) 8  %# 9 %( 2.1 

Taking moments relatively to the left (proximal) end, we have the torque equilibrium as 

 ') 8  '# 9 '( : %# × ;!# : !)< : %( × (!( : !)) 2.2 

where ;!# : !)< is the vector from the proximal end to the center of mass and (!( : !)) is the 

vector from the proximal end to the distal end. 

 

 

 

 

 

 

 

 

Figure 2.2: Joint coordinate systems and center of mass referential frame 

The local coordinates are set to the end of each link such that the . 	�  axis lies along the axis of 

motion of joint = 9 1, the � 	  axis is normal to the . 	�  axis pointing away from it. The Denavit-
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Hartenberg (D-H) representation results in 4 × 4 homogeneous transformation matrices that 

describe the translational and rotational relationships between joint = and joint = 9 1 in Figure 2.2, 

which can be defined as: 

 > 	� 	 8  >�,? >�,(  >@,A >@,B 2.3 

where >�,? represents the transformation matrix due to the rotation angle C0 from � 	�  axis to the 

� 	  axis about the . 	�  axis; >�,( represents the transformation matrix due to the distance D0 from 

the origin of � 	�  axis to the intersection of the . 	�  axis and � 	  axis along the . 	�  axis; >@,A 

represents the transformation matrix due to the offset distance E0 from the intersection of the . 	�  

axis and � 	  axis to the origin of � 	  axis to the along the � 	  axis and >@,B represents the 

transformation matrix due to the offset angle F0 from . 	�  axis to the . 	  axis about the � 	  axis. 

These transformation matrices can be mathematically given by: 

 >�,? 8 Gcos C	 :sin C	 0 0sin C	 cos C	 0 00 0 1 00 0 0 1M 2.4 

 >�,( 8 G1 0 0 00 1 0 00 0 1 D	0 0 0 1 M 2.5 

 >@,A 8 G1 0 0 E	0 1 0 00 0 1 00 0 0 1 M 2.6 

 >@,B 8 G1 0 0 00 cos F	 :sin F	 00 sin F	 cos F	 00 0 0 1M 2.7 

They can then be multiplied together to get the homogeneous transformation matrix expression. 
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 > 	� 	 8  NOO
Pcos C	 : cos F	 sin C	 sin F	 sin C	 E	 cos C	sin C	 cos F	 cos C	 : sin F	 cos C	 E	 sin C	0 sin F	 cos F	 D	0 0 0 1 QRR

S
 2.8 

Here, C	, D	, E	, F	 are also known as DH parameters, the first two determine relative positions 

between adjacent links and the second two determine the structure of the link. The upper left 3 ×
3 submatrix represents the rotation matrix and the upper right 3 × 1 submatrix represents the 

position vector of the origin of the rotated coordinate system with respect to the reference 

system;. Here, the 3 × 3 rotation matrix is defined as a transformation matrix that operates on a 

position vector in a three dimensional Euclidean space and maps its coordinate in a rotated 

coordinates system to a reference coordinates system. 

The DH coordinates of the center of mass are represented as C	, D#	, T	, F	 in Figure 2.2. The 

corresponding DH transformation matrix for the center of mass for the j-th link is expressed 

similarly as follows: 

 > 	� #	 8  NOO
Pcos C	 : cos F	 sin C	 sin F	 sin C	 T	 cos C	sin C	 cos F	 cos C	 : sin F	 cos C	 T	 sin C	0 sin F	 cos F	 D#	0 0 0 1 QRR

S
 2.9 

where the parameter T	 is the distance, along the �   	 direction, from the intersection of �#  	  and 

.   	�  to the origin 5#	 (perpendicular distance between .#  	  and .   	� ) as shown in Figure 2.2. 

The parameter D#	 is the distance from 5	� to the intersection of .#  	�  and �   	 (perpendicular 

distance between �#  	  and �   	� ) as shown in Figure 2.2. 

Then the split is done for the coordinate transformation matrix of link j into local rotation matrix 

and position of origin of reference frame = relatively to the reference frame (= : 1). After that, the 

EOM are described in terms of local moving coordinate frames in order to have the inertia 

moments of the links independent of the links position. Also, the basic calculations are mostly 
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3 × 1 vector products, computationally more efficient than 4 × 4 matrix products in recursive 

Lagrangian formulation. 

 �	 8  Ucos C	 : cos F	 sin C	 sin F	 sin C	sin C	 cos F	 cos C	 : sin F	 cos C	0 sin F	 cos F	 V 2.10 

From Eqs. 2.8 and 2.10 we get, 

 ! 	� 	  8  �E	 cos C	 E	 sin C	 D	�� 2.11 

 ! 	� #	  8  �T	 cos C	 T	 sin C	 D#	�� 2.12 

In the formulation, for quantities as position, velocity and acceleration, as well as forces and 

torques, if the left superscript is same as the right subscript, then the superscript may be dropped.  

This chapter discussed the basics of setting up DH coordinates for robot manipulators. The 

general expressions for setting up the corresponding transformation and rotation matrices, 

position vectors are explained. The following chapter gives the detailed Newton-Euler 

formulation along with sensitivity analysis.
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CHAPTER III 

  

 

SENSITIVITY ANALYSIS FOR RECURSIVE NEWTON-EULER EQUATIONS 

 

In this chapter, the detailed formulation for recursive Newton-Euler equations is presented. First 

the state variables, DH parameters, external forces and moments, gravity, position, translational 

and angular velocity and acceleration, and unit vectors are initialized. Then, there is the recursive 

formulation. During the forward kinematics calculation, the kinematics terms are computed with 

respect to the next reference frame, hence propagating forward. The sequence for the forward 

recursive kinematics formulation along with the sensitivities for both revolute and prismatic joint 

is given through steps (1-8). The backward dynamics calculations are given in steps (9, 10). 

 

Step 1 

a. The starting state variables 1	, 1�	, 1"	 (= 8 1, 2, 3, … , 6) are initialized for the links; 

b. The system DH parameters, C	, D	, E	 , F	 , including the location of the centers of mass, 

T	, D#	 of the links (= 8 1, 2, 3, … , 6)  are set up; 

c. External forces and moments %
* $ , '
* $  acting on the kth link referred to the global 

coordinate frame are set up; 

d. Gravity Y	  $ 8  Z [ $ @ [ $ \ [ $ �]�
 acting on the links (= 8 1, 2, 3, … , 6) referred to the 

global coordinate frame are set up; 
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e. The position, translational and angular velocity, acceleration for the base link are set up 

as !$ 8 ^, !� $ 8 ^, !" $ 8 ^, �$ 8 ^, �� $ 8 ^; 

f. Local rotation matrix and its derivatives for the base link are set up as �$ 8 ��, �� $ 8
��, �" $ 8 ��; 

g. Define local unit vector �����  in the jth coordinate �	������ 8 �0 sin F	 cos F	��; 

h. Prismatic joint specific parameters were set up as: 

 

 

�	,0� 8 ^ 
D#	,0 8 1 

D�#	,02 8 1 

D"#	,022 8 1 

D�	�	������ 8 D�	�0 sin F	 cos F	�� 

D�#	�	������ 8 D�#	�0 sin F	 cos F	�� 

 

3.1 

Step 2 

a. Calculate and store local rotation matrices and their derivatives for all the links 

(= 8 1, 2, 3, … , 6); 

b. Now, calculate and store the delta position for all the links (= 8 1, 2, 3, … , 6) along with 

their sensitivities; 

 ∆!#	 8 �	� ! 	� #	 8 �T	 D#	 sin F	 D#	 cos F	�� 3.2 

Revolute Joint 

 

∆!#	,0 8 ^ 

∆!#	,02 8 ^ 

3.3 
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∆!#	,022 8 ^ 

 

Prismatic Joint 

 

∆!#	,0 8 _ ^ ; aℎc6 d < =D#	,0�	������  ; aℎc6 d 8 = 

∆!#	,02 8 ^ 

∆!#	,022 8 ^ 

3.4 

c. Calculate and store the delta angular velocity for all the links (= 8 1, 2, 3, … , 6). 

 ∆�	 8 _C�	�	������  ; /4f fcg4Thic =4d6i^ ; /4f jfdklEidm =4d6i  3.5 

Revolute Joint 

 

∆�	,0 8 ^ 

∆�	,02 8 _ ^;     aℎc6 d < =�	������;      aℎc6 d 8 = 

∆�	,022 8 ^ 

3.6 

Prismatic Joint 

 

∆�	,0 8 ^ 

∆�	,02 8 ^ 

∆�	,022 8 ^ 

3.7 

 

Step 3 

a. Calculate and store the angular velocity of local frame = : 1 with respect to the next 

reference frame, = for all the links (= 8 1, 2, 3, … , 6)  along with their sensitivities; 

 �	�  	 8  �	��	� 3.8 

Revolute Joint 
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�(	�),0  	 8  _�	��(	�),0;     aℎc6 d < =�	,0� �	�;         aℎc6 d 8 = 

�(	�),02  	 8  _�	��(	�),02;     aℎc6 d < =^;         aℎc6 d 8 =  

�(	�),022  	 8 ^ 

3.9 

Prismatic Joint 

 

�(	�),0  	 8 _�	��(	�),0 ; aℎc6 d < =�	,0� �	� ; aℎc6 d 8 =  

�(	�),02  	 8  _�	��(	�),02  ; aℎc6 d < =^ ; aℎc6 d 8 =  

�(	�),022  	 8 ^ 

3.10 

b. Calculate and store the angular velocity and its sensitivities for all the links 

(= 8 1, 2, 3, … , 6). 
 �	 8 �	�  	 9  ∆�	 3.11 

Revolute Joint 

 

�	,0 8  �(	�),0  	  

�	,02 8 _ �(	�),02  	  ;     aℎc6 d < =∆�	,02  ;           aℎc6 d 8 =  

�	,022  8 ^ 

3.12 

Prismatic Joint 

 

�	,0 8 _�	��(	�),0 ; aℎc6 d < =�	,0� �	� ; aℎc6 d 8 =  

�	,02 8  ^ 

�	,022 8  ^ 

3.13 

 

Step 4 
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a. Calculate and store the angular acceleration of local frame = : 1 with respect to the next - 

reference frame, = for all the links (= 8 1, 2, 3, … , 6)  along with their sensitivities; 

 �� 	�  	 8  �	��� 	� 3.14 

Revolute Joint 

 

�� 	 (	�),0 8  _�	��� (	�),0;     aℎc6 d < =�	,0� �� (	�);     aℎc6 d 8 =  

�� 	 (	�),02 8  _�	��� (	�),02;    aℎc6 d < =^;       aℎc6 d 8 =  

�� 	 (	�),022 8  _�	��� (	�),022;     aℎc6 d < =^;         aℎc6 d 8 =  

3.15 

Prismatic Joint 

 

�� 	 (	�),0 8  _�	��� (	�),0 ; aℎc6 d < =�	,0� �� 	�; aℎc6 d 8 =  

�� 	 (	�),02 8  _�	��� (	�),02  ; aℎc6 d < =^ ; aℎc6 d 8 =  

�� 	 (	�),022 8  _�	��� (	�),022  ; aℎc6 d < =^ ; aℎc6 d 8 =  

3.16 

b. Calculate and store the delta angular acceleration for all the links (= 8 1, 2, 3, … , 6). 

 n�� 	 8 _C"	�	������ 9  �	�  	  ×  n�	 ; /4f fcg4Thic =4d6i^ ; /4f jfdklEidm =4d6i  3.17 

Revolute Joint 

 

∆�� 	,0  8 �(	�),0  	  ×  ∆�	 

∆�� 	,02  8 o �(	�),02  	  ×  ∆�	;       aℎc6 d < =�(	�)  	  × �	������;    aℎc6 d 8 = 

∆�� 	,022 8  _ ^;     aℎc6 d < =�	������;       aℎc6 d 8 = 

3.18 

Prismatic Joint 
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∆�� 	,0  8 ^ 

∆�� 	,02  8 ^ 

∆�� 	,022 8  ^ 

3.19 

c. Calculate and store the angular acceleration and its sensitivities for all the links 

(= 8 1, 2, 3, … , 6). 

 �� 	 8 �� 	 	� 9  n�� 	 3.20 

Revolute Joint 

 

�� 	,0 8 �� 	 (	�),0 9  ∆�� 	,0 
�� 	,02 8 _ �� (	�),02  	 9 ∆�� 	,02;     aℎc6 d < =∆�� 	,02;                            aℎc6 d 8 =  

�� 	,022 8 _ �� (	�),022  	 ;     aℎc6 d < =∆�� 	,022 ;           aℎc6 d 8 =  

3.21 

Prismatic Joint 

 

 

�� 	,0 8 _�	��� (	�),0 ; aℎc6 d < =�	,0� �� 	� ; aℎc6 d 8 =  

�� 	,02 8  _�	��� (	�),02  ; aℎc6 d < =^ ; aℎc6 d 8 =  

�� 	,022 8  _�	��� (	�),022  ; aℎc6 d < =^ ; aℎc6 d 8 =  

3.22 

 

Step 5 

a. Calculate and store the position of local frame = : 1 with respect to the next reference 

frame, =for all the links (= 8 1, 2, 3, … , 6)  along with their sensitivities; 

 ! 	 	� 8 �  	� !  	�  3.23 

Revolute Joint 
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! 	 (	�),0 8  _�	�!(	�),0;      aℎc6  d < =�	,0�  !	�;        aℎc6 d 8 =  

! 	 (	�),02 8 ^ 

! 	 (	�),022 8 ^ 

3.24 

Prismatic Joint 

 

! 	 (	�),0 8 _�	�!(	�),0 ; aℎc6 d < =�	,0� !	� ; aℎc6 d 8 =  

! 	 (	�),02 8 ^ 

! 	 (	�),022 8 ^ 

3.25 

b. Calculate the local position and their sensitivities for all the links (= 8 1, 2, 3, … , 6); 
 !	 8  ! 	 	� 9  ∆!	 3.26 

Revolute Joint 

 

!	,0 8 ! 	 (	�),0 
 

!	,02 8 ^ 

!	,022 8 ^ 

3.27 

Prismatic Joint 

 

!	,0 8  _ �	�!(	�),0 ; aℎc6 d < =�	,0� !	�  9 ∆!	,0; aℎc6 d 8 = 

!	,02 8 ^ 

!	,022 8 ^ 

3.28 

c. Calculate the local position of the center of mass and their sensitivities for all the links 

(= 8 1, 2, 3, … , 6); 
 !#	 8  ! 	 	� 9  ∆!#	 3.29 

Revolute Joint 
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!#	,0 8 ! 	 (	�),0 
 

!#	,02 8 ^ 

!#	,022 8 ^ 

3.30 

Prismatic Joint 

 

!#	,0 8 !(	�),0  	 9 ∆!#	,0 
!#	,02 8 ^ 

!#	,022 8 ^ 

3.31 

 

Step 6 

a. Calculate and store the translational velocity of local frame = : 1 with respect to the next 

reference frame, = for all the links (= 8 1, 2, 3, … , 6)  along with their sensitivities; 

 !� 	 	� 8  �  	�!�	�  3.32 

Revolute Joint 

 

!� 	 (	�),0  8 _ �  	�!� (	�),0 ;      aℎc6 d < =�  	,0� !�	� ;         aℎc6 d 8 =  

!� 	 (	�),02  8 _ �  	�!� (	�),02 ;     aℎc6 d < =^;        aℎc6 d 8 =  

!� 	 (	�),022  8 ^ 

3.33 

Prismatic Joint 

 

!� (	�),0  	 8 _�	�!� (	�),0 ;  aℎc6 d < =�	,0� !�	� ; aℎc6 d 8 =  

!� (	�),02  	 8 _�	�!� (	�),02  ; aℎc6 d < =^ ; aℎc6 d 8 =  

!� (	�),022  	 8 ^ 

3.34 



19 

 

b. Calculate and store the delta translational velocity for all the links (= 8 1, 2, 3, … , 6) along 

with their sensitivities; 

 ∆!�	 8 _ �	  × ∆!	 ; /4f fcg4Thic =4d6i�	  ×  ∆!	 9 D�	�	������  ; /4f jfdklEidm =4d6i 3.35 

Revolute Joint 

 

∆!�	,0 8 �	,0 ×  ∆!	 

∆!�	,02 8  �	,02 ×  ∆!	 

∆!�	,022 8 ^ 

3.36 

Prismatic Joint 

 

∆!�	,0 8  p�	,0 × ∆!	 ; aℎc6 d < =�	 × ∆!	,0 ; aℎc6 d 8 = 

∆!�	,02 8 _�	,02 × ∆!	 ; aℎc6 d < =�	������; aℎc6 d 8 =  

∆!�	,022 8 ^ 

3.37 

 

c. Calculate and store the translational velocity for all the links (= 8 1, 2, 3, … , 6) along with 

their sensitivities; 

 !�	 8  !� 	 	� 9 ∆!�	 3.38 

Revolute Joint 

 

!�	,0 8 !� 	 (	�),0  9  ∆!�	,0 
!�	,02 8 _ !� 	 (	�),02  9  ∆!�	,02 ;     aℎc6 d < =∆!�	,02 ;                            aℎc6 d 8 =  

!�	,022 8 ^ 

3.39 

Prismatic Joint 

 !�	,0 8  _ !� (	�),0  	 9 ∆!�	,0 ; aℎc6 d < =∆!�	,0 ; aℎc6 d 8 =  3.40 
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!�	,02 8  _�	�!� (	�),02  ; aℎc6 d < =∆!�	,02  ; aℎc6 d 8 =  

!�	,022 8 ^ 

d. Calculate and store the delta velocity of the center of the mass for all the links 

(= 8 1, 2, 3, … , 6) along with their sensitivities; 

 ∆!� #	 8 _ �	  × ∆!#	 ; /4f fcg4Thic =4d6i�	  ×  ∆!#	 9 D�#	�	�c����  ; /4f jfdklEidm =4d6i 3.41 

Revolute Joint 

 

∆!� #	,0 8  �	,0 ×  ∆!#	 

∆!� #	,02 8  �	,02 ×  ∆!#	 

∆!� #	,022 8 ^ 

3.42 

Prismatic Joint 

 

∆!� #	,0 8 p�	,0 × ∆!#	 ; aℎc6 d < =�	 × ∆!#	,0 ; aℎc6 d 8 = 

∆!� #	,02 8 _ �	,02 × ∆!#	 ; aℎc6 d < =D�#	,02 �	�c����  ; aℎc6 d 8 = 

∆!� #	,022 8 ^ 

3.43 

e. Calculate and store the translational velocity of the center of the mass for all the links 

(= 8 1, 2, 3, … , 6) along with their sensitivities; 

 !� #	 8  !� 	 	� 9 ∆!� #	 3.44 

Revolute Joint 

 

!� #	,0 8 !� 	 (	�),0  9  ∆!� #	,0 
!� #	,02 8 _ !� 	 (	�),02  9  ∆!� #	,02 ;     aℎc6 d < =∆!� #	,02;                             aℎc6 d 8 = 

!� #	,022  8 ^ 

3.45 
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Prismatic Joint 

 

!� #	,0 8 !� (	�),0  	 9 ∆!� #	,0 
!� #	,02 8  _ !� (	�),02  	 9 ∆!� #	,02  ;  aℎc6 d < =∆!� #	,02  ; aℎc6 d 8 =  

!� #	,022 8 ^ 

3.46 

 

Step 7 

a. Calculate and store the translational acceleration of local frame = : 1 with respect to the 

next reference frame, = for all the links (= 8 1, 2, 3, … , 6)  along with their sensitivities; 

 !" 	 	� 8  �  	�!"	�  3.47 

Revolute Joint 

 

!" 	 (	�),0 8 _ �  	�!" (	�),0 ;     aℎc6 d < =�  	,0� !"	� ;        aℎc6 d 8 =  

!" 	 (	�),02 8 _ �  	�!" (	�),02 ;     aℎc6 d < =^;        aℎc6 d 8 =  

!" 	 (	�),022 8 _ �  	�!" (	�),022 ;     aℎc6 d < =^;         aℎc6 d 8 =  

3.48 

Prismatic Joint 

 

!" (	�),0  	 8 _�	�!" (	�),0 ; aℎc6 d < =�	,0� !"	� ; aℎc6 d 8 =  

!" (	�),02  	 8 _�	�!" (	�),02  ; aℎc6 d < =^ ; aℎc6 d 8 =  

!" (	�),022  	 8 _�	�!" (	�),022  ; aℎc6 d < =^ ; aℎc6 d 8 =  

3.49 

b. Calculate and store the delta translational acceleration for all the links (= 8 1, 2, 3, … , 6) 

along with their sensitivities; 
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 ∆!"	 8 _ �� 	  ×  ∆!	 9 �	  ×  ∆!�	  ; /4f fcg4Thic =4d6i�� 	  ×  ∆!	 9 �	  ×  ∆!�	 9 �	 × D�	�	>����� 9 D"	�	������  ; /4f jfdklEidm =4d6i 3.50 

Revolute Joint 

 

∆!"	,0 8 �� 	,0  × ∆!	 9 �	,0  ×  ∆!�	 9  �	  ×  ∆!�	,0 
∆!"	,02 8 �� 	,02  × ∆!	 9 �	,02  ×  ∆!�	  9 �	  ×  ∆!�	,02  

∆!" q,r22 8  �q,r22 ×  ∆!q 
3.51 

Prismatic Joint 

 

∆!"	,0 8 o�� 	,0 × ∆!	 9 �	,0 × s∆!�	 9 D�	�	��tq�uv 9 �	 × ∆!�	,0  ; aℎc6 d < =�� 	 × �	������ 9 �	 × ∆!�	,0  ; aℎc6 d 8 =  

∆!"	,02 8 o�� 	,02 × ∆!	 9 �	,02 × s∆!�	 9 D�	�	������v 9 �	 × ∆!�	,02  ; aℎc6 d < =2�	 × �	��tq�u  ; aℎc6 d 8 =  

∆!"	,022 8 _�� 	,022 × ∆!	  ; aℎc6 d < =�	������  ; aℎc6 d 8 =  

3.52 

c. Calculate and store the translational acceleration for all the links (= 8 1, 2, 3, … , 6) along 

with their sensitivities; 

 !"	 8  !" 	 	� 9 ∆!"	 3.53 

Revolute Joint 

 

!"	,0 8  !" 	 (	�),0  9  ∆!"	,0 
!"	,02  8 _ !" 	 (	�),02  9  ∆!"	,02 ;        aℎc6 d < =∆!"	,02 ;                               aℎc6 d 8 =  

!"	,022  8 _ !" 	 (	�),022  9  ∆!"	,022 ;     aℎc6 d < =∆!"	,022 ;                             aℎc6 d 8 =  

3.54 

Prismatic Joint 

 !"	,0 8 !" (	�),0  	 9 ∆!"	,0 3.55 
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!"	,02 8 _ !" (	�),02  	 9 ∆!"	,02  ; aℎc6 d < =∆!"	,02  ; aℎc6 d 8 =  

!"	,022 8 _ !" (	�),022  	 9 ∆!"	,022  ; aℎc6 d < =∆!"	,022  ; aℎc6 d 8 =  

d. Calculate and store the delta translational acceleration of the center of mass for all the links 

(= 8 1, 2, 3, … , 6) along with their sensitivities; 

  ∆!" #	 8 _ �� 	  ×  ∆!#	 9 �	  ×  ∆!� #	  ; /4f fcg4Thic =4d6i�� 	  ×  ∆!#	 9 �	  ×  ∆!� #	 9 �	 × D�#	�	������ 9 D"#	�	������  ; /4f jfdklEidm =4d6i 3.56 

Revolute Joint 

 

∆!" #	,0 8  �� 	,0  ×  ∆!#	 9 �	,0  ×  ∆!� #	 9  �	  ×  ∆!� #	,0 
∆!" #	,02 8  �� 	,02  ×  ∆!#	 9 �	,02  ×  ∆!� #	 9 �	  ×  ∆!� #	,02  

∆!" #	,022 8 �� 	,022 ×  ∆!#	 

3.57 

Prismatic Joint 

 

∆!" #	,0 8 o�� 	,0 × ∆!#	 9 �	,0 × s∆!� #	 9 D�	�	������v 9 �	 × ∆!� #	,0  ; aℎc6 d < =�� 	 × ∆!#	,0 9 �	 × ∆!� #	,0  ; aℎc6 d 8 =  

∆!" #	,02 8 o�� 	,02 × ∆!#	 9 �	,02 × s∆!� #	 9 D�	�	������v 9 �	 × ∆!� #	,02  ; aℎc6 d < =2�	 × D�#	,02�	������  ; aℎc6 d 8 =  

∆!" #	,022 8 _ �� 	,022 × ∆!#	  ; aℎc6 d < =D"#	,022�	������  ; aℎc6 d 8 = 

3.58 

e. Calculate and store the translational acceleration of the center of mass for all the links 

(= 8 1, 2, 3, … , 6) along with their sensitivities; 

 !" #	 8  !" 	 	� 9 ∆!" #	 3.59 

Revolute Joint 

 

!" #	,0  8  !" 	 (	�),0 9  ∆!" #	,0 
!" #	,02 8 _ !" 	 (	�),02 9  ∆!" #	,02;     aℎc6 d < =∆!" #	,02;                            aℎc6 d 8 = 

3.60 



24 

 

!" #	,022 8 _ !" 	 (	�),022 9 ∆!" #	,022 ;      aℎc6 d < =∆!" #	,022;                             aℎc6 d 8 =  

Prismatic Joint 

 

!" #	,0 8 !" (	�),0  	 9 ∆!" #	,0 
!" #	,02 8 _ !" (	�),02  	 9 ∆!" #	,02  ; aℎc6 d < =∆!" #	,02  ; aℎc6 d 8 =  

!" #	,022 8 _ !" (	�),022  	 9 ∆!" #	,022  ; aℎc6 d < =∆!" #	,022  ; aℎc6 d 8 =  

3.61 

 

Step 8 

a. Calculate and store the rotation matrices referred to the global reference frame for all the 

links (= 8 1, 2, 3, … , 6) along with their sensitivities; 

 �	  $ 8  �	�  $ �	 3.62 

 

 

�	,0  $ 8 _ �(	�),0 �	 $ ; aℎc6 d < =�	� �	,0 $ ; aℎc6 d 8 =  

�	,02  $ 8 ^ 

�	,022  $ 8 ^ 

3.63 

b. Calculate and store the angular momentum for all the links (= 8 1, 2, 3, … , 6) along with 

their sensitivities; 

 &	 8  �	�	 3.64 

Revolute Joint 

 

&	,0 8 �	�	,0 
&	,02 8 �	�	,02  3.65 
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&	,022 8 ^ 

Prismatic Joint 

 

&	,0 8 p�	�	,0 ; aℎc6 d < =^ ; aℎc6 d 8 =  

&	,02 8 p�	�	,02  ; aℎc6 d < =^ ; aℎc6 d 8 =  

&	,022 8 ^ 

3.66 

c. Calculate and store the inertia force for all the links (= 8 1, 2, 3, … , 6) along with their 

sensitivities; 

  %#	 8 l	;!" #	 9  �	� Y	  $ $ < 3.67 

 

 

%#	,0 8  l	;!" #	,0 9  �	,0� Y	  $ $ <   

%#	,02 8  l	!" #	,02  
%#	,022 8  l	!" #	,022  

3.68 

 

d. Calculate and store the torque for all the links (= 8 1, 2, 3, … , 6) along with their 

sensitivities; 

 '#	 8  �	�� 	 9  �	 ×  &	 3.69 

Revolute Joint 

 

'#	,0 8  �	�� 	,0  9  �	,0 × &	 9 �	 × &	,0 
'#	,02 8  �	�� 	,02  9  �	,02 × &	 9 �	 × &	,02  

'#	,022 8  �	�� 	,022  
3.70 

Prismatic Joint 

 '#	,0 8 p�	,0 × &	 9 �	 × &	,0 9 �	�� 	,0 ; aℎc6 d < =^ ; aℎc6 d 8 =  3.71 
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'#	,02 8 p�	,02 × &	 9 �	 × &	,02 9 �	�� 	,02  ; aℎc6 d < =^ ; aℎc6 d 8 =  

'#	,022 8 p�	�� 	,022  ; aℎc6 d < =^ ; aℎc6 d 8 =  

Only in this step, the rotational matrix referred to the global reference frame is needed. 

If = < 6 go to step 2, if = 8 6 continue. 

The sequence for the backward recursive dynamics formulation along with the sensitivities for 

both revolute and prismatic joint is given through steps (9-10): 

 

Step 9 

a. Calculate internal forces for all the links (= 8 6, 6 : 1, … , 3, 2,1) along with their 

sensitivities, consider for = 8  6 9 1, %	) 8  ^; 

 %	( 8  �	w%(	w)) 3.72 

 

 

%	(,0 8 p �	w%(	w)),0;                                          aℎc6 d ≠ = 9 1�	w%(	w)),0 9 �(	w),0%(	w));          aℎc6 d 8 = 9 1 

%	(,02 8 �	w%(	w)),02  
%	(,022 8 �	w%(	w)),022  

3.73 

 

 %	) 8  %	( 9  %#	 3.74 

 

 

%	),0 8 p%	(,0 9 %#	,0;    aℎc6 d ≤ =%	(,0;                 aℎc6 d > =  

%	),02 8 _%	(,02 9 %#	,02;     aℎc6 d ≤ =%	(,02;                     aℎc6 d > = 

3.75 
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%	),022 8 _%	(,022 9 %#	,022 ;     aℎc6 d ≤ =%	(,022;                     aℎc6 d > =  

b. Calculate internal forces due to global external force %
* $  applied at link k which transfers 

internal joint force %	(*  backward (= 8 {, { : 1, … , 3, 2, 1), where { ≤ 6. 

 %	(* 8 _ �
� $ %
* $ ;                  aℎc6 = 8 {�	w%(	w)(* ;          aℎc6 = < { 3.76 

 

 

%	(,0* 8 | �
,0� $ %
* $ ;                                                            aℎc6 = 8 { E6D d ≤ =�(	w),0%(	w)(* 9 �	w%(	w)(,0* ;           aℎc6 = < { E6D d 8 = 9 1�	w%(	w)(,0* ;                                            aℎc6 = < { E6D d ≠ = 9 1 

%	(,02* 8 ^ 

%	(,022* 8 ^ 

3.77 

 

 %	) 8  %	) 9 %	(*  3.78 

 

 

%	),0 8 %	),0 9 %	(,0* ;    aℎc6   d ≤ { 

%	),02 8 ^ 

%	),022 8 ^ 

3.79 

c. Calculate internal torques for all the links (= 8 6, 6 : 1, … , 3, 2,1) along with their 

sensitivities, consider for = 8  6 9 1, '	) 8  ^; 

 '	( 8  �	w'(	w)) 3.80 

 

 '	(,0 8 p�	w'(	w)),0;                                     aℎc6 d ≠ = 9 1�	w'(	w)),0 9 �(	w),0'(	w));     aℎc6 d 8 = 9 1 3.81 
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'	(,02 8 �	w'(	w)),02 
'	(,022 8 �	w'(	w)),022 

 

 '	) 8  '	( 9 '#	 : %	( × ∆!	 : %#	 × ∆!#	 3.82 

 

 

'	),0 8  p'	(,0 9 '#	,0 : %	(,0 × ∆!	 : %#	,0 × ∆!#	;      aℎc6 d ≤ ='	(,0 : %	(,0 × ∆!	;                                               aℎc6 d > =  

'	),02 8 _'	(,02 9 '#	,02 : %	(,02 × ∆!	 : %#	,02 × ∆!#	;     aℎc6  d ≤ ='	(,02 : %	(,02 × ∆!	;                                                aℎc6 d > =  

'	),022 8 _'	(,022 9 '#	,022 : %	(,022 × ∆!	 : %#	,022 × ∆!#	;         aℎc6 d ≤ ='	(,022 : %	(,022 × ∆!	;                                                        aℎc6 d >  = 
3.83 

d. Calculate joint torque due to global external force %
* $  applied at local coordinate }
 of 

the kth link which transfers internal joint torque '	(*+
 backward (= 8 {, { : 1, … , 3, 2, 1), 

where { ≤ 6. 

 '	(*+ 8 _ (}
 9 ∆!	) × %	(* ;                  aℎc6 = 8 {�	w'(	w)(* 9 ∆!	 × %	(* ;          aℎc6 = < { 3.84 

 

 

'	(,0*+ 8 | ∆!	,0 × %	(* 9 ∆!	 × %	(,0* ;                                 aℎc6 = 8 { E6D d ≤ =�(	w),0'(	w)(* 9 �	w'(	w)(,0* 9 ∆!	 × %	(,0* ;     aℎc6 = < { E6D d 8 = 9 1�	w'(	w)(,0* 9 ∆!	,0 × %	(* 9 ∆!	 × %	(,0* ;           aℎc6 = < { E6D d ≠ = 9 1  

'	(,02*+ 8 ^ 

'	(,022*+ 8 ^ 

3.85 

 

 '	) 8  '	) 9 '	(*+
 3.86 
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'	),0 8 '	),0 9 '	(,0*+ ;    aℎc6   d ≤ { 

'	),02 8 ^ 

'	),022 8 ^ 

3.87 

e. Calculate joint torque due to global external moment '
* $  applied at kth link which transfers 

internal joint torque '	(*, backward (= 8 {, { : 1, … , 3, 2, 1), where { ≤ 6. 

 '	(*, 8 _ �
� $ '
* $ ;                  aℎc6 = 8 {�	w'(	w)(* ;          aℎc6 = < { 3.88 

 

 

'	(,0*, 8 | �
,0� $ '
* $ ;                                                            aℎc6 = 8 { E6D d ≤ =�(	w),0'(	w)(* 9 �	w'(	w)(,0* ;           aℎc6 = < { E6D d 8 = 9 1�	w'(	w)(,0* ;                                            aℎc6 = < { E6D d ≠ = 9 1 

'	(,02*, 8 ^ 

'	(,022*, 8 ^ 

3.89 

 

 '	) 8  '	) 9 '	(*, 3.90 

 

 

'	),0 8 '	),0 9 '	(,0*, ;    aℎc6   d ≤ { 

'	),02 8 ^ 

'	),022 8 ^ 

3.91 

Step 10 

a. Calculate the torque component about the local . 	�  axis for all the joint 

(= 8 6, 6 : 1, … , 3, 2,1) along with their sensitivities; 

 -	 8  '	)� �	������  3.92 
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-	,0 8  o'	),0� �	� �  ���� ;                                       aℎc6 d ≠ ='	),0� �	� �  ���� 9 '	)� �	,0� �  ���� ;           aℎc6 d 8 = 

-	,02 8  '	),02� �	� �  ���� 
 

-	,022 8  '	),022� �	� �  ����  

3.93 

 

b. Calculate the force component along the local . 	�  axis for all the joint (= 8 6, 6 :
1, … , 3, 2,1) along with their sensitivities; 

 /	 8 %	)� �	� �����  	  3.94 

 

 

/	,0 8  o%	),0� �	� �  ���� ;                                       aℎc6 d ≠ =%	),0� �	� �  ���� 9 %	)� �	,0� �  ���� ;           aℎc6 d 8 = 

/	,02 8  %	),02� �	� �  ���� 
 

/	,022 8  %	),022� �	� �  ����  

3.95 

 

In step 10 only the left-hand side subscript = stands for the joints, all the other subscripts and 

superscripts indicate the link reference as before. 

In summary, the last two steps show how the kinetics terms are transferred back from end-

effector to the origin. Formula for internal forces due to global external force, and internal torques 

due to global external moment are all given. Also, the torque and force components can be 

computed from proximal and distal forces and torques for each link. The next two chapters 

discuss the applications of the proposed recursive dynamics and sensitivity analysis to the 

dynamic motion planning problems.
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CHAPTER IV 
 

 

DYNAMIC MOTION PREDICTION WITH TWO-LINK MANIPULATOR 

Two simple robot manipulator examples are first setup to test the proposed recursive dynamics 

formulation and its sensitivity analysis. The first example is a time-minimization motion-planning 

problem for a simple two-link robot manipulator with two revolute joints. The second example is 

also a time-minimization motion-planning problem for a two-link manipulator but with one 

prismatic joint and one revolute joint. The detailed model setup, optimization formulations, and 

numerical results are described in this chapter. 

4.1 Two-link manipulator with two revolute joints 

 

Two-link robot manipulator is a widely studied model in dynamics simulation (Dissanayake et 

al., 1991; Wang et al., 2005; Xiang et al., 2009a). The same example is examined here to verify 

the proposed algorithms for revolute joints. This manipulator model is designed by simply 

connecting two links with two revolute joints that are moving on the horizontal plane. The local 

coordinates for each link are set up at the tip of that link. The relative joint angles 1 and 1~ 

represent the independent generalized coordinates for each link. A visual representation of the 

example setup is given in Figure 4.1 showing all physical parameters for both links. The 

manipulator can be moved from a preset initial position �1(0), 1~(0)� to a desired position 

�1(�), 1~(�)� in time interval T. The DH parameters are set up in Table 4.1, and the physical 

properties of the manipulator are given in Table 4.2. 
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Figure 4.1: Two-link manipulator with two revolute joints 

Table 4.1: DH table for a two-link manipulator with revolute joints 

Link C0 D0 E0 F0 
1 0 0 L1 0 

2 0 0 L2 0 

 

Table 4.2: Physical parameters for a two-link manipulator with revolute joints 

Length: � 8 �~ 8  0.4 l 

Mass: l 8 l~ 8  0.5 {[ 

Inertia at center of mass: � 8 �~ 8  0.1 {[ ∙ l~   
Center of mass of link 1: f  8 (:�/2, 0 ) 

Center of mass of link 2: f~ ~ 8 (:�~/2, 0 ) 

Torque upper bound: '� 8 10 �l 

Torque lower bound: '� 8 :10 �l 

 

4.1.1 Joint Profile Discretization 

The proposed recursive Newton-Euler formulation is used to calculate the joint actuating torques, 

internal joint reaction forces, and their sensitivities with respect to state variables (�, �� , �" ). A joint 

profile 1(i, �, �) is discretized using cubic B-splines: 
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 1(i, �, �) 8 � �0(i, �)j0
,

0�            0 ≤ i ≤ � 4.13 

where �0(i, �) are the basis functions, � 8 {k$, … , k�}  is the knot vector, and � 8 {j, … , j,}   is 

the control point vector. 

Knot vector �, which uniquely determines the B-spline basis functions, is evenly spaced 

on the time interval �0 �� with the time step ∆k, 

 k0w 8 k0 9 �k,           �k 8 �T ,             d 8 0, . . . , T : 1 4.14 

Then, the state variables calculated from Eq. 4.1 are functions of both the control point vector and 

knot vector. Therefore, the torque and force calculated from EOM are also an explicit function of 

control point vector and knot vector. Finally, the sensitivities are calculated using the chain rule 

as follows, 

 

�'�j0 8 �'�1 �1�j0 9 �'�1� �1��j0 9 �'�1" �1"�j0 �%�j0 8 �%�1 �1�j0 9 �%�1� �1��j0 9 �%�1" �1"�j0 
4.15 

 

4.1.2 Optimization Formulation 

The two-link trajectory optimization problem is formulated as a parameter optimization problem 

as below, where the design variables are computed as ! 8 ��� ����, and the total time T is 

minimized subject to boundary conditions and torque limits constraint. 

�d6dld.c 

 �(!) 4.16 



34 

 

 

�h�=cmi i4 

 

1(0) 8 0.0, 1~(0) 8 :2.0 

1(�) 8 1.0, 1~(�) 8 :1.0 

1�(0) 8 1�~(0) 8 1�(�) 8 1�~(�) 8 0.0 

:10 ≤  '(!) ≤ 10 

4.17 

 

The optimization problem is solved using a sequential quadratic programming (SQP) algorithm in 

SNOPT and the snoptB routine (Gill et al., 2002) is used for this purpose. 

4.1.3 Results and Discussion 

 

Figure 4.2: Joint torque profiles with two revolute joints 
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Figure 4.3: Joint internal force vector norm profiles with two revolute joints 

 

Figure 4.4: Motion trajectory with two revolute joints 

This two-link minimum-time motion-planning problem has been well studied in the literature 

with different dynamics formulations (Dissanayake et al., 1991; Wang et al., 2005; Xiang et al., 

2009a). In this example, internal joint force can be directly calculated from the proposed 

recursive Newton-Euler equations as shown in Figure 4.3. This feature is unavailable in recursive 

Lagrangian formulation (Xiang et al., 2009a). The minimum travel time is obtained as T = 0.392 

seconds, which is comparable to that reported in the literature (0.394 seconds by Wang et al. 
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(2005) and 0.393 seconds by Xiang et al. (2009a)). Also, the predicted joint torque and trajectory 

(Figs. 4.2 and 4.4) have similar shapes to those reported in the literature (Xiang et al., 2009a). 

The joint torque value for the first link stays on the upper bound until just over 0.2 seconds, then 

it shifts to the lower bound and continues until optimal time is achieved. For the second link, its 

torque value stays on the lower bound for a short time period, then shifts to upper bound, finally 

returns back to lower bound after 0.25 seconds. This is a bound-bound type of control to achieve 

the minimal travel time as shown in Figure 4.2. The magnitude of internal joint reaction force, 

which is calculated as the second norm of the internal joint force vector at revolute joint, shows a 

double-peak pattern in Figure 4.3. This is due to the bound-bound type of control for the two-link 

manipulator. However, the first link has higher internal joint reaction force value than the second 

link before they merge around the optimal time. 

 

4.2 Two-link manipulator with one prismatic and one revolute joint 

 

To examine the proposed algorithms for prismatic joint, a similar two-link manipulator in Section 

4.1 is discussed here. For this example, the first joint is replaced by a prismatic joint. The second 

joint is still a revolute joint, giving this manipulator an opportunity to both translate and rotate 

about their DOF on a horizontal plane. The relative joint translation q1 and joint rotation q2 

represent the independent generalized coordinates for the links of L1 and L2. The mass of the links 

is given by l and l~, while the inertia is given by � and �~ at the center of mass of each link, 

respectively. The manipulator is moving from an initial position �1(0), 1~(0)� to a desired 

position �1(�), 1~(�)� in time interval �. The DH parameters are set up in Table 4.3, and the 

physical properties of the manipulator are given in Table 4.4. Cubic B-splines are used to 

discretize the joint profiles as discussed in previous example in Section 4.1. 
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Table 4.3: DH table for a two-link manipulator with one prismatic joint and one revolute joint 

Link C0 D0 E0 F0 
1 �/2 L1 0 �/2 

2 �/2 0 L2 0 

 

Table 4.4: Physical parameters for a two-link manipulator with one prismatic joint and one 

revolute joint 

Length: � 8 �~ 8  0.4 l 

Mass: l 8 l~ 8  0.5 {[ 

Inertia at center of mass: � 8 �~ 8  0.1 {[ ∙ l~ 

Center of Mass of Link 1: f  8 (0, :�/2) 

Center of Mass of Link 2: f~ ~ 8 (:�~/2, 0) 

Torque upper bound: -� 8 10 �l 

Torque lower bound: -� 8 :10 �l 

Force upper bound: /� 8 10 � 

Force lower bound: /� 8 :10 � 

 

4.2.1 Optimization formulation 

A MOO scheme has been set up for this example. The optimization formulation is given as follows: 

Minimize 

 � �(1 : h) 9 h(/~ 9 -~~)�Di�
��$ ,           h ∈ �0,1� 4.18 

Subject to 

 

1(0) 8 0.1, 1~(0) 8 0.6 

1(�) 8 �4 , 1~(�) 8 : �4 

1�(0) 8 1�~(0) 8 1�(�) 8 1�~(�) 8 0.0 

:10 ≤  -(!) ≤ 10 

:10 ≤  /(!) ≤ 10 

4.19 
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where h 8 0.01 is a preset parameter that prevents sharp functioning of the actuating force (/) and 

torque (-~). As the value of h decreases, the MOO problem turns out to be a time-minimization 

trajectory-planning problem. The actuation square is related to energy consumption in the 

optimization formulation. 

4.2.2 Results and Discussion 

The optimal actuating force and torque profiles are depicted in Figure 4.5. The optimal internal 

joint reaction force (magnitude) profiles are presented in Figure 4.6, and the snapshots of the 

optimal trajectory is shown in Figure 4.7. This example problem is new that has not been solved 

in the literature before. In this study, the minimum travel time is obtained as � 8 0.5585 seconds 

and the predicted motion trajectory has a desired shape with a translation and a rotation. 

 

Figure 4.5: Joint actuating force and torque profiles with one prismatic and one revolute joint 



39 

 

 

Figure 4.6: Joint internal force vector norm profiles with one prismatic joint and one revolute 

joint 

 

 

Figure 4.7: Motion trajectory with one prismatic joint and one revolute joint 

 

In Figure 4.5, both the actuating force for the first prismatic joint and the actuating torque for the 

second revolute joint have an accelerating and a decelerating process since their initial and final 

velocities are set to be zero. This is because the parameter h in MOO is a small value (0.01), 

which gives some time-minimization features. The actuating force changes from a positive peak 

value to a negative peak value. In contrast, the actuating torque changes from a negative peak 
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value to a positive peak value in its moving direction. Figure 4.6 shows the internal joint reaction 

force vector norm profiles. Both internal force curves have similar trends and double-peak 

pattern. In addition, the internal force vector norm profile of the revolute joint is lower than that 

of the prismatic joint. 

In summary, this chapter gave detailed discussions on two simple two-link manipulator trajectory 

planning examples for the proposed recursive Newton-Euler formulation. The simulation results 

are compared to available data in literature and similar results have been found. This paves the 

way to further investigate the efficacy of the proposed algorithms with a much more complex gait 

prediction problem, which will be discussed in the next chapter. 
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CHAPTER V 
 

 

DYNAMIC MOTION PREDICTION WITH GAIT 

The one-step gait prediction in Xiang et al. (2009b) is revisited in this chapter. The mechanical 

model has been set up, then the proposed algorithm is used to calculate the joint torque and 

forces. Internal joint reaction forces and their sensitivities will also be calculated. A two-step 

passive-active algorithm is used to calculate the ground reaction forces (GRF). Various time 

dependent and independent constraints are applied for optimization formulation.  

 

5.1 Mechanical Model 

The 3D skeletal model shown in Figure 5.1 has 55 DOF and 6 of them are global DOF including 

three translations and three rotations. The five physical branches are spine, neck, right arm, left 

arm, right leg, and left leg. The global DOF start from the origin of the Cartesian coordinates and 

end at the current pelvis location. To simplify the simulation, the upper spine, neck, clavicle, and 

wrist joints are frozen to their neutral angles. Therefore, the total number of active joints are 38. 

One-step formulation is used to simulate continuous walking motion. Each step consists of a 

single support and a double support phase. Single support phase occurs when one foot contacts 

the ground while the other leg is swinging. After one step, the roles of the arms and legs are 

swapped and the motion is repeated.  
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Figure 5.1: The 3D Skeletal Digital Human Model, the frozen DOFs for the walking task are 

shown in the dashed enclosures 

The proposed recursive Newton-Euler formulation is used to calculate the revolute joint actuating 

torque, prismatic joint actuating force, internal joint reaction force, and their sensitivities with 

respect to state variables (�, �� , �" ). The ground reaction forces (GRF) are calculated using a two-

step active-passive algorithm (Xiang et al., 2009b). The main idea of the algorithm is to first 

calculate the resultant global active forces and zero-moment point (ZMP) location from EOM 

based on the given state variables. ZMP location also coincides with center of pressure (COP). 

Then GRF 
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 �(�, ', �) 8 � �'(�, �)|-|,A@ � �'(�, �)|-|,A@  Di�
��$  5.1 

  

where |-|,A@ is the maximum absolute value of joint torque limit. 

 

5.2 Constraints 

Two types of constraints are considered for the walking optimization problem: one is the time-

dependent constraints which include (1) joint angle limits, (2) joint torque limits, (3) ground 

penetration, (4) dynamic balance, (5) arm-leg coupling, and (6) self-avoidance. These constraints 

are imposed throughout the time interval. The second type is time-independent constraints which 

comprise the (7) symmetry conditions, (8) ground clearance and (9) initial and final foot 

positions; these constraints are considered only at a specific time point during the step. 

 

5.2.1 Time-dependent constraints 

(1) The joint angle limits are taken into account in the formulation. 

 �� ≤ �(�) ≤ �� 5.2 

 

             where ¡� and ¡� are lower and upper bounds of joint angle, respectively.  

(2) Joint torque limits are imposed as: 

 '� ≤ '(�, �) ≤ '� 5.3 

 

where ¢� and ¢� are lower and upper bounds of joint torque, respectively.  

(3) Ground penetration is defined as while the foot contacts the ground, the height and 

velocity of contacting points are zero. In contrast, the heights of non-contacting points are 

greater than zero. 
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£0 8 0, ��0 8 0, £�0 8 0, .�0 8 0,          d ∈ Ω 

£0 > 0,         d ∉ Ω 

5.4 

 

where Ω is the set of foot contacting points. 

(4) The dynamic balance is considered during walking process by enforcing the ZMP to 

remain within the foot support polygon (FSP). 

 } ¦ §¨©(�, �) ∈ ª�« 5.5 

 

where } ¦ §¨© is the calculated ZMP location. 

(5) The arm-leg coupling constraint is defined as the arm swing on one side counteracting the 

leg swing on the other side. We introduced one pendulum to represent left arm and 

another pendulum to represent right leg. The coupling constraint states that these two 

pendulums should swing in the same direction along the sagittal plane during walking 

motion. 

 (¬ ∙ �)(¬~ ∙ �) ≥ 0 5.6 

 

where ¬ is left arm pendulum vector and ¬~ is right leg pendulum vector, � is the unit 

vector along vertical direction. 

(6) Self-avoidance is considered in the current formulation to prevent penetration of the arm 

into the body. 

 D(i) ≥ f 9 f~ 5.7 

 

where D is calculated distance between wrist and hip during walking, f is the radius of 

the sphere filled at wrist, and f~ is the radius of the sphere filled at hip. 
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5.2.2 Time-independent constraints 

(7) The initial and final postures and velocities should satisfy the symmetry conditions to 

generate continuous walking motion. 

 

�(0) 8 �¯(�) 

�� (0) 8 �� ¯(�) 

5.8 

 

where �¯ are symmetric joint angles, �� ¯ are symmetric joint angular velocities.  

(8) Ground clearance constraint is imposed during the walking motion to avoid foot drag 

motion. The value of knee flexion at mid-swing is set around 60°  to formulate ground 

clearance constraint. 

 |1
±** : 60°| ≤ ² 5.9 

  

where ² 8 5°. 

(9) The initial and final foot contacting positions are specified at the initial and final times to 

satisfy the step length constraint. 

 } ¦ +³³�(�, i) 8 } ¦ +³³�� (i);           i 8 0, � 5.10 

 

where } ¦ +³³� is the calculated global foot position, and } ¦ +³³�´  is the given foot position 

based on the given step length L. 

 

For a normal gait, the given velocity is µ 8 1.2 l/k and the step length is � 8 0.6l. There are 

330 nonlinear design variables (55 DOF, each with six control points) and 1726 nonlinear 

constraints. First the optimization problem is solved to obtain a feasible solution for the walking 

problem, where �(�) 8 ^ used as the starting point with �(�, ', �) 8 m46kiE6i as the objective 

function and all constraints imposed. Once a feasible solution has been obtained, it is used as the 
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starting point for the optimization problem with dynamic effort as the objective function. The 

optimality and feasibility tolerances are both set ² 8 10�� for SNOPT and it takes 34.10  seconds 

of CPU time for a desktop computer with an Intel (R) Xeon (R) E-2186G CPU @ 3.80GHz to 

solve the nonlinear optimization problem. There are 244 active constraints at the optimal solution. 

 

5.3 Results and Discussion 

Figure 5.2 shows the snapshots of a 3D human walking on level ground. The predicted walking 

motion is quite smooth, and the joint angle and velocity symmetry conditions are satisfied.  ZMP 

stays in the FSP to satisfy the balance condition. In addition, knee flexion at mid-swing, arm-leg 

coupling, and a straight spine are all predicted as expected. 

 

Figure 5.2: The snapshots of the optimized cyclic walking motion 

The predicted hip, knee, and ankle joint angles of normal walking for a stride starting from heel 

strike and ending with the same heel strike are plotted in Figure 5.3. The joint angles’ magnitudes 

and trends are consistent with the data in the literature (Xiang et al., 2009b).  
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(a) 

 
(b) 

  
(c) 

 

Figure 5.3: Joint angle profiles for gait: (a) Hip, (b) knee, and (c) ankle 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.4: GRF profiles for gait: (a) Lateral, (b) vertical, and (c) fore-aft 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.5: Joint internal force vector norm profiles for gait: (a) Hip, (b) knee, and (c) ankle 
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Figure 5.4 shows the predicted GRF for normal gait. The vertical GRF has a familiar double-peak 

pattern. There are decelerating and acceleration processes for fore-aft GRF. Meanwhile, the foot 

also pushes laterally during the entire stance phase. In Figure 5.5, the resultant internal forces 

(vector norm) for hip, knee, and ankle have similar patterns to the vertical GRF during stance 

phase of gait cycle. This is because the vertical GRF is the largest reaction force applied at COP 

during stance phase, and its magnitude is much larger than those of lateral and fore-aft GRF.  In 

contrast, during swinging phase, the resultant internal forces are difference at hip, knee, and ankle 

joints because these joints have different motions. 

This chapter discusses the proposed algorithms being applied to a complex optimization problem 

of human gait prediction. There were 6 types of time-dependent and 3 types of time-independent 

constraints, which results in a total of 1726 nonlinear constraints. A total of 330 nonlinear design 

variables were considered for the optimization problem. The optimized cyclic walking motion is 

presented along with the joint angle profiles, GRF and internal joint force vector norm for hip, 

knee and ankle joints are shown and discussed.  
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CHAPTER VI 

  

 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

In this study, the recursive Newton-Euler formulation with analytical sensitivities were derived 

for dynamic motion prediction. The derived formulation was based on 3×3 DH rotation matrices 

and DH moving coordinates. Therefore, it is computationally efficient than the recursive 

Lagrangian formulation which is based on 4×4 DH transformation matrices. The proposed 

formulation can handle both prismatic joints and revolute joints, external force and moment, 

single branch and articulated branch. Three numerical examples were presented to demonstrate 

the efficacy and efficiency of the proposed algorithm.  First, the trajectory planning problem 

using a simple two-link manipulator with two revolute joints was studied, where the total time 

was minimized subject to initial and final boundary conditions and joint torque limits. The 

minimized total time, predicted joint torque, and motion trajectory were quite similar to those 

reported in the literature. Furthermore, the internal joint reaction forces are readily obtained in the 

process of calculation for recursive Newton-Euler dynamics. Secondly, a similar example for a 

two-link manipulator with one prismatic joint and one revolute joint was examined. A MOO 

problem was formulated and solved for the optimal actuating force and torque. Third, a more 

complex example of normal walking was predicted by using a 55-DOF skeletal human model. 

The normal walking was considered as a cyclic and symmetric motion, where the initial and final
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postures were repeatable. The recursive Newton-Euler formulation was used to build human 

kinematics dynamics and sensitivity equations. A two-step algorithm was used to calculate the 

passive GRF at ZMP based on global equilibrium. The energy-related objective function, integral 

of squares of all joint torques, was minimized for the dynamic walking motion prediction. Cubic 

B-splines were used to discretize the joint profiles, and the corresponding control points and knot 

vectors were treated as design variables in all three cases. An SQP algorithm in SNOPT (snoptB 

routine) was used to solve the motion planning problems. The predicted kinematic and kinetic 

graphs were comparable to those found in the literature, validating the robustness of the 

optimization formulations which used the proposed sensitivity algorithms. Finally, the recursive 

Newton-Euler dynamics and sensitivity equations are programmed in C++ with the latest math 

library (Eigen). 

 

6.2 Future Work 

Besides the foregoing work, the following topics will be studied in the future: 

 (1) building musculoskeletal models; (2) studying the muscle fatigue problem for repetitive 

motions; (3) developing a general purpose motion prediction software using the proposed 

algorithms. 

 

6.2.1 Building musculoskeletal model 

OpenSim muscle models will be used to develop musculoskeletal model. This, when coupled 

with the internal joint forces and torques provided by the new formulation, can get the motion 

prediction more accurately and efficiently.  
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6.2.2 Effect of muscle fatigue 

Muscle fatigue is a common phenomenon while performing any repetitive motion that can reduce 

worker’s efficiency. Tasks such as lifting can be subjected to fatigue for an extended period of 

time. The muscle fatigue model will be added to the current recursive Newton-Euler dynamics 

formulation to predict the repetitive lifting to reduce injury. This can be useful for both upper and 

lower body motion simulation for different tasks. 

 

6.2.3 The general purpose motion prediction software 

A general purpose motion prediction software will be developed for motion planning studies. 

This software has applications in both robotic planning field and human health and ergonomic 

field, such as industrial robot manipulator planning, human lifting prediction, and human-robot 

interaction. Finally, this real-time simulation software will be delivered as a general motion 

simulation and analysis tool for common motion planning tasks.
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