
UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

MODEL EVOLUTION FOR THE REALIZATION OF COMPLEX SYSTEMS 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the  

Degree of  

DOCTOR OF PHILOSOPHY 

 

 

 

By 

LIN GUO 

Norman, Oklahoma 
2021 



 
 

 
 

 
MODEL EVOLUTION FOR THE REALIZATION OF COMPLEX SYSTEMS 

 

A DISSERTATION APPROVED FOR THE 

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING 

 
 
 
 
 
 
 

BY THE COMMITTEE CONSISTING OF 
 

 
 

 
Dr. Janet K. Allen, Co-chair 

 
 

Dr. Farrokh Mistree, Co-chair 
 
 

Dr. Theodore B. Trafalis 
 
 

Dr. Charles D. Nicholson 
 
 

Dr. Thomas M. Neeson 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by LIN GUO 2021 
All Rights Reserved. 

 



 
iv 

 

ACKNOWLEDGMENTS 

I dedicate this dissertation to my family, who gives me the greatest love and support – my beloved 

husband, mother, father, mother-in-law, and two daughters. 

I dedicate the monograph based on this dissertation to my advisors, academic parents, and co-

chairs of my committee, Professor Janet K. Allen and Professor Farrokh Mistree. I sincerely 

appreciate their excellent mentoring, great patience, continuous encouragement and care, spiritual 

and financial support, collaboration and networking opportunities across disciplines and countries, 

and everlasting passion. Thanks to their advice – incorporating my defense slides as Appendix E. 

I thank my committee members, Dr. Theodore B. Trafalis, Dr. Charles D. Nicholson, and Dr. 

Thomas M. Neeson, for their valuable advice and suggestions during my Ph.D. research. 

I deeply appreciate the help and recognition that I receive from Dr. Shivakumar Raman, and all 

the other great professors in the School of Industrial and Systems Engineering at the University of 

Oklahoma. 

I am truly grateful for the education and financial support that I received from the University of 

Oklahoma. I especially appreciate my advisors’ chair fund, L.A. Comp Chair and the John and 

Mary Moore Chair at the University of Oklahoma. 

I acknowledge all my academic siblings, mentors, collaborators, and friends, for the incredible 

guidance, advice, help, faith, care, and opportunities they offer – Dr. Hamedzamani Sabzi, Dr. 

Thomas M. Neeson, Suhao Chen, Dr. Warren F. Smith, Dr. Anand Balu Nellippallil, Dr. Ashok 

Das, Ayushi Sharma, Dr. Shima Mohebbi, Dr. Ru Wang, Dr. Guoxin Wang, Dr. Jelena 

Milisavljevic-Syed, Yu Huang, Jacob G. Starks, Nathan B. Preuss, Shehnaz B. Shaik,  Abigna A. 



 
v 

 

Reddy, Dr. Zhenjun Ming, Shan Peng, Xiao Shi, Chuanhao Li, Abhishek Yadav, Vishnu Kamala, 

Gehendra Sharma, Sara Hajihashemi, Xiwen Shang, Shuting Chen, Liangyue Jia, Yilin Jiang, 

Yafen Chen, and Dr. Yu Liu. 

I am gratified to all the co-workers, staff, coordinators, and helpers that help me proceed and 

smooth my Ph.D. journey, from ISE, AME, Gallogly College of Engineering, Graduate College, 

GSC, Human Resource, International Student Service, Goddard, OUIT, etc. 

I thank the education and all the amazing things that I received from my home city Shijiazhuang, 

my graduate university Shanghai Jiao Tong University, and my former mentors, employers, and 

colleagues. 

I am thoroughly thankful to Norman Public School, KinderCare, Norman Chinese School, 

Cleveland County Department of Human Service, and Sooner Care, who give me financial and 

emotional support by helping educate and take care of my daughters. I acknowledge my neighbors 

Laifeng Qiu and Lily and James Dixson for involving us in a happy and healthy community and 

raising children together with us, so I can stay focused on my research. 

I feel gratitude for the people and events that occur in my life that make me feel struggling, self-

doubting, and wanting to get out of my comfort zone. Those critics, disapprovals, and neglect force 

me to improve and upgrade myself continuously. 

I am extremely grateful to the people who read any part of this dissertation or my other publications. 

This motivates me significantly to be continuously productive. Thank you so much for your time 

and interest. This dissertation is the start of my academic career. More interesting works will come. 

Please stay tuned. I suggest readers start with Appendix E. 



 
vi 

 

TABLE OF CONTENTS 

Acknowledgments .......................................................................................................................... iv 

List of Tables ................................................................................................................................ xvi 

List of Figures ............................................................................................................................... xxi 

Abstract ........................................................................................................................................ xxx 

Chapter 1 Frame of Reference: Designing Complex Systems using Satisficing Strategy .............. 1 

1.1 What are Complex Systems? ........................................................................................... 3 

1.1.1 Characteristics of Complex Systems ........................................................................... 6 

1.1.2 Examples of Complex Systems ..................................................................................... 9 

1.2 Modeling Strategies and Their Foci .................................................................................... 12 

1.2.1 Optimizing Strategy and Satisficing Strategy ............................................................... 14 

1.2.2 Why is Satisficing Desired in Engineering Design? ..................................................... 15 

1.3 The Challenges in the Model-based Realization of Complex Systems ............................... 19 

1.3.1 Models are Approximations of the Real World ............................................................ 20 

1.3.2 The Purpose of Model Evolution .................................................................................. 21 

1.4 Problem Statement – Problems in both Strategies .............................................................. 21 

1.4.1 Problems in Optimizing Strategy .................................................................................. 22 

1.4.2 Problems in Satisficing Strategy ................................................................................... 24 

1.5 Research Gaps and Hypotheses ........................................................................................... 26 

1.5.1 Research Gaps .............................................................................................................. 26 

1.5.2 Hypotheses to Bridge the Research Gaps ..................................................................... 27 

1.5.3 Expected Contribution by Testifying the Hypotheses ................................................... 28 



 
vii 

 

1.6 Plan of Verification and Validation ..................................................................................... 30 

1.7 Organization of The Dissertation ........................................................................................ 31 

1.8 Role of Chapter 1 in this Dissertation ................................................................................. 32 

Chapter 2 Research Questions: How Can We Realize Model Evolution ...................................... 34 

2.1 Using Kuhn-Tucker Conditions to Explain Optimal and Satisfice ..................................... 35 

2.1.1 The History of the Kuhn-Tucker Conditions ................................................................. 35 

2.1.2 Necessary and Sufficient Kuhn-Tucker Conditions ...................................................... 36 

2.1.3 The Physical Meaning of the Kuhn-Tucker Conditions ................................................ 37 

2.1.4 Assumptions behind Kuhn-Tucker Conditions ............................................................. 39 

2.2 Advantages of Satisficing Strategy ...................................................................................... 41 

2.2.1 Possible Features of Engineering-Design Problems .................................................... 43 

2.2.2 Toy Problem *I* (TP-I) ................................................................................................ 46 

2.2.3 Method Requirement 1: Combination of Interior-Point Searching and Vertex Searching

 ............................................................................................................................................... 50 

2.2.4 Toy Problem II (TP-II) ................................................................................................. 50 

2.2.5 Method Requirement 2&3: Second-Order Sequential Linearization and Accumulated 

Linearization .......................................................................................................................... 55 

2.2.6 Toy Problem III (TP-III) ............................................................................................... 58 

2.2.7 Method Requirement 4: Using Goals and Minimizing Deviation Variables Instead of 

Objectives .............................................................................................................................. 62 

2.2.8 Toy Problem IV (TP-IV) ............................................................................................... 67 

2.2.9 Method Requirement 5: Allowing Some Violations of Soft Requirements, such as the 

Bounds of Deviation Variables .............................................................................................. 72 



 
viii 

 

2.2.10 Toy Problem V (TP-V) ................................................................................................ 73 

2.3 Summary of Differences between Optimizing and Satisficing Strategy ............................. 79 

2.3.1 Differences between Optimizing and Satisficing Strategy ............................................ 79 

2.3.2 Summary of Differences among cDSP, Goal Programming, and Mathematical 

Programming ......................................................................................................................... 81 

2.4 Research Questions (RQ1-RQ4) ......................................................................................... 85 

2.4.1 Justification of the Primary Research Question regarding Requirements ................... 85 

2.4.2 Justified Research Questions regarding Tasks ............................................................. 87 

2.5 Specification of Hypotheses (SH1-SH4) ............................................................................. 90 

2.6 Role of Chapter 2 in this Dissertation ................................................................................. 91 

Chapter 3 Proposed Methods – The Design Evolution Loop ........................................................ 94 

3.1 Elements of Design Improvement through Model Evolution (Task 1-4) ............................ 98 

3.1.1 Task 1: Formulation-Exploration ................................................................................. 98 

3.1.2 Task 2: Approximation-Exploration-Evaluation .......................................................... 99 

3.1.3 Task 3: Formulation-Exploration-Evaluation ............................................................ 101 

3.1.4 Task 4: Formulation-Approximation-Exploration-Evaluation .................................. 103 

3.1.5 Model Evolution Cycle is an Open and Extendable Framework ............................... 104 

3.2 Theoretically Verification of the Feasibility of the Specified Hypotheses (TVe1-TVe4) 105 

3.2.1 Theoretical Verification of Specified Hypothesis 1 (TVe1) ........................................ 105 

3.2.2 Theoretical Verification of Specified Hypothesis 2 (TVe2) ........................................ 106 

3.2.3 Theoretical Verification of Specified Hypothesis 3 (TVe3) ........................................ 108 

3.2.4 Theoretical Verification of Specified Hypothesis 4 (TVe4) ........................................ 109 

3.3 Overview of Proposed Methods (M1-M4) ........................................................................ 111 



 
ix 

 

3.3.1 M1: Exploration of the Boundary using Formulation-Exploration Framework ........ 111 

3.3.2 M2: Improving Algorithm Robustness using Parameter Learning ............................ 114 

3.3.3 M3: Exploring Interrelationships among Subsystems using Unsupervised Learning 117 

3.3.4 M4: Exploring Critical Factors through Scenario Planning in Agent-Based Modeling

 ............................................................................................................................................. 120 

3.4 Overview of Test Problems ............................................................................................... 122 

3.4.1 Required Characteristics of the Test Problems .......................................................... 122 

3.4.2 Brief Introduction of Each Test Problem ................................................................... 127 

3.5 Role of Chapter 3 in this Dissertation ............................................................................... 130 

Chapter 4 Type I & II Robust Design through Formulation-Exploration Framework ................ 131 

4.1 Frame of References on Satisficing Strategy .................................................................... 134 

4.2 Managing Conflicting Goals and Uncertainties in a Dam Network .................................. 136 

4.2.1 Problem Statement – Test Problem 1.1: Dam-Network Planning .............................. 138 

4.2.2 Critical Review of The Literature on Dam-Network Water Resource Management .. 146 

4.2.3 Proposed Methods – The Thee-Step Exploration Method .......................................... 151 

4.2.4 Formulation of Compromise DSP (cDSP) ................................................................. 157 

4.2.5 Water Resource Planning Results and Discussion ..................................................... 160 

4.2.6 Closure of Test Problem I ........................................................................................... 173 

4.3 Positioning the Customer Order Decoupling Point of a Supply Chain ............................. 175 

4.3.1 Problem Statement – Test Problem 1.2: CODP and the Challenges in Supply Chains

 ............................................................................................................................................. 176 

4.3.2 Literature Gap Analysis – in the Domain of Customer Order Decoupling Point 

Determination ...................................................................................................................... 182 



 
x 

 

4.3.3 Proposed Methods – The Formulation-Exploration Framework ............................... 186 

4.3.4 Model Formulation ..................................................................................................... 189 

4.3.5 CODP Results and Discussion ................................................................................... 192 

4.3.6 Closure of Test Problem II ......................................................................................... 199 

4.4 Role of Chapter 4 in this Dissertation ............................................................................... 201 

4.4.1 Summarizing How We Finish Task 1 – Connecting Formulation and Exploration ... 201 

4.4.2 Summarizing How We Realize Type I & II Robust Design ........................................ 204 

4.4.3 Role of Chapter 4 ........................................................................................................ 205 

Chapter 5 Type I, II, & III Robust Design through Improving Approximation .......................... 206 

5.1 Frame of Reference on Solution Algorithms ..................................................................... 211 

5.2 Problem Statement – Limitations of the ALP regarding Parameter Determination .......... 213 

5.2.1 Adaptive Linear Programing (ALP) Algorithm .......................................................... 213 

5.2.2 Reduced Move Coefficient (RMC) .............................................................................. 219 

5.2.3 Limitations of the ALP Regarding the Determination of the RMC ............................ 221 

5.2.4 Hypothesis of Improving the ALP ............................................................................... 222 

5.3 The Adaptive Linear Programing Algorithm with Parameter Learning (ALPPL) ............ 223 

5.3.1 Step 1 – Identify the Criteria for Evaluating the Quality of a Solution ...................... 224 

5.3.2 Step 2 – Developing the Evaluation Indices (EIs) ...................................................... 227 

Index for evaluating the fulfillment of the goals – µZ and σZ. ............................................ 229 

Index for evaluating robustness – µNab, σNab, µNaoc and σNaoc. .................................. 229 

Index for evaluating the computational complexity – µNacc, σNacc, µNit and σNit. ........ 230 

5.3.3 Step 3 – Learning the DEI and Tuning the RMC ....................................................... 231 

5.4 The Hot Rolling Process Chain Problem ........................................................................... 234 



 
xi 

 

5.4.1 Statement of Test Problem 2 ....................................................................................... 234 

5.4.2 Applying ALPPL ......................................................................................................... 240 

5.4.3 Parameter Learning Results and Discussion ............................................................. 245 

Verification of the improvement of ALPPL over ALP. ........................................................ 248 

5.5 Role of Chapter 5 in this Dissertation ............................................................................... 250 

5.5.1 Summarizing How We Finish Task 2: Connecting Approximation, Exploration, and 

Evaluation ............................................................................................................................ 250 

5.5.2 Summarizing How We Realize Type I, II, & III Robust Design ................................. 253 

5.5.3 Role of Chapter 5 ........................................................................................................ 254 

Chapter 6 Type I, III, & IV Robust Design through Unsupervised Learning ............................. 256 

6.1 Frame of Reference on Multi-Goal Problems ................................................................... 262 

6.1.1 Features of Concurrent Engineering Problems ......................................................... 262 

6.1.2 Two Categories of Studies on Multi-Goal Problems .................................................. 262 

6.1.3 Differences between a Goal and an Objective ........................................................... 265 

6.1.4 Common Ways of Combining the Goals 𝔃(𝒅) ........................................................... 267 

6.2 Problem Statement – Test Problem 3: The Rankine Cycle Problem ................................. 272 

6.2.1 Problem Description ................................................................................................... 272 

6.2.2 Model Formulation ..................................................................................................... 273 

6.3 The Adaptive Leveling-Weighting-Clustering (ALWC) Algorithm ................................. 278 

6.3.1 Clustering the Goals based on their Interrelationship ............................................... 278 

6.3.2 A Schematic of the ALWC Algorithm ......................................................................... 284 

6.3.3 The Algorithms in the ALWC ...................................................................................... 286 

6.4 Unsuperfized Learning Results and Discussions .............................................................. 291 



 
xii 

 

6.4.1 Clustering result ......................................................................................................... 291 

6.4.2 Improvement in Goal Achievement along the Design Scenario Expansion ............... 292 

6.4.3 Reducing the Euclidean Distance to the Utopia Point ............................................... 293 

6.4.4 Reducing Computational Complexity ......................................................................... 294 

6.4.5 Verification of the Results ........................................................................................... 295 

6.4.6 Closing Remarks on Using ALWC to Speed up Learning .......................................... 298 

6.5 Role of Chapter 6 in this Dissertation ............................................................................... 299 

6.5.1 Summarizing How We Finish Task 3: Connecting Formulation, Exploration, and 

Evaluation ............................................................................................................................ 299 

6.5.2 Summarizing How We Realize Type I, III, & IV Robust Design ................................ 302 

6.5.3 Role of Chapter 6 ........................................................................................................ 304 

Chapter 7 Type I, II, & IV Robust Design through Emergent Properties Identification and 

Interpretations .............................................................................................................................. 305 

7.1 Frame of Reference on Designing Promotions using Agent-Based Modeling ................. 308 

7.2 Problem Statement – Promoting the Second-Season Cultivation in an Island Village in India

 ................................................................................................................................................. 310 

7.3 Modeling and Scenario Development ......................................................................... 314 

7.3.1 Build the Architecture and Set the Baseline Scenario of the Agent Based Model ...... 314 

7.3.2 Scenario Development ................................................................................................ 317 

7.4 Results and Discussions .................................................................................................... 318 

7.4.1 Exploring the Network Type and Promotion Effort and their Interaction Effects ..... 319 

7.4.2 Exploring the Promotion Duration ............................................................................. 325 

7.4.3 Anticipation and Profit Exploration ........................................................................... 328 



 
xiii 

 

7.4.4 Closing Remarks ......................................................................................................... 330 

7.5 Role of Chapter 7 in this Dissertation ............................................................................... 332 

7.5.1 Summarizing How We Connect Formulation, Approximation, Exploration, and 

Evaluation ............................................................................................................................ 332 

7.5.2 Summarizing How We Realize Type I, II, & IV Robust Design .................................. 335 

7.5.3 Role of Chapter 7 ........................................................................................................ 337 

Chapter 8 Validation of the Hypotheses in Realizing Model Evolution ..................................... 339 

8.1 Contributions ..................................................................................................................... 341 

8.1.1 Summarizing the Theoretical Foundation .................................................................. 345 

8.1.2 Summarizing the Test Problems ................................................................................. 347 

8.1.3 Summarizing the Answer to the Research Questions ................................................. 348 

8.1.4 Summarizing the Four Types of Robust Design ......................................................... 350 

8.2 Application Scope of the Proposed Methods .................................................................... 352 

8.2.1 Application Scope of the Design Evolution Loop ....................................................... 352 

8.2.2 Application Scope of M1 – Formulation-Exploration Framework ............................ 352 

8.2.3 Application Scope of M2 – Adaptive Linear Programming Algorithm with Parameter 

Learning (ALPPL) ............................................................................................................... 353 

8.2.4 Application Scope of M3 – Adaptive Leveling-Weighting-Clustering Algorithm (ALWC)

 ............................................................................................................................................. 353 

8.2.5 Application Scope of M4 – Scenario-Planning for Simulations ................................. 354 

8.3 Other Examples ................................................................................................................. 354 

8.3.1 Network Planning for Improving Hospital Visiting Process ...................................... 354 

8.3.2 Leveraging Social Drivers in Rural Development ..................................................... 356 



 
xiv 

 

8.3.3 Knowledge Management in Designing Cyber-Physical Product-Service Systems .... 357 

8.4 Role of Chapter 8 in this Dissertation ............................................................................... 358 

Chapter 9 Closing Remarks – Advancing Model Evolution in Other Disciplines ...................... 360 

9.1 Summary of This Dissertation ........................................................................................... 360 

9.1.1 Motivation of Model Evolution using Satisficing Strategy ......................................... 360 

9.1.2 Contributions – Research Questions and Answers Leading to New Knowledge ....... 361 

9.1.3 Verification and Validation ........................................................................................ 362 

9.1.4 Relevant Publications ................................................................................................. 363 

9.1.5 Closing Remarks of the Summary ............................................................................... 364 

9.2 Way Forward – “I Statement” ........................................................................................... 365 

9.2.1 Overarching Research Theme and Goals ................................................................... 365 

9.2.2 Research Thrusts and Applications ............................................................................ 366 

9.2.3 Potential Cross-Disciplinary Research Opportunities ............................................... 370 

9.2.4 Closing Remarks of the Way Forward ....................................................................... 372 

9.3 Role of Chapter 9 in this Dissertation ............................................................................... 373 

References ................................................................................................................................... 375 

Appendix A The 34 Weight Scenarios (WSs) and the Corresponding Achievement of the Goals

 ..................................................................................................................................................... 384 

Appendix B Results of the 22 Weight Scenarios (WSs) From the Improved Model (First Iteration).

 ..................................................................................................................................................... 385 

Appendix C Mathematical Formulation of the CODP as a cDSP ............................................... 386 



 
xv 

 

Appendix D The RMC Tuning Algorithm Customized for the Hot Rolling Process Chain Problem 

(Chapter 5) ................................................................................................................................... 390 

Appendix E Lin Guo’s Defense Slides and Speech .................................................................... 393 

 



 
xvi 

 

LIST OF TABLES 

Table 1. 1 The Logic Flow and the Role of Each Chapter .............................................................. 3 

Table 1. 2 Advantages and Disadvantages of The Two Categories of Solution Algorithms ........ 13 

Table 1. 3 Several Representative Methods and Their Features ................................................... 17 

Table 1. 4 Problems in Methods of Optimizing Strategy .............................................................. 23 

Table 1. 5 Problems in Methods of Satisficing Strategy ............................................................... 25 

Table 1. 6 The Research Gaps (RG) and Hypotheses (H) ............................................................. 28 

 

Table 2. 1 The Advantages of Realizing Satisficing Strategy Using cDSP and ALP in the Each 

Stage of Engineering Design ......................................................................................................... 42 

Table 2. 2 The Features of the Toy Problems (TP) ....................................................................... 45 

Table 2. 3 Methods for Comparison the Two Strategies ............................................................... 45 

Table 2. 4 The Optimization Model and Compromise DSP of TP-I ............................................. 46 

Table 2. 5 Solutions to TP-I (dominated solutions of each scenario) ........................................... 48 

Table 2. 6 The Optimization Model and Compromise DSP of the TP-II ...................................... 51 

Table 2. 7 Solutions to TP-II Using Each Solution Algorithm (dominated solutions, close-to-

nondominated solutions or good-enough solutions) ..................................................................... 53 

Table 2. 8 The Optimization Model and Compromise DSP of the TP-III .................................... 59 

Table 2. 9 Solutions to TP-III (dominated solutions, close-to-nondominated solutions or good-

enough solutions) ........................................................................................................................... 60 

Table 2. 10 The Compromise DSP of the TP-IV .......................................................................... 68 

Table 2. 11 Solutions to TP-IV (close-to-nondominated solutions or good-enough solutions) ... 70 

Table 2. 12 The Word-Form and Math-Form of the Compromise DSP of TP-V ......................... 76 

Table 2. 13 Solutions to TP-V – the nondominated solution of each scenario is highlighted, the 

solution that gives the better achieved value of a goal but is not a nondominated solution is 

underlined ...................................................................................................................................... 77 



 
xvii 

 

Table 2. 14 Justified Research Questions regarding Four Types of Robust Design ..................... 87 

Table 2. 15 Connection between Research Questions (RQs) and Chapters (Ch) .......................... 89 

Table 2. 16 Specification of Hypotheses for Answering the Research Questions ........................ 90 

Table 2. 17 Plan of Addressing the Research Questions in Each Chapter .................................... 92 

 

Table 3. 1 Plan of Theoretically Verifying the Specified Hypotheses and Demonstrating the 

Proposed Methods in Each Chapter .............................................................................................. 95 

Table 3. 2 Summary of Test Problems – The robust design type, testified methods, and 

uncertainties of each test problems. The uncertainties underlined in italic are managed in this 

dissertation. .................................................................................................................................. 127 

 

Table 4. 1 Plan of Specifying Research Question 1 (RQ1) and Empirically Verifying the 

Formulation-Exploration Framework (M1) ................................................................................ 132 

Table 4. 2. Gaps and limitations of the Methods in the Literature .............................................. 147 

Table 4. 3 Features of 14 Dams in Red River Basin ................................................................... 158 

Table 4. 4 Results for Equal Weights on Preferences ................................................................. 161 

Table 4. 5 Physical Meaning of the Eight WSs – Type II Uncertainty ....................................... 163 

Table 4. 6 Range of Weights of the Satisficing Space ................................................................ 165 

Table 4. 7 Inflow Scenarios (ISs) – Type I Uncertainty .............................................................. 166 

Table 4. 8 Active Bounds in Each IS and WS ............................................................................. 166 

Table 4. 9 Improvable Bounds in Each IS and WS ..................................................................... 167 

Table 4. 10 Suggestions for Model Improvement ....................................................................... 170 

Table 4. 11 Sensitive Segments of the Model of the Second Iteration ........................................ 171 

Table 4. 12 The Algorithm for Model Improvement .................................................................. 173 

Table 4. 13 Four Types of Robust Design and the Interpretations in SC .................................... 180 

Table 4. 14 Algorithm for System Capacity Analysis ................................................................. 188 



 
xviii 

 

Table 4. 15 Seven Scenarios – Type II Uncertainty .................................................................... 193 

Table 4. 16 Results of the First Iteration ..................................................................................... 193 

Table 4. 17 Results of the Seven Design Scenarios in the Third Iteration .................................. 194 

Table 4. 18 Comparison of Satisficing Results with Results from Other CODP Candidate 

Locations ..................................................................................................................................... 197 

Table 4. 19 Summary of Test Problems 1.1 & 1.2 regarding Type I&II Uncertainty Management

 ..................................................................................................................................................... 204 

 

Table 5. 1 Plan of Specifying Research Question 2 (RQ2) and Empirically Verifying the Adaptive 

Linear Algorithm with Parameter Learning (ALPPL) (M2) ....................................................... 207 

Table 5. 2 Advantages and disadvantages of the two categories of solution algorithms ............ 212 

Table 5. 3 Criteria for the Evaluation of Approximation Performance ....................................... 227 

Table 5. 4 Develop the Evaluation Indices (EIs) from the Information Obtained from ALP Running

 ..................................................................................................................................................... 228 

Table 5. 5 The Parameter Learning Process – for RMC tuning .................................................. 233 

Table 5. 6 Weight Vectors Used in (Nellippallil, Rangaraj et al. 2018) as Different Design 

Scenarios ...................................................................................................................................... 240 

Table 5. 7 Results of EIs Using Sample RMC Values with Nineteen Design Scenarios ............ 242 

Table 5. 8 The Initial DEI ............................................................................................................ 243 

Table 5. 9 The Record of the EIs, DEI, RMC, Best RMC of the Fourteen Iterations of RMC Tuning

 ..................................................................................................................................................... 245 

Table 5. 10 ALPPL with RMC Tuning versus ALP with Golden Section Search ...................... 249 

Table 5. 11 Summary of Test Problems 2 regarding Type I, II&III Uncertainty Management .. 253 

 

Table 6. 1 Plan of Specifying Research Question 3 (RQ3) and Empirically Verifying the Adaptive 

Leveling-Weighting-Clustering (ALWC) Algorithm (M3) ........................................................ 257 



 
xix 

 

Table 6. 2 The Features and Limitations of Some Classic Multi-Objective (Multi-Goal) Solution 

Algorithms and Methods ............................................................................................................. 263 

Table 6. 3. A part of the normalized deviations of a six-goal cDSP with 81 Iterations with 𝐋 = 𝟑, 

𝐩 = 𝟐 ........................................................................................................................................... 289 

Table 6. 4 The clustering results along iterations ........................................................................ 291 

Table 6. 5 The summary of the clustering results ever returned to update the leveling .............. 291 

Table 6. 6 Statistics of the Results ............................................................................................... 292 

Table 6. 7 Statistics of the Euclidean Distance to the Utopia Point of the Results under Each 

Clustering Scenario ..................................................................................................................... 294 

Table 6. 8 Meaning of the Three Clusters ................................................................................... 296 

Table 6. 9 Summary of Test Problems 3 regarding Type I, II, & IV Uncertainty Management . 303 

 

Table 7. 1 Plan of Specifying Research Question 4 (RQ4) and Empirically Verifying the Scenario 

Planning Framework in Agent-Based Modeling (M4) ................................................................ 306 

Table 7. 2 Some Representative Applications of Agent-Based Modeling (ABM) for New 

Technology Acceptance and Policy Impact ................................................................................ 309 

Table 7. 3 The SE’s Target based on the Current Situation ........................................................ 313 

Table 7. 4 Transitions between Different States for an Agent .................................................... 315 

Table 7. 5 Scenarios for Testing Each Factor .............................................................................. 317 

Table 7. 6 The Expected Outcome of the Scenario Planning ...................................................... 318 

Table 7. 7 The Summary of the Results of the Scenario Planning .............................................. 319 

Table 7. 8 Promotion Effort Exploration – Migration Household in the Promotion Year and in the 

End-of-Project Year with Different Network Scenarios ............................................................. 324 

Table 7. 9 Migration Population (Households) during the Four Years with Different Promotion 

Durations ..................................................................................................................................... 328 

Table 7. 10 Summary of Test Problems 4 regarding Type I, II, & IV Uncertainty Management

 ..................................................................................................................................................... 336 



 
xx 

 

 

Table 8. 1 The Support for Chapter 8 in Previous Sections ........................................................ 341 

Table 8. 2 Summary of Addressing the Research Questions and Verifying the Hypotheses – with 

section number ............................................................................................................................. 343 

Table 8. 3 Addressing the Research Question 1 and Verifying the Hypotheses ......................... 344 

Table 8. 4 New Knowledge in this Dissertation .......................................................................... 349 

Table 8. 5 Summary of the Realization of the Four Types Robust Design ................................. 351 

 

Table 9. 1 Research Thrusts and Application in My Early Career .............................................. 365 

 



 
xxi 

 

LIST OF FIGURES 

Figure 1. 1 Organization of Chapter 1 ............................................................................................. 2 

Figure 1. 2 The Model World and Its Corresponding Physical World ........................................... 5 

Figure 1. 3 The Evolution Cycle of Complex Systems Realization ................................................ 6 

Figure 1. 4 The Thermal System around the Rankine Cycle ........................................................ 11 

Figure 1. 5 The Optimization Strategy and the Satisficing Strategy ............................................. 13 

Figure 1. 6 The Optimal Solutions are Included in the Satisficing Solutions ............................... 15 

Figure 1. 7 The Correspondence between Physical World and Model World .............................. 20 

Figure 1. 8 Establishing Connections among Multiple Stages of Engineering-Design Evolution 

Cycle, Formulation, Approximation, Exploration, and Evaluation ............................................... 22 

Figure 1. 9 The Research Gaps and the Potential Contributions by Filling the Research Gaps ... 27 

Figure 1. 10 Expected Contributions ............................................................................................. 29 

Figure 1. 11 Dissertation Layout and Plan of Verification and Validation ................................... 31 

Figure 1. 12 Organization of the Chapters .................................................................................... 32 

 

Figure 2. 1 Organization of Chapter 2 ........................................................................................... 35 

Figure 2. 2 The first-order necessary Kuhn-Tucker conditions are satisfied at 𝒙 ∗ ...................... 37 

Figure 2. 3 The convexity requirements for satisfying the second-order sufficient Kuhn-Tucker 

conditions ...................................................................................................................................... 38 

Figure 2. 4 Lagrange multipliers fail to identify an optimal for a highly convex objective .......... 39 

Figure 2. 5 The Assumptions When Using the Optimizing Strategy and Satisficing Strategy ..... 41 

Figure 2. 6 The Two Objective Functions in the X-f(X) Space of TP-I ....................................... 47 

Figure 2. 7 The Solution Points to TP-I on the Objective Space Using Five Algorithms – the Same

 ....................................................................................................................................................... 49 



 
xxii 

 

Figure 2. 8 The Solution Points to TP-I on the x-f(x) Space. (a) is the 3D illustration of Objective 

1, 𝒇𝟏(𝒙). (b) is the 3D illustration of Objective 2, 𝒇𝟐(𝒙). Since the solutions are the same when 

using different formulations and algorithms, so all three points are the same for all the five methods 

in Table 2.5. ................................................................................................................................... 49 

Figure 2. 9 The Two Objective Functions on the X-f(X) Plane of TP-II – The first objective 𝒇𝟏𝒙 

is non-convex ................................................................................................................................. 52 

Figure 2. 10 The Solution Points to TP-II on the Objective Space Using Four Algorithms – 

Solutions returned by Trust-constr and SLSQP are not “good enough,” solutions returned by ALP 

are “good enough” and diverse, and solutions returned by NSGA II contain nondominated 

solutions but are not diverse .......................................................................................................... 54 

Figure 2. 11 The Solution Points to TP-II on the x-f(x) Space – Using Trust-constraint and SLSQP 

are easy to fall into local optima. Green, blue, red, and dark red dots are the solutions using Trust-

constr, SLSQP, ALP, and NSGA II, respectively. ........................................................................ 54 

Figure 2. 12 Illustration of the Sequential Linearization using the ALP with Different Views When 

the Quadratic Approximated Paraboloid Has Real Roots ............................................................. 56 

Figure 2. 13 Linearization using the ALP When the ..................................................................... 57 

Figure 2. 14 Using the Accumulated Constraints from Multiple Linearization Iterations for Convex 

or Slightly Non-Convex Equations and Using Single Linearized Constraint for Significantly Non-

Convex Constraint ......................................................................................................................... 58 

Figure 2. 15 The Two Objective Functions of TP-III on the x-f(x) Space – The second objective 

𝒇𝟐𝒙 is enlarged by 50 times versus that of TP-II .......................................................................... 60 

Figure 2. 16 The Solution Points to TP-III on the Objective Space Using Two Algorithms – 

Solutions returned by NSGA II are closer to the nondominated solution and more diverse but 

sensitive to parameter setting and require higher computational power. ...................................... 61 

Figure 2. 17 The Solution Points to TP-III on the X-f(X) Plane – Little performance differences 

between ALP and NSGA II ........................................................................................................... 61 

Figure 2. 18 Satisficing solutions in different cases ...................................................................... 65 



 
xxiii 

 

Figure 2. 19 The Left-Hand Side (Objective Function) and the Right-Hand Side (Target) of the 

Two Goals of TP-IV on the X-f(X) Space .................................................................................... 69 

Figure 2. 20 The Solution Points to TP-IV on the Objective Space Using Two Algorithms – NSGA 

II finds more nondominated solutions, whereas ALP finds solutions close to nondominated 

solutions but with better weighted combined goal-achieved value ............................................... 71 

Figure 2. 21 The Solution Points to TP-IV on the X-f(X) Space – Little performance differences 

between ALP and NSGA II ........................................................................................................... 71 

Figure 2. 22 The Functionality of an Elephant Stand (TP-V) ....................................................... 74 

Figure 2. 23 The Dimension of an Elephant Stand (TP-V) ........................................................... 75 

Figure 2. 24 The Box Chart Solution Points to TP-V on the Objective Space Using Two Algorithms

 ....................................................................................................................................................... 78 

Figure 2. 25 The Solution Points to TP-V on the Deviation Space Using Two Algorithms – Round 

dots are solutions using the ALP and Triangle dots are solutions using NSGA II ....................... 79 

Figure 2. 26 Four Types of Robust Solution ................................................................................. 86 

Figure 2. 27 Justified Research Questions RQ1-RQ4 and Their Connections with the Design Loop

 ....................................................................................................................................................... 89 

Figure 2. 28 Research Questions RQ1-RQ4 and Specified Hypotheses SH1-SH4 ...................... 91 

 

Figure 3. 1 Organization of Chapter 3 ........................................................................................... 95 

Figure 3. 2 Illustration of Research Questions (RQ1-RQ4), Specified Hypotheses (SH1-SH4), 

Theoretical Verification of Specified Hypotheses (TVe1-TVe4), and Methods (M1-M4) in the 

Context of Design Evolution Cycle ............................................................................................... 97 

Figure 3. 3 The Methods and Procedures Involved in Formulation-Exploration – Realizing the 

model evolution through the items highlighted in red ................................................................... 99 

Figure 3. 4 The Methods and Procedures Involved in Approximation-Exploration-Evaluation – 

Realizing the model evolution through the items highlighted in red .......................................... 101 



 
xxiv 

 

Figure 3. 5 The Methods and Procedures Involved in Formulation-Exploration-Evaluation – 

Realizing the model evolution through the items highlighted in red .......................................... 102 

Figure 3. 6 The Methods and Procedures Involved in Approximation-Formulation-Exploration-

Evaluation – Realizing the model evolution through the items highlighted in red ..................... 104 

Figure 3. 7 Theoretical Verification of Specified Hypothesis I (TVe1) – Exploring the sensitivity 

of the segments of the model boundary and improve accordingly .............................................. 106 

Figure 3. 8 Theoretical Verification of Specified Hypothesis 2 (TVe2) – Learn, evaluate, and 

update metaheuristics to improve model approximation ............................................................. 108 

Figure 3. 9 Theoretical Verification of Specified Hypothesis 3 (TVe3) – Learn system nature such 

as interrelationship among subsystems and reorganize them based on it .................................... 109 

Figure 3. 10 Theoretical Verification of Specified Hypothesis 4 (TVe4) – Capture and quantify 

emergent properties through scenario planning in simulations ................................................... 110 

Figure 3. 11 The Control Factors and Noise Factors Bring Variation in Goal Function ............ 113 

Figure 3. 12 Formulation-Exploration Framework ..................................................................... 114 

Figure 3. 13 Learn and Update Metaheuristics in an Algorithm Using Parameter Learning ...... 117 

Figure 3. 14 Learn and Speed up the Learning of Systems using Machine Learning ................. 119 

Figure 3. 15 The Process of Learning Critical Factors in a Simulation ...................................... 122 

Figure 3. 16 Test Problems for RDI-II – Refining the model formulation and identifying satisficing 

solutions relatively insensitive to the variation in parameters and decision variables ................ 123 

Figure 3. 17 Test Problems for RDI-II – Refining the model formulation and identifying satisficing 

solutions relatively insensitive to the variation in parameters and decision variables ................ 124 

Figure 3. 18 Finishing Theoretical Structural Validity in Chapter 1, 2, and 3 ............................ 130 

 

Figure 4. 1 Organization of Chapter 4 ......................................................................................... 131 

Figure 4. 2 Specified Research Question 1 and the Relevant Stages to be Connected in Design 

Evolution Cycle ........................................................................................................................... 134 

Figure 4. 3 Dams along the Red River Basin .............................................................................. 140 



 
xxv 

 

Figure 4. 4 The 14-Dam Network ............................................................................................... 141 

Figure 4. 5 A Small Part of the Dam-Network in the Red River Basin ...................................... 142 

Figure 4. 6 The Pools of a Reservoir ........................................................................................... 144 

Figure 4. 7 Illustration of the Equality Constraints for Dam (Reservoir) d ................................ 145 

Figure 4. 8 Three Steps for the Exploration of the Solution Space ............................................. 153 

Figure 4. 9 Method for Exploration of the Solution Space ......................................................... 154 

Figure 4. 10 Visualization of the Eight WSs in the Ternary Plot ................................................ 163 

Figure 4. 11 Feasible Weight Area of Goal 1 – Reservoir .......................................................... 163 

Figure 4. 12 Feasible Weight Area of Goal 2 – People ............................................................... 164 

Figure 4. 13 Feasible Weight Area of Goal 3 – Fish ................................................................... 164 

Figure 4. 14 Satisficing Weight Area for Three Goals ................................................................ 164 

Figure 4. 15 Bring the Solution Away from the Boundary by Restricting the RHS ................... 169 

Figure 4. 16 Applying the Physical Boundary by Relaxing RHS and Then Bring the Solution Away 

from the Physical Boundary by Restricting RHS ........................................................................ 169 

Figure 4. 17 The satisficing area of the weights of original model (a) and improved model (b) 171 

Figure 4. 18 Improvement through Iterating ............................................................................... 173 

Figure 4. 19 Possible location of CODP in a SC ......................................................................... 177 

Figure 4. 20 CODP of Different Industries ................................................................................. 177 

Figure 4. 21 Multiple Conflicting Goals in SCs .......................................................................... 180 

Figure 4. 22 Formulation-Exploration Framework ..................................................................... 186 

Figure 4. 23 A Three-Echelon SC ............................................................................................... 192 

Figure 4. 24 CODP of Different Weight Scenarios ..................................................................... 194 

Figure 4. 25 CODP, Achieved Value of Goals in Different Phases of a Product Life Cycle – 

Managing Type I Uncertainty ..................................................................................................... 198 



 
xxvi 

 

Figure 4. 26 The Methods and Procedures Involved in Formulation-Exploration – Establish the 

information exchange, knowledge awareness, and instructions sharing among the three highlighted 

processes ...................................................................................................................................... 203 

 

Figure 5. 1 Organization of Chapter 5 ......................................................................................... 207 

Figure 5. 2 Specified Research Question 2 and the Relevant Stages to be Connected in Design 

Evolution Cycle ........................................................................................................................... 209 

Figure 5. 3 The ALP Algorithm .................................................................................................. 214 

Figure 5. 4 The Approximation and Obtained Solution using the ALP in Two Iterations ......... 215 

Figure 5. 5 The Original Nonlinear Constraint, the Second-Order Paraboloid, and the Secant Plane 

[4] ................................................................................................................................................ 216 

Figure 5. 6 When the Second-Order Paraboloid Has No Intersection with Plane 𝒙𝟏𝒙𝟐, The First-

Order Tangent is Used to Approximate 𝑵𝑭𝒋 .............................................................................. 218 

Figure 5. 7 The Golden Section Search for The RMC in the ALP ............................................. 220 

Figure 5. 8 Possible Patterns of the Performance of the RMC in a Sub-Range .......................... 222 

Figure 5. 9 The Concept of Adaptive Linear Programming Algorithm with Parameter Learning 

(ALPPL) ...................................................................................................................................... 224 

Figure 5. 10 A Relatively Sensitive Solution and a Robust Solution (Relatively Insensitive to 

Uncertainties) .............................................................................................................................. 226 

Figure 5. 11 Unnecessary Accumulated Constraints versus Necessary Accumulated Constraints

 ..................................................................................................................................................... 227 

Figure 5. 12 ALPPL Includes Parameter Initialization and the RMC Tuning ............................ 232 

Figure 5. 13 The Satisficing Weight Set When Setting RMC=0.1 ............................................. 239 

Figure 5. 14 The Satisficing Weight Set When Setting RMC=0.5 ............................................. 239 

Figure 5.15 The Satisficing Weight Set When Setting RMC=0.8 .............................................. 240 

Figure 5. 16 EIs and DEI of the Sample RMC Values ................................................................ 241 

Figure 5. 17 Identifying the Insensitive Range of RMC Value Using Twenty RMC Values ..... 247 



 
xxvii 

 

Figure 5. 18 The Fourteen RMC Values in the RMC Tuning ..................................................... 248 

Figure 5. 19 The Comparison of ALPPL And ALP regarding the RMC Updating .................... 249 

Figure 5. 20 The Procedures Involved in Approximation-Exploration-Evaluation – Establish the 

information exchange, knowledge awareness, and instructions sharing between deduction and 

decision ........................................................................................................................................ 252 

 

Figure 6. 1 Organization of Chapter 6 ......................................................................................... 256 

Figure 6. 2 Specified Research Question 3 and the Relevant Stages to be Connected in Design 

Evolution Cycle ........................................................................................................................... 259 

Figure 6. 3 Archimedean Strategy (Weighted Sum) ................................................................... 268 

Figure 6. 4 Pre-Emptive Strategy (Lexicographic Ordering) ...................................................... 269 

Figure 6. 5 An Ensemble Strategy using a Mixture of Archimedean and Pre-emptive Strategy 271 

Figure 6. 6 The Thermal System ................................................................................................. 273 

Figure 6. 7 Rankine Cycle (Temperature and Entropy) .............................................................. 274 

Figure 6. 8 Using Multiple Design Scenarios to Obtain a Deviation Matrix .............................. 279 

Figure 6. 9 Cluster Analysis Using a Deviation Matrix .............................................................. 279 

Figure 6. 10 The Satisficing Solutions to a Three-Goal cDSP under Two Design Scenarios 

Illustrated in a Two-Dimensional Solution Space ....................................................................... 281 

Figure 6. 11 The Satisficing Solutions to a Three-Goal cDSP under Two Design Scenarios 

Illustrated in Two Two-Dimensional Goal Spaces ..................................................................... 282 

Figure 6. 12 The Orthogonality between the Deviation Vectors of Two Goals using Two Design 

Scenarios ...................................................................................................................................... 283 

Figure 6. 13 The Flowchart of the Adaptive Leveling-Weighting-Clustering (ALWC) Loop ... 285 

Figure 6. 14 Weight Vectors of a Three-Goal Problem with p = 3 ............................................. 287 

Figure 6. 15 An Example of Improving Goal 3 by 20% While Worsening Goal 1 and Goal 2 by 

80% Respectively ........................................................................................................................ 294 



 
xxviii 

 

Figure 6. 16 Scatter plots of any two goals using deviations of 1-level, 21 weight vectors ....... 297 

Figure 6. 17 The Procedures Involved in Formulation-Exploration-Evaluation – Establish the 

information exchange, knowledge awareness, and instructions sharing among formulation 

deduction, decision, and action ................................................................................................... 301 

 

Figure 7. 1 Organization of Chapter 7 ......................................................................................... 305 

Figure 7. 2 Specified Research Question 3 and the Relevant Stages to be Connected in Design 

Evolution Cycle ........................................................................................................................... 308 

Figure 7. 3 The satellite map of Kudagaon ................................................................................. 311 

Figure 7. 4 The SE’s plan for facilitating second-season cultivation .......................................... 313 

Figure 7. 5 The Flowchart of the Agents’ State Transitions ....................................................... 316 

Figure 7. 6 The Trigger Conditions and/or the Duration of the Transitions between the States of 

the Agents .................................................................................................................................... 317 

Figure 7. 7 Results for Two Network Types When Promotion Reaches All Households .......... 322 

Figure 7. 8 Results for Two Network Types When Promotion Reaches 50% of Households .... 323 

Figure 7. 9 The Migration Households with Different Promotion Effort ................................... 324 

Figure 7. 10 Simulation Results for Different Promotion Durations – Using a Distance-Based 

Network with a 75-Meter Influence Radius ................................................................................ 327 

Figure 7. 11 Simulation Results of Three Scenarios of Anticipation 𝜷𝟐 and Profit 𝜶 ............... 329 

Figure 7. 12 Scenario Planning for Identifying Critical Factors in Simulation ........................... 331 

Figure 7. 13 The Procedures Involved in Formulation-Approximation-Exploration-Evaluation – 

Establish the information exchange, knowledge awareness, and instructions sharing among 

formulation, decision, and action ................................................................................................ 334 

Figure 7. 14 Finishing Empirical Structural Validity in Chapter 4, 5, 6, and 7 .......................... 338 

 

Figure 8. 1 Organization of Chapter 8 ......................................................................................... 340 

Figure 8. 2 Finishing Empirical Performance Validity in Chapter 8 .......................................... 359 



 
xxix 

 

 

Figure 9. 1 A Knowledge-Based Design Guidance for CPPSS .................................................. 368 

Figure 9. 2 Managing Complex Systems with Different Types of Causality ............................. 370 

Figure 9. 3 Finishing Theoretical Performance Validity in Chapter 9 ........................................ 374 

 

 



 xxx 

ABSTRACT 

George Box said, “All models are wrong, but some are useful.” In the design of complex systems, 

types of complexity need to be managed. Giving the complexities that a decision maker may 

encounter, corresponding adjustments or improvements should be made to the design. In this 

dissertation, it is defined that all kinds of engineering design are comprised of four stages – 

formulation, approximation, exploration and evaluation – and the four stages form the model 

evolution loop or design evolution loop. By running the design evolution loop iteratively, a 

designer can handle the complexities and improve the design. Such improvements include but not 

limited to more robust to uncertainties, more efficient in design evolutions, easier interpretations 

of phenomena, etc. 

In the design of complex systems, as lack of data and information, heuristics are used to proceed 

the design, so that designers can explore the solution space and gain insight to improve the design. 

Those heuristics include but not limit to model structures, sub-problems identification and 

integration, approximation rules, and scale of details incorporated in the model. There is lacking 

mechanisms to evaluate the quality of the design associated with the heuristics. 

In this dissertation, it is hypothesized that by running the design evolution loop and exploring the 

solution space, designers can do the things as follows to improve the design. 

• Evaluating system performances associated with various heuristics (structure of the model, 

critical parameter setting, rules making, etc.). 

• Replacing the heuristics with insight obtained from exploration of the solution space to 

improve the design. 
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• Managing the complexity of module structure, such as analyzing and simplifying the 

structure of a large number of goals. 

• Interpreting the behavior and the property of the model into the knowledge that supports 

the decision making. 

• Capturing and managing newly observed properties or a more detailed complexity that are 

not incorporated into the modeling at first – the emergent properties. 

• Automating the steps in the above. 

The intellectual merits in this dissertation are the expandable computational framework for 

designing complex systems and managing multiple types of uncertainty– the design evolution loop, 

and the methods fitting into it. By using satisficing strategy and incorporating machine learning to 

explore the solution space, heuristics in each of the four stages (formulation, approximation, 

exploration, and evaluation) can be updated or replaced by knowledge gained from experiments, 

calculations and analyses. In addition, knowledge on tradeoffs between different categories of 

design requirement – such as (but not limited to) approximation accuracy, computational 

complexity, design preference diversity, reformulation flexibility, and the degree of design 

automation – can be collected, stored and reused. 
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DEFINITION OF TERMS 

Accumulated constraints – The linearized constraints that are accumulated along the iterations. 

designers need accumulated constraints to ensure a nonlinear problem to be linearized to a linear 

problem with a certain level of accuracy. 

Active bounds – For a solution, if the value of a variable is on its upper or lower bound, then the 

bound is an active bound. 

Active constraints – The constraints with zero constraint capacity (or zero slack or surplus). If a 

solution is on the boundary formed by a constraint, then the constraint is an active constraint. In 

some literature, active constraints are also considered as “binding,” and the inactive constraints are 

defined as “slack.” In other words, for an inequality constraint, when being plugged in the solution 

point, its left-hand side value equals to its right-hand side value, then such an inequality constraint 

is an active constraint; otherwise it is an inactive constraint. 

Aspiration – The set in the solution space in which the solutions meet the target of all goals1. The 

aspiration is an deterministic, ideal set that may violate the constraints or bounds, and may not be 

achieved by solving the cDSP. 

Boundary of the solution space – The constraints or bounds of the model that bound the feasible 

solution space. 

 

1 Unlike the objective of Linear Programming problems, each goal of goal programming problems has a target value, which allow us to plot the 
goal functions on the solution space. 
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Constraint capacity –The slack or the surplus (the difference between left-hand-side value and 

right-hand-side value) of an inequality constraint when plugging a solution in the constraint. 

Emergent property (collective property) – An emergent property is a property which a 

collection or complex system has, but which the individual members do not have. 

Feasible solution space – The space inside the searching space, bounded by constraints and 

bounds of variables, containing and only containing feasible solutions. 

Heuristics – Heuristics are the assumptions, instincts, experiences, common senses, or domain 

expertise that used in a method to speed up the process of finding a solution. Heuristics can be 

mental shortcuts that ease the cognitive load of making a decision2. Heuristics are employed in 

methods that are not guaranteed to be optimal. 

Insight – Insight is the understanding of a specific cause and effect within a particular context. 

The term insight can have several related meanings: a piece of information, the act or result of 

understanding the inner nature of things or of seeing intuitively, an understanding of cause and 

effect based on identification of relationships and behaviors within a model, context, or scenario. 

Iteration – The process in which the problem is linearized and solved. Multiple iterations are 

needed to get convergence in each design scenario. The purpose of having multiple iterations is to 

linearize the nonlinear problem at different points, solve each linearized problem and get the best 

linearization and solutions by the end of a synthesis cycle. 

 

2 This definition is from Wikipedia: https://en.wikipedia.org/wiki/Heuristic. 
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Linearization point – The point (spot) in the solution space where a linearization algorithm is 

applied to linearize the nonlinear functions of the cDSP. The linearization point does not change 

within one iteration but is updated from iteration to iteration. 

Mane-goal problem – A problem with more than three goals. 

Nonlinear functions – In this dissertation, it is defined that the nonlinear goals and nonlinear 

constraints are nonlinear functions. 

Robust design – In this dissertation, robust design means the design that is relatively insensitive 

to one or more types of uncertainty. Type I uncertainty – the uncertainty brought by noise factors, 

for example, parameters. Type II uncertainty – the uncertainty brought by control factors such as 

decision variables. Type III uncertainty – the variation in the model structure. Type IV – the 

uncertainty brought by managing the first three types of uncertainty. We are aware of other 

definitions of robust design, but in this dissertation, in the context of designing complex systems, 

we define robust design as the above. 

Satisficing solution space – The space inside the feasible solution space, identified by the decision 

maker as the set contains and only contains satisficing solutions.  

Satisficing weight set – The set of weight scenarios applying which the satisficing solutions can 

be acquired.  

Searching space – The space inside the solution space and bounded by the bounds of variables. 

In searching space, designers search for candidate solutions. The solutions in the searching space 

may violate constraints but satisfy the upper and lower bounds of all variables. 

Solution space – The space of all potential solutions for a problem, including infeasible solutions. 
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Synthesis cycle – The cycle in which the problem is linearized and solved for multiple iterations 

and get convergence, and then the solution and relevant information of each iteration are evaluated. 

The critical parameters do not change within one synthesis cycle but are updated from cycle to 

cycle. 

Weight scenarios (weight vector) – The different scenarios of values of the weights of multiple 

goals to represent various design preferences.
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CHAPTER 1 FRAME OF REFERENCE: DESIGNING COMPLEX 

SYSTEMS USING SATISFICING STRATEGY 

– THE MODEL EVOLUTION CYCLE OF DESIGNING COMPLEX SYSTEMS 

In Chapter 1, the context is established. The “why question” is answered – “why do we need 

model evolution. give the motivation of model evolution and describe why we manage complex 

systems in a certain way – using satisficing methods. 

In Chapter 1, the reference is framed, the motivation is introduced, and the organization is briefed; 

see Figure 1.1. We analyze the demand of designing complex systems by introducing their 

characteristics and examples in Section 1.1, analyze the supply of designing complex systems by 

introducing two typical modeling strategies in Section 1.2, discuss the challenges in complex-

system realization regarding the gaps in demand and supply in Section 1.3, identify the research 

gaps in Section 1.4, pose the research question in Section 1.5, give our plan of answering the 

research question in Section 1.6 and 1.7, and summarize the role of Chapter 1 in this dissertation 

in Section 1.8. 
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Figure 1. 1 Organization of Chapter 1 

In Table 1.1, it is summarized the logic flow in this dissertation and the role of each chapter. In 

Chapter 1, the research gaps (RG) are identified and given the corresponding hypotheses (H) to 

fill the research gaps. In Chapter 2, research questions (RQ) are posed. In Chapter 3, the hypotheses 

are theoretically verified, based on which, the corresponding methods are proposed. From Chapter 

4 to Chapter 7, test problems are used to empirically verify the hypotheses and demonstrate the 

utility of the proposed methods, research questions are specified in the context of each test problem 

and answered through managing the test problems using the proposed methods. In Chapter 8, gives 

the closure of the answers to the research questions, and hypotheses are empirically validated. In 

Chapter 9, the theoretical extension of the research is provided which brings the topic into the 

beyond. 
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Table 1. 1 The Logic Flow and the Role of Each Chapter 

Chapter Ch1 Ch 2 Ch 3 Ch 4-7 Ch 8 Ch 9 

Actions RG 
H 

RD 
RQ 
SH 

TVe 
M 

EVe 
SQT 
AQ 

CQ 
EVa TE 

Nomenclature 

RG – give research gaps 
H – give hypotheses 
RD – tie to roust design 
RQ – pose research questions 
SH – specify hypotheses 
TVe – theoretically verify hypotheses 
M – introduce methods 
EVe – empirically verify hypotheses 
SQT – specify research questions in the context of test problems 
AQ – answer research questions 
CQ – closure the answers to research questions 
EVa – empirically validate hypotheses 
TE – theoretically extend the research 

Table 1.1 is expanded by adding the summary of each action in the later chapters. Hereafter begins 

major part of Chapter 1. 

1.1 What are Complex Systems? 

A system is a set of entities that from a unified whole through their interactions, relationships, or 

dependencies. A complex system is a system composed of many components which may interact 

with each other3, such as a manufacturing system, a village, an economic entity. The relationships 

between the parts of a complex system are hard to predict and control (Ladyman, Lambert et al. 

2013). 

The most prominent feature of the realization of complex systems in the current age is the real-

time information sharing and system evolution based on a highly integrated human-cyber-physical 

 

3 This definition is from Wikipedia: https://en.wikipedia.org/wiki/Complex_system. 
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system. As George Box said, “All models are wrong but some are useful” (Box 1979, Box and 

Draper 1987), models are incomplete, inaccurate, and embody different levels of fidelity, the 

solution may be optimal to the model but may not be optimal to the real problem (the real complex 

system) which is way more complicated than the model. 

If one categorizes everything in two worlds – model world and physical world, see Figure 1.2, he 

or she can observe that the model world is a simplified world, whereas the physical world is a 

much more complicated one. 

In the model world, designers desire the problems to be linear, continuous, and convex. There are 

a lot of factors can be controlled, uncertainties can be predicted accurately and managed well, and 

all the necessary information can be collected in time. However, the physical world is quite the 

opposite. Although designers try to model the physical world by incorporating as many 

complexities as possible, there is always an intellectual disconnection between the two worlds. 
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Figure 1. 2 The Model World and Its Corresponding Physical World 

Although there is an intellectual disconnection between physical complex systems their 

corresponding decision models, designers need their models to be useful in giving decision support.  

The principal motivation in this dissertation is to make decision models of complex systems useful 

in support decision making through making a transformative influence in the realization and 

evolution of complex systems resulting with rapidly changing requirements.  

In this dissertation, the research requirements for mathematics embodied in the realization and 

evolution of complex systems are identified; see Figure 1.3. There are four stages of the evolution 

cycle of complex systems realization, formulation, approximation, exploration, and evaluation. By 

acting forward from formulation to approximation, exploration, and evaluation, deductive methods 

are applied, and heuristics are used to proceed the system realization. With results and observations 
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obtained, calculations and analyses can be done, insight is acquired, and corresponding feedbacks 

can be given to make improvements or adjustments in the previous stages. By acting backward, 

synthesis methods are applied, and insight can be used to replace the heuristics. Through managing 

the interactions between different stages of the evolution cycle, knowledge on the connections 

between stages as well as general knowledge on the evolution of decision models can be acquired 

and synthesized. 

 

Figure 1. 3 The Evolution Cycle of Complex Systems Realization 

1.1.1 Characteristics of Complex Systems 

The behaviors of a complex system are difficult to be inferred from the properties of the system 

(Smith 2003). If a researcher ignores such difficulties, he or she may formulate a model that are 

neither right nor useful. Different examples of complex systems are studied across many 

disciplines, however, the complex systems from various fields share some characteristics. The 

major characteristics of complex systems that are domain-independent include but not limit to 1) 

a complex system may have multiple, conflicting goals, 2) the preferences among the goals may 

evolve during the design or operation, 3) the number of goals may be large and hard to visualize 

using traditional methods, 4) functional relationships between elements may be nonlinear, 5) 

coupled decisions are required such as selecting an option associated with determining the 
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geometry, and 6) there are emergent properties in a complex system. These characteristics are 

managed in this dissertation. The descriptions of the characteristics are given as follows. 

Multiple conflicting goals. As there can be multiple users or stakeholders of a complex system, 

they may compete the same limited resource of the system, and their expectations from the system 

may conflict with each other, the designer or the entity who is in charge of the complex system 

needs to comply with users’ different goals. For example, the users of a dam-network include the 

residents in the neighborhood, the farmers or industrial workers near the dam-network, and the 

fish and other wild animals that live along the river basin. They all consume the water in the river. 

Meeting each user’s water demand are the multiple conflicting goals of the dam-network system. 

Evolving preferences among the goals. As a complex system needs to adapt to the changing 

environment, and the users’ urgency of demand may be different over time, thus the priority of the 

goals may evolve. For example, a new product in its introduction stage, the stability of its supply 

chain should be prioritized, whereas in its maturity stage, the profit should be the most important 

goal. 

A large number of goals that are hard to visualize. As there can be a large number of elements 

and components incorporated in a complex system, the number of goals to be achieved by 

designing and operating the system can be large. Some of the goals may be highly orthogonal thus 

cannot be linearly combined. To visualize the tradeoffs between the goals and present the solutions 

that satisfy multiple goals are challenging tasks. 

Nonlinearity. Complex systems often have nonlinear behavior. Nonlinearity is a term in statistics 

to describe to a situation where there is not a straight-line or direct relationship between an 
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independent variable and a dependent variable4. Nonlinearity also indicates that a change in the 

size of the input of a system does not produce a proportional change in the size of the output. For 

example, the step cost, which is a cost that does not change steadily with changes in activity 

volume, but rather at discrete points. 

Coupling decision making. Multiple types of decisions are usually comprised in design and 

operating a complex system. The two typical decisions in systems realization are selection decision 

and compromise decision (Mistree, Hughes et al. 1993). The decision variables reflect such 

decision types – integer variables indicate selection decisions (such as selecting a material) and 

continuous variables indicate compromise decisions (such as designing the dimension). When 

there are mixed variables, it means that selection decision and compromise decision should be 

made at the same time and one type of decisions affects the other. 

Emergent properties. Emergent properties are properties of a group of elements that cannot be 

identified in any of the individual element. For example, in a village with 40% of the population 

refuses to change their lifestyle, if the rest 60% adopts some new technology and improve their 

social economic status, then almost the whole population will quickly adopt the new technology 

and change their life style because of the social pressure, although each individual still claims he 

or she may not accept such change. 

 

4 This definition is from Investopedia: https://www.investopedia.com/terms/n/nonlinearity.asp. 
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1.1.2 Examples of Complex Systems 

The examples given in this section are the ones used in Chapter 4, 5, 6, and 7 to test the proposed 

methods. Each example may not contain all the characteristics of complex systems identified in 

Section 1.1.1 but contains at least one of them. 

A dam-network system. The dams along a river basin form a network. Managing the supply and 

sensible distribution of fresh water to support human activity while sustaining vigorous, effective 

ecosystems is a major ecological challenge. The reservoir behind each dam stores water. The water 

in each reservoir is released to downstream by controlling the dam. There three user-groups in the 

basin – people, fish in the reservoirs, and fish in the streams between reservoirs. To meet water 

demands, there are three goals:  

1) To reach the target for water storage in reservoirs. 

2) To meet people’s demand for water – including agricultural and municipal demand.  

3) To meet the water requirements for the fish in streams. 

All the users compete the water resource in the river basin. There are uncertainties in the water 

inflow, such as precipitation and tributary inflow, as well as the water outflow, such as the demand 

of each user-group. Besides the complexity in the above, the demand of each user-group varies 

with the season, and the priority of each goal evolve. Therefore, in a dam-network system, the 

complexity includes managing multiple conflicting goals and the evolving preferences of the goals 

(Guo, Zamanisabzi et al. 2019). In Chapter 4, the dam-network planning problem is used as a test 

problem to testify the utility of the Three-Step Exploration Method in Chapter 4. 
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A multi-stage manufacturing system. Hot rolling is a multi-stage manufacturing process in 

which a reheated billet, slab, or bloom that is produced after the casting process is further thermo-

mechanically processed by passing through a series of rollers (Nellippallil, Song et al. 2017, 

Nellippallil, Rangaraj et al. 2018). In this problem, the requirement is to produce steel rods with 

improved mechanical properties like yield strength, tensile strength, and hardness. These 

mechanical properties are defined by the microstructure after cooling, which includes, the phase 

fractions (ferrite and pearlite phases are only considered in this problem), pearlite interlamellar 

spacing, ferrite grain size, and chemical compositions (Nellippallil, Rangaraj et al. 2018). The 

microstructural requirements are to achieve a high ferrite fraction value, low pearlite interlamellar 

spacing, and low ferrite grain size value within the defined ranges. The requirement is to carry out 

the integrated design of the material and the process by managing the cooling rate (cooling process 

variable), final austenite grain size after rolling (rolling microstructure variable) and the chemical 

compositions of the material. In a multi-step manufacturing system, there are relatively 

complicated relationships between the independent and dependent variables, and many of such 

functional relationships are nonlinear. The goals of different steps and sub-process conflict with 

one another and their priorities change along with the circumstances. Therefore, in a multi-stage 

manufacturing system, the complexity includes multiple conflicting goals, evolving preferences 

among the goals, and nonlinearity between variables. In Chapter 5, the hot rolling problem is used 

to testify the utility of the Adaptive Linear Programming (ALP) Algorithm with Parameter 

Learning (ALPPL). 

A concurrent engineering system. The thermal system around the Rankine cycle is a concurrent 

engineering system. The Rankine cycle is a mathematical representation of a heat engine that 

converts heat into mechanical work while undergoing phase change (Macquorn Rankine 1853, 
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Wikipedia 2019). The major components of the system are a power producing turbine, a pump to 

pressurize the flow to the turbine and two heat exchangers, a condenser, and a heater. See Figure 

1.3. The system designer should deal with heat source issues (left side of Figure 1.4) and power 

use issues (right side of Figure 1.4) and the choice of working fluids. The common working fluid 

in a Rankine cycle is water. Uses of other fluids (often organic in chemistry) have given rise to the 

development of “organic Rankine cycles”. Of course, geometric specification and design analysis 

of physical elements in the system also represent opportunities for model and design space 

exploration. The designer needs to achieve six goals in this Rankine cycle: 

1) Achieve zero moisture in steam leaving the turbine. 

2) Maximize Rankine cycle efficiency. 

3) Maximize temperature exchanger efficiency. 

4) Maximize system efficiency indicator 1. 

5) Maximize system efficiency indicator 2. 

6) Maximize heat transfer effectiveness in exchanger. 

 

Figure 1. 4 The Thermal System around the Rankine Cycle 

Therefore, in a concurrent engineering system such as a thermal system around the Rankine cycle, 

the complexity includes multiple conflicting goals, a large number of goals, and coupling decision 



 12 

making. In Chapter 6, the thermal system design problem is used to testify the utility of the 

Adaptive Leveling Weighting (ALW) Algorithm. 

A cyber-socio-technical system. A relatively isolated, underdeveloped village, as a small human 

society, is a complex system. When social entrepreneurs want to improve the villagers’ social and 

economic status by promoting new technologies, the village is to become a cyber-socio-technical 

system. Such a system may have emergent properties – the collective properties that cannot be 

predicted from individual behaviors. The cognition and acceptance of new technologies and new 

lifestyles resulting from new technologies are the complexities that should be managed by the 

social entrepreneurs. To manage such complexities, simulations and predictions of the emergent 

properties and social behaviors should be addressed. In Chapter 7, the cyber-socio-technical 

system problem is used to testify the utility of the SDF_ABM_SD (social development framework 

using agent-based modeling and systems dynamic). 

1.2 Modeling Strategies and Their Foci 

Design methods and solution algorithms for dealing with complex problems fall into two 

categories; see Figure 1.5 and Table 1.2: formulate a complex problem exactly and solve it 

approximately or approximate a complex problem and solve it exactly. We name the first strategy 

as “optimizing” strategy and second strategy as “satisficing” strategy. Examples of the optimizing 

strategy are gradient-based methods (Williams and Zipser 1995), pattern search methods (Rios and 

Sahinidis 2013), penalty function methods (Viswanathan and Grossmann 1990), etc.; According 

to Herbert A. Simon, The decision maker has a choice between an optimal decision from an 

imaginary world, or decisions that are “good enough,” that satisfice, for a world approximating 

the complex real one more closely (Simon and Kadane 1975). 
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Figure 1. 5 The Optimization Strategy and the Satisficing Strategy 

Table 1. 2 Advantages and Disadvantages of The Two Categories of Solution Algorithms 

# Category Example 
Methods 

Advantages Disadvantages 

O
pt

im
iz

in
g 

St
ra

te
gy

 

Formulate a 
problem exactly 
and solve it 
approximately  

Gradient-based 
methods, pattern 
search methods, 
penalty function 
methods, etc. 

-  Maintaining a relatively 
accurate model along the 
solution search (given the 
information that the designer 
has on hand).  

- The solution is still an 
approximate, inaccurate 
one; 
- Cannot get the 
information of the dual and 
use it to facilitate problem 
solving or post-solution 
analysis; 
- Heuristics are used in 
solution algorithms, which 
may result in premature 
convergence or 
unnecessarily high 
computational complexity.  

Sa
tis

fic
in

g  
St

ra
te

gy
 

Approximate a 
problem and 
solve it exactly 

ALP, SLP, SQL, 
etc. 

- Solutions are on the vertices 
of the approximated problem 
so the dual of the 
approximated problem can be 
explored; 
- Solutions may be away from 
the boundary of the original 
problem so they are relatively 
insensitive to variations; 
- The approximation of the 
problem can be improved by 
accumulating the linearized 
constraints during iterating and 
an approximated problem with 
acceptable level of accuracy 
can be obtained. 

- Introducing information 
loss while doing 
approximation, making the 
solution inaccurate; 
- Heuristics are used in 
approximation algorithms, 
which may result in 
premature convergence or 
unnecessarily high 
computational complexity. 
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1.2.1 Optimizing Strategy and Satisficing Strategy 

Using the optimizing methods may lead to relatively higher computational complexity and the 

solution is usually not on the vertex of the feasible space. For a problem with features such as 

nonlinear, non-convex, multiple objectives, different units among objectives, using optimizing 

methods may fail to identify a solution even there is a feasible solution space because solutions 

should meet necessary and sufficient Kuhn-Tucker conditions, which make the solution set too 

small, hard to find, and sensitive to uncertainties captured or uncaptured into the decision model. 

In contrast, the methods using the satisficing strategy such as Sequential Linear Programming, 

allow designers to obtain vertex solutions of the approximated linear problem. Such solutions meet 

the necessary Kuhn-Tucker conditions but may not meet the sufficient Kuhn-Tucker conditions, 

so we name these solutions “good enough” solutions or satisficing solutions. The satisficing 

solutions set contains the optimal solutions set, see Figure 1.6. Therefore, the satisficing set is 

easier to be found, especially when the problem is complex. If solutions are on the vertices, it 

enables designers to use duality embodied in linear programming to explore the solution space 

without having to perform numerical  differentiation that is required if the solution is obtained 

using methods identified in Category 1 (Mistree, Hughes et al. 1981, Mistree and Kamal 1985). 

Further, satisficing methods facilitate quick identification of robust solutions 5 . Like most 

metaheuristic methods, they rely on fixed parameter heuristics to set parameters.  

Satisficing strategy. Satisficing is a decision-making strategy of cognitive heuristic that entails 

searching through the available alternatives until an acceptability threshold is met. The term 

 

5   Solutions relatively insensitive to approximations made to make the solution to the problem tractable. 
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satisficing, a portmanteau of satisfy and suffice, was introduced by Herbert A. Simon in 1956 

(Simon 1956). The satisficing solutions contain optimal solutions. 

 

Figure 1. 6 The Optimal Solutions are Included in the Satisficing Solutions 

How can designers identify satisficing solutions and realize model evolution in the conception of 

satisficing? In this dissertation, the compromise Decision Support Problems (cDSP) is used as the 

construct and the Adaptive Linear Programming (ALP) algorithm is used as the approximation 

and solution algorithm to identify satisficing solutions, and the Formulation-Exploration 

framework, Adaptive Linear Algorithm with Parameter Learning (APPLL), and Adaptive-

Leveling-Weighting-Clustering (ALWC) algorithm are used to improve decision models for 

complex systems under satisficing strategy. 

1.2.2 Why is Satisficing Desired in Engineering Design? 

Why is satisficing strategy desired in realizing complex systems and model evolution? Because a 

complex system may encounter multiple types of the complexity and uncertainty, which make it 

extremely difficult or impossible to “make things work” using optimizing strategy, thus satisficing 

strategy more often can make things work. “Make things work” in this dissertation means making 

the system run efficiently, healthily, and sustainably. Their definitions in the context of complex 

systems and the interpretation in model language are given as follows. 

Efficient – Stakeholders, users, operators, and designers of the complex system can achieve 

maximum system performance with minimum expense. In decision models, it means achieving 
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the objective to the best with minimum computational complexity and no or minimum violation 

of constraints and bounds. 

Healthy – A system can reach a status with no potential danger or failure, and low security risk. 

In decision models, it means no sacrifice or loss of performance that affects system health in order 

to temporarily meet certain requirements. 

Sustainable – A system can run constantly. In decision models, it means a model can run in 

iterations with a relatively good enough and stale performance. 

In Table 1.3, we list three typical methods and their features. From reviewing the literature, it is 

observed that there are four categories of features being well studied: managing complexity, 

converge condition or solution feature, solution algorithms, and decision support. 

The compromise Decision Support Problem (cDSP) is one of the satisficing constructs. Mistree 

and the coauthors (Mistree, Hughes et al. 1993) implement a solution algorithm, Adaptive Linear 

Programming (ALP) algorithm in DSIDES. Using DSIDES, designers can explore the solution 

space of nonlinear, nonconvex, multi-goal engineering-design problems, and manage four types 

of uncertainties (Choi, Austin et al. 2005), but may not find optimal solutions that satisfy sufficient 

Kuhn-Tucker conditions. The benefit of meeting only the necessary Kuhn-Tucker conditions but 

not the sufficient conditions is that the solution can be relatively insensitive to the errors embodied 

in the model or the changes that affect the sufficient Kuhn Tucker conditions. The details are given 

in Section 2.1. The research gaps using satisficing strategy are stated in Section 1.4.2. 

Goal Programming is another satisficing method but using it does not guarantee satisficing 

solutions. The performance of Goal Programming heavily depends on the solution algorithm or 

the solver that a designer uses. For example, using NSGA-II or NSGA-III, the nonlinear problems 
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and nonconvex problems can be well managed when the searching is sufficient, whereas using 

Conjugate Gradient may not guarantee a feasible solution. 

Mathematical programming seeking optimal solutions is the construct using optimizing strategy. 

Like Goal Programming, the performance of a optimization model regarding the features that a 

designer can manage depends on the solution algorithm and the solver. Since at the optimal 

solution point, both the necessary Kuhn-Tucker conditions and the sufficient Kuhn-Tucker 

conditions must be met, the optimal solution is relatively hard to identified and easy to lose to the 

infeasible area. he details are given in Section 2.1. The research gaps using optimizing strategy are 

stated in Section 1.4.1. The differences among cDSP, Goal Programing, and mathematical 

programming seeking optimal solution are discussed in Section 2.3.1. 

Table 1. 3 Several Representative Methods and Their Features 
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1.3 The Challenges in the Model-based Realization of Complex Systems 

The realization of systems is a process of implementing a given input-output behavior. In other 

words, given an input-output relationship of a system, the realization of the system is a quadruple 

of (time-varying) matrices. In this dissertation, we focus on the model-based realization of 

complex systems, that is to use mathematical models to realize the quadruple of matrices. Models 

are approximations of the physical world, however, there is intellectual disconnection between the 

physical world and the model world. That is one of the limitations of model-based realization of 

complex systems. In this dissertation, it is hypothesized that designers can use model evolution to 

reduce the impact of the intellectual disconnection between the physical world and the model 

world.  
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1.3.1 Models are Approximations of the Real World 

“All models are wrong but some are useful.” (Box 1979, Box and Draper 1987) All models are 

approximations of the real world. An example of the mapping and correspondence between the 

physical world and the model world is illustrated in Figure 1.7. No matter how accurate a model 

is, there is an intellectual disconnection between the physical world and the model world. The 

assumptions, simplifications, and heuristics used in modeling and solving are means of 

approximating the physical world. There is not a single model that can capture all the information 

in the physical world. Some solutions are sensitive to the incompleteness and inaccuracy of a 

model, whereas other solutions are relatively insensitive to the incompleteness and inaccuracy of 

the model. Given that, the evolution of the model regarding the improvement on model formulation, 

approximation, exploration, and evaluation is important in obtaining the solution space that is 

relatively insensitive to the model inaccuracy. 

 

Figure 1. 7 The Correspondence between Physical World and Model World 
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1.3.2 The Purpose of Model Evolution 

The concept of “evolutionary model” comes from biological evolution, specifically indicating the 

models of DNA evolution. Inspired by this conception, in this dissertation, we expand “model 

evolution” to all complex systems. In model evolution, two capabilities of a model are improved. 

1) The capability of a model to capture and incorporate more useful information of the physical 

world, or in other words, model accuracy. 2) The capability of a model to deliver the solutions that 

are relatively insensitive to uncertainties, or in other words, model robustness. The uncertainties 

include variation in parameters variations (Type I), variation in decision variables (Type II), 

uncertainty in model structure (Type III), uncertainty brought by managing the previous three 

types of uncertainty (Type IV) (Choi, Austin et al. 2005), model errors, model inaccuracies, 

changes in the environment, etc.  

In this dissertation, the purpose of model evolution is improving the insensitivity of the solution 

space to the uncertainties encountered in the model. 

1.4 Problem Statement – Problems in both Strategies 

To design complex systems with limited information, multiple interactions among the four stages 

of the evolution cycle (Figure 1.3) are expected to establish; see Figure 1.9. By establishing 

connections, information can be passed through different stages of the design, and corresponding 

actions to improve the design can be taken iteratively. Therefore, the intellectual disconnection 

between the model world and the physical world can be managed. 

As it is introduced in Section 1.2, there are two strategies of designing a complex system, the 

optimizing strategy and the satisficing strategy, yet for both strategies, there are limitations. We 

summarize them into the research gaps that we dedicate to fill in this dissertation, which are briefly 
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introduced regarding each strategy – optimizing (Section 1.4.1) and satisficing (Section 1.4.2), and 

the mathematical explanations of the research gaps are introduced in detail in Chapter 2. 

 

Figure 1. 8 Establishing Connections among Multiple Stages of Engineering-Design 
Evolution Cycle, Formulation, Approximation, Exploration, and Evaluation 

1.4.1 Problems in Optimizing Strategy 

Albert Einstein said, “So far as the theories of mathematics are about reality, they are not certain; 

so far as they are certain, they are not about reality.”  

Using optimizing strategy, designers assume that their abstractions of the reality, that are their 

mathematical models, are certain. Even when they incorporate uncertainties in their mathematical 

models, they assume that those uncertainties are mathematically representable. The general 

representation of a mathematical model using optimizing strategy is given as follow – Equation 

1.1 to 1.3. 

Given 



 23 

𝒇: 	ℝ𝒏 → ℝ,𝜴 ⊆ ℝ𝒏        Equation 1. 1 

𝜴 = E𝒙 ∈ ℝ𝒏|𝒈𝒊(𝒙) ≥ 𝟎, 	𝒊 = 𝟏,… ,𝒎, 𝒉𝒋(𝒙) = 𝟎, 	𝒋 = 𝟏,… , 𝒌P  Equation 1. 2 

Find 

𝒙∗: 	𝒇(𝒙∗) ≽ 𝒇(𝒙), ∀𝒙 ∈ 𝜴       Equation 1. 3 

The objective of an optimization problem is maximizing a function consisted of decision variables 

(Equation 1.1), satisfying the constraints (Equation 1.2). Through critically reviewing the 

literature using optimizing methods in Section 1.2 and identifying the limitations of decision 

models in Section 1.3, we conclude the problems using optimizing strategy in Table 1.4. 

 Table 1. 4 Problems in Methods of Optimizing Strategy 

Uncontrollable 
factors 

List of Requirements Problems 
(phenomenon) 

Mathematical 
explanation 

location 
Boundary changes Accurate and exact boundary The optimal 

solution to the 
mathematical 
model may not 
work for its 
corresponding 
physical 
engineering-design 
problem. 

Section 2.1-
2.3 Design preferences 

evolve  
Evolving design preferences can be 
captured, quantified, and represented 
in the model 

Unpredictable, 
unparameterizable 
uncertainties 

Uncertainties can be parameterized 
and predicted 

Unknown 
interactions  

Interactions can be represented in the 
model 

Emergent properties Emergent properties can be captured 
and incorporated into the model 

As the boundary of the physical system changes, design preferences evolve, unpredictable 

uncertainties, unknown interactions among subsystems or between the system and its environment 

cannot be represented in the model, emergent properties add complexity to the modeling and 

solution analysis, etc. These are the factors that we cannot control or percept during the process of 

abstracting physical systems into models and interpreting model solutions into physical 

phenomena. As we have limited knowledge on the association amongst those factors, the design 

may fail. The designers may lose the optimal solution. In other words, the optimal solution to the 
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mathematical model may not work for its corresponding physical engineering-design problem. 

Why? Because the designers seek optimal solutions to wrong models. Therefore, using optimizing 

strategy to manage engineering-design problems is like trying to maximize the optimality of the 

solution to a wrong model, without the awareness of the inaccuracy of the model and the 

consideration of the robustness of the solutions to the inaccuracy. However, this is the phenomenon 

of the research gap. The mathematical explanation of the research gap in in Section 2.1 to 2.3. 

1.4.2 Problems in Satisficing Strategy 

Using satisficing strategy, designers are aware that their abstractions of the reality, that are their 

decision models, may be incomplete or in accurate. So, they seek solutions that are “good enough” 

and relatively insensitive to the errors of the model, instead of optimal. One of the representations 

of a decision model under satisficing strategy is given as follow – Equation 1.4 to 1.6 

Given 

𝒇: 	ℝ𝒏 → ℝ,𝜴 ⊆ ℝ𝒏        Equation 1. 4 

𝛺 = E𝑥 ∈ ℝU|𝑔W(𝑥) ≥ 0, 	𝑖 = 1,… ,𝑚, ℎ](𝑥) = 0, 	𝑗 = 1,… , 𝑘, P  Equation 1. 5 

Find 

𝒙𝒔:𝓟𝒙∈ 𝜴(𝒇(𝒙) = 𝑻𝒂𝒓𝒈𝒆𝒕)       Equation 1. 6 

The merit function of a decision model using satisficing strategy is identifying the nearest 

projection of the objective function 𝑓(𝑥) onto the feasible space bounded by constraints. Or in 

other words, the aim is minimizing the deviation between the target and the actual achieved value 

of a goal, as Equation 1.7-1.9 

Given 
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𝒇: 	ℝ𝒏 → ℝ,𝜴 ⊆ ℝ𝒏        Equation 1. 7 

𝛺 = E𝑥 ∈ ℝU|𝑔W(𝑥) ≥ 0, 	𝑖 = 1,… ,𝑚, ℎ](𝑥) = 0, 	𝑗 = 1,… , 𝑘, 𝑓(𝑥) + 𝑑j − 𝑑l = 𝑇𝑎𝑟𝑔𝑒𝑡P 

          Equation 1. 8 

Find 

𝒅∗: 𝒅∗(𝒙) ≤ 𝒅(𝒙)        Equation 1. 9 

Although using satisficing strategy, designers may identify solutions that are relatively insensitive 

to model errors and uncertainties, there are limitations in methods under satisficing strategy. 

Through critically reviewing the literature using satisficing methods in Section 1.2 and identifying 

the limitations of decision models in Section 1.3, we conclude the problems using satisficing 

strategy in Table 1.5. 

Table 1. 5 Problems in Methods of Satisficing Strategy 

Uncontrollable 
factors 

List of Requirements Problems 
(phenomenon) 

Mathematical 
explanation 

location 
Boundary changes Solutions are insensitive to boundary 

variations 
Adding too much 
buffer to ensure 
feasibility; relaying 
on heuristics, 
metaheuristics, and 
domain knowledge 
to make decisions; 
no information 
passing through 
different stages of 
the design; no 
mechanism to 
evaluate and update 
the heuristics and 
metaheuristics. 

Section 2.1-
2.3 

Design preferences 
evolve  

Solutions are insensitive to Design 
preferences evolving 

Unknown interactions  Solutions are insensitive to unknown 
interactions 

Emergent properties Solutions are insensitive to the 
emergent properties even they cannot 
be incorporated into the model  

Relying on heuristics 
and metaheuristics to 
make rules 

Accurate and exact boundary 

Relying on domain 
knowledge to make 
rules  

Evolving design preferences can be 
captured, quantified, and represented 
in the model 

No information passing 
through different stages 
of engineering designs 

Uncertainties can be parameterized 
and predicted 
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Given the problems in both strategies, we summarize the research gaps and pose the hypotheses 

in Section 1.5. 

1.5 Research Gaps and Hypotheses 

1.5.1 Research Gaps 

Based on the problems in two design strategies, optimizing and satisficing, we summarize the 

research gaps to be filled in this dissertation, that is, how can designers manage the problems in 

both strategies, meanwhile, finish the tasks of engineering design? The research gaps and the 

potential contributions by filling the research gaps are illustrated in Figure 1.9. 

• Research Gaps – How can designers realize model evolution using satisficing strategy 

so that they can manage chaos in the physical world, reduce the risk of losing an optimal 

solution, and discover domain-independent knowledge to update metaheuristics? 
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Figure 1. 9 The Research Gaps and the Potential Contributions by Filling the Research 
Gaps 

1.5.2 Hypotheses to Bridge the Research Gaps 

In this dissertation, it is hypothesized that by connecting the multiple stages of design and passing 

information through them, designers can improve their decision models in iterations, which in 

this dissertation is defined as “model evolution.” During the model evolution, designers can 

incorporate more chaos in the physical systems into their decision models and manage their impact 

on the solution space, identifying solutions that are relatively insensitive to errors and uncertainties 

that the decision models may encounter, and discover domain-independent knowledge to update 

metaheuristics.  
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Table 1. 6 The Research Gaps (RG) and Hypotheses (H) 

Chapter Ch1 Ch2 Ch3 Ch4-7 Ch8 Ch9 
A

ct
io

ns
 

RG: How can designers realize model evolution using 
satisficing strategy so that they can manage chaos in 
the physical world, reduce the risk of losing an 
optimal solution, and discover domain-independent 
knowledge to update metaheuristics? 
H: by connecting the multiple stages of design and 
passing information through them, designers can 
improve their decision models in iterations. 

RD 
RQ 
SH 

TVe 
M 

EVe 
SQT 
AQ 

CQ 
EVa TE 

N
om

en
cl

at
ur

e  

RG – give research gaps 
H – give hypotheses 
RD – tie to robust design 
RQ – pose research questions 
SH – specify hypotheses 
TVe – theoretically verify hypotheses 
M – introduce methods 
EVe – empirically verify hypotheses 
SQT – specify research questions in the context of test problems 
AQ – answer research questions 
CQ – closure the answers to research questions 
EVa – empirically validate hypotheses 
TE – theoretically extend the research 

1.5.3 Expected Contribution by Testifying the Hypotheses 

By proving the hypotheses, it is expected to contribute a design method that allows designers to 

manage the following attributes by exploring the solution space and identify a set of solutions that 

weighs all the attributes, which is defined as satisficing solution space in this dissertation; see 

Figure 1.10. 

Accurate – the mapping from the physical system to a mathematical model is relatively accurate 

and the accuracy can be improved during the exploration of the solution space. 

Robust – the satisficing solutions are relatively insensitive to the errors and uncertainties embodied 

in the model. There are four types of uncertainty (Choi, Austin et al. 2005), noise factors, control 

factors, uncertainties in the model structure, and uncertainties in the process chain of managing 
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the first three types of uncertainty. A thorough introduction of the four types of uncertainty and 

the corresponding robust design methods are given in Section 2.4.1. 

Diverse – the solutions identified as satisficing solutions are relatively different from each other, 

which allows designers to have more alternatives in a variety of situations. 

Simple – the computational complexity of the method is relatively low. 

Optimal – the achieved value of the goals is close enough to the target of the goals. 

 

Figure 1. 10 Expected Contributions 

Using interior-point searching algorithms, designers may focus on identifying optimal and diverse 

solutions. Stochastic optimization methods allow designers to attempt taking into account the 

accuracy, optimality, and diversity of the solutions. However, the accuracy and exhaustiveness of 

the randomness of a stochastic model may rely on assumptions and heuristics which may not be 

correct or accurate. Using the methods belong to the satisficing strategy methods such as cDSP-

ALP-DSDIES (in Table 1.3), designers have mechanisms to obtain robust solutions and maintain 

an acceptable level of computational complexity, but they do not improve the accuracy of their 

decision models. 
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In this dissertation, the contribution is to identify a satisficing solution space to the decision 

model of complex engineering-design problems and provide decision support based on 

knowledge of the tradeoffs among the five attributes. 

1.6 Plan of Verification and Validation 

The plan of verification and validation are illustrated in Figure 1.11. In Chapter 1, gives the context 

of the dissertation – models are approximations of the physical world thus model evolution is 

required so as to improve the robustness of the model realization. In Chapter 2, gives the theoretical 

foundation and justified research questions. In Chapter 3, the overview of the methods is described. 

In Chapter 4 to Chapter 7, test problems are used to verify the proposed methods and algorithms, 

which are the new knowledge and contributions in this dissertation. The research questions are 

answered one by one in Chapter 4 to 7. In Chapter 8, summarized the answers to the research 

questions and the utility of the proposed methods to other problems. In Chapter 9, summarized the 

contributions, limitations, and research way forward (the career proposal). 
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 Figure 1. 11 Dissertation Layout and Plan of Verification and Validation  

1.7 Organization of The Dissertation 

There are nine chapters in this dissertation. An overview of this dissertation is presented as 

roadmap in Figure 1.12. The figure is intended to help navigate through the dissertation and 

develop an overall picture as to what is discussed in each chapter thereby establish context. 
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Figure 1. 12 Organization of the Chapters 

1.8 Role of Chapter 1 in this Dissertation 

In Chapter 1, we establish the context of this dissertation. We answer the “why question” – “why 

do we need model evolution. give the motivation of model evolution and describe why we manage 

complex systems in a certain way – using satisficing methods.  

In this chapter, we give the context of the realization of complex systems – introduction to the 

characteristics and challenges of model-based realization of the complex systems. By analyzing 

the methods in optimizing strategy and satisficing strategy, we identify research gaps of both 

methods and pose the primary research question. The plan of verification and validation and the 

organization of the dissertation are illustrated.  
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This chapter is revisited for checking structural soundness of the dissertation where literature 

review, design approach, developed method, and validation of hypotheses are discussed in 

following chapters. 
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CHAPTER 2 RESEARCH QUESTIONS: HOW CAN WE REALIZE MODEL 

EVOLUTION 

– THEORETICAL FOUNDATION AND JUSTIFIED RESAERCH QUESTIONS 

In Chapter 2, the primary research question is justified into several research questions in the 

context of robust design and the model evolution. The “how question” is answered – “how can 

designers realize the model evolution using satisficing strategy?” It is further explained why we 

suggest designers realize model evolution in a certain way – why satisficing strategy is chosen, 

and specifically, cDSP, ALP, and DSIDES are used to realize satisficing strategy and selected 

as the foundational method to process the tasks in the model evolution. 

In Chapter 2, see Figure 2.1, in Section 2.1, the mathematical explanations of the differences 

between optimizing and satisficing strategy are given; in Section 2.2, five toy problems are used 

to illustrate the advantages of using satisficing strategy in engineering design; in Section 2.3, the 

mathematical and practical differences are summarized; based on the discussions, in Section 2.4, 

the primary research question is justified in the context of “what should we do” – the robust design 

– and “what would we do” – the model evolution; the role of Chapter 2 is reviewed in Section 2.5. 
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Figure 2. 1 Organization of Chapter 2 

The main issues in the design of complex systems are: (1) dealing with high complexity, 

uncertainty in rapidly changing requirements, (2) capability of the method in order to capture 

features of and analyze the system behavior, and (3) operability of automating the method and 

outputting reusable knowledge. In this chapter, literature is reviewed regarding the forward 

mentioned issues and research opportunities are located in this dissertation and in the future work 

(career proposal). 

2.1 Using Kuhn-Tucker Conditions to Explain Optimal and Satisfice 

2.1.1 The History of the Kuhn-Tucker Conditions 

The Kuhn-Ttucker approach or Karush-Kuhn-Tucker (KKT) approach generalizes the method of 

Lagrange multipliers. A nonlinear problem with constraints can be represented as a function – the 

Lagrange function. Harold W. Kuhn and Albert W Tucker proposed the Kuhn-Tucker approach in 

1951 (Kuhn and Tucker 1951). The optimal point of the Lagrange function is a saddle point, so 

the Kuhn-Tucker approach is also known as saddle-point Theorem. Later it was found out that 
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William Karush had summarized the necessary conditions in his master’s thesis in 1939 (Karush 

1939). So, Kuhn-Tucker conditions is also named as Karush-Kuhn-Tucker (KKT) conditions. 

2.1.2 Necessary and Sufficient Kuhn-Tucker Conditions 

The KKT conditions include first-order necessary conditions (Equation 2.1-2.5) and second-order 

sufficient conditions (Equation 2.6-2.8). 

First-order necessary conditions 

Stationary:  

∇𝑓(𝑥∗) + ∑ 𝜇W∇𝑔W(𝑥∗)v
Wwx − ∑ 𝜆]∇ℎ](𝑥∗)ℓ

]wx = 0    Equation 2. 1 

Primal feasibility:  

𝑔W(𝑥∗) ≥ 0, 	∀	𝑖 = 1,… ,𝑚       Equation 2. 2 

𝒉𝒋(𝒙∗) = 𝟎, 	∀	𝒋 = 𝟏,… , 𝓵       Equation 2. 3 

Dual feasibility: 

𝝁𝒊 ≥ 𝟎, 	∀	𝒊 = 𝟏,… ,𝒎       Equation 2. 4 

Complementary slackness: 

𝝁𝒊𝒈𝒊(𝒙∗) = 𝟎, 	∀	𝒊 = 𝟏,… ,𝒎       Equation 2. 5 

Second-order sufficient conditions: 

For the Lagrangian:  

𝐿(𝑥, 	𝜆, 	𝜇) = 𝑓(𝑥) + ∑ 𝜇W𝑔W(𝑥)v
Wwx − ∑ 𝜆]ℎ](𝑥)ℓ

]wx     Equation 2. 6 

=> 	𝒔𝑻𝛁𝒙𝒙𝟐 𝐋(𝒙∗, 𝝀∗, 𝝁∗)𝐬 ≥ 𝟎, 	where 𝒔 ≠ 𝟎     Equation 2. 7 



 37 

And 

�𝛁𝒙𝒈𝒊(𝒙∗), 𝛁𝒙𝒉𝒋(𝒙∗)	�
𝑻𝒔 = 𝟎       Equation 2. 8 

2.1.3 The Physical Meaning of the Kuhn-Tucker Conditions 

The essence of the necessary conditions is that at the solution point 𝑥∗, where both the primal and 

the dual are feasible, the gradient vector of the objective ∇𝑓(𝑥∗) can be represented as the non-

zero linear combination of the gradient matrix of all equality constraints ∇ℎ](𝑥∗) and the active 

inequality constraints6 ∇𝑔W(𝑥∗) for 𝑖 iff 𝑔W(𝑥∗) = 0, as it is shown in Figure 2.2.  

 

Figure 2. 2 The first-order necessary Kuhn-Tucker conditions are satisfied at 𝒙∗ 

The essence of the sufficient conditions is that at the solution point 𝑥∗, there exists a nonzero vector 

𝑠 that is orthogonal to the gradient matrix of all active inequality and equality constraints, such 

that the second-order matrix of the Lagrange’s equation with respect to decision variables 𝑥∗ and 

 

6 In this dissertation, we define an active constraint (or an active inequality constraint) as the constraint with zero slack 
or surplus when plugging in the solution point. Or, in other words, for an inequality constraint, when being plugged 
in the solution point, its left-hand side value equals to its right-hand side value, then such an inequality constraint is 
an active constraint; it is also known as binding constraint; see “DEFINITION OF TERMS.” 
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Lagrange multipliers 𝜆∗  and 𝜇∗  is conditionally positive semidefinite: 𝑠�∇��� L(𝑥∗, 𝜆∗, 𝜇∗)s ≥ 0, 

∀𝑠 ∈ 𝒮.  

Why is it conditionally positive semidefinite? What is the condition? 

The second-order sufficient condition requires that the Lagrange equation is convex at 𝑥∗, that is, 

in a local range that contains the solution point 𝑥∗, the convexity degree of the objective should 

not exceed the convexity degree of the constraints combined by Lagrange multipliers. See Figure 

2.3. However, the second-order sufficient conditions significantly hinder the access of a solution 

for the problems with an objective with a relatively higher degree of convexity, that is, the 

convexity degree of the objective is higher than the convexity degree of the feasible set bounded 

by constraints boundary and bounds, such as the case in Figure 2.4.  

 
(a)      (b) 

Figure 2. 3 The convexity requirements for satisfying the second-order sufficient Kuhn-
Tucker conditions 
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Figure 2. 4 Lagrange multipliers fail to identify an optimal for a highly convex objective 

2.1.4 Assumptions behind Kuhn-Tucker Conditions 

There are assumptions behind applying the Kuhn-Tucker approach to solve a nonlinear 

programming problem, especially when designers seeking optimal solutions which meet both 

necessary and sufficient Kuhn-Tucker Conditions. These assumptions are also mathematical 

requirements for the problem that can be applied with Kuhn-Tucker conditions to obtain an optimal 

solution. When we use Kuhn-Tucker approach or Lagrange function to solve a nonlinear problem, 

we automatically accept these assumptions. 

Assumption/Requirement 1 – mathematical models are 100% complete and accurate 

representations of physical problems. 

To use Lagrange functions to solve nonlinear problems, one naturally assumes that the 

mathematical models are complete and accurate and capture all the necessary details of the 

physical problems, and all segments of a model have the same level of fidelity. Thus, an optimal 
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solution to a mathematical problem is also optimal to its corresponding physical problem or at 

least feasible for the physical problem. 

Assumption/Requirement 2 – all equations of the problem are differentiable. 

Although according to Kuhn-Tucker conditions, it is only required that, within a small finite area 

around the optimal solution, the objective function, active constraints, and equality constraints 

should be and differentiable, as we need to solve the Lagrange function globally to obtain the 

optimal solution, it is required that all equations of the problem should be differentiable. 

Assumption/Requirement 3 – the convexity degree of at least one non-zero linear combination 

of all constraints is higher than the convexity degree of the objective function. 

This assumption is especially for Kuhn-Tucker sufficiency. The second-order sufficient conditions 

only guarantee to find optimal solutions to the problems as those in Figure 2.2 but cannot find an 

optimal solution to the problem as shown in Figure 2.3. 

In summary, when using optimizing strategy seeking optimal solution to a decision model, 

designers have all three assumptions, whereas when using satisficing strategy, designers have only 

one assumption. The assumptions of the two strategies are illustrated in Figure 2.5. 



 41 

 

Figure 2. 5 The Assumptions When Using the Optimizing Strategy and Satisficing Strategy 

2.2 Advantages of Satisficing Strategy  

- Advantages in Each Stage of Model Evolution 

Using optimizing strategy, designers use the Lagrange function to find solutions that satisfy both 

necessary and sufficient Kuhn-Tucker conditions, whereas using satisficing strategy, designers 

only satisfy necessary Kuhn-Tucker conditions. Therefore, when seeking optimal solutions, 

designers have three assumptions, or in other words, the mathematical model needs to meet the 

three offered-mentioned requirements. In other words, when seeking optimal solutions, designers 

accept the three assumptions behand Kuhn-Tucker Conditions: models are 100% complete and 

accurate, all equations are differentiable, and the problem is convex. 

When seeking satisficing solutions, the assumptions are different. Designers are aware that their 

models can be incomplete and inaccurate, so they aim at good enough solutions that are relatively 

insensitive to the error and incompletion of the models. When their decision models are discrete 

or non-convex, we describe the difference between optimizing and satisficing strategy in Section 

2.3.  
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To illustrate the differences between the two strategies regarding the returned solutions when 

managing engineering design problems, especially complex systems design and improvement, 

first, we use five representative “toy problems7” to illustrate the differences in appearance between 

optimizing and satisficing. Then, we analyze in principle, why there are such differences. 

There are four advantages using satisficing strategy, which in this dissertation, is realized by using 

cDSP, ALP and DSIDES. The advantages include the advantage in formulation, approximation, 

solution, and exploration. In Table 2.1, we summarize the advantages of using satisficing in the 

four stages in engineering design. The illustrations of the differences through examples are given 

from Section 2.2.1 to Section 2.2.10. 

Table 2. 1 The Advantages of Realizing Satisficing Strategy Using cDSP and ALP in the 
Each Stage of Engineering Design 

St
ag

e 

Feature Advantage 

In
tr

od
uc

tio
n 

an
d 

D
isc

us
sio

n  

Fo
rm

ul
at

io
n  

Using Goals and 
Minimizing Deviation 
Variables Instead of 
Objectives 

At a solution point, only the necessary Kuhn-Tucker conditions 
are met, whereas the sufficient Kuhn-Tucker conditions do not 
have to be met. 
Therefore, designers have a higher chance of finding a solution 
and a lower chance of losing a solution due to parameterizable 
and unparameterizable uncertainties. Se

ct
io

n 
2.

2.
7 

A
pp

ro
xi

m
at

io
n  Using second-order 

sequential linearization 
Designers can have a balance between linearization accuracy 
and computational complexity. 

Se
ct

io
n 

2.
2.

5 
an

d 
5.

2.
1  

Using accumulated 
linearization 

Designers can manage nonconvex problems in a way, and deal 
with highly convex, nonlinear problems relatively more 
accurately. 

 

7 The problems in Section 2 are “toy problems” to illustrate the difference of the results that the methods in the two 
strategies can return. They are separated from the test problems in Chapter 4, 5, 6, 7, and 9. The test problems in the 
later chapters are used to verify the proposed method and the new knowledge in this dissertation. 
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Ex
pl

or
at

io
n  

Combining interior-point 
searching and vertex 
searching 

Designers can avoid being stuck into local optimum to some 
extent and identify satisficing solutions relatively insensitive to 
starting points changing. 

Se
ct

io
n 

2.
2.

3 

Ev
al

ua
tio

n  Allowing some 
violations of soft 
requirements, such as the 
bounds of deviation 
variables 

Designers can manage rigid requirements and soft requirements 
in different ways to ensure feasibility. 
As a result, goals and constraints with different scale can be 
managed Se

ct
io

n 
2.

2.
9 

2.2.1 Possible Features of Engineering-Design Problems 

For engineering-design problems, there are typical features that often take place. In this 

dissertation, we define the satisficing strategy is the strategy that by using which, the formulation 

construct and solution algorithm allow designers to manage those typical features of engineering-

design problems. In this dissertation, we identify six features, listed in the first column of Table 

2.3, as typical features that designers often encounter in engineering-design problems. We choose 

the five toy problems and add one more complexity to each toy problem. The toy problems are 

very simple, but they represent some basic, primary complexity of those fancy, complex 

engineering-design problems. So, we use these toy problems to do experiments and comparisons. 

There can be much more features, challenges, and difficulties of complex engineering-design 

problems. In this section, we only tackle five basic features because a lot of complexities are 

combinations and evolution of the six features in different times and spaces. The satisficing 

methods used here can be foundations or cornerstones of more complex methods or technologies. 

The methods we use in each strategy are listed in Table 2.3. In the “scipy.optimize” package, 

besides the three algorithms (COBYLA, Trust-constr, and SLSQP), there are other seven 

algorithms, Nelder-Mead, Powell, CG (Conjugate Gradient), BFGS, Newton-CG, L-BFGS-B, and 

TNC. However, Nelder-Mead, Powell, CG, and BFGS cannot manage problems well with 

constraints. Newton-CG, L-BFGS-B, and TNC require Jacobian which is not user-friendly for 
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engineering designers, as for nonlinear engineering-design problems, usually, designers do not 

want to identify the Jacobian matrix of the nonlinear constraints and formulate the problems by 

presenting the coefficient matrix. Therefore, we use COBYLA, Trust-constr, and SLSQP to solve 

the toy problems with one or more the of features in Table 2.2.  

We use NSGA II/III as a benchmark or verification method. NSGA II/III is a well-known solution 

algorithm belongs to the optimizing category. It is a fast sorting and elite multi objective 

genetic algorithm. Unlike the single objective optimization technique, NSGA II/III simultaneously 

optimizes each objective without being dominated by any other solution. As NSGA II/III can 

manage all six features listed in Table 2.2, we use it as a benchmark tool to verify the solution 

quality of the satisficing algorithm.  

Since NSGA II//III can manage the five typical features of engineering-design problems, why do 

we study satisficing algorithm? Because NSGA II/III has drawbacks that prevent designers from 

further exploring the solutions space and improving the decision models.  

First, NSGA II/III cannot give designers insight on the nature of the decision model or the possible 

ways to improve the model. NSGA II/III is an interior searching algorithm, which uses 

metaheuristics to search for solutions that generationally improve the optimality and diversity of 

the solutions, but for information, such as the bottleneck of the model, or the sensitivity of each 

part of the model, or anything else that may indicate model improvement, cannot be provided along 

with the searching. 

Second, the performance of NSGA II/III (include convergence speed, optimality of solutions, and 

diversity of solutions) is sensitive to hyperparameter setting. Typical hyperparameters, the 

population size and generation number, should be predefined by designers. However, designers 



 45 

only have the idea that a larger population size or a larger generation number can return better 

solutions, but they may not have a clue how large is “good enough.” In Toy Problem II and III, we 

can show how different the solutions can be when setting the population as 20 and 50 for the same 

problem. 

Third, NSGA II/III requires much more computational power than satisficing algorithms such as 

the Adaptive Linear Programming (ALP) algorithm. we will discuss it in detail in the “summary 

of observations” for each toy problem in this section. 

The toy problems, solutions using different algorithms, comparisons, and conclusions are given as 

follows. 

Table 2. 2 The Features of the Toy Problems (TP) 

                                                      Toy Problem (TP) 
Feature I II III IV V 

Two objectives * * * * * 
Nonlinear * * * * * 
Non-convex  * * * * 
Objectives with various units (scale)   * * * 
Target of goals with various levels of achievability    * * 
More than two objectives     * 

Table 2. 3 Methods for Comparison the Two Strategies 

Strategy 
Item Optimizing Satisficing 

Model formulation 
construct 

Mathematical programming or 
Goal programming 

Compromise Decision Support 
Problem 

Solution algorithm 

Constrained Optimization by Linear 
Approximation (COBYLA) algorithm 

Adaptive Linear Programing 
(ALP) algorithm 

Trust-region constrained (trust-constr) 
algorithm 
Sequential Least Squares Programming 
(SLSQP) algorithm 
Nondominated Sorting Generation 
Algorithm II/III (NSGA II/III) 

Solver Python Scipy.optimize DSIDES 
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2.2.2 Toy Problem *I* (TP-I) 

– Problem with multiple, nonlinear objectives (goals) 

Formulation: the two types of formulation of the five toy problems are given in Table 2.4. We give 

the optimization formulation and its corresponding compromise DSP formulation of the five Toy 

Problem *I* in Table 2.4. The two objectives are visualized in the solution space (decision-variable 

space, X-Plane) as Figure 2.6 shows. The solutions to the problem using the corresponding 

algorithms are given in Table 2.6. 

Table 2. 4 The Optimization Model and Compromise DSP of TP-I 

Strategy 
TP Optimizing Satisficing 

I 

Objective Functions 
𝑓x(𝑥) = (𝑥1 − 1)� + (𝑥2 − 1)� + 3 ∙ 𝑥1

∙ 𝑥2 

𝑓�(𝑥) =
1
2 ∙ (𝑥1 − 2)

� + (𝑥2 − 2)� + 𝑥1
∙ 𝑥2� 

 
Constraints and Bounds 

𝑠. 𝑡. 	 �
𝑥1 ∙ 𝑥2 ≤ 1
0 ≤ 𝑥1 ≤ 2
0 ≤ 𝑥2 ≤ 2

 

 
Combination of Objective Functions 

𝑀𝑎𝑥	� 𝑤W ∙ 𝑓W(𝑥)
�

Wwx
 

Given 
𝑥1, 	𝑥2, 	𝑑1±, 	𝑑2± 

𝑓x(𝑥) = (𝑥1 − 1)� + (𝑥2 − 1)� + 3 ∙ 𝑥1 ∙ 𝑥2 

𝑓�(𝑥) =
1
2 ∙ (𝑥1 − 2)

� + (𝑥2 − 2)� + 𝑥1 ∙ 𝑥2� 
Find 

𝑥1, 	𝑥2, 	𝑑x
∓, 𝑑�

∓ 
Satisfy 
Goals:  
��(�)
x�

 +𝑑1j=1 
��(�)
�

 +𝑑2j=1 
Constraints: 

𝑥1 ∙ 𝑥2 ≤ 1 
𝑑W
j ∙ 𝑑W

l = 0, 𝑖 = 1, 	2 
Bounds: 

0 ≤ 𝑥1, 	𝑥2 ≤ 2 
0 ≤ 𝑑1±, 	𝑑2± ≤ 1 

Minimize 
𝑍 = ∑ 𝑤W ∙�

Wwx  𝑑𝑖j 
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(a)                                                                             (b) 

Figure 2. 6 The Two Objective Functions in the X-f(X) Space of TP-I 

Target of the goals: for compromise DSP, a right-hand side value is needed for each objective – 

designers need to assign a target value for each goal and minimize the deviation between the 

achieved value and the target of the goal. Assuming that based on the domain expertise, or the 

results from exploring of the solution space, we can determine the target of Goal 1 and Goal 2 to 

be 14 and 8.  

Weight to combine the goals or objectives: as the problem has multiple goals (objectives) but the 

priority of the goals is unknown. So, for the toy problems, we assume that we use Archimedean 

strategy (scalarization) to combine the multiple goals, and through exploring different weight 

scenarios, the tradeoffs among the goals can be better studied. Therefore, further decision support 

on weight scenario selection can be provided to designers. 
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Table 2. 5 Solutions to TP-I (dominated solutions of each scenario) 
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W
∙ 𝑓
W(
𝑥)

� Ww
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So
lu

tio
n 

�
𝑤
W
∙𝑓
W

� Ww
x

(𝑥
)  

(1, 0) 

(0.5, 1) (2, 0.5) 4.25 (2, 
0.5) 4.25 (2, 

0.5) 4.25 

(2, 
0.5) 4.25 (2, 

0.5) 4.25 (0, 0) (0, 0) 2 (0, 0) 2 (0, 0) 2 

(2, 0.5) (2, 0.5) 4.25 (2, 
0.5) 4.25 (2, 

0.5) 4.25 

(0, 1) 

(0.5, 1) (0.5, 2) 3.13 

(0, 0) 6 
(0, 0) 6 

(0, 0) 6 (0, 0) 6 (0, 0) 
(0, 0) 6 

(2, 0.5) (2, 0) 4 

(0.5, 
0.5) 

(0.5, 1) (0.5, 2) 3.69 (0.5, 
2) 3.69 (0.5, 

2) 3.69 

(0.5, 
2) 3.69 (0, 0) 4 (0, 0) (0, 0) 4 (0, 0) 4 (0, 0) 4 

(2, 0.5) (2, 0.5) 3.5 (2, 
0.5) 3.5 (2, 

0.5) 3.5 

(0.7, 
0.3) 

(0.5, 1) (0.5, 2) 3.91 (0.5, 
2) 3.91 (0.5, 

2) 3.91 

(0.5, 
2) 3.91 (0.5, 

2) 3.91 (0, 0) (0, 0) 3.2 (0, 0) 3.2 (0, 0) 3.2 

(2, 0.5) (2, 0.5) 3.8 (2, 
0.5) 3.8 (2, 

0.5) 3.8 

(0.3, 
0.7) 

(0.5, 1) (2, 0) 3.4 
(0, 0) 4.8 (0, 0) 4.8 

(0, 0) 4.8 (0, 0) 4.8 (0, 0) (0, 0) 4.8 

(2, 0.5) (2, 0.5) 3.2 (2, 
0.5) 3.2 (2, 

0.5) 3.2 

Results: by using five weight scenarios (1, 0), (0, 1), (0.5, 0.5), (0.7, 0.3), and (0.3, 0.7), no matter 

which solution algorithms is used, three solutions are always obtained, as visualized on objective 

space in Figure 2.7 and on X-f(X) Space in Figure 2.8. As the objective of TP-I is to maximize the 

two objective functions 𝑓x(𝑥) and 𝑓�(𝑥), in Figure 2.7, the ideal solutions should be close to the 

up-right corner of the objective space, and in Figure 2.8, the value of the objective should be as 
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high as possible. The two axes 𝑥x and 𝑥� are marked with arrows. 𝑓x(𝑥) and 𝑓�(𝑥) are the vertical 

axis of Figure 2.8 (a) and (b) respectively. 

 
(a)                                               (b)                                               (c) 

 
(d)                                               (e) 

Figure 2. 7 The Solution Points to TP-I on the Objective Space Using Five Algorithms – the 
Same 

 
(a)                                                          (b) 

Figure 2. 8 The Solution Points to TP-I on the x-f(x) Space. (a) is the 3D illustration of 
Objective 1, 𝒇𝟏(𝒙). (b) is the 3D illustration of Objective 2, 𝒇𝟐(𝒙). Since the solutions are 

the same when using different formulations and algorithms, so all three points are the same 
for all the five methods in Table 2.5. 

Observation: for a test problem with nonlinear functions and multiple objectives, but without any 

non-convex function, or the objective functions are with various unit and scale, same solutions can 
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be obtained using optimizing strategy and satisficing strategy. The results of using optimizing 

solution algorithms such as COBYLA, Trust-constr, and SLSQP are relatively sensitive to the 

starting point. 

So, in Section 2.2.3, we address “Why using the ALP, the solutions are insensitive to the starting 

point?” 

2.2.3 Method Requirement 1: Combination of Interior-Point Searching and Vertex Searching 

• Why using the ALP, the solutions are insensitive to the starting point? 

• The combination of interior-point searching and Simplex – In the ALP, there is a module 

named “XPLORE.” When using XPLORE, “m” starting points within the bounds of each 

variables are randomly selected and tested the goal-achieved value and the feasibility, 

then feasible solutions are ranked based on their goal-achieved value. The top “n” 

solutions are used one-by-one as the starting point, around which, the problem is 

linearized to a linear problem and then solved by the Dual Simplex. Usually, “m” is set 

as a number in [800, 1200], and “n” is set as a number in [5, 20]. Therefore, no matter 

what starting point is assigned by the user, using “XPLORE” allows the feasible points 

with relatively good goal-achieved values to be selected as the starting points hence to 

some extent avoid being stuck into the local optima. 

2.2.4 Toy Problem II (TP-II) 

– Problem with multiple, nonlinear, and non-convex objectives (goals) 

In TP-II, we use a non-convex objective (goal) and a cubic polynomial objective (goal). The 

formulation, visualization, solutions, and visualization of solutions on objective space and on X-
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f(X) Space are given in Table 2.6, Figure 2.9, Table 2.7, Figure 2.10, and Figure 2.11, respectively. 

For NSGA II/III, when we set the “population8” as 20, the solutions are often dominated solutions, 

and when we set the “population” as 50, the solutions are much better and can converge to 

nondominated solution under each scenario. We only give the results by using NSGA II with 

population 50 and generation 100 in Table 2.7, Figure 2.10 and Figure 2.11 because of the high 

quality of the solutions. 

Table 2. 6 The Optimization Model and Compromise DSP of the TP-II 

Strategy 
TP Optimizing Satisficing 

II 

Objective Functions 
𝑓x(𝑥) = 𝑐𝑜𝑠(𝑥1� + 𝑥2�)	

𝑓�(𝑥) =
1
2 ∙ (𝑥1 − 2)

� + (𝑥2 − 2)� + 𝑥1 ∙ 𝑥2� 
 
Constraints and Bounds 

𝑠. 𝑡. 	 �
𝑥1 ∙ 𝑥2 ≤ 1
0 ≤ 𝑥1 ≤ 2
0 ≤ 𝑥2 ≤ 2

 

 
Combination of Objective Functions 

𝑀𝑎𝑥	� 𝑤W ∙ 𝑓W(𝑥)
�

Wwx
 

Given 
𝑥1, 	𝑥2, 	𝑑1±, 	𝑑2± 

𝑓x(𝑥) = cos(𝑥1� + 𝑥2�) 

𝑓�(𝑥) =
1
2 ∙ (𝑥1 − 2)

� + (𝑥2 − 2)� + 𝑥1 ∙ 𝑥2� 
Find 

𝑥1, 	𝑥2, 	𝑑x
∓, 𝑑�

∓ 
Satisfy 
Goals:  
��(�)
x.�

 +𝑑1j=1 
��(�)
�

 +𝑑2j=1 
Constraints: 

𝑥1 ∙ 𝑥2 ≤ 1 
𝑑W
j ∙ 𝑑W

l = 0, 𝑖 = 1, 	2 
Bounds: 

0 ≤ 𝑥1, 	𝑥2 ≤ 2 
0 ≤ 𝑑1±, 	𝑑2± ≤ 1 

Minimize 
𝑍 = ∑ 𝑤W ∙�

Wwx  𝑑𝑖j 

 

8 The “population” in NSGA II is the population size, a parameter predetermined by the user. 
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(a)                                                                             (b) 

Figure 2. 9 The Two Objective Functions on the X-f(X) Plane of TP-II – The first objective 
𝒇𝟏(𝒙) is non-convex 
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Table 2. 7 Solutions to TP-II Using Each Solution Algorithm (dominated solutions, close-to-
nondominated solutions or good-enough solutions) 
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(𝑥
)  

(1, 
0) 

(0.5, 
1) 

Cannot 
manage 
nonconvex 
equations 
with 
bounds 

(0.96, 
1.06) 0.51 

(0.91, 
1.01) -0.28 

(0.5,1.8
4) 0.97 (0, 0) 1 (0, 0) (0.86, 

0.97) -0.08 

(2, 
0.5) - - (0.95, 

1.08) -0.55 

(0, 
1) 

(0.5, 
1) - - (0.91, 

1.01) -0.69 

(0.51, 
1.96) 0.3 (0.5, 2) 0.31 (0, 0) (0.51,1.

96) -0.31 - - 

(2, 
0.5) - - (2, 0.5) -2.88 

(0.5, 
0.5) 

(0.5, 
1) 

(0.96, 
1.06) 0.42 (0.91, 

1.01) -0.49 

(0.52, 
1.87) 0.54 (0.55, 

1.82) 0.64 (0, 0) (0.55, 
1.82) -0.64 - - 

(2, 
0.5) - - (2, 0.5) -1.71 

(0.7, 
0.3) 

(0.5, 
1) (0.96, 

1.06) 0.45 

(0.91, 
1.01) -0.41 

(0.5, 
1.84) 0.68 (0.56, 

1.8) 0.79 (0, 0) - - 

(2, 
0.5) - - (2, 0.5) -1.25 

(0.3, 
0.7) 

(0.5, 
1) 

(0.96, 
1.06) 0.38 (0.91, 

1.01) -0.57 (0.55, 
1.82) 0.49 

(0.55, 
1.81) 0.5 (0, 0) (0.55, 

1.82) -0.5 - - 
(0, 0) 4.8 

(2, 
0.5) - - (2, 0.5) -2.18 
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(a)                                               (b) 

 
(c)                                               (d) 

Figure 2. 10 The Solution Points to TP-II on the Objective Space Using Four Algorithms – 
Solutions returned by Trust-constr and SLSQP are not “good enough,” solutions returned 

by ALP are “good enough” and diverse, and solutions returned by NSGA II contain 
nondominated solutions but are not diverse 

 
(a)                                                          (b) 

Figure 2. 11 The Solution Points to TP-II on the x-f(x) Space – Using Trust-constraint and 
SLSQP are easy to fall into local optima. Green, blue, red, and dark red dots are the 

solutions using Trust-constr, SLSQP, ALP, and NSGA II, respectively. 

Observation: for a multi-objective (multi-goal) problem with nonlinear, non-convex functions, 

some optimizing algorithms (e.g. COBYLA) cannot manage the non-convexity, whereas some 

other optimizing algorithms are easy to converge local optima. NSGA II/III is sensitive to 

parameter setting but can return high-quality solutions (if the population size is large enough) 
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which are nondominated but not quite diverse and require relatively high computational power. 

The ALP can return “good enough” and relatively diverse solutions. 

In Section 2.2.5, we address “Why does the ALP manage non-convex problems and return 

solutions close to the nondominated solutions (the solutions returned by NSGA II/III)?” 

2.2.5 Method Requirement 2&3: Second-Order Sequential Linearization and Accumulated 

Linearization 

• Why does the ALP manage non-convex problems and return solutions close to the 

nondominated solutions (the solutions returned by NSGA II/III)? 

• Two mechanisms of the ALP allow it to linearize the non-convex function relatively 

accurately and converge with good enough solutions. 

• First, using “second-order sequential linearization.” The use of the second-order 

derivatives function (when the paraboloid being used to approximate the nonlinear 

function has two real roots) and the first-order derivatives (when the paraboloid has no 

real root) of the nonlinear functions make the linear problem relatively robust. The 

nonlinear equation is first approximated into a paraboloid and then approximated into a 

linear equation. For example, it is as shown in Figure 2.12. First, the surface of the 

nonlinear constraint is approximated into a paraboloid at point x  , represented as 

Paraboloid AB∗C∗ in Figure 2.12 (c), using second-order derivative (diagonal items of 

the Hessian matrix of the nonlinear constraint). Then, if the paraboloid has real roots, 

B∗  and C∗ , which means the paraboloid intersects with X-plane, the paraboloid is 

linearized as Plane AB∗C∗. On the contrary, if the paraboloid does not have real root, as 
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it is shown in Figure 2.13, that is when the paraboloid does not intersect with X-plane, 

it is linearized as Plane AB C  using first-order derivatives. 

• By using the second-order sequential linearization, designers can have a balance 

between linearization accuracy and computational complexity. More detailed discussion 

on the accuracy and flexibility of using second-order sequential linearization is in 

Section 5.2.1. 

 

Figure 2. 12 Illustration of the Sequential Linearization using the ALP with Different 
Views When the Quadratic Approximated Paraboloid Has Real Roots 
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Figure 2. 13 Linearization using the ALP When the  

• Second, using “accumulated constraints.” The accumulated constraints are only applied 

when the local convexity of an equation is ≥ −0.15. Such an equation can be a goal or 

an equality or inequality constraint. The local convexity is the gradient of an equation 

at a local area around a linearization point. “-0.15” is a number determined by 

experiments and heuristics. When the local convexity of an equation is greater than or 

equal to -0.15, it means the equation in the local area around the linearization point is 

either convex or slightly non-convex. In Figure 2.14 (a) and (b), the nonlinear equations 

are convex or slightly non-convex, so the equations are linearized around a new 

linearization points, and the linear constraints in multiple linearization iterations, 

defined here as “accumulated constraints,” are used to substitute the nonlinear equation. 

However, if the local convexity of an equation is < −0.15, as shown in Figure 2.14 (c), 

which means the equation is significantly non-convex, we only use a single linearized 

constraint in each iteration. 

• Using accumulated constraints, designers can manage nonconvex problems in a way, 

and deal with highly convex, nonlinear problems relatively more accurately. The details 

of this mechanism are further discussed in Section 5.2.1. 
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Figure 2. 14 Using the Accumulated Constraints from Multiple Linearization Iterations for 
Convex or Slightly Non-Convex Equations and Using Single Linearized Constraint for 

Significantly Non-Convex Constraint 

2.2.6 Toy Problem III (TP-III) 

– Problem with multiple, nonlinear, and non-convex objectives (goals) and the objectives (goals) 

are with various scales 
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When adjust the scale of one objective of TP-II, so it becomes TP-III. Accordingly, the target of 

the goal of the cDSP is enlarged by the same times, as it is shown in Table 2.8. To avoid negative 

achieved value of objectives, we add lower bound of the two objectives. The formulation, 

visualization, solutions, and visualization of solutions on objective space and on X-Plane of TP-

III are given in Table 2.8, Figure 2.15, Table 2.9, Figure 2.16, and Figure 2.17, respectively. 

Because the scale of the objectives varies dramatically, combining the objectives using weights 

makes the problem “lose sense,” which include several situations: 1) the objective with a large 

scale “dominates” the other objective, 2) the linearized function of the weighted combined 

objective at a local area is singular, 3) the scale of the second objective is so large that it dominates 

the penalty added as the constraint, which makes the constraints always be violated. 

Table 2. 8 The Optimization Model and Compromise DSP of the TP-III 

Strategy 
TP Optimizing Satisficing 

III 

Objective Functions 
𝑓x(𝑥) = 𝑐𝑜𝑠(𝑥1� + 𝑥2�)	

𝑓�(𝑥) = 25 ∙ (𝑥1 − 2)� + 50 ∙ (𝑥2 − 2)�
+ 50 ∙ 𝑥1 ∙ 𝑥2� 

Constraints and Bounds 

𝑠. 𝑡. 	

⎩
⎪
⎨

⎪
⎧
𝑥1 ∙ 𝑥2 ≤ 1
𝑓x(𝑥) ≥ 0
𝑓�(𝑥) ≥ 0
0 ≤ 𝑥1 ≤ 2
0 ≤ 𝑥2 ≤ 2

 

Combination of Objective Functions 

𝑀𝑎𝑥	� 𝑤W ∙ 𝑓W(𝑥)
�

Wwx
 

Given 
𝑥1, 	𝑥2, 	𝑑1±, 	𝑑2± 

𝑓x(𝑥) = cos(𝑥1� + 𝑥2�) 
𝑓�(𝑥) = 25 ∙ (𝑥1 − 2)� + 50 ∙ (𝑥2 − 2)� + 50

∙ 𝑥1 ∙ 𝑥2� 
Find 

𝑥1, 	𝑥2, 	𝑑x
∓, 𝑑�

∓ 
Satisfy 
Goals:  
��(�)
x.�

 +𝑑1j=1 
��(�)
�  

 +𝑑2j=1 
Constraints: 

𝑥1 ∙ 𝑥2 ≤ 1 
𝑓x(𝑥) ≥ 0 
𝑓�(𝑥) ≥ 0 

𝑑W
j ∙ 𝑑W

l = 0, 𝑖 = 1, 	2 
Bounds: 

0 ≤ 𝑥1, 	𝑥2 ≤ 2 
0 ≤ 𝑑1±, 	𝑑2± ≤ 1 

Minimize 
𝑍 = ∑ 𝑤W ∙�

Wwx  (𝑑𝑖j + 𝑑𝑖l) 
𝑑W
j ∙ 𝑑W

l = 0, 𝑖 = 1, 	2 
Bounds: 
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0 ≤ 𝑥1, 	𝑥2 ≤ 2 
0 ≤ 𝑑1±, 	𝑑2± ≤ 1 

Minimize 
𝑍 = ∑ 𝑤W ∙�

Wwx  𝑑𝑖j 

 
(a)                                                                             (b) 

Figure 2. 15 The Two Objective Functions of TP-III on the x-f(x) Space – The second 
objective 𝒇𝟐(𝒙) is enlarged by 50 times versus that of TP-II 

Table 2. 9 Solutions to TP-III (dominated solutions, close-to-nondominated solutions or 
good-enough solutions) 
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(1, 0) 
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Cannot 
manage 
nonconvex 
equations 
with 
bounds 

All solutions 
violate one or 
more 
constraints 

All 
solutions 
violate one 
or more 
constraints 

(0.51,
1.82) 1 

P=20: 
(0.55, 1.85) 
P=50: 
(0.515, 1.82) 

P=20: 
0.99 
P=50: 
1 

(0, 0) 

(2, 
0.5) 

(0, 1) 

(0.5, 
1) 

(0.51, 
1.96) 15.27 

P=20: 
(0.52, 1.92) 
P=50: 
(0.509, 1.96) 

P=20: 
14.86 
P=50: 
15.36 
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(0.5, 
0.5) 

(0.5, 
1) (0.55, 
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(2, 
0.5) 

(0.53, 1.88) 7.78 

(0.7, 
0.3) 

(0.5, 
1) 

(0.55, 
1.82) 4.9 

P=20: 
(0.55, 1.82) 
P=50: 
(0.53, 1.87) 

P=20: 
4.9 
P=50: 
5.01 

(0, 0) 

(2, 
0.5) 

(0.3, 
0.7) 

(0.5, 
1) 

(0.55, 
1.82) 10.01 

P=20: 
(0.54, 1.85) 
P=50: 
(0.53, 1.89) 

P=20: 
10.49 
P=50: 
10.6 

(0, 0) 

(2, 
0.5) 

 

 
(a)                                            (b)                                            (c) 

Figure 2. 16 The Solution Points to TP-III on the Objective Space Using Two Algorithms – 
Solutions returned by NSGA II are closer to the nondominated solution and more diverse 

but sensitive to parameter setting and require higher computational power. 

 
(a)                                                          (b) 

Figure 2. 17 The Solution Points to TP-III on the X-f(X) Plane – Little performance 
differences between ALP and NSGA II 



 62 

Observation: for a multi-objective (multi-goal) problem with nonlinear, non-convex functions, and 

the scale of the objectives varies largely, why some optimizing algorithms (e.g. COBYLA) cannot 

work it out? The answer is given as follows. 

2.2.7 Method Requirement 4: Using Goals and Minimizing Deviation Variables Instead of 

Objectives 

• Using cDSP, designers minimize the deviation variables that measure the distance between 

the real achieved value of a goal and the target of the goal. 

𝐦𝐢𝐧	𝒁 = ∑ 𝒘𝒊 ∙𝟐
𝒊w𝟏  (𝒅𝒊j + 𝒅𝒊l)      Equation 2. 9 

• So, the Lagrange equation does not depend on decision variables X: 

𝝏𝑳(𝑿,𝝁,𝝀)
𝝏𝑿

≡ 𝟎         Equation 2. 10 

• So, the variation of the decision variables does not affect the feasibility of a 

solution. 

• The goal does not dominate one another in completion (or achievement, or 

fulfillment) due to the difference in the actual achieved value: 

𝒇𝒊(𝒙)
𝑻𝒊

≅ 𝒇𝒋(𝒙)

𝑻𝒋
, given that 𝑻𝒊 ≫ 𝑻𝒋      Equation 2. 11 

Both the first-order and the second-order Lagrange equations are functions of parameters 𝒫 and 

decision variables 𝑥 of the decision model, and Lagrange multipliers 𝜇, 𝜆. 

𝛁𝒙𝑳(𝒙, 𝝁, 𝝀) = 𝔂(𝓟, 𝒙, 𝝁, 𝝀)       Equation 2. 12 

𝛁𝒙𝒙𝟐 𝑳(𝒙, 𝝁, 𝝀) = 𝛁𝒙𝔂(𝓟, 𝒙, 𝝁, 𝝀) = 𝔂’¸𝓟’, 𝒙¹    Equation 2. 13 
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Hence, whether a local optimal solution 𝑥∗ can be maintained as an optimal solution (given that 

the model may be incomplete, and something may change but may not be captured into the 

decision model) depends on the balance of the two equations, and such a balance depends on the 

value and stability of the variables and coefficients {𝑥, 𝒫, 𝜇, 𝜆} . Suppose mathematically, we 

identify a local optimal solution 𝑥∗ to an engineering-design problem, however, if any uncertainty 

happens to any parameter or any unparameterized factors that breaks the balance of Equation 2.12 

and 2.13, as Equation 2.14 and 2.15, then we lose 𝑥∗ as the solution. In fact, this happens quite 

often to engineering problems because models are always incomplete and inaccurate and with 

different levels of fidelity. Suppose for a N-dimension, Q-parameter problem, the probability of 

the uncertainty to a parameter or an equation is 𝑃, and the probability of such an uncertainty breaks 

the Kuhn-Tucker conditions is 𝑝, then the probability of a local optimal solution 𝑥∗ to stay optimal 

under uncertainty is ℙ(𝑥∗|𝑃), as Equation 2.16 shows, assuming the superposition and mutual 

influence does not cause any greater uncertainty. However, Equation 2.16 only represents the 

parameterizable uncertainties, so we use “almost equal to” instead of “equal to.” The actual 

ℙ(𝑥∗|𝑃)  considering the mutual influence among parameterizable uncertainties and 

unparameterizable uncertainties can be even larger. 

𝛁𝒙𝑳¸𝒙∗¿, 𝝁À, 𝝀Á¹ ≠ 𝔂(𝓟Â, 𝒙∗¿, 𝝁À, 𝝀Á)      Equation 2. 14 

𝛁𝒙𝒙𝟐 𝑳¸𝒙∗¿, 𝝁À, 𝝀Á¹ ≠ 𝛁𝒙𝔂(𝒙∗¿, 𝝁À, 𝝀Á)      Equation 2. 15 

ℙ(𝒙∗|𝑷) ≈ ∏ �𝟏 − 𝒑(𝓟𝒒¿ |𝑷)�𝑸
𝒒w𝟏 ∏ [𝟏 − 𝑷(𝒙𝒏Ê|𝑷)]𝑵

𝒏w𝟏 ∏ [𝟏 − 𝑷(𝝁ÌÀ |𝑷)]𝒎
𝒊w𝟏 ∏ �𝟏 − 𝑷(𝝀ÍÂ |𝑷)�𝓵

𝒋w𝟏  
          Equation 2. 16 

To avoid “no solution” caused by the strong convexity of the objective, or to avoid losing a solution 
due to uncertainties that breaks the Kuhn-Tucker conditions, we turn to satisficing solutions 𝒙𝒔 
instead of optimal solutions 𝒙∗ . We obtain satisficing solutions by using goals instead of 
objectives. A target value 𝒕 as the right-hand side of the objective is assigned thereby the objective 
𝒇(𝒙) becomes a goal 𝑮(𝒙), whose position is fixed in the feasible solution space. In 𝓕,  
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𝓕 = E𝒙 ∈ ℝ𝒏|𝒈𝒊(𝒙) ≥ 𝟎, 𝒊 = 𝟏,…𝒎, 𝒉𝒋(𝒙) = 𝟎, 𝒋 = 𝟏,…𝓵	P  Equation 2. 17 

𝓕 is the feasible space bounded by all active constraints and bounds, in which, a point, or several 
points, or an area, that is/are on the goal set 𝑮(𝒙) or closest to it (using Euclidean distance in this 
chapter) are the satisficing solution(s) 𝒙𝒔, see Equation 2.18 and 2.19 and Figure 2.18. Using 
deviation variables 𝒅 = (𝒅j, 𝒅l) to measure the under-achievement and over-achievement of a 
goal versus its target and minimizing the deviation variables, the goal 𝑮(𝒙) becomes an equality 
constraint to be satisfied, the deviation variables 𝒅 become decision variables that form the new 
objective function 𝔃(𝒅), and the original decision variables 𝒙 become auxiliary variables that do 
not show up in the objective. 

𝑮(𝒙):	𝒇(𝒙) + 𝒅j − 𝒅l = 𝒕, where 𝟎 ≤ 𝒅j, 𝒅l ≤ 𝟏, 𝒅j ∙ 𝒅l = 𝟎  Equation 2. 18 

Minimize: 𝔃(𝒅)        Equation 2. 19 
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(a)     (b) 

 
(c) 

Figure 2. 18 Satisficing solutions in different cases 

Such a construct is known as the compromise Decision Support problem (cDSP) (Mistree, Hughes 
et al. 1993). 

Given: 𝒫, 𝑡 

Find: 𝑥, 𝑑 
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Satisfy:  

𝑥 ∈ ℱ: {𝑔(𝑥) ≥ 0, ℎ(𝑥) = 0, 𝑙𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑	 ≤ 𝑥 ≤ 𝑢𝑝𝑝𝑒𝑟	𝑏𝑜𝑢𝑛𝑑}, 

𝐺(𝑥), 0 ≤ 𝑑j, 𝑑l ≤ 1, 𝑑j ∙ 𝑑l = 0 

Minimize:  𝓏(𝑑) 

Using the cDSP construct, the nonlinear problem is linearized using the Adaptive Linear 
Programing (ALP) algorithm (Mistree and Kamal 1985, Mistree, Hughes et al. 1993), so that the 
linearized problem can be solved using Simplex algorithm and a vertex solution is obtained. The 
benefits of using a vertex solution versus an interior point solution are 1) a vertex solution is a 
good enough solution that guarantees the closest distance to the target, and 2) it does not require 
computing power to search for better interior point solutions.  

There are other benefits of using cDSP to manage nonlinear, multi-goal problems, regarding the 
capacity to identify satisficing solutions that are relatively insensitive to uncertainties. Suppose 
there are parameters 𝓹  and deviation variables 𝒅  to formulate the merit function 𝔃(𝓹, 𝒅) , 
therefore, we identify satisficing solution 𝒙𝒔  that obtains the minimal 𝔃(𝓹, 𝒅) . 𝒙𝒔  is relative 
insensitive to uncertainties because the probability of any uncertainty breaking the Kuhn-Tucker 
conditions of a cDSP is much less (than that of an optimization problem without a right-hand side 
of the objective), as Equation 2.20 – 2.23 show. Usually, the combination form of 𝒅 is linear, 
because for typical engineering problems, we do not expect too complex a merit function unless 
any domain knowledge on goal(s) indicate the designer to do so, hence the first-order Lagrange 
equation only consists of 𝓹, and the second-order Lagrange equation constantly equals to zero. 
So, this formulation significantly increases ℙ(𝒙𝒔|𝑷) , the probability of maintaining 𝒙𝒔  as a 
satisficing solution under uncertainties. 

𝛁𝒅𝑳(𝒙𝒔, 𝒅, 𝝁, 𝝀) = 𝛁𝒅𝔃(𝒅) + ∑ 𝝁𝒊𝛁𝒅𝒈𝒊(𝒙𝒔)𝒎
𝒊w𝟏 − ∑ 𝝀𝒋𝛁𝒅𝒉𝒋(𝒙𝒔)𝓵

𝒋w𝟏 − 𝝀𝓵l𝟏𝛁𝒅𝑮(𝒙𝒔, 𝒅) =
𝛁𝒅𝔃(𝒅) + 𝟎 − 𝟎 ± 𝟏 = 𝛁𝒅𝔃(𝒅) ± 𝟏 = 𝔂(𝓹) ± 𝟏    Equation 2. 20 

𝛁𝒅𝒅𝟐 𝑳(𝒙𝒔, 𝒅, 𝝁, 𝝀) = 𝛁𝒅𝒅𝟐 𝔃(𝒅) ≡ 𝟎      Equation 2. 21 

ℙ(𝒙𝒔|𝑷) ≈ ∏ [𝟏 − 𝒑(𝓹𝒓Ê|𝑷)]𝑹
𝒓w𝟏       Equation 2. 22 

ℙ(𝒙∗|𝑷) ≪ ℙ(𝒙𝒔|𝑷)        Equation 2. 23 

For a n-dimension, K-goal problem, by adding deviation variables, we increase the dimensionality 

of a design problem, from [𝑥x, 𝑥�, …	𝑥U]�to [𝑥x, 𝑥�, …	𝑥U, 𝑑xj, 𝑑xl, 𝑑�j, 𝑑�l, …𝑑Új, 𝑑Úl]�, thus make 
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it possible to absorb the risk of uncertainty that breaks the second-order sufficient conditions. This 

results in a robust solution, a solution that is relatively insensitive to uncertainties.  By returning 

solutions consisting only of the original decision variables, 𝑥 = [𝑥x, 𝑥�, …	𝑥U]�, we decrease the 

dimensionality. Such “dimension expansion and reduction” ensures a solution that is relatively 

insensitive to the uncertainties embodied in the modeling of an optimization problem. Therefore, 

we use compromise Decision Support Problems (cDSP) to formulate many-goal problems. For 

additional information see (Mistree, Patel et al. 1994). 

For a many-goal problem, the formulation of the merit function reflects how the goals are managed, 

especially their priorities. The ways of combining the goals impact the design performance. 

Hereafter, we focus on exploring the ways of combining the goals in detail in Chapter 6. 

2.2.8 Toy Problem IV (TP-IV) 

– Problem with multiple, nonlinear, and non-convex objectives (goals), the objectives (goals) 

are with various scales, and the target of the goals with various levels of achievability (the 

aspiration of one goal is not in feasible space) 

To check out that, if it is the formulation construct, or the solution algorithm, or both, that make 

the solutions different, we formulate the problem into a cDSP, use the optimizing algorithms and 

the satisficing algorithm to solve the cDSP, and compare the results. It means that, if the results 

are the same, then it is the formulation format (objective versus goal) that leads to the difference; 

otherwise, it is the solution algorithm that leads to the difference. 

In TP-IV, one more complexity is managed – the targets of the goals are with various levels of 

achievability, which often takes place in engineering-design problems, so the aspiration of one 
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goal is not in feasible space. This means the upper limit of some deviation variables (which is 1) 

must be violated. 

The cDSP formulation, visualization, solutions, and visualization of solutions on objective space 

and on X-Plane of TP-IV are given in Table 2.10, Figure 2.19, Table 2.11, Figure 2.20, and Figure 

2.21, respectively. 

Table 2. 10 The Compromise DSP of the TP-IV 

TP The Compromise DSP 

IV 

Given 
𝑥1, 	𝑥2, 	𝑑1±, 	𝑑2± 

𝑓x(𝑥) = cos(𝑥1� + 𝑥2�) 
𝑓�(𝑥) = 25 ∙ (𝑥1 − 2)� + 50 ∙ (𝑥2 − 2)� + 50 ∙ 𝑥1 ∙ 𝑥2� 

Find 
𝑥1, 	𝑥2, 	𝑑x

∓, 𝑑�
∓ 

Satisfy 
Goals:  
��(�)
x.�

 +𝑑1j=1 
��(�)
�  

 +𝑑2j=5 
Constraints: 

𝑥1 ∙ 𝑥2 ≤ 1 
𝑑W
j ∙ 𝑑W

l = 0, 𝑖 = 1, 	2 
Bounds: 

0 ≤ 𝑥1, 	𝑥2 ≤ 2 
0 ≤ 𝑑1±, 	𝑑2± ≤ 1 

Minimize 
𝑍 = ∑ 𝑤W ∙�

Wwx (𝑑𝑖j + 𝑑𝑖l)  
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(a)                                                                             (b) 

Figure 2. 19 The Left-Hand Side (Objective Function) and the Right-Hand Side (Target) of 
the Two Goals of TP-IV on the X-f(X) Space 
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Table 2. 11 Solutions to TP-IV (close-to-nondominated solutions or good-enough solutions) 
W

ei
gh

t 

St
ar

tin
g 

po
in

t 

COBYLA Trust-constr SLSQP ALP NSGA II/III – 
Population (P)=50 

So
lu

tio
n  

�
𝑤
W
∙𝑓
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�
𝑤
W
∙𝑓
W

� W w
x

( 𝑥
) 

(1, 0) 

(0.5, 1) 

Cannot 
manage 
nonconvex 
equations 
with bounds 

All solutions 
violate one 
or more 
constraints 

All 
solutions 
violate one 
or more 
constraints 

(0.53,1.75) 0.8 (0.51, 1.88) 0.799 (0, 0) 

(2, 0.5) 

(0, 1) 

(0.5, 1) 

(0.51, 1.97) 15.36 (0.51, 1.96) 14.81 (0, 0) 

(2, 0.5) 

(0.5, 
0.5) 

(0.5, 1) 

(0.57, 1.74) 7.29 (0.53, 1.88) 7.21 (0, 0) 

(2, 0.5) 

(0.7, 
0.3) 

(0.5, 1) 

(0.57, 1.74) 4.69 (0.57, 1.75) 4.6 (0, 0) 

(2, 0.5) 

(0.3, 
0.7) 

(0.5, 1) 

(0.57, 1.74) 9.88 (0.53, 1.88) 10.54 (0, 0) 

(2, 0.5) 
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(a)                                                    (b) 

Figure 2. 20 The Solution Points to TP-IV on the Objective Space Using Two Algorithms – 
NSGA II finds more nondominated solutions, whereas ALP finds solutions close to 

nondominated solutions but with better weighted combined goal-achieved value 

 
(a)                                                          (b) 

Figure 2. 21 The Solution Points to TP-IV on the X-f(X) Space – Little performance 
differences between ALP and NSGA II 

Observation: cDSP and ALP are designed to formulate and explore engineering-design problems 

with various completabilities of the goals: 

𝒇𝒊(𝒙)
𝑻𝒊

≫ 𝒇𝒋(𝒙)

𝑻𝒋
         Equation 2. 24 

Using the ALP, good enough solutions (comparing with the solutions from NSGA II) can be 

obtained, whereas using optimizing algorithms, no feasible solutions are returned. 
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In Section 2.2.9, we address “Why using ALP allows designers to get good enough solutions to a 

cDSP with various completabilities of the goals, but using optimizing algorithms (other than NSGA 

II) does not?” 

2.2.9 Method Requirement 5: Allowing Some Violations of Soft Requirements, such as the 

Bounds of Deviation Variables 

• Why using ALP allows designers to get good enough solutions to a cDSP with various 

completabilities of the goals, but using optimizing algorithms (other than NSGA II) does 

not? 

• When �Û(�)
�Û

≫ �Ü(�)

�Ü
, especially when 𝑑]jcannot meet its upper limit, that is this bound 

must be violated: 

𝒅𝒋j ≤ 𝟏         Equation 2. 25 

• Because optimization algorithms (such as Trust- constr and SLSQP) treat all constraints 

and bounds priorities equally, if at least one of the constraints and bounds must be 

violated, the problem is considered as infeasible. No feasible solutions can be returned 

using optimizing algorithms. 

• Unlike optimizing algorithms, using the ALP, the constraints and the bounds of the 

system variables are the first priority, and the bounds of the deviation variables are the 

second priority. If the violation of any deviation bound allows a point 𝑋Þ in the feasible 

area bounded by the constraints and the bounds of system variables to be found, then 

𝑋Þ is returned as a solution. So, for an n-dimension, m-constraint (with p inequality 

constraints and m-p equality constraints), k-goal cDSP: 
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𝑋Þ is a satisficing solution, 

if and only if 

�Û¸ßà¹
�Û

+ 𝑑Wj − 𝑑Wl = 1, ∀𝑖 = 1,…𝑘 //Goal functions hold at 𝑋Þ 

and 

𝑔W(𝑋Þ) ≥ 0, ∀𝑖 = 1,…𝑝	//Inequality constraints are satisfied at 𝑋Þ 

and 

𝑔W(𝑋Þ) = 0, ∀𝑖 = 𝑝 + 1,…𝑚	//Equality constraints are satisfied at 𝑋Þ 

and 

𝑙𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑 ≤ 𝑋Þ ≤ 𝑢𝑝𝑝𝑒𝑟	𝑏𝑜𝑢𝑛𝑑 

and 

min(𝑙𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑 − 𝑑W∓), ∀𝑖 = 1,…𝑘 //Minimize the violation of deviation bunds 

and 

min(𝑑W∓ − 𝑢𝑝𝑝𝑒𝑟	𝑏𝑜𝑢𝑛𝑑), ∀𝑖 = 1,…𝑘 //Minimize the violation of deviation bunds 

2.2.10 Toy Problem V (TP-V) 

– Problem with three nonlinear objectives (goals), non-convex functions, the objectives (goals) 

are with various scales, and the target of the goals with various levels of achievability 

Problem statement of TP-V: in the late 1800s, Ringling Bros and Barnum and Baily Circus was 

looking to establish dimensions of a new pedestal for their circus elephant Jumbo; see Figure 2.22. 
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They would play a trick that involved a support pedestal where Jumbo would perform a one-legged 

handstand. The cost of manufacturing must be minimized, which depends on its thickness, width 

and the amount of material it would consume. And it must be as tall as possible for a wow factor. 

And finally, the pedestal must be wide enough to ensure Jumbo has enough room to safely stand 

on one foot. This means the goals of the design are to minimize the manufacturing cost, maximize 

the height, and maximize the outer radius. A material of 2024 Aluminum with a modulus of 10600 

ksi and a density of 0.1 𝑙𝑏/(𝑖𝑛)� has been selected. Jumbo's foot is approximately 25" in diameter 

so the pedestal must also be greater than 25". Jumbo weighs 13,560lb and stands 13.5ft tall. Use a 

factor of safety of 1.5. 

 

Figure 2. 22 The Functionality of an Elephant Stand (TP-V) 

Given a certain type of material, design a cylinder (the “elephant stand”) as it is shown in Figure 

2.23. The cylinder has two parts joined together. The upper half is a tube. The designer’s interest 

is to determine its thickness, radius, and height that best satisfy the goals identified. The lower half 

is a 4-inch-height solid base. The goals identified by the designer include: Minimizing the 

manufacturing cost, maximizing the height and maximizing the outer diameter. Requirements 

include: the upper and lower limit of the parameters that the cylinder can physically reach. 
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Figure 2. 23 The Dimension of an Elephant Stand (TP-V) 

The word formulation and mathematical formulation of the cDSP of TP-V are in Table 2.12. There 

are intermediate variables in TP-V that make the problem a high-dimensional problem hard to be 

visualized using three-dimensional coordinate system, so we skip the visualization and show the 

solutions in Table 2.13. Because the optimizing algorithms other than NSGA II cannot deal with 

TP-V due to its features (three nonlinear goals, non-convex functions, the goals are with various 

scales, and the target of the goals with various levels of achievability), we only show the results 

by using ALP and NSGA II. Since both ALP and NSGA II are insensitive to starting point, we do 

not try different starting points for TP-V. To explore the different priorities of the goals, we use 

13 weight scenarios. To simplify the format of the table, we only show the goal achieved value 

𝑓W(𝑥). For three weight scenarios, (1, 0, 0), (0, 1, 0), and (0.2, 0.6, 0.2), the NSGA II solutions 

dominate the ALP solutions, that is for every goal, the achieved value is better. For the other ten 

weight scenarios, NSGA II solutions and ALP solutions do not dominate each other. 
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Table 2. 12 The Word-Form and Math-Form of the Compromise DSP of TP-V 

TP The Word Form The Math Form 

V 

Given 
System parameters 
Material – 2014 Aluminum 
Elastic modulus for the material 
Safety factor 
Yield stress for the material 
Density of the material 
Load (elephant’s weight) 
Moment of inertia for the cylindrical section 
Maximum normal stress 
Maximum buckling stress for a fixed free 
column 
Cost target 
Height target 
OR target 
Find 
System variables 
Radius 
Thickness 
Height 
Deviation variables 
Satisfy 
System constraints  
Reaching the minimum outer diameter 
Not exceeding a certain height-to-width ratio 
Reaching the stress requirement 
Not exceeding the maximum weight 
Not exceeding the maximum load in stand. 
System goals  
Goal 1: reaching minimum cost target  
Goal 2: reaching maximum height target 
Goal 3: reaching maximum outer radius 
target 
Bounds  
The upper and lower limit of Radius 
Thickness 
Height 
Minimize 
The deviation function 

Given 
E = 10600000 
OR=R+T 
SF  = 1.5 
SIGY = 11000 
P    = 12000 
PI   = 2*ACOS(0.0) 
RHO  = 0.1 

I =
π
4 ∗

[(R + T)� − R�] 
W1 = π ∗ [(R + T)� − R�] ∗ (H − 4) 

W2 = π ∗ (R + T)� ∗ 4 
W = (W1 +W2) ∗ RHO 

STR =
P

π ∗ [(R + T)� − R�] 

PCR =
π� ∗ E ∗ I
4 ∗ H�  

COST = e
�.ð
ñ ∗ e

�
ò ∗ W 

Cost target = 5000 
Height target = 180 
OR target = 15 
Find 
System variables 
R: Radius 
T: Thickness 
H: Height 
Deviation variables 
dôl: over achievement of Goal i, where i=1,2,3 
dôj: under-achievement of Goal i, where i=1,2,3 
Satisfy 
System constraints  
minOD: minimum outer diameter: 2 ∗ R + 2 ∗ T ≥ 6 
(CO1) 
heiwid: height to width ratio: R + T − 0.03 ∗ H ≥ 0 
(CO2) 
stress: minimum stress in stand: ö÷øù

öú
− STR ≥ 0 

(CO3) 
weight: maximum weight: 1000 −W ≥ 0 (CO4) 
buckle: maximum load in stand: ûüò

ú
− P ≥ 0 (CO5) 

System goals  
Goal 1: minimum cost: ýþÿ!

ýþÿ!	!"#$%!
+ dxj − dxl = 1 

(G1) 
Goal 2: maximum height: &%ô$&!

&%ô$&!	!"#$%!
+ d�j − d�l =

1 (G2) 
Goal 3: maximum outer radius: 'ò

'ò	!"#$%!
+ d�j −

d�l = 0 (G3) 
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Bounds  
3 ≤ R ≤ 45 
0.5 ≤ T ≤ 2.5 
100 ≤ H ≤ 120 

Minimize 
The deviation function 
Z = ∑ wô ∙�

ôwx (dij + dil),∑ wô = 1�
ôwx  

Table 2. 13 Solutions to TP-V – the nondominated solution of each scenario is highlighted, 
the solution that gives the better achieved value of a goal but is not a nondominated 

solution is underlined 

W
ei

gh
t 

Sc
en

ar
io

 Weight ALP NSGA II/III – Population (P)=50 

𝑤x 𝑤� 𝑤� min𝑓x(𝑥) max𝑓�(𝑥) max𝑓�(𝑥) min𝑓x(𝑥) max𝑓�(𝑥) max𝑓�(𝑥) 

1 1 0 0 5507.8 100 4.38 5000 102.56 4.98 

2 0 1 0 53530.4 118.8 3.59 25768 120 4.89 

3 0 0 1 80580.1 100 10.44 94863 114.156 15 

4 0.6 0.2 0.2 5340.06 110.6 5.09 5000 100 7.44 

5 0.2 0.6 0.2 6079.2 117.5 6.08 5892.7 120 7.05 

6 0.2 0.2 0.6 6547.6 114.7 6.82 51197 120 15 

7 0.5 0.35 0.15 6079.2 117.5 6.08 5000 100 7.44 

8 0.15 0.5 0.35 6114.2 119.96 6.12 7848.7 108.15 11.29 

9 0.35 0.15 0.5 5564.9 106.1 6.33 5208.9 100 8.02 

10 0.7 0 0.3 5269.2 109.2 5.13 5000 100 7.43 

11 0.3 0.7 0 5821.1 120 5.06 5691.7 120 5.81 

12 0 0.3 0.7 94608.4 110 10.33 149720 120 15 

13 0.33 0.33 0.33 6079.2 117.5 6.08 5060.5 100 7.66 

If we visualize the achieved values of each goal under thirteen weight scenarios separately using 

box charts (Figure 2.24), the distribution of the goal-achieved values from using ALP and NSGA 

II vary. The achieved value of Goal 1 (Minimizing Cost) and Goal 2 (Maximizing Height) by using 

ALP is slightly better more stable than that of using NSGA II; see Figure 2.24 (a) and (b). 

However, the achieved value of Goal 3 (Maximizing Outer Radius) by using NSGA II is much 
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better than that of using ALP; see Figure 2.24 (c). Therefore, even using the same weights to 

combine the goals, solutions and goal-achieved value are different. 

 
(a)                                            (b)                                            (c) 

Figure 2. 24 The Box Chart Solution Points to TP-V on the Objective Space Using Two 
Algorithms 

We visualize the solution points on the “deviation space” in Figure 2.25 from different angles. The 

three axes are 𝑑xl, 𝑑�j, and 𝑑�j. The ideal solution point (or the Utopian point) which is not in the 

feasible space is the origin O (0, 0, 0) of this 3D coordinate system because at this point all three 

goals reach the target. So, the solution points close to O are more desired because they get better 

goal-achieved values. The round dots are solutions using the ALP. The triangle dots are solutions 

using NSGA II. From Figure 2.25, we cannot conclude that one algorithm performs obviously 

better than the other, but for Goal 3, NSGA II solutions are much closer to O. However, the 

solutions with low 𝑑�j have much higher 𝑑xl,	which means to obtain a better outer diameter of the 

elephant stand, an extremely high cost is required. So, we can conclude that using NSGA II allows 

designers to identify solutions to better achieve Goal 3 by sacrificing Goal 1. 
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(a)                                            (b)                                            (c) 

Figure 2. 25 The Solution Points to TP-V on the Deviation Space Using Two Algorithms – 
Round dots are solutions using the ALP and Triangle dots are solutions using NSGA II 

Observation: for an engineering-design problem with three nonlinear goals, non-convex functions, 

the goals are with various scales, and the target of the goals with various levels of achievability, 

using ALP allows designers to get good enough solutions that are close to the nondominated 

solutions obtained by using NSGA II. However, as we give the drawbacks of using NSGA II earlier 

in this section, designers cannot get insight or knowledge on the problem formulation and 

improvement, we conclude that the formulation of cDSP and the use of ALP can give satisficing 

solutions and knowledge on problem formulation and system behavior within a relatively low 

computational complexity. 

2.3 Summary of Differences between Optimizing and Satisficing Strategy 

2.3.1 Differences between Optimizing and Satisficing Strategy 

Why do cDSP, ALP, and DSIDES work for nonlinear, non-convex, multi-objective, multi-unit, 

and evolving-target Problems? 

In summary, there are four advantages using satisficing strategy, which in this dissertation, is 

realized by using cDSP, ALP and DSIDES. The advantages include (Table 2.1): 

The advantage in formulation:  
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• Using Goals and Minimizing Deviation Variables Instead of Objectives. 

o The benefits are: At a solution point, only the necessary Kuhn-Tucker conditions 

are met, whereas the sufficient Kuhn-Tucker conditions do not have to be met. 

o Therefore, designers have a higher chance of finding a solution and a lower chance 

of losing a solution due to parameterizable and unparameterizable uncertainties. 

The advantages in approximation: 

• Using second-order sequential linearization 

o The benefit is: Designers can have a balance between linearization accuracy and 

computational complexity. 

• Using accumulated linearization 

o The benefit is: Designers can manage nonconvex problems in a way, and deal with 

highly convex, nonlinear problems relatively more accurately. 

The advantage in exploration:  

• Combining interior-point searching and vertex searching: 

o The benefit is: Designers can avoid being stuck into local optimum to some extent 

and identify satisficing solutions relatively insensitive to starting points changing. 

The advantage in evaluation: 

• Allowing some violations of soft requirements, such as the bounds of deviation variables. 

o The benefits are: Designers can manage rigid requirements and soft requirements 

in different ways to ensure feasibility. 

o As a result, goals and constraints with different scale can be managed. 
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2.3.2 Summary of Differences among cDSP, Goal Programming, and Mathematical 

Programming 

- Why We Choose cDSP? 

Based on the previous discussion – the features each method can or cannot manage in Section 1.22, 

Table 1.3, the mathematical explanation regarding meeting the Kuhn-Tucker conditions in Section 

2.1 and using different methods to solve five toy problems and get different solutions in Section 

2.2, we summarize the differences among cDSP, Goal Programming, and Mathematical 

Programming seeking optimal solutions as follows. 

Stage 1: Formulation. First, the cDSP is a hybrid between mathematical programming (seeking 

optimal solutions) and goal programming. In a cDSP there are both constraints and goals. In goal 

programming, there are no constraints9. In a cDSP, the constraints are requirements (demands) that 

cannot be violated, whereas the goals are soft requirements (wishes) whose targets may not be 

reached but we want to minimize the distance between the targets and our results. The constraints 

and goals can be linear or non-linear (convex or non-convex) or both, and equality or inequalities 

or both.  The benefit of being able to model both demands and wishes in one formulation is 

attractive in design.  Due to the complexity of the supply chain with mass customization, the 

resulting cDSP usually entails dealing with non-convex and convex constraints and goals. The 

algorithm for solving the cDSP is documented in (Mistree, Hughes et al. 1993). 

 

9 Although in later publications, the formulation of Goal Programming allows managing constraints. By the time 
Mistree and the coauthors published their work on cDSP and ALP (Mistree, Hughes et al. 1993), it was generally 
accepted that in Goal Programming, there are only “soft requirements” as goals but no “rigid requirements” as 
constraints. 
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Second, in a cDSP, we use deviation variables to assess the extent by which we over-achieve or 

under-achieve a goal. By adding the deviation variables, we ensure that the solutions to a cDSP 

satisfies the necessary Kuhn-Tucker condition. The solutions do meet the test of sufficiency to 

guarantee a “true” or “global” optimum. A satisficing solution to a cDSP is the mapping of an 

optimal solution to a lower-dimensional space. The dimensions being reduced consist of the 

deviation variables 𝐷 = [𝑑xj, 𝑑xl, 𝑑�j, 𝑑�l, …𝑑*j, 𝑑*l]�. By adding deviation variables, we increase 

the dimensionality of a design problem, from [𝑥x, 𝑥�, …	𝑥U]� to 

[𝑥x, 𝑥�, …	𝑥U, 𝑑xj, 𝑑xl, 𝑑�j, 𝑑�l, …𝑑*j, 𝑑*l]�, thus making it possible to absorb the risk of uncertainty 

at the constraint boundary. This results in a robust solution, that is, one that is relatively insensitive 

to uncertainties.  By returning solutions consisting only of system variables, as is the case in 

solving an optimization problem,  𝑋 = [𝑥x, 𝑥�, …	𝑥U]� , we decrease the dimensionality. Such 

“dimensionality reduction” does not result in a solution that is relatively insensitive to the 

uncertainties embodied in the modeling of the constraints of an optimization problem. For 

additional information see (Mistree, Patel et al. 1994). 

Third, although a cDSP has similarities with the auxiliary problem of a linear programming 

problem when using the two-phase method10, there are differences. For a linear programming 

problem (P), when we relax the m equality constraints 𝐴 ∙ 𝑋 = 𝑏 to m inequality constraints 𝐴 ∙

𝑋 + 𝑈 = 𝑏, by adding slack variables (or artificial variables) U = [𝑢x, 𝑢�, …	𝑢v]�, and change the 

objective function from min𝐶� ∙ 𝑋 to min∑ 𝑢Wv
Wwx , an auxiliary problem (A) of the original linear 

 

10  The introduction of the auxiliary problem is given at 
“http://www.math.uwaterloo.ca/~hwolkowi/henry/teaching/f05/350.f05/L18.pdf” 
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programming problem (P) is created. If a solution [𝑥x, 𝑥�, …	𝑥U, 𝑢x, 𝑢�, …	𝑢v]� is optimal for (A) 

with 𝑢ô = 0, 𝑖 = 1, 2, …𝑚, then the solution [𝑥x, 𝑥�, …	𝑥U]� is feasible for (P).  

There are similarities between a cDSP and an auxiliary problem (A). The slack variables U in the 

auxiliary problem are similar to the deviation variables 𝐷  in a cDSP, if we treat the equality 

constraints 𝐴 ∙ 𝑋 + 𝑈 = 𝑏 of (A) as the goals of a cDSP /012Û(ß)
�13456Û

+ 𝑑Wj − 𝑑Wl=1. The objective of 

(A) is minimizing the sum of the slack variables U, similarly, the merit function of a cDSP is 

minimizing the linear combination of the deviation variables 𝐷. 

However, there are differences between a cDSP and an auxiliary problem (A) of a linear 

programming problem (P). An auxiliary problem is a linear problem, whereas a cDSP can be 

nonlinear – both constraints and goals. When solving an auxiliary problem (A), one can only obtain 

the feasibility of the its original problem (P) but a satisficing solution (a good enough solution) is 

not guaranteed because the original objective function min𝐶� ∙ 𝑋 is not incorporated in (A). On 

the contrary, in a cDSP, goals are satisfied as equality constraints in a corresponding optimization 

problem, thus, a satisficing solution that is close to achieve the goals is identified. In addition, in 

an auxiliary problem, for any constraint, we only minimize either its under-achievement or over-

achievement, whereas in a cDSP, we minimize both under-achievement and over-achievement of 

each goal. Furthermore, in an auxiliary problem, we treat all constraints equally by simply adding 

the slack variables U, whilst in a cDSP, we use weights to linearly combine the deviation variables 

so that we may assign different priority to each goal.  

In summary, a cDSP is different from goal programming, optimization, or an auxiliary problem in 

linear programming. Further a satisficing solution to a cDSP is not only feasible, but also good 

enough with respect to the achievement of the goals. 
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Stage 2: Exploration of the solution space. In the second stage, the solution space is explored to 

find satisficing solutions associated with each design preference (scenario), in different phases in 

the product life cycle. Type I and Type II uncertainty are managed in the exploration of the solution 

space (ESS). In this dissertation, when we refer to design preferences, we particularly focus on the 

importance of the different goals.  

Weight sensitivity analysis – exploration of the design preferences. We use weight sensitivity 

analysis to explore how the assessing different weights to the goals affect the system performance, 

that is, identifying satisficing solutions that are relatively insensitive to uncertainties. 

System capacity analysis – identification and management of the sensitive segment and 

bottleneck. To overcome the capacity limitation of constraints or bounds, we propose system 

capacity analysis to identify the sensitive segment and bottleneck. If an inequality constraint has 

zero or tiny surplus or slack compared with its right-hand-side value, we define it as an active 

constraint. The solution is on or close to the boundary of the active constraint, so the solution is 

sensitive to the uncertainty of the active constraint. If the shadow price of an active constraint is 

lower than other active constraints, by relaxing this active constraint, we may not get much 

improvement in achieving the goals, and we define such a constraint as a “sensitive segment.” We 

then move the solution away from the sensitive segment by restricting the active constraint, that 

is, by adding a buffer to the constraint to prevent the solution from reaching the boundary defined 

by the constraint. If the shadow price of an active constraint has the largest value in comparison 

with that of other constraints, relaxing the constraint can result in the greatest improvement of the 

achievement of the goals. We define such an active constraint as a “bottleneck.” Also, it is 

important to find ways of relaxing the bottleneck in the physical system to boost the system 

potential. Once there is no longer the potential of physically relaxing the constraint, we move the 
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solution away from the newly relaxed boundary by restricting the constraint by adding a buffer to 

the defined boundary. Thus, we balance the need for robustness of the solution with our desire to 

obtain the best satisficing solution. 

2.4 Research Questions (RQ1-RQ4) 

Based on the design construct we choose as the model evolution construct, cDSP, and the different 

types of uncertainty we need to manage through model evolution, we pose the primary research 

question in this section. First, what are the different types of uncertainty? How can we justify the 

primary research question with respect to managing the four types of uncertainty or realizing the 

four types of robust design? 

2.4.1 Justification of the Primary Research Question regarding Requirements 

- Four Types of Robust Design 

There are four types of robust design (Allen, Seepersad et al. 2006) with respect to managing the 

four types of uncertainty in engineering design. The first three types of robust design area are 

conceptually illustrated in Figure 2.26. Type IV uncertainty is the combination of Type I, II, and 

III uncertainty, so it is not represented as an individual area. 

In Type I robust design, design variable values are identified to satisfy a set of performance 

requirement targets regardless of noise factors. Noise factors are not under a designer’s control. 

In Type II robust design, design variable values are determined that satisfy a set of performance 

requirement targets regardless of anticipated variations in those design variables. 
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In Type III robust design, design variable values are determined which satisfy a set of performance 

requirements regardless of variations in the mathematical models used to describe that 

performance.  

In Type IV (Combination of Types I, II, and III) robust design, design variable values are 

determined which satisfy a set of performance requirements in spite of variability introduced by a 

hierarchical, multiscale or multidisciplinary formulation of the product. 

 

Figure 2. 26 Four Types of Robust Solution 

Based on the requirement of managing four types of uncertainty in engineering design, we justify 

the primary research question into three sub-research questions in Table 2.14. 

• “Primary Research Question – How can designers realize model evolution using 

satisficing strategy so that we can manage chaos in the physical world, reduce the risk 

of losing an optimal solution, and discover domain-independent knowledge to update 

metaheuristics?” 
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The research questions regarding the realization of Type I and Type II Robust Design is marked 

as RDI-II. The research questions regarding the realization of Type III and Type IV Robust Design 

are marked as RDIII and RDIV, respectively. Hypotheses are proposed in Chapter 3. 

Table 2. 14 Justified Research Questions regarding Four Types of Robust Design 

Chapter Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 

A
ct

io
ns

 

RG 
H 

RDI-II: What are the mechanisms 
and procedures that enable the 
exploration of the solutions 
relatively insensitive to Type I and 
Type II uncertainty? 

TVe 
M 

EsV
e 

SQT 
AQ 

EVe 
SQT 
AQ 

  

CQ 
EVa TE 

RDIII: What is the mathematics in 
the design method that allow the 
exploration of the solutions 
relatively insensitive to Type III 
uncertainty? 

TVe 
M  

EVe 
SQT 
AQ 

EVe 
SQT 
AQ 

 

RDIV: What is the method that 
allows sensing and managing Type 
IV uncertainty? 

TVe 
M   

EVe 
SQT 
AQ 

EVe 
SQT 
AQ 

N
om

en
cl

at
ur

e  

RG – give research gaps 
H – give hypotheses 
RD – robust design 
TVe – theoretically verify hypotheses 
M – introduce methods 
EVe – empirically verify hypotheses 
SQT – specify research questions in the context of test problems 
AQ – answer research questions 
CQ – closure the answers to research questions 
EVa – empirically validate hypotheses 
TE – theoretically extend the research 

2.4.2 Justified Research Questions regarding Tasks 

- In the Context of Four Stages of the Design Loop 

Establishing connections among the four stages of the model evolution cycle – formulation, 

approximation, exploration, and exploration, is a way to allow information passing through 

different stages so as to realize robust design. 

In this dissertation, we identify four connections among the stages; see Figure 2.27: connections 

between formulation and exploration, connections among approximation, exploration, and 
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evaluation, connections among formulation, exploration, and evaluation, and connections among 

all four stages. We explain what are expected to happen or the potential contribution of the 

connections, hereafter. 

Formulation-exploration: through exploring the solution space, designers can identify the 

segments in the model that can be improved to make solutions more insensitive to uncertainties. 

Based on such findings, designers can improve the model formulation 

Approximation-exploration-evaluation: through exploration and evaluation, the solution quality is 

learned and defined, and its association with the metaheuristics used in the approximation can be 

identified and quantified, based on which, designers can update the metaheuristics in 

approximation and realize the design relatively insensitive to the uncertainties in the 

approximation. 

Formulation-exploration-evaluation: through exploration and evaluation, the solution quality 

associated with different assumptions and rules in formulation are learned, based on which, 

designers can update the formulation rules and make the design relatively insensitive to the 

assumptions, errors, uncertainties, and inaccuracies in the formulation. As the process goes on, 

designers can speed up the learning process by selecting the most representative scenarios in the 

formulation. 

Formulation-approximation-exploration-evaluation: by connecting all four stages, it is possible 

for designers to identify emergent properties of the system and incorporate them into the model by 

adjusting any stage. 
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Figure 2. 27 Justified Research Questions RQ1-RQ4 and Their Connections with the 
Design Loop 

Model evolution includes but are not limited to establishing the aforementioned connections, based 

on which, we justify the primary research question into four research questions regarding 

establishing connections among stages in engineering design in Table 2.15. 

The four research questions regarding the establishment of the four multi-stage connections are 

marked as RQ1, RQ2, RQ3, and RQ4, respectively. Hypotheses are proposed in Chapter 3. 

Table 2. 15 Connection between Research Questions (RQs) and Chapters (Ch) 

Chapter Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 

A
ct

io
ns

 

RG 
H 

RQ1: What is the method to evolve 
model boundary? 

TVe 
M 

EVe 
SQT 
AQ 

   

CQ 
EVa TE 

RQ2: What is the method to evolve 
model to update metaheuristics? 

TVe 
M  

EVe 
SQT 
AQ 

  

RQ3: What is the method to speed up 
learning the system nature? 

TVe 
M   

EVe 
SQT 
AQ 

 

RQ4: What is the method that allows 
passing the information through 
multiple scales of a system? 

TVe 
M    

EVe 
SQT 
AQ 
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N
om

en
cl

at
ur

e  

RG – give research gaps 
H – give hypotheses 
RQ – research question 
TVe – theoretically verify hypotheses 
M – introduce methods 
EVe – empirically verify hypotheses 
SQT – specify research questions in the context of test problems 
AQ – answer research questions 
CQ – closure the answers to research questions 
EVa – empirically validate hypotheses 
TE – theoretically extend the research 

2.5 Specification of Hypotheses (SH1-SH4) 

In Chapter 1, to fill the research gaps, it is hypothesized that by connecting the multiple stages of 

design and passing information through them, designers can improve their decision models in 

iterations. 

Given the four tasks and four research questions posed in Section 2.4, the hypotheses are specified 

into four hypotheses, SH1, SH2, SH3, and SH4, shown in Table 2.16, by testifying which, the 

research questions can be answered. 

Table 2. 16 Specification of Hypotheses for Answering the Research Questions 

Chapter Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 

A
ct

io
ns

 

RG 
H 

RQ1: What is 
the method to 
evolve model 
boundary? 

SH1: Explore the 
sensitivity of the 
segments of the 
model boundary and 
improve accordingly. 

TVe 
M 

EVe 
SQT 
AQ 

   

CQ 
EVa TE 

RQ2: What is 
the method to 
evolve model 
to update 
metaheuristics
? 

SH2: Learn, 
evaluate, and update 
metaheuristics to 
improve model 
performance. 

TVe 
M  

EVe 
SQT 
AQ 

  

RQ3: What is 
the method to 
speed up 
learning the 
system nature? 

SH3: Learn system 
nature such as 
interrelationship 
among subsystems 
and reorganize them 
based on it. 

TVe 
M   

EVe 
SQT 
AQ 

 

RQ4: What is 
the method 
that allows 

SH4: Capture and 
quantify emergent 
properties through 

TVe 
M    

EVe 
SQT 
AQ 
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passing the 
information 
through 
multiple scales 
of a system? 

scenario planning in 
simulation. 

N
om

en
cl

at
ur

e 

RG – give research gaps 
H – give hypotheses 
RQ – research question 
SH – specify hypotheses 
TVe – theoretically verify hypotheses 
M – introduce methods 
EVe – empirically verify hypotheses 
SQT – specify research questions in the context of test problems 
AQ – answer research questions 
CQ – closure the answers to research questions 
EVa – empirically validate hypotheses 
TE – theoretically extend the research 

In Figure 2.28, the research questions RQ1-RQ4 and the specified hypotheses SH1-SH4 are 

visualized as the connections of different stages of the design cycle. 

 

Figure 2. 28 Research Questions RQ1-RQ4 and Specified Hypotheses SH1-SH4 

2.6 Role of Chapter 2 in this Dissertation 

In Chapter 2, we justify the primary research question into an “answerable” level. We answer the 

“how question” – “how can we realize the model evolution using satisficing strategy?” We further 
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explain why we realize model evolution in a certain way – why we choose satisficing strategy, and 

specifically cDSP, ALP, and DSIDES, as the foundational method to process the tasks in the model 

evolution. 

In Chapter 2, mathematical explanations on optimizing and satisficing strategy in engineering 

design regarding Kuhn-Tucker conditions are discussed. The differences between the two strategy 

is summarized and why in this dissertation, we choose cDSP, ALP and DSIDES to realize 

satisficing strategy for model evolution is stated. Then, given the requirements on the robust design 

and the elements of connections among different stages of model evolution, we justify the primary 

research question into research questions in two contexts – the robust design (RDI-II, RDIII, and 

RDIV) and model evolution (RQ1, RQ2, RQ3, and RQ4) and specify the hypotheses (SH1, SH2, 

SH3, and SH4) to answer the ; see Table 2.17. The organization of the later chapters regarding 

proposing the hypotheses for answering the justified research questions, specifying the research 

questions in the context of the test problems, and answering the research questions using the test 

problems, and extending the research questions in the way forward work is described. 

Table 2. 17 Plan of Addressing the Research Questions in Each Chapter 

C
ha

pt
er

 

C
h1

 

Ch2 C
h3

 

C
h4

 

C
h5

 

C
h6

 

C
h7

 

C
h8

 

C
h9

 

A
ct

io
ns

 

RG 
H 

RDI-II: What 
are the 
mechanisms and 
procedures that 
enable the 
exploration of 
the solutions 
relatively 
insensitive to 
Type I and Type 
II uncertainty? 

RQ1: What is 
the method to 
evolve model 
boundary? 

SH1:  Explore the 
sensitivity of the 
segments of the 
model boundary and 
improve 
accordingly. 

TVe 
M 

EVe 
SQT 
AQ 

   

CQ 
EVa TE RQ2: What is 

the method to 
evolve model 
to update 
metaheuristics
? 

SH2: Explore the 
sensitivity of the 
segments of the 
model boundary and 
improve 
accordingly. 

TVe 
M  

EVe 
SQT 
AQ 

  

RDIII: What is 
the mathematics 
in the design 
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method that 
allow the 
exploration of 
the solutions 
relatively 
insensitive to 
Type III 
uncertainty? 

RQ3: What is 
the method to 
speed up 
learning the 
system 
nature? 

SH3: Learn system 
nature such as 
interrelationship 
among subsystems 
and reorganize them 
based on it. 

TVe 
M   

EVe 
SQT 
AQ 

 

RDIV: What is 
the method that 
allows sensing 
and managing 
Type IV 
uncertainty? 

RQ4: What is 
the method 
that allows 
passing the 
information 
through 
multiple 
scales of a 
system? 

SH4: Capture and 
quantify emergent 
properties through 
scenario planning in 
simulation. 

TVe 
M    

EVe 
SQT 
AQ 

N
om

en
cl

at
ur

e 

RG – give research gaps 
H – give hypotheses 
RD – robust design 
RQ – research question 
SH – specify hypotheses 
TVe – theoretically verify hypotheses 
M – introduce methods 
EVe – empirically verify hypotheses 
SQT – specify research questions in the context of test problems 
AQ – answer research questions 
CQ – closure the answers to research questions 
EVa – empirically validate hypotheses 
TE – theoretically extend the research 

In Chapter 3, the feasibility of the hypotheses is theoretically verified, and the overview of the 

proposed methods and algorithms are introduced. In Chapter 4, 5, 6, and 7, the research questions 

are specified in different domains, test problems in those domains are used to prove the hypotheses 

and verify the proposed methods and algorithms. In Chapter 8, the answers to the research 

questions are summarized and the closure is given. In Chapter 9, the research way forward is 

narrated, with the extension of the research questions in the domain of way forward. 
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CHAPTER 3 PROPOSED METHODS – THE DESIGN EVOLUTION LOOP 

– FOUNDATIONS FOR MODEL EVOLUTIOIN 

In Chapter 3, the hypotheses for answering the justified research question are stated. The “what 

question” is answered – “what tasks should designers finish to realize the model evolution?” 

The methods using satisficing strategy are proposed to finish the tasks and testify the hypotheses. 

In Chapter 3, see Figure 3.1, in Section 3.1, introduced the elements of model evolution, which is 

an extension of the tasks in the design evolution cycle (in Section 2.4.2); in Section 3.2, stated the 

hypotheses, which are the tentative proposals for answering the justified research questions (in 

Section 2.4); based on the hypotheses, in Section 3.3, given an overview of the proposed methods 

which leverage satisficing strategy (discussed in Section 2.2) to fill research gaps (in Section 1.4); 

then, in Section 3.4, briefly introduced the test problems for testing the proposed methods, which 

are representative problems that contain typical characteristics of complex systems (in Section 

1.1); finally, in Section 3.5, summarized the role of Chapter 3. The plan of addressing the research 

questions in Chapter 3 by theoretically verifying the feasibility of the specified hypotheses and 

proposing methods is shown in Table 3.1 and illustrated in Figure 3.2. 
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Figure 3. 1 Organization of Chapter 3 

Table 3. 1 Plan of Theoretically Verifying the Specified Hypotheses and Demonstrating the 
Proposed Methods in Each Chapter 
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Figure 3. 2 Illustration of Research Questions (RQ1-RQ4), Specified Hypotheses (SH1-
SH4), Theoretical Verification of Specified Hypotheses (TVe1-TVe4), and Methods (M1-

M4) in the Context of Design Evolution Cycle 
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3.1 Elements of Design Improvement through Model Evolution (Task 1-4) 

The interactions between multiple stages in the evolution cycle of the realization of model-based 

complex systems are the elements in exploration of the solution space (ESS). In this dissertation, 

the elements being explored are described as follows. 

3.1.1 Task 1: Formulation-Exploration 

As the boundary formed by the constraints and bounds may have variations due to 1) variation in 

parameters, 2) variation in decision variables, and 3) variation in model structure, the exploration 

of the boundary and the accordance reformulation allow the decision maker to improve the model 

accuracy and robustness. 

Through establishing connections between model formulation and exploration, we expect to 

explore the model performance and pass the information to reformulate the model to improve the 

design accuracy and robustness. In Figure 3.3, we highlight the procedures and methods that are 

involved in getting the connections work. 
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Figure 3. 3 The Methods and Procedures Involved in Formulation-Exploration – Realizing 
the model evolution through the items highlighted in red 

For example, in a dam network, the reservoir behind each dam has a lower bound – water level of 

the inactive pool, and an upper bound – water level of the flood pool, but there are dams with more 

strict bounds than the other, and those strict bounds are bottleneck of the whole dam network. To 

make the dam-network system more robust, the boundary should be explored so that the bottleneck 

can be pinpointed, thus buffer can be added to the mathematical model, therefore, the solution to 

the mathematical model can be away from the boundary of the physical system, which ensures the 

system robustness. The hypothesis on how to connect formulation with exploration is given in 

details in Section 3.2.1. The detailed description of the test problems and the method are in Section 

4.2 and 4.3. 

3.1.2 Task 2: Approximation-Exploration-Evaluation 

As we discuss in Section 1.2, design methods and solution algorithms for dealing with complex 

problems fall into two categories: formulate a complex problem exactly and solve it approximately 
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or approximate a complex problem and solve it exactly. For both methods, designers need to 

approximate the physical problem, what matters to the robustness of the result is when and how 

the approximation takes place. In this dissertation, we believe that any approximation relies on 

heuristics or metaheuristics to make rules. A heuristic is a mental shortcut that allows people to 

solve problems quickly and efficiently. A metaheuristic is a higher-level procedure to find a 

heuristic that may provide a sufficiently good solution to a problem. There are no perfect heuristics 

or metaheuristics but given the evolving knowledge and demand of a problem, designers can use 

the knowledge to update the metaheuristics or heuristics so as to improve the robustness of 

approximation and hence improve the design. 

The utility of evaluation is processing data analytics to learn patterns in the data generated by 

adopting a large number of different scenarios. Based on the evaluation, predictions on model 

performance regarding more scenarios in heuristics updates can be done, hence, designers can 

evolve the model through improving the approximation. 

In Figure 3.4, we highlight the procedures and methods that are involved in getting the connections 

work. Through establishing connections among model approximation, exploration, and evaluation, 

we expect to explore the model performance associated with the metaheuristics used in model 

approximation and pass the information to update the metaheuristics to improve the design to be 

satisficing and relatively less insensitive to metaheuristics. 
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Figure 3. 4 The Methods and Procedures Involved in Approximation-Exploration-
Evaluation – Realizing the model evolution through the items highlighted in red 

As the approximation of the model, for example, the linearization, may have impact on the model 

accuracy and the solution quality, capturing the connections between the critical parameters in the 

approximation algorithm and the solution quality is critical to the model evolution. Heuristics are 

used in the determination of the critical parameters of the approximation algorithm, such as the 

reduced move coefficient (RMC) in the ALP. If the quality of the solution can be clearly defined, 

and the association between the quality of the solution and the RMC value can be established, then 

the solution quality as well as the robustness of the model can be improved by adjusting the RMC. 

The hypothesis on how to connect approximation with exploration and evaluation is in Section 

3.2.2. The detailed description of the test problem and the method are in Chapter 5. 

3.1.3 Task 3: Formulation-Exploration-Evaluation 

The structure of the model or any heuristics, assumptions, or simplifications applied consciously 

or subconsciously by the designers in model formulation can be evaluated and updated to improve 
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the design robustness, if a connection among formulation, exploration, and evaluation is 

established and information can be interpreted into knowledge. Designers need to identify what 

knowledge obtained from the exploration and evaluation procedure is useful. The knowledge on 

the improvement of the model formulation that can benefit the accuracy and robustness of the 

model. The improvement of model formulation is a huge topic, including the setting of parameters, 

variables, equations between parameters and variables, the formulation of the goals, the priority 

and combination of the multiple goals, etc. A method of passing through the information from the 

solution space back to the design space regarding the reformulation of the model is required. 

In Figure 3.5, we highlight the procedures and methods that are involved in getting the connections 

work. Through establishing connections among model formulation, exploration, and evaluation, 

we expect to explore the better model formulations regarding the information learned from post-

solution analysis, such as the interrelationship among subsystems. 

 

Figure 3. 5 The Methods and Procedures Involved in Formulation-Exploration-Evaluation 
– Realizing the model evolution through the items highlighted in red 
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For example, in a concurrent design problem with multiple subsystems, especially when the 

correlations and interactions among the subsystems are initially unknown to the designers, through 

analyzing the solutions generated by varying scenarios, interrelationships among the subsystems 

can be learned, so the model formulation can be adjusted based on such knowledge. The hypothesis 

on how to connect formulation with exploration and evaluation is given in details in Section 3.2.3. 

The detailed description of the test problem and the method are in Chapter 6. 

3.1.4 Task 4: Formulation-Approximation-Exploration-Evaluation 

To manage the emergent properties of complex systems, which is to take into account “time” as a 

dimension in the design and update all four stages of the design along with the time. Setting the 

behavior rules of each individual or component of a complex system may not result in an expected 

system behavior. Therefore, to establish mechanisms of capturing emergent properties and 

incorporate them into the procedures of the evolution cycle is an element of the model evolution. 

In Figure 3.6, we highlight the procedures and methods that are involved in getting the connections 

work. Through establishing connections among model approximation, exploration, and evaluation, 

we expect to capture the emergent properties of complex systems and incorporate them into the 

model. 
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Figure 3. 6 The Methods and Procedures Involved in Approximation-Formulation-
Exploration-Evaluation – Realizing the model evolution through the items highlighted in 

red 

For example, in a social network, how can designers capture emergent properties in human 

behavior and promote a new technology by leveraging critical and sensitive factors? The 

hypothesis on how to connect all four stages in the model evolution is given in details in Section 

3.2.4. The detailed description of the test problem and the method are in Chapter 7. 

3.1.5 Model Evolution Cycle is an Open and Extendable Framework 

There can be other elements in the model evolution. More methods and examples can enrich the 

topic. The conception and procedure of model evolution is open and can be expanded to other 

relevant activities. In this dissertation, the focus is on the elements mentioned on the above. Based 

on the conception and elements of the evolution cycle, hypotheses are proposed in Section 3.2. 
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3.2 Theoretically Verification of the Feasibility of the Specified Hypotheses (TVe1-TVe4) 

To realize the four elements of the model evolution as well as answer the four research questions 

(RQ1-RQ4), the hypotheses are specified into four hypotheses (SH1-SH4). The theoretical 

verification of the feasibility of the four specified hypotheses are given hereafter.  

3.2.1 Theoretical Verification of Specified Hypothesis 1 (TVe1) 

Research Questions 1 (RQ1) – What is the method to evolve model boundary? 

Specified Hypothesis 1 (SH1) – Explore the sensitivity of the segments of the model boundary 

and improve accordingly. 

It is observed that the model formulation especially for engineering-design problems is usually 

based on designers’ domain expertise, experience, some established conventions, assumptions, 

simplification, or initial settings, which can be wrong or evolving over time. To refine the boundary 

and make the solution space relatively insensitive to the errors or uncertainties embodied in or 

affected the model boundary, we hypothesize to explore the sensitivity of the segments of the 

model boundary to multiple versions of extreme uncertainties; see Figure 3.7.  

It is hypothesized that through the outer cycle, which is to establish connections between problem 

formulation and solution space exploration, the forward information (on the next scenarios for 

solution space exploration) and backward information (on the next action plan for model 

improvement) can help evolve the model boundary and improve the design performance regarding 

the robustness, accuracy, and computational complexity. In this dissertation, the design robustness 

means the capacity of the solutions to be insensitive to the model errors and variations, the design 

accuracy means the representativeness of the scenarios of the design, and the computational 

complexity means the complexity of the calculations to obtain satisficing results. 
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It is hypothesized that through the inner cycles, which is to establish connections between different 

procedures in problem formulation or solution space exploration, the two-way information 

transmission mechanisms can also make each procedure gradually improve during iterations. 

The rule-based connection mechanism is based on heuristics, but in Hypothesis 1, we did not 

evaluate the mechanisms and update the heuristics. In Specified Hypothesis 2 and 3, we 

incorporate evaluation in the multi-stage connections and manage the heuristics updating. 

Given the hypothesis, we propose the method, Formulation-Exploration framework, which is 

briefly introduced in Section 3.3.1 and further introduced and testified using two test problems in 

Chapter 4. 

 

Figure 3. 7 Theoretical Verification of Specified Hypothesis I (TVe1) – Exploring the 
sensitivity of the segments of the model boundary and improve accordingly 

3.2.2 Theoretical Verification of Specified Hypothesis 2 (TVe2) 

Research Questions 2 (RQ2) – What is the method to evolve model to update metaheuristics? 

Specified Hypothesis 2 (SH2) – Learn, evaluate, and update metaheuristics to improve model 

performance. 
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Model approximation especially for nonlinear, nonconvex, and multi-goal, engineering-design 

problems is usually based on rules which are made through designers’ metaheuristics and 

experience, which can be wrong, inaccurate, or over-simplified. To improve the rule-based 

approximation regarding its accuracy, efficiency, and robustness relatively insensitive to 

metaheuristics, we hypothesize to learn, evaluate, and update metaheuristics to improve the model 

performance; see Figure 3.8.  

It is hypothesized that by identifying the metaheuristics that have critical impact on the results in 

terms of solution robustness, such as (but are not limited to) settings of parameters, designers can 

learn the features that represent the performance of the approximation. From the features, 

evaluation indices can be created. Designers need to train the metaheuristics to bring the evaluation 

indices into desired range which ensure the approximation performance and the insensitivity of the 

solution space with respect to model errors, uncertainties, and metaheuristics changing. 

Given the hypothesis, we propose the method, using parameter learning to improve approximation 

and solution algorithms, which is briefly introduced in Section 3.3.2 and further discussed and 

demonstrated using a test problem in Chapter 5. 
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Figure 3. 8 Theoretical Verification of Specified Hypothesis 2 (TVe2) – Learn, evaluate, 
and update metaheuristics to improve model approximation 

3.2.3 Theoretical Verification of Specified Hypothesis 3 (TVe3) 

Research Questions 3 (RQ3) – What is the method to speed up learning the system nature? 

Specified Hypothesis 3 (SH3) – Learn system nature such as interrelationship among 

subsystems and reorganize them based on it. 

For multi-stage, concurrent design problems, initially, designers may have no idea on the profound 

knowledge about the system nature, for example, the awareness and the interrelationship of 

subsystems. For some problems, designers even do not aware subsystems exist and may help 

smooth the design if they can be organized appropriately. If there is not sufficient domain 

expertise, or worse, if designers thought they have domain knowledge or experience that helps 

them proceed with the structuring of subsystems, but their so-called knowledge or experience is 

wrong or unpractical, It is hypothesized that there is information in the solution space that can be 

learned through post-solution analysis and can be interpreted into insight on how to select the most 

representative scenarios that better identify and organize the subsystems. It is hypothesized that 
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such an analyzing-interpreting-selecting process can help speed up designers' learning the system's 

nature.; see Figure 3.9. 

 

Figure 3. 9 Theoretical Verification of Specified Hypothesis 3 (TVe3) – Learn system 
nature such as interrelationship among subsystems and reorganize them based on it 

The utility of adding an "evaluation" step to the formulation-exploration (Hypothesis 1) is 

extracting hidden information through learning from time-series data generated along iterating the 

model evolution cycle. We propose the method, using unsupervised learning to cluster the system 

into subsystems, learn their interrelationship, and update the design scenario based on it, which is 

briefly introduced in Section 3.3.3 and further discussed and demonstrated using a test problem in 

Chapter 6. 

3.2.4 Theoretical Verification of Specified Hypothesis 4 (TVe4) 

Research Questions 4 (RQ4) – What is the method that allows model evolution by incorporating 

emergent properties? 
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Specified Hypothesis 4 (SH4) – Capture and quantify emergent properties through scenario 

planning in simulation. 

“In planning and policy, a wicked problem is a problem that is difficult or impossible to solve 

because of incomplete, contradictory, and changing requirements that are often difficult to 

recognize.”11 It is hypothesized that by capturing emergent properties and incorporate them into 

decision models as an element of model evolution, designers can convert wicked problems into 

regular complex-system design problems. It is hypothesized using simulation tools such as agent-

based modeling, emergent properties like collective behavior which is nonlinear with individual 

behaviors can be observed and quantified and then predicted; see Figure 3.10. 

 

Figure 3. 10 Theoretical Verification of Specified Hypothesis 4 (TVe4) – Capture and 
quantify emergent properties through scenario planning in simulations 

 

11 This definition of “wicked problem” is from Wikipedia: https://en.wikipedia.org/wiki/Wicked_problem 
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It is hypothesized that learning and adding emergent properties to decision models can connect 

and affect all four stages of model evolution and result in design improvement. We propose the 

method, using simulation tools to generate synthetic data under a variety of design scenarios for a 

wicked problem, capture cluster the system into subsystems, learn their interrelationship, and 

update the design scenario based on it, which is briefly introduced in Section 3.3.4 and further 

discussed and demonstrated using a test problem in Chapter 7. 

3.3 Overview of Proposed Methods (M1-M4) 

To testify the four specified hypotheses (SH1-SH4), four methods (M1-M4) are proposed. They 

are briefly introduced in this section one-by-one. Empirical demonstrations are done using test 

problems in Chapter 4, 5, 6, and 7. 

3.3.1 M1: Exploration of the Boundary using Formulation-Exploration Framework 

To realize and test Hypothesis 1, explore the sensitivity of the segments of the model boundary and 

improve accordingly, we propose the Formulation-Exploration framework to establish connections 

between the two stages, the formulation and exploration. The conception of the method in a word-

form cDSP is written as follows. Given the decision model and design scenarios, designers need 

to find the sensitive segments and improvable segments of the decision model, which are to be 

removed, meanwhile minimizing the computational complexity. 

Establishing connections between Formulation and Exploration 

Given 

Decision model 

Design scenarios 
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Find 

Sensitive segments 

Improvable segments 

Satisfy 

Remove sensitive segments by restricting model boundary 

Remove improvable segments relaxing physical boundary and then restricting model 

boundary 

Minimize 

Computational complexity 

Sensitive segments mean the parameters or equations (response surface) that may embody Type I 

and Type II uncertainty, that are variation in parameters or unparameterizable factors (noise factors) 

or variables (control factors), or when any Type I or Type II uncertainty takes place, these segments 

change and lose a feasible solution; see Figure 3.11. For example, if an inequality constraint 

𝑔W(𝑥) ≥ 0 becomes active at a solution point 𝒙𝒐, 𝑔W(𝒙𝒐) = 0, or in other words, when plugging in 

a solution into an inequality constraint, the slack or surplus of the constraint is zero, then such a 

constraint is a sensitive segment of the decision model under the design scenario when 𝒙𝒐 is a 

solution point. By changing design scenarios, designers obtain a set of solution points, 𝑋, and if 

𝑔W(𝒙𝒐) = 0, ∀𝒙𝒐 ∈ 𝑿, then constraint 𝑔W(𝑥) ≥ 0 is a sensitive segment. 

Control factors are the factors that under designers’ direct control. It is assumed that a control 

factor is accurately quantifiable and controllable, so they can only be decision variables of the 
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decision model. Noise factors, on the contrary, cannot be controlled by designers directly. 

Sometimes noise factors are not even quantifiable or parameterizable, and they may not be 

incorporated into the decision model. However, initially, designers’ understanding of control 

factors and noise factors is insufficient to make decisions regarding Type I and Type II uncertainty, 

actions to explore solution space, such as design preferences exploration and capacity analysis, 

can help identify the sensitive segments. 

Likewise, improvable segments are the parameters or equations that can be modified, and when 

modify them in certain ways, the goal(s) can be achieved better. For example, a constraint with a 

large dual price (or shadow price) is an improvable segment. The dual price is the amount that the 

goal (objective) would be improved (achieved more completely) as the right-hand side of the 

constraint is relaxed by one unit.  

 

Figure 3. 11 The Control Factors and Noise Factors Bring Variation in Goal Function 

The method of each step in the framework and the rational of each method is illustrated in Figure 

3.13. To realize satisficing strategy in engineering design, we choose the cDSP as the construct to 

formulate design problems and the ALP algorithm to approximate the nonlinear, non-convex 

problems. The reason why using the cDSP and the ALP can identify satisficing solution space is 

in Section 2.1. In solution space exploration, there can be more activities. In this dissertation, we 
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talk about weight sensitivity analysis, which is exploring weight vectors to combine the multiple 

goals, and capacity analysis, which is to identify the constraints with limited capacity. 

In Chapter 4, we use two test problems – a continuous problem and a discrete problem to 

demonstrate how to use the formulation-exploration framework to explore the boundary of a 

problem and make the design relatively insensitive to boundary variation. 

 

Figure 3. 12 Formulation-Exploration Framework 

3.3.2 M2: Improving Algorithm Robustness using Parameter Learning 

To realize and test Hypothesis 2, learn, evaluate, and update metaheuristics to improve model 

performance, we propose to enable information passing through among approximation, 

exploration, and evaluation, by adopting the Adaptive Linear Programming algorithm with 

Parameter Learning (ALPPL). The conception of the method in a word-form cDSP is written as 

follows. Given the decision model and design scenarios (DS), designers need to find the 
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appropriate value of key parameters through making the evaluation indices (EIs) fall into desired 

range (DEI), meanwhile minimizing the standard deviation of the EIs under all DS. The standard 

deviation is one of the statistics chosen to represent the robustness of the solution with respect to 

the DS changing for the test problem, which is to improve the ALP algorithm by updating 

heuristics in parameter setting. 

Given 

Decision Model     

Design scenarios (DS) 

Find 

Value of key parameters 

Evaluation Indices (EIs) 

Desired range of EIs (DEI) 

Satisfy 

EIs in DEI 

Minimize 

𝜎9:; for all DS 

Evaluation indices (EIs) are the indices that can effectively reflect the approximation performance 

of a design regarding the criteria that designers desire, such as the approximation accuracy, the 

robustness of a solution with respect to the approximation accuracy, and the computational 

complexity of the approximation. In this dissertation, it is emphasized that evaluation indices can 
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be customized to each problem. Evaluation indices can be developed by designers based on their 

domain knowledge or experience, and they can also be trained through learning the data generated 

through exploring the solution space. The difference between the two ways of obtaining evaluation 

indices is whether incorporating the evaluation procedure into the design cycle. In this dissertation, 

“evaluation” is defined as the procedure that requires using technologies in data analytics to 

analyze the data and gain knowledge among different factors belong to multiple stages in the 

design cycle.  

Desired range of EIs (DEI) is a range that when the value of the evaluation index falls in the range, 

the approximation performance can be guaranteed to an acceptable level. By identifying the 

desired range of each evaluation index, designers can obtain knowledge on the association between 

the evaluation indices and the approximation performance. By bringing the evaluation indices into 

their desired ranges, the designers can ensure that the approximation of the design is acceptable. 

While changing design scenarios and parameter values, designers obtain results whose evaluation 

indices follow some distribution. Statistics are used to control the robustness and computational 

complexity of the solutions whilst choosing appropriate design scenarios.  

The steps added to the ALP are illustrated in Figure 3.13. After initializing the decision model and 

the algorithm with certain parameter setting, designers can run the algorithm and obtain results. 

By extracting the results and interpreting them to evaluate the performance of approximation, 

insight on how to further update the parameter is obtained and used in the next iteration. 

In Chapter 5, we use a test problem on designing the cooling stage of the hot rod rolling chain to 

demonstrate how to use parameter learning to improve an approximation and solution algorithm. 
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Figure 3. 13 Learn and Update Metaheuristics in an Algorithm Using Parameter Learning 

3.3.3 M3: Exploring Interrelationships among Subsystems using Unsupervised Learning 

To realize and test Hypothesis 3, Learn system nature such as interrelationship among subsystems 

and reorganize them based on it, we propose the Adaptive-Leveling-Weighting-Clustering 

(ALWC) algorithm to establish connections among formulation, exploration, and evaluation. The 

conception of the method in a word-form cDSP is written as follows. Given the decision model 

and initial design scenarios, designers need to find the interrelationship among goals, based on 

which, designers can update the combination format of the goals. Through the process, it is 

expected the achieved value of the goals are improved and the most representative design scenarios 

can be identified and explored rather than enumerating all scenarios. Meanwhile, designers can 

maximize the goal achievement and the diversity of the solutions. 

Given 

Decision model 

Initial design scenarios (DS) 
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Find 

Interrelationship among goals (𝕀𝒟) 

Clusters of the goals ℂ/ 	 

Satisfy 

Improving goal achieved value 

Updating DS based on ℂ/  

Maximize 

Goal achievement 

Diversity of solutions 

For this method, we assume that each goal represents the interest of a subsystem, or certain formats 

of the combination of several goals may represent the interest of a subsystem, so, exploring the 

interrelationship among the goals is a way to learn the categorization of subsystems of the whole 

system and learn the interrelationship among the subsystems.  

The interrelationship of the goals can be one or more measurement, such as correlation among 

the achieved values of the goals under multiple design scenarios, or orthogonality among the 

deviation of the goals under multiple design scenarios. Whether to choose a measurement depends 

on the nature of the problem or designers’ preferences. 

The diversity of solutions is defined as how different the solutions are from one another. The 

diversity of the solutions can reflect whether the solution space is explored sufficiently and 

whether there are adequate alternative solutions for designers to select in various situations. 
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The procedures of the ALWC algorithm are given in Figure 3.14. After initializing the design 

scenarios on the organization of subsystems, designers adopting the design scenarios and obtain a 

deviation matrix. A column of the deviation matrix is the deviation of all goals under one design 

scenario. The deviation is the distance between the achieved value of a goal and the target of the 

goal. By learning the interrelationship among the rows of the deviation matrix, designers obtain 

the correlation, or orthogonality, or other types of interrelationship among the goals. Based on 

such interrelationship, the goals can be grouped into clustered, based on which, the goals can be 

reorganized in the next iteration, by using the most representative design scenarios. 

In Chapter 6, we use a test problem of concurrent engineering designing to demonstrate how to 

use the proposed method to learn and speed up learning the system nature. 

 

Figure 3. 14 Learn and Speed up the Learning of Systems using Machine Learning 
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3.3.4 M4: Exploring Critical Factors through Scenario Planning in Agent-Based Modeling 

To realize and test Hypothesis 4, Capture and quantify emergent properties through scenario 

planning in simulation, we propose a framework to learn critical factors in simulations. The 

conception of the method in a word-form cDSP is written as follows. Given all the factos that may 

or may not affect the simulation results and the scenarios of each factor, find the critical factors 

that severely impact the simulation results and the appropriate scenarios of those factor that result 

in desired output, meanwhile satisfying simulation goals and constraints and minimizing the 

number of the combinations of scenarios. 

Given 

Factors [Scenarios] 

Find 

Critical Factors [Appropriate scenarios] 

Outputú"ý!þ#A = f(ScenarioD) 

Satisfy 

Simulation goals 

Simulation constraints 

Minimize 

Scenario combination 
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Factors are variables or parameters with a range or multiple scenarios, or with uncertainties, and 

designers lack knowledge of critical factor setting and the corresponding simulation results, 

especially the simulation output under the influence of the combination of multiple scenarios of 

different factors. Among all the factors, some have a more significant impact on the simulation 

results when changing scenarios, while others do not. 

Critical factors are the factors that have relatively significant impact on the simulation results 

when applying different scenarios. The aim of learning the emergent properties is to identify the 

critical factors, quantify their impacts on the simulation results, and find the certain scenarios that 

lead to desired results. 

The procedures of learning critical factors in a simulation such as agent-based modeling are shown 

in Figure 3.16. After identifying the factors with uncertainties, designers need to make a judgment 

whether they are controllable or not. For the controllable factors, designers need to take them as 

decision variables, identify the possible scenarios of each factor, the physical meaning of each 

scenario, and the ways of setting each scenario. For the uncontrollable factors, designers need to 

set them as parameters with uncertainties or unparameterizable noise factors and identify their 

possible scenarios as well. Then, by exploring the scenarios and the combination of scenarios, they 

obtain simulation output of each scenario or combination of scenarios. For the factor that the 

simulation results do not vary significantly whilst changing its scenarios, designers can treat it as 

a noncritical factor. Otherwise, it is a critical factor, so designers can learn the mathematical 

relation between the scenarios and the simulation outputs, based on which decision support on 

scenario selection, setting, and timing is acquired. 

In Chapter 7, we use a test problem of identifying the critical factors in intervening a social system 

to demonstrate how to use the proposed method to learn and leverage critical factors in a simulation. 
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Figure 3. 15 The Process of Learning Critical Factors in a Simulation 

3.4 Overview of Test Problems 

In this section, the connections and transitions between the theoretical verification and the 

empirical verification of the methods are given, that is, the logic flow between the Quadrant 1 (Q1) 

and Quadrant 2 (Q2) of the validation square (Figure 1.11 in Section 1.6). 

3.4.1 Required Characteristics of the Test Problems 

To realize the RDI-II (robust design Type I and Type II) to identify satisficing solution space that 

is relatively insensitive to the variation in parameters and variables cause segments of the boundary 

sensitive, we need to use test problems that encounter uncertainty in parameters and variables. As 

it is shown in Figure 3.16, as the Type I and Type II uncertainty may impact the boundary of the 

physical system, the designers should refine the mathematical model accordingly, as the bold 

dotted red lines in Figure 3.16. By refining the model formulation, the designers expect to identify 
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the deviation at the optimal solution and identify satisficing solutions that are relatively insensitive 

to the Type I and Type II uncertainty, which is the Type I&II Robust Design. 

 

Figure 3. 16 Test Problems for RDI-II – Refining the model formulation and identifying 
satisficing solutions relatively insensitive to the variation in parameters and decision 

variables 

Therefore, the features of the test problem(s) for realizing RDI-II are 

• Fewer factors to control but a lot of requirements, or in other words, the number of decision 

variables are fewer than the number of constraints. The coefficient matrix of the model has 

more rows than columns. What does it mean in the physical world? It means that the 

variables that the designers can control are limited, whereas there are a lot of requirements 

that they must meet by controlling the limited variables. 

• Multiple goals but lacking knowledge on the ways of combining the goals associated with 

design preferences. When changing the way of combining the multiple goals to represent 

different design preferences, the solution may change as well. So, the solutions to the 

problem are usually sensitive to design preferences. In some cases, designers may not even 

have the knowledge on the combination ways associated with the design preferences. 
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• Variation in parameters and decision variables can make the optimal solution infeasible. 

• Parameter setting significantly impacts on the design results, but the designers rely on 

metaheuristics to set parameters and there is no mechanism to evaluate and update the 

metaheuristics. 

To realize the RDIII (robust design Type III) to identify satisficing solution space that is relatively 

insensitive to the variation in mathematical model, we need to apply the proposed methods to test 

problems with uncertainty in model structure. As it is shown in Figure 3.17, as the Type III 

uncertainty impact the structure of the model, the designers should learn how the source of the 

uncertainty disturb the model and make decisions based on the learned information. These 

decisions lead to a range in the solution space that has relatively narrow variation in model 

structure solution, which is Type III Robust Design. 

 

Figure 3. 17 Test Problems for RDI-II – Refining the model formulation and identifying 
satisficing solutions relatively insensitive to the variation in parameters and decision 

variables  

Therefore, the features of the test problem(s) for realizing RDIII are 
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• Designers rely on domain expertise to make decisions on the approximation or 

simplification of the model formulation and solving, but domain-independent knowledge 

can be acquired through post-solution analyses, applying which, the design can be 

improved. 

• Designers rely on metaheuristics to make rules in one or more stages of the design – 

formulation, approximation, exploration, and evaluation, but there is no effective 

mechanism to update metaheuristics. 

• Through post-solution analyses, the evaluation of the performance of the metaheuristics 

can be done and used to improve the metaheuristics updating.  

To realize the RDIV (robust design Type IV) to capture emergent properties of the system and 

incorporate them into the decision model, we need to deal with test problems with emergent 

properties, learn and leverage critical factors to identify satisficing solution space that is relatively 

insensitive to the uncertainties caused by the actions of managing the first three types of 

uncertainty.  

There are different sources of emergent property. First, some functional relationships, especially 

cause-and-effect relations, are hidden under the system’s appearance, which the designers may 

ignore in the initial formulation. When gradually recognize those functional relationships during 

the solution and post-solution analyses, designers may take them as emergent properties and 

incorporated them into the decision model during the model improvement process. By doing this, 

the decision model can become more accurate and complete with the model evolution. 

Second, as designers attempt to manage Type I, II, and III uncertainty, their actions may bring 

emergent properties to the system. If they are not aware of and cope with those emergent 
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properties, the solutions may not be satisficing anymore. Therefore, Type IV Robust Design allows 

designers to capture, quantify, and model the emergent properties. By doing this, the decision 

model can become more robust to multiple types of uncertainty with the model evolution. 

It is expected through managing the emergent properties, designers can identify the solution space 

that is relatively insensitive to all four types of uncertainty, and this is a dynamic process. How 

can designers manage emergent properties? By identifying the critical factors that can be 

controlled as inputs and that they can significantly affect the system’s output, identifying the 

mathematical relations between the critical factors and the output, and leveraging the input to get 

desired output. 

Therefore, the features of the test problem(s) for realizing RDIV are 

• Designers’ domain knowledge and experience are insufficient to make the model’s 

completeness, accuracy, and fidelity to an acceptable level. This level allows decision 

support to be somehow correct and useful. For example, designers’ knowledge does not 

support them to design reasonable dimensions and recognize all requirements of the 

system. 

• There are controllable or uncontrollable factors that may or may not impact the output of 

the system. Designers have no idea of what those factors are, how to control them, and how 

they affect the output. However, they can learn them using empirical methods such as 

simulations and scenario planning. 

• When designers attempt to manage Type I, or II, or III uncertainty, their actions may cause 

new uncertainties. 
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Given the required features of the test problems, in Section 3.4.2, we briefly introduce the test 

problem – why they are appropriate for this dissertation, how they can be used to testify the 

proposed methods, what output is expected by dealing with the test problems? 

3.4.2 Brief Introduction of Each Test Problem 

In Table 3.2, it is summarized the five test problems, what robust design types they are used to 

illustrate, what methods they are used to test, what uncertainties are contained in each problem, 

and what types of uncertainty they are. 

Table 3. 2 Summary of Test Problems – The robust design type, testified methods, and 
uncertainties of each test problems. The uncertainties underlined in italic are managed in 

this dissertation. 
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Ty
pe

 II
I  

  

Uncertainty in 
model 
approximation due 
to heuristics in 
approximation 

Uncertainty in 
model 
approximation 
(ways of combining 
multiple goals) 

 
Ty

pe
 IV

 

   

Uncertainty in using 
domain knowledge 
to simplify the model 
(fixing decision 
variables and 
selecting design 
scenarios) 

Interventions that 
change the 
mathematical 
relation among 
promotion and 
result (developing 
local market) 

RD – robust design 
M – method 
EVe – empirical verification of the method 
T – test problem 

Test Problem 1.1 (T1.1) – designing a dam network by controlling the water outflow. The only 

control factor of this problem is how much water each reservoir should release to its downstream 

each month, but multiple goals should be satisfied, and uncertainty in precipitation and the priority 

of the user groups needs to be managed. In this dissertation, the uncertainty in water inflow is 

managed by exploring and refining the boundary of the system using the formulation-exploration 

framework. The detailed introduction of T1.1 and the empirical verification of M1 is in Section 

4.2. 

Test Problems 1.2 (T1.2) – designing a supply chain by positioning the customer order decoupling 

point (CODP). Unlike the dam-network design problem, this problem has discrete variables, the 

CODP, so it is a coupled decision problem, which includes two types of decisions, selecting one 

scenario from several alternatives and compromising multiple goals by determining the value of 

continuous decision variables. In this problem, uncertainties in the supply side and demand side 

are managed, multiple goals in different phases of the product life cycle are managed based on 

evolving preferences. The detailed introduction of T1.2 and the empirical verification of M1 is in 

Section 4.3. 
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Test Problem 1.2 (T1.2) – improving the parameter setting (setting the reduced move coefficient 

or RMC for short) of approximation algorithm (the Adaptive Linear Programming algorithm or 

ALP for short) to make the design (the cooling stage of hot rod process chain) relatively insensitive 

to the approximation. In the cooling stage of the hot rod process chain problem, the value of the 

RMC can seriously influence the size and robustness of the solution space, especially the range of 

the weights that return solutions satisfice different design preferences. Uncertainties caused by 

using heuristics in parameter settings are managed by using parameter learning. The detailed 

introduction of T2 and the empirical verification of M2 is in Chapter 5. 

Test Problem 3 (T3) – improving the understanding of the interrelationship among subsystems of 

a concurrent engineering design problem, the thermal system, by using unsupervised learning to 

analyze the correlation or orthogonality among the deviation matrix of the goals in multiple design 

scenarios. Subsystem awareness and model reformulation regarding the organization of the goals 

can be helpful in helping designers select the most representative design scenarios and boost the 

system performance. The detailed introduction of T3 and the empirical verification of M3 is in 

Chapter 6. 

Test Problem 4 (T4) – identifying controllable critical factors in a promotion through scenario 

planning in simulations and leveraging the critical factors to reach promotion goals. In a social 

system such as a rural community, to promote a new lifestyle based on new technology, even each 

individual’s preferences and behaviors are known, it is difficult to predict the collective behaviors. 

Simulations using agent-based modeling can help designers understand collective behaviors and 

what interventions can be done to drive the system behavior towards the direction they desire at 

the right timing. The detailed introduction of T4 and the empirical verification of M4 is in Chapter 

7. 
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3.5 Role of Chapter 3 in this Dissertation 

In this chapter, the elements of design improvement through model evolution, which are the 

possible ways and tasks of answering research questions are discussed in Section 3.1. Theoretical 

verification of the feasibility of demonstrating the hypotheses by carrying out the tasks are done 

in Section 3.2. The corresponding methods for finishing the tasks are proposed in Section 3.3. The 

test problems used to test the hypotheses and methods are briefly introduced in Section 3.4. In 

summary, this chapter is a foundation for Chapters 4-7, in which different test problems with 

desired characteristics are used to demonstrate the effectiveness of the proposed methods.  

From Chapter 1 to Chapter 3, Quadrant 1 of the Research Questions are addressed; see Figure 3.20. 

The theoretical structural validity of the research questions is answered by identifying conditions 

for the design evolution loop under high complexity and uncertainty. 

 

Figure 3. 18 Finishing Theoretical Structural Validity in Chapter 1, 2, and 3 
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CHAPTER 4 TYPE I & II ROBUST DESIGN THROUGH FORMULATION-

EXPLORATION FRAMEWORK 

– EXPLORATION OF THE BOUNDARY OF THE SYSTEM  

The new knowledge in Chapter 4: 
A method that allows to identify the sensitive elements of the model and improve the model 
accordingly – the Three-Step Exploration Method (Figure 4.9). 
A framework that incorporates the Three-Step Exploration Method that allows to identify the 
sensitive elements of a mixed-variable, coupled decision model and improve the model accordingly 
– the Formulation-Exploration Framework (Figure 4.22). 

In Chapter 4, see Figure 4.1: in Section 4.1, the reference is framed in the context of the test 

problems; in Section 4.2, the dam-network design problem with uncertainty in water inflow is used 

to empirically verify the Three-Step Exploration method, which is an example of the 

implementation of the Formulation-Exploration framework; in Section 4.3, the supply chain design 

problem with discrete variables and uncertainty from supply side and demand side is used to 

empirically verify the Formulation-Exploration framework; in Section 4.4, summarized the role of 

Chapter 4. 

 

Figure 4. 1 Organization of Chapter 4 
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The plan of specifying and answering Research Question 1 in the context of the test problems is 

shown in Table 4.1. In Chapter 4, the Proposed Method 1 (M1), Formulation-Exploration 

framework, is empirically verified (EVe1) using two test problems, designing a dam network by 

controlling the water outflow (T1.1) and designing a supply chain by positioning the customer 

order decoupling point (T1.2). Research Question 1 (RQ1) is specified into the context of the test 

problems (SQT1) and answered (AQ1) by testifying M1. The empirical validation and theoretical 

validation are in Chapters 8 and 9. 

Table 4. 1 Plan of Specifying Research Question 1 (RQ1) and Empirically Verifying the 
Formulation-Exploration Framework (M1) 
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EVe1: use two test problems with uncertainties in parameters and variables to 
verify SH1 and demonstrate M1. 

EVe 
SQT 
AQ 

CQ 
EVa TE 

SQT1: specify RQ1 in the context of the test problems – designing a dam 
network and designing a supply chain: 
Q1.1 - What is needed for a designer to make a satisficing decision with 
respect to different design preferences, in related to the different requirements 
in a changing design environment?  
Q1.2 - What is needed for a designer to check flexibility of the design in face 
of errors of the model and variations of the environment?  
Q1.3 - What modification can be made to the cDSP to improve feasibility 
robustness? 
Q1.4 - How can designers improve the robustness (insensitivity) of the design 
of the customer order decoupling point without sacrificing the performance of 
the supply chain to facilitate mass customization? 
AQ in T1.1 dam-network design: 
AQ1.1 - With design scenarios representing 
different design preferences, designers identify 
the satisficing area of the weights of the multiple 
goals and provide their physical meanings. 
AQ1.2 - Using inflow scenarios considering 
different weather and climate conditions to 
identify the sensitive segments. Exploring the 
practicality of removing the sensitive segments by 
modifying the mathematical model and adjusting 
the physical system.  
AQ1.3 - Using the information of the practicality 
of modifying the model and changing the system, 
make improvements, including changing 
parameters’ value to add buffers, and 
reallocating water to different pools to change 
the physical boundary. Then go through the three 
steps again. By running such a loop, improve the 
model to give satisficing solutions that are 
relatively insensitive to uncertainties.  

AQ in T1.2 Supply Chain 
design: 
AQ1.4 - Using the 
Formulation-Exploration 
framework, designers 
can explore the solution 
space by using 
representative design 
scenarios and explore 
the potential of boosting 
the performance of the 
system by adopting 
physical means. By doing 
this in iterations, 
designers can exploit all 
means that lead to 
reaching the most 
desirable satisficing 
solution space given the 
resources on hand. 
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N
om
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e 
RG – give research gaps 
H – give hypotheses 
RD – tie to roust design 
RQ – pose research questions 
SH – specify hypotheses 
TVe – theoretically verify hypotheses 
M – introduce methods 
EVe – empirically verify hypotheses 
SQT – specify research questions in the context of test problems 
AQ – answer research questions 
CQ – closure the answers to research questions 
EVa – empirically validate hypotheses 
TE – theoretically extend the research 

In this chapter, the method and framework of exploration of the solution space boundary are 

proposed and tested by using two examples in different fields. The Research Question 1 (RQ1) is 

answered. 

RQ1: What is the method to evolve model boundary? 

In other words, what are the formulation and procedures that allow the exploration of the solution 

space boundary? 

To answer RQ1, formulation and exploration of a design problem should be studied and the 

interactions between the two procedures are built and expanded. See Figure 4.2. 
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Figure 4. 2 Specified Research Question 1 and the Relevant Stages to be Connected in 
Design Evolution Cycle 

4.1 Frame of References on Satisficing Strategy 

George Box, a British mathematician and professor of statistics, wrote that “essentially, all models 

are wrong but some are useful” (Box and Draper 1987). In keeping with George Box’s observation, 

the decision maker must be able to work constructively with decision models that are typically 

incomplete and inaccurate (Simon 1996). The analysis embodied in a decision model does not 

represent the physical world completely and accurately, making it virtually impossible to predict 

the future state exactly  (Norman 1990). A designer is able to work around this limitation by 

identifying solutions that are relatively insensitive to inaccuracies embodied in the analyses models; 

see (Triantaphyllou and Sánchez 1997). 

In this chapter, a construct to exercise a decision model, the compromise Decision Support 

Problem (cDSP) is introduced. Based on the cDSP construct, the exploration of the solution space 

is presented. The three-step exploration method and the Formulation-Exploration framework are 

presented to excise the exploration. The method and the framework allow a designer to ascertain 
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to what extent the solution is insensitive to errors inherent in the modeling of the decision problem 

(Sabeghi, Smith et al. 2015), and answering to key questions (extended questions based on RQ1) 

such as:  

Q1.1 - What is needed for a designer to make a satisficing decision with respect to different design 

preferences, in related to the different requirements in a changing design environment?  

Q1.2 - What is needed for a designer to check flexibility of the design in face of errors of the model 

and variations of the environment?  

Q1.3 - What modification can be made to the cDSP to improve feasibility robustness? 

Moreover, if it is for a particular system, such as a supply chain with a customer order decoupling 

point, the research question can be further specified into the context of the peoblem: 

Q1.4 - How can designers improve the robustness (insensitivity) of the design of the customer order 

decoupling point without sacrificing the performance of the supply chain to facilitate mass 

customization? 

The compromise DSP is a multi-objective decision model (Mistree, Hughes et al. 1993) which 

enables a designer to determine values of design variables which satisfy a set of constraints to 

achieve a set of goals (Chen, Tsui et al. 1994). The objective is to minimize the deviations of 

different goals from target values using lexicographic minimization (Sabeghi, Shukla et al.). 

In a design problem, different stakeholders have different perspectives and need to be 

accommodated (Aitken, Childerhouse et al.). To model decisions especially in goal programming, 

the major challenge is in the determination of the weights to assign to the deviations in the 

objective function (deviation function) (Neely, Sellers et al. 1980). Understanding the inherent 
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choices and risks within the context of a design lead to justifiable decisions (Smith, Milisavljevic 

et al. 2015). 

In a multidiscipline system, managing conflicting goals is critical to making the system sustainable 

in the presence of considerable uncertainty. The priorities of multiple goals and availability of the 

resource vary external environment. Uncertainties such as variations in parameters and consequent 

variations in constraint boundary can intensify the discrepancies between the designers’ desire (the 

target of the goals) and what designers achieve (the completeness of the goals). To reduce such 

discrepancies, we seek to satisfice the goals, considering typical uncertainties. It is observed that 

models are incomplete and inaccurate, which calls into question using a single point solution and 

suggests the need for solutions, which are robust to uncertainties. So, we explore satisficing 

solutions that are relatively insensitive to uncertainties, by incorporating different design 

preferences, identifying sensitive segments, and improving the design accordingly.  

In Chapter 4, RQ1 are addressed using two test problems. The expansion of the literature review 

and the methods introduction on the two test problems are presented in Section 4.2 and 4.3, 

respectively.  

4.2 Managing Conflicting Goals and Uncertainties in a Dam Network 

– Test Problem 1.1 (T1.1): Apply ESS to a Continuous Problem 

The new knowledge from managing Test Problem 1.1 is 
A method that allows to identify the sensitive elements of the model and improve the model 
accordingly – the Three-Step Exploration Method. 

In a multi-reservoir system, ensuring adequate water availability while managing conflicting goals 

is critical to making the social-ecological system sustainable in the presence of considerable 

uncertainty. The priorities of multiple user-groups and availability of the water resource vary with 



 137 

time, weather and other factors. Uncertainties such as variations in precipitation can intensify the 

discrepancies between water supply and water demand. To reduce such discrepancies, satisficing 

conflicting goals is desired. 

It is observed that models are incomplete and inaccurate, which calls into question using a single 

point solution and suggests the need for solutions which are robust to uncertainties. So, satisficing 

solutions are explored, so that the solutions that are relatively insensitive to uncertainties are 

identified, associated with different design preferences. Sensitive elements of the model are 

identified, and the model is improved accordingly. In this section, presented an example of the 

exploration of the solution space to enhance sustainability in multi-disciplinary systems, when 

goals conflict, preferences are evolving, and uncertainties add complexity. The proposed three-

step method of exploration of the solution space can be applied in mechanical design. 

Nomenclature (mainly applied in Section 4.2) 

DSP – Decision Support Problem 
cDSP – Compromise Decision Support Problem 
LHS – Left-hand-side 
RHS – Right-hand-side 
WS – Weight Scenario 
IS – Inflow Scenario 
LP – Linear Programming 
MILP – Mixed Integer Linear Programming 
SLP – Stochastic Linear Programming 
CCLP – Chance Constraint Linear Programming 
NFP – Network Flow Programming 
IP – Interior Point 
DP – Dynamic Programming 
GP – Goal Programming 

Glossary (mainly applied in Section 4.2) 

Key Nodes – The nodes in the network that have more than one upstream node that are directly linked to 
them. 
Ordinary Nodes – The nodes in the network that have no upstream node or only one upstream node. A node 
in a network must be either a key node or an ordinary node.  
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Boundary of the solution space – The constraints or bounds of the model that bound the feasible solution 
space. 
Slack or surplus – The slack or surplus variable provides information to a designer about how close the 
current solution is to satisfying a constraint/bound as an equality. This value, on a less-than-or-equal-to (≤) 
constraint/bound, is referred to as slack, and on a greater-than-or-equal-to (≥) constraint/bound is referred 
to as surplus. If a constraint/bound exactly satisfies an equality, the slack or surplus value will be zero 
(LindoOnlineHelp). 
Dual price (shadow price) – The dual price is the amount that the goal (objective) would be improved 
(achieved more completely) as the RHS of the constraint/bound is relaxed by one unit (LindoOnlineHelp). 
Active constraints/bounds – The constraints or bounds that have zero or a very small slack or surplus are 
defined as active constraints/bounds. In this section, we define “very small” as less than 1% of the larger 
of the LHS and the RHS of the constraint/bound. 
Improvable constraints/bounds – The constraints or bounds that have relatively large positive dual prices 
(shadow prices) are improvable constraints/bounds. In this section, any dual price that is greater than 0.1% 
of the achieved value of the goals is a relatively large positive dual price. 
Sensitive segments – There are two types of sensitive segments: active constraints/bounds and improvable 
constraints/bounds. 
Restricting RHS – On less-than-or-equal-to (≤) constraints/ bounds, restricting the RHS means decreasing 
the RHS. On the greater-than-or-equal-to (≥) constraints/bounds, restricting RHS means increasing the 
RHS. 
Relaxing RHS – It is the opposite of restricting the RHS. On less-than-or-equal-to (≤) constraints/ bounds, 
relaxing the RHS means increasing the RHS. On the greater-than-or-equal-to (≥) constraints/bounds, 
relaxing RHS means decreasing the RHS. 
Satisficing –“Satisficing is a decision-making strategy or a cognitive heuristic that entails searching through 
the available alternatives until an acceptability threshold is met” (Byron 1998). 
Acceptability threshold – A value that is identified by a designer as the acceptable value of a goal and that 
can be achieved.  
Satisficing solutions – Satisficing solutions are those solutions for which the acceptability threshold for all 
goals are met simultaneously. 
Satisficing weight range – The area in a ternary plot in which the goal weights offer a designer a choice 
of satisficing solutions. 
Physical boundary – The physical boundary of a system is a boundary that the system can be reached 
physically. It may be different from the mathematical boundary. To improve the mathematical model and 
obtain solutions that are relatively insensitive to uncertainties, we “add a buffer” to the physical boundary 
as the boundary of the mathematical model. Then the boundary of the mathematical model is more 
restrictive than the physical boundary.  
Insensitive solutions – Insensitive solutions are solutions away from the physical boundary. Insensitive 
solutions are relatively insensitive to the uncertainty of the physical boundary. 
Improvement – In this section, we define model improvement and system improvement as the 
improvement in insensitivity to the uncertainties. 

4.2.1 Problem Statement – Test Problem 1.1: Dam-Network Planning 

The Red River is a tributary of the Atchafalaya River, which is a distributary of the Mississippi 

River and flows separately into the Gulf of Mexico. We use a part of its dam-network system on 

the border of Oklahoma and Texas (Figure 4.3). In 2015 the Red River basin experienced a severe 
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drought followed by flooding, both of these events impact people, planet, and profit. Therefore, 

managing the supply and sensible distribution of fresh water to support human activity while 

sustaining vigorous, effective ecosystems is a major ecological challenge (Poff, Brown et al. 2016). 

We use data from a recent large-scale, comprehensive analysis of the hydrology, societal 

water usage, and water availability for the Red River by Xue (Xue, Zhang et al. 2015) and 

McPherson (McPherson 2016) with their coauthors. 

Goals:We have three user-groups in the basin – people, fish in the reservoirs, and fish in the 

streams between reservoirs. To meet water demands, there are three goals:  

• To reach the target for water storage in reservoirs.   

• To meet people’s demand for water – including agricultural and municipal demand.  

• To meet the water requirements for the fish in streams.  

For each goal, we wish to minimize the difference between water supply and water demand. Water 

volume is measured in cubic feet. 

Problem Size: we consider a 14-dam network, shown in the rectangle in Figure 4.3 and Figure 4.4. 

We select these fourteen dams for three reasons. 

1) Independence. This 14-dam network is a relatively independent sub-network in the 38 dams in 

the Red River basin, and its interaction with other dams is by managing Dam 14, Texoma. 

2) Representativeness. As a sub-network of the Red River basin, this 14-dam network is 

representative, because of its features such as a hierarchical upstream-downstream structure and 

key nodes which connect with ordinary nodes.  



 140 

3) Direct interactions with other dams. This 14-dam network is used to release water directly to 

other dams (the dams not in the rectangle in Figure 4.3) on the Red River basin. This release goes 

through a single dam – Texoma. The structure of the 14-dam network is shown in Figure 312. The 

physical features of the network are given in detail in Section 4.2.4. 

4) Avoiding repeated calculation and analysis. In this section, we focus on the method rather than 

the results. We use the 14-dam network to prove the utility of the proposed method. The size can 

be enlarged, and the time scale can be changed – we can apply our method in the 38-dam network, 

we can manage 12 months rather than 3 months, and we can use a smaller time period such as one 

week or one day to further reduce the risk, and we can incorporate uncertainties in outflows. 

 

Figure 4. 3 Dams along the Red River Basin 

 

12 The position of the nodes and the length of the arches in Figure 4.4 are different from those in Figure 4.3. They are 
change for the convenience of the visualization. The structure of the network in the two figures are the same. 
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Figure 4. 4 The 14-Dam Network 

Here we consider a planning horizon of three months, and the planning time unit is one month. 

Each dam corresponds to a reservoir. Each node represents one dam and the reservoir behind it.  

Variables and Parameters: The total water inflows of each reservoir have two parts: 

• Water which is released from the direct upstream dams of Dam d (𝑑E ∈ 𝐷(F)) in the 

previous month (�́�), ∑ 𝐹F6
E

FE∈I(J) . This water conserves fish in the streams and becomes 

the inflow of Reservoir d. These inflows are crucial for planning and is controlled by 

designers, so they are decision variables. 

• Natural water received from the outside of Reservoir d in Month t, includes tributary 

inflow (𝐼F6 ) and precipitation (𝑃𝑟F6), 𝐼F6 + 𝑃𝑟F6. These are crucial to the results but cannot 

be controlled so they are parameters with uncertainty. 

• The total water outflows of each reservoir have three parts: 

• Water released for people by Dam d in Month t, AL! , includes for agricultural and 

municipal use. They are decision variables. 

• Water released by Dam d in Month t, FL! , for the fish living between Dam d and its 

downstream dams. They are critical and can be controlled so they are decision 

variables. 

• Natural loss of water in Reservoir d in Month t, includes evaporation (𝐸F6 ) and seepage 

loss (𝑃F6), 𝐸F6 + 𝑃F6 . From the historical data, the natural loss of the 14 dams is only 2% 
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of the total water storage volume, and the variance of the natural loss in 12 months is 

only 11% of the variance of the inflows. So, the natural loss and its uncertainty is 

ignorable compared with the water storage, therefore, they are defined as constant 

parameters. The water stored in Reservoir d in Month t, 𝑆F6 , is used to conserve the fish 

in the reservoir. They are important to the planning and can be controlled so they are 

decision variables. 

In Figure 4.5 a part of the dam-network with three dams is illustrated – Dam x, y, and z, and we 

show how these decision variables and parameters affect the system.  

 

Figure 4. 5 A Small Part of the Dam-Network in the Red River Basin 

In addition to the variables and parameters of inflows and outflows, there are target value for each 

goal.  

• The target value of water stored (S) in Reservoir d in Month t, 𝑆𝑇F6 

• The target value of water released for people (A) by Dam d in Month t, 𝐴𝑇F6 

• The target value of water released for fish (F) by Dam d in Month t, 𝐹𝑇F6 



 143 

With the parameters and variables, here gives the mathematical form of the goals – Equations 4.1, 

4.2 and 4.3. In order to avoid over-supply or under-supply, we use the sum of the squares of the 

difference between water supply and water demand in each month so that each goal indicates the 

achievement of water demand for one user-group. 

∑ ∑ (1 − ÞJ
P

Þ�J
P)�6∈�FQI + 𝑣xj − 𝑣xl = 0            Equation 4. 1 

Goal for water stored in Reservoir d in Month t 

∑ ∑ (1 − SJ
P

S�J
P)�6∈�FQI + 𝑣�j − 𝑣�l = 0      Equation 4. 2 

Goal for water released to people by Dam d in Month t 

∑ ∑ (𝟏 − 𝑭𝒅
𝒕

𝑭𝑻𝒅
𝒕 )𝟐𝒕∈𝑻𝒅𝝐𝑫 + 𝒗𝟑j − 𝒗𝟑l = 𝟎      Equation 4. 3 

Goal for water released to fish by Dam d in Month t 

Bounds: As it is shown in Figure 4.6, for each reservoir, there are several pools for different 

functionalities. The water level in the inactive pool never changes; the conservation pool is to 

conserve fish. Within the conservation pool, a certain volume is necessary to contain enough 

microorganisms and nutrients for the fish to live and reproduce healthily. The flood control pool 

is reserved for flood runoff and must be evacuated immediately to keep the space in readiness for 

the next flood. On the top of the reservoir, there is a surcharge pool. We do not plan to use the 

surcharge pool because it is the last backup space.  
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Figure 4. 6 The Pools of a Reservoir 

For Reservoir d, there is a lower bound of water storage volume, 𝐶𝑀F, to guarantee that the amount 

of water in the conservation pool is acceptable and does not cause system failures. Its upper bound, 

𝐶𝐹F, is the capacity including inactive pool, conservation pool, and flood control pool. 

The lower bound of water release volume, both for fish (𝐹F6) and for people (𝐴F6 ), is zero, since the 

water outflows subtract backflows are always positive. We do not have an upper bound of 𝐹F6 and 

𝐴F6 . Goal 2 and Goal 3 are set to restrain the over-achievement for water released for people and 

fish.  

In summary, the bounds are the capacity of reservoirs, and the upper/lower limit of water release 

volume and water storage volume – Equation 4.4-4.7. 

SL! ≤ 𝐶𝐹F         Equation 4. 4 

Upper bound of the water released by Dam d in Month t 

SL! ≥ 𝐶𝑀F          Equation 4. 5 

Lower bound of the water released by Dam d in Month t  

FL! ≥ 0          Equation 4. 6 

Lower bound of the water released to fish by Dam d in Month t 
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𝐀𝐝𝐭 ≥ 𝟎          Equation 4. 7 

Lower bound of the water released to people by Dam d in Month t 

Constraints: to the water storage of Reservoir d at the beginning of Month t, 𝑆F6 ,  the total water 

inflow is added, ∑ 𝐹F6
E

FE∈I(J) + 𝐼F6 + 𝑃𝑟F6 , and the total water outflow is subtracted,	−𝐹F6 − 𝐴F6 −

	𝐸F6 − 𝑃F6 , so the reservoir’s water storage at the beginning of the next month, 𝑆F6lx, is obtained. 

(Equation 4.8 and Figure 4.7.) 

𝑆F6 		 + 	 ∑ 𝐹FE
6

∀FE∈ZIJ + 𝐼F6 + 𝑃𝑟F6 − 𝐹F6 − 𝐴F6 − 	𝐸F6 − 𝑃F6 = 𝑆F6lx, where 𝑡 = 1,2,3 

Equation 4. 8 

 

Figure 4. 7 Illustration of the Equality Constraints for Dam (Reservoir) d 

In this model, we have water storage volume as a goal, meanwhile we have upper bounds and 

lower bounds of water storage volume as bounds. The meaning of the goal and bounds are different. 

The water stored in each reservoir ensures the healthiness of the conservation pool, to conserve 

the fish. The upper bound and lower bound of water storage are to guarantee operable conditions 

– making sure the reservoirs can be run smoothly with low risk of system breakdown. The water 
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demand of the fish in reservoirs, however, is more specific. In other words, the bounds of the water 

storage in a reservoir allow the operators to have a relatively larger range for operations, whereas 

the target for water volume in the reservoir is an ideal value that boosts the environmental condition.  

In this section, only the quantity of the water is considered without considering the water quality. 

The flows for each month are planned and the daily differences are ignored.  

Uncertainty: Based on our data, we simultaneously manage two uncertainties in water inflows – 

the variations in precipitation and tributary inflow under present-day conditions. The uncertainties 

are modeled by considering different inflow scenarios (ISs) of precipitation and tributary inflow. 

Each IS represents a typical weather and climate condition, from extreme drought to flood, and 

uneven case as drought followed by flood. We use ISs instead of stochastic variables to incorporate 

the uncertainty to avoid making assumptions about the uncertainty distribution. This is explained 

further in Section 4.2.3. 

4.2.2 Critical Review of The Literature on Dam-Network Water Resource Management 

Challenges such as high dimensionality and computational complexity are encountered by dam-

network designers (Reddy and Kumar 2007) – multiple user-groups compete for a limited resource, 

and designers must deal with complicated variables. Those variables include precipitation, 

tributary inflow, dam storage, irrigation, and municipal water demands (Rani and Moreira 2010), 

etc. They are complicated because they often bring uncertainties into the system. Once a dam-

network is planned, operational plans and evaluations should make the system’s performance meet 

the water demand of all user-groups as closely as possible. 

To make the reservoirs serve people’s goals, scholars have tried many methods to plan the dams. 

Popular methods of dam water planning include Linear Programming (LP), Mixed Integer Linear 
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Programming (MILP), Stochastic Linear Programming (SLP), Chance Constrained Linear 

Programming (CCLP), Network Flow Programming (NFP), Interior Point (IP), Nonlinear 

Programming (NLP), Dynamic Programming (DP), and Goal Programming (GP) (Wurbs). 

However, there are limitations with each of these methods. See Table 4.2. 

Table 4. 2. Gaps and limitations of the Methods in the Literature 

M
et

ho
ds

 in
 li

te
ra

tu
re

 

M
an

ag
e 

no
nl

in
ea

r/
no

nc
on

ve
x 

fe
at

ur
es

 

M
an

ag
e 

un
ce

rt
ai

nt
ie

s i
n 

in
flo

w
s/o

ut
flo

w
s 

M
an

ag
ea

bl
e 

co
m

pu
ta

tio
na

l 
co

m
pl

ex
ity

 

R
el

at
iv

el
y 

st
ab

l e
 p

er
fo

rm
an

ce
s 

as
 si

ze
 in

cr
ea

se
s  

R
el

at
iv

el
y 

st
ab

le
 p

er
fo

rm
an

ce
s 

as
 d

im
en

sio
na

lit
y 

ch
an

ge
s  

G
ap

s a
nd

 L
im

ita
tio

ns
 

 

Deterministic Linear 
Program-ming (LP)   * * * Cannot manage nonlinearity, nonconvexity, 

discontinuity, or variations in parameters. 
Mixed Integer 
Linear Programming 
(MILP) 

*     Computational complexity increases exponentially as 
the number of integer variables increases. 

Stochastic Linear 
Programming (SLP) * * * * * The assumptions of the distribution of stochastic 

variables may be incorrect. 
Chance Constrained 
Linear Programming 
(CCLP) 

* * * * * 
Can be used to decrease the frequency of system failures 
but cannot manage the severity of each system failure. 
 

Network Flow 
Programming (NFP)   * *  Cannot be used to evaluate the structure of the network 

and output improvement suggestion. 

Interior Point 
Methods (IP) *   * * 

IP methods are efficient only when the problem is a 
large-scale one and are relatively hard to be 
implemented. 

Nonlinear 
Programming (NLP) * *    Not computational efficient for engineering design 

purposes and may trap the designer in a local optimum. 

Dynamic 
Programming (DP)   *   

Curse of dimensionality – adding extra dimensions in 
Euclidean space causes exponential increases in 
calculation volume. 

Goal Programming 
(GP)   * * * 

Preemptive GP: An error in the choice of a primary goal 
can prevent a possible large improvement in a secondary 
goal, yet setting hierarchy of the goals are based on the 
designers’ domain knowledge and intuition rather than 
general quantified methods; 
Weighted GP: There is difficulty in finding the 
appropriate values of the goal weights and evaluating 
their rationality. 

Using deterministic LP, Crawley and Dandy (Crawley and Dandy 1993) determine optimal 

operating policies using an LP model, Loucks (Loucks 2000) sizes reservoir capacities, Dahe, and 

Srivastava (Dahe and Srivastava 2002) apply yield models to design an eight-reservoir system, 
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Needham and coauthors (Needham, Watkins Jr et al. 2000) offer methods for flood control, and 

Vedula and coauthors (Vedula, Mujumdar et al. 2005) make an optimal conjunctive use policy for 

irrigation in a reservoir-canal–aquifer system. Nonlinear features or uncertainties in the system 

cannot be captured and managed in LP – for example, uncertainties in water inflow and outflow.  

To manage the uncertainties, such as the variations in parameters, Stochastic Linear Programming 

(SLP) and Chance Constrained Linear Programming (CCLP) are widely used. Loucks and 

coauthors (Loucks, Stedinger et al. 1981) use an SLP to get optimal steady-state probabilities for 

dam outflows and storage assuming the inflows follow a single Markov chain. Sreenivasan and 

Vedula (Sreenivasan and Vedula 1996) apply a CCLP to determine the optimal hydropower 

production while satisfying irrigation demands at a specified level of reliability. Van Ackooij and 

coauthors (van Ackooij, Henrion et al. 2014) present a cascaded reservoir optimization problem 

with uncertainty of inflows in a joint CCLP setting, and present an iterative algorithm for solving 

similarly structured problems that require a Slater point and the computation of gradients.  SLP 

has been used with assumptions about the distribution of stochastic variables, which may cause 

errors. Another problem with SLP and CCLP is that they only guarantee a small probability of the 

system failure but cannot ensure that for each failure the severity is within a manageable level. 

Since the reservoirs work as a network, Network Flow Programming (NFP) is used to deal with 

multi-reservoir system planning and is considered to be a computationally efficient form of LP. 

Ford and Fulkerson (Ford and Fulkerson 1962) treat reservoir systems as general configurations 

of capacitated networks, and they maximize the flow while minimizing the cost. Kuczera and 

Diment (Kuczera and Diment 1988) discuss the principles of formulating network LPs, and apply 

these principles to develop a simulation model, WASP (Water Assignment Simulation Package). 

Hsu and Cheng (Hsu and Cheng 2002) apply a generalized NFP model for long-term supply-
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demand analysis for basin-wide water resources planning. NFP allows us to manage the amount 

and timing of the flow in the network as a whole, but one of its limitations is that we cannot 

determine the potential for improvement of the network structure. 

Interior Point (IP) Methods are efficient in solving large problems. Ponnambalam and coauthors 

(Ponnambalam, Vannelli et al. 1989) introduce Karmarkar’s interior point LP (IPLP) approach to 

reservoir operation, showing that the IPLP algorithm is capable of solving large multi-reservoir 

operation problems faster than the simplex method. Seifi and Hipel (Seifi and Hipel 2001) apply 

an improved IP method to multi-reservoir operation planning and show how exploiting the 

problem structure enhances algorithm performance. Mousavi and coauthors (Mousavi, 

Moghaddam et al. 2004) use a primal-dual IP algorithm to resolve dimensionality of a multi-

reservoir, multi-functional system and demonstrate the computational efficiency of the proposed 

method using historical data. However, IP only works better than the Simplex algorithm for large-

scale problems, and many IP algorithms are relatively hard to implement.  

Managing the multiple functions of reservoir systems is computationally difficult due to the 

nonlinearity in the complex relationships among physical and hydrological variables. This problem 

is often solved by approximation (linearization) or successive applications of LP, dynamic 

programming, or algorithms such as sequential quadratic programming (SQP) and generalized 

reduced gradients (GRG). Zhou and coauthors (Zhou, Zhang et al. 2007) use the combination of 

entropy and fuzzy optimization to improve reservoir operation. Teegavarapu and Simonovic 

(Teegavarapu and Simonovic 2000) use a mixed integer NLP formulation with binary variables to 

study daily hydropower operation of four cascading reservoirs. Barros and coauthors (Barros, Tsai 

et al. 2003) demonstrate that NLP is particularly fit for setting up guidelines for real-time 

operations using inflow prediction with frequent updating. A well-known drawback of NLP is its 
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computational complexity. Although the NLP are with good fidelity and suited for real-time 

operations, they are not computationally efficient for engineering design purposes. In addition, 

using NLP may trap a designer in a local optimum without sufficiently exploring the design space. 

To obtain acceptable computational complexity while managing multi-period plans, Dynamic 

Programming (DP) is introduced (Rani and Moreira 2010). Yakowitz (Yakowitz 1982) reviews 

DP models and concludes that computational considerations impose a severe limitation on the 

scale of DP problems. Nandalal and Bogardi (Nandalal and Bogardi 2007) discuss the applicability 

and limits of DP methods, specifically for reservoir operation problems. The well-known “curse 

of dimensionality”, however, is the main drawback of DP (Bellman and Dreyfus 1962), because 

adding extra dimensions in Euclidean space may cause exponential increases in volume (Bellman 

1957). 

Goal Programming (GP) is an efficient method for managing multiple conflicting goals (Ignizio 

1982). GP is a multi-objective optimization method that allows the flexible expression of policy 

constraints as objectives. Clayton and coauthors (Clayton, Weber et al. 1982) develop an approach 

of goal programming using a modified pattern search routine. Loganathan and Bhattacharya 

(Loganathan and Bhattacharya 1990) apply five GP schemes (preemptive, weighted, min‐max, 

fuzzy, and interval) minimizing deviations from a set of preferred target storage and flow values, 

and find efficient alternative optima. Eschenbach and coauthors (Eschenbach, Magee et al. 2001) 

use preemptive GP and combined detailed system representations, policy expression flexibility, 

and computational speed for routine daily scheduling of large complex multi-objective reservoir 

systems. Changchit and Terrell (Changchit and Terrell 1993) present an application of chance-

constrained GP (CCGP) to a system of multipurpose reservoirs for planning rather than real-time 

operation. The problem with GP is that designers cannot separate the goals into “rigid” goals and 
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“soft” goals to manage them in different ways. Moreover, the problem with preemptive GP is that 

even a tiny difficulty of a primary goal may block a large improvement in a secondary goal. The 

challenge with weighted GP is determining the appropriate weights to represent the goals priority. 

The limitations of these methods are summarized in Table 4.1. Besides, there is another difficulty. 

All of these methods are used to find optimal solutions, which are boundary solutions. As models 

are incomplete and inaccurate, boundary solutions are sensitive to uncertainties in the constraints 

and bounds. According to George Box (Box and Draper 1987), “all models are wrong but some 

are useful.” In other words, models are typically incomplete, inaccurate and of different fidelities, 

hence the use of a multi-objective optimization model to obtain a single optimal solution is 

questionable. Especially in a dam-network with a variety of uncertainties, such as variations in 

precipitation, uncertain tributary inflow, and climate change. 

Therefore, instead of searching for optimal solutions, we turn to searching for satisficing solutions, 

as described by Herbert A. Simon (Simon and Kadane 1975). Satisficing solutions are “good 

enough” solutions. A designer can work around this research gap by providing insensitive 

solutions – the solutions which are relatively insensitive to inaccuracies embodied in the models 

(Triantaphyllou and Sánchez 1997) and uncertainties that cannot be well captured in the models. 

The method descriptions are given in Section 4.2.3. 

4.2.3 Proposed Methods – The Thee-Step Exploration Method 

As the total water resource is limited, the designer may not meet all user-groups’ water demands 

at all times, hence we work to minimize the discrepancies between water supply and water demand 

for each user-group. We use a method which is a hybrid of mathematical programming and GP – 

the compromise Decision Support Problem (cDSP) because we can manage “rigid” goals (such as 
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the physical capacity of the reservoirs) as constraints and manage “soft” goals (such as the water 

demand of different user-groups) as goals. Mistree and coauthors (Mistree 1993) develop the cDSP. 

It has the following advantages. 

1. Generic. Any optimization model has an equivalent representation in the cDSP.  

2. Appropriate accuracy and manageable computational complexity. Not only does using the cDSP 

offer a method for an alternative representation, but it also provides a representation for effectively 

capturing the nature of real problems by incorporating nonlinear constraints and goals and mixed 

variables. After approximating the problem as a linear one, the accuracy of the approximated 

problem is maintained as a “good enough” level, and its computational complexity is reduced to a 

manageable level (Mistree, Hughes et al. 1981). 

3. Providing satisficing solutions.  Using the cDSP construct, designers can explore the solution 

space to satisfice different design preferences, manage multiple types of uncertainties in the system, 

and improve the model and the physical system. 

By exploring the solution space, a designer can identify a space containing satisficing solutions 

that are relatively insensitive to 1) errors that are anchored in incomplete and possibly inaccurate 

information embodied in the analysis models used to define the behavior of the dam-network, and 

2) unpredictable uncertainties in parameters. Applying the method may allow a designer to answer 

three key questions in the context of dam-network planning:  

Q1.1-1. How can a designer manage multiple conflicting water resource goals with reasonable 

priorities under different precipitation scenarios? 

Q1.2-1. How can a designer manage uncertainties in the inflows (precipitation and inflows from 

upstream) by making water flow plans that are relatively insensitive to these uncertainties? 
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Q1.3-1. How can a designer improve the mathematical model and give recommendations on the 

physical system improvement so that the system can be relatively insensitive to uncertainties? 

To answer the three key questions, we hypothesize that there are three steps to be accomplished – 

design preference exploration, sensitive segment identification, and design improvement, which 

are formed in a loop (Figure 4.8). 

 

Figure 4. 8 Three Steps for the Exploration of the Solution Space 

The detailed procedural steps for exploring the solution space are given in (Fok and Chopra 1986), 

with extensions and applications in (Sabeghi, Shukla et al. 2016). In this section, the method is 

extended (Figure 4.9). 
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Figure 4. 9 Method for Exploration of the Solution Space 

Step 1 (Figure 4.9): Design preference exploration. In this step, the precipitation and tributary 

forecasts are treated as deterministic values, to obtain an overview of the feasible space for the 

goal weights ignoring any uncertainty.  

Step 1.1: A group of weight scenarios (WSs) to represent different goal priorities are used to obtain 

solutions.  

Step 1.2: Using ternary plots to identify the range of weights that satisfice different design 

preferences. 

Step 2 (Figure 4.9): Sensitive segment identification. There are two types of sensitive segments. 
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Active constraints/bounds: constraints or bounds with zero or very small slack/surplus. We define 

“very small slack/surplus” as “less than 1% of the larger of the RHS and LHS of a 

constraint/bound”. 

Improvable constraints/bounds: constraints and bounds with relatively large positive dual prices. 

We define a dual price greater than “0.1% of the achieved value of the goals” as a relatively large 

positive dual price. 

Active constraints and improvable constraints are sensitive segments because: 

The solutions are always on the boundary formed by active constraints/bounds, so they are 

relatively sensitive to the changes that take place to the active constraints/bounds. When their RHS 

values of change, we may lose the solutions. Therefore, we explore the practicality of moving the 

solutions away from the boundary, to make them relatively insensitive to uncertainties. 

By relaxing the improvable constraints/bounds, the goals can be achieved more completely. Hence, 

we explore the practicality of relaxing the improvable constraints/bounds. 

In this step, we take into account the uncertainties by using different parameter scenarios (inflow scenarios 

- ISs) that represent different weather and climate conditions. By analyzing the practicality of moving the 

boundary solutions and improving goal achievement, we suggest model modifications for system 

improvement. 

Step 2.1: Take into account possible weather and climate conditions by using representative inflow 

scenarios (ISs) and obtain solutions of different inflow scenarios. 

Step 2.2: With the solutions, identify the sensitive.  
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Step 2.3: Explore the practicality of bringing the solutions away from the boundary by reducing 

the number of active constraints/bounds and exploring the practicality of improving the goal 

achievement by reducing the number of improvable constraints/bounds. 

Step 3 (Figure 4.9): Design improvement. With the outcomes from step 2.2 and 2.3, we improve 

the model mathematically or improve the system physically.  

We improve the design either by modifying the mathematical model or by adjusting the physical 

system.  

Step 3.1: Improvements are planned based on steps 2.2 and 2.3.  

Determine which improvement actions we shall apply.  

All the sensitive segments can be divided into two categories – they are either active and 

improvable constraints/bounds, or active and non-improvable constraints. In other words, all 

improvable constraints/bounds are active constraints/bounds, but not all active constraints/bounds 

are improvable constraints/bounds. 

There are two characteristics of active and improvable constraints/bounds: 1) they are too 

restrictive, thus if they are relaxed the goals will be achieved more completely, and 2) the solutions 

are on the boundary, so they are sensitive to uncertainties. We need to deal with each type 

separately. For the first type, the system is adjusted physically (Step 3.1b) and for the second type 

the mathematical model is refined (Step 3.1a). 

The active and non-improvable constraints/bounds are of the second type, so we modify the 

mathematical model (Step 3.1a). 

Step 3.2: The mathematical model is improved by adjusting the relevant parameters.  
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Options for modifying the mathematical model:  

Bring the solution away from the physical boundary by creating a more conservative mathematical 

boundary – since the solution is always on the boundary, we “add a buffer” by creating a 

mathematically boundary that is more conservative than the physical boundary, then the solution 

will be on the mathematical boundary while staying away from the physical boundary.  

Manage the uncertainty by obtaining more accurate assessment of the parameters – the parameters 

that bring uncertainties make the solution infeasible or close to the boundary, so through 

parameters assessment, we can avoid some of such uncertainties. 

Step 3.3: The physical system is improved, and the mathematical model is improved 

correspondingly.  

We use the results of step 2.3 here – if the improvable constraints/bounds can be relaxed by making 

physical change to the system, then we make the physical change and then the corresponding 

mathematical change so that the goals can be achieved more completely; if we cannot do any 

physical change then we accept the current physical boundary.  

With the proposed method, we formulate the model in Section 4.2.4. 

4.2.4 Formulation of Compromise DSP (cDSP) 

In this section we demonstrate the use of Step 1.1 (Figure 4.9). Based on the network structure in 

Figure 4.4, we summarize the information of each dam in Table 4.3. For example, for Dam 14, 

Texoma, 11 upstream dams (1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13) release water to it. 
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Table 4. 3 Features of 14 Dams in Red River Basin 

Number Dams Set of Upstream Dams ( ) 

1 Buffalo  

2 Greenbelt  

3 Altus  

4 Tom Steed  

5 Foss  

6 Fort Cobb  

7 Kemp  

8 Lake Diversion 7 

9 Ellsworth  

10 Waurika  

11 Arbuckle  

12 Kickapoo  

13 Arrowhead 12 

14 Texoma 1,2,3,4,5,6,8,9,10,11,13 

Out To the other part of the network 14 

In this step, we use a deterministic value of precipitation based on historical data. 

The cDSP for the 14-Dam network is as follows13. 

Given 

System parameters 
𝐷 = {𝑑} = {1,2, … ,14}           //The set of 14 dams (reservoirs) 
𝑇 = {𝑡} = {1,2,3}           //Planning period – three months 
𝑈𝐷F = {𝑑E }   //The set of upstream dams (Table 2). 
𝑆𝑇F6   //Target of water storage volume for Reservoir d at the beginning of Month t 
𝐹𝑇F6   //Target of water release volume to downstream fish from Dam d in Month t            
𝐴𝑇F6   //Target of water release volume to people from Dam d in Month t  

 

13 In this problem, to separate the Dam “d” from the deviation variable “d-” and “d+”, the deviation variables are 
represented by “v-” and “v+”. For the other problems in this dissertation, the deviation variables are all represented 
using “d-” and “d+”. 
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(𝐸F6 + 𝑃F6)			//Natural loss (evaporation and seepage) of Reservoir d in Month t  
𝐶𝐹F6   //Flood capacity of Reservoir d  
𝐶𝑀F

6 				//Minimum storage volume of Reservoir d  
(𝐼F6 + 𝑃𝑟F6)			//Anticipated tributary inflow and precipitation for Reservoir d                                                             
𝑤W, where 𝑖 = 1,2,3			//Weight of Goal i 

Find 

System variables 
𝑆F6    //The volume of water stored in Reservoir d at the beginning of Month t    
𝐴F6 				//The volume of water released from Dam d to people in Month t                                                                

 𝐹F6    //The volume of water released from Dam d to downstream fish in Month t  
Deviation variables 
𝑣Wl, 𝑣Wj, where 𝑖 = 1,2,3    //Over-achievement and underachievement of Goal i 

Satisfy 

System constraint 
𝑆F6 		 + 	 ∑ 𝐹FE

6
∀FE∈ZIJ + 𝐼F6 + 𝑃𝑟F6 − 𝐹F6 − 𝐴F6 − 	𝐸F6 − 𝑃F6 = 𝑆F6lx, where 𝑡 = 1,2,3 

System goals  

∑ ∑ (1 − ÞJ
P

Þ�J
P)�6∈�FQI +∑ (1 − ÞJ

[

Þ�J
[)�F∈I + 𝑣xj − 𝑣xl = 0  

//Goal 1 – Reservoir: reach the target of water storage in each reservoir in the beginning of each 
month, and at the end of the last month.   
∑ ∑ (1 − SJ

P

S�J
P)�6∈�FQI + 𝑣�j − 𝑣�l = 0  

//Goal 2 – People: reach the target of water released to people by each dam in each month. 
∑ ∑ (1 − \J

P

\�J
P)�6∈�FQI + 𝑣�j − 𝑣�l = 0  

//Goal 3 – Fish: reach the target of water released to fish in streams by each dam in each month. 
Bounds  
SL
! ≤ 𝐶𝐹F 
SL
! ≥ 𝐶𝑀F 
FL
! ≥ 0 
AL
! ≥ 0//Bounds of system variables 
𝑣Wj ≥ 0, 
𝑣Wl ≥ 0,                                                                                                
𝑣Wj ∙ 𝑣Wl = 0	 
𝑤ℎ𝑒𝑟𝑒	𝑖 = 1, 2, 3         //Bounds of deviation variables 

Minimize 

The deviation function 
𝑧 = ∑ 𝑤W ∙ 𝑣Wj�

Wwx , where	0 ≤ 𝑤W ≤ 1, 𝑎𝑛𝑑	∑ 𝑤W�
Wwx = 1 

//The weighted sum of deviation variables   



 160 

Explanation of the Goal Formulation: To scale the three goals, we use the variable divided by its 

target value as the achievement rate of each variable ( ÞJ
P

Þ�J
P ,

SJ
P

S�J
P and \J

P

\�J
P), and then use “One subtracts 

the achievement rate” as the difference between supply and demand. In this way we scale the water 

demand of different user-groups. We calculate how much percentage we do not meet a user-

group’s demand, instead of how much water in quantity (cubic feet). According to our data, the 

average target for water storage (𝑆𝑇F6) is around 390000 cubic feet, whereas the average target for 

water release for people (𝐴𝑇F6) and water release for fish (𝐹𝑇F6) are around 30000 and 51000 cubic 

feet. If we do not scale them, the water storage goal will always dominate the other two goals. 

The Utility and Meaning of the Weights: Sub-networks along the Red River basin serve different 

conditions and circumstances – different populations, crops, wild fish species, and water storage 

flexibilities, thus the priority of the goals may vary from dam to dam. Even for a single area, the 

priority for meeting different users’ demands may vary with seasons. To empower decision makers 

to have the flexibility of managing goals associated with different design preferences, we assign 

different weight scenarios (WSs) to the goals and make rules for them to follow. This process is 

defined as Design Preference Exploration (Figure 4.9, Step 1). 

4.2.5 Water Resource Planning Results and Discussion 

Step 1.1 Identify Weight Scenarios and Get Solutions: By assigning equal weights to the three 

goals and solving the problem using Lingo 17.0, we obtain the results (Table 4.4). In this scenario, 

the three weights are 0.333, 0.333 and 0.333 respectively. The value under each goal is the value 

of deviation variable, the sum of the square of the discrepancies between supply and demand, 

hence we prefer small values. 
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Table 4. 4 Results for Equal Weights on Preferences 

W1 W2 W3 Goal 1 (𝑣xl) Goal 2 (𝑣�l) Goal 3 (𝑣�l) 
0.333 0.333 0.333 0.49 0.53 0.31 

We use more weight scenarios (WSs) to generate solutions and identify satisficing solutions. The 

WSs represent different considerations of the priority of the goals. 

Design Preference Exploration 

Step 1.2 Use Weight Scenarios and Solutions to Identify Feasible Area of Weights that Satisfice 

Different design Preferences. As we have three goals, we use ternary plots to visualize the 

achievement of each goal corresponding to different weight scenarios (WSs) and identify the 

meaning of each WS. By using ternary one can expand discrete results to the whole design space 

(weight space) and visualize the satisficing space. 

We visualize the location of 8 WSs in a ternary (Figure 4.10) and give their tentative physical 

meanings (Table 4.5). We use the three axes (sides of the triangle) to represent the weights of the 

three goals, so each point in the ternary is a unique WS. The sum of the coordinates along the three 

axes of any point in the ternary is always one. To make WSs representative and cover a variety of 

design preferences, we work out the problem with 34 WSs and obtain results in Appendix A.  

Data Normalization: we normalize the deviations of each goal within the range of [0, 1] for 

visualization. For each goal we convert the minimum deviation value to 0, and the maximum 

deviation value to 1, and other values between 0 and 1. 

Results Visualization: we plot the results of each goal using color contours in a ternary (Figure 

4.11, 4.12 and 4.13 for Goal 1, Goal 2 and Goal 3). The WS with the smallest deviation value, 

which is what we are seeking, is in dark blue, whereas the largest value is in dark red, and every 
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value in between has a color between dark blue and dark red. We can identify the value of each 

point by looking up the color bar on the right. 

Identifying the Feasible Area of the Weight for Each Goal: For each goal, the aspiration may not 

be met, but with expertise in water resource management14, an acceptable value of the achievement 

of the goal is identified as a threshold, which is converted to normalized deviation values of 0.29, 

0.32 and 0.3 for reservoir, people and fish, respectively. For each goal, the weights giving results 

that are less than or equal to the threshold are feasible weights, and the area containing all feasible 

weights is the feasible area of the weights. In each ternary plot, we illustrate the threshold with a 

line (the more WSs we use, the smoother the line is), and arrows show the region of feasibility for 

the weights. 

Identifying the Satisficing Area of Weights: When we overlap the feasible area for the three weights, 

we obtain the superimposed area as the satisficing area of weights (shaded area in Figure 4.14). 

 

14 The data and relevant knowledge are from  

Xue et al. Xue, X., K. Zhang, Y. Hong, J. J. Gourley, W. Kellogg, R. A. McPherson, Z. Wan and B. N. 
Austin (2015). "New multisite cascading calibration approach for hydrological models: Case study in the 
red river basin using the VIC model." Journal of Hydrologic Engineering 21(2): 05015019. 

 and  

McPherson et al. McPherson, R., et al. (2016). "Impacts of climate change on flows in the Red River Basin." 
Final report to the South Central Climate Science Center. 
 . 
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Figure 4. 10 Visualization of the Eight WSs in the Ternary Plot 

Table 4. 5 Physical Meaning of the Eight WSs – Type II Uncertainty 

WS W1 W2 W3 Tentative physical meaning 
1 0 1 0 People is the only important goal 
2 1 0 0 Reservoir is the only important goal 
3 0 0 1 Stream fish is the only important goal 
4 0.25 0.25 0.5 Reservoir and people have equal importance whereas stream fish is more 

important than the former two. 
5 0.33 0.33 0.33 All three goals are equally important 
6 0.1 0.1 0.8 Reservoir and people are not the priority whereas stream fish are much 

more important than the former two. 
7 0.2 0.79 0.01 People is the most important, followed by reservoir, whereas stream fish 

has a much lower priority15. 
8 0.4 0.2 0.4 Reservoir and stream fish have equal importance whereas people are less 

important than the former two. 
 

 

Figure 4. 11 Feasible Weight Area of Goal 1 – Reservoir 

 

15 According to experts in water resource, WS1 and WS7 are often used in reality. 
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Figure 4. 12 Feasible Weight Area of Goal 2 – People 

 

Figure 4. 13 Feasible Weight Area of Goal 3 – Fish 

 

Figure 4. 14 Satisficing Weight Area for Three Goals16 

 

16 In Figure 12, the solid lines show the satisficing weight range of each goal, and the dashed lines are the auxiliary 
lines which facilitate us to identify the satisficing weight range. Every auxiliary line is parallel with one of the axes. 
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Identifying the Satisficing Range of Weights: we identify the range of the weights in the satisficing 

area, and show them in Table 4.6, using the ternary plot – we first identify the vertices of the area 

(C, F and E). Then we make lines parallel to the axes crossing the vertices. The range that is 

covered by the intersection of the parallel lines and the axes are the ranges of the satisficing weights. 

However, such ranges do not guarantee satisficing solutions, because we have enlarged the 

irregular satisficing area (the shaded area in Figure 4.16) to the Pentagon BCDEF. For example, 

Spot A is in the identified range of the weights (Table 5) but not in the satisficing area. So, when 

we select weights, we need to visualize them in a ternary plot to avoid taking a point not in the 

satisficing area as a satisficing weight. The ranges in Table 4.6 only give us a rough idea, but they 

do not ensure satisficing solutions.  

Table 4. 6 Range of Weights of the Satisficing Space 

Weight Range 
W1 0 – 0.65 
W2 0.18 – 0.7 
W3 0.15 – 0.56 

WS-Design Preference Look-Up Table: Designers can use the WSs and results in Appendix A as 

a look-up table and meet different design preferences by setting appropriate weights. 

Sensitive Segment Identification 

Step 2.1 Identify Different Scenarios of Uncertain Parameters and Get Solutions. We use ten 

inflow scenarios (ISs) to obtain solutions and identify the sensitive segments. The ISs are generated 

as follows.  

Using Inflow Scenarios: To ensure that the frequency and severity of system failures within 

manageable levels, we test multiple scenarios of parameters with uncertainties (inflow scenarios – 

ISs).  
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In our ISs, we consider the extremely dry, flooding, and extremely uneven precipitation scenarios 

to study the model’s sensitivity. The ten ISs are listed in Table 4.7. The “No Rain” scenario means 

there is no inflow at all in any of the three months. The “Flood” scenario indicates in each of the 

three months, the inflow is four times the forecasted value. 

We used the inflow scenarios (ISs) in Table 4.7 and weight scenarios (WSs) in Appendix A to 

obtain solutions, based on which we identify the sensitive segments. 

Table 4. 7 Inflow Scenarios (ISs) – Type I Uncertainty 

# Inflow scenarios 
The Percentage of the Inflow Based on the Forecast Value in Each 
Month 
M1 M2 M3 

1 No Rain 0% 0% 0% 
2 Extremely Dry 20% 20% 20% 
3 Dry 60% 60% 60% 
4 Normal 100% 100% 100% 
5 Rainy 150% 150% 150% 
6 Extremely Rainy 200% 200% 200% 
7 Flood 400% 400% 400% 
8 Rain Unevenly I 0% 200% 100% 
9 Rain Unevenly II 400% 0% 0% 
10 Rain Unevenly III 400% 0% 400% 

 

Step 2.2 Identify Active Constraints/Bounds and Improvable Constraints/Bounds and Obtain 

Solutions: Active Constraints/Bounds: In Table 4.8, we give the active constraint/bounds and their 

active ISs and WSs, from which we observe that in all ISs, the lower bound of storage in Reservoir 

7 has limited capacity, and in flood scenario, the upper bound of storage in Reservoir 6 has limited 

capacity. 

Table 4. 8 Active Bounds in Each IS and WS 

Active 
Bounds 

Inflow 
Scenarios Weight Scenarios Physical Meaning of the Bounds 

𝐶𝑀_
� 1 – 10 All except 2, 4 The lower bound of storage volume in 

Reservoir 7 in Month 2 is relatively high 

𝐶𝑀_
� 1 – 10 All except 3 The lower bound of storage volume in 

Reservoir 7 in Month 4 is relatively high 
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𝐶𝐹� 7 All except 2, 3, 4 The upper bound of storage volume in 
Reservoir 6 in Month 3 is relatively low 

𝐶𝐹� 7 All except 2, 3, 4 The upper bound of storage volume in 
Reservoir 6 in Month 4 is relatively low 

Improvable Constraints/Bounds: The constraints and bounds with relatively large positive dual 

prices are identified and shown in Table 4.9. From Table 4.9, it is concluded that the upper bound 

of the storage volume in Reservoir 6 affects the achievement of the goals – if the upper bound is 

increased (relaxed), a better water flow plan can be obtained.  

Table 4. 9 Improvable Bounds in Each IS and WS 

Improvable 
Bounds 

Inflow 
Scenarios 

Weight 
Scenarios 

Physical Meaning of the Constraints or 
Bounds 

𝐶𝐹� 1 – 10 1, 3, 26 – 28 The upper bound of storage volume in 
Reservoir 6 in Month 3 is relatively low 

𝐶𝑀`
� 1 – 10 1, 26, 28 The upper bound of storage volume in 

Reservoir 6 in Month 4 is relatively low 

Improvement Indication: In conclusion, the lower bound of storage volume in Reservoir 7 is the 

active and non-improvable bound, and we can use the method in Step 2.3a to improve it; the upper 

bound of Reservoir 6 is the active and improvable bound, and we can use the method in Step 2.3b 

to improve it. 

Model Improvement 

Using the improvement suggestions in Section 4.2, in this section, we carry out Step 2.3 and Step 

3. 

First, we explore the practicality of adding a buffer to the active and non-improvable 

constraints/bounds17.  

 

17 Obtaining better assessment of the precipitation to reduce uncertainty is one way of improving the 
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Step 2.3a, 3.1a, and 3.2, Active and Non-Improvable Constraints/Bounds Improvement – 

Restricting:  First, we explore the practicality of restricting the RHS of 𝐶𝑀_
6, which is to increase 

the lower bound of Reservoir 7 in the mathematical model without changing the physical level of 

the conservation pool. In this way we add a “buffer” to the active bound by making its 

mathematical model more restrictive than its physical condition. We illustrate this concept in 

Figure 4.17. Solution A is at the lower bound (lb) of Reservoir 7, which is sensitive to uncertainty 

in inflows. To bring it away from the boundary, we need to add a buffer to the RHS of the bound 

by changing the bound from lb to lb’ so that we can bring Solution A to Solution A’. Solution A’ 

is away from the physical bound lb. 

Then we explore the practicality of this change. By redesigning the capacity of each pool, we make 

the reservoir meet the requirements of multiple functions. To increase the lower bound of a 

reservoir means to increase the water level of the conservation pool. We can realize this by 

reallocating the water volume of the pools – we increase the water level requirement of the 

conservation pool by 1% and reduce the water level requirement of the flood pool to offset the 

change, because historical data and the physical condition of the reservoir inform us that such 

reduction is safe and attainable. As we make the physical change, we change the corresponding 

mathematical bounds as follows. 

Original bound: 𝑆_6 𝐶𝑀_
6 

Improved bound: 𝑆_6 𝐶𝑀_
6*1.01, Where t = 2, 4 

 

mathematical model, but as our precipitation data are provided by experts in water resource management, 
we do not tackle precipitation improvement in this case. Therefore, we focus on the capacity of the pools 
of the reservoirs. 
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Figure 4. 15 Bring the Solution Away from the Boundary by Restricting the RHS 

Step 2.3b, Step 3.1b and Step 3.3, Active and Improvable Constraints/Bounds Improvement – 

Relaxing. First, we explore the practicality of relaxing the upper bound of Reservoir 6, by 

increasing the upper bound of Reservoir 6. This action will benefit the achievement of the goals. 

We run this for several iterations until we get a solution with a dual price that is not relatively large, 

then we start treating it as an active and non-improvable constraint/bound and move the solution 

away from the boundary. However, if we continue iterating until we cannot physically relax the 

RHS any further but the constraint/bound still has a positive dual price, then we stop and deal with 

it as an active and non-improvable constraint/bound. This procedure is to explore the physical 

boundary of the system that gives the best achievement of the goals. Based on this physical 

boundary, we “add a buffer” to drive the solutions away from the physical boundary. In Figure 

4.16-a, we illustrate this procedure. We explore the upper physical bound and bring the bound 

from 𝑢𝑏  to 𝑢𝑏x (Figure 4.16-a), in order to make the RHS of this bound reasonable and facilitate 

obtaining the best achievement of the goals. And then we add a buffer to 𝑢𝑏x by moving it to 𝑢𝑏x’ 

as shown in Figure 4.18-b. 

 

Figure 4. 16 Applying the Physical Boundary by Relaxing RHS and Then Bring the 
Solution Away from the Physical Boundary by Restricting RHS 
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Then, we explore the practicality of physically increasing the upper bound of the water storage 

volume in Reservoir 6 by 1%. Our data indicate that the maximum storage of Reservoir 6 is 75,573 

cubic feet, which is 1.03% larger than the upper bound of 74,799 cubic feet, so we have the 

capacity to relax the RHS of this bound. Hence, we can increase the RHS of the upper bound of 

the Reservoir 6 by 1%.  

𝑆`� 𝐶𝐹� 

𝑆`� 𝐶𝐹�*1.01 

In Table 4.10, the actions of model improvement are displayed. Thus, new solutions are obtained 

(Step 3) for the improved model (Appendix B). After iterating, obtain solutions that are away from 

the boundary and yield a relatively better achievement of the goals are obtained. 

Table 4. 10 Suggestions for Model Improvement 

# Improvement Constraints or Bounds function changes, 
i=1,2,3 

1 Raise the lower bound of storage volume in 
Reservoir 7 in Month 2 and 4 by 1% 

𝑆_6 𝐶𝑀_
6 

 
𝑆_6 𝐶𝑀_

6*1.01, where t = 2, 4 

2 Raise the upper bound of storage volume in 
Reservoir 6 by 1% 

𝑆`� 𝐶𝐹� 
 
𝑆`� 𝐶𝐹� ∗ 1.01 

Design Improvement Validation 

Design Preferences of Improved Model: As we go through Step 1 to 3 for three iterations, we have 

no active constraints/bounds or improvable constraints/ bounds, so we stop the loop of exploration 

of the solution space. With the improved model in the final iteration, we obtain a new satisficing 

area of the weights. We compare the satisficing area of original model and improved model in 

Figure 4.17. The satisficing area and the corresponding range of weights become smaller after 
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model improvement because we get rid of the solutions that are sensitive to the uncertainties. In 

the perspective of robust design, we seek an insensitive solution and corresponding weight range, 

so the improvement is not to enlarge the satisficing area, but to refine the satisficing area to obtain 

relatively insensitive solutions. 

 

Figure 4. 17 The satisficing area of the weights of original model (a) and improved model 
(b) 

Sensitive Segments of Improved Model: As we go through Steps 2.1 - 2.3 with the improved model 

in each iteration, we identify new sensitive segments. The solutions are calculated using the 

improved mathematical model, but the active constraints/bounds should be identified using the 

original model because we need to know whether the solution is close to the physical boundary. 

As to the improvable constraints/bounds, we need to use the improved model in each iteration 

because we update the physical boundary through iterating. In Table 4.11, we list the sensitive 

segments in the second iteration, and their physical meanings, with improvement suggestions.  

Table 4. 11 Sensitive Segments of the Model of the Second Iteration 

Active Bounds Physical Meaning of the Bounds Further Improvement Suggestions 
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S7M3L 
The lower bound of storage volume in 
Reservoir 7 in Month 3 is relatively 
high 

Raise the lower bound of storage volume 
in Reservoir 7 by 1% 

Improvable 
Bounds 

Physical Meaning of the Constraints or 
Bounds Further Improvement Suggestions 

S4M1 
The storage volume in Reservoir 4 in 
the beginning of Month 1 is relatively 
low 

Raise the lower bound of storage volume 
in Reservoir 4 by 1% 

By carrying out the improvement suggestions in Table 4.11, in the third iteration, we have no 

sensitive segments, which means all the solutions are not at or highly close to the physical 

boundary, and there is no potential to further improve the achievement of the goals.  

The evolution of the performance and the number of sensitive segments of the model along with 

iterating are illustrated in Figure 4.18. The horizontal and vertical axis respectively represents the 

number of active constraints/bounds and the number of improvable constraints/bounds. The size 

of the bubbles shows the average value of deviation z, of the 34 WSs and 10 ISs. In this case, 

improvement means driving the bubble from the up-right corner to the down-left corner, while 

making it smaller.  As it is shown in Figure 4.18, by iterating, we improve the insensitivity of the 

model from (4, 2) to (0, 0), and we improve its performance by reducing z from 0.3389 to 0.2644.   

After three iterations, our model is neither sensitive to the uncertainties in inflows nor has potential 

to improve the completeness of the goals. It is guaranteed that any extreme weather does not cause 

any system failure because now all the solutions in all circumstances are away from the physical 

boundary. The Three-Step Method of exploration of the solution space is summarized as an 

algorithm in Table 4.12. 
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Figure 4. 18 Improvement through Iterating 

Table 4. 12 The Algorithm for Model Improvement 

a. Identify n scenarios of parameters with uncertainties – ISs.  
Begin Iterations of Exploration of the Solution Space 
    b. Use the latest model to identify the feasible area of weights and identify m weight scenarios 
within the feasible area of weights that represent different design preferences – WSs. 
    c. Plug n ISs and m WSs into the latest model to get x solutions. 
    d. Plug x solutions into the model in the first iteration and into the model in the current iteration 
    e. Identify active constraints/bounds using the model in the first iteration 
    f. Identify improvable constraints/bounds using the model in the current iteration 
    g. if no sensitive segment (active or improvable constraints/bounds) 
             Go to l. 
            else  
               Continue with h. 
    h. For each active and non-improvable constraint/bound 
               Explore the practicality of restricting their RHSs 
    i. For each active and improvable constraint/bound 
               Explore the practicality of relaxing their RHSs to the physical bound 
    j. Make model improvement plans based on the conclusion in h and i. 
    k. Improve the model based on the improvement plans in g and go to b. 
    l. The latest model is relatively insensitive to uncertainties and has no potential for improvement. 
End the iteration 

4.2.6 Closure of Test Problem I 

In Section 4.2, we formulate a 14-dam-network problem using the compromise Decision Support 

Problem and explore the solution space to improve the model and obtain satisficing solutions that 

are relatively insensitive to the uncertainties in water inflows. We identify key questions and give 

answers by using a three-step method to explore the solution. 
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Answers to the Research Questions 

Q1.1 How can designers manage multiple conflicting goals with reasonable priorities under 

different circumstances? 

Step 1 – With design scenarios representing different design preferences, designers identify the 

satisficing area of the weights of the multiple goals and provide their physical meanings.  

Q1.2 How can designers manage uncertainties in the inflows by making water flow plans that are 

relatively insensitive to these uncertainties?  

Step2 Using inflow scenarios considering different weather and climate conditions to identify the 

sensitive segments. Exploring the practicality of removing the sensitive segments by modifying 

the mathematical model and adjusting the physical system.  

Q1.3 How can designers improve the mathematical model as well as the physical system to be 

relatively insensitive to uncertainties? 

Step 3 – Using the information of the practicality of modifying the model and changing the system, 

make improvements, including changing parameters’ value to add buffers, and reallocating water 

to different pools to change the physical boundary. Then go through the three steps again. By 

running such a loop, improve the model to give satisficing solutions that are relatively insensitive 

to uncertainties.  

With satisficing solutions, we reduce the frequency and severity of discrepancies between water 

supply and water demand. The advantage of our method is that we boost the potential of the 

physical system while improving its robustness, hence we neither sacrifice system robustness for 

a better performance nor do the opposite. 
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The dam-network planning problem only incorporates continuous variable, and no coupling 

decisions are required. In Section 4.3, a supply chain design problem with mixed variables and 

coupling decisions is discussed, and the Three-Step Exploration method is advanced to a decision 

framework – the Formulation-Exploration framework. 

4.3 Positioning the Customer Order Decoupling Point of a Supply Chain 

- Test Problem 1.2: apply Formulation-Exploration framework to a discrete problem 

The new knowledge from managing Test Problem 1.2 is 
A framework that incorporates the Three-Step Exploration Method that allows to identify the 
sensitive elements of a mixed-variable, coupled decision model and improve the model accordingly 
– the Formulation-Exploration framework. 

As globalization continues in Industry 4.0, manufacturing enterprises need to do mass 

customization (MC) in a short lead-time to satisfy evolving market demands in different regions. 

One challenge of MC is to fulfill orders swiftly at an acceptable cost, meanwhile maintaining the 

service quality. To do this, the customer order decoupling point (CODP), where the value-adding 

activities take place, should be designed and adapted to the changing market demands. 

In this section, a Formulation-Exploration framework is proposed to make decisions on CODP 

positioning and improve the   SC to support MC. A test problem of auto parts manufacturing is 

used to establish the efficacy of our method. The Formulation-Exploration framework can be used 

to design SC to facilitate MC of products, especially when information is incomplete and 

inaccurate, goals conflict and multiple types of uncertainty add complexity. 

Glossary (mainly applied to section 4.3) 

cDSP compromise Decision Support Problem 
CODP Customer order decoupling point 
DCI Design capability index 
EMI Error margin index 



 176 

ESS Exploration of the solution space 
MTS Make-to-stock production mode 
MTO Make-to-order production mode 
PLC Product life cycle 

4.3.1 Problem Statement – Test Problem 1.2: CODP and the Challenges in Supply Chains 

Mass customization (MC) dramatically enhances the emotional interaction between the designers 

and the customers (Parker 2016). MC is proposed by Naylor et al. (Naylor, Naim et al. 1999) as to 

combine the agile and lean as a new strategy – leagile, and it is defined and broadly accepted as 

“postponing the task of differentiating a product for a specific customer until the latest possible 

point in the supply network” (Jacobs, Chase et al. 2004). Accordingly, being able to determine the 

differentiation point of a product to adapt to the rapidly changing market is of great importance in 

supply chain (SC) design. This point is normally defined as the customer order decoupling point 

(OPP) or the customer order decoupling point (CODP). The CODP is also known as the boundary 

between make-to-stock (MTS) production and make-to-order (MTO) production (Hajfathaliha, 

Teimoury et al. 2011), where the value-adding activities take place (Rudberg and Wikner 2004). 

In Figure 4.19, we illustrate different characteristics of production before (upstream from) and 

after (downstream from) the CODP of a SC. In MTS production (before CODP), manufacturers 

make production plans based on demand forecast and pursue physical efficiency. MTS is often 

used in upstream SCs in labor-intensive industries, where low-cost and on-time delivery are 

prioritized. On the contrary, in MTO production, manufacturers produce goods to meet customers’ 

orders and emphasize market response and capacity flexibility. MTO is often used in the 

downstream SC of high-tech industries, or after-market items (Iravani, Liu et al. 2012), where 

differentiation and personalization are valued. 
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Figure 4. 19 Possible location of CODP in a SC 

 

Figure 4. 20 CODP of Different Industries 
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Theoretically, the CODP of a product can be anywhere in the supply value chain. Figure 4.20, we 

show some typical CODPs in different industries. In the coffee industry, the CODP is the raw 

material of the retailer. When an end customer orders a cup of coffee, the retailer starts making it. 

In the electronic cabinet SC, MTS starts from the raw materials to the regional distribution center 

(RDC) where stores the standard components. After receiving orders, the assembly plant gets the 

customers’ needs on exact models and the corresponding parts, then starts assembling and shipping. 

As to the shipbuilding industry, e.g., cargo ships, the whole SC is MTO due to its highly 

customized nature. There are common features of the CODP for different goods: convenient 

storage, commonality and short lead-time requirement of the goods upstream from the CODP, 

whereas multiple consumption channels, affordable production shifting cost and relatively long 

but acceptable lead-time of the goods downstream from CODP, etc.  

The aim of MC is providing products to satisfy individual customer’s requirements with near mass 

production efficiency (Salvendy 2001). Usually, the efficiency of a SC varies significantly as the 

CODP changes. For a single product, the CODP should vary in different phases of its life cycle to 

support MC. The rapid product upgrades and replacements require fast CODP switching. From 

the demand side, the users are continuously putting forward new needs, which force the CODP to 

go upwards along the SC. To maintain a near mass production efficiency in a SC with fast CODP 

switching is a challenge because low cost and product differentiation are contradictory. Therefore, 

a method that facilitates the exploration of the tradeoffs between cost and flexibility is needed. 

Challenges in SCs 

In the age of Industry 4.0, multiple types of workflows exist in large-scale supply networks which 

involve a significant number of entities of different types (Velasquez, Khakifirooz et al. 2019). A 

large number of goals that may conflict with each other need to be managed (Figure 4.21). Their 
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priorities may evolve as circumstances change. Since mathematical models used to define SCs are 

typically abstractions of reality, we are guided by Simon’s maxim of looking for satisficing (good 

enough – not optimum) solutions [22]. 

According to George Box, “all models are wrong, but some are useful”(Box and Draper 1987), the 

mathematical models that constitute a SC are incomplete and inaccurate (Talvitie 1981) and of 

different fidelity. Decision model does not represent the physical world perfectly (Norman 1990). 

Hence, a designer should work with decision models that embody incompleteness and errors 

(Simon 1996).  

Multiple types of uncertainty in decision models affect the performance of the SC (Nellippallil 

2018). In Table 4.13, we illustrate the four types of robust design in association with the four types 

of uncertainty, which are defined, extended and summarized by Taguchi (Taguchi and Clausing 

1990, Taguchi 1993), Chen et al. (Chen, Allen et al. 1996), Isukapalli (Isukapalli, Roy et al. 1998), 

Choi et al. (Choi, Austin et al. 2004, Choi, Austin et al. 2005, Choi, Mcdowell et al. 2008) and 

well interpreted by Nellippallil et al. (Nellippallil, Song et al. 2017). In this section, we tie it to the 

SC. The four types of uncertainty in mechanical engineering have equivalents in the SC (Table 

4.13). 
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Figure 4. 21 Multiple Conflicting Goals in SCs 

Table 4. 13 Four Types of Robust Design and the Interpretations in SC 

Types of 
robust design 

Types of 
uncertainty Example in SC Quantification 

I Uncertainty in 
parameter  

Uncertainty in the demand side, 
such as unpredictable order 

Type I, II: EMI, Monte Carlo 
simulation, Latin hyper cube, 
First / Second moment 
method, etc. II Variable 

uncertainty 
Uncertainty in the supply side, 
such as variation in productivity 

III Uncertainty in 
model structure  

The number of decision variables, 
constraints, or mathematical 
relation between variable changes 
due to machine failure, customer 
loss, impatient customer or 
natural disaster 

Type III: Design Capability 
Index (DCI), Variance 
Function Estimation, 
Prediction Interval Approach, 
etc. 

IV 
Uncertainty 
created in 
process chain 

The bullwhip effect 
Type IV: Satisficing, 
Exploring the Solution Space 
(ESS), etc. 

Type I robust design is relatively insensitive to noise factors, that are uncontrollable parameters 

such as uncertain demand. MTS production is planned based on the demand forecast which may 

be different from the real demand. MTO production is planned based on the in-taken orders which 

may be more urgent than usual or withdrawn later. Hence, demand is a parameter with uncertainty 

that cannot be controlled by the decision maker.  

Type II robust design is relatively insensitive to variations in design variables such as uncertain 

supply. The actual output of production can be different from the expected volume, because of 
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overuse of the machines, overtime of the labor, etc. The decision maker may set the production 

volume to a certain level, but the actual output can be different. The error margin index (EMI) is 

used to deal with Type I and Type II uncertainty by bringing the mean and minimizing the variance 

of the performances. EMI is a mathematical construct indicating the location of mean system 

performance and the spread of the performance considering variability in design variables (Choi, 

Austin et al. 2004).Type III robust design is relatively insensitive to uncertainties embedded within 

the model structure, such as dimensionality, constraints or the relation between variables due to 

unexpected events, such as overcapacity, infrastructure damage, the political environment changes. 

The design capability index (DCI) is used to handle Type III uncertainty. DCI is a mathematical 

construct for efficiently determining whether a ranged design specification is capable of satisfying 

a ranged set of design requirements (Choi, Austin et al. 2005). Using a DCI, the designer identifies 

a range of design variable with the minimized design specification variation and an acceptable 

performance variation. Within this range, the impact of the model structural change on the model 

performance is minimized, meanwhile, the performance is good enough and with relatively small 

variance. Details of using EMI and DCI can be found in (Chen, Allen et al. 1996, Choi, Austin et 

al. 2005, Choi, McDowell et al. 2008, Choi, Mcdowell et al. 2008, Nellippallil 2018). 

In Type IV robust design, the propagated uncertainty in process chains and the interaction among 

the three types of uncertainty are managed, for example, the bullwhip effect. We propose to explore 

the solution space (ESS) to improve the insensitivity of the design considering various situations. 

Using ESS, we explore design preference, improve design capacity, and boost the system potential. 

The method is introduced in detail in Section 4.3.3.  
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4.3.2 Literature Gap Analysis – in the Domain of Customer Order Decoupling Point 

Determination  

There are two main approaches to locate the CODPs in SC. One is the qualitative approach, 

through which the researchers make general rules on locations of CODP for different types of 

products. For example, CODP should be closer to the designer/manufacturer for personalized 

products, luxury goods or services. The other approach involves quantitative methods – designers 

position the CODP by applying mathematical modeling. The latter is mainstream in recent years. 

we focus on the quantitative approach in the literature review. 

Queuing model. In a series of articles (Teimoury, Modarres et al. 2012, Teimoury and Fathi 2013), 

Teimoury et al. use queuing models to position CODP and make relevant decisions in SCs. In 

(Teimoury, Modarres et al. 2012), they develop a queuing and the matrix-geometric method to 

determine CODP in a multi-product SC. Customer orders are assumed to arrive according to the 

Poisson process. The objective is to minimize total cost with constraints of warehouse capacity 

and service level. The effect of impatient customer arrival on costs is considered. The assumption 

of the Poisson customer-order arrival may cause errors since for different products, or in different 

phases of the product life cycle, the customer-order arrival varies a lot. In (Teimoury and Fathi 

2013), Teimoury and Fathi model a two-echelon SC offering multiple products to customers with 

different preferences, considering both shared and unshared capacity models. They develop an 

integrated operations-marketing perspective with considering price-sensitive demand for CODP 

positioning based on multi-class queueing model. Besides, Zhou et al. (Zhou, Huang et al. 2014) 

apply a two-stage queuing model with customer orders modeled as Markov processes and find that 

the variance and correlation of the demand increase the total operation cost. The effect of the 

CODP’s position on the unit inventory holding cost, the lead-time quotation policy, and the penalty 
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cost for tardiness are considered. However, the single objective is simplified as minimizing the 

total cost.  

Time scheduling model. Liu et al. (Liu, Wu et al. 2018) propose a time scheduling model to 

examine the dynamic positioning of CODP. Minimizing total cost and maximizing customer 

satisfaction are the two objectives while the incremental cost of a new order, lead-time and 

changing values of objectives are constraints. However, they do not scale the two objectives with 

different units – scaling is necessary because the importance and utility of the two objectives may 

change with circumstances. Jeong (Jeong 2011) propose a dynamic model based on product life 

cycle theory to position the CODP and make a production-inventory plan. The author applies 

optimal control theory to with a quadratic objective function. However, the author does not 

consider factors as time-varying penalty costs and the delivery lead-time. 

Stochastic programming, multi-criteria optimization, dynamic programming, etc. Some 

authors apply programming methods with stochasticity or multiple criteria. Ghalehkhondabi et al. 

(Ghalehkhondabi, Sormaz et al. 2016, Ghalehkhondabi, Ardjmand et al. 2017) leverage stochastic 

programming model to identify CODP by minimizing total cost or maximizing total profit. 

Constraints of working time, satisfied order percentage and manufacturing capacity are considered. 

Customer orders are assumed to follow Poisson distribution. Shidpour et al. (Shidpour, Da Cunha 

et al. 2014) propose a multi-objective programming model based on manufacturer's profit and 

customer perceived value to analyze the impacts of single-CODP and multi-CODP while 

considering service time constraint. They conclude that multi-CODP is preferred than single-

CODP for a product portfolio, benefiting both the manufacturer and the customers. Ahmadi et al. 

(Ahmadi and Teimouri 2008) develop a dynamic programming model to optimize CODP by 

minimizing holding cost, delivery delay and number of modules not ready to be assigned. They 
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assume that customer demand is deterministic. Liu et al. (Liu, Mo et al. 2015) construct a linear 

programming model with discrete variables in the logistics industry to position CODP by 

minimizing total cost of logistics service integrator. Procedure constraints and lead-time 

constraints are considered in the model. They conclude that the optimal CODP is not affected by 

decreasing order-transferring and waiting cost but driven to the last procedure when order 

processing cost decreases. Other methods such as analytic hierarchy process (AHP) model (Xu 

and Liang 2011), value network simulation model (Daaboul, Laroche et al. 2010, Daaboul, Da 

Cunha et al. 2015) and tandem forecast-driven and order-driven simulation model (Wikner, Naim 

et al. 2017) are also explored to identify the optimal CODP. 

In summary, recent researchers in CODP positioning try to address the issue by constructing 

models with multiple objectives and constraints. There are employed traditional optimization 

methods such as stochastic programming, dynamic programming and selection model such as AHP, 

as well as methods “borrowed” from other domains such as value network, tandem circuit design 

and polychromatic set theory. Researchers find various metaphors for CODP and SC design, to 

come up with interesting concepts and methods – such as viewing the MTS and MTO production 

mode as two circuits and looking for an appropriate way to connect them. This phenomenon 

implies that CODP design is a field combining science and art. With different metaphors, designers 

can have diverse perspectives and foci. Their observations are interesting and somehow useful to 

an extent in some situations. However, there are some limitations, and we summarize them as 

follows.  

Limitation 1 – There are assumptions in the distribution of non-deterministic methods (Teimoury, 

Modarres et al. 2012, Zhou, Huang et al. 2014, Ghalehkhondabi, Sormaz et al. 2016, 

Ghalehkhondabi, Ardjmand et al. 2017). They assume that enough data are supporting making 
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decisions on the distribution of customer-order arrivals, demand forecast accuracy, customer 

satisfaction quantification, etc.  These decisions or assumptions can be wrong and irreversible once 

the design stage is over, and no adjustments can be made during operations. 

Limitation 2 – The optimization methods (Ahmadi and Teimouri 2008, Jeong 2011, Teimoury, 

Modarres et al. 2012, Shidpour, Da Cunha et al. 2014, Zhou, Huang et al. 2014, Liu, Mo et al. 

2015, Ghalehkhondabi, Sormaz et al. 2016, Ghalehkhondabi, Ardjmand et al. 2017) are used to 

find optimal solutions, that are solutions on the  boundary of the feasible solution space (for 

deterministic approach) or distributed close to the boundary of the fussy feasible solution space 

(for stochastic approach). As models are incomplete, inaccurate, and embody different levels of 

fidelity, the solution may be optimal to the model but may not be optimal to the real problem which 

is way more complicated than the model. 

Facing the challenges in the SCs and MC, we need to overcome the limitations. The assumptions 

on data adequacy can be replaced with the information we obtain from post-solution analysis. 

Typical uncertainties need to be managed in the design and operation stage and positioning 

strategies regarding the CODP should be tailed for different market environments or different 

phases in the product life cycle. 

Based on the limitations in the literature and challenges in CODP design and RQ1, we pose a 

question and hypothesis specified in the domain of SC. By answering the question and validate the 

hypothesis, we bridge the gap. 

Question – How can designers improve the robustness (insensitivity) of the CODP design without 

sacrificing the performance of the SC? 
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Hypothesis – We propose a Formulation-Exploration framework to explore the solution space 

with respect to the design capacity under typical uncertainties. With insight obtained from solution 

space exploration, we remove some errors and heuristics in the initial design and boost the 

potential of the system. 

4.3.3 Proposed Methods – The Formulation-Exploration Framework 

To obtain satisficing solutions insensitive to multi-type of uncertainty, the enterprises need to 

apply some systematic methods to make in-time decisions supporting MC. We propose the 

Formulation-Exploration framework (Figure 4.22). The method consists of two stages, namely, 

problem formulation and solutions space exploration.  To converge on a satisficing solution, we 

need to iterate between the two stages. 

 

Figure 4. 22 Formulation-Exploration Framework 

Compromise Decision Support Problem (cDSP). In the problem formulation stage, the problem 

is formulated as a cDSP and then solved using the Adaptive Linear Programming  algorithm 
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(Mistree, Hughes et al. 1993). The mathematical form of a cDSP and why it delivers satisficing 

solutions are stated in Section 2.3. Due to the complexity of the SC with MC, the cDSP usually 

contain non-convexity and nonlinearity features, so one way of managing the complexity is to 

approximate the model to a classic linear model and solve the problem using simplex algorithm. 

The model structural uncertainty (Type III) and process chain added uncertainty (Type IV) are 

tackled in the problem formulation session. 

In the second stage the solution space is explored to find satisficing solutions associated with each 

design preference (scenario), in different phases in the product life cycle.  Type I and II uncertainty 

are managed in the exploration of the solution space (ESS). In this section, when refering to design 

preferences, we particularly focus on the importance of the different goals.  

Weight sensitivity analysis – exploration of the design preferences. We use weight sensitivity 

analysis to explore how the different weight affect the system performance regarding the 

achievement of the goals. See Figure 4.22, “weight sensitivity analysis” (Ahmed, Goh et al. 2014). 

System capacity analysis – identification and management of the sensitive segment and 

bottleneck. To overcome the capacity limitation of constraints or bounds, we use “system capacity 

analysis” method to identify the sensitive segment and bottleneck (Table 4.13). If an inequality 

constraint has zero or tiny surplus or slack comparing with its right-hand-side value, we define it 

as an active constraint. The solution is on or close to the boundary of the active constraint, so the 

solution is sensitive to the uncertainty of active constraint. If the shadow price of an active 

constraint is lower than other active constraints, by relaxing such an active constraint, we may not 

get considerable improvement of the fulfillment of the goals, and we define such a constraint as a 

“sensitive segment”. We then bring the solution away from the sensitive segment by restricting 

the active constraint, which means adding a buffer to the mathematical model for preventing the 
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solution reaching the physical boundary. If the shadow price of an active constraint is the largest 

value in compare with that of other constraints, relaxing the constraint can result in the most 

improvement of the fulfillment of the goals, and we define such an active constraint as a 

“bottleneck”. Also, we need to find ways of relaxing the bottleneck in the physical system to boost 

the system potential, and once there is no more potential of physically relaxing, we bring the 

solution away from the newly-relaxed boundary by restricting the constraint in the mathematical 

model – add a buffer to the physical boundary. In such a way, we boost the potential of the physical 

system while improving its robustness, hence we neither sacrifice system robustness for a better 

fulfillment of the goals nor do the opposite. 

Table 4. 14 Algorithm for System Capacity Analysis 

Step 1. Identify n scenarios of parameters/bounds with uncertainties – ISs.  
Begin Iterations of Exploration of the Solution Space 
    Step 2. Use the latest model to identify the feasible area of weights and identify m weight scenarios within 
the feasible area of weights that represent different design preferences – WSs. 
    Step 3. Plug n ISs and m WSs into the latest model to get x solutions. 
    Step 4. Plug x solutions into the model in the first iteration and into the model in the current iteration 
    Step 5. Identify active constraints/bounds and sensitive segment using the model in the first iteration 
    Step 6. Identify bottleneck using the model in the current iteration 
Step 7. if no sensitive segments or bottleneck 
             Go to 12. 
            else  
               Continue with h. 
    Step 8. For each sensitive segment 
               Explore the practicality of restricting their right-hand-side values (RHSs) in the model 
    Step 9. For each bottleneck 
               Explore the practicality of relaxing it in the physical system 
    Step 10. Make model improvement plans (restricting model or relaxing physical system) based on the 
conclusion in 8 and 9. 
    Step 11. Improve the model based on the improvement plans in 7 and go to 2. 
    Step 12. The latest model is relatively insensitive to uncertainties and has no potential to achieve a better 
solution.  
End the iteration 

We hypothesize that using the Formulation-Exploration framework, the CODP can be 

designed/redesigned to obtain satisficing solutions, which supports MC. A successful company 

should be able to do repeated design based on the information attained from the previous cycle, 
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so its SC can be flexible for MC. The Formulation-Exploration framework allows us to answer the 

research question in this section and validate hypothesis. 

In Section 4.3.4 and 4.3.5, we apply the Formulation-Exploration framework in auto-industry for 

more investigation. 

4.3.4 Model Formulation 

The test problem is a three-echelon SC in automobile industry with three players – a supplier, a 

manufacturer, and a retailer as shown in Figure 4.23. We study the problem for a period of one-

month. Our goals are to position the CODP, and determine the appropriate reliability of each 

process including the operation for each player and the transportation between two players. The 

concept of the reliability is from the lean process management and the six-sigma quality control 

principle that the processes in automobile industry range from three sigma (99.7%) to six-sigma 

(99.99997%). The constraints are cost and capacity in each process. We formulate the problem in 

a cDSP (See Appendix C). The goals and constraints of the model are visualized in Figure 4.23. 

Goals. We have three goals – profit, service level and variance of reliability of processes. We have 

a target for each goal. The profit target is an ideal value that not only make each player in this SC 

sustainable, but also make them extremely competitive by providing the stakeholders the greatest 

return – the biggest in the industry. We simply the problem by assuming the unit price of the 

product within the modeling time is fixed and the factors affect the profit are the cost of all the 

processes. In this way, we focus on the process improvement regarding CODP positioning.  

The service level, as the second goal, is represented by multiplying the reliability of all processes 

in the SC, including the procurement, manufacturing, holding, handling (the display, movement 

and maintenance in the retailer) and transportation. This definition of service level is from the 
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reliability of mechanical system with multiple components. In this sense, only the reliability of all 

processes maintains a high level ensures an acceptable service level of the entire SC. We set the 

target of the service level as the six-sigma, 97.99997%.  

The variance of reliability of processes is the third goal. The aim of setting such an goal is to enable 

all players of the SC to share the duty and pressure of reliability, without over-relying on certain 

processes to maintain high reliability while ignoring the reliability management of some other 

processes. This is to prevent strong players from dominating the other players by squeezing their 

profit margins. For example, strong retailers have very strict requirements on the manufacturer’s 

unit price, product quality, delivery time, etc., which can be reflected as extremely high reliability 

of the manufacturer. If we minimize the differences between the reliability of different players, the 

responsibility shirking and domination between players can be avoided to some extent. The overall 

performance and profit of the entire SC can be boosted and the sustainability of the SC as well as 

each player can be maximized.  

System variables. We have two types of system variables, binary variables and continuous 

variables. The CODP of each candidate locations are binary variables. Each player has two 

candidate positions that may store the goods, raw material or finished goods, so there are six 

candidate locations for CODP in this SC, namely, supplier’s raw material (SRM), supplier’s 

finished goods (SFG), manufacturer’s raw material (MRM), manufacturer’s finished goods (MFG), 

retailer’s raw material (RRM), and retailer’s finished goods (RFG). In each design scenario that 

represents a certain design preference, one of the six candidate locations should be the CODP. The 

production upstream to the CODP is make-to-stock and the production downstream to the CODP 

is make-to-order.  
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The reliability of the processes are continuous variables. We define the reliability is a value that 

each process owner can determine. High reliability result in high service level but low profit. By 

exploring the tradeoffs between profit and the other two goals, we can set appropriate value to the 

reliability of each process in different situation, such as different stages of product life cycle. 

The production volume of the supplier and the manufacture and the purchasing volume of the 

retailer are either equal to the forecast (if the production at the point is make-to-stock) or equal to 

the real demand (if the production at the point is make-to-order), so the production volume are 

defined as dependent parameters rather than system variables.  

Constraints. The cost of every process, the total number of CODP, and the service level are the 

constraints. Holding cost: in the processes in the make-to-stock production, when the real demand 

is less than the forecast, the extra part of the forecast becomes the remaining stock, which causes 

holding cost until next time period, the remaining stock offsets the production or procurement 

volume of the next time period. Shortage cost: in the processes in the make-to-stock production, 

when the real demand is more than the forecast, we assume the shortage amount can be outsourced 

urgently, but the urgent outsourcing causes extra cost, and we define such extra cost as the shortage 

cost. 

 In this problem, we define that there is always one CODP in this SC. The CODP can be changed 

as the product life cycle evolve but at any specific time, it is required that all raw material or semi-

finished goods or finished goods to be stored at the single CODP. 

The ideal value of the service level of the SC is defined as the target of the service level goal, but 

we also have a lower bound of the service level, which is the three Sigma, 99.7%. The SC is not 

sustainable if the service level gets lower than 99.7%. 
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Figure 4. 23 A Three-Echelon SC 

Different design scenarios – different stages of the product life cycle (PLC). As the product enters 

different phases of its life cycle – introduction, growth, maturity, and decline, the preferences on 

the three goals vary, the CODP may move up and down accordingly.  

4.3.5 CODP Results and Discussion 

- Applying the Formulation-Exploration framework to improve the model and obtain satisficing 

solutions 

Weight sensitivity analysis. In design preferences exploration, we use a number of weight 

scenarios (WSs) to represent typical design preferences. We apply the method in (Seada and Deb 

2014) to determine the WSs. For a M-goal problem, if the designer want to divide the weight range 

for each goal – we define the whole range is [0, 1] – into p pieces, we will have 𝐻 = b𝑀 + 𝑝 − 1
𝑝 c 
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number of WSs. In this problem, since there are three goals, 𝑀 = 3. We set p=2, so H=6. We want 

one more scenario that assigning equal weights (1/3, 1/3 1/3) to three goals, thereby there are all 

together seven WSs (Table 4.14). Plugging each of the seven WSs into our cDSP, we have seven 

sub-problems. Solving them one by one, we obtain the results listed in Table 4.15.  

We use Figure 4.24 to show the achievement of the goals associated with the CODP results. From 

Figure 4.24, we conclude that when profit is less important than service level and variance of 

variability, the CODP should be at the finished goods of the retailer (RFG); if the profit has some 

importance, the CODP should be at the raw material of the manufacturer (MRM). 

Table 4. 15 Seven Scenarios – Type II Uncertainty 

WS w1 w2 w3 
1 1 0 0 
2 0 1 0 
3 0 0 1 
4 0.5 0.5 0 
5 0.5 0 0.5 
6 0 0.5 0.5 
7 0.33 0.33 0.33 

Table 4. 16 Results of the First Iteration 

WS CODP Profit Service Level Variance of Reliability 
1 MRM 30489 99.13% 0.483% 
2 RFG 33835 99.26% 0.304% 
3 RFG 33569 98.33% 0.045% 
4 MRM 30610 99.40% 0.549% 
5 MRM 30233 98.17% 0.055% 
6 RFG 33824 99.26% 0.279% 
7 MRM 30543 99.28% 0.249% 
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Figure 4. 24 CODP of Different Weight Scenarios 

System capacity analysis. We identify the holding cost of the manufacturer and retailer have 

limited capacity but a relatively large shadow price, which means this constraint is a bottleneck. 

So, if we can reduce the holding cost physically by some means (e.g., applying RFID technology, 

or using a third-party vender with lower unit cost), the achieved value of the goals can be improved. 

Assuming that the operational team take actions of the cost reduction, we reformulate the problem 

accordingly using the algorithm in Table 4.13. Then we run the second iteration of the 

Formulation-Exploration. After three iterations of formulation-exploration, we get the results in 

Table 4.16. The final results are better than the first-iteration results (Table 4.15) in terms of the 

achieved value for the goals, whereas the service level and variance of reliability in some scenarios 

are worsen but not much. This means that we save the cost in achieving unnecessarily high service 

level and equity between players to obtain higher profits. After three iterations, we have boosted 

the system potential, so we stop iterating.   

Table 4. 17 Results of the Seven Design Scenarios in the Third Iteration 

WS CODP Profit Service Level Variance of Reliability 
1 MRM 31584 99.13% 0.483% 
2 RFG 36946 99.21% 0.483% 
3 RFG 36657 98.25% 0.025% 
4 MRM 31584 99.13% 0.483% 
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5 MRM 31584 99.13% 0.483% 
6 RFG 33813 99.23% 0.315% 
7 MRM 31584 99.13% 0.483% 

In this case, we observe that in WS 1, 4, 5 and 7, when the profit goal (Goal 1) is achieved not so 

good, ), the CODP is at MRM, the raw material of the manufacturer, which means if the decision 

maker allows the SC to give up some of its profit margin, (in the introduction phase, or decline 

phase of the product life cycle – PLC), In such a situation, from SRM to MRM (from the raw 

material of the supplier to the raw material of the manufacturer), the productions are all based on 

the demand forecast; from MRM to RFG (from the raw material of the manufacturer to the finished 

goods at the retailer), the production or goods preparation are all based on customers’ order. 

Standard components are stored at MRM and all the locations upstream from it, and customization 

takes place right after MRM. The profit is not in a high level, whereas the achievement of service 

level (the higher the better) and the variation of the reliability (the lower the better) are not always 

in a high level either. This indicates that in the introduction or decline phase of a product, we need 

to sacrifice the performance of the SC for a better customized product and a relatively more flexible 

SC.  

On the contrary, if the profit is the first priority for the SC, usually happens in the growth phase or 

the maturity phase of the PLC, the CODP should be at the last candidate node of the SC, that is 

RFG, the finished goods of the retailer. In this way, the whole SC is an MTS one. The relatively 

stable and strong demand from the customers make the demand forecast more reliable, so the MC 

can be done via the production through the manufacturers to the retailers based on relatively 

accurate forecast due to market feedback. The whole SC is now for a product family. In such a 

way, the MC is done with a mass production cost. We tie the results in seven WSs with the different 

phases in PLC (Figure. 4.25). This indicates that even for a new, customized product, as it enters 
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the growth phase when the demand is relatively stable and predictable, the customization can be 

done in advanced to the customers’ order-intake, until the product goes to the decline phase. 

Therefore, even for a product with customized solutions, we do not have to adopt the MTO 

production mode all the time, because in the growth and maturity phase, we can finish the 

production of the mass-customized product ahead of the orders with relatively low risk.  

Verification and Discussion 

To verify our conclusions and attain insight on the relation between CODP candidate variables 

and the achieved value of the goals, we perform sensitivity analysis of the six CODP candidate 

locations. In each weight scenario, we fix the CODP in each of the six candidate locations and 

obtain the achieved value of the goals. We show the comparison of the results with CODP fixed 

at each point with the satisficing results (Table 4.16) in Table 4.17. Under each WS, we show the 

satisficing result with an asterisk “*” in the column named “satisficing.” The percentage numbers 

in those non-satisficing lines are comparison with the satisficing ones. “-24%” means that it is 24% 

worse than the satisficing result under the same WS. In some scenarios, if we assign a candidate 

location as CODP, never can we get any feasible solution because the constraints always get 

violated. For example, in WS 1, if we set SRM as the CODP, which means the whole SC is in 

MTO production mode, we cannot satisfy all constraints. So, if we set profit as the only goal, given 

the resource that can be acquired in this SC, a whole MTO production mode is not recommend for 

this product.  

From Table 4.17, we observe that we can never position CODP at two locations, SRM and SFG, 

because we cannot obtain any feasible solutions. Therefore, the product is not fit for a pour pull 

strategy. In WS 1, 4, 5, and 7, RFG as CODP cannot give feasible solutions, whereas in all the 

other WSs – WS 2, 3, and 6 – RFG is the satisficing solution. This means RFG is a sensitive node, 



 197 

either gives the best or lose it all. This proves that doing weight sensitivity analysis is necessary 

so that we only pick up appoint as CODP when it gives qualified result in certain design 

preferences. 

Among the three goals, profit is relatively sensitive to CODP migration because when we move 

CODP to non-satisficing nodes, the achieved values of profit get the most decreases.  Service level 

does not change much as CODP migrates, nor does it change much as WS changes. In this sense, 

to reduce the computational complexity, we can remove the service level goal. 

Table 4. 18 Comparison of Satisficing Results with Results from Other CODP Candidate 
Locations 

WS Satisficing CODP Profit Service 
Level 

Variance of 
Reliability 

1  SRM Infeasible 
1  SFG Infeasible 
1 * MRM 31584 99.13% 48.82% 
1  MFG -24% 0% +0.25% 
1  RRM -13% +0.1% +85% 
1  RFG Infeasible 
2  SRM Infeasible 
2  SFG Infeasible 
2  MRM Infeasible 
2  MFG Infeasible 
2  RRM Infeasible 
2 * RFG 36946 99.21% 0.483% 
3  SRM Infeasible 
3  SFG Infeasible 
3  MRM Infeasible 
3  MFG Infeasible 
3  RRM Infeasible 
3 * RFG 36657 98.25% 0.025% 
4  SRM Infeasible 
4  SFG Infeasible 
4 * MRM 31584 31584 31584 
4  MFG -24% -24% -24% 
4  RRM -13% -13% -13% 
4  RFG Infeasible 
5  SRM Infeasible 
5  SFG Infeasible 
5 * MRM 31584 31584 31584 
5  MFG -24% -24% -24% 
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5  RRM -13% -13% -13% 
5  RFG Infeasible 
6  SRM Infeasible 
6  SFG Infeasible 
6  MRM Infeasible 
6  MFG Infeasible 
6  RRM Infeasible 
6 * RFG 33813 99.23% 0.315% 
7  SRM Infeasible 
7  SFG Infeasible 
7 * MRM 31584 31584 31584 
7  MFG -24% -24% -24% 
7  RRM -13% -13% -13% 
7  FRG Infeasible 

 

 

Figure 4. 25 CODP, Achieved Value of Goals in Different Phases of a Product Life Cycle – 
Managing Type I Uncertainty 

Among the six candidate locations, only two can be CODP in all seven WSs – MRM and RFG, so 

it simplifies the decision makers’ tasks. They need to focus on these two locations instead of all 

six locations. The responses of the preference change are all about switching CODP between MRM 

and RFG. Decision makers do not need to do one-time investment on fixed assets to make other 

locations as CODP. 

Using the Formulation-Exploration framework, when changes take place in the SC, such as design 

preferences unexpectedly evolve (Type III uncertainty), cost budget cutting-down due to crises 

(Type II uncertainty), production/transportation cost or capacity change due to natural disasters 
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(Type I or IV uncertainty), etc., we can reformulate the problem and output satisficing solutions 

in a real-time manner. The switching of the phases of the PLC can be captured in time and the 

production strategy can be updated accordingly.  

4.3.6 Closure of Test Problem II 

In this section, we propose a practical framework, Formulation-Exploration framework, for 

positioning CODP in SC networks to facilitate MC. We review the literature of CODP positioning 

and identify two major limitations – problematic assumptions on stochastic parameters and relying 

on model accuracy and we analyze the challenges in SC regarding CODP positioning. Also, we 

define the concept of the robust design to SC and categorize the uncertainties in the SC into four 

types as in Table 4.12. Based on the limitations and research gaps in the literature and the 

challenges in the CODP design, we raise a question and hypothesis. To answer the question, we 

propose the Formulation-Exploration framework to explore the solution space to exploit the 

potential of the SC. Using a test problem in automobile industry, we answer the question. 

Question (Q1.4) – How can designers improve the robustness (insensitivity) of the CODP design 

without sacrificing the performance of the SC to facilitate MC?  

Using the Formulation-Exploration framework, we explore the solution space by using 

representative design scenarios and explore the potential of boosting the performance of the system 

by adopting physical means, such as applying a new technology to cut down a certain cost. By 

doing this in iterations, we exploit all means that lead us reaching the most desirable satisficing 

given the resources on hand. With the Formulation-Exploration framework, we can iteratively 

determine and update the CODP, which facilitate providing products to satisfy individual 

customer’s requirements with near mass production efficiency. We define that the formulation-
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exploration framework is a dynamic, open meta-design scaffold, on which new, customized 

modules can be added to manage both domain-dependent and domain-independent design 

problems. The current four incorporated methods – cDSP, adaptive linear programming, weight 

sensitivity analysis, and system capacity analysis are examples to launch our practice for 

satisficing design.  

There are two major contributions of this work. First, the proposed Formulation-Exploration 

framework, allows designers to manage multiple conflicting goals by minimizing the distance 

between their targets and the achieved values. As different design scenarios that represent evolving 

preferences in various stages of a product life cycle (PLC) are explored, one can design the MC in 

different situations to have various flexibility. By exploring the tradeoffs between goals, 

appropriate design scenario can be adopted to each stage of a PLC. As the product enters different 

stages, a real-time switching of CODP facilitates mass customization. 

Second, we provide a new perspective of SC design – improving the sustainability of a SC by 

enabling players to share the duty and risk in reliability. Instead of modeling the SC in a 

conventional way by determining the production volume or inventory level, we determine the 

reliability of the processes in the SC and minimizing their difference. We view the SC as a system 

and encourage the players in the system to share responsibility and boost the sustainability of the 

system by balancing the duty and the gains of each player. Multiple types of uncertainty are 

managed in this section by adding buffer to the physical model and keep removing bottleneck of 

the system. 

There are two other contributions in this section. We apply the robust design concept in 

engineering into SC design and categorize the typical uncertainties in a SC into four types. 

Different modules in FME enable designers to manage different types of uncertainty in a SC. In 
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addition, the concept of CODP can be expanded in other types of complex systems, such as 

decision workflow design. The essential idea of adopting the CODP in complex-system design 

and operation is positioning the key node or several key nodes as the CODP(s) of the system, 

where the characteristic of the system activity changes from active preparation to order-driven. By 

identifying the requirements at the CODP, a designer can proceed the upstream and downstream 

processes. The benefit of having a CODP in a complex system is that by positioning and switching 

the CODP, one can ensure that the entire system maintains a sustainable and robust state, 

meanwhile maximize the reconfigurability and enable mass customization. 

The Formulation-Exploration framework can be applied to engineering design problems. 

Designers can improve the model and manage uncertainties by removing the sensitive and 

improvable segments of the engineering-design system. By viewing the different segments of a 

system as players collaborating with one another while competing resource, we can improve the 

system performance by letting them share responsibilities and risks. The Formulation-Exploration 

framework is especially useful for continuous improvement and sustainability improvement of a 

system with conflicting goals, evolving design preferences and multiple players who seek equality 

and common interest. 

4.4 Role of Chapter 4 in this Dissertation 

4.4.1 Summarizing How We Finish Task 1 – Connecting Formulation and Exploration 

When designing a complex system, especially in the early stage, designers may not have sufficient 

information and knowledge on the requirements or uncertainty in and around the system. Some 

mathematical relations among parameters and variables are based on designers’ experience, 

heuristics, or preferences. 
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The essence of Specific Hypothesis 3, “explore the sensitivity of the segments of the model 

boundary and improve accordingly” is to refine the model formulation, use appropriate design 

scenarios, and manage typical uncertainties. Designers often need sufficient explorations and 

experiments to acquire data and interpret the data into knowledge on the model improvement 

actions. In this chapter, we standardize such exploration-interpretation-improvement procedure by 

incorporating typical uncertainties, such as the variation in the water inflow of the dam network 

and the uncertainty in product demand and supply in a supply chain, then identifying the sensitive 

and improvable segments of the model. By exploring the ways of removing the sensitive and 

improvable segments of the model, we ensure the model become less sensitive to scenario changes 

and uncertainties. 

In other words, we strengthen the connections among the three processes in Figure 4.26, 

formulation, decision, and action. Without using the Formulation-Exploration framework, the 

three processes are relatively isolated, without information exchange. Even with designers’ effort 

of design improvement by passing through the information among them, the operations are not 

standardized nor generalized. In this dissertation, we establish the information exchange, 

knowledge awareness, and instructions sharing among the three processes and make it 

standardized; see Table 4.12 and 4.14. 
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Figure 4. 26 The Methods and Procedures Involved in Formulation-Exploration – 
Establish the information exchange, knowledge awareness, and instructions sharing among 

the three highlighted processes 
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4.4.2 Summarizing How We Realize Type I & II Robust Design 

For the dam network problem, Type I uncertainty is identified as the variation water inflow, which 

is managed by concretizing the typical cases as inflow scenarios (Table 4.7); Type II uncertainty 

is concretized as the design scenarios that represent the different priorities of different users’ water 

demand (Table 4.5). 

For the supply chain problem, Type I uncertainty is represented as the variation in product demand 

in different phases of the product life cycle (Figure 4.25); Type II uncertainty is reflected as the 

evolving preference of different system goals (Table 4.15). 

By implementing the scenarios, identifying the segments to be improved, and improving the model 

formulation, Type I and Type II uncertainty is managed. In this way, we realize Type I & II robust 

design; see the summary in Table 4.19 as the closing remarks of Table 3.2 regarding the robust 

design realization and uncertainty management for Test Problems 1.1 and 1.2. 

Table 4. 19 Summary of Test Problems 1.1 & 1.2 regarding Type I&II Uncertainty 
Management 

R
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 T
yp

e RDI-II   
  RDIII  

   RDIV 

M
et

ho
d  

M1: Formulation-Exploration 
Framework 

M2: Adaptive 
Linear Programming 
with Parameter 
Learning (ALPPL) 

M3: Adaptive 
Leveling-
Weighting-
Clustering 
Algorithm (ALWC) 

M4: Scenario 
Planning in 
Agent-Based 
Modeling 

Chapter Ch 4 Ch 5 Ch 6 Ch 7 

U
nc

er
ta

in
ty

 
Te

st
 

Pr
ob
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m

 

T1: Dam 
network 

T2: Supply 
chain 

T3: Hot rolling 
process chain T4: Thermal system 

T5: Promoting 
second-season 

farming 
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T y
pe

 I 
Uncertainty in 
timing and 
amount of 
inflow – Table 
4.7 

Uncertainty in 
demand side – 
Figure 4.25 

Uncertainty in hyper 
parameter setting 
(Parameters in 
approximation 
algorithm) 

Uncertainty in 
parameter setting in 
solution algorithm 
(Starting point of 
searching) 

Uncertainty in 
price (Price of 
agriculture 
products) 

Ty
pe

 II
 Uncertainty in 

outflow (water 
release target) 
– Table 4.5 

Uncertainty in 
supply side - 
Table 4.15 

Uncertainty in user 
preferences  Promotion effort 

and timing 

Ty
pe

 II
I  

  

Uncertainty in 
model 
approximation due 
to heuristics in 
approximation 

Uncertainty in 
model 
approximation 
(ways of combining 
multiple goals) 

 

Ty
pe

 IV
 

   

Uncertainty in using 
domain knowledge 
to simplify the model 
(fixing decision 
variables and 
selecting design 
scenarios) 

Interventions 
that change the 
mathematical 
relation among 
promotion and 
result 
(developing local 
market) 

RD – robust design 
M – method 
EVe – empirical verification of the method 
T – test problem 

4.4.3 Role of Chapter 4 

In Chapter 4, given the frame of references on satisficing strategy, especially focusing on the 

exploration of the boundary of the model, which is an extension of the frame of references in 

Chapter 2. A method, the Three-Step Exploration Method, and a framework that encompasses the 

method, Formulation-Exploration framework, are proposed to explore boundary of the model. 

Two test problems, a continuous system – dam network, and a coupled decision-making problem 

– design the customer-order-decoupling-point (CODP) of a supply chain, are used to verify the 

proposed methods. It is proved that using the Three-Step Exploration Method and its advanced 

framework, Formulation-Exploration framework, the system can be evolved to be relatively 

insensitive to the uncertainties happen to the boundary of the system, without sacrificing the 

system performance (the achievement of the goals). Research Question 1 is addressed. 
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CHAPTER 5 TYPE I, II, & III ROBUST DESIGN THROUGH IMPROVING 

APPROXIMATION  

– ADAPTIVE LINEAR PROGRAMING ALGORITHM WITH PARAMETER LEARNING 

(ALPPL)  

The new knowledge in Chapter 5: 
An improved algorithm that incorporates parameter learning to realize model evolution by 
improving the determination of the critical parameter in the approximation and solution algorithm 
– Adaptive Linear Programming Algorithm with Parameter Learning (ALPPL) 

In Chapter 5, see Figure 5.1: in Section 5.1, the reference on solution algorithms is framed, which 

is an extension of Section 1.2 model strategies and their foci; in Section 5.2, the problem statement 

regarding the research gaps in the approximation and solution algorithms in satisficing strategy is 

discussed, which is a specification based on Section 1.4.2 and Section 2.3; in Section 5.3, based 

on the research gaps described in Section 1.5 and the Method 2 proposed in Section 3.3.2, we 

introduce the Adaptive Linear Programming algorithm with Parameter Learning (ALPPL) in 

details; in Section 5.4, the ALPPL is applied to the hot rod process chain problem for identifying 

the solution space relatively insensitive to parameter setting and model structure variation caused 

by problematic heuristics; in Section 5.5, summarized the role of Chapter 5. 
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Figure 5. 1 Organization of Chapter 5 

The plan of specifying and answering Research Question 2 in the context of the test problems is 

shown in Table 5.1. In Chapter 5, the Proposed Method 2 (M2), Adaptive Linear Programming 

Algorithm with Parameter Learning (ALPPL), is empirically verified (EVe2) using Test Problem 

2 (T2), the cooling stage of the hot rod process chain. Research Question 2 (RQ2) is specified into 

the context of the test problem (SQT2) and answered (AQ2) by testifying M2. The empirical 

validation and theoretical validation are in Chapters 8 and 9. 

Table 5. 1 Plan of Specifying Research Question 2 (RQ2) and Empirically Verifying the 
Adaptive Linear Algorithm with Parameter Learning (ALPPL) (M2) 
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RG 
H 

RD 
RQ 
SH 

TVe 
M 

EVe1 
SQT1 
AQ1 

EVe2: use an engineering-design problem 
with uncertainties in parameters and 
metaheuristics to verify SH2 and 
demonstrate M2. EVe 

SQT 
AQ 

CQ 
EVa TE SQT2: What is the mathematics in the 

design method that allows approximation 
improvements in the realization of 
complex systems? 
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AQ2: by incorporating parameter 
learning in the approximation algorithm, 
designers can learn the association 
between parameter and approximation 
performance so they can guarantee the 
approximation performance through 
updating the heuristics in parameter 
settings. 

N
om

en
cl

at
ur

e 

RG – give research gaps 
H – give hypotheses 
RD – tie to roust design 
RQ – pose research questions 
SH – specify hypotheses 
TVe – theoretically verify hypotheses 
M – introduce methods 
EVe – empirically verify hypotheses 
SQT – specify research questions in the context of test problems 
AQ – answer research questions 
CQ – closure the answers to research questions 
EVa – empirically validate hypotheses 
TE – theoretically extend the research 

In this chapter, the Adaptive Linear Programming Algorithm with Parameter Learning (ALPPL) 

is proposed and tested by using an engineering-design problem – the hot rolling process chain. The 

Research Question 2 (RQ2) is answered. 

RQ2: What is the method to evolve model to update metaheuristics? 

In this chapter, the research question is specified into the context of the test problem. 

SQT2: What is the mathematics in the design method that allows approximation improvements 

in the realization of complex systems? 

To answer RQ2, interactions between the approximation, exploration, and evaluation of a design 

problem should be studied and the mechanisms of information sharing and intervention between 

the three stages are established; see Figure 5.2. 
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Figure 5. 2 Specified Research Question 2 and the Relevant Stages to be Connected in 
Design Evolution Cycle 

Glossary (mainly applied in Chapter 5) 

ALP = Adaptive Linear Programming 
ALPPL = Adaptive Linear Programming with Parameter Learning 
DEI = Desired Range of Evaluation Index 
DSP = Decision Support Problem 
EI/EIs = Evaluation Index/Indices 
RMC = Reduced Move Coefficient 
Completion of a Goal (or Fulfillment of a Goal): the degree of completion of a goal versus its target. 
RMC Performance: the quality of the solution regarding certain criteria for an RMC value 
Quality of a Solution: the comprehensive level of performance of a solution based on certain criteria, 
such as the fulfillment of the goals, the number of active constraints, the number of accumulated 
constraints, etc. 
Active Constraints: when plugging a solution into a constraint, its left-hand-side value equals its right-
hand-side value, then the constraint is an active constraint. 
Accumulated constraints: when linearizing a nonlinear constraint, multiple linear constraints are 
acquired, then all the linear constraints are accumulated to replace the nonlinear constraints. Those linear 
constraints are accumulated constraints or accumulated linear constraints. 

Nomenclature (mainly applied in Chapter 5) 

𝑋 𝑋 = {𝑥x, 𝑥�, … , 𝑥U}. System variables (decision variables). 
𝐺* The kth goal of a K-goal compromise formulation. 
𝑇* The target value of the kth goal of a K-goal compromise formulation. 
𝑑*j, 𝑑*l Negative deviation variables and positive deviation variables of Goal k. 𝑑*j and 𝑑*l are the under-
achievement and over-achievement of Goal k. The formulation of Goal k is：/d

�d
+ 𝑑*j − 𝑑*l − 1 = 0.	𝑑*j ∙

𝑑*l ≡ 0. 
/d
�d

  Fulfillment of Goal k – measures how well Goal k achieves its target.  
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𝑊 Weight Scenarios – The different weight vectors used to combine multiple goals to represent 
various design preferences linearly.  
𝑊*

; Satisficing Weight set for Goal k – The range of weight values that satisfice Goal k. 
𝑊; 𝑊; = ⋂ 𝑊*

;
*∈Ú . Satisficing Weight Set – The set of weight scenarios that satisfice all K goals. 

𝑍 𝑍 = ∑ 𝑊* ∙ (𝑑*j + 𝑑*l)*∈Ú . Deviation function 𝑍 is the weighted sum of deviation variables of all 
goals. By minimizing 𝑍, goals are achieved in a compromise way. 𝑍 measures how much the goals do not 
achieve their targets.  
𝑃  The original problem – may be nonlinear. 
𝑃Wg The approximate linear problem in the 𝑖th iteration. 
𝑋W∗ 	𝑋W∗ = {𝑥Wx∗ , 𝑥W�∗ , … , 𝑥WU∗ }. The solution of the 𝑖th iteration. 
𝑋W  𝑋W  = {𝑥Wx  , 𝑥W�  , … , 𝑥WU  }. The starting point of the 𝑖th iteration. The original problem 𝑃  is 
linearized at 𝑋W  in the 𝑖th iteration. See Figure 5.4 and Equation 5.1-5.3. 𝑋W  is determined using Equation 
5.4. 
𝐴𝑂𝐶  Active Original Constraints – The inequality constraints with zero slack or the surplus when 
plugging in a solution. See Figure 5.10 (a). 
𝐴𝐵  Active Bounds – For a solution, if the value of a variable is on its upper or lower bound, then the 
bound is an active bound. 
𝐽 The set of nonlinear constraints of 𝑃 . 
𝑁𝐹]  The 𝑗th nonlinear constraint of 𝑃 , 𝑗 ∈ 𝐽. 𝑁𝐹] maintains the same in every iteration. See Figure 
5.4 and 5.5. 
𝑁𝐹W,]l The approximated second-order parabolic of 𝑁𝐹] using the second-order derivatives at 𝑋W . See 
Figure 5.5 and Equation 5.1 and 5.2. 
𝐿𝐹W,]  The approximated linear constraint of 𝑁𝐹] in the 𝑖th iteration.  𝐿𝐹W,] is a part of 𝑃Wg. See Figure 5.4 
and 5.5, and Equation 5.1-5.6. 
𝐴𝐶𝐶  Accumulated Constraints. When the convexity of a nonlinear constraint 𝑁𝐹] is relatively large – 
greater than 0.015, approximated linear constraints from multiple iterations are accumulated to replace 
𝑁𝐹]. See Figure 5.4 and Equation 5.7. 

In this chapter, an approximation algorithm – the Adaptive Linear Programing algorithm with 

parameter learning (ALPPL) is applied to manage a test problem that is parameter-sensitive. 

Further, different issues are addressed in the approximation of complex-system design: (1) 

enabling scientific determination and updating of critical parameters to manage approximation 

efficiency, (2) meeting the requirement on problem fidelity, (3) meeting the requirement on 

computational complexity, and (4) managing uncertainty. The efficacy of the method is 

demonstrated using a hot rod rolling problem as Test Problem 3. 

The establishment of the context is in Section 5.1. The answer to the Research Question 2 is the 

mechanism and process of improving the ALP by incorporating parameter learning, see Section 

5.2 and 5.3. The empirical structural validity of the method is presented in Sections 5.4.  
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5.1 Frame of Reference on Solution Algorithms 

Solution algorithms for solving complex problems fall into two categories (Table 5.2): formulate 

a problem exactly and solve it approximately or approximate a problem and solve it exactly. 

Examples of solution algorithms in the first category are gradient-based methods (Williams and 

Zipser 1995), pattern search methods (Rios and Sahinidis 2013), and penalty function methods 

(Viswanathan and Grossmann 1990). Using these methods may lead to relatively higher 

computational complexity, and the solution is usually not on the vertex of the feasible space. In 

contrast, the methods in the second category, such as Sequential Linear Programming, allow 

designers to obtain solutions on one or several vertices. This enables designers to use duality 

embodied in linear programming to explore the solution space without performing interior-point 

searches using the methods in Category I (Mistree, Hughes et al. 1981, Mistree and Kamal 1985). 

The dual problem is worthy of study, especially for engineering-design problems because, in 

engineering problems, the number of constraints is often more than the dimensionality of the 

problems (Mistree, Hughes et al. 1981). Further, methods in Category II facilitate rapid 

identification of robust solutions18. 

In this chapter, our focus is Category II because we deal with engineering design problems to 

obtain useful, practical, but not necessarily optimal solutions.  

The Adaptive Linear Programming (ALP) algorithm proposed by Mistree et al. in (Reddy 1992) 

and described in detail in (Mistree, Hughes et al. 1993) falls into Category II.  The reported use of 

the ALP includes the design of ships (Smith, Kamal et al. 1987), damage tolerant structural and 

 

18   Solutions which are relatively insensitive to approximations made to make the solution to the problem tractable. 
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mechanical systems (Mistree, Hughes et al. 1993), design of aircraft, mechanisms, thermal energy 

systems (Smith, Milisavljevic et al. 2014), composite materials, and the concurrent design of multi-

scale, multi-functional materials and products (Nellippallil, Rangaraj et al. 2018). A detailed set 

of early references to these applications is presented in (Mistree, Muster et al. 1990). However, 

like most methods in Category II, heuristics are used to approximate and search solutions to the 

design problem. One such heuristic is the reduced move coefficient (RMC), which is a parameter 

that helps determine the starting point for approximation for every new iteration. It determines the 

step size of the search (Mistree, Hughes et al. 1981) and minimizes the oscillation of the solution 

from one synthesis cycle (Figure 5.4) to the next (Mistree, Hughes et al. 1993). Oscillation results 

in poor convergence; therefore, we use the RMC to get a more gradual change from a set of system 

variables from one synthesis cycle to another. Nevertheless, the RMC value is set by the designer 

without any knowledge on the connection between the RMC value and the quality of the solution 

or the solution improvement. This limitation is addressed in this chapter by applying parameter 

learning to improve the Adaptive Linear Programming (ALP) algorithm by incorporating 

parameter learning (ALPPL). 

Table 5. 2 Advantages and disadvantages of the two categories of solution algorithms 

# Category Example 
Methods 

Advantages Disadvantages 

I Formulate a 
problem 
exactly and 
solve it 
approximately 

Gradient-based 
methods, pattern 
search methods, 
penalty function 
methods, etc. 

-    Maintaining a relatively 
accurate model along with the 
solution search (given the 
information that the designer 
has on hand).  

-    The solution is still an 
approximate, inaccurate 
one; 
-    Heuristics are used in 
solution algorithms, 
which may result in 
premature convergence or 
unnecessarily high 
computational 
complexity. 

II Approximate a 
problem and 

Adaptive linear 
programming, 

-   Solutions are on the vertices 
of the approximated problem so 

-     Heuristics are used in 
approximation 
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solve it 
exactly 

sequential linear 
programming, 
etc. 

the problem with a large 
number of constraints can be 
solved relatively easily by 
solving the dual; 
-   The approximation accuracy 
can be improved by 
accumulating the linearized 
constraints along with 
iterations. 

algorithms, which may 
result in inaccurate 
approximation. 
  

In Section 5.2, we introduce the ALP and the limitation of the algorithm regarding the RMC 

determination, and the hypothesis for improving the algorithm; in Section 5.3, we propose a 

method – ALP with parameter learning (ALPPL) to verify the hypothesis. In Section 5.4, we use 

an engineering design problem – the cooling stage of the hot rod rolling process chain, to establish 

the efficacy of the ALPPL. In Section 5.5, we summarize the contributions and limitations and 

suggest possible directions for future work. 

5.2 Problem Statement – Limitations of the ALP regarding Parameter Determination 

Section 5.2 is an extension of Section 1.4.2. The more detailed description of the ALP algorithm 

is in Section 5.2. 

5.2.1 Adaptive Linear Programing (ALP) Algorithm 

Using the Adaptive Linear Programming (ALP) algorithm, one can approximate and solve 

nonlinear problems. The procedures of the ALP algorithm are shown in Figure 5.3. The ALP is 

implemented in DSIDES (Ming, Nellippallil et al.), a decision support system. In Figure 5.3, the 

processes in the dotted rounded rectangle A are executed in a synthesis cycle.  In the synthesis 

cycle, continuous improvement (or repeated modification) takes place, that includes two parts – 

approximation of the nonlinear problem and solving the approximated linear problem via the 
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revised dual simplex algorithm. If the stopping criteria19 are met, then the solution with the best 

value of the deviation function 𝑍 is returned as the satisficing solution. 

The ALP incorporates a local approximation algorithm (Barthelemy and Haftka 1993), in which a 

secant plane of the paraboloid (with the second-order derivatives at a point as the coefficients) is 

used to replace the original high-order nonlinear function. 

 

Figure 5. 3 The ALP Algorithm 

In Figure 5.4, illustrated the projection of an n-dimension problem onto a two-dimension plane 

and how the design problem is approximated and solved in two iterations using the ALP. In the 

 

19   The stopping criteria include maximum number of synthesis cycle (NITER), desired stationarity of deviation 
function (EPSZ), desired stationarity of system variables (EPSX), and desired stationarity of the RMC (threshold value 
𝜖) Mistree, F. and S. Kamal (1985). DSIDES: Decision Support in the Design of Engineering Systems, University of 
Houston. 

 . The program is stopped if any one of the four stopping criteria is met. 
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first iteration, the starting point, 𝑋   (user-defined), may not be in the feasible region, The Hook-

Jeeves pattern search algorithm is used to bring 𝑋   into the feasible region, as 𝑋x , so it enters the 

first iteration, and the problem is linearized at 𝑋x  . In Iteration 𝑖 , Figure 5.4 (a), a nonlinear 

constraint20, 𝑁𝐹], is approximated at 𝑋W , so an approximated constraint 𝐿𝐹W,] is obtained. With the 

revised simplex dual algorithm, a solution  𝑋W∗ is returned. With the reduced move coefficient 

(RMC), we get the point 𝑋Wlx  , a point between 𝑋W  and 𝑋W∗, as the starting point of Iteration 𝑖 + 1. 

In Iteration 𝑖 + 1, Figure 5.4 (b), the approximated linear constraints of both iterations, 𝐿𝐹W,] and 

𝐿𝐹Wlx,] are accumulated, and a solution  𝑋Wlx∗  is returned and the starting point of Iteration 𝑖 + 2. 

The approximation continues until one of the stopping criteria is met – either the solution points 

or the fulfillment of the goals maintains in a stationary range, or, the total iterations reach an upper 

limit. 

 

Figure 5. 4 The Approximation and Obtained Solution using the ALP in Two Iterations 

 

20 If 𝑁𝐹] is an inequality constraint, 𝑁𝐹] ≥ 0, then the curve denoted as 𝑁𝐹] in Fig. 2 is the surface of 𝑁𝐹]; if 𝑁𝐹] is 
an equality constraint, 𝑁𝐹] = 0, then the curve denoted as 𝑁𝐹]in Fig. 2 is 𝑁𝐹]. 
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To illustrate the approximation, we use a three-dimensional graph – Figure 5.5. The approximation 

takes place in two steps. First, 𝑁𝐹] (Paraboloid 𝐴𝐵𝐶 in Figure 5.5) is approximated to a paraboloid 

𝑁𝐹W,]ll (Paraboloid 𝐴𝐵∗𝐶∗ in Figure 5.5) by using the diagonal terms of its Hessian matrix at 𝑋W  

as the coefficient. Then, 𝑁𝐹]ll is approximated to a secant Plane 𝐿𝐹W,] (Plane 𝐴𝐵∗𝐶∗ in Figure 5.5). 

The calculations of 𝑁𝐹]lland 𝐿𝐹W,] are given as follows. 

 

Figure 5. 5 The Original Nonlinear Constraint, the Second-Order Paraboloid, and the 
Secant Plane [4] 

𝑁𝐹W,]ll is obtained by using only the second-order full derivatives at 𝑋W , shown in Equation 5.1, 

because the second-order partial derivatives are proved to have very limited impact on the gradient 

(Mistree, Hughes et al. 1981). 

𝑁𝐹W,]ll = 𝑁𝐹]¸𝑋W ¹ +� ¸𝑥Wn − 𝑥Wn  ¹o
𝜕𝑁𝐹]
𝜕𝑥Wn

q
 

U

nwx
+
1
2
� ¸𝑥Wn − 𝑥Wn  ¹

� o
𝜕�𝑁𝐹]
𝜕𝑥Wn�

q
 

U

nwx
 

Equation 5. 1 

Then, from Equation (1), for the 𝑝6r  dimension, the quadratic to be solved to determine 

¸𝑥Wn − 𝑥Wn  ¹ is Equation (2). 
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= 𝟎   Equation 5. 2 

If Equation 5.2 has real roots, by solving Equation 5.2 and selecting the root between Equation 5.3 

and Equation 5.4 with the smaller absolute value for each dimension, we obtain the intersection 

that is closer to the paraboloid in each dimension, such as 𝐵∗ and 𝐶∗. 
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    Equation 5. 3 
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     Equation 5. 4 

If Equation 5.2 has no real roots, for example, as the case shown in Figure 5.6, 𝑁𝐹]lldoes not have 

intersect with Plane 𝑥x𝑥� , then the first-order derivative function at 𝑋W   is used, so bst\Ü
s�Ûu

c
 

∗
 is 

estimated by the tangent at 𝑥Wn  , as Equation 5.5. 
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𝝏𝒙𝒊𝒑
c
𝟎
        Equation 5. 5 



 218 

 

Figure 5. 6 When the Second-Order Paraboloid Has No Intersection with Plane 𝒙𝟏𝒙𝟐, The 
First-Order Tangent is Used to Approximate 𝑵𝑭𝒋 

Based on the intersections in each dimension, such as 𝐵∗  and 𝐶∗, we can calculate 𝐿𝐹W,]  using 

Equation 5.6.  

𝑳𝑭𝒊,𝒋 = ∑ 𝒙𝒊𝒑 b
𝝏𝑵𝑭𝒋
𝝏𝒙𝒊𝒑

c
𝟎

∗
𝒏
𝒑w𝟏 − |∑ 𝒙𝒊𝒑𝟎 b

𝝏𝑵𝑭𝒋
𝝏𝒙𝒊𝒑

c
𝟎

∗
𝒏
𝒑w𝟏 − 𝑵𝑭𝒋¸𝑿𝒊𝟎¹}  Equation 5.6. 

If the convexity of 𝑁𝐹] is relatively large – greater than 0.015 at any starting point in and before 

the 𝑖th iteration, we use the accumulated constraints ⋃ 𝐿𝐹�,]��W  to replace 𝑁𝐹]. See Equation 5.7. 

If the convexity of 𝑁𝐹] at all starting point in and before the 𝑖th iteration is less than or equal to 

0.015, we use the single linear constraint in the 𝑖th iteration to replace 𝑁𝐹].	See Equation 5.8. 

Constraint Accumulation Algorithm 

In the 𝑖th iteration, 

for every 𝑗 in 𝐽 

if  𝑚𝑎𝑥 ���𝑐𝑜𝑛𝑣¸𝑁𝐹]¹�ß�v����W
> 0.015   

𝑃Wg = ¸𝑃 \E𝑁𝐹]P¹ ∪ E⋃ 𝐿𝐹�,]��W P     Equation 5.7 

Else 

𝑃Wg = ¸𝑃 \E𝑁𝐹]P¹ ∪ E𝐿𝐹W,]P      Equation 5.8 
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Then, the revised simplex dual algorithm is applied to solve the linear problem Pô�, so a solution 

𝑋W∗ is obtained. 𝑋Wlx  , as a point between the starting point 𝑋W  and the solution 𝑋W∗, becomes the 

starting point of the next iteration. The Reduced Move Coefficient (RMC) is used to determine 

𝑋Wlx  . See Equation 5.9. 

𝑿𝒊l𝟏𝟎 = 	𝑿𝒊𝟎 + 	𝑹𝑴𝑪	 ∙ (𝑿𝒊∗ − 	𝑿𝒊𝟎)      Equation 5.9 

5.2.2 Reduced Move Coefficient (RMC) 

The value21 of RMC is in [0,1]. In the ALP, the RMC is either set by the designer as a fixed value 

or updated using the golden section search algorithm. In (Reddy 1992), the authors recommend 

setting 0.5 to the RMC as a fixed value through all iterations based on the observations from around 

1100 experiments conducted by them in the seventies.  However, 0.5 may not be the best value for 

every design problem. Therefore, the golden section search algorithm was added by Reddy et al. 

(Reddy 1992) to improve the RMC determination, in the sense of using metaheuristics to explore 

the solution space. Users can choose whether to set the RMC as a fixed value or to trigger the 

golden section search algorithm to allow the RMC to be adapt to new situations.  

The use of golden section search reduces the range of RMC by cutting off the region with undesired 

deviation function value or bigger violation of the constraints, till the range is smaller than a 

threshold ε, and at last return the best solution. The range updating mechanism is illustrated in 

Figure 5.7.  

 

21  The RMC does not have to be in [0, 1]. We set its range as [0, 1] because we want to explore the region between 
𝑋W  and 𝑋W∗ in case the approximation fidelity in this region is poor as we assume this is a relatively important region. 
However, it is fine to have RMC< 0 or RMC> 1 so that designers may explore the region out of the [𝑋W , 𝑋W∗] to avoid 
being stuck in local satisficing. Yet as in this section we deal with nonlinear problems, there is no hassle of local 
satisficing, so we bound the RMC in [0, 1] to stay focused on this relatively important region. 
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Figure 5. 7 The Golden Section Search for The RMC in the ALP 

Two factors, the deviation function value and the violation value of constraints, are considered to 

evaluate the performance. In the (𝑖 − 1)th iteration, two golden section points, 𝐴 and 𝐵, are used 

to acquire two starting points of the 𝑖 th iteration, Xô (𝐴) and Xô (𝐵) . In the 𝑖 th iteration, P   is 

approximated at Xô (𝐴), and Xô (𝐵) and two solutions Xô∗(𝐴) and Xô∗(𝐵) are obtained by solving 

the linear problems using revised dual simplex, with which, we compute i) the violation values of 

constraints 𝑉¸Xô∗(𝐴)¹ and 𝑉¸Xô∗(𝐵)¹,  by adding all the violation values of the constraints, and ii) 

the values of the deviation functions, 𝑍¸Xô∗(𝐴)¹ and 𝑍¸Xô∗(𝐵)¹, by plugging in the solutions. Then, 

the decisions on how to update the RMC range are made based on the four values. The performance 

evaluation rules and the RMC updating rules are given as follows.  

RMC Range Updating using Golden Section Search 

if 𝑉¸Xô∗(𝐴)¹ == 0 and 𝑉¸Xô∗(𝐵)¹ == 0 

if 𝑍¸Xô∗(𝐴)¹ ≤ 𝑍¸Xô∗(𝐵)¹  

  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐴) ≽ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐵) 
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else  

  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐴) ≺ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐵) 

else 

if 𝑉¸Xô∗(𝐴)¹ ≤ 𝑉¸Xô∗(𝐵)¹ 

  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐴) ≽ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐵) 

else  

  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐴) ≺ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐵) 

if 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐴) ≽ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐵) 

 𝑅v1� = 𝐵 

else 

 𝑅vWU = 𝐴 

In this way, the RMC range is reduced through iteration, until the range is smaller than a threshold, 

𝑅v1� − 𝑅vWU < 𝜀 , when we end the RMC search and return the solution 𝑋∗  with the best 

performance.  

5.2.3 Limitations of the ALP Regarding the Determination of the RMC 

With golden section search, the desired sub-range of RMC may be missed, since this is based on 

two assumptions:   

First, the approximation is a continuous function of the RMC and has no more than one inflection 

point in the range of RMC.  In other words, the performance function of the RMC is either convex 

or concave, as shown in Figure 5.8 (a). 
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(a)     (b) 

Figure 5. 8 Possible Patterns of the Performance of the RMC in a Sub-Range 

However, for a number of design problems, the performance function is neither convex nor 

concave. It is fluctuating without any pattern, as in Figure 5.8 (b). For the fluctuating case, the 

golden section search may miss a sub-range of the RMC with desired performance. 

Second, the criterion to evaluate the approximation performance is oversimplified – only the 

values of deviation function and the constraint violation are considered. Other critical aspects that 

matter to engineering design problems are not considered, such as the robustness of the results to 

uncertainties and the approximation accuracy. 

Given the above two limitations, in this section, we propose to use parameter learning to improve 

the ALP algorithm learning the relation between the RMC value and the quality of the solutions 

and use it to wisely determine the RMC value so as to improve the robustness of the approximation 

algorithm to the parameter. 

5.2.4 Hypothesis of Improving the ALP 

It is hypothesized that by incorporating parameter learning in the ALP algorithm, we can identify 

the range of RMC with more desired performance, that is returning relatively more stable results 
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regarding the goal achievement and the insensitivity of the solution to uncertainties. So, we need 

to define what is desired performance, then capture the relation between the RMC and the 

approximate performance and use such relation to tune the appropriate RMC value. There are three 

steps to verify the hypothesis. 

Step 1. Identifying the criteria to evaluate the approximation performance. 

Step 2. Based on the identified criteria, developing evaluation indices (EIs) that help quantify the 

approximation performance regarding RMC values. 

Step 3. Learning the desired range of each EI (DEI) and tuning the RMC to give results falling in 

the DEI. 

In Section 5.3, an improved algorithm is proposed – the ALP with parameter learning (ALPPL), 

to realize the three steps and verify the hypothesis. 

5.3 The Adaptive Linear Programing Algorithm with Parameter Learning (ALPPL) 

In this section, we work out the three steps proposed in Section 5.2.4 to make improvements to the 

adaptive linear programming (ALP) algorithm.  

Given these drawbacks in the golden section search, we propose the adaptive linear programming 

algorithm with parameter learning (ALPPL). See Figure 5.9. We embed the ALP algorithm into a 

loop, incorporating the parameter updating, results extraction, performance evaluation, and 

feedback on parameter updating. The loop is ALPPL. In this chapter, the parameter is specifically 

referred to the RMC. 
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Figure 5. 9 The Concept of Adaptive Linear Programming Algorithm with Parameter 
Learning (ALPPL) 

5.3.1 Step 1 – Identify the Criteria for Evaluating the Quality of a Solution 

In the RMC search method currently used in the ALP, the golden section search, two criteria are 

considered – the fulfillment of the goals and the feasibility of the solutions. In ALPPL, we build 

upon them. 

Criterion 1 – fulfillment of the goals.  

In engineering design problems, the fulfillment of the goals is a basic criterion to assess whether 

the potential of the system has been explored relatively sufficiently (Jiang, Wang et al. 2012), so 

we keep it as a criterion in ALPPL. 

Criterion 2 – the robustness of the solution. 

When we discuss the feasibility of the solutions, we only ensure that the solution is feasible in a 

deterministic situation but cannot ensure that the solution maintains feasible under uncertainties. 

As all models are approximations of reality (Box and Draper 1987), we cannot capture all the 

information in reality perfectly in a model. We need to manage the unexpected uncertainty by 

making the solutions relatively insensitive to the errors and incompleteness of the model. So, we 
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extend the notion of “feasibility” to “robustness,” which means the solutions should be feasible 

under multiple design scenarios and robust to some model errors and uncertainties, such as wrong 

parameter values, inaccurate equations, or unstable functional relationship between parameters and 

variables. In this chapter, we define the robustness of a solution as its insensitivity to model errors 

and uncertainties, and we assume all errors and uncertainties result in the boundary change, 

specifically the change of the right-hand-side value of each constraint, therefore, the robustness of 

the solution can be measured by how far it is away from the boundary. The robustness of the 

solution and the fulfillment of the goals often contradict with each other, as an interior solution (a 

solution that is away from the boundary) often makes the goals less fulfilled than a boundary 

solution does, hence, we take both criteria into considerations and make decisions based on their 

tradeoffs. In Figure 5.10, we show two solutions with different levels of robustness. We take the 

𝑋W∗ in Figure 5.10 (a) as a robust solution (relatively insensitive solution) and take the 𝑋W∗ in Figure. 

5.10 (b) as a sensitive solution. The solution in Figure 5.10 (a) is not on the boundary of the feasible 

space, so it is relatively insensitive (or more robust) to errors of the model or variations. 𝑁𝐹] in 

Figure 5.10 (a) is not an active constraint. On the contrary, the solution in Figure 5.10 (b) is on the 

boundary of the feasible space bounded by 𝑁𝐹] , so it is sensitive (or less robust) to errors or 

variations of the constraint. 𝑁𝐹] in Figure 5.10 (b) is an active constraint. The approximation does 

have an impact on the robustness of the solution, and the RMC affects the approximation result. 

We want the approximation to bring more robust solutions by adjusting the RMC22. 

 

22 In this chapter, the starting point of the test problem is a user-defined value and unchangeable, so the RMC is the 
only factor that affects the approximation quality. 
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(a)      (b) 

Figure 5. 10 A Relatively Sensitive Solution and a Robust Solution (Relatively Insensitive to 
Uncertainties) 

• Criterion 3 – approximation accuracy.  

In general, an increase in accumulated constraints leads to an improvement of the approximation 

accuracy, but not necessarily the more the better; see Figure 5.11. Therefore, we want sufficient 

and useful accumulated constraints to bring desired solutions rather than having as many 

accumulated constraints as possible. Details of how we develop evaluation indices (EIs) for 

approximation accuracy are given in Section 5.3.2. 
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(a)      (b) 

Figure 5. 11 Unnecessary Accumulated Constraints versus Necessary Accumulated 
Constraints 

In Table 5.3, we summarize the criteria for the evaluation of the approximation performance. 

Based on these criteria, we develop the Evaluation Indices (EIs) in Section 5.3.2. 

Table 5. 3 Criteria for the Evaluation of Approximation Performance 

Criteria Meaning and representation 
Goals Fulfillment Distance between achieved value and the target value of each goal 

Robustness Whether a solution is away from the physical boundary of the 
system  

Approximation 
Accuracy 

Whether the nonlinear constraints are approximated well in the sub-
region that contain more desired solutions 

5.3.2 Step 2 – Developing the Evaluation Indices (EIs) 

To manage different preferences for multi-goal design problems, we obtain a number of solutions 

using multiple design scenarios 23. As the design scenarios we use are discrete and do not cover all 

 

23 In this chapter, design scenarios include different weight vectors of the goals, different scenarios of constraint 
capacities (may result from different parameter values, different scenarios of quantitative relationship between 
variables, etc.), and any other factors that lead to model variations. 
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situations, we obtain limited, discrete solutions and use them to predict the satisficing solution 

space. 

By running the Synthesis cycle (Rectangle A in Figure 5.3) using multiple design scenarios, the 

information such as the fulfillment of the goals, the activeness of the constraints and the 

accumulated constraints, etc., is acquired. Based on such information and the criteria in Table 5.3, 

the evaluation indices (EIs) are developed (Table 5.4). The description of the EIs are given as 

follows. 

Table 5. 4 Develop the Evaluation Indices (EIs) from the Information Obtained from ALP 
Running 

Criteria Information EIs Meaning 

Goals 
Fulfillment 

Weighted sum of the 
deviation variables: 
𝑍 =� 𝑊* ∙ (𝑑*j

*∈Ú
+ 𝑑*l) 

𝝁𝒁 The average goals fulfillment in multiple 
design scenarios 

𝝈𝒁 

The standard deviation (Zarfl, Lumsdon 
et al.) of fulfillment of the goals (stability 
of performance in fulfillment of the 
goals) in multiple design scenarios 

Robustness 

The number of active 
bounds: 𝑁𝑎𝑏 

𝝁𝑵𝒂𝒃 
 

The average sensitivity to variable 
bounds in multiple design scenarios 

𝝈𝑵𝒂𝒃 The SD of sensitivity to variable bounds 
in multiple design scenarios 

The number of active 
original constraints: 𝑁𝑎𝑜𝑐 

𝝁𝑵𝒂𝒐𝒄 
The average sensitivity to original 
constraints in multiple design scenarios 

𝝈𝑵𝒂𝒐𝒄 
The SD of sensitivity to original 
constraints in multiple design scenarios 

Approximation 
Accuracy 

The number of 
accumulated constraints: 
𝑁𝑎𝑐𝑐 

𝝁𝑵𝒂𝒄𝒄 
The average complexity of the 
approximated problem in multiple design 
scenarios 

𝝈𝑵𝒂𝒄𝒄 
The SD of the complexity of the 
approximated problem in multiple design 
scenarios 

The number of iterations: 
Nit 

𝝁𝑵𝒊𝒕 
The average convergence speed in 
multiple design scenarios 

𝝈𝑵𝒊𝒕 
The SD of the convergence speed in 
multiple design scenarios 

The development of the EIs is built on the index for the robust concept exploration method, EMI 

(error margin index) (Chen, Allen et al. 1996) and DCI (design capacity index) (Choi, Austin et 
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al. 2005). This is based on the observation that the results of each criterion follow Gaussian 

distribution, and the mean (µ) and standard deviation (σ) can represent their characteristics. We 

assume that Gaussian distribution applies in general engineering design problems with continuous 

solution space. Therefore, we use the mean (µ) and the standard deviation (σ) as the EIs and tune 

the RMC by minimizing the mean and the variance of each EI.  

Index for evaluating the fulfillment of the goals – µ�  and σ� . We obtain a set of solutions 

satisficing a set of design scenarios (Sabeghi, Shukla et al. 2016). We minimize the mean and 

standard deviation of Z,  µ� and σ�, to maximize the fulfillment of the goals and minimize the 

dispersion of fulfillment of the goals. 

Index for evaluating robustness – µ�"�, σ�"�, µ�"þý and σ�"þý.  To develop the indices based on 

the robustness criterion, we have definitions and assumptions as follows. 

In this chapter, we assume that all errors and incompleteness of a model can be reflected as the 

change of the slack or surplus of an inequality constraint or a variable bound (as another type of 

inequality constraint).  

If an inequality constraint has zero slack or surplus when plugged in a feasible solution, we define 

the constraint as an active constraint. If the active constraint belongs to the original nonlinear 

problem P , as NFD in Figure 5.10 (a), then the solution is sensitive to the physical boundary, 

because an error or variation that takes place to the active constraints may make the solutions 

infeasible. We define an original constraint with zero slack as an active original constraint, noted 

as AOC. We want to minimize the number of AOC. 
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If a solution makes a variable reach its upper bound or lower bound, the solution is relatively 

sensitive to physical boundary too. We define such bound as an active bound, noted as AB. We 

want to minimize the number of AB as well. 

Any solution returned by using simplex (or any solution algorithms that are derived from simplex, 

such as dual simplex, revise dual simplex, etc.) is a vertex solution to the linear problem, therefore 

there should be at least one active constraint or active bound of the approximated linear problem, 

but we prefer fewer AOC and AB, so the solution can be more robust (or relatively insensitive) to 

potential errors or variations. 

In summary, we simplify the robustness of a solution by looking at its number of active bounds 

𝑁𝑎𝑏 and its number of active original constraints 𝑁𝑎𝑜𝑐. When the design scenarios change, we 

maximize the robustness of the design and minimize the variation of the robustness of the design 

by minimizing the mean and standard deviation of 𝑁𝑎𝑏  and 𝑁𝑎𝑜𝑐 . Therefore, the EIs for 

robustness are 𝜇t1�, 𝜎t1�, 𝜇t10�, and 𝜎t10�. 

Index for evaluating the computational complexity – µ�"ýý, σ�"ýý, µ�ô! and σ�ô!. To evaluate 

how accurate the approximation is, we use the number of accumulated constraints 𝑁𝑎𝑐𝑐 and the 

number of iterations 𝑁𝑖𝑡. Since the approximation accuracy does not always get improved with 

the increase of accumulated constraints or the number of approximation iterations (Figure 5.10), 

we need to learn the range of 𝑁𝑎𝑐𝑐  and 𝑁𝑖𝑡  that associated with good goal fulfillment and 

robustness. We desire the 𝑁𝑎𝑐𝑐 and 𝑁𝑖𝑡 to be acceptable under all design scenarios and not too 

sensitive to the design change, so we measure their mean and standard deviation, 𝜇t1��, 𝜎t1��, 

𝜇tW6, and 𝜎tW6. 
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In summary, we tune the RMC by satisfying the EIs – 𝜇�, 𝜎�, 𝜇t1�, 𝜎t1�, 𝜇t10�, 𝜎t10�, 𝜇t1��, 

𝜎t1��, 𝜇tW6 and 𝜎tW6 to get into their desired range (DEI). The formulation of the RMC tuning 

process is given as follows. Based on this formulation, we can learn the DEI and tune the RMC. 

Given 

A compromise formulation 
Design scenarios 
EIs: 𝜇� ,𝜎� , 𝜇t1� ,𝜎t1� , 𝜇t10� ,𝜎t10� , 𝜇t1�� ,𝜎t1�� , 𝜇tW6 ,𝜎tW6 
Iteration: 𝑖 
Number of EIs: 𝑛 

Find 

𝑅𝑀𝐶 
𝐷𝐸𝐼 
Value of EIs of Iteration 𝑖: 𝜇�W,𝜎�W, 𝜇t1�W,𝜎t1�W, 𝜇t10�W,𝜎t10�W, 𝜇t1��W,𝜎t1��W, 𝜇tW6W,𝜎tW6W 
Rank of the EIs in the 𝑖6r iteration among EIs of all iterations: 
𝑅𝑎𝑛𝑘¸𝜇�W¹,𝑅𝑎𝑛𝑘¸𝜎�W¹,𝑅𝑎𝑛𝑘¸𝜇t1�W¹,𝑅𝑎𝑛𝑘¸𝜎t1�W¹, 
𝑅𝑎𝑛𝑘¸𝜇t10�W¹,𝑅𝑎𝑛𝑘(𝜎t10�W) 
𝑆𝑜𝑟𝑡[𝑅𝑎𝑛𝑘W]: Sort the Rank of the EIs in the 𝑖6r iteration among EIs of all iterations 

Satisfy 

E𝜇�W,𝜎�W, 𝜇t1�W,𝜎t1�W, 𝜇t10�W,𝜎t10�W, 𝜇t1��W,𝜎t1��W, 𝜇tW6W,𝜎tW6WP ∈ 𝐷𝐸𝐼 

Minimize 

First κ items of 𝑆𝑜𝑟𝑡[𝑅𝑎𝑛𝑘W] 

5.3.3 Step 3 – Learning the DEI and Tuning the RMC 

We learn the desired range of the EIs (DEI), learn the connections between the RMC value and 

the result of the EIs so that we can find the RMC to output satisficing solutions. While being 

updated along the iterating, DEI is expected to facilitate the evaluation of the approximation 

performance better. 

To make the learning process efficient, we first adopt an off-line learning process using a sample 

of RMC values to initialize the parameters and then adopt an on-line learning process to tune the 



 232 

RMC. In Figure 5.12, we illustrate the two processes in the dotted Rectangle B and C and show 

their relationship with the synthesis cycle A in Figure 5.3 (the main process of the ALP). 

 

Figure 5. 12 ALPPL Includes Parameter Initialization and the RMC Tuning 

During parameter initialization (Rectangle B in Figure 5.12), a sample of RMC values is generated 

(B1). By using each RMC value to run the synthesis cycle (A), the results (the corresponding EIs) 

are obtained (B2). Based on the results, we act evaluations (B2). We pick the RMC value that 

gives the best EIs as the starting RMC value for tuning (B3-1), and also as the initial best RMC to 
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be updated during the tuning process (B3-2). If there are any EI that is insensitive to RMC changing, 

or does not have any correlation with the other EIs, or simply not important for the current problem, 

We remove them to reduce the computational complexity (B3-3). We initialize the DEI based on 

the sample results (B3-4), to allow a certain percentage (e.g., 75%) RMC values to fall into the 

DEI. These evaluation results are aggregated (B3-5) and used as the input of the RMC tuning cycle 

(C). 

With the new RMC value, we run the synthesis cycle (A) and obtain the results (C2). By evaluating 

the new results using the DEI and comparing with previous cycles (C3), we determine the next 

RMC value (C3-1), evaluate if current DEI needs to be updated to either restrict or relax the 

satisficing solution space based on the tradeoffs between EIs (C3-2), and evaluate if the best RMC 

needs to be updated (C3-3). These evaluation results are aggregated (C3-4). After judging whether 

the iterating should stop (C4), the program either goes to the next iteration of RMC tuning with 

the aggregated results (C3-4) as input or stops with the best RMC as the returned value. The 

stopping criteria include the number of total iterations and the number of iterations without 

updating the best RMC. The RMC tuning process is summarized in Table 5.5. In Section 5.4, a 

test problem is used to verify the efficacy of the ALPPL. 

Table 5. 5 The Parameter Learning Process – for RMC tuning 

1  Given: 𝐷𝐸𝐼,  the best RMC sample value, 𝐷𝐸𝐼 updating rules 
2  Initialize: t <- 0, best <- the best RMC sample value,  𝑅𝑀𝐶  <- the best RMC sample value, the 
maximum iteration number T, stopping criterion 2 <- {best has not been updated in n iterations} 
3  While t ≤ T do  // Define stopping criterion 1    
4       𝑅𝑀𝐶6<- Next_𝑅𝑀𝐶 
5       Run synthesis cycle 
6       Calculate 𝐸𝐼[𝑅𝑀𝐶6] 
7       if 𝐸𝐼𝑠[𝑅𝑀𝐶6] > 𝐸𝐼𝑠[𝑏𝑒𝑠𝑡] 
8          best <- 𝑅𝑀𝐶6  // Update the best RMC 
9       if 𝐷𝐸𝐼 should be updated 
10         update 𝐷𝐸𝐼 
11      if stopping criterion 2 is met  
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12         break 
13      else 
14         Next_𝑅𝑀𝐶 <- Determine_next{𝐸𝐼𝑠[𝑅𝑀𝐶6],𝐸𝐼𝑠[𝑅𝑀𝐶6jx],𝐸𝐼𝑠[𝑅𝑀𝐶6jx], 𝑏𝑒𝑠𝑡}  
// Use 𝐸𝐼𝑠 of the tth, (t-1)th, (t-2)th, and best to determine the 𝑅𝑀𝐶 of the next iteration24 
15         t <- t+1 
16  return best 

5.4 The Hot Rolling Process Chain Problem 

- Test Problem 3: apply ALPPL an engineering-design problem 

In this section, we illustrate the efficacy of the ALPPL using an industry-inspired test problem – 

the integrated design of a hot rolling process chain for the production of a steel rod (Nellippallil, 

Rangaraj et al. 2018). We choose this problem because it is a nonlinear problem formulation, and 

the RMC value has a significant impact on the result.  

5.4.1 Statement of Test Problem 2 

Hot rolling is a multi-stage manufacturing process in which a reheated billet, slab, or bloom that 

is produced after the casting process is further thermo-mechanically processed by passing through 

a series of rollers, see (Nellippallil, Song et al. 2017, Nellippallil, Rangaraj et al. 2018). During 

the thermo-mechanical processing, there is an evolution of microstructure of the material. The 

columnar grains in the material are broken down to equiaxed grains. Along with the evolution of 

grain size, the phase transformation of the steel happens. Phase transformation is predominant 

during the cooling stage that follows the hot rolling process chain. The transformation of the 

austenite phase of steel to other phases like ferrite, pearlite, martensite, etc., takes place during this 

stage. The final microstructure of the material after rolling and cooling process defines the 

 

24 The details of the determination algorithms are given in Appendix D. 
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mechanical properties of the product. Many plant trials are required to produce a new steel grade 

with improved properties and performance. These trials are usually expensive and time-consuming. 

Hence there is a need to address the problem from a simulation-based design perspective to explore 

solutions that satisfice multiple conflicting property/ performance goals. In this problem, the 

requirement is to produce steel rods with improved mechanical properties like yield strength (𝑌𝑆), 

tensile strength (𝑇𝑆) , and hardness (𝐻𝑉) . These mechanical properties are defined by the 

microstructure after cooling, which includes, the phase fractions (ferrite and pearlite phases are 

only considered in this problem), pearlite interlamellar spacing, ferrite grain size, and chemical 

compositions, see (Nellippallil, Rangaraj et al. 2018) for the mechanical property-microstructure 

relationships identified. Using a goal-oriented inverse design method, Nellippallil et al. 

(Nellippallil, Rangaraj et al. 2018) identify the microstructural requirements after the cooling stage 

to meet the mechanical properties of the rod. The microstructural requirements are to achieve a 

high ferrite fraction value, low pearlite interlamellar spacing, and low ferrite grain size value within 

the defined ranges. The requirement is to carry out the integrated design of the material and the 

process by managing the cooling rate (cooling process variable), final austenite grain size after 

rolling (rolling microstructure variable) and the chemical compositions of the material. Hence, our 

interest in this problem is to explore the solution space of the defined variables using ALPPL to 

meet the target values identified for the microstructure after cooling stage such that the mechanical 

property requirements of the steel rod are met. Our focus in this chapter is to use this example 

problem in improving the solution algorithm rather than the detailed design of the material and the 

manufacturing process.  

The initial design formulation of the problem using the Given, Find, Satisfy, and Minimize 

keywords is shown as follows. 
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Given 

1) Target values for microstructure after cooling  
Ferrite Grain Size Target,  𝐷��13456 = 8	µm 
Ferrite Fraction Target, 𝑋��13456 = 0.9 
Pearlite Interlamellar Spacing Target, 𝑆0�13456 = 0.15 
2) Well established empirical and theoretical correlations, response surface models, and complete 
information flow from the end of rolling to the end product mechanical properties (Details provided in 
(Nellippallil, Rangaraj et al. 2018)) 
3) System variables and their ranges  

Find 

System Variables 
𝑋x, Cooling Rate (𝐶𝑅) 
𝑋�, Austenite Grain Size (𝐷) 
𝑋�, the carbon concentration ([𝐶]) 
𝑋�, the manganese concentration after rolling ([𝑀𝑛]) 
Deviation Variables 
𝑑Wj, 𝑑Wl, i =1,2,3 

Satisfy 

System Constraints 
Minimum ferrite grain size constraint                                              𝐷� ≥ 8	𝜇𝑚                 Equation 5. 10 
Maximum ferrite grain size constraint                                                 𝐷� ≤ 	20	𝜇𝑚          Equation 5. 11 
Minimum pearlite interlamellar spacing constraint                           𝑆0 	≥ 0.15	𝜇𝑚          Equation 5. 12 
Maximum pearlite interlamellar spacing constraint                         𝑆0 	≤ 	0.25	𝜇𝑚           Equation 5. 13 
Minimum ferrite phase fraction constraint (manage banding)        𝑋� 	≥ 0.5                     Equation 5. 14 
Maximum ferrite phase fraction constraint (manage banding)       𝑋� 	≤ 0.9                     Equation 5. 15 
Maximum carbon equivalent constraint                     𝐶5� = (𝐶 +𝑀𝑛) 6⁄ ; 	𝐶5� 	≤ 0.35   Equation 5. 16 
Mechanical Property Constraints 
Minimum yield strength constraint                                                𝑌𝑆 ≥ 250	MPa            Equation 5. 17 
Maximum yield strength constraint                                               𝑌𝑆 ≤ 330	MPa            Equation 5. 18 
Minimum tensile strength constraint                                             𝑇𝑆 ≥ 480	MPa             Equation 5. 19 
Maximum tensile strength constraint                                            𝑇𝑆 ≤ 625	MPa             Equation 5. 20 
Minimum hardness constraint                                                       𝐻𝑉 ≥ 130                    Equation 5. 21 
Maximum hardness constraint                                                      𝐻𝑉 ≤ 150                    Equation 5. 22 
System Goals 
The target values for system goals are identified in (Nellippallil, Rangaraj et al. 2018) and are listed in the 
Given keyword above. 
Goal 1: Achieve Ferrite Grain Size Target                          

I£¤¥¦§¨P
I£(ßÛ)

+ 𝑑xl − 𝑑xj = 1        Equation 5. 23 

Goal 2: Achieve Ferrite Fraction Target                              ß©(ßÛ)
ß©¤¥¦§¨P

+ 𝑑�j − 𝑑�l = 1        Equation 5. 24 

Goal 2: Achieve Pearlite Interlamellar Spacing Target        
Þª¤¥¦§¨P
Þª(ßÛ)

+ 𝑑�l − 𝑑�j = 1        Equation 5. 25 
Variable Bounds 
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11	≤ 𝑋x ≤	100	(K/min)	
30	≤ 𝑋� ≤	100	(𝜇m)	
0.18	≤ 𝑋� ≤	0.3	(%)	
0.7	≤ 𝑋� 	≤	1.5	(%)	
Bounds on deviation variables 
𝑑Wj, 𝑑Wl ≥ 	0	and	𝑑Wj ∗ 𝑑Wl = 	0	, i = 1,2,3	                                                                          Equation 5. 26 

Minimize 

Minimize the deviation function in the initial design 𝑍 = ∑ 𝑊W(𝑑Wj + 𝑑Wl); 	∑ 𝑊W = 1�
Wwx

�
Wwx  

Equation 5. 27 

There are three goals in the problem discussed – i) Minimize Ferrite Grain Size (𝐷�), ii) Maximize 

Ferrite Fraction (𝑋�), and iii) Minimize Interlamellar Spacing (𝑆0). The target values and the 

acceptable values of the three goals are determined and defined. All three goals require nonlinear 

goal formulation. There are four design/system variables – i) cooling rate (𝐶𝑅), ii) final austenite 

grain size after rolling (𝐷), iii) the carbon concentration ([𝐶]), and iv) the manganese concentration 

after rolling ([𝑀𝑛]). We obtain: i) the range of the system variables that satisfice the goals for the 

different design preferences assigned, and ii) the satisficing weight set, 𝑊; = ⋂ 𝑊*
;

*∈Ú , the set of 

weight scenarios that satisfices all three goals for the different design preferences assigned.  

In (Nellippallil, Rangaraj et al. 2018), the authors formulate and execute the initial design 

compromise decision support problem for the hot rolling process chain problem and carry out 

weight sensitivity analysis to identify the Satisficing Weight Set of the three goals. Ternary plots 

are generated to visualize and explore the weight set. In each ternary plot, the three axes represent 

the weights assigned to the three goals, respectively, and the color contours indicate the 

achievement of each goal, /d
�d

, 𝑘 = 1, 2, 3. Since the goals conflict with each other and the total 

resources for the goals are limited, compromise solutions are desired. Weight sensitivity analysis 

is a way to mediate compromise or innovate around the conflicts between goals. 𝑊x
;, 𝑊�

; 𝑊�
;, and 

𝑊; are the satisficing weight regions identified in the ternary plots, see areas identified using 
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arrows in Figures 11 (a), (b), (c), and (d), respectively. To discuss and compare the achievements 

of multiple goals, /d
�d

 are normalized within the range [0, 1]. An acceptable value of each goal is 

identified and plotted as a dashed line in each ternary plot. The area between the corner with the 

best /d
�d

 value and the dashed line (the acceptable value) is the satisficing weight area of one goal, 

𝑊*
;, and the superimposed area is the satisficing weight area of all three goals, 𝑊;. 

In Figures 5.13-5.15, we illustrate how different RMC values affect 𝑊*
; and 𝑊;. When RMC is 

0.1, as Fig. 11 shows, 𝑊; is large, whereas when RMC is 0.8, as Figure 5.15 shows, 𝑊; is small. 

However, we do not have rules to evaluate which RMC value results in a relatively accurate 

approximation and thereby gives us the most robust 𝑊;. Therefore, the ALPPL is applied to fill 

in this gap. 

We implement the parameter initialization (Process B in Figure. 5.12) and the RMC tuning 

(Process C in Figure 5.12) using Python and incorporate executing the ALP (Synthesis cycle A in 

Figure. 5.12) to obtain the results. 
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Figure 5. 13 The Satisficing Weight Set When Setting RMC=0.1 

 

Figure 5. 14 The Satisficing Weight Set When Setting RMC=0.5 
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Figure 5.15 The Satisficing Weight Set When Setting RMC=0.8 

5.4.2 Applying ALPPL 

Parameter Initialization 

The design scenarios used in (Nellippallil, Rangaraj et al. 2018) are nineteen weight vectors 

(weight scenarios) of the goals (Table 5.6), that represent a variety of design preferences. Then we 

go through Process B1, B2, and B3 in Figure 5.12 as follows. 

Table 5. 6 Weight Vectors Used in (Nellippallil, Rangaraj et al. 2018) as Different Design 
Scenarios 

𝑾 W1 W2 W3 𝑾 W1 W2 W3 
1 1 0 0 11 0 0.75 0.25 
2 0 1 0 12 0 0.25 0.75 
3 0 0 1 13 0.33 0.33 0.33 
4 0.5 0.5 0 14 0.2 0.2 0.6 
5 0.5 0 0.5 15 0.4 0.2 0.4 
6 0 0.5 0.5 16 0.2 0.4 0.4 
7 0.25 0.75 0 17 0.6 0.2 0.2 
8 0.25 0 0.75 18 0.4 0.4 0.2 
9 0.75 0 0.25 19 0.2 0.6 0.2 
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10 0.75 0.25 0     

 
(a) 

 
(b) 

 
(c) 

Figure 5. 16 EIs and DEI of the Sample RMC Values 

B1: We randomly choose some values – 0.1, 0.2, 0.5 and 0.8 as the RMC sample.  

B2: By using the four RMC values and the nineteen weight vectors, we solve the problem for 

4 × 19 = 76 times and obtain 76 results of each EI. The results of the EIs of the four RMC values 

are in Table 5.7. 
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B3: Based on the EIs of the sample RMC (Table 5.4), we act an evaluation as follows. 

B3-1: Initialize the RMC value for learning. As RMC   <- the best RMC sample value, 

hence,	RMC  = 0.5. 

B3-2: Remove insensitive or unimportant EIs – µ�"ýý, σ�"ýý, µ�ô!, and σ�ô!. 

B3-3: Initialize DEI. For each EI, we define the range from the median of the four sample results 

to the ideal value as the initial DEI. For example, the ideal value of µ� is zero because ideally, we 

want the deviation function Z to be zero so that the goals can be fully achieved; the median of µ� 

of the four RMC sample values is 0.1477; therefore, the initial DEI of µ�  is [0, 0.1477]. We 

visualize the results of the EIs for the four sample RMC values in Figure 5.16. For each EI, there 

is a graph showing its mean and standard deviation, as Figure 5.16 (a)-(c). In each graph, the left 

vertical axis represents the mean value, the right vertical axis represents the standard deviation 

value, and the horizontal axis represents RMC value. The columns are means and the lines are 

standard deviations. The left arrows and the right arrows show the desired range of the mean and 

standard deviation, respectively. The initial DEI are summarized in Table 5.8. 

B3-4: Initialize the best RMC. As best <- the best RMC sample value, hence,	best = 0.5. 

B3-5: We aggregate the results of the parameter initialization – RMC , EIs, DEI, and best, as the 

input of RMC tuning. 

Table 5. 7 Results of EIs Using Sample RMC Values with Nineteen Design Scenarios 

RMC Statistics 𝐙 𝑵𝒊𝒕 𝑵𝒂𝒄𝒄 𝑵𝒂𝒃 𝑵𝒂𝒐𝒄 

0.1 𝜇 0.1480 46.58 18.74 1.79 0.84 
𝜎 0.0679 5.95 0.87 0.63 0.50 

0.2 𝜇 0.1474 34.16 19.00 1.84 0.84 
𝜎 0.0682 7.88 0.82 0.60 0.60 

0.5 𝜇 0.1467 20.42 19.47 2.05 0.79 
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𝜎 0.0675 9.47 0.84 0.62 0.42 

0.8 𝜇 0.1480 8.32 14.16 2.21 0.79 
𝜎 0.0675 5.56 6.94 0.63 0.71 

Table 5. 8 The Initial DEI 

DEI of 𝝁𝒁 DEI of 𝝈𝒁 DEI of 
𝝁𝑵𝒂𝒐𝒄 

DEI of 
𝝈𝑵𝒂𝒐𝒄 

DEI of 
𝝁𝑵𝒂𝒃 

DEI of 
𝝈𝑵𝒂𝒃 

[0, 0.1477] [0, 0.0677] [0, 0.82] [0, 0.55] [0, 1.95] [0, 0.63] 

RMC Tuning 

In RMC tuning, we make rules to proceed with each procedure based on heuristics. The heuristics 

are generalized from parameter learning and can be adjusted through the search process. 

In the first iteration of RMC tuning, Process C1 is based on the output of Process C3 and Process 

C2 is the same with Process B2, so we start making rules for Process C3 and go back to C1 later 

in this section. 

C3: Evaluate the result of current RMC based on EIs and DEI.  

C3-1: Determine the next RMC value. 

Rule 1: Compare the performance of multiple EIs and define the comparison rules (Table 

5.3, Line 14). Lines 22-30 in Appendix D are an expansion of this rule. We define RMC A is better 

than RMC B as “no less than κ of the EI(A) are better than EI(B), whereas other EI(A) do not 

exceed γ of the upper and lower bound of DEI. This rule can be applied differently to other 

problems. In this problem, we set κ=1/2 and γ=30%. 

Rule 2: Determine when and how the RMC should be updated. Line 6-13 in Appendix D 

explain this rule. We use a hill-climbing approach to update the RMC (Appendix D, Line 5-8). If 

the updating in the previous RMC tuning cycle does improve the performance, then the previous 

updating is in the “hill-climbing direction”, as a result, we keep updating the RMC in this direction 
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with a step size α; otherwise, we need the best RMC to help us “back to track” with a portion β, 

hence we update the RMC as the linear combination of the best RMC (elite) and the RMC in the 

two cycles ago (parent). In this problem, we set α as a random value that uniformly distributed in 

[0, 1] and set β as a random value that uniformly distributed in [0.5, 1]. In this way, we incorporate 

greediness, elitism, and randomness in evolution. 

C3-2: Evaluate if DEI needs to be updated. 

Rule 3: Determine when and how the DEI should be updated. See Appendix D, Line 18-38. If 

in an RMC-tuning cycle, the RMC leads us to get more than  𝜅 EIs better than the EIs of the 

previous cycle, and more than ι EIs are in the desired range (DEI) whereas only	(1 − ι) EIs have 

minor violations (Appendix D, Line 27), we define the current RMC performs better than the 

previous RMC and update the DEI. In this problem, we set  𝜅 = ι = 2/3 because the number of 

EIs is small. For the problem that has many EIs, 𝜅 and ι can be tuned using the performance 

improvement rate or proportion of acceptable results among all the results as the tuning goal. In 

this way, we prevent insensible DEI stopping us from walking to a better range, meanwhile ensure 

gradual and relatively conservative updating of DEI. 

C3-3: Evaluate if “the best RMC” needs to be updated. 

Rule 4: Determine when and how the current best RMC is updated. See Appendix D, Line 

34-36. We use a variable (“best”) to store the current best RMC. If more than 𝜅 EIs of current 

RMC are better than the EIs of the best, we set the current RMC as the new best. 

C3-4: We aggregate the results of the RMC tuning – RMC!lx, DEI, and best, as the input of the 

next tuning iteration. 
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C4: Determine if the iterating should stop. 

Rule 5: Make the stopping criteria. In order to stop the RMC tuning at the appropriate time avoid 

overwhelming computation, we use two stopping criteria – the maximum number of RMC tuning 

iterations and maximum number of RMC-tuning iterations without updating the best RMC. See 

Appendix D, Line 41-42. 

5.4.3 Parameter Learning Results and Discussion 

After running the RMC tuning for fourteen iterations, the tuning stops. We identify 0.55 as the 

best RMC for the cooling problem. Comparing with the first “best RMC” 0.5, the finalized best 

RMC 0.55 brings improvement of 𝜎�, 𝜎t10�, and 𝜎t1�. The RMC in the fourteen iterations and 

their EIs are given in Table 5.9. During the fourteen iterations, the DEI is updated four times, and 

the best RMC is updated three times. The final best RMC is in the ninth iteration. In the first seven 

cycles, the RMC value varies considerably because we need relatively big oscillation at the early 

stage to make sure that the desired sub-range of RMC is explored; in the last seven cycles, the 

RMC value varies little, which is an indication that the desired sub-range of RMC is explored 

sufficiently and the appropriate value can be identified. 

Table 5. 9 The Record of the EIs, DEI, RMC, Best RMC of the Fourteen Iterations of RMC 
Tuning 

It
er

at
io

n 

RMC 
Deviation 
Function 

Number of 
Active 

Original 
Constraints 

Number of 
Active 

Bounds 

Better 
than 
Cycle 
(t-1) 

Better 
than 
best 

RMC 

Update DEI 

𝝁𝒁 𝝈𝒁 𝝁𝑵𝒂𝒐𝒄 𝝈𝑵𝒂𝒐𝒄 𝝁𝑵𝒂𝒃 𝝈𝑵𝒂𝒃 

1 0.5 0.147 0.068 0.79 0.42 2.05 0.62 - - 
𝜇t1�~[1, 1.95] 
-> 
𝜇t1�~[1, 2.05] 

2 1.0 0.152 0.071 0.95 0.78 2.26 0.45 N N - 
3 0.8 0.148 0.068 0.79 0.71 2.21 0.63 N N - 
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4 0.6 0.147 0.067 0.95 0.52 2.00 0.58 Y Y 
𝜇t10�~[0, 0.82] 

-> 
𝜇t10�~[0, 0.95] 

5 0.4 0.147 0.068 0.68 0.48 2.00 0.58 Y Y - 

6 0.2 0.147 0.068 0.84 0.60 1.84 0.60 N N 
𝜎t10�~[0, 0.55] 

-> 
𝜎t10�~[0, 0.6] 

7 0.3 0.154 0.069 0.95 0.52 1.79 0.71 N N - 
8 0.45 0.147 0.068 0.89 0.66 2.00 0.58 Y N - 
9 0.55 0.147 0.067 0.84 0.37 2.05 0.52 Y Y - 

10 0.65 0.147 0.067 1.00 0.58 2.05 0.62 N N 
𝜇t10�~[0, 0.95] 

-> 
𝜇t10�~[0, 1.00] 

11 0.48 0.147 0.068 0.89 0.66 2.05 0.62 N N - 
12 0.53 0.147 0.067 0.84 0.69 2.00 0.58 Y N - 
13 0.57 0.147 0.067 0.84 0.37 2.11 0.57 N N - 
14 0.43 0.145 0.069 0.84 0.60 2.00 0.58 N N - 

To verify the efficacy of ALPPL, we evaluate the adequacy and the necessity of the algorithm in 

obtaining robust solutions. 

Adequacy – The best RMC (0.55) ensures the solutions falling in a relatively insensitive range. 

Necessity – The insensitive range is sufficiently explored during the RMC tuning. 

First, we identify what is the insensitive range of RMC value. We test 20 RMC values that 

uniformly distributed in [0, 1] and obtain their EIs (Figure 5.17). In each graph of Figure 5.17, the 

range in the dotted rectangle is the insensitive range25 of RMC for each EI based on the twenty 

results. 

Verification of the adequacy. We observe from Figure 5.17 that 0.55 is in the insensitive RMC 

range for all EIs, so it is verified that when RMC is 0.55, it gives a relatively robust performance. 

 

25  We identify the insensitive range by using quantitative methods such as searching for [xx, x�]	where		
v1�[·(¸)]jv1�[·(¸)]

¸�j¸�
≤ γ, 

x ∈ [xx, x�], and determine the value of γ as a rate of (𝑚𝑖𝑛[y(x)] −𝑚𝑖𝑛[y(x)]),	 x ∈ [0, 1], for each EI. 
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Verification of the necessity. From Figure 5.17, we observe that the ranges [0.35, 0.4] and [0.5, 

0.55] are insensitive ranges in all three EIs, so within the RMC values in these two ranges, the 

solutions are relatively insensitive. In Figure 5.18, we illustrate all the fourteen RMC values used 

during RMC tuning. The horizontal axis represents the iteration number, and the vertical axis 

represents the RMC value. There are four out of the fourteen RMC values falling in the two 

insensitive ranges, so 28.5% of the RMC values we test during the tuning fall in the insensitive 

ranges, whereas the insensitive ranges only occupy 10% of the whole RMC range. Hence, we 

conclude that our rules in the RMC tuning enable a relatively sufficient exploration of the 

insensitive ranges. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. 17 Identifying the Insensitive Range of RMC Value Using Twenty RMC Values 
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Figure 5. 18 The Fourteen RMC Values in the RMC Tuning 

Verification of the improvement of ALPPL over ALP. By visualizing the RMC values tested 

using ALPPL versus the RMC values tested using the golden section search, in Figure 5.19, we 

observe that the best RMC identified using golden section search is 0.65, which is not in the 

insensitive range; in addition, the RMC values tested in golden section search are concentrated in 

[0.57, 0.77], which misses the insensitive ranges [0.35, 0.4] and [0.5, 0.55]. Other improvements 

of ALPPL over ALP are summarized in Table 5.10. 
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 (a)      (b) 

Figure 5. 19 The Comparison of ALPPL And ALP regarding the RMC Updating 

Table 5. 10 ALPPL with RMC Tuning versus ALP with Golden Section Search 

  ALPPL ALP 

G
en

er
al

 c
om

pa
ri

so
n  

Search method Rule-based parameter 
learning Golden section search 

Criteria used for 
evaluation of the RMC 

Deviation (fulfillment of the 
goals), the robustness of the 
solution 

Fulfillment of the goals 

If the approximation is 
sensitive to the scenario 
changing 

Considering different scenarios, 
the most appropriate RMC is 
identified. The approximation is 
relatively insensitive to scenario 
changing 

In each scenario, the best 
RMC is identified, and it may 
vary as scenario changing. 
The approximation is 
relatively sensitive to 
scenario changing 

 

Stopping criteria 

The best RMC has not been 
updated for n iterations, or the 
total iteration number reaches a 
threshold 

The distance between two 
golden section points are less 
than a threshold 𝜀 

C
om

pa
ri

so
n 

of
 th

e 
co

ol
in

g 
pr

ob
le

m
 r

es
ul

ts
  

Number of search 
iterations 14 12 

If the identified best 
RMC is in the insensitive 
range 

Yes No 

Number of tested RMC 
values falling into 
insensitive range 

4 2 

Is the insensitive range 
explored sufficiently Relatively sufficiently Insufficiently 
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5.5 Role of Chapter 5 in this Dissertation 

5.5.1 Summarizing How We Finish Task 2: Connecting Approximation, Exploration, and 

Evaluation 

For the decision model of a complex system that contains nonlinear and probably non-convex 

equations, when approximating the problem to a linear and convex problem for solving, designers 

apply heuristics or metaheuristics, which simplify the problem and guarantee feasible solutions 

but may lose information. Even those metaheuristics are not the best ones that help acquire the 

approximations and solutions with an acceptable quality – here quality may implicate but is not 

limited to approximation accuracy, solution robustness to multiple types of uncertainty, the 

computational complexity of the approximation and solution searching – there is not any 

mechanism to evaluate such quality and learn the association between the heuristics and the quality. 

The essence of Specific Hypothesis 2, “learn, evaluate, and update metaheuristics to improve 

model performance” is, to improve the model approximation, evaluate and update the heuristics, 

and obtain knowledge on the tradeoffs between exploration and exploitation of the problem 

approximation and post-solution analysis, designers need to explore different heuristics and 

establish the connection among the approximation, exploration, and evaluation. 

In this chapter, we summarize the process of exploring, learning, and updating heuristics that needs 

to be customized for each problem into a more generally useful algorithm, the parameter learning 

process in Table 5.5. The customization of the algorithm for the test problem, the hot rod rolling 

process chain, is in Appendix D. 

In other words, we strengthen the connections among deduction and decision, as shown in Figure 

5.20. In this dissertation, we establish the information exchange, knowledge awareness, and 
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instructions sharing between the three processes and make it standardized; see Table 5.5 and 

Appendix D. 
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Figure 5. 20 The Procedures Involved in Approximation-Exploration-Evaluation – 
Establish the information exchange, knowledge awareness, and instructions sharing 

between deduction and decision 
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5.5.2 Summarizing How We Realize Type I, II, & III Robust Design 

For the test problem, the cooling stage of the hot rod process chain, Type I uncertainty is identified 

as the various values of the reduced move coefficient (RMC) of the adaptive linear programming 

(ALP) algorithm (Table 5.7, Figure 5.16). Type II uncertainty is implemented as the design 

scenarios that represent the different priorities of the goals (Table 5.6). Type III uncertainty is a 

result of the incorporation of Type I uncertainty – when using different RMC values, the model 

structure changes as the linearized problem vary with the RMC. A representation of the influence 

of Type III uncertainty on the result is shown in Figures 5.13-5.15. Type I, II, and III uncertainties 

are managed though the parameter learning algorithm in Table 5.5. 

By implementing the parameter learning algorithm and customizing it in the rod rolling process 

chain problem as the method in Appendix D, we can identify the solution space that is relatively 

insensitive to the Type I, II, and III uncertainty that we determine to manage. In this way, we 

realize Type I, II & III robust design; see the summary in Table 5.11 as the closing remarks of 

Table 3.2 regarding the robust design realization and uncertainty management for Test Problem 2. 

Table 5. 11 Summary of Test Problems 2 regarding Type I, II&III Uncertainty 
Management 

R
D

 T
yp

e RDI-II   
  RDIII  
   RDIV 

M
et

ho
d  

M1: Formulation-Exploration 
Framework 

M2: Adaptive Linear 
Programming with 
Parameter Learning 
(ALPPL) 

M3: Adaptive 
Leveling-
Weighting-
Clustering 
Algorithm 
(ALWC) 

M4: Scenario 
Planning in 
Agent-Based 
Modeling 

Chapter Ch 4 Ch 5 Ch 6 Ch 7 
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U
nc

er
ta

in
ty

 
Te

st
 

Pr
ob

le
m

 
T1: Dam 
network 

T2: Supply 
chain 

T3: Hot rolling process 
chain 

T4: Thermal 
system 

T5: Promoting 
second-season 

farming 

Ty
pe

 I 

Uncertainty 
in timing and 
amount of 
inflow – 
Table 4.7 

Uncertainty 
in demand 
side – Figure 
4.25 

Uncertainty in hyper 
parameter setting – Table 
5.7, Figure 5.16 

Uncertainty in 
parameter setting 
in solution 
algorithm (Starting 
point of searching) 

Uncertainty in 
price (Price of 
agriculture 
products) 

Ty
pe

 II
 

Uncertainty 
in outflow 
(water 
release 
target) – 
Table 4.5 

Uncertainty 
in supply side 
- Table 4.15 

Uncertainty in user 
preferences – Table 5.6  Promotion effort 

and timing 

Ty
pe

 II
I  

  

Uncertainty in model 
approximation due to 
heuristics in 
approximation – Table 5.5 

Uncertainty in 
model 
approximation 
(ways of combining 
multiple goals) 

 

Ty
pe

 IV
 

   

Uncertainty in 
using domain 
knowledge to 
simplify the model 
(fixing decision 
variables and 
selecting design 
scenarios) 

Interventions that 
change the 
mathematical 
relation among 
promotion and 
result (developing 
local market) 

RD – robust design 
M – method 
EVe – empirical verification of the method 
T – test problem 

5.5.3 Role of Chapter 5 

In this chapter, we use parameter learning to improve the adaptive linear programming (ALP) 

algorithm. In ALP, one critical parameter, the reduced move coefficient (RMC), that has severe 

impact on the approximation performance, is determined using golden section search, and no 

mechanism of obtaining insight to improve the approximation during the search, which may result 

in missing the sub-range of RMC value with good approximation performance; the best RMC 

value is sensitive to design scenario changes; no criteria other than the fulfillment of the goals are 

taken into account when evaluating the approximation performance.  
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To improve the ALP, we hypothesize that by incorporating parameter learning in the ALP, as 

ALPPL, we can improve the approximation performance, especially for multi-goal engineering-

design problems. To verify the hypothesis, we implement the parameter learning in three steps – 

identifying the criteria for approximation performance evaluation, developing evaluation indices 

(EIs), and using them to tune the RMC. 

With an application of the hot rolling process chain problem, we depict the procedure of applying 

ALPPL and demonstrate the improvements of ALPPL over ALP. With ALPPL, using different 

design scenarios, we initialize the parameters and use them to tune the RMC and update them 

during the tuning. We validate that the ALPPL helps find the RMC value facilitating the 

identification of more robust solutions, and the insensitive range of RMC gets explored more 

sufficiently. 

The proposed algorithm ALPPL can be applied to multi-goal engineering-design problems, 

especially when goals conflict with one another, the priority of the goals evolves with the 

environment changing, and the outputs of the model need to be insensitive to model errors and 

variations. 

The three-step procedure of rule-based parameter learning can be used to improve other algorithms, 

especially when there are no customizable criteria for evaluation of the algorithm performance, or 

the algorithm performance is highly sensitive to some critical parameters that are determined with 

heuristics or human intuition while the critical parameters do not get updated based on the 

algorithm performance during the design iterations. 
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CHAPTER 6 TYPE I, III, & IV ROBUST DESIGN THROUGH 

UNSUPERVISED LEARNING 

– ADAPTIVE LEVELING-WEIGHTING-CLUSTERING ALGORITHM (ALWC)  

The new knowledge in Chapter 6: 
An algorithm using data analyses to facilitate knowledge discovery for managing many-goal 
problems 
– Adaptive Leveling-Weighting-Clustering (ALWC) algorithm 

In Chapter 6, see Figure 6.1: in Section 6.1, the reference on the modeling constructs and solution 

algorithms for multi-goal or multi-objective problems is framed, which is an extension of Section 

1.2 model strategies and their foci; in Section 6.2, the Rankine cycle problem is described; in 

Section 6.3, based on the research gaps described in Section 1.5 and the Method 3 proposed in 

Section 3.3.3, we introduce the Adaptive Leveling-Weighting-Clustering (ALWC) algorithm in 

details; in Section 6.4, the ALWC is applied to the Rankine cycle problem for awareness of 

subsystems and learning the interrelationship among them; in Section 6.5, summarized the role of 

Chapter 6. 

 

Figure 6. 1 Organization of Chapter 6 
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The plan of specifying and answering Research Question 3 in the context of the test problems is 

shown in Table 6.1. In Chapter 6, the Proposed Method 3 (M3), the Adaptive Leveling-Weighting-

Clustering (ALWC) algorithm, is empirically verified (EVe3) using a test problem, designing a 

Rankine cycle thermal system (T3). Research Question 3 (RQ3) is specified in the context of the 

test problem (SQT3) and answered (AQ3) by testifying M3. The empirical validation and 

theoretical validation are in Chapters 8 and 9. 

Table 6. 1 Plan of Specifying Research Question 3 (RQ3) and Empirically Verifying the 
Adaptive Leveling-Weighting-Clustering (ALWC) Algorithm (M3) 

C
ha

pt
er

 

C
h 1

 

C
h 

2 

C
h 

3 

Ch 4-7 

C
h 

8 

C
h 

9 

C
h 

4- 5 Ch 6 

C
h 

7 

A
ct

io
ns

 

RG 

H 

RD 

RQ 

SH 

TVe 

M 

EVe 

1-2 

SQT 

1-2 

AQ 

1-2 

EVe3: use a concurrent, multi-goal problem with uncertainties 
and unknown features in the interrelationships among the 
subsystems to verify SH3 and demonstrate M3. 

EVe 

SQT 

AQ 

CQ 

EVa 
TE 

SQT3: What is the method that facilitates managing multiple 

conflicting goals and exploring the tradeoffs of the performance 

of multiple sub-systems? 

SQT3.1: What are the methods that facilitate the exploration of 

the structure of the goals if there are more than three goals in a 

system? 

SQT3.2: How can the knowledge in the post-solution analysis be 
obtained and used to support design improvement if the domain 
knowledge is missing?  
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AQ3: Using the ALWC algorithm, with increasing weight vectors, 
the interrelationship among goals based on their deviations, or 
achievement rates are evolved and converged. Based on their 
interrelationship, goals are grouped into clusters to represent 
different subsystems. The combinations of the goals are explored 
iteratively, by using either the Pre-emptive or Archimedean 
strategy.  This facilitates assigning each cluster a different level 
(leveling) and combining the goals in each level using weight 
vectors (weighting). Through iteration more design scenarios are 
identified, and the corresponding solutions are obtained for 
designers to choose the appropriate design scenario and thence 
improve the design. As a tool to acquire insight when domain 
knowledge is lacking, the combination of the goals is explored so 
that better solutions regarding the average deviations, standard 
deviations, worst case and Euclidean distance to the Utopia point 
are identified, whilst the computational complexity is reduced. 

N
om

en
cl

at
ur

e 

RG – give research gaps 

H – give hypotheses 

RD – tie to roust design 

RQ – pose research questions 

SH – specify hypotheses 

TVe – theoretically verify hypotheses 

M – introduce methods 

EVe – empirically verify hypotheses 

SQT – specify research questions in the context of test problems 

AQ – answer research questions 

CQ – closure the answers to research questions 

EVa – empirically validate hypotheses 

TE – theoretically extend the research 

In this chapter, the Adaptive Leveling-Weighting-Clustering (ALWC) algorithm is proposed and 

tested by using a concurrent engineering design problem – the thermal system around a Rankine 

cycle. The Research Question 3 (RQ3) “What is the method to speed up learning the system 

nature?” is specified regarding the Rankine cycle design problem (T3) as follows (SQT3) and then 

further specified into two sub-questions indicating the tasks and answered. 

SQT3: What is the method that facilitates managing multiple conflicting goals and exploring 

the tradeoffs of the performance of multiple sub-systems? 

SQT3.1: What are the methods that facilitate the exploration of the structure of the goals if there 

are more than three goals in a system? 
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SQT3.2: How can the knowledge in the post-solution analysis be obtained and used to support 

design improvement if the domain knowledge is missing?  

It is hypothesized that interactions among the formulation, exploration, and evaluation of a design 

problem should be studied and the mechanisms of information sharing and intervention between 

the three procedures are established. See Figure 6.2. 

 

Figure 6. 2 Specified Research Question 3 and the Relevant Stages to be Connected in 
Design Evolution Cycle 

In this chapter, we address the issue of solving a many goal decision problem, that is, a problem 

with more than three goals. There are limitations in managing many-goal problems documented 

in the published literature, such as the need for domain expertise to combine the goals.  In this 

chapter, we propose a domain-independent method, Adaptive Leveling-Weighting-Clustering 

(ALWC), to manage the process of the exploration of the design scenarios of many-goal, 

concurrent design problems. Using the ALWC, designers can explore the combination of the goals 

based on their interrelationship iteratively. Through iteration, design scenarios with better 
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achievement rates of the goals are obtained without increasing the computational complexity. 

Further, knowledge of the relationship between subsystems is gleaned. This knowledge is useful 

for concurrent design.  The ALWC algorithm is illustrated using a thermal-system design problem 

as a test problem.  The focus in this chapter is on the method rather than the results. 

As the complexity of manufacturing systems is increasing rapidly, designers are facing challenges 

in dealing with many-goal concurrent design problems – the design problems with more than three 

goals, associated with diversity and robustness of the solution space and computational efficiency. 

In this chapter, we address the issue of solving a many goal decision problem. There are limitations 

in managing many-goal problems documented in the published literature, such as the need for 

domain expertise to combine the goals. Moreover, whether the goals represent the interest of 

subsystems. By learning the correlation or orthogonality among the goals, can designers obtain 

knowledge on the interrelationship among the subsystems? Given the designers aware the 

subsystems, can they reorganize those subsystems based on their interrelationship to boost the 

system’s performance? 

As information in a solution space can improve design, there is a requirement of passing through 

the information from post-solution analysis to the design modification, in a systematic, iterative 

manner. Hence, a method that facilitates information exchange between solution space and design 

space is needed. In this chapter, it is proven that the many-goal problems can be managed by 

exploring the combination of the goals. The possible structures can be Preemptive (leveling), 

Archimedean (weighting), or the combination of the two in various forms. 

To address the specified research questions, it is proposed an algorithm, the Adaptive Leveling-

Weighting-Clustering (ALWC) algorithm. Using ALWC, the structure of the goals is explored by 

running three loops – leveling, weighting and clustering. With the ALWC, the information from 
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the post-solution analysis can be used to improve the design and make corresponding decisions, 

and this process can take place independent with any domain knowledge. 

Glossary (mainly applied in Chapter 6) 

Archimedean A strategy of managing multiple goals by compromising the achievement of the 
goals. Also known as weighted sum function. Goals are weighted combined to form 
a compromise goal (Ignizio 1976, Guéret, Prins et al. 1999). 

Concurrent design  An integrated design method where a designer should use various methods, 
technologies, and strategies (Gao, Wang et al. 2012). 

Deviation Deviations are measured from these goals both above and below the target. 
Unwanted deviations from this set of target values are then minimised in an 
achievement function26. 

Goal In this chapter, the term “goal” is used to refer to the objective of a design problem 
when its target value is determined. The problem is solved by minimizing the 
deviation between the achieved value and the target value of the goals. In other 
words, the problem is solved by maximizing the goal achievement rate. 

Goal achievement rate  The rate at which the target of a goal is achieved. 

Many-goal problems Problems with more than three goals. 

Pre-emptive A strategy of managing multiple goals by decentralizing the problem. Also known 
as Lexicographic (Kortanek and Maxwell 1969). The goals are placed at multiple 
levels of priority. The first level goal function will be satisfied as far as possible 
and then while holding it within a tolerance; the second level goal function will be 
addressed, and so on in an attempt to address all the goals across all levels (Ignizio 
1976). 

Robustness The capability of a system to be insensitive to variations or uncertainties. 

Satisficing A decision-making strategy or a cognitive heuristic that entails searching through 
the available alternatives until an acceptability threshold is met (Byron 1998). 

 

26 FromWikipedia, Goal Programming: 

https://en.wikipedia.org/wiki/Goal_programming#:~:text=Goal%20programming%20is%20a%2

0branch,criteria%20decision%20analysis%20(MCDA).&text=Deviations%20are%20measured%

20from%20these,minimised%20in%20an%20achievement%20function. 
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Satisficing solutions  The solutions that are not necessarily optimal but good enough by minimizing the 
distance between what the system can achieve and what the ideal case should be 
(Simon 1996). 

Scalarization The reduction of multiple goals to a single function that can be solved using a single 
goal. Two most common scalarization methods are lexicographic ordering (Pre-
emptive) and weighted sum function (Archimedean). 

6.1 Frame of Reference on Multi-Goal Problems 

6.1.1 Features of Concurrent Engineering Problems  

In concurrent design, a designer needs to consider the interactions and coupling effects between 

subsystems and tradeoffs among conflicting requirements concurrently (Wang 1994). 

Furthermore, the designer must simultaneously meet multidisciplinary constraints, such as cost, 

physical properties, manufacturing capacity, etc., meaning that there can be different units of the 

goals and the evaluation of the tradeoffs may not be simple; hence, the satisficing solutions are 

desired, which meet multiple design preferences and are relatively insensitive to certain 

uncertainties (Wang, Nellippallil et al. 2018).  

In concurrent design, there is a need to infuse knowledge of downstream activities into the design 

process so that model formulation and approximation can be improved iteratively. The aim is to 

explore the satisficing solution space and enhance the design regarding the goal achievement rate, 

robustness, and computational complexity. In this chapter, design improvement is realized by 

exploring the combination of the goals. 

6.1.2 Two Categories of Studies on Multi-Goal Problems  

In this chapter, as an extension of Section 1.2, we categorize multi-goal problems into two 

categories – the performance of the solution algorithms and the indication in the design 

improvement. In the papers on the solution algorithms, the main focus is on sorting near-Pareto 
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front (Deb, Pratap et al. 2002, Seada and Deb 2014), and the performance of an algorithm is 

evaluated by criteria such as the optimality of the solutions, diversity of the solutions, and the 

computational complexity of the algorithm (Soltani, Tawfik et al. 2002); whereas in the papers on 

the design improvement, the authors focus on improving the design or acquiring more knowledge 

about the problem (Tang, Zhu et al. 2010). Some typical methods in both categories are shown in 

Table 6.2. In this chapter, the combination of the two emphases is addressed. 

Table 6. 2 The Features and Limitations of Some Classic Multi-Objective (Multi-Goal) 
Solution Algorithms and Methods 
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al
go
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th

m
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VEGA (Schaffer 
1985) 

Using vector-valued feedback with adaptive 
procedures for searching high-order multi-
objective problems 

 *   * 

SPEA2 (Zitzler, 
Laumanns et al. 
2001) 

Using fitness assignment, archiving and 
truncating (the near-Pareto front) to evolve 
solutions to approach the Pareto-optimal set 

* * *   

MOEA/D (Zhang 
and Li 2007) 

Decomposing a problem into scalar 
optimization subproblems and optimizing 
them simultaneously 

* * *  * 

NSGA-II/III (Deb, 
Pratap et al. 2002, 
Seada and Deb 
2014) 

Using the nondominated sorting 
evolutionary algorithm to adaptively update 
reference points to approach the Pareto 
front 

* *   * 

REDGA (Jaimes, 
Coello et al. 2009) 

Reducing the number of objectives by 
removing redundant (to some degree) 
objectives 

  * * * 
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HypE (Bader and 
Zitzler 2011) 

Using Monte Carlo simulation to 
approximate the exact hypervolume values 
and seeking ranking of solutions * * *   

 
Multi-Level 
Decisions (Mistree, 
Patel et al. 1994) 

Using two design strategies and multi-level 
decisions to foster discussion on multi-
objective problems   * *  

D
es

ig
n 

im
pr

ov
em

en
t  

RCEM (Chen, 
Allen et al. 1997, 
Choi, Austin et al. 
2005) 

Improving the robustness of the design 
using indices based on the results of 
exploring the solution space     * * 

Interval analysis 
(Hao and Merlet 
2005) 

Using parallel robots based on interval 
analysis to determine geometries to satisfy 
all compulsory requirements 

   * * 

Level diagrams 
(Reynoso-Meza, 
Blasco et al. 2013) 

Comparing multiple Pareto fronts based on 
different design concepts using level 
diagrams, to support decision making on 
design concept selection 

* *   * 

XPLORE in 
DSIDES (Smith, 
Milisavljevic et al. 
2015, Sabeghi, 
Shukla et al. 2016) 

Exploring the design space by exploring 
different goal structures using a 
compromise Decision Support Problem   * * * 

CORTHOG 
(Warwick 2019 

Removing poor measurement degrees-of-
freedom iteratively until pseudo-
orthogonality check was optimized 

* *  * * 

The limitation of the literature focusing on the solution algorithms is summarized as:  

The authors focus on identifying near Pareto front. The improvements of the solution algorithms 

over past decades are mainly on a better spreading of solution points along the near Pareto front, 

and a faster identification. Discussions and decision supports on how the solutions in different 

parts of the near Pareto front can be used are missing. 

The limitation of the literature focusing on design improvement is:  

Relying on domain knowledge or case-by-case analyses to explore the combination of the goals or 

decomposing of the problems, which make the methods less generic and less reusable. 

Given such limitations in both categories of the literature, in this chapter, data analysis is applied 

to obtain insight to provide decision support in the combination of goals, especially when domain 
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knowledge is insufficient. The hypothesis is that by exploring the combination of the goals based 

on their interrelationship, the achievement rate of each goal can be improved, more reasonable and 

diverse design scenarios can be discovered, and the process of knowledge discovery and reuse is 

domain independent. In this chapter, goals are defined as the objectives with target values as right-

hand sides and the design problem is managed by minimizing the deviation between the left-hand 

side and the target of each goal. 

6.1.3 Differences between a Goal and an Objective 

There are differences between a goal and an objective. A goal represents an objective with the 

right-hand side value as the target value to be achieved (Parra, Terol et al. 2001). In this chapter, 

we discuss goals instead of objectives. For a nonlinear problem, when we maximizing the objective 

without a right-hand side, the solution 𝑥∗ is optimal, meeting both necessary and sufficient Kuhn-

Tucker conditions; when we minimize the distance between left-hand side and right-hand side of 

the goal, the solution 𝑥; is satisficing, meeting only necessary Kuhn-Tucker conditions. 

The essence of the necessary conditions is that at a solution point 𝑥;, where both the primal and 

the dual are feasible, the gradient vector of the objective (which is the left-hand side of the goal) 

can be represented as the linear combination of the gradient matrix of all equality constraints and 

the active inequality constraints27. The essence of the sufficient conditions is that at a solution 

point 𝑥∗, the convexity degree of the objective should not exceed the convexity degree of the 

constraints combined by Lagrange multipliers. 

 

27 An active inequality constraint is a constraint with its left-hand side equals to its right-hand side at the solution point. 
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To avoid “no solution” caused by the strong convexity of the objective, or to avoid losing a solution 

due to uncertainties that breaks the Kuhn-Tucker conditions, we obtain satisficing solutions by 

using goals instead of objectives. A target value 𝒕 as the right-hand side of the objective is assigned 

thereby the objective 𝒇(𝒙) becomes a goal 𝑮(𝒙), whose position is fixed in the solution space. In 

𝓕, the feasible space bounded by all active constraints, the point, or several points, or an area, that 

is/are on the goal 𝑮(𝒙) or closest to it (using Euclidean distance in this chapter) are the satisficing 

solution(s) 𝒙𝒔, see 	

𝐺(𝑥):	𝑓(𝑥) + 𝑑j − 𝑑l=𝑡,where	0 ≤ 𝑑j, 𝑑l ≤ 1, 	𝑑−� ∙ 𝑑�+ � = 0   and Error! 

Reference source not found.. Using deviation variables 𝒅 = (𝒅j, 𝒅l) to measure the under-

achievement and over-achievement of a goal versus its target and minimizing the deviation 

variables, we make the goal 𝑮(𝒙) become an equality constraint to be satisfied, the deviation 

variables 𝒅 become decision variables that form the new objective 𝔃(𝒅), and the original decision 

variables 𝒙 become auxiliary variables that do not show up in the objective. The combination form 

of merit function 𝔃(𝒅) is discussed in Section 6.1.4. 

𝐺(𝑥):	𝑓(𝑥) + 𝑑j − 𝑑l = 𝑡, where 0 ≤ 𝑑j, 𝑑l ≤ 1, 𝑑j ∙ 𝑑l = 0  Equation 6. 1 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆	𝔃(𝒅)        Equation 6. 2 

Such a construct is known as the compromise Decision Support problem (cDSP) (Mistree, Hughes 

et al. 1993). 

Given: 𝒫, 𝑡 

Find: 𝑥, 𝑑 

Satisfy:  
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𝑥 ∈ ℱ: {𝑔(𝑥) ≥ 0, ℎ(𝑥) = 0, 𝑙𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑	 ≤ 𝑥 ≤ 𝑢𝑝𝑝𝑒𝑟	𝑏𝑜𝑢𝑛𝑑}, 

𝐺(𝑥), 0 ≤ 𝑑j, 𝑑l ≤ 1, 𝑑j ∙ 𝑑l = 0 

Minimize: 𝓏(𝑑) 

For a n-dimension, K-goal problem, by adding deviation variables, we increase the dimensionality 

of a design problem, from [𝒙𝟏, 𝒙𝟐, …	𝒙𝒏]𝑻to [𝒙𝟏, 𝒙𝟐, …	𝒙𝒏, 𝒅𝟏j, 𝒅𝟏l, 𝒅𝟐j, 𝒅𝟐l, …𝒅𝑲j, 𝒅𝑲l]𝑻, thus make 

it possible to absorb the risk of uncertainty that breaks the second-order sufficient conditions. This 

results in a robust solution, a solution that is relatively insensitive to uncertainties.  By returning 

solutions consisting only of the original decision variables, 𝒙 = [𝒙𝟏, 𝒙𝟐, …	𝒙𝒏]𝑻, we decrease the 

dimensionality. Such “dimension expansion and reduction” ensures a solution that is relatively 

insensitive to the uncertainties embodied in the modeling of an optimization problem. 

Using the cDSP construct, the nonlinear problem is linearized using the Adaptive Linear 

Programing (ALP) algorithm (Mistree and Kamal 1985, Mistree, Hughes et al. 1993), so that the 

linearized problem can be solved using Simplex algorithm and a vertex solution is obtained. The 

benefits of using a vertex solution versus an interior point solution are 1) a vertex solution is a 

good enough solution that guarantees the closest distance to the target, and 2) it does not require 

computing power to search for better interior point solutions. 

6.1.4 Common Ways of Combining the Goals 𝔃(𝒅) 

A common approach to solve nonlinear multi-goal problems is to define a scalarizing function 

(Bandaru, Ng et al. 2017), which is applied to many-goal problems as well. A scalarizing function 

is used to combine all the goals to form a single function. The solution is a compromise among the 

achievement, or deviation, of all goals. The most popular scalarization is Archimedean strategy, 
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also known as weighted sum function; see Equation 6.3. Sometimes, multiple weight vectors are 

used to combine the goals, so multiple solutions are obtained to be selected by the designers based 

on different situations; see Figure 6.3. 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆: ∑ 𝑊* ∙ (𝑑*
j + 𝑑*

l)Ú
*wx       Equation 6. 3 

 
(a)     (b) 

Figure 6. 3 Archimedean Strategy (Weighted Sum) 

However, an even distribution of solutions in the solution space is not guaranteed by using an even 

distribution of weight vectors (Messac and Mattson 2002). To determine weight vectors 

appropriately, prior knowledge on the priority and expected tradeoff among the goals is required, 

and a weight sensitivity analysis can be done (Vevea and Woods 2005). However, the weight 

sensitivity analysis is computational expensive, and the metaheuristics applied in weight 

generation and selection are not generic as the interdependence among the goals may vary from 

problem to problem (Seada and Deb 2014). A generic priori technique that integrates scalarization 

and domain knowledge is necessary. 

Another priori approach for managing multi-goal or many-goal problems is Pre-emptive strategy, 

also known as Lexicographic ordering, that is converting all goals but one to constraints in 

iterations (Rae 1972); see Figure 6.4. The goals are placed at multiple levels of priority. The first 
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level goal function will be satisfied as far as possible and then while holding it within a tolerance; 

the second level goal function will be addressed, and so on in an attempt to address all the goals 

across all levels (Ignizio 1976). Level settings can be switched. Like Archimedean strategy, some 

domain knowledge on the priority among the goals are needed when using Pre-emptive strategy, 

otherwise the computational cost is high – for a K-goal problem, if each goal is set to one level, 

the number of design scenarios for prioritization is 𝐾! . It requires designers to have insight 

regarding design preferences and interrelationship among goals, to avoid exploring unnecessary 

design scenarios. 

 
(a)     (b)   

 
(c) 

Figure 6. 4 Pre-Emptive Strategy (Lexicographic Ordering) 
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An ensemble or comprehensive strategy using a mixture of Archimedean and Pre-emptive strategy 

is also a choice; see Figure 6.5. In each level, there can be one or multiple goals. The goals in the 

same level are combined as a single goal using weight vectors. The levels are switched so that the 

solution space can be explore more sufficiently based on various prioritizing scenarios. The 

drawback of ensemble strategy is that insight on the problem is also required to effectively explore 

the design scenarios, otherwise, the permutation and combination of the leveling and weighting 

increases exponentially as the goals increase. 
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(a)       (b) 

 
(c)       (d) 

Figure 6. 5 An Ensemble Strategy using a Mixture of Archimedean and Pre-emptive 
Strategy 

In this chapter, we want to use data analysis to fill in the deficiencies of domain knowledge, or to 

avoid applying too many heuristics without evaluating or improving them. We answer this 

question regarding knowledge management in dealing with multi-goal problems: 

What is the domain-independent method to capture and reuse the knowledge of a many-

goal, concurrent-engineering-design problem to facilitate the exploration and selection of design 

scenarios? 

In Section 6.2, we introduce a thermal-system design as a test problem. In Section 6.3, we propose 

a knowledge-driven method, the adaptive leveling-weighting-clustering (ALWC) algorithm, to 
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manage the knowledge capturing and reusing in multi-goal problems. In Section 6.4, we use the 

test problem to demonstrate the utility of the ALWC algorithm and present the results and 

discussion. In Section 6.5, summarized the contributions of this chapter and the scope of the 

application of the ALWC algorithm.  

6.2 Problem Statement – Test Problem 3: The Rankine Cycle Problem 

- Test Problem 3: apply ALWC to a concurrent, multi-goal problem 

We use an example to demonstrate how a concurrent, multi-goal problem looks like – a thermal 

system design problem. The problem is first published in (Smith, Milisavljevic et al. 2015). 

6.2.1 Problem Description 

There can be various applications for small scale “power” plant systems that run small generators 

to produce electricity or that make direct mechanical use of the power produced. For example, 

providing power to equipment in irrigation systems, driving reverse osmosis systems to produce 

fresh water for underdeveloped areas, and generating electricity for general use in small 

collectives.  

Building a system around the Rankine cycle is a common approach given an available heat source. 

The Rankine cycle is a mathematical representation of a heat engine that converts heat into 

mechanical work while undergoing phase change (Macquorn Rankine 1853, Wikipedia 2019). A 

schematic representation of the Rankine cycle, where the major components of the system are a 

power producing turbine, a pump to pressurize the flow to the turbine and two heat exchangers, a 

condenser, and a heater is shown in Figure 6.6. 
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In the perspective of decision support and design improvement, such a thermal system presents 

complexity and dilemmas to be managed and resolved. Expansion within the laboratory will deal 

with heat source issues (left side of Figure 6.6) and power use issues (right side of Figure 6.6) and 

the choice of working fluids. The common working fluid in a Rankine cycle is water. 

 

Figure 6. 6 The Thermal System 

The foundational example model is defined by the cycle’s maximum and minimum pressures and 

maximum temperature (PMAX, PMIN and TMAX). Energy is transferred to the closed loop 

Rankine cycle through a heat exchanger. The heat exchanger is assumed to be of a counter flow 

design where the key characteristic is the maximum temperature of the heating flow (TMAXE). 

6.2.2 Model Formulation 

The ideal Rankine cycle involves 4 processes, as shown graphically in the Temperature (T) versus 

Entropy (S) plot in Figure 6.7. There are two adiabatic isentropic processes (constant entropy) and 

two isobaric processes (constant pressure). 

The Rankine cycle consist of 4 cycles, referring to Figure 6.7, 
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①-② adiabatic pumping of the saturated liquid from PMIN to PMAX  

②-④ isobaric heat addition in heat exchanger to TMAX, 

④-⑤ adiabatic expansion in the turbine from PMAX to PMIN producing power with the 

possibility of wet steam exiting the turbine, and 

⑤-① isobaric heat loss in the condenser. 

 

Figure 6. 7 Rankine Cycle (Temperature and Entropy) 

The isothermal segments represent moving from saturated liquid to saturated vapor in the case of 

③ in the heater and the reverse in the condenser between ⑤-①. The key thermodynamic 

properties of the working fluid(s) are determined using REFPROP (Lemmon and Huber 2013). 

The basic features of the problem: there are four decision variables, one linear constraint, nine 

nonlinear inequality constraints, and six nonlinear goals. The cDSP is given as follows. 
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GIVEN 

Parameters including dependent system variables P1-P51 (units in abbreviated SI28) 
CARNOT  Carnot cycle efficiency (%)    Parameter 1 (P1) 
CPEE   Specific heat value for input line in exchanger   P2 
CPRE   Specific heat value for Rankine (output) feedline in exchanger (J/(kg∙K)) 
           P3 
DBTMNR/DBTMNE= 273.16        P4/P5 
Lower temperature limit (freezing point) in the Rankine cycle (DBTMNR) and in the heat exchanger 
(DBTMNE) for every fluid (K) 
DBTMXR/DBTMXE= 2000.0        P6/P7  
Upper temperature limit in the Rankine cycle (DBTMXR) or in the heat exchanger (DBTMXE) for every 
fluid (K) 
DELTLM  Logarithmic main temperature difference (K)   P8 
DENS𝑖   𝑖 = 1, 2, …5, Density at ①-⑤ (kg/m3)   P9, P10, P11, P12, P13 
EDIA/ELEN  Diameter/length of heat exchanger (m)    P14/P15 
ENTH𝑖   𝑖 = 1, 2, …5, Specific enthalpy at ①-⑤ (J/kg)  P16, P17, P18, P19, P20 
ENTHMX/ENTHMN Enthalpy at TMINE/TMAXE in exchanger   P21/P22 
FLOWR/FLOWE Mass flow rate of Rankine cycle / exchanger (kg/s)  P23 
FRMXR  The upper limit of Rankine cycle mass flow rate (kg/s)  P24 
HTEFF   Heat transfer effectiveness (%)     P25 
PPUMP/PTURB Power of the pump/turbine (W)     P26 
PRES𝑖   𝑖 = 1, 2, …5, Pressure at ①-⑤ (kPa)   P27, P28, P29, P30, P31 
QINR   Heat transfer in the heat exchanger (W)    P32 
QOUTE  Exchanger heat transfer (W)     P33 
QUAL𝑖   𝑖 = 1, 2, …5, Quality of stream at ①-⑤ (%)  P34, P35, P36, P37, P38 
RCEFF   Rankine cycle efficiency (%)     P39 
RCMIT   Rankine cycle moisture in turbine (%)    P40 
REQPOW  Required power at the Rankine cycle (kW)   P41 
RFEEDL  Calculated Rankine cycle length required given diameter (m) P42 
SAREAE  Surface area of the heat exchanger (m2)    P43 
SYSEF1  System efficiency 1 (%)      P44 
STSEF2  System efficiency 2 (%)      P45 
TDELE=10  Requirement of minimum temperature change in the heat exchanger (K) 
           P46 
TDELC   Minimum temperature gap between the minimum temperature in the heat 
exchanger and the temperature at ②       P47 
TEFFEX  Temperature exchanger efficiency (%)    P48 
TEMP𝑖   𝑖 = 1, 2, …5, Temperature at ①-⑤ (K)    P49 
TMINE   Minimum temperature in exchanger (K)    P50 
UHTC  Overall heat transfer coefficient (W/(m2∙K))    P51 
Functional relationship between parameters and system variables F1-F14 
𝐶𝐴𝑅𝑁𝑂𝑇 = 1.0 − �9ÃÄx

�9ÃÄ�
      Function 1 (F1) 

𝐶𝑃𝐸𝐸 = 9t�ÅÃßj9t�ÅÃt
�ÃSß9j�Ã:t9

        F2 

 

28 International System of Units 
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𝐶𝑃𝑅𝐸 = 9t�Å�j9t�Å�
�9ÃÄ�j�9ÃÄ�

         F3 

𝐷𝐸𝐿𝑇𝐿𝑀 = (�Ã:t9j�9ÃÄ�)j(�ÃSß9j�9ÃÄ�)

2UÆ¤ÇÈxÉÊ¤ÉÇË�¤ÇÌÍÉÊ¤ÉÇË[Î
      F4 

𝐹𝐿𝑂𝑊𝐸 ∙ (𝐸𝑁𝑇𝐻𝑀𝑋 − 𝐸𝑁𝑇𝐻𝑀𝑁) = 𝐹𝐿𝑂𝑊𝑅 ∙ (𝐸𝑁𝑇𝐻4 − 𝐸𝑁𝑇𝐻2)   F5 

𝐹𝐿𝑂𝑊𝑅 = Ï
𝐹𝑅𝑀𝑋𝑅 𝑖𝑓	𝐸𝑀𝑃4 − 𝑇𝐸𝑀𝑃5 = 𝑇𝐸𝑀𝑃2 − 𝑇𝐸𝑀𝑃1
Ð9ÑÄÒÓ

(�9ÃÄ�j�9ÃÄð)j(�9ÃÄ�j�9ÃÄx)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

           F6 

𝐻𝑇𝐸𝐹𝐹 = 1.0 − 𝑒j
ÔÕ¤Ö∙àÌ×ÉÌÉ
yØÙÚ×∙ÖË×É         F7 

𝑃𝑃𝑈𝑀𝑃 = (𝐸𝑁𝑇𝐻2 − 𝐸𝑁𝑇𝐻1) ∙ 𝐹𝐿𝑂𝑊𝑅      F8 
𝑃𝑃𝑈𝑀𝐵 = (𝐸𝑁𝑇𝐻4 − 𝐸𝑁𝑇𝐻5) ∙ 𝐹𝐿𝑂𝑊𝑅      F9 
𝑄𝐼𝑁𝑅	 = 	𝐹𝐿𝑂𝑊𝑅 ∙ 𝐶𝑃𝑅𝐸 ∙ (𝑇𝐸𝑀𝑃4 − 𝑇𝐸𝑀𝑃2)      F10 
𝑄𝑂𝑈𝑇𝐸 = 𝐹𝐿𝑂𝑊𝐸 ∙ 𝐶𝑃𝐸𝐸(𝑇𝑀𝐴𝑋𝐸 − 𝑇𝑀𝐼𝑁𝐸)     F11 
𝑅𝐶𝐸𝐹𝐹 = Ä�ZÐÜjÄÄZÃÄ

Ñ:tÐ
        F12 

𝑅𝐶𝑀𝐼𝑇	 = Ý
0																										𝑖𝑓	𝑄𝑈𝐴𝐿5 > 1
1																										𝑖𝑓	𝑄𝑈𝐴𝐿5 < 0

1 − 𝑄𝑈𝐴𝐿5															𝑖𝑓	0 ≤ 𝑄𝑈𝐴𝐿5 ≤ 1
     F13 

𝑅𝐹𝐸𝐸𝐷𝐿 = ÞSÐ9S9
Þ∙:

         F14 
𝑆𝐴𝑅𝐸𝐴𝐸 = 𝜋 ∙ 𝐸𝐷𝐼𝐴 ∙ 𝐸𝐿𝐸𝑁        F15 
𝑆𝑌𝑆𝐸𝐹1 = Ä�ZÐÜjÄÄZÃÄ

ÑÒZ�9
        F16 

𝑆𝑌𝑆𝐸𝐹2 = 𝑅𝐶𝐸𝐹𝐹 ∙ 𝑇𝐸𝐹𝐹𝐸𝑋        F17 
𝑇𝐸𝐹𝐹𝐸𝑋 = �ÃSß9j�Ã:t9

�ÃSß9j�9ÃÄ�
        F18 

𝑈𝐻𝑇𝐶 = Ñ:tÐ
ÞSÐ9S9∙I9g�gÃ

        F19 

FIND 

x, the decision variables (system variables) x1-x4 
PMAX  Maximum pressure in the Rankine cycle    Variable 1 (x1) 
PMIN  Minimum pressure in the Rankine cycle     x2 
TMAX  Maximum temperature in the Rankine cycle    x3 
TMAXE  Maximum temperature of the heating fluid in the exchanger  x4 
Deviation variables 𝒅 
𝒅𝒌j, 𝒅𝒌l  𝑘 = 1, 2, …6, Under-achievement and over-achievement of Goal 𝑘 𝑑 

SATISFY 

The system constraints 
Linear constraints C1 
TMAXE – TMAX ≥ DELTLM 

Temperature delta (10 K) for maximums in exchanger Constraint 1 (C1) 
Nonlinear constraints C2-C10 
RCMIT ≤ TMXL Moisture in turbine (RCMIT) less than upper limit (TMXL) C2 
FLOWR ≤ FRMXR Rankine cycle mass flow rate (FLOWR) less than upper limit (FRMXR)  
           C3 
TEMP4 ≥ TEMP3 Temperature at ④ (TEMP4) should be greater than or equal to temperature at ③ 
(TEMP3)          C4 
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QUAL4 ≥ 1.0  Quality at ④ (QUAL4) is superheated vapor   C5 
TMAXE – TMINE ≥ TDELE 

TMAXE is greater than TMINE by at least TDELE  C6 
TMINE – TMEP2 ≥ TDELC 

TMINE is greater than temperature at ② by at least TDELC C7 
CARNOT ≥ SYSEF1  Ideal Carnot cycle efficiency is greater than System efficiency 1 (Sanity check 1) 
           C8 
CARNOT ≥ SYSEF2  Ideal Carnot cycle efficiency is greater than system efficiency 2 (Sanity check 2) 
           C9 
DBTMXE ≥ TMAXE Temperatures within valid ranges for REFPROP fluid   C10 
The system variable bounds (xj

min ≤ xj ≤ xj
max): 

500 ≤ PMAX ≤ 5000 (kPa)       Bound 1,2 (B1, B2) 
350 ≤ TMAX ≤ 850 (K)         B3, B4 
350 ≤ TMAXE ≤ 850 (K)        B5, B6 
The system goals: 
Goal 1: Achieve zero moisture in steam leaving the turbine (Minimize the moisture or maximize the 
steam quality of ①) 
𝑅𝐶𝑀𝐼𝑇 + 𝑑xj − 𝑑xl 	= 0       Goal 1 (G1) 
Goal 2: Maximize Rankine cycle efficiency  
𝑅𝐶𝐸𝐹𝐹 + 𝑑�j − 𝑑�l 	= 1        G2 
Goal 3: Maximize temperature exchanger efficiency  
𝑇𝐸𝐹𝐹𝐸𝑋 + 𝑑�j − 𝑑�l 	= 1        G3 
Goal 4: Maximize system efficiency indicator 1  
𝑆𝑌𝑆𝐸𝐹1 + 𝑑�j − 𝑑�l 	= 1        G4 
Goal 5: Maximize system efficiency indicator 2  
𝑆𝑌𝑆𝐸𝐹2 + 𝑑ðj − 𝑑ðl 	= 1         G5 
Goal 6: Maximize heat transfer effectiveness in exchanger 
𝐻𝑇𝐸𝐹𝐹 + 𝑑`j − 𝑑`l 	= 1        G6 

MINIMIZE 

The design scenario DS to be explored 
𝓏IÞ(𝑑)           DS 

There are limitations of the method used in (Smith, Milisavljevic et al. 2015). Using Preemptive 

approach, the six goals are placed at six levels of priority. By prioritizing the goals differently, 

comparison may show competing goals driving the solution in different directions. Using 

Archimedean approach, the six goals are grouped at the same level and linearly combined using 

weights. There can be a mixture of Preemptive and Archimedean approach, but the authors of 

(Smith, Milisavljevic et al. 2015) did not explore the mixture form. With the proposed method in 

this dissertation, the ALWC algorithm, the knowledge on the mixture-form of the goals can be 
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explored, captured, and reused for other problems. We use this problem assuming there is no 

knowledge on the division and interrelationship of the goals or subsystems. We apply the ALWC 

algorithm to learn such knowledge and use the domain expertise in (Smith, Milisavljevic et al. 

2015) to verify our findings. 

6.3 The Adaptive Leveling-Weighting-Clustering (ALWC) Algorithm 

6.3.1 Clustering the Goals based on their Interrelationship 

In managing a many-goal, concurrent design problem, to explore the effective combinations of the 

goals 𝓏(𝑑), the interrelationship of the goals, such as the correlation or orthogonality, should be 

identified, and the scalarization function or priori of the goals should be determined based on their 

interrelationship. Any way to combine the goals of a many-goal problem is a design scenario (DS), 

such as an Archimedean way using a weight vector, or a Pre-emptive way using an order to 

prioritize the goals, or any way to mix the two strategies. Under a design scenario, 𝐷𝑆1, the merit 

function is denoted as 𝓏IÞ¥(𝑑), the corresponding satisficing solution is 𝑥1; , and the deviation of 

Goal k is 𝑑1*. For a K-goal problem, if we solve it using 𝐴 design scenarios, [𝐷𝑆x,𝐷𝑆�, …𝐷𝑆S]�, 

where 𝐴  is a positive integer, we get an 𝐴 × 𝐾  matrix of deviations, 𝒟 ; see Figure 6.8. The 

interrelationship that we learn by analyzing Matrix 𝒟 can be interpreted as an indication of the 

conditional correlation or conditional orthogonality29, that is within the feasible space ℱ and under 

𝐴 DSs, the correlation or the orthogonality of the K goals; see Figure 6.9. The learning algorithms 

 

29 The correlation analysis and orthogonality analysis are two examples of the analyses illustrated in this chapter to 
learn the interrelationship among goals. There are other types of analysis that can be applied to capture the 
interrelationship among goals. Designers can select their own methods and make customization based on the 
characteristics of their problems and their preferences. 
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and cluster analysis methods can be expanded according to the requirements of the problems. In 

this chapter, the knowledge discovery and decision support relevant to the innovation, selection, 

and customization of learning algorithms and cluster analysis methods are not our focus, however, 

it can be addressed and improved using our ALWC algorithm. 

 

Figure 6. 8 Using Multiple Design Scenarios to Obtain a Deviation Matrix 

 

Figure 6. 9 Cluster Analysis Using a Deviation Matrix 

The adaptiveness. To make the learning algorithm generic, we assume there is no domain 

knowledge as pre-knowledge on the interrelationship among the goals. In this chapter, as in each 

iteration, only limited number of design scenarios are generated to obtain solutions, hence, we 

learn and update the interrelationship by iterating. In this sense, our method is an adaptive method. 
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Learning the correlation. We learn the correlation among the deviation vector of the goals using 

angle-based distance. Suppose for a three-goal problem, we use two design scenarios DS1 and 

DS2 to learn the correlation of the goals, the scalarization of each design scenario is represented 

as 𝓏IÞÛ(𝑑), 𝑑 = [𝑑*j, 𝑑*l]�, where 𝑖 = 1, 2, 𝑘 = 1, 2, 3. The satisficing solution and the deviation 

are represented as Equation 6.4 and 6.5. 

𝒙𝒔𝒊 = 𝐚𝐫𝐠 b𝒎𝒊𝒏 Æ𝔃𝑫𝑺𝒊(𝒅)Îc , ∀𝒊 = 𝟏, 𝟐     Equation 6. 4 

𝒅𝒊𝒌 = ä𝒕𝒌 − 𝑮𝒌(𝒙𝒔𝒊)ä, ∀𝒊 = 𝟏, 𝟐, ∀𝒌 = 𝟏, 𝟐, 𝟑    Equation 6. 5 

As in Figure 6.10, we use a two-dimensional solution space	to illustrate the three goals 𝐺*(𝑥), 

∀𝑘 = 1, 2, 3,	and two satisficing solutions 𝑥;W , ∀𝑖 = 1, 2, under two design scenarios 𝐷𝑆𝑖, ∀𝑖 =

1, 2. In Figure 6.11, we show the deviation points in two two-dimensional goal spaces. The 

coordinate origin O is the utopia point where the deviation of both goals is zero, whereas the Point 

I (1, 1) is the worst point where both goals are completed by 0%. When design scenario changes 

from DS1 to DS2, the deviation of Goal 1 and Goal 3 change in different directions, Figure 6.11 

(a), whereas the deviation of Goal 1 and Goal 2 change in the same direction, Figure 6.11 (b). 

Therefore, based on the results of these two design scenarios, Goal 1 and Goal 3 are with a lower 

correlation, so they belong to two different clusters, whilst Goal 1 and Goal 2 have a higher 

correlation, so they belong to one cluster. As 𝛼W], the acute angle between 𝐷x
æç𝐷�

æçèèèèèèèè and the diagonal 

𝑂𝐼èèè of the goal space, indicates the correlation between Goal i and Goal j, we use angle-based 

correlation analysis to obtain the interrelationship between the two goals (Equation 6.6). As more 

design scenarios being used, the correlation among goals can be better learned. For A number of 

design scenarios, if we use 𝛼W](𝐷𝑆é ,𝐷𝑆ê	) to denote the acute angle between 𝐷é
æç𝐷ê

æçèèèèèèèè, the deviation 

coordinate of Goal i and Goal j under two design scenarios,  𝐷𝑆é and 𝐷𝑆ê, and we use the average 
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of the enumerated angle-based correlation under any two design scenarios as the correlation 

between Goal i and Goal j, between the two goals, it is shown as Equation 6.7. 𝐷W]_�03 are elements 

of correlation matrix 𝕀𝒟 , therefore, we obtain the matrix using angle-based correlation with A 

design scenarios as Equation 6.8. As we update the design scenarios in each iteration, we update 

𝕀𝒟 along iterating. Using 𝕀𝒟 to cluster the goals, when clustering results converge, we can stop 

iterating. 

𝑫𝒊𝒋_𝒄𝒐𝒓(𝑫𝑺𝟏,𝑫𝑺𝟐) = 𝒂𝒓𝒄 Æ𝒔𝒊𝒏¸𝜶𝒊𝒋¹Î , ∀𝒊, 𝒋 = 𝟎,…𝑲   Equation 6. 6 

𝑫𝒊𝒋_𝒄𝒐𝒓(𝑫𝑺𝟏, … ,𝑫𝑺𝑨) =
𝟏
𝑪𝑨
𝟐 ∑ ∑ 𝒂𝒓𝒄 b𝒔𝒊𝒏 Æ𝜶𝒊𝒋(𝑫𝑺𝜿,𝑫𝑺𝜾)Îc , ∀𝒊, 𝒋 = 𝟎,…𝑲𝑨

𝜾w𝜿l𝟏
𝑨j𝟏
𝜿w𝟏   

          Equation 6. 7 

𝕀𝓓(𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏, [𝑫𝑺𝟏, …𝑫𝑺𝑨]𝑻) = Æ𝑫𝒊𝒋_𝒄𝒐𝒓(𝑫𝑺𝟏, … ,𝑫𝑺𝑨)Î  Equation 6. 8 

 

Figure 6. 10 The Satisficing Solutions to a Three-Goal cDSP under Two Design Scenarios 
Illustrated in a Two-Dimensional Solution Space 
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(a)     (b) 

Figure 6. 11 The Satisficing Solutions to a Three-Goal cDSP under Two Design Scenarios 
Illustrated in Two Two-Dimensional Goal Spaces 

Learning the orthogonality. When learning the correlation of the goals, we treat the deviation 

vector of the goals as statistics variables and induce the correlation of the goals by analyzing the 

correlation among the statistic variables; whereas when learning the orthogonality among the goals, 

we obtain the relative position of goals in geometric space, under the constraints of the feasible 

region 𝑥 ∈ ℱ, by using the dot-product of the deviation vector of any two goals; see Equation 6.9. 

In Figure 6.11 (a) and Figure 6.11 (b), we visualize the dot-product of the deviation vector of two 

goals, Goal i and Goal j, and Goal 𝒾 and Goal 𝒿 using two design scenarios, DS1 and DS2. The 

dot-product is calculated as Equation 6.10. For Euclidean distance, 𝑝 = 2. If the dot-product is 

zero, the two goals are orthogonal, or perpendicular, see Figure 12 (a); if the dot-product is a large 

value, the two goals are more parallel, see Figure 12 (b). 𝐷W]_036 are elements of orthogonality 

matrix 𝕀𝒟, therefore, we obtain the matrix using orthogonality with A design scenarios as Equation 

6.11. 

{< 𝑮𝒐𝒂𝒍	𝒊, 𝑮𝒐𝒂𝒍	𝒋 > |𝒙 ∈ 𝓕} = ∫ 𝑮Ì(𝒙)èèèèèèè𝑮𝒋(𝒙)𝒅𝒙𝒙∈𝓕 ≈ 𝑫𝒊𝒋𝑶𝒓𝒕(𝑫𝑺𝟏, … ,𝑫𝑺𝑨) = [𝒅𝟏𝒊, …𝒅𝑨𝒊] ∙

�𝒅𝟏𝒋, …𝒅𝑨𝒋�
𝑻         Equation 6. 9 
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𝐷W]Ù¦P(𝐷𝑆x, … ,𝐷𝑆S) = b� 𝑑éW
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𝑐𝑜𝑠 Æ𝜃W](𝐷𝑆x, … ,𝐷𝑆S)Î 

         Equation 6. 10 

𝕀𝓓(𝒐𝒓𝒕𝒉𝒐𝒈𝒐𝒏𝒂𝒍𝒊𝒕𝒕𝒚, [𝑫𝑺𝟏, …𝑫𝑺𝑨]𝑻) = Æ𝑫𝒊𝒋_𝒐𝒓𝒕(𝑫𝑺𝟏, … ,𝑫𝑺𝑨)Î  Equation 6. 11 

 
(a)     (b) 

Figure 6. 12 The Orthogonality between the Deviation Vectors of Two Goals using Two 
Design Scenarios 

Cluster analysis based on interrelationship matrix of the goals. In this chapter, we use multiple 

clustering algorithms and apply cross validation to ensure the rationality of the clustering results. 

There are criteria for designers to choose appropriate clustering algorithms, such as the sensitivity 

of the clustering results to sample size (the number of design scenarios), the improvement of goal 

achievement and diversity of the solutions by leveling the goals using a clustering result, etc. The 

selection of the clustering algorithms is a part worthy of studying regarding improving the ALWC 

algorithm. We demonstrate the feasibility of further improving the selection of clustering 

algorithms. 
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6.3.2 A Schematic of the ALWC Algorithm 

The ALWC includes two loops; see Figure 6.13. Leveling-Weighting-Clustering is the outer loop, 

and Weighting-Clustering is the inner loop. In the outer loop, leveling starts with the clustering 

result {C, Cluster} from the previous iteration30. In the very first iteration, leveling starts with the 

initialized single cluster so all goals are set to one level. In the later iteration, when there are more 

than one clusters return from the previous clustering, each cluster is set to a level. After running 

all processes in this leveling setting, including the weighting and clustering in the inner loop, the 

levels are alternated, that is the goals in each cluster are alternately set to a different level. When 

it enters the inner loop, the goals in each level are combined using weight vectors. After being 

solved using the ALP, the deviation matrix 𝒟 is obtained, so the interrelationship matrix 𝕀𝒟  is 

obtained and used to do cluster analysis, and a new {C, Cluster} is returned to update the leveling 

for the next iteration. The inner loop stops generating more weight vectors when the diversity of 

𝕀𝒟 do not increase much, that is 𝜎(𝕀𝒟) ≤ 𝜀,	where 𝜀 is a threshold determined with heuristics, as 

more weight vectors being used. The outer loop stops leveling the goals based on the latest 

clustering result {C, Cluster} if it does not change in the previous 𝜂 iterations, where 𝜂 is a positive 

integer determined with heuristics. When the outer loop stops, convergence is reached. 

 

30 C is the number of clusters. Cluster is a two-dimensional array containing the clusters of the goals. E.g., Cluster =
�[G1,G2,G4], [G3,G	5,G6]�	means that there are two clusters: Cluster 1 include Goal 1, 2, and 4, whereas Cluster 2 include Goal 
3 5, and 6. Cluster[i][j] represent the jth goal in the ith cluster, so, Cluster[2][3] = G6. Array “Level” works in the same way. 
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Figure 6. 13 The Flowchart of the Adaptive Leveling-Weighting-Clustering (ALWC) Loop 



 286 

6.3.3 The Algorithms in the ALWC 

There are six procedures in the ALWC. The model is formulated as a compromise Decision 

Support Problem (cDSP) (Mistree, Hughes et al. 1981, Mistree, Hughes et al. 1993) in Procedure 

1.1. The number of clusters, C, is initiated as “1” in Procedure 1.2. 

In Procedure 2 Levelling, starting from the second iteration, the goals are levelled based on 

clustering results – the output of Procedure 5 in the previous iteration. In Procedure 1, the number 

of levels, n, is updated. In Procedure 2.2, each cluster take turns to be set to Level 1 to Level n. 

The algorithm is given as follows. 

Algorithm 1 Procedure 2 Leveling 

2.1 Updating 

1: Given Cluster results {C, Cluster} , cDSP, Leveling information {L, Level}  // 	C, L  are integers 
representing the number of the clusters and the number of levels respectively. “Cluster, Level” are 
two-dimension arrays containing the clustering result31 and leveling information. 

2: integer L = C 

3: array Level = Cluster 

4: return {L, Level} and go to Procedure 3 Weighting 

2.2 Alternating levels 

5: if L ≥ 2   

6: array temp = Level[L] 

7: for integer n in range	[2, L] 

8:      Level[n] = Level[n − 2] 

9: Level[1] = temp 

10: return {L, Level} and go to Procedure 3 Weighting  

 

31 E.g., Cluster = �[G1,G2,G4], [G3,G	5,G6]�	means that there are two clusters: Cluster 1 include Goal 1, Goal 2, and Goal 4, 
whereas Cluster 2 include Goal 3, Goal 5, and Goal 6. Cluster[2][3] represent the third goal in Cluster 2, so, Cluster[2][3] = G6. 
Array Level works in the same way. 



 287 

After the goals are leveled, in each level, the goals are combined using weight vectors. It is proved 

that an even distribution of solutions in the solution space are not guaranteed by using an even 

distribution of weight vectors (Messac and Mattson 2002),  therefore, in Procedure 3, Weighting, 

the weight vectors of the goals in each level are generated in a greedy manner, until the deviation 

matrix 𝒟 does not increase its diversity while adding more weight vectors. In this chapter, we use 

the standard deviation, 𝜎(𝕀𝒟), to evaluate the diversity. The solution points generation method in 

(Seada and Deb 2014) is improved and applied to generate weight vectors in this chapter. The 

algorithm of weighting is a fractal algorithm. For example, if there are three goals in a level, we 

can use a ternary plot to illustrate how the weights are generated, see Figure 6.14. Each edge of 

the triangle is an axis representing the weight of a goal. The coordinates of each spot in the triangle 

represents a weight vector. The sum of the coordinates of any spot is one. The algorithm of 

weighting is given as follows. 

 

Figure 6. 14 Weight Vectors of a Three-Goal Problem with p = 3 

Algorithm 2 Procedure 3 Weighting 
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1: Given {L, Level} , {C, Cluster}ôjx,Weight  // “Weight” is a three-dimension array containing 
weight vectors32 

2: Initiate parameters:  

integer p = 2, i = 1 

array F = [	], wv = [	],Weight = [wv],	𝜎(𝒟0) = 0,		ε= ℰ 

3: for integer n in range	[1, L] 

4:      integer M = length(Level[n]) // Assign the number of goals in Level	n as M 

5:      while |𝜎(𝒟i) − 𝜎(𝒟i−1)| > 	ε 

6:           i = i + 1 

7:           for integer q in range[1,p] 

8:                for integer r in range[0,q] 

9:                     F = F ∪ #
þ
 

10:               for I in product(∗ [F] ∗M) // “I” is a one-dimension array with three elements that are 
cross-combined by M number of F33 

11:                if sum(I) == 1 // If the sum of the elements in “I” equals one. 

12:                     wv = I 

13:                     Weight[n] = Weight[n] ∪wv 

14:           Call Procedure 4 and return 𝒟ô 
15:           Calculate 𝜎(𝒟i) 

Weighting iterates while p is increasing and stops if the diversity of the deviation matrix 𝒟ô is not 

improved. We use standard deviation to represent the diversity of 𝒟ô. To remove the variety of the 

 

32 E.g., Weight = ÿ![1,0], [0,1], "x� ,
x
�#$ , �[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]�%	means that there are two levels; Level 1 has two 

goals and there are three vectors for the two goals; Level 2 has four goals and there are four weight vectors for the four goals. 
Weight[n] represents the weight vectors of the goals in the nth level; Weight[n][m] represents the mth weight vector of the goals in 
the nth level. Weight[n][m][k] represents the weight of the kth goal of the mth weight. vector in the nth level. In this example, 
Weight[1][3][1] = x

�
. 

33 E.g., F = [0, x
�
, 1], M = 2, “I” can be one of the nine arrays: [0,0], [0, x

�
], [0,1], "x� , 0#, [

x
�
, x
�
], [x

�
, 1], [1,0], [1, x

�
]. “wv” can be 

[0,1], [x
�
, x
�
], and [1,0]. 
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ambitiousness of the target of the goals, that is the deviation range and distribution may vary from 

one goal to another, we normalize 𝒟ô into the range [0, 1] using Equation 6.12. 

𝒅𝒂𝒌𝒏𝒐𝒓𝒎 =
𝒅𝒂𝒌j𝒎𝒊𝒏{𝒅𝟏𝒌,…𝒅𝑨𝒌}

𝒎𝒂𝒙{𝒅𝟏𝒌,…𝒅𝑨𝒌}j𝒎𝒊𝒏{𝒅𝟏𝒌,…𝒅𝑨𝒌}
     Equation 6. 12 

Table 6. 3. A part of the normalized deviations of a six-goal cDSP with 81 Iterations with 
𝐋 = 𝟑, 𝐩 = 𝟐 

Iteration 𝒂	
Leveling-Weighting Scenario 

𝒅𝒂𝟏𝒏𝒐𝒓𝒎 … 𝒅𝒂𝟔𝒏𝒐𝒓𝒎 Level 1 
(Weight)	

Level 2 
(Weight)	

Level 3 
(Weight)	

𝒂 = 1	 Goal 2, 4 
(1,0) 

Goal 3, 6 
(1,0) 

Goal 1, 5 
(1,0) 1 … 1 

𝒂 = 2	 Goal 2, 4 
(0,1) 

Goal 3, 6 
(1,0) 

Goal 1, 5 
(1,0) 1 … 1 

𝒂 = 9	
Goal 2, 4 

b
1
2 ,
1
2c 

Goal 3, 6 

b
1
2 ,
1
2c 

Goal 1, 5 
(1,0) 1 … 0.62 

𝒂 = 19	 Goal 2, 4 
(1,0) 

Goal 3, 6 
(1,0) 

Goal 1, 5 

b
1
2 ,
1
2c 1 … 0.83 

𝒂 = 27	
Goal 2, 4 

b
1
2 ,
1
2c 

Goal 3, 6 

b
1
2 ,
1
2c 

Goal 1, 5 

b
1
2 ,
1
2c 0.45 … 0.64 

𝒂 = 54	
Goal 3, 6 

b
1
2 ,
1
2c 

Goal 1, 5 

b
1
2 ,
1
2c 

Goal 2, 4 

b
1
2 ,
1
2c 0.03  0 

𝒂 = 81	
Goal 1, 5 

b
1
2 ,
1
2c 

Goal 2, 4 

b
1
2 ,
1
2c 

Goal 3, 6 

b
1
2 ,
1
2c 0.01 … 0.68 

Therefore, the number of leveling-weighting scenarios (or design scenarios, DS), A, corresponds 

to each clustering result is given in Equation 6.13. 

𝐀 = 𝐥𝐞𝐧𝐠𝐭𝐡(𝐃𝐒) = 𝐧! ∙ 𝐧 ∙ 𝐥𝐞𝐧𝐠𝐭𝐡(𝐖𝐞𝐢𝐠𝐡𝐭[𝐧])     Equation 6. 13 

Essentially, the leveling-weighting is converting a multi-goal cDSP into multiple single-goal 

cDSPs. The conversion takes place as follows. The goals are grouped into multiple clusters based 

on their correlation or orthogonality, and the clusters are converted to constraints one-by-one, 

within a tolerance. It is assumed that the goals with stronger orthogonality or less correlation 

perform in different trajectory under multiple design scenarios, so the weighted sum of the highly 
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orthogonal goals to acquire compromise solutions may waste the potential of all subsystems. 

Therefore, to boost the performance of each subsystem in turn to satisfice various situations, we 

assign the highly orthogonal goals into different clusters and prioritize them alternatively, whereas 

we assign the more correlated goals in the same cluster and combined them using weight vectors. 

To cluster the goals in Procedure 5, we use the interrelationship matrix 𝕀𝒟 as the input. In this 

chapter, the correlation analysis (Equation 6.6 and 6.7) and orthogonality analysis (Equation 6.9 

and 6.10) are two options for obtaining 𝕀𝒟 for cluster analysis, and the methods in “hclust” in R, 

hierarchical clustering, are used, and obtained the clustering results {C, Cluster}. By applying all 

methods in hierarchical clustering, different results may be acquired, and the most popular one is 

returned as {C, Cluster} that is used in leveling of the next cycle. The algorithm of clustering is 

given as follows.  

Algorithm 3 Procedure 5 Clustering 

1: Given 𝒟W, {C, Cluster} 

2: Initiate queue = [	], temp_result = [	] 

3: 𝒟W_U03v ←Normalize 𝒟W using Equation 12 

4: Calculate 𝕀𝒟 based on their correlation (Equation 6, 7) or orthogonality (Equation 9, 10)  

5: for each method in hclust 

6:      {C, Cluster} 	← hclust(𝕀𝒟, 𝑚𝑒𝑡ℎ𝑜𝑑) 

7:      queue. append = {C, Cluster} // Add the latest result into an array named “queue” 

8: {C, Cluster} = mode(queue) // Select the clustering result that appears most often 

9: return {C, Cluster} 

We use the test problem, Rankine cycle thermal system design, to testify the effectiveness of the 

ALWC algorithm. 
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6.4 Unsuperfized Learning Results and Discussions 

6.4.1 Clustering result 

By running the ALWC loop applying different interrelationship methods and clustering methods, 

we obtain clustering results iteratively and list them in Table 6.3. For each interrelationship 

method, although there is only one clustering result converged, during running the ALWC loop, 

different clustering results are found. There are three clustering results have ever been identified 

as a result to update the leveling and we summarize them in Table 4. Our aims of processing the 

ALWC loop include identifying the best clustering result, obtaining more solutions that better 

complete the goals or improve the diversity of the deviations, and discover the knowledge on 

method selection and reuse them. Therefore, we append all solutions and deviations in all iterations 

to enlarge the solution pool for decision support. 

Table 6. 4 The clustering results along iterations 

Interrelationship Iteration 1: 1-level Iteration 2 Iteration 3 

Angle-based 
correlation 

6 weight 
vectors 

21 weight 
vectors 

71 weight 
vectors 

22 design scenarios by 
alternating levels {3, [[1, 
6], [2, 4], [3, 5]]} 

22 design scenarios by 
alternating levels {3, [[1], 
[2, 4], [3, 5, 6]]} 

{3,  
[[1],  
[2, 4],  
[3, 5, 6]]} 

{3,  
[[1, 6],  
[2, 4],  
[3, 5]]} 

{3,  
[[1, 6],  
[2, 4],  
[3, 5]]} 
(returned) 

{3,  
[[1],  
[2, 4],  
[3, 5, 6]]} 

{3,  
[[1],  
[2, 4],  
[3, 5, 6]]} (converged) 

Orthogonality 

6 weight vectors 21 weight 
vectors 

22 design scenarios by 
alternating levels {3, [[1, 2, 
4], [3, 5], [6]]} 

22 design scenarios by 
alternating levels {3, [[1, 
2, 4], [3, 5], [6]]} 

{3,  
[[1, 2, 4],  
[3, 5],  
[6]]} 

{3,  
[[1, 2, 4],  
[3, 5],  
[6]]} 

{3,  
[[1, 2, 4],  
[3, 5],  
[6]]} 

{3,  
[[1, 2, 4],  
[3, 5],  
[6]]} (converged) 

Table 6. 5 The summary of the clustering results ever returned to update the leveling 

Clustering result 1 {3, [[1], [2, 4], [3, 5, 6]]} 
Clustering result 2 {3, [[1, 6], [2, 4], [3, 5]]} 
Clustering result 3 {3, [[1, 2, 4], [3, 5], [6]]} 
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6.4.2 Improvement in Goal Achievement along the Design Scenario Expansion 

For a many-goal problem, because the tradeoffs between two goals often affect other goals, there 

are too many nondominated solutions and weak dominated solutions, therefore makes it ineffective 

to use the conception of “solution domination” to rank the solutions, therefore, we use statistics to 

reflect whether the results are improved and enriched along iterating. In Table 6.5, we show the 

mean, standard deviation, best (minimum), and worst (maximum) deviations of each of the six 

goals, under each clustering scenarios, and highlight the best case among all clustering scenarios. 

To make the results from different clustering scenarios comparable, we use the real deviation value 

instead of the normalized value. For the 1-level scenario, we use the results of the 71 weight vectors 

to obtain the statistics because these 71 weight vectors include the 6 and 21 weight vectors in 

previous iterations of the inner loop. For all the other three clustering scenarios, as each of them 

has 22 design scenarios, we use them to calculate the statistics respectively. For example, for Goal 

1, among the means of each of the four clustering scenarios, the best (smallest) value 0.04 takes 

place in the third clustering scenario.  The numbers in Table 6.5 are rounded but we use the longer 

floating numbers to do the comparison ad highlight the best ones. They key messages from Table 

6.5 are stated as follows. 

Table 6. 6 Statistics of the Results 

Statistics Clustering scenario 𝒅𝒌 = 𝒎𝒂𝒙{𝒅𝒌j, 𝒅𝒌l} Sum∑ 𝒅𝒌𝟔
𝒌w𝟏  𝑑x 𝑑� 𝑑� 𝑑� 𝑑ð 𝑑` 

Mean 

1 level 0.05 0.81 0.36 0.81 0.90 0.02 2.94 
{3, [[1], [2, 4], [3, 5, 6]]} 0.05 0.78 0.51 0.78 0.92 0.01 3.04 
{3, [[1, 6], [2, 4], [3, 5]]} 0.04 0.84 0.34 0.84 0.90 0.01 2.96 
{3, [[1, 2, 4], [3, 5], [6]]} 0.05 0.80 0.45 0.80 0.91 0.01 3.01 

Standard deviation 

1 level 0.05 0.08 0.41 0.08 0.05 0.04 0.31 
{3, [[1], [2, 4], [3, 5, 6]]} 0.05 0.08 0.38 0.08 0.05 0.01 0.26 
{3, [[1, 6], [2, 4], [3, 5]]} 0.05 0.05 0.24 0.05 0.04 0.01 0.19 
{3, [[1, 2, 4], [3, 5], [6]]} 0.04 0.08 0.37 0.08 0.05 0.01 0.25 

Minimum (best 
case) 

1 level 0.00 0.69 0.04 0.69 0.84 0.00 2.67 
{3, [[1], [2, 4], [3, 5, 6]]} 0.00 0.69 0.06 0.69 0.85 0.00 2.72 
{3, [[1, 6], [2, 4], [3, 5]]} 0.00 0.69 0.06 0.69 0.85 0.00 2.72 
{3, [[1, 2, 4], [3, 5], [6]]} 0.00 0.69 0.07 0.69 0.85 0.00 2.73 
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Maximum (worst 
case) 

1 level 0.12 0.88 0.90 0.88 0.97 0.16 3.52 
{3, [[1], [2, 4], [3, 5, 6]]} 0.12 0.87 0.90 0.87 0.97 0.02 3.31 
{3, [[1, 6], [2, 4], [3, 5]]} 0.12 0.87 0.90 0.87 0.97 0.02 3.29 
{3, [[1, 2, 4], [3, 5], [6]]} 0.12 0.87 0.90 0.87 0.97 0.02 3.29 

By leveling the goals using three clustering scenarios, the mean, standard deviation, and the worst-

case result of the deviations of five goals but Goal 1 are improved. The worst-case of the sum of 

all goals is improved. These observations indicate that by clustering and leveling the goals using 

ALWC algorithm, we identify better design scenarios regarding reducing the deviation (or 

improving the achievement) of most goals. 

There can be other statistics evaluate the iterative results from different perspectives. Designers 

may select or develop customized statistics based on the characteristics of their problems. 

6.4.3 Reducing the Euclidean Distance to the Utopia Point 

For a many-goal, concurrent design problem, goals may represent the performance of various 

subsystems of the design. It is possible that the improvement of one goal results in a bigger 

sacrifice of another goal or several other goals; see Figure 6.15, as Goal 3 is improved 20% at 𝐷�x�� 

versus 𝐷xx��, Goal 1 and 2 get worse by 80%. This may be desired in some situation, but more 

often than not, designers would rather avoid it because the comprehensive performance of the 

design may not be practically enhanced by improving one subsystem. Therefore, we use the 

Euclidean distance to the Utopia point of the deviations, to evaluate the comprehensive 

performance of the achievement of all goals. Equation 6.14 is the Euclidean distance to the Utopia 

point of the result from Design Scenario 𝑎 for a K-goal problem. We use statistics to evaluate the 

evolving of the Euclidean distance along the iterating and summarize them in Table 6.6. Using the 

clustering scenarios obtained along iterating, the mean, standard deviation and the worst case of 

the Euclidean distance to the Utopia point are improved, whereas the best case is not improved. 

All the design scenarios and corresponding results from all iterations are added to the solution pool 
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for designers to select. Designers may customize their post-solution analyses to acquire further 

decision support on design scenario generation and selection. 

|𝑶𝑫𝒂| = ¸∑ 𝒅𝒂𝒌
𝟐𝑲

𝒌w𝟏 ¹
𝟏
𝟐       Equation 6. 14 

 

Figure 6. 15 An Example of Improving Goal 3 by 20% While Worsening Goal 1 and Goal 2 
by 80% Respectively 

Table 6. 7 Statistics of the Euclidean Distance to the Utopia Point of the Results under Each 
Clustering Scenario 

 Mean Standard 
deviation 

Minimum 
(best case) 

Maximum 
(worst case) 

1 level 1.56 0.08 1.45 1.70 
{3, [[1], [2, 4], [3, 5, 6]]} 1.57 0.08 1.46 1.66 
{3, [[1, 6], [2, 4], [3, 5]]} 1.54 0.06 1.46 1.64 
{3, [[1, 2, 4], [3, 5], [6]]} 1.56 0.07 1.46 1.64 

6.4.4 Reducing Computational Complexity 

Smith and coauthors of (Smith, Milisavljevic et al. 2015) explore the leveling of all six goals, and 

the theoretical number leveling scenario is 6! = 720. In this chapter, as the goals are leveled based 

on clustering results, for each clustering scenario, the number of leveling scenarios is reduced to 
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3! = 6. Within each level, the goals are combined using weight vectors. The stopping criteria of 

weight vectors generation (Line 5 of Algorithm 2) help prevent designers from using too many 

unnecessary weight vectors. Using angle-based correlation method to calculate the 

interrelationship matrix, we explore 142 design scenarios in three iterations and converge; using 

orthogonality method we explore 71 design scenarios in three iterations and converge. If we use 

both methods, that is 213 design scenarios. Therefore, the number of design scenarios are reduced 

from 720 to 213. 

6.4.5 Verification of the Results 

The results are verified by domain knowledge. Among all three clustering scenarios, Goal 2 and 

Goal 4 are always in one cluster, Goal 3 and Goal 5 are always in one cluster, whereas the 

clustering result of Goal 1 and Goal 6 are changed along iterating. This means that Goal 2 and 

Goal 4 are strongly correlated, or weakly orthogonal, and so do Goal 3 and Goal 5; the relationship 

between Goal 1, Goal 6 and other goals are not significant.  The clusters represent the subsystems, 

which verify the clustering result, see Table 6.8. Goal 2 and Goal 4 represent the Rankine cycle 

efficiency. It is also verified by the fact that the system efficiency indicator 1 is to boost the 

Rankine cycle efficiency. Goal 3 and Goal 5 represent the heat exchange efficiency, and the 

temperature exchanger and the heat transfer work have synergetic effect during system working. 

Goal 1 is about the moisture in the turbine, and it sometimes forms a single cluster and sometimes 

clustered with Goal 2 and Goal 4, which is verified by the knowledge that when the moisture in 

the turbine is low, the Rankine cycle has a high efficiency, but the turbine is a relatively isolated 

subsystem. Goal 6 is sometimes formed as a single cluster and sometimes clustered with Goal 3 

and Goal 5. It is understandable that they all deal with the efficiency of the heat exchanger; Goal 

3 and Goal 5 are more about the temperature, whereas Goal 6 deals with the liquid flow. However, 
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in one clustering scenario, Goal 1 and Goal 6 are in one cluster. The scatter plots of any two goals 

facilitate (Figure 6.16) us to interpret this phenomenon. The deviations of Goal 1 and Goal 6 are 

relatively small values and close to the Utopia point O, Figure 6.16 (e), comparing with other two-

goal plots. Even after normalizing the deviations in the range [0, 1], it shows that Goal 1 and Goal 

6 have a weak correlation. However, after such a clustering scenario being used in the next 

iteration, the clustering results are “back to normal.” This indicates that the iteratively clustering 

and updating is necessary because it can expand the sample size and remove bias. 

Table 6. 8 Meaning of the Three Clusters 

Meaning Representative Goals 
Rankine cycle efficiency Goal 2: Maximize Rankine cycle efficiency 

Goal 4: Maximize system efficiency indicator 1 
Heat exchange efficiency Goal 3: Maximize temperature exchanger efficiency 

Goal 5: Maximize system efficiency indicator 2 
Moisture in turbine Goal 1: Moisture in steam leaving the turbine 
Heat transfer effectiveness in exchanger Goal 6: Heat transfer effectiveness in exchanger 
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Figure 6. 16 Scatter plots of any two goals using deviations of 1-level, 21 weight vectors 

With domain knowledge, the clustering result is verified for the thermal system design problem. 

As to the many-goal problems that the domain knowledge or expertise is missing, the ALWC 

algorithm can facilitate designers identify the interrelationship between the goals. Hence, more 

design scenarios regarding the combination form of goals are explored based on their 

interrelationship. The design scenarios and deviations of the goals are added to the solution pool 

for designers to select to satisfy different requirements, to improve the problem formulation, and 

to do further analysis to better understand the interrelationship among subsystems. The ALWC 
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algorithm can be used as a tool to partition a concurrent design problem, especially when 

information is incomplete. 

6.4.6 Closing Remarks on Using ALWC to Speed up Learning 

In this chapter, we propose a method, the Adaptive Leveling-Weighting-Clustering (ALWC), for 

exploring multiple design scenarios. We use a test problem (thermal system design) to illustrate 

the effectiveness of the ALWC algorithm. One question is addressed, and the answer is 

summarized as follows. 

• What is the domain-independent method to capture and reuse the knowledge of a many-

goal, concurrent-engineering-design problem to facilitate the exploration and selection of 

design scenarios? 

Using the ALWC algorithm, with increasing weight vectors, the interrelationship among goals 

based on their deviations, or achievement rates are evolved and converged. Based on their 

interrelationship, goals are grouped into clusters to represent different subsystems. The 

combinations of the goals are explored iteratively, by using either the Pre-emptive or Archimedean 

strategy.  This facilitates assigning each cluster a different level (leveling) and combining the goals 

in each level using weight vectors (weighting). Through iteration more design scenarios are 

identified and the corresponding solutions are obtained for designers to choose the appropriate 

design scenario and thence improve the design. As a tool to acquire insight when domain 

knowledge is lacking, the combination of the goals is explored so that better solutions regarding 

the average deviations, standard deviations, worst case, and Euclidean distance to the Utopia point 

are identified, whilst the computational complexity is reduced. 
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The algorithms embodied in the ALWC algorithm can be extended, modified, or customized to 

specific requirements of a design problem. When there is insufficient expertise in the problem 

domain to support decision making on the goals, subsystem division and tradeoffs, and design 

improvement, the knowledge discovered using the ALWC algorithm can be used to explore the 

ways that may contribute to design improvement. 

6.5 Role of Chapter 6 in this Dissertation 

6.5.1 Summarizing How We Finish Task 3: Connecting Formulation, Exploration, and 

Evaluation 

For a complex system composed of subsystems, when designers lack knowledge of subsystem 

division, the structure of the subsystems, combination status, mutual relationship, etc., the 

interrelationship among the subsystems cannot be effectively leveraged to improve the efficiency 

entire system. For the decision model of a concurrent engineering-design problem, the awareness 

of subsystems and the interrelationship among the subsystems are hidden information that can be 

learned by analyzing the decision model, the solution space, and the association between design 

scenarios and the solutions. 

The essence of Specific Hypothesis 3, “learn system nature such as interrelationship among 

subsystems and reorganize them based on it” is, to explore multiple design scenarios and obtain a 

dynamic dataset for analysis, through which the correlation, orthogonality, or other indicators that 

characterize the degree of contradiction or synergy among the different driving forces in the system, 

gradually emerge and eventually form a trend. Learning such a trend is helpful in reorganizing the 

subsystems or selecting the most reasonable and representative design scenarios that maximize the 
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usage of the interrelationship among the subsystems. Such learning process is to improve the 

formulation through exploration and evaluation of the model and solution space. 

In this chapter, we divide the methods that deal with multi-goal (multi-objective) problems into 

two categories, focusing on the performance of the solution algorithms and focusing on design 

improvement. Based on the limitations of both categories – the limitations of Pareto front, 

especially in engineering-design problems, and, relying on domain knowledge heavily, we propose 

a method, the adaptive leveling-weighting-clustering (ALWC) algorithm (Figure 6.9 and 6.13) to 

use the dataset consists of (but not limited to) design scenarios, goal achievement, and solutions to 

learn the system nature and obtain useful information to improve the formulation. Information 

such as subsystems and their interrelationships are helpful in identifying the most appropriate and 

representative design scenarios to reorganize the subsystems and aped up the learning process.  

In other words, we realize the connections among formulation, deduction, decision, and action 

through the activities in the circles, as shown in Figure 6.17. The overview and flowchart of the 

method is illustrated in Figure 6.9 and 6.13. Through realizing the algorithms 1-3 in Section 6.3.3, 

we implement the proposed method in the context of the Rankine cycle thermal system problem. 
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Figure 6. 17 The Procedures Involved in Formulation-Exploration-Evaluation – Establish 
the information exchange, knowledge awareness, and instructions sharing among 

formulation deduction, decision, and action 
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6.5.2 Summarizing How We Realize Type I, III, & IV Robust Design 

For the test problem, designing the Rankine cycle thermal system, Type I uncertainty is identified 

as the various results due to the starting point changing, thus we call “XPLORE” module in 

DSIDES (details are introduced in Section 2.2.3) to identify a local area that is feasible and with 

relatively good goal achievement to start searching. 

Type III uncertainty, defined as the uncertainty in model approximation (ways of combining 

multiple goals), is managed using the three algorithms in adaptive leveling-weighting-clustering 

(ALWC) algorithm, Algorithm 1 Leveling, Algorithm 2 Weighting, and Algorithm 3 Clustering; 

see Figure 6.13. By exploring different leveling and weighting formats to combine the multiple 

goals that represent the interest of subsystems, the goals can be clustered and the subsystems can 

be identified and their interrelationship can be learned, therefore, the combination of the goals can 

be updated and the most appropriate and representative design scenarios (which in this test 

problem is the combination of goals) can be selected. Using the selected design scenarios instead 

of enumerating all of them can speed up the learning and reduce the computational complexity. 

Type IV uncertainty, the uncertainty in using domain knowledge to simplify the model, for the 

Test Problem 3, has two manifestations, fixing decision variables based on domain expertise and 

selecting design scenarios using experience. The first uncertainty is managed using the “fixing 

variables” and “XPLORE” modules. In DSIDES, when applying both modules to a variable, we 

first using interior-point searching to identify the best value for a variable and then fix it, which 

means treating it as a deterministic parameter. If we fix more than one variable, then the best 

combination of the variables is returned as a vector and those variables’ values are fixed by 

implementing the vector. This significantly reduces the computational complexity especially when 

there are discrete variables. The second uncertainty is managed through the leveling and clustering 
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algorithm in the ALWC algorithm. By clustering the goals and leveling them based on their 

clusters, we select the design scenarios that allow boosting the system performance. 

By implementing the ALWC algorithm as an extension of DSIDES, we can identify the solution 

space that is relatively insensitive to the Type I, III and IV uncertainty that we need to manage in 

a specific problem. In this way, we realize Type I, III & IV robust design. see the summary in 

Table 6.9 as the closing remarks of Table 3.2 regarding the robust design realization and 

uncertainty management for Test Problem 3. 

Table 6. 9 Summary of Test Problems 3 regarding Type I, II, & IV Uncertainty 
Management 

R
D

 T
yp

e RDI-II   
  RDIII  
   RDIV 

M
et

ho
d  

M1: Formulation-Exploration 
Framework 

M2: Adaptive 
Linear 
Programming with 
Parameter Learning 
(ALPPL) 

M3: Adaptive Leveling-
Weighting-Clustering 
Algorithm (ALWC) 

M4: Scenario 
Planning in 
Agent-Based 
Modeling 

Chapter Ch 4 Ch 5 Ch 6 Ch 7 

U
nc

er
ta

in
ty

 
Te

st
 

Pr
ob

le
m

 

T1: Dam 
network 

T2: Supply 
chain 

T3: Hot rolling 
process chain T4: Thermal system 

T5: Promoting 
second-season 

farming 

Ty
pe

 I 

Uncertainty 
in timing and 
amount of 
inflow – 
Table 4.7 

Uncertainty 
in demand 
side – Figure 
4.25 

Uncertainty in 
hyper parameter 
setting – Table 5.7, 
Figure 5.16 

Uncertainty in parameter 
setting in solution algorithm 
(Starting point of searching) 
– call XPLORE in DSIDES 

Uncertainty in 
price (Price of 
agriculture 
products) 

Ty
pe

 II
 

Uncertainty 
in outflow 
(water 
release 
target) – 
Table 4.5 

Uncertainty 
in supply side 
- Table 4.15 

Uncertainty in user 
preferences – 
Table 5.6 

 
Promotion 
effort and 
timing 

Ty
pe

 II
I 

  

Uncertainty in 
model 
approximation due 
to heuristics in 
approximation – 
Table 5.5 

Uncertainty in model 
approximation (ways of 
combining multiple goals) – 
leveling-weighting-
clustering algorithms 
(Figure 6.13) 
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Ty
pe

 IV
 

   

Uncertainty in using domain 
knowledge to simplify the 
model (fixing decision 
variables and selecting 
design scenarios) – “fixing 
variable” and “XPLORE” 
modules in DSIDES, and 
leveling and clustering 
algorithm in the ALWC 

Interventions 
that change the 
mathematical 
relation among 
promotion and 
result 
(developing 
local market) 

RD – robust design 
M – method 
EVe – empirical verification of the method 
T – test problem 

 

6.5.3 Role of Chapter 6 

In Chapter 6, given the frame of references on the modeling constructs and solution algorithms for 

multi-goal or multi-objective problems, especially focusing on the exploration of the 

interrelationship among subsystems and the combination of goals, which is an extension of the 

frame of references in Chapter 2. A method, the Adaptive Leveling-Weighting-Clustering (ALWC) 

algorithm, is proposed to aware and explore the subsystems of the system and the design scenarios. 

A test problem, designing a Rankine cycle thermal system, is used to verify the proposed methods. 

It is proved that using the ALWC algorithm, the interrelationship among the subsystems can be 

learned, the most representative design scenarios that can reasonably organize the subsystems to 

boost the system’s efficiency can be identified and applied. Research Question 3 is addressed. 
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CHAPTER 7 TYPE I, II, & IV ROBUST DESIGN THROUGH EMERGENT 

PROPERTIES IDENTIFICATION AND INTERPRETATIONS 

– EXPLORING CRITICAL FACTORS THROUGH SCENARIO PLANNING IN AGENT-

BASED MODELING 

The new knowledge in Chapter 7: 
A framework to identify and leverage the critical factors to reach simulation goals 

In Chapter 7, see Figure 7.1: in Section 7.1, the reference on designing promotions using agent-

based modeling is framed and identified the limitations; in Section 7.2, the test problem, the 

motivation and challenges in learning emergent properties in promoting the second-season 

cultivation in an island village in India are introduced; in Section 7.3, based on the research gaps 

described in Section 1.5 and the Method 4 proposed in Section 3.3.4, we introduce the framework 

of scenario planning in agent-based modeling for exploring critical factors in details; in Section 

7.4, the proposed method is applied to the second-season cultivation promotion simulation 

problem for critical factor identification and emergent property learning; in Section 7.5, 

summarized the role of Chapter 7. 

 

Figure 7. 1 Organization of Chapter 7 
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The plan of specifying and answering Research Question 4 in the context of the test problems is 

shown in Table 7.1. In Chapter 7, the Proposed Method 4 (M4), the scenario planning framework 

in agent-based modeling, is empirically verified (EVe4) using a test problem, designing the 

promotion of the second-season cultivation in a rural community (T4). Research Question 4 (RQ4) 

is specified in the context of the test problem (SQT4) and answered (AQ4) by testifying M4. The 

empirical validation and theoretical validation are in Chapters 8 and 9. 

Table 7. 1 Plan of Specifying Research Question 4 (RQ4) and Empirically Verifying the 
Scenario Planning Framework in Agent-Based Modeling (M4) 

C
ha

pt
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r  C
h 1

 

C
h 

2  

C
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3  

Ch 4-7 

C
h 

8 

C
h 

9 

C
h 

4-
6 Ch 7 

A
ct
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ns

 

RG 

H 

RD 

RQ 

SH 

TVe 

M 

EVe 

1-3 

SQT 

1-3 

AQ 

1-3 

EVe4: use a test problem on designing the promotion in a social network to 
verify SH4 and demonstrate M4. 

CQ 

EVa 
TE 

SQT4: What is the method that facilitates recognizing emergent properties in 
a social network and identifying critical factors to reach promotion goals 
under the emergent properties? 
SQT4.1: What are the critical factors that affect the collective behaviors 
under interventions? 
SQT4.2: How can we identify the critical factors and select the appropriate 
scenario to reach an expected result? 
AQ4: Using the proposed scenario planning framework, designers can 
perform simulations and identify critical factors in their systems and select 
specific scenarios that accommodate different site-specific input values or 
domain-dependent knowledge to reach their goals. 

N
om

en
cl

at
ur

e 

RG – give research gaps 

H – give hypotheses 

RD – tie to roust design 

RQ – pose research questions 

SH – specify hypotheses 

TVe – theoretically verify hypotheses 

M – introduce methods 

EVe – empirically verify hypotheses 

SQT – specify research questions in the context of test problems 

AQ – answer research questions 

CQ – closure the answers to research questions 

EVa – empirically validate hypotheses 

TE – theoretically extend the research 
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In this chapter, the Research Question 4 (RQ4) “What is the method that allows passing the 

information through multiple scales of a system?” is specified regarding the test problem, 

designing the promotion of the second-season cultivation in a rural community (T4), as follows 

(SQT4) and then further specified into two sub-questions indicating the tasks and answered. 

SQT4: What is the method that facilitates recognizing emergent properties in system and 

identifying critical factors to reach system goals under the emergent properties? 

SQT4.1: What are the critical factors that affect the collective behaviors under interventions? 

SQT4.2: How can we identify the critical factors and select the appropriate scenario to reach an 

expected result? 

It is hypothesized that interactions among the formulation, exploration, approximation, and 

evaluation of a design problem should be studied and the mechanisms of information sharing and 

intervention between the four procedures are established. See Figure 7.2. 
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Figure 7. 2 Specified Research Question 3 and the Relevant Stages to be Connected in 
Design Evolution Cycle 

7.1 Frame of Reference on Designing Promotions using Agent-Based Modeling 

It is challenging to change people’s mode of making a living and lifestyle when a new technology 

is available,  especially in relatively closed and underdeveloped areas (Wilhelm 2000, Stewart 

2016). Modeling methods and simulations are used to predict people’s acceptance and adoption of 

a new lifestyle or technology, but often the verification of the simulations and the validation of the 

utility of the method are missing (Parker, Manson et al. 2003, Chitungo and Munongo 2013). 

Because of unavoidable errors and flaws in modeling (Box 1976) and due to the complexity of the 

model environment, methods such as sensitivity analysis (Abreu and Ralha 2018, Guo, Chen et al. 

2019) and Monte Carlo analysis (Lumbroso and Davison 2018) are often used to manage 

uncertainties and provide decision support in a changing environment. However, for the design of 

sociotechnical systems, where the initial data is lacking or difficult to verify and quantify (Afshari 

and Peng 2015), and when the future is uncertain, we need a method to explore the variability of 
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the model results and identify sensitive factors that contribute to variabilities (Abreu and Ralha 

2018). 

From the literature on simulating social behaviors and providing decision support for policy-

making, agent-based modeling (ABM) is a practical tool (Qiu, Xu et al. 2018). There are many 

examples of the use of ABM to observe patterns in collective behavior, identify critical factors, 

and intervene in the system by changing critical factors, including the exploration of the extent of 

influence, or radius of influence, among neighbors with respect to promotion actions (Opiyo 2019), 

the identification of critical factors that contribute to population dynamics (Qiu, Xu et al. 2018), 

the estimation of the effects of policy interventions on the investment in new equipment (Al Irsyad, 

Halog et al. 2019), and decision support for managing the potential labor reproduction 

(Rossoshanskaya 2019). In Table 7.2, we list some representative publications on capturing social 

behavior and leveraging critical factors to serve a promotion goal. However, there is less literature 

on decision support based on planning for various scenarios. Therefore, here, we provide scenario-

planning-based decision support to social entrepreneurs, SEs, with respect to reaching social-

economic goals in various situations. We use a test problem of promoting second-season 

cultivation, that is, growing a second crop each year in an underdeveloped, rural Indian village. 

Table 7. 2 Some Representative Applications of Agent-Based Modeling (ABM) for New 
Technology Acceptance and Policy Impact 

Author and 
Year 

Problem 
Description Method Results Contribution 

Opiyo, 2019 
(Opiyo 2019) 

Study neighborhood 
influence and social 
pressures on 
temporal diffusion 
of solar home 
systems 

Agent-based 
modeling 
with survey 
data   

Visibility of newly 
installed SHS and 
increasing influence 
radius leads to 
growth in SHS 
installations 

The survey method 
is helpful to acquire 
relatively 
quantifiable data for 
a social problem 
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Qiu, 2018 (Qiu, 
Xu et al. 2018) 

Simulate urban land 
development and 
population dynamics 

An agent-
based and 
spatial 
genetic 
algorithm 
framework 
(PDULD) 

Government 
policies dominate 
the process of land 
development 

Community 
cohesion theory is 
introduced into the 
model; historic data 
are used to verify 
the results 

Irsyad, 2019 (Al 
Irsyad, Halog et 
al. 2019)  

Estimate the effects 
of four solar energy 
policy interventions 
on photovoltaic (PV) 
investments, 
government 
expenditure, 
economic output, 
etc. 

Uses hybrid 
energy -
agent-based 
modeling 
  

Results call for PV 
donor gift policy, 
the improvement of 
production 
efficiency, after-
sales services and 
rural financing 
institutions 

Integrate input-
output analysis, 
environmental 
factors and 
socioeconomic 
characteristics of 
households in 
Indonesia 

Rossoshanskaya, 
2019 
(Rossoshanskaya 
2019) 

Simulate labor 
potential 
reproduction; among 
the scenario 
forecasts, provide 
decision support on 
management actions 

Agent-based 
modeling 
with multi-
agents and 
multi-
scenarios 

The integrated 
agent-based model 
of labor potential 
reproduction at the 
municipal level 

The model is filled 
with sociological 
and statistical data 
and has a user-
friendly interface 

7.2 Problem Statement – Promoting the Second-Season Cultivation in an Island Village in 

India 

- Test Problem 4: apply scenario planning in agent-based modeling to a social system design 

problem  

Our objective is to give decision support to social entrepreneurs (SEs) promoting second-season 

cultivation in Kudagaon, a relatively isolated and underdeveloped village in Odisha, India. 

Kudagaon is a village on an island surrounded by a river (Figure 7.3). There are 85 households in 

the village and each household has some farmland. There is a rainy season (or monsoon season) 

and a dry season. Most households do one-season cultivation, growing rice or vegetables in the 

rainy season using the water from the river. In the dry season, the water level of the river drops 

significantly, so the majority of the families cannot farm because of the scarcity of water. Therefore, 
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two-season cultivation is not possible; hence, the villagers cannot increase their family savings by 

two-season cultivation. It has been determined that Kudagaon has sufficient underground water 

for farming in the dry season, but villagers need to purchase or rent equipment to pump the 

underground water and transport it to their farmland. Since most families do not have adequate 

savings, they cannot afford the equipment. This is a dilemma. 

 

 Figure 7. 3 The satellite map of Kudagaon 

When a household (family) grows crops only once a year, during the dry season, the main laborer(s) 

of the family migrate so that they can obtain daily wages. These daily wages are their families’ 

only source of income in the dry season. We call this “migration income.” Migration income is 

usually less than the income which could be garnered from second-season cultivation, assuming 

sufficient water. In addition, the wellbeing of families with migration worker(s) (these are 

“migration families”) regarding family stability and social status is worse than that of the families 
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who do two-season cultivation (these are “cultivation families”). However, during the rainy season, 

families who do one-season cultivation when their farmlands are away from the river may still 

consider growing crops in the dry season based on the specific climate and the market situation 

each year. They can lease equipment and water pumps to get underground water for second-season 

cultivation, but the cost is high, and the risk is high. However, if they anticipate that they may gain 

more profit through second-season cultivation than doing migration work, they may stay and grow 

second-season crops instead of migrating. Currently, the probability of a household which does 

one-season cultivation to switch to two-season cultivation is as low as 5%. This number has been 

provided by our colleagues, the social entrepreneurs, SEs, at SunMoksha, based on historic data 

and from interviews of the villagers.  

The role of a social entrepreneur (SE) in this project is to help villagers in Kudagaon improve their 

social and economic status by promoting second-season cultivation. The SE plans to provide 

farmers the initial investment as loans to construct public infrastructure so that electrical power 

can be generated, and underground water may be obtained and transporting the water and 

electricity to make farming possible in the dry season. The underground water and electricity are 

provided to farmers as utilities using affordable, tiered pricing. After the farmers profit from the 

second-season cultivation and have savings, they repay the loans within several years. In Figure 

7.4, we illustrate how the initial investment from the SE helps to make second-season cultivation 

feasible. 

The acceptance of second-season cultivation is crucial for the success of this project. Hence, in 

addition to loans and technical support, it is important to promote second-season cultivation among 

farmers. The benefits from second-season cultivation include improving a family’s economic and 

social status with a higher and more stable income and keeping the family together. However, not 
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all villagers realize these benefits, and there is a considerable reluctance to change one’s mode of 

production, lifestyle, and source of income. 

 

Figure 7. 4 The SE’s plan for facilitating second-season cultivation 

Based on the dilemma and the difficulties that the SE encounters, we summarize the SE’s possible 

actions and targets in Table 7.3. Each target either improves the villagers’ social status, or improves 

their economic status, or both. We hypothesize that by increasing the two-season cultivation 

households, there can be a scale effect due to stable market demand and lowering the unit cost of 

storage and transportation; thus, villagers’ income can be increased, and their economic status can 

be enhanced. An SE’s job is to boost villagers’ economic and social status in both the short term 

and long term. In the short term, the SE wants to improve the two-season cultivation rate from 𝛽x 

to 𝛽�, and, in the long term, the SE wants to improve 𝛽x to 𝛽�. 𝛽x is a given static rate based on 

historical data. 𝛽� and 𝛽� are targets that the SE wants to reach. There are different scenarios of 

𝛽� and 𝛽�. In this chapter, we offer suggestions on promotion efforts and their durations to reach 

each scenario of 𝛽� and 𝛽�. 

Table 7. 3 The SE’s Target based on the Current Situation 
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Current Problem Reason or 
Dilemma SE’s Action Target Category 

Only 𝛽x of the 
households 
anticipate a better 
profit of second-
season cultivation 
so they grow twice 
a year 
𝛽x ≈ 5% 

Farmers 
cannot afford 
the 
equipment to 
acquire 
underground 
water for 
farming in 
the dry 
season 

Having 
promotion 
activities34;  
providing 
underground 
water; 

Raising the second-
season cultivation rate 
from 𝛽x to 𝛽� in the 
promotion year 

Short-term 
economic status – 
increase profit level 

Maintaining the 
second-season 
cultivation rate of 𝛽� 
after two years 
following the 
promotion year 

Long-term 
economic status –
stability and 
reliability of income 
sources 

(1 − 𝛽x) of the 
households do not 
anticipate a better 
profit of the 
second-season 
cultivation so they 
grow only once a 
year and migrate in 
the dry season 

Reducing the migration 
rate from (1 − 𝛽x) to 
(1 − 𝛽�) in the 
promotion year 

Short-term social 
status – the 
confidence to make 
an improvement 

Maintaining the 
migration rate at (1 −
𝛽�) two years after the 
promotion year. 

Long-term social 
status – the family 
stability and sense of 
security and self-
sufficiency 

We introduce modeling and scenario development in Section 7.3, discuss the results of the scenario 

planning in Section 7.4, and summarize the role of Chapter 7 in this dissertation in Section 7.5. 

7.3 Modeling and Scenario Development 

7.3.1 Build the Architecture and Set the Baseline Scenario of the Agent Based Model 

To capture the factors that impact the promotion effects, we simulate the households’ behavior 

using agent-based modeling (ABM). The simulation is performed using AnyLogic 8 PLE software. 

Because Kudagaon is a single community with a relatively flat social hierarchy, we define each 

household as an agent and use a single type of agent. Social influence and influence of each 

 

34 The promotion activities include holding community discussions, visiting each household in person, giving training 
on second-season cultivation and strategies to conserve water, etc. As Kudagaon is a small village with only 85 
households, SEs are able to visit and interview each household. 
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family’s neighbors are randomized in the same numerical range, although they vary from 

household to household. 

The project’s duration is three years. We simulate the households’ behavior for four years. To 

establish a baseline, there is no intervention in the first year to simulate the villagers’ behavior 

before the project launches. This pre-project simulation allows us to verify the model using current 

actual data. The SEs’ promotion starts in the second year which takes place during the rainy season. 

The third and fourth years are post-promotion. This allows us to track the long-term effects of the 

SE’s promotion. 

States and transitions between states. An agent (household) has 11 possible states, as follows. 

𝑆x𝑓𝑜𝑟1𝑆  Growing once a year before SEs’ promotion 

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘1 Migrating during the dry season, before the promotion 

𝑆x𝑇𝑜𝐵𝑒𝑃𝑟𝑜𝑚𝑜𝑡𝑒𝑑 Growing once a year in the SEs’ promotion year 

𝐵𝑒𝑖𝑛𝑔𝑃𝑟𝑜𝑚𝑜𝑡𝑒𝑑 Being promoted to grow twice a year by SEs 

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘2 Migrating during the dry season after being promoted 

𝑆x𝑓𝑜𝑟1𝑆𝐴𝑓𝑡𝑒𝑟 Growing once a year after the SEs’ promotion year 

𝑆x𝑓𝑜𝑟2𝑆𝑠  Growing the first season crops for a two-season cultivation year 

𝑆𝑒𝑎𝑠𝑜𝑛2  Doing a second season of growing in the two-season cultivation year 

𝐻𝑎𝑟𝑣𝑒𝑠𝑡  Harvesting the second-season crops 

𝑃𝑟𝑜𝑓𝑖𝑡   Gaining at least the expected profit or even more from second-season 
cultivation 

𝑁𝑜𝑃𝑟𝑜𝑓𝑖𝑡  Gaining less profit than expected from second-season cultivation 

The transitions between states are described in Table 7.4. The flowchart of the agents’ state 

transition is in Figure 7.5. The trigger condition and/or the duration of each transition is illustrated 

in Figure 7.6. 

Table 7. 4 Transitions between Different States for an Agent 
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Transition Meaning 

𝑆x𝑓𝑜𝑟1𝑆
0�12 𝑆𝑒𝑎𝑠𝑜𝑛2 

Before SEs’ promotion, with probability 𝛽x, a one-season cultivation 
household will change to two-season cultivation. 𝛽x = 5% 

𝑆x𝑓𝑜𝑟1𝑆
(xj0�)1⎯⎯⎯2𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘1 

Before SEs’ promotion, with probability (1 − 𝛽x), a one-season 
cultivation household will do migration work during the dry season 

𝐵𝑒𝑖𝑛𝑔𝑃𝑟𝑜𝑚𝑜𝑡𝑒𝑑
0�12 𝑆𝑒𝑎𝑠𝑜𝑛2 

During the SEs’ promotion year, with probability 𝛽�, a household being 
promoted will change to two-season cultivation. 𝛽� ≫ 𝛽x 

𝐵𝑒𝑖𝑛𝑔𝑃𝑟𝑜𝑚𝑜𝑡𝑒𝑑
(xj0�)1⎯⎯⎯2𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘2 

During the SEs’ promotion year, with probability (1 − 𝛽�), a 
household being promoted will migrate during the dry season 

𝐻𝑎𝑟𝑣𝑒𝑠𝑡
�
→𝑃𝑟𝑜𝑓𝑖𝑡 

With probability 𝛼, a household will reach the anticipated profit 
through second-season cultivation and decide to do two-season 
cultivation next year 

𝐻𝑎𝑟𝑣𝑒𝑠𝑡
(xj�)
1⎯⎯2𝑁𝑜𝑃𝑟𝑜𝑓𝑖𝑡 

With probability (1 − 𝛼), a household will not reach their anticipated 
profit through second-season cultivation and decide to do one-season 
cultivation next year 

𝑆x𝑓𝑜𝑟1𝑆𝐴𝑓𝑡𝑒𝑟
0412 𝑆𝑒𝑎𝑠𝑜𝑛2

  

After the SEs’ promotion year, with probability 𝛽�, a one-season 
cultivation household will change to do two-season cultivation. 
𝛽� = 𝛽� ∙ 𝛼      (1) 

𝑆x𝑓𝑜𝑟1𝑆𝐴𝑓𝑡𝑒𝑟
(xj04)1⎯⎯⎯2𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘2 

After the SEs’ promotion year, with probability (1 − 𝛽�), one-season 
cultivation household will migrate during the dry season 

 

Figure 7. 5 The Flowchart of the Agents’ State Transitions 
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Figure 7. 6 The Trigger Conditions and/or the Duration of the Transitions between the 
States of the Agents 

7.3.2 Scenario Development 

A factor is any source of uncertainty source, including the model structure, initial conditions, and 

input parameters. In this project, based on the basic knowledge from the SE, we define the network 

structure, SE’s promotion effort, promotion duration, villagers’ anticipation of profit, and actual 

profit as factors to be explored. Different scenarios are developed for each factor by brainstorming 

between an employee of SunMoksha, Ayushi Sharma, and research assistants in Systems 

Realization Laboratory, Lin Guo and Vishnu Kamala, based on their experience, domain 

knowledge, and assumptions. Through scenario planning, the sensitivity of the results to each 

factor is analyzed, and critical factors are identified. In Table 7.5, we list the scenarios related to 

each factor. The expected outcome of scenario planning and the way to obtain these outcomes are 

given in Table 7.6. 

Table 7. 5 Scenarios for Testing Each Factor 
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Factors Scenarios 

Network structure Distance-based 
Scale-free 

Promotion effort Different percentages of households being promoted – 10%, 50%, 75%, 100% 
Promotion 
duration 

Different promotion durations – one month, two months, three months, four 
months 

Anticipation Different positive anticipations of second-season profit – 75%, 95% 

Profit Different percentages of households who actually obtain higher profit – 75%, 
95% 

Table 7. 6 The Expected Outcome of the Scenario Planning 

Expected outcome The way to obtain the outcome 

Simulation results 

 Short-term effect Long-term effect 

Improved 
economic 
state 

The number of households 
that gain expected profit by 
growing twice a year in the 
promotion year 

The number of households 
that gain expected profit by 
growing twice a year in the 
fourth year 

Improvement 
of social 
status 

The number of households 
that migrate during the dry 
season during the 
promotion year 

The number of households 
that are directly or 
indirectly promoted 

Critical factors Identify whether the simulation results are sensitive to scenario changes 
for each factor 

Variability of the 
simulation results 

By changing the scenarios of the critical factors, obtain the range of the 
output of the model 

Identify how the critical 
factors affect the 
simulation results 

Capturing qualitative and quantitative relationship among critical factors  

7.4 Results and Discussions 

We explore the network type, promotion effort and duration, and anticipation level of profit and 

actual profit level. The results indicate that the acceptance of second-season cultivation is 

insensitive to network type but is sensitive to promotion effort. The factors that particularly affect 

the short-term result are promotion duration and villagers’ anticipation; the factor that affects the 

long-term result is the real profit that second-season cultivation produces. In Table 7.7, we 

summarize the results of the scenario planning. We describe our exploration process and 

observations in detail in Sections 7.4.1-7.4.3. 
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7.4.1 Exploring the Network Type and Promotion Effort and their Interaction Effects 

The SE wants to reduce the migration population whereas and increase the profit population. In 

Figures 7.7 and 7.8, we present the results of two network types when the SE’s promotion reaches 

every household and 50% households, respectively. In each graph, the horizontal axis represents 

time (unit: month), and the vertical axis represents the number of households. The smooth thick 

line represents the number of migration households during the dry season in the first year, the thin 

line with dots represents the households that gain expected profit from second-season cultivation, 

and the thin line with squares represents the number of migration households during the dry season 

in and after the promotion year (the second, third and fourth year). 

Table 7. 7 The Summary of the Results of the Scenario Planning 

Factor Controllable 
or not Scenario Meaning Observation 

Whether 
critical or 

not 

Network 
type35 No 

Distance-
based 

One community with strong 
neighborhood influences 
but weak or zero distant 
interactions 

The scale-free network has 
slightly better results in the 
promotion year, but in the 
long-term, network type does 
not affect the promotion 
result; see Figures 5 and 6. 

No 

Scale-free 

One community with 
asymmetric influences 
between any two connected 
households and the 
influence does not depend 
on distance 

Promotion 
effort 

Yes – SEs can 
control the 
promotion 
effort by 
reaching out 
to different 
numbers of 
households  

Reaching 
different 
numbers of 
house-holds: 
10%, 30%, 
50%, 75%, 
100% 

The promotion condition and 
target can be different from 
village to village, so 
searching for an appropriate 
rate for each village is 
necessary to reduce the 
promotion cost 

The promotion result is 
always improved by 
increasing the promotion 
effort. The short-term 
effects are more sensitive to 
the promotion effort than 
the long-term effect; see 
Figures 7.8 and 7.9, and 
Table 7.8. 

Yes, more 
critical for 
short-term 
effects 

Promotion 
duration 

Yes – SEs can 
perform the 
promotion for 
different 

The 
promotion 
duration may 
last from one 

A short promotion means 
relatively short direct 
promotion but long indirect 
promotion. This is suitable 

For short-term effects, long 
promotion has much better 
results; for long-term effect, 
short promotion and long 

Only 
critical for 
short-term 
effects 

 

35 A SE needs to determine the network type of a village through observation and statistics. The specific indicators 
used to determine the network type may vary from village to village. 
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lengths of 
time 

month to four 
months 
during the 
rainy season 

for a village with a strong 
mutual influence among 
households and vice versa. 

promotion show similar 
results; see Figure 7.10 and 
Table 7.9 

Villagers’ 
anticipation 

and real 
profit – 𝛽� 

of 
households 
anticipates a 
better profit 

through 
second-
season 

cultivation, 
𝛼 of them 
gain real 
profit as 

anticipated 

Initially, 𝜶 
and 𝜷𝟐 are 
un-
controllable, 
but as the 
project goes 
on, SEs can 
control them 
by improving 
productivity, 
developing 
more market 
demand, etc. 

𝜷𝟐 	= 95%	 
𝜶 = 95% 

Optimistic profit 
anticipation; good economy, 
weather condition, or soil 
fertility 

The short-term result is 
more sensitive to profit 
anticipation; 
The long-term result is 
more sensitive to actual 
profit, See Figure 7.11 

Profit 
antici-
pation is 
critical for 
short-term 
effects; 
real profit 
is critical 
for long-
term 
effect 

𝜷𝟐 	= 95%	 
𝜶 = 75% 

Optimistic profit 
anticipation; acceptable 
economy, weather condition, 
or soil fertility 

𝜷𝟐 	= 75%	 
𝜶 = 95% 

Conservative anticipation; 
good economy, weather 
condition, or soil fertility 

We explore different influence radio of the distance-based network, 50 meters (Figure 7.7-a) and 

100 meters (Figure 7.7-b). We explore different average degrees of the scale-free network, 5 

(Figure 7.7-c) and 10 (Figure 7.7-d), that is the average number of connections of each household. 

We also explore two different promotion efforts, reaching all households and reaching 50% 

households (the households can promote each other through the network), with one-month 

duration. 

Observations from exploring the type of network, comparing Figure 7.7 (a) and Figure 7.7 (b) 

with Figure 7.7 (c) and Figure 7.7 (d): neither the short-term nor the long-term results are sensitive 

to network types. 

Observations from exploring the influence radius, comparing Figure 7.8 (a) with Figure 7.8 (b): 

if the village is a distance-based network, when the influence radius is larger, the short-term effect 

is slightly better, whereas the long-term effect is insensitive to the influence radius. 

Observations from exploring the average degree of the network, comparing Figure 7.8 (c) with 

Figure 7.8 (d): when a village is a scale-free network, neither the short-term nor the long-term 

results are sensitive to the average degree, the average number of connections of each household.  
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Observations from exploring interaction effect of network type and promotion effort: only 

the short-term results are sensitive to promotion effort, whereas the long-term results are 

insensitive to the promotion effort because in long-term, the households promote each other 

sufficiently. 
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Figure 7. 7 Results for Two Network Types When Promotion Reaches All Households 
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Figure 7. 8 Results for Two Network Types When Promotion Reaches 50% of Households 
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Figure 7. 9 The Migration Households with Different Promotion Effort 

In Figure 7.9, we illustrate the number of migration households during the promotion year (the 

short-term effect) and two years after the promotion year (the long-term effect). As the promotion 

rate increases, the marginal improvement in the short-term is greater than that in the long-term. In 

Table 7.8, we list the interaction effects of influence radius and promotion effort. Even if the SE 

promotes every household, there will still be 11-13 households migrating during the dry season. 

Table 7. 8 Promotion Effort Exploration – Migration Household in the Promotion Year 
and in the End-of-Project Year with Different Network Scenarios 

 Promotion Effort 

Type and setting 
of the network 

10% 30% 50% 75% 100% 

2nd 
year 

4th 
year 

2nd 
year 

4th 
year 

2nd 
year 

4th 
year 

2nd 
year 

4th 
year 

2nd 
year 

4th 
year 

Distance-based 
network 
With influence 
radius: 50 m 

67 37 51 30 40 27 24 20 12 11 
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Distance-based 
network 
With influence 
radius: 100 m 

66 37 51 28 40 27 26 20 9 13 

Scale-free network 
With the average 
number of con-
nections for a 
household being 10 

68 40 62 37 44 26 27 22 12 12 

Exploring promotion effort and its interaction with influence radius: with the consideration 

of various promotion efforts, the simulation results are still insensitive to the types of network and 

are not sensitive to the network setting either. The migration population is reduced with the 

increase of promotion effort. To save cost, A SE can select the appropriate promotion effort (given 

a certain target for population migration) instead of promoting every household and the economic 

and the social status can be increased. 

7.4.2 Exploring the Promotion Duration 

In Figure 7.10, we show the promotion results with different durations. One month – Figure 7.10 

(a), two months – Figure 7.10 (b), three months – Figure 7.10 (c), and four months – Figure 7.10 

(d). As we have shown that the results are insensitive to the type and setting of the network, we 

select a distance-based network and a 75-meter influence radius. The migration population under 

different scenarios is summarized in Table 8. The results reveal that prolonging promotion results 

in larger profit in both the promotion year and the following years. The reason is that a longer 

promotion results in a larger population being promoted both directly (by the SE) and indirectly 

(by villagers themselves). Direct promotion together with the indirect promotion reinforces the 

villagers’ acceptance of second-season cultivation. However, when prolonging the promotion from 

three months to four months, the results do not improve. This indicates that the villagers’ capacity 

for accepting an idea through promotion has an upper limit; therefore, overwhelming promotion 
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does not bring a higher social acceptance and a three-month promotion gives the bests results for 

this village.  
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Figure 7. 10 Simulation Results for Different Promotion Durations – Using a Distance-
Based Network with a 75-Meter Influence Radius 
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Table 7. 9 Migration Population (Households) during the Four Years with Different 
Promotion Durations 

Promotion 
Duration 

1st year 
2nd year 

(promotion 
year) 

3rd year 4th year 

1 month 80 1-10 1-11 1-9 

2 months 80 10 1-9 1-10 

3 months 80 0-1 1-9 2-9 

4 months 80 0-2 1-8 2-9 

Exploring promotion duration: prolonging the SE’s promotion allows more interactions among 

the SE and the villagers and also triggers more indirect promotion among villagers. Therefore, it 

enhances the acceptance of second-season cultivation. Thus, the value of increasing the duration 

of promotion has an upper limit. In this project, this limit is three months – after three months, 

additional promotion does not help. 

7.4.3 Anticipation and Profit Exploration 

Another two factors are the villagers’ anticipation of profit and the actual profit they gained in the 

previous year. These are important because the SE needs to set a target for the two factors when 

doing promotion. Therefore, we need to identify the relationship: 1) between the villagers’ 

anticipation and their actual improvement of actual economic and social status, and 2) between the 

villagers’ profit and their decision on whether to do two-season cultivation the next year. 

We explore three combinations of two values of 𝛼 and 𝛽�. Because 𝛽� = 𝛽� ∙ 𝛼, we do not need 

to set a value for 𝛽�. We use a distance-based network with influence radius as 75 meters and the 

SE promotes 50% households. The long-term effect is determined by the short-term effect and the 

real gain. In Figure 7.11, we show the results from the three scenarios for 𝛼 and 𝛽�. 
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Figure 7. 11 Simulation Results of Three Scenarios of Anticipation 𝜷𝟐 and Profit 𝜶 

Exploring the relationship between the anticipation of profit and the actual profit: the short-

term result is more sensitive to anticipated profit; the long-term result is more sensitive to actual 

profit. A SE can select the appropriate target for anticipated profit when promoting, and take other 

actions such as improving farmland productivity, expanding market share, or reducing inventory 

and logistics costs to improve farmers’ actual profit to reach the desired migration rate target. 
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7.4.4 Closing Remarks 

In this project, agent-based modeling is used to simulate villagers’ acceptance of second-season 

cultivation, and scenario planning is used to identify critical factors that significantly affect the 

results. We explore scenarios for four factors: network type of the village, the social entrepreneurs 

(SE’s) promotion efforts, the SE’s promotion duration, and the villagers’ anticipated profit and 

actual profit, with respect to the short-term and long-term effects on villagers’ economic and social 

status. We observe that among all the explored factors, the SE’s promotion duration and villagers’ 

anticipation are critical to the short-term effects, whereas the villagers’ real profit is critical for the 

long-term effect. A SE can select the appropriate scenario to reach their economic and social goals. 

To make this scenario planning process adaptable for other social-technical-system design 

projects, we summarize the process in Figure 7.12 and described as follows. 

• Identify the factors in the system with uncertainties. 

• Determine whether each factor is controllable or uncontrollable. 

• For controllable factors, identify their scenarios and the meaning of each scenario 

based on data, domain expertise, or assumptions, and identify or suggest the ways of 

setting each scenario. 

• For uncontrollable factors, identify possible scenarios, and connect each scenario with 

system performance, and predict the impact of each scenario on system performance. 

• Analyze the sensitivity of the simulation output to each factor and the necessary 

combinations of multiple factors. 
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• Identify critical factors – if the simulation output is sensitive to a factor or a 

combination of multiple factors, then the factor or the combination of multiple factors 

is a critical factor. 

• Identify the quantitative relations among each scenario of the critical factors and the 

simulation output. 

• Provide decision support to the system designer by giving all the scenario-output 

relations. 

 

Figure 7. 12 Scenario Planning for Identifying Critical Factors in Simulation 
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7.5 Role of Chapter 7 in this Dissertation 

7.5.1 Summarizing How We Connect Formulation, Approximation, Exploration, and 

Evaluation 

For a wicked problem, such as designing interactions with a social system to get a certain result, 

designers lack the knowledge and data to formulate the problem. To deal with the problem, we 

need to answer these questions: what is the boundary of the problem, what are things that can be 

controlled and leveraged whereas what is not, what factors should be designed as decision 

variables and what are parameters with uncertainty, what functional relation or cause-and-effect 

relations among variables and how they evolve over time or with other factors changing, etc. For 

a social system, even know what each individual’s preference and behavior rules, designers may 

have no idea of the collective behavior of the community because the collective property is 

nonlinear with the individual property. Hence, in this chapter, we use scenario planning in 

simulations to identify the critical and controllable factors, the mathematical relationship among 

the factors, and use it to capture the emergent properties (Figure 7.12). With such knowledge, the 

appropriate scenarios and interventions are selected to reach the simulation goals. 

The essence of Specific Hypothesis 4, “capture and quantify emergent properties through scenario 

planning in simulations” is, to explore the critical and sensitive factors that significantly affect the 

simulation results, quantify the relationship between the setting of those factors and the results 

regarding simulation goals, such learned mathematical relations to be updated in the model 

formulation and approximation are the emergent properties. By evaluating whether some 

interactions imposed on the system can control the controllable factors to achieve specific 

simulation results, either in the short term or in a longer time frame, designers gain the knowledge 

on how to further improve the formulation (such as the architect of the simulation model) and 
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approximation (ways to control the controllable factors and incorporate uncertainties of sensitive 

factors). 

In other words, we realize the connections among formulation, decision, and action through the 

activities in the circles, as shown in Figure 7.13. The flowchart of the method is illustrated in 

Figure 7.12. Through realizing the proposed method for the test problem, promoting the second-

season cultivation in a village in India, we capture and model the emergent properties of the social 

system through managing the critical and sensitive factors. 
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Figure 7. 13 The Procedures Involved in Formulation-Approximation-Exploration-
Evaluation – Establish the information exchange, knowledge awareness, and instructions 

sharing among formulation, decision, and action 
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7.5.2 Summarizing How We Realize Type I, II, & IV Robust Design 

For the test problem, promoting the second-season cultivation in a village, Type I uncertainty is 

identified as the price of the agricultural products, and it affects the real profit α, so we incorporate 

the uncertainty as the different scenarios of the value of α (Table 7.7 and Figure 7.5). As a result, 

the simulation results vary with α; see Figure 7.11 (a) and (c). In the short term, price is 

uncontrollable by farmers or social entrepreneurs, but in the long term, they can intervene through 

market development, technology adoption, or budget control. As the time frame for this project is 

four years, we take product price as a factor that cannot be directly controlled, so it is a parameter, 

and the price fluctuation is Type I uncertainty. 

Type II uncertainty is represented in our test problem as the unknown and uncertain impact of 

different promotion efforts and promotion durations on the short-term and long-term promotional 

effects. The scenarios that we explore and their physical meaning are given in Table 7.7. The 

results of various scenarios of promotion effort are shown in Figure 7.8 and 7.9 and summarized 

in Table 7.8. The results of various scenarios of promotion duration are shown in Figure 7.10 and 

summarized in Table 7.9. 

Type IV uncertainty is recognized as the unknown feature and the uncertainty in the villagers’ 

estimation management. Villagers’ original estimation of gaining more profit by growing the 

second season corps than migrating (profit estimation) without underground water, 𝛽x, is known, 

but their profit estimation with underground water,	𝛽� , depends on the real profit α and their 

original profit estimation 𝛽x. In other words, villagers’ real profit of the previous year and the 

promotion results comprehensively impact their estimations of the next year. So, the uncertainty 

of 𝛽� is the result of managing Type I and II uncertainty. That is why we define it as Type IV 
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uncertainty. The uncertainty is described in Table 7.7. The results are shown in Figure 7.5 and 

Figure 7.11 (b) and (c). 

By implementing the proposed scenario planning method (Figure 7.12), we can identify the 

solution space that is relatively insensitive to the Type I, II and IV uncertainty that we need to 

manage in a specific problem. In this way, we realize Type I, II & IV robust design. see the 

summary in Table 7.10 as the closing remarks of Table 3.2 regarding the robust design realization 

and uncertainty management for Test Problem 4. 

Table 7. 10 Summary of Test Problems 4 regarding Type I, II, & IV Uncertainty 
Management 

R
D

 T
yp

e RDI-II   
  RDIII  
   RDIV 

M
et

ho
d 

M1: Formulation-
Exploration Framework 

M2: Adaptive 
Linear 
Programming 
with 
Parameter 
Learning 
(ALPPL) 

M3: Adaptive Leveling-
Weighting-Clustering 
Algorithm (ALWC) 

M4: Scenario Planning 
in Agent-Based 
Modeling 

Chapter Ch 4 Ch 5 Ch 6 Ch 7 

U
nc

er
ta

in
ty

 
Te

st
 

Pr
ob

le
m

 

T1: Dam 
network 

T2: 
Supply 
chain 

T3: Hot 
rolling 

process chain 
T4: Thermal system T5: Promoting second-

season farming 

Ty
pe

 I 

Uncertainty 
in timing 
and amount 
of inflow – 
Table 4.7 

Uncertain
ty in 
demand 
side – 
Figure 
4.25 

Uncertainty 
in hyper 
parameter 
setting – 
Table 5.7, 
Figure 5.16 

Uncertainty in parameter 
setting in solution algorithm 
(Starting point of searching) 
– call XPLORE in DSIDES 

Uncertainty in price 
(Price of agriculture 
products) – 𝜶, Table 
7.7, Figure 7.11 (a) and 
(c) 

Ty
pe

 II
 

Uncertainty 
in outflow 
(water 
release 
target) – 
Table 4.5 

Uncertain
ty in 
supply 
side - 
Table 4.15 

Uncertainty 
in user 
preferences – 
Table 5.6 

 
Promotion effort and 
timing – Table 7.7-7.9, 
Figure 7.8-7.10 
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Ty
pe

 II
I  

  

Uncertainty 
in model 
approximatio
n due to 
heuristics in 
approximatio
n – Table 5.5 

Uncertainty in model 
approximation (ways of 
combining multiple goals) – 
leveling-weighting-
clustering algorithms 
(Figure 6.13) 

 

Ty
pe

 IV
 

   

Uncertainty in using domain 
knowledge to simplify the 
model (fixing decision 
variables and selecting 
design scenarios) – “fixing 
variable” and “XPLORE” 
modules in DSIDES, and 
leveling and clustering 
algorithm in the ALWC 

Interventions that 
change the 
mathematical relation 
among promotion and 
result (developing local 
market) – 𝜷𝟐, Table 7.7, 
Figure 7.5, Figure 7.11 
(b) and (c) 

RD – robust design 
M – method 
EVe – empirical verification of the method 
T – test problem 

7.5.3 Role of Chapter 7 

In Chapter 7, given the frame of references on designing promotions using agent-based modeling, 

which is an extension of the frame of references in Chapter 2. A method, a framework for 

identifying critical factors through scenario planning in agent-based modeling, is proposed to 

identify critical factors and quantify the scenario associated with simulation results for modeling 

emergent properties. A test problem, promoting the second-season cultivation in an island village 

in India, is used to verify the proposed methods. Different scenarios are identified and explored so 

that decision support can be provided to social entrepreneurs (SEs). Agent-based modeling (ABM) 

is used to simulate villagers’ acceptance of second-season cultivation, growing two crops a year 

instead of one. We explore the possibility of second season cultivation to improve the villagers’ 

social-economic status in both the short-term and the long-term. The proposed method of capturing 

and making use of critical factors in influencing individuals’ behavior in a community can be used 

in other projects. Research Question 4 is addressed. 
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Role of Chapter 4 to 7: From Chapter 4 to Chapter 7, Quadrant 2 of the Research Questions are 

addressed; see Figure 7.13. The empirical structural validity of the research questions is answered 

by testifying the hypotheses and proposed methods using test problems. 

 

Figure 7. 14 Finishing Empirical Structural Validity in Chapter 4, 5, 6, and 7 
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CHAPTER 8 VALIDATION OF THE HYPOTHESES IN REALIZING 

MODEL EVOLUTION 

– SUMMARY AND VALIDATION OF MODEL EVOLUTIOIN 

In Chapter 8, summarize the empirical validation of the model evolution methods. We give 

closing remarks of the answer to the research questions and validate the hypotheses. In this 

chapter, we recap the contributions, the application scope of the proposed methods, and 

introduce more examples. 

In Chapter 8, see Figure 8.1, the contributions are summarized in Section 8.1, the application scope 

of each method is clarified in Section 8.2, other examples are introduced in Section 8.3, and the 

role of Chapter 8 is concluded in Section 8.4. 
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Figure 8. 1 Organization of Chapter 8 

In Table 8.1, we illustrate how the earlier sections support Chapter 8 and how Chapter 8 recap the 

previous parts of this dissertation, which are the descriptions of how each arrow in Figure 8.1 

works. In Section 8.1, we review the strength of the satisficing strategy (the strategy selected as 

the baseline method in this dissertation, through cDSP as the model construct, the ALP as the 

solution algorithm, implemented in DSIDES), summarize the answer to the research questions, 

validate the hypotheses, and reflect the tasks we finish to create knowledge. In Section 8.2, we 
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review the characteristics and challenges of complex systems design and give the application scope 

of the proposed methods, which lead to more applications in Section 8.3. 

Table 8. 1 The Support for Chapter 8 in Previous Sections 

Ch1 
Sections 

Ch2 
Sections 

Ch3 
Sections 

Ch4-7 
Sections Supporting Relation Ch8 

Sections 
1.2    Select the appropriate strategy – satisficing 

8.1 

 
2.3   The uniqueness and benefits of our strategy 
2.4   Answer research questions 
2.5   Validate hypotheses 

  3.1  Finish tasks 

   

4.4 
5.5 
6.5 
7.5 

Contributions of the proposed methods 

1.1    Characteristics of complex systems and challenges in 
design 

8.2 
8.3 

  3.4  Features of examples of complex system 

   

4.2.1 
4.2.3 
5.2 
6.2 
7.2 

Problem statement in the context of test problems 

8.1 Contributions 

In this dissertation, we deal with the difficulties in designing complex systems. The model 

evolution loop is a concept and a tool facilitating designers to manage design complex systems. 

The model evolution is achieved by connecting the multiple stages in the complex-system design. 

Such connections include passing through information among stages to make or change decisions, 

establish mathematical relationships among parameters, actions, or heuristics of different stages, 

etc. We prove that by connecting formulation, approximation, exploration, and evaluation in 

designing a complex system, designers can manage four types of uncertainty. The four types are 

noise factors (Type I), variations in design variables (Type II), variations in mathematical models 

(Type III), and uncertainties caused by managing the previous three types of uncertainty (Type 

IV). 
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What has been done regarding addressing the research questions and verifying the hypotheses are 

summarized in Table 8.2. In Table 4.1, 5.5, 6.1, and 7.1, we give full versions of Table 8.2 with 

how we address Research Question 1, 2, 3, and 4, respectively. In Table 8.3, we summarize the 

research gap, hypothesis, four types of robust design, etc., in Chapter 1 to 3. 
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Table 8. 2 Summary of Addressing the Research Questions and Verifying the Hypotheses – 
with section number 
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Table 8. 3 Addressing the Research Question 1 and Verifying the Hypotheses 
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8.1.1 Summarizing the Theoretical Foundation 

In Chapter 1, we frame the reference from 1) design strategies – Table 1.3-1.5, and 2) challenges 

in the model-based realization of complex systems – Figure 1.7. In the optimizing literature, 

assuming models are complete and accurate, the authors seek optimal solutions, meeting both the 

necessary and sufficient Kuhn-Tucker conditions, which are sensitive to errors, incompleteness, 

and variations embodied in the decision model. In the satisficing literature, with the awareness that 

models can be wrong and with various fidelity, the authors seek good enough solutions that are 

relatively insensitive to errors and uncertainties, but they have to rely on domain knowledge and 

metaheuristics, which make design knowledge irreproducible. Therefore, we identify the research 

gap to be addressed in this dissertation – How can designers realize model evolution using 

satisficing strategy so that they can manage chaos in the physical world, reduce the risk of losing 

an optimal solution, and discover domain-independent knowledge to update metaheuristics? We 

hypothesize that by connecting the multiple stages of design and passing information through them, 

designers can improve their decision models in iterations, which in this dissertation is defined as 

“model evolution.” 

In Chapter 2, we pose research questions and specify the hypothesis. By analyzing the assumptions 

of using the Kuhn-Tucker conditions to seek optimal solutions, we conclude that using optimizing 

strategy, designers have to accept at least three assumptions (or meet these three requirements) to 

guarantee the optimal solution works, 1) models are perfect abstraction of the physical world, 2) 

all equations of a decision model should be continuous and differentiable, and 3) the convexity 

degree of at least one non-zero linear combination scenario of all constraints should be higher than 

the convexity degree of the objective function. Whereas using satisficing strategy, only the second 

assumption is required. Through five toy problems, we illustrate how the results of using two 
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strategies turn out different. The differences are caused in all four stages of the design loop – 

Formulation (using goals with target values as the right-hand side parameters), Approximation 

(second-order sequential linearization and accumulated linearization), Exploration (combining 

interior-point searching and vertex searching), and Evaluation (allowing violations). Based on all 

these discussions, we choose satisficing to be our strategy to manage complex-system design 

problems and improve it by connecting multiple stages. Therefore, we justify the research 

questions regarding requirements (four types of robust design, Table 2.14) and tasks (four stages 

of design loop, Table 2.15). 

In Chapter 3, to address the research questions, we theoretically verify the specified hypotheses. 

We demonstrate the feasibility of finishing the research tasks of connecting multiple stages of the 

design loop through information sharing and performance evaluation. The purpose of running the 

design evolution loop and connecting the stages is to update the metaheuristics and manage more 

types of uncertainty in designs. We propose the methods in Chapter 3 (Figure 3.2). To explore the 

boundary of the design problems, we propose to connect the formulation and exploration using the 

Formulation-Exploration framework (M1, Figure 3.12). To improve the robustness of the 

approximation method under the satisficing strategy, we propose to use parameter learning to 

improve the adaptive linear programming algorithm (M2, Figure 3.13). To aware subsystems and 

explore the interrelationship among them, we employ unsupervised learning to learn the 

orthogonality and correlation among the goals and update the goal combination based on it (M3, 

Figure 3.14). To learn the emergent property of a design, such as getting to know the critical factors 

in scenario planning of a decision model, we standardize the process of scenario planning in 

simulations (M4, Figure 3.15). 
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8.1.2 Summarizing the Test Problems 

From Chapter 4 to 7, we demonstrate the proposed methods M1-M4 using five test problems – T 

1.1, T1.2, T2, T3, T4, and T5. 

T1.1 – Dam network planning. We propose a three-step method to plan the monthly water release 

from each reservoir for a 14-dam network to satisfy three user-groups. The boundary of the 

reservoirs is evolved to enable the system to be less sensitive to uncertainties in water inflows. 

T1.2 – CODP positioning for a supply chain. We expand the three-step method into the 

formulation-exploration framework and use it to position the customer order decoupling point 

(CODP) for a single-product supply chain regarding different phases of the product life cycle 

(PLC). We remove the bottleneck in iterations by evolving the CODP and relevant parameters. 

T2 – Improving the hot rod process chain. We incorporate parameter learning in the adaptive 

linear programming algorithm. The improved algorithm, the adaptive linear programming 

algorithm with parameter learning (ALPPL), facilitates designers to evaluate the performance of 

the approximation regarding multicriteria and learn the association between parameter setting and 

approximation performance so as to update the metaheuristics applied in parameter setting. 

T3 – Rankine cycle thermal system design. Unsupervised learning is used to identify subsystems 

based on the interrelationship among the goals and reorganize them to boost the system 

performance. Learning the tradeoffs among subsystems and providing scenarios for users to realize 

certain tradeoffs can make the system more robust. 

T4 – Learning emergent properties of a social system under interventions. Scenario planning in 

agent-based modeling is processed to identify the critical and sensitive factors in the interactions 
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with the system and the interactions among the factors in the system so corresponding actions can 

be taken to reach the target of the system goals. 

8.1.3 Summarizing the Answer to the Research Questions 

In summary, the answer to the research questions is new knowledge: connecting multiple stages 

in the design evolution cycle. In Table 8.4, we summarize the new knowledge, how does it help 

answer each research question, what differences do we make, and the relevant publications. Table 

8.4 is another format of the illustration of Figure 3.2. The differences between “before the new 

knowledge” and “after the new knowledge” is the major contributions in this dissertation. The 

essence of why we can make the difference is that we choose the satisficing strategy and fill in the 

research gaps. 
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Table 8. 4 New Knowledge in this Dissertation 
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8.1.4 Summarizing the Four Types of Robust Design 

In summary, to realize the four types of robust design, we manage the four types of uncertainty in 

designing complex systems. In different systems, each type of uncertainty may have various 

representations. The four types of uncertainty in each test problem, the new knowledge to realize 

the four types of robust design, and the number of the corresponding tables and figures containing 

more details are summarized in Table 8.5, which is another format of the illustration of Figure 

3.17. 
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Table 8. 5 Summary of the Realization of the Four Types Robust Design 
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8.2 Application Scope of the Proposed Methods 

8.2.1 Application Scope of the Design Evolution Loop 

For designing any complex system with multiple types of uncertainty, using the design evolution 

loop, designers can evolve the boundary of the system, deal with discrete variables as well as 

continuous ones, use heuristics to proceed designing and improve the design by updating the 

heuristics, reorganize the subsystems based on their interrelationship, and learn and manage 

emergent properties. 

The design evolution loop is an open framework. Connecting multiple stages in the design 

evolution loop may have different representations. The methods proposed in this dissertation are 

four examples of many implementations of connecting the stages and evolve the design. The 

contributions, potential contribution, and scope of application of each method (M1-M4) are 

summarized hereafter. 

8.2.2 Application Scope of M1 – Formulation-Exploration Framework 

The three-step method can be applied to improve the robustness of a mechanical engineering 

system. In mechanical design, when multiple goals conflict with each other and design preferences 

evolve with time, designers can use step 1 to explore the weight space and give rules on weight 

selection dynamically.  

To improve the robustness of the system, a reasonable buffer is added to ensure that the solution 

does not approach the physical boundary too closely, so it can be relatively insensitive to the 

uncertainties, and our three-step method is a way of doing this. The advantage of our method is 

that we boost the potential of the physical system while improving its robustness; hence, we neither 

sacrifice system robustness for a better performance nor do the opposite.  
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In addition, the satisficing	space allows designers to have a relatively insensitive design space and 

options with awareness of the system output, which is useful in concurrent design and multistage 

design.  

The Formulation-Exploration framework can be used in designing mass-customized products at 

mass production costs. It is especially useful for continuously improving a system with conflicting 

goals, evolving design preferences, and multiple players who pursue common interests.  

8.2.3 Application Scope of M2 – Adaptive Linear Programming Algorithm with Parameter 

Learning (ALPPL) 

ALPPL can be applied to multi-goal engineering-design problems, especially when goals conflict 

with one another, the priority of the goals evolves with the environment changes, and the output 

of the model must be insensitive to model errors and variations. 

The rule-based parameter learning can be used to improve other algorithms, especially when there 

are no customizable criteria for the evaluation of the algorithm performance, or the algorithm 

performance is highly sensitive to some critical parameters that are determined with heuristics or 

human intuition while the critical parameters are not updated based on the algorithm performance 

during the design iterations. 

8.2.4 Application Scope of M3 – Adaptive Leveling-Weighting-Clustering Algorithm (ALWC) 

For concurrent engineering design problems with conflicting and evolving requirements in 

multiple disciplines that are not clear to the designers in the modeling stage, it is difficult to manage 

the interactions and coupling effects between subsystems using the combination forms of the goals. 

Using the ALWC algorithm, designers can capture the knowledge on the division, interaction, and 



 354 

coupling scenarios among the subsystems, therefore, they can leverage the tradeoffs among 

conflicting requirements concurrently. 

8.2.5 Application Scope of M4 – Scenario-Planning for Simulations 

This proposed scenario-planning process allows designers in various fields to perform simulations 

and identify critical factors in their systems and select specific scenarios that accommodate 

different site-specific input values or domain-dependent knowledge to reach their goals. 

8.3 Other Examples 

8.3.1 Network Planning for Improving Hospital Visiting Process 

- AN EXPANSION OF DAM NETWORK PLANNING 

When patients visit hospitals, they can be subject to long wait times due to operational 

inefficiencies and bottlenecks.  Moreover, long wait times decrease patient satisfaction and patient 

happiness. There are many ways to model healthcare systems, including agent-based models, 

which can track individual patients and their movements through a hospital, and network flow 

models, which can model larger groups of patients and their interaction within a hospital. While 

agent-based models can detect bottlenecks by evaluating the patients flow speed, a network flow 

model can easily detect bottlenecks by applying a layer of abstraction to the healthcare network. 

In the network flow model, patients flow along the capacitated edges of a network while receiving 

treatment at the nodes, wherein it becomes trivially easy to identify bottlenecks by looking at the 

flow in and flow out of nodes. These bottlenecks manifest themselves in metrics used to evaluate 

the model run, including efficiency and wait times. Data regarding capacities of the edges for a 

network flow model are taken from an agent-based model of a case study of a primary care clinic.  
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Data describing patient flow through network facilities is difficult to find, so synthetic data is 

generated using an adaptation of the random subspace method.  Ensemble runs of the network flow 

model are created to account for uncertainty in the synthetic data, culminating in a distribution 

analysis for the various metrics. By changing the topology of the network flow model, bottlenecks 

are removed, increasing efficiency in the model and decreasing patient wait times. Furthermore, 

the network flow model is sensitive to the constraints of the random subspace, and care should be 

taken when initializing the model. 

There are several potential contributions to this test problem. Synthetic data is generated via the 

Random Subspace Method, and the data populates the various ensemble models. Bottlenecks 

readily appear in network flow models, and they are identified and assessed for potential removal.  

Moreover, modifying the topology of the model when wait times were long can partially remove 

a bottleneck at a node, leading to shorter wait times and increased efficiency. After borrowing 

some model parameters from an agent-based model, the average patient wait times remained 

similar between the two models, indicating that network flow models can represent the same 

system effectively. 

An opportunity for future work is to apply the network flow model to a scenario where only the 

topology and the number of patients flowing into the model are known. The goal of the model is 

to reach a certain level of efficiency, and the idea shares several principles with bagging and 

training neural networks. The efficiency of the model is a function that depends upon all of the 

underlying variables while being subject to certain constraints, and taking the gradient of this 

function yields the direction in which to shift the underlying variables to reach a sufficient level of 

efficiency. This more general solution to the problem considers a larger solution space and can 

reach a satisficing solution to the given problem. 
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8.3.2 Leveraging Social Drivers in Rural Development 

- AN EXPANSION OF LEARNING EMERGENT PROPERTIES OF A SOCIAL SYSTEM 

UNDER INTERVENTIONS 

Development in rural regions is often dependent on policy actions by the government or social 

entrepreneurs. Generally, these kinds of policies are designed to motivate change through 

economic incentives, but this is only a short-term solution. For policies to be sustainably successful, 

long-term results must be produced, and the progress should not always depend on continuous 

funding. This poses a challenge of how to measure the long-term effects of short-term policies on 

individual behavior. In this research project, it is hypothesized that qualitative factors such as 

social drivers are the primary motivators for long term change and that Agent Based Modeling can 

be used to simulate and predict villager behavior to model the effects of policy on social interaction 

and behavioral patterns. 

This project effectively serves as a proof of concept that social and environmental drivers should 

be considered in modeling behavioral reactions to policy, not just economic drivers, and that agent-

based modeling effectively simulates the propagation of their effects. Most critically, the 

difference between the socio-economic impact of a driver such as access to electricity, which only 

alters productivity, versus a driver like family life that influences adoption of those in a villager’s 

social network show that social impacts not only affect behavior, but changes in them across 

network interactions can have a more drastic impact than a purely economic factor as is normally 

considered, which is vital shift for development of rural communities. 

Therefore, the methods and conclusions of this project can be applied in a myriad of applications 

where economic considerations have been the primary concern but have underlying social 
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implication. Further work in this project can be applied in modeling social drivers within networks 

across disciplines, from how people react in healthcare, to how education can more effectively 

engage students. Even complex systems such as welfare and policing or the judicial system, which 

generally focus on cost and data driven deployment of resources can be evaluated from this 

perspective considering the social network roles of both those administering these programs and 

systems, and those using or impacted by them. 

8.3.3 Knowledge Management in Designing Cyber-Physical Product-Service Systems 

- AN EXPANSION OF POSITIONING CODP IN A SUPPLY CHAIN 

The automation and intelligence highlighted in Industry 4.0 put forward higher requirements for 

reasonable trade-offs between humans and machines for decision-making governance. However, 

in the context of Industry 4.0, the vision of decision support for design engineering is still unclear. 

Additionally, the corresponding methods and system architectures are lacking to support the 

realization of value-chain centric complex engineered systems design lifecycles. Hence, we 

identify decision support demands for complex engineered systems designs in the Industry 4.0 era, 

representing the integrated design problems at various stages of the product value chain. As a 

response, in this research project, the architecture of a Knowledge-Based Design Guidance System 

(KBDGS) for cloud-based decision support is presented that highlights the integrated management 

of complexity, uncertainty, and knowledge in designing decision workflows, as well as systematic 

design guidance to find satisfying solutions with the iterative process “formulation-refinement- 

exploration-improvement”. The KBDGS facilitates diverse multi-stakeholder collaborative 

decisions in end-to-end cloud services. The contribution of this project is to provide design 

guidance to facilitate knowledge discovery, capturing, and reuse in the context of decision-centric 

digital design, thus improving the efficiency and effectiveness of decision-making, as well as the 
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evolution of decision support in the field of design engineering for the age of Industry 4.0 

innovation paradigm.  

8.4 Role of Chapter 8 in this Dissertation 

In this chapter, the contributions in this dissertation are summarized in Section 8.1, in which, we 

review the theoretical foundation, recap the test problems, and conclude the answer to the research 

questions and how we realize the four types of robust; the application scope of the design evolution 

loop and each method is discussed in Section 8.2; other examples which are extensions of the 

methods and test problems in this dissertation are stated in Section 8.3. 

In summary, in Chapter 8, we provide the empirical performance validity; see Figure 8.2. The 

empirical performance validity is done by reviewing what differences are made by using the 

proposed methods and clarifying the scope of application of the methods. 
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Figure 8. 2 Finishing Empirical Performance Validity in Chapter 8 
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CHAPTER 9 CLOSING REMARKS – ADVANCING MODEL EVOLUTION 

IN OTHER DISCIPLINES 

– A VISION FOR FUTURE RESEARCH IN THE REALIIZATION OF MODEL-BASED 

COMPLEX SYSTEMS IN THE FORM OF AN “I STATEMENT” 

The principal goal in this dissertation is to create decision-based approach that is suitable for the 

smart design in the realization of complex systems, managing emerging property and providing 

insight for future use. This provides an opportunity to design engineers to explore solution space 

without prior domain knowledge and analyze functionality of their design decisions. Principles for 

robust design in realization of complex systems are identified and articulated. 

9.1 Summary of This Dissertation 

9.1.1 Motivation of Model Evolution using Satisficing Strategy 

All models are approximations of the real world. Some solutions are sensitive to the 

incompleteness and inaccuracy of a decision model. The evolution of the model regarding the 

improvement in model formulation, approximation, exploration, and evaluation is important in 

obtaining the solution space that is relatively insensitive to the model inaccuracy. The concept of 

the “evolutionary model” comes from biological evolution, specifically indicating the models of 

DNA evolution. Inspired by this conception, in this dissertation, we expand “model evolution” to 

all model-based complex systems. In model evolution, two capabilities of a model are improved. 

1) Model accuracy, as one of the foci of optimizing methods – the capability of a model to capture 

and incorporate more useful information of the physical world. 2) Model robustness, as one of the 

foci of satisficing methods – the capability of a model to deliver the solutions that are relatively 

insensitive to uncertainties.  
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9.1.2 Contributions – Research Questions and Answers Leading to New Knowledge 

We pose four research questions (RQ1-4) and specified hypotheses (SH1-4) to create new 

knowledge and realize the model evolution. 

RQ1: What is the method to evolve model boundary? 

SH1: Explore the sensitivity of the segments of the model boundary and improve 

accordingly. 

New Knowledge – M1: Formulation-Exploration Framework. 

RQ2: What is the method to speed up learning the system nature? 

SH2: Explore the sensitivity of the segments of the model boundary and improve 

accordingly. 

New Knowledge – M2: the ALPPL (adaptive linear programming with parameter 

learning) algorithm. 

RQ3: What is the method to speed up learning the system nature?  

SH3: Learn system nature such as interrelationship among subsystems and reorganize them 

based on it. 

New Knowledge – M3: the ALWC (adaptive leveling-weighting-clustering) 

algorithm. 

RQ4: What is the method that allows passing the information through multiple scales of a system? 

SH4: Capture and quantify emergent properties through scenario planning in simulation. 
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New Knowledge – M4: Scenario planning workflow for Agent-Based Modeling 

9.1.3 Verification and Validation 

Method (theoretical structural validity): we propose the four-stage design evolution loop – 

formulation-approximation-exploration-evaluation, to realize the model evolution. Through 

managing the complexity and uncertainty among different stages, the model of a complex system 

can be improved continuously through evolution. 

Test problems and experiments (empirical structural validity): we use five test problems to 

illustrate the model evolution. A dam-network planning problem (T1.1) and a supply-chain-design 

problem (T1.2) for model evolution by identifying and removing bottlenecks through evolving the 

boundary of a continuous and a discrete model; a multi-stage manufacturing problem (T2 hot rod 

process chain) for model evolution by improving the approximation algorithm through parameter 

learning; a concurrent engineering-design problem  (T3 Rankine cycle thermal system) for model 

evolution by reformulating the many-objective scalarization function; a social system design 

problem (T4 Learning emergent properties of a social system under interventions) for model 

evolution by capturing and incorporating emergent properties in the system algorithms. 

Results (empirical performance validity): The proposed Formulation-Exploration framework 

facilitate designers to improve the robustness and achievement of system goals by evolving model 

boundary; the proposed ALPPL algorithm allows models to return solutions that are relatively 

robust to scenario changing; the proposed ALWC algorithm supports model evolution by 

improving the diversity of the solution space; the proposed multi-scale simulation framework helps 

decision-makers leverage critical factors to achieve system goals. 
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Way Forward (theoretical performance validity): The model evolution concept and the derived 

methods can be used to improve the model of other complex systems, especially when there are 

more than three system goals, the goals are conflicting with one another, the changing environment 

brings complexity and uncertainties to modeling, and the information sharing between components 

is not sufficient; for example, network planning for improving hospital visiting, leveraging social 

drivers in rural development, and knowledge management in designing cyber-physical product-

service systems. 

9.1.4 Relevant Publications 

Journal Publications 

Wang, R., Milisavljevic-Syed, J., Guo, L., Huang, Y., Wang, G., 2021, “Knowledge-Based Design 

Guidance System for Cloud-Based Decision Support in the Design of Complex Engineered 

Systems,” ASME Journal of Mechanical Design, 143(7), 072001. 

Guo, L., Chen, S., Allen, J.K., Mistree, F., 2021, “A Framework for Designing the Customer Order 

Decoupling Point to Facilitate Mass Customization,” ASME Journal of Mechanical Design, 143(2): 

022002. 

Guo, L., Mohebbi, S., Das, A., Allen, J.K., Mistree, F., 2020, “A Framework for the Exploration 

of Critical Factors on Promoting Two Season Cultivation in India,” ASME Journal of Mechanical 

Design, 142(12): 124503. 

Guo, L., Zamanisabzi, H., Neeson, T.M., Allen, J.K., Mistree, F., 2019, “Managing Conflicting 

Water Resource Goals and Uncertainties in a Dam-Network by Exploring the Solution Space,” 

ASME Journal of Mechanical Design, 141(3): 031702. 
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Referred Conference Papers 

Guo, L., Nellippallil, A.B., Smith, W.F., Allen, J.K., Mistree, F., 2020, “Adaptive Linear 

Programming Algorithm with Parameter Learning,” ASME Design Automation Conference, 

Online. Paper Number DETC2020-22602. 

Guo, L., Chen, S., Allen, J.K., Mistree, F., 2019, “Designing the Customer Order Decoupling Point 

to Facilitate Mass Customization,” ASME Design Automation Conference, Anaheim, CA, USA. 

Paper Number DETC2019-97379. 

Guo, L., Zamanisabzi, H., Neeson, T.M., Allen, J.K., Mistree, F., 2018, “Managing Conflicting 

Water Resource Goals and Uncertainties in a Dam-Network by Exploring the Solution Space,” 

ASME Design Automation Conference, Quebec City, Quebec, Canada. Paper Number DETC2018-

86018. 

Manuscript Under Review 

Guo, L., Nellippallil, A.B., Smith, W.F., Allen, J.K., Mistree, F., 2021, “A Smart Linear 

Programming Algorithm,” ASME Journal of Mechanical Design. Paper Number MD-21-1436, 

under review. 

Guo, L., Milisavljevic-Syed, J., Wang, R., Huang Y., Allen, J.K., Mistree, F., 2021 “Managing 

Many-Goal, Concurrent Design Problems using Adaptive Leveling-Weighting-Clustering 

Algorithm,” Structural and Multidisciplinary Optimization, under review. 

9.1.5 Closing Remarks of the Summary 

In this dissertation, we propose the concept of model evolution and derive corresponding methods 

and algorithms, regarding improving model accuracy and robustness. Through practicing the 
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proposed methods using five test problems, we demonstrate the internal consistency and general 

utility of the proposed methods. With the explosive development of Artificial Intelligence in the 

21st century, the topic of model evolution will continue, and more beautiful theories and 

applications will be created. 

9.2 Way Forward – “I Statement” 

In this section, my research thrusts and applications in my early career in academia and their 

foundation (summarized in Table 9.1) are explained in detail. 

Table 9. 1 Research Thrusts and Application in My Early Career 

Research Thrust Applications Foundation 
What is the mathematics that supports 
the directed evolution of the data 
curation methods and processes? 

Designing lean process chains to support 
fail-safe healthcare networks and cyber-
physical product-service systems 

Chapter 4 

How can we improve algorithms by 
replacing heuristics with insight and 
automate the process? 

Realizing the customization of decision 
workflows for cyber-physical product-
service systems (CPPSS). 

Chapter 4 and 7 

Design fail-safe supply networks for 
healthcare systems Chapter 4 and 6 

What are the mechanisms and 
modeling strategies to support 
information sharing between multi-
scale simulations? 

Managing emergent properties of self-
organizing systems Chapter 7 

 

9.2.1 Overarching Research Theme and Goals 

In my academic career in academia, we plan to focus on research associated with the directed 

evolution of service systems, improving the robustness and resilience of multidisciplinary systems, 

knowledge management in data curation, and fail-safe network planning. We believe that the 

future of the realization of complex systems is on model evolution, including algorithm evolution, 

design automation, predictor-corrector mechanisms design, and new technologies incorporation.  
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9.2.2 Research Thrusts and Applications 

Building on what has been done in my dissertation, in my early career (2021-2025), I plan to seek 

answers to key challenges anchored in four research thrusts (RT1-RT4). Each research thrust is an 

extension of my doctoral research.  

RT1 What is the mathematics that supports the directed evolution of the data curation methods 

and processes? Applications: 

Designing lean process chains to support fail-safe healthcare networks and cyber-physical product-

service systems. The first focus is on developing computational frameworks for synthetic data 

generation and data analytics. The second focus is developing algorithms to support the directed 

evolution of the metaheuristics used in modeling and approximations. The third focus is on 

improving the integration of decision models leveraging new technologies, such as the Internet of 

Things, cloud computing, and deep learning, to support managing organizational complexities 

management. This project is a way forward to Chapter 4. 

RT2 How can we improve algorithms by replacing heuristics with insight and automate the 

process? Applications: 

Realizing the customization of decision workflows for cyber-physical product-service systems 

(CPPSS). The literature on CPPSS can be classified into three dimensions, managing complexity, 

uncertainty, and knowledge, using a design guidance framework, the Concept-Decision-

Knowledge (CDK) framework. I plan to go on with standardizing and customizing processes and 

workflows for a CPPSS to facilitate digitalization and automation of its process chains; see Figure 

9.1. The rationale is to establish an iterative design loop in which knowledge is discovered through 

post-solution analysis and interpreted into new rules to update metaheuristics in the algorithms so 
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as to make the system adapt to the changing environment. This project will be a way forward to 

my Chapter 4 and Chapter 7. 

Design fail-safe supply networks for healthcare systems. To make a healthcare network robust to 

1) rare but high magnitude stochastic events – disruptions, and 2) frequent but low magnitude 

stochastic events – variations, we need to manage the topology failure and flow variation 

simultaneously. This project is based on my Chapter 4 and Chapter 6, and a book from Systems 

Realization Laboratory, Architecting Fail-Safe Supply Networks (https://doi.org/10.1201/b22406). 
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Figure 9. 1 A Knowledge-Based Design Guidance for CPPSS 
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RT3 What are the mechanisms and modeling strategies to support information sharing between 

multi-scale simulations? This project will be an extension of my Chapter 7. Application: 

Managing emergent properties of self-organizing systems. A generic modeling strategy and multi-

scale simulation workflow will be developed to make and update rules and mechanisms to inspire 

individuals to self-organize into a globally efficient state. My objective is to manage chaos, the 

problem with high complexity and high complication; see Figure 9.2. For a complex system with 

chaos, there is no perceivable causality among elements. We assume that there are no mathematical 

relations among different scales can be captured and used for decision making. However, there 

can be factors more critical than others that can be leveraged to force the system to evolve towards 

a direction that we desire, which makes the system evolve to a complex system with high 

complexity but low complication, or to a knowable system with high complication but low 

complexity. I hypothesize that through the use of digital thread and digital twins, we can learn the 

critical factors and intervene the system through reinforcing learning. Therefore, the information 

can be shared between multiple scales of the system, and it can be self-organized and serve the 

system goals. 

RT4 When dealing with multicriteria decision support problems, what are the mechanisms to 

compare and/or integrate various solution algorithms and design strategies to provide decision 

support? There can be applications in several different fields. One of them is: 

Design and managing lean process chains using digital twins. In process chains, we manage 

stakeholders’ goals in multiple stages, at multiple levels, based on multiple criteria. We plan to use 

the digital thread and digital twin to facilitate design automation, data analytics, and knowledge 

discovery. This project will be an extension of my Chapter 6. 
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Figure 9. 2 Managing Complex Systems with Different Types of Causality 

9.2.3 Potential Cross-Disciplinary Research Opportunities 

Potential Cross-Disciplinary Research Opportunities include but are not limited to 

i) Knowledge awareness in data curation for managing organizational complexity of 

healthcare networks and cyber-physical product-service systems (CPPSS) (RT1). As 

researchers face the challenge in the accessibility of authentic data in multidisciplinary 

systems, synthetic data generation is a way to fill the gap. There are two types of data 

curation and validation, the data-driven methods and the process-driven methods. In 

this project, there can be potential contributions to both types of methods – dealing with 

sparse data in data-driven methods and the ontology-based multi-scale simulations and 

cross-validation framework in process-driven methods. 

ii) Lean process design leveraging new technologies (RT4). To help a rural community 

in sustainable development, a social entrepreneur needs to collaborate with other 

stakeholders in the community to make and achieve environmental, social, and 

economic goals. Optimizing the process chains for the community is a way to 
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accomplish their collective goals and individual goals at different times and spaces. In 

this project, I plan to fill three research gaps: 1) managing the evolving priority of the 

multiple goals using adaptive objective-scalarization algorithm using unsupervised 

learning, 2) realizing the directed evolution to “stay Lean,” and 3) using the digital 

thread and digital twin to facilitate design automation and knowledge management. 

iii) Realizing satisficing strategy based on adaptive approximation and Dual Simplex 

(RT2). Solution algorithms fall into two categories, formulating a problem exactly and 

then solving it approximately, and approximating a problem and then solving it exactly. 

The algorithms in the latter category are easy to apply the satisficing strategy and return 

good enough solutions for continuous improvement. When designing multidisciplinary 

systems, due to their usual features, such as multi-stage, hierarchical structure, 

nonlinearity, non-convexity, and discreteness, to identify feasible space and learn the 

features of each subspace, designers often need to approximate and partition the 

problem, exploring the dual, and exploring the solution space to obtain more 

information. The research gap I will fill is to realize the satisficing strategy for 

designing complex systems taking into account multiple uncertainties. 

iv) Mechanism design and policymaking for multidisciplinary systems based on critical 

and sensitive factors (RT3). In fast-growing economies with large populations, such 

as China and India, soil erosion and water pollution caused by overexploitation of 

natural resources have become hidden dangers that affect their long-term economic 

vitality. The rapid changing and overcorrecting policies make things worse, which 

affects the sustainability of their social-ecological system. In this project, I plan to fill 

the gap in providing knowledge-based decision support on policymaking based on 
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mapping the social costs that will occur in the future to the current social-ecological 

system stakeholders based on game theory. 

v) Managing complexity and uncertainty in service systems using ontology-based 

design guidance platforms (RT2). We divided complexities in multicriteria systems 

into four types – system complexity, design complexity, process complexity, and 

organizational complexity, and we divided uncertainties into four types, uncertainty in 

parameters, variables, model structure, and process chains. This project’s potential 

contributions include developing an ontology-based design guidance platform to 

categorize and quantify complexities and uncertainties so as to enhance the system 

performance and reflect human roles at the decision level. 

vi) Assessing the impact of public events or crises on engineering education based on 

social media data. For example, students’ evaluation of courses in engineering before 

and after the pandemic based on data from social media and website, such as 

“ratemyprofessors.com.” Three contributions can be made: 1) developing a 

computational framework to assess the impact of major crises on engineering 

education, especially online education, 2) evaluating the role and significance of 

today’s social media and rating websites in assessing lecturing quality and improving 

programs, and 3) leveraging technologies to improve the efficiency and students’ 

experience of engineering lecturing, tutorials, experiments, and the whole process of 

learning. 

9.2.4 Closing Remarks of the Way Forward 

I envision carrying the model evolution loop on, enriching it with methods incorporating new 

technologies in the age of Industry 4.0, applying it to more disciplines, and developing a 
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sustainable research program with research interests in operations management, lean process 

design, and design automation of service systems and other multidisciplinary systems. 

9.3 Role of Chapter 9 in this Dissertation 

In this chapter, we summarize the motivation, contributions, and verification and validation in 

Section 9.1; the way forward is given in Section 9.2, including the overarching research theme and 

goals in my early career in academia, my research thrusts and applications, and potential cross-

disciplinary research opportunities. 

In summary, in Chapter 9, we provide the theoretical performance validity; see Figure 9.3. The 

theoretical performance validity is done by anticipating what future theoretical breakthroughs can 

be made based on the model evolution loop using satisficing strategy and what applications can be 

done to make the world a better place. 
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Figure 9. 3 Finishing Theoretical Performance Validity in Chapter 9 
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APPENDIX A THE 34 WEIGHT SCENARIOS (WSS) AND THE 

CORRESPONDING ACHIEVEMENT OF THE GOALS  

We use in W1, W2, and W3 as the three weights of the goals, and obtain the achievement values 

of the three goals Goal 1, Goal 2 and Goal 3. The “Total” is the value of “z”, the weighted sum of 

the three goals. These are the results of the original model. The results facilitate us to obtain the 

ternary plots (Figure 4.11-4.13) and satisficing area (Figure 4.14) in Section 4.2.5. 

WS 
Weights Goals 

WS 
Weights Goals 

W1 W2 W3 1 2 3 Total W1 W2 W3 1 2 3 Total 

1 0.33 0.33 0.33 0.23 0.53 0.31 0.44 18 0.4 0.2 0.4 0.23 0.71 0.18 0.41 

2 1 0 0 0.00 2.00 2.00 0.05 19 0.4 0.4 0.2 0.22 0.37 0.56 0.45 

3 0 1 0 1.00 0.00 2.00 0.00 20 0 0.5 0.5 0.26 0.56 0.25 0.41 

4 0 0 1 1.00 2.00 0.00 0.00 21 0.5 0 0.5 0.07 2.00 0.00 0.10 

5 0.8 0.1 0.1 0.16 0.73 0.62 0.43 22 0.5 0.5 0 0.10 0.02 2.00 0.13 

6 0.1 0.8 0.1 0.24 0.10 1.60 0.29 23 0.5 0.33 0.17 0.21 0.38 0.58 0.45 

7 0.1 0.1 0.8 0.31 1.06 0.02 0.19 24 0.17 0.5 0.33 0.24 0.43 0.42 0.44 

8 0.6 0.2 0.2 0.20 0.56 0.37 0.45 25 0.33 0.17 0.5 0.24 0.82 0.11 0.37 

9 0.2 0.6 0.2 0.23 0.27 0.77 0.42 26 0.67 0.33 0 0.09 0.05 2.00 0.17 

10 0.2 0.2 0.6 0.26 0.83 0.09 0.33 27 0 0.67 0.33 0.24 0.37 0.53 0.42 

11 0.5 0.25 0.25 0.21 0.54 0.34 0.45 28 0.33 0 0.67 0.08 2.00 0.00 0.06 

12 0.25 0.5 0.25 0.23 0.37 0.54 0.44 29 0.56 0.33 0.11 0.20 0.30 0.86 0.44 

13 0.25 0.25 0.5 0.25 0.72 0.15 0.39 30 0.11 0.56 0.33 0.24 0.41 0.45 0.44 

14 0.4 0.3 0.3 0.22 0.53 0.31 0.45 31 0.33 0.11 0.56 0.24 0.98 0.07 0.32 

15 0.3 0.4 0.3 0.23 0.46 0.38 0.45 32 0.22 0.33 0.44 0.24 0.61 0.22 0.41 

16 0.3 0.3 0.4 0.23 0.60 0.24 0.43 33 0.44 0.22 0.33 0.22 0.64 0.24 0.43 

17 0.2 0.4 0.4 0.24 0.53 0.29 0.43 34 0.33 0.44 0.22 0.22 0.37 0.55 0.44 
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APPENDIX B RESULTS OF THE 22 WEIGHT SCENARIOS (WSS) FROM 

THE IMPROVED MODEL (FIRST ITERATION). 

In Appendix B, we list the 22 weight scenarios (WSs) and the corresponding achievement of the 

goals. These are the results of the improved model in the first iteration. With the results, we get 

the satisficing area  (Figure 4.17) in Section 4.2.5. 

WS 
Weights Goals 

WS 
Weights Goals 

W1 W2 W3 1 2 3 Total W1 W2 W3 1 2 3 Total 

1 0.33 0.33 0.33 0.39 0.43 0.30 0.37 12 0.25 0.5 0.25 0.38 0.26 0.54 0.36 

2 1 0 0 0.01 2.00 2.00 0.01 13 0.25 0.25 0.5 0.44 0.62 0.13 0.33 

3 0 1 0 2.00 0.01 2.00 0.01 14 0.4 0.3 0.3 0.38 0.42 0.31 0.37 

4 0 0 1 5.91 2.00 0.00 0.00 15 0.3 0.4 0.3 0.39 0.35 0.38 0.37 

5 0.8 0.1 0.1 0.28 0.53 0.63 0.34 16 0.3 0.3 0.4 0.41 0.50 0.21 0.36 

6 0.1 0.8 0.1 0.37 0.06 1.33 0.22 17 0.2 0.4 0.4 0.43 0.44 0.26 0.36 

7 0.1 0.1 0.8 0.54 0.91 0.01 0.16 18 0.4 0.2 0.4 0.39 0.62 0.16 0.34 

8 0.6 0.2 0.2 0.34 0.43 0.38 0.37 19 0.4 0.4 0.2 0.36 0.26 0.58 0.36 

9 0.2 0.6 0.2 0.37 0.18 0.75 0.33 20 0 0.5 0.5 0.54 0.48 0.20 0.34 

10 0.2 0.2 0.6 0.47 0.72 0.07 0.28 21 0.5 0 0.5 0.14 2.00 0.00 0.07 

11 0.5 0.25 0.25 0.36 0.42 0.34 0.37 22 0.5 0.5 0 0.12 0.02 2.00 0.07 
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APPENDIX C MATHEMATICAL FORMULATION OF THE CODP AS A 

CDSP 

Appendix C is referenced in Section 4.3.4. It is the mathematical form of cDSP of the case study 
of CODP design. We explore the design preferences and design capacity in iterations using the 
algorithm in Table 4.12. After three iterations, the design is improved to overcome the original 
bottleneck and the solutions are relatively insensitive to the migration of Product Life Cycle phases 
and the changes in the market demand. 

Given 

ts production time in supplier 

tsm transportation time from supplier to manufacturer 

tm production time in manufacturer 

tmr transportation time from manufacturer to retailer 

tr operation time in retailer 

trc transportation time from retailer to customer 

t delivery time of this supply chain,  

t = f!(CODP, 	ts, 	tsm, 	tm, 	tmr, 	tr, 	trc) 

VS production volume of supplier 

VS = fÿ6(rls, rlsm, ts, tsm, SRM, SFG) 

VM production volume of manufacturer 

VM = f6#(rlm, rlmr, tm, tmr,MRM,MFG) 

VR preparation volume of retailer 

VR = f#ý(rlr, rlrc, tr, trc, RRM, RFG) 

CS capacity limit of supplier 

CM capacity limit of manufacturer 

CR capacity limit of retailer 

tave average delivery time of the industry 

rlt reliability of delivery time, rlt = f#7!(t, 	tave) 

sl service level, sl = rls ∙ rlsm ∙ rlm ∙ rlmr ∙ rlr ∙ rlrc ∙ rlt 

slmin minimum service level of the industry 

pmin minimum unit price of the industry 

pmax maximum unit price of the industry 

pave average unit price of the industry 

p unit price of retailer’s finished goods,  

p = f8(sl, 	slave, 	slmin, 	pave) 

D market demand of the retailer’s finished goods,  
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D = f9(sl, slave, slmin, pave) 

hcsrm/scsrm/hcsfg/scsfg/hcmrm/scmrm/hcmfg/scmfg/hcrrm/scrrm/hcrfg/scrfg 

unit holding / shortage cost in  

supplier’s 

manufacturer’s 

retailer’s  

raw material / finished goods 

pcs/pcm/pcr 

 unit production / operation cost of  

supplier 

manufacturer 

retailer 

tcsm/tcmr/tcrc 

 unit transportation cost from  

supplier to manufacturer 

manufacturer to retailer 

retailer to customers 

FAS/FAM/FAR 

 forecast accuracy of  

supplier 

manufacturer 

retailer 

FSFG/FMFG/FRFG 

 forecast of the demand for finished goods at  

supplier 

manufacturer 

retailer (if it is MTS) 

FSFG = föúø(CODP, 		FAS, 	rls, 	rlsm, 	p)	     

FMFG = f:úø(CODP, 		FAM, 	rlm, 	rlmr, 	p)	     

FRFG = fòúø(CODP, 	FAR, 	rlr, 	rlrc, 	p) 

Find  

System Variables 

rls reliability of production of supplier 

rlsm reliability of transportation from supplier to manufacturer 

rlm reliability of production of manufacturer 

rlmr reliability of transportation from manufacturer to retailer 
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rlr reliability of operation of retailer 

rlrc reliability of transportation from retailer to customers  

SRM CODP at raw material of supplier 

SFG CODP at finished goods of supplier 

MRM CODP at raw material of manufacturer 

MFG CODP at finished goods of manufacturer 

RRM CODP at raw material of retailer 

RFG CODP at finished goods of retailer 

SRM CODP at raw material of supplier 

SFG CODP at finished goods of supplier 

MRM CODP at raw material of manufacturer 

MFG CODP at finished goods of manufacturer 

RRM CODP at raw material of retailer 

RFG CODP at finished goods of retailer 

 (SRM, SFG, MRM, MFG, RRM, RFG are binary variables) 

Deviation Variables 

𝐝𝐢j under-achievement of Goal i 

𝐝𝐢l over-achievement of Goal i 

Satisfy 

System Constraints 

SRM+SFG+MRM+MFG+RRM+RFG=1  Constraint 1 

//There is one CODP in this supply chain 

𝐬𝐥 ≥ 𝐬𝐥𝐦𝐢𝐧     Constraint 2 

//Service level is greater than or equal to the industry minimum service level 

𝐏𝐓𝐎𝐓 ≥ 𝐏𝐓𝐦𝐢𝐧     Constraint 3 

//Total profit is greater than or equal to the industry minimum profit 

𝐭 ≤ 𝐭𝐚𝐯𝐞     Constraint 4 

//Delivery time of this supply chain is no more than the average of the industry 

𝐩 ≤ 𝐩𝐚𝐯𝐞     Constraint 5 

//Unit price of retailer’s finished goods is no more than the average of the industry  

System Goals 
𝐏𝐓𝐎𝐓
𝐓𝟏

+ 𝐝𝟏j − 𝐝𝟏l = 𝟏    Goal 1 

//To reach profit target 
𝐒𝐋
𝐓𝟐
+ 𝐝𝟐j − 𝐝𝟐l = 𝟏    Goal 2 

//To reach service level target 
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𝐕+ 𝐝𝟑j − 𝐝𝟑l = 𝟎    Goal 3 

//To reach the target of the variance of the reliability of the entities (three entities: supplier, manufacturer, and 
retailer) 

Bounds 

𝐒𝐑𝐌, 	𝐒𝐅𝐆, 	𝐌𝐑𝐌, 	𝐌𝐅𝐆, 	𝐑𝐑𝐌, 	𝐑𝐅𝐆 ∈ {𝟎, 𝟏} 

//The CODP variables are Boolean variables. 

𝟎.𝟗𝟗𝟕 ≤ 𝐫𝐥𝐬, 	𝐫𝐥𝐬𝐦, 	𝐫𝐥𝐦, 	𝐫𝐥𝐦𝐫, 	𝐫𝐥𝐫, 	𝐫𝐥𝐫𝐜 ≤ 𝟎.𝟗𝟗𝟗𝟗𝟗𝟕 

//All reliabilities are between 3σ and 6σ 

𝟎 ≤ 𝐝𝐢j,𝐝𝐢l ≤ 𝟏, 𝐢 = 𝟏, 𝟐, 𝟑 

𝐝𝐢j ∙ 𝐝𝐢l = 𝟎, 𝐢 = 𝟏, 𝟐, 𝟑 

∑ 𝐰𝐢 ∙ (𝐝𝐢j + 𝐝𝐢l)𝟑
𝐢w𝟏 = 𝟏  

Minimize 

 𝐙 = ∑ 𝐰𝐢 ∙ (𝐝𝐢j + 𝐝𝐢l)𝟑
𝐢w𝟏  

//Minimize the weighted sum of the deviation variables 
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APPENDIX D THE RMC TUNING ALGORITHM CUSTOMIZED FOR THE 

HOT ROLLING PROCESS CHAIN PROBLEM (CHAPTER 5) 

Appendix D is the RMC tuning algorithm (Table 5.5) customized for the Cooling Procedure of the 

Hot Rolling Problem. Appendix D is referenced in Section 5.5.4. This algorithm is an extension 

of the algorithm in Table 5.5. More auxiliary parameters are defined to assist RMC tuning – T, 

𝛼,𝛽, 𝛾,𝜃, 𝜄, 𝜅, 𝑀 . For the parameters that are relatively more important (the results are more 

sensitive to their values), e.g. 𝜃, we tune their values. For the parameters that are relatively less 

important, e.g. 𝜄, 𝜅, 𝑀, we set values to them with heuristics. 

1 𝑡 <- 0 // Initiate the number of synthesis cycles 

2   b <- 0 // Initiate the time of updating the best RMC 

3   𝑅𝑀𝐶6 <- a	random	value  // Initiate RMC with a random value (here we set 𝑅𝑀𝐶 <- 0.5) 

4   𝑏𝑒𝑠𝑡� <-	a	random	value  // Initiate the “best RMC” with a random value (here we set 𝑏𝑒𝑠𝑡 <- 0.5) 

5 While 𝑡 ≤ 𝑇  Do  // Search for best RMC for T synthesis cycles (the first stop criterion, here we set T <- 20) 

6  if 𝐸𝐼[𝑅𝑀𝐶6jx] ≻ 𝐸𝐼[𝑅𝑀𝐶6j�]  // If 𝑅𝑀𝐶6jx performs better than 𝑅𝑀𝐶6j� 

7            
	

 

 

 
𝑅𝑀𝐶6 <- 𝑅𝑀𝐶6jx + α ∙ (𝑅𝑀𝐶6jx − 𝑅𝑀𝐶6j�)  // Update 𝑅𝑀𝐶6 in the improving direction (α ∈ [0,1], and 
here we set α as random values that uniformly distributed in [0, 1])    

8  else if 𝑏𝑒𝑠𝑡� ≠ 𝑅𝑀𝐶6j� 

9 

                   

	

 

 

 

𝑅𝑀𝐶6  <- β ∙ 𝑏𝑒𝑠𝑡� + (1 − β) ∙ 𝑃𝐸𝐼jx[𝑏𝑒𝑡𝑡𝑒𝑟{𝑃𝐸𝐼[𝑅𝑀𝐶6j�], 𝑃𝐸𝐼[𝑏𝑒𝑠𝑡�jx]}]   // Update 𝑅𝑀𝐶6  as the 
linear  

combination of best RMC and the last best RMC (𝑏𝑒𝑠𝑡�jx) iff 𝑏𝑒𝑠𝑡�jx performs better than 𝑅𝑀𝐶6j�; 
otherwise  

update 𝑅𝑀𝐶6 as the linear combination of best RMC and 𝑅𝑀𝐶6j� (β ∈ [0,1], and here we set β as random  

values that uniformly distributed in [0.5, 1]) 

10  else if 𝑏𝑒𝑠𝑡�jx 

11 

                              

	

 

	

              
 
𝑅𝑀𝐶6 <- β ∙ 𝑏𝑒𝑠𝑡� + (1 − β) ∙ 𝑏𝑒𝑠𝑡�jx  // Update 𝑅𝑀𝐶6 as the linear combination of the current best 

RMC and the last best RMC 

12   else 

13    𝑅𝑀𝐶6 <- β ∙ 𝑅𝑀𝐶6jx + (1 − β) ∙ 𝑅𝑀𝐶6j� 

14  if 𝑅𝑀𝐶6 > 1  // If 𝑅𝑀𝐶6 is larger than its upper bound 

15   𝑅𝑀𝐶6 <- 1  // Pull 𝑅𝑀𝐶6 back to range 

16  if 𝑅𝑀𝐶6 < 0  // if 𝑅𝑀𝐶6 is lower than its lower bound 
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17   𝑅𝑀𝐶6 = 0  // Pull 𝑅𝑀𝐶6 back to range 

18  𝐼 <- 0  // Initiate the number of EIs of 𝑅𝑀𝐶6 in 𝐷𝐸𝐼 

19  𝐽 <- 0  // Initiate the number of EIs of 𝑅𝑀𝐶6 that are better than the EIs of best RMC 

20  𝐾 <- 0  // Initiate the number of EIs of 𝑅𝑀𝐶6 that violate 𝐷𝐸𝐼 within θ. We tune θ maximizing the 𝐿� − 𝑛𝑜𝑟𝑚 
distance between EIs of two adjacent iterations and get 10% 

21  𝐿 <- 0  // Initiate the number of EIs of 𝑅𝑀𝐶6 that are better than the EIs of 𝑅𝑀𝐶6jx 

22  for 𝑖 in 1 to 𝑛  // For all the EIs (n is the number of EIs) 

23   if𝑃𝐸𝐼[𝑅𝑀𝐶6]W ∈ 𝐷𝐸𝐼W  // If the 𝑖th EI of 𝑅𝑀𝐶6 is in the desired range of the 𝑖th EI 

24    𝐼 <- 𝐼 + 1  // Update the number of EIs of 𝑅𝑀𝐶6 in 𝐷𝐸𝐼 

25   if 𝐸𝐼[𝑅𝑀𝐶6]W ≽ 𝐸𝐼[best]W36  // If for the 𝑖th EI 𝑅𝑀𝐶6 performs better than or equal to best RMC 

26    𝐽 <- 𝐽 + 1  // Update the number of EIs of 𝑅𝑀𝐶6 that are better than best RMC  

27 

                 
 

 

           

if 𝐸𝐼[𝑅𝑀𝐶6]W ∉ 𝐷𝐸𝐼W and 𝐸𝐼[𝑅𝑀𝐶6]W ∈ [𝐷𝐸𝐼W]jMÛ
lMÛ  // If the 𝑖th EI of 𝑅𝑀𝐶6 violates the desired range of the 

  𝑖th EI within 𝛾W (in this problem, 𝛾W=30%) 

28    𝐾 <- 𝐾 + 1  // Update the number of EIs of 𝑅𝑀𝐶6 that violate 𝐷𝐸𝐼 within 𝛾W 

29   if  𝐸𝐼[𝑅𝑀𝐶6]W ≽ 𝐸𝐼[𝑅𝑀𝐶6jx]W  // If for the 𝑖th EI, 𝑅𝑀𝐶6 performs better than or equal to 𝑅𝑀𝐶6jx 

30    𝐿 <- 𝐿 + 1  // Update the number of EIs that 𝑅𝑀𝐶6 improves versus 𝑅𝑀𝐶6jx 

31  if 𝐼 ≥ 𝜄 ∙ 𝑛	 and 𝐼 + 𝐾 = 𝑛  // If for at least 𝜄 (we set it as 2/3) EIs are in 𝐷𝐸𝐼, and the violation rate are all 
within 𝛾W 

32   if 𝐿 ≥ 𝜅 ∙ 𝑛	  // If at least 𝜅  (we set it as 2/3) EIs are better than previous synthesis cycle 

33    𝐸𝐼[𝑅𝑀𝐶6] ≻ 𝐸𝐼[𝑅𝑀𝐶6jx]  // We define that 𝑅𝑀𝐶6 overall performs better than 𝑅𝑀𝐶6jx          

34   if 𝐽 ≥ 𝜅 ∙ 𝑛	   // If at least 𝜅 EIs is better than best RMC 

35    𝑏𝑒𝑠𝑡 <- 𝑅𝑀𝐶6  // Update best RMC 

36    nupdt <- −1  // Reset no updating pointer “nupdt” as “-1” 

37   if 𝐾 ≥ 1  // If at least one violation EI 

38    𝐷𝐸𝐼W <- 𝐸𝐼[𝑅𝑀𝐶6]W which 𝐸𝐼[𝑅𝑀𝐶6]W ∉ 𝐷𝐸𝐼W and 𝐸𝐼[𝑅𝑀𝐶6]W ∈ [𝐷𝐸𝐼W]jNlN  // Update 𝐷𝐸𝐼W             

    nupdt <- nupdt + 1  // Increase no updating pointer “nupdt” by 1 

39  else 

40   nupdt <- nupdt + 1  // Increase no updating pointer “nupdt” by 1 

41  if nupdt ≥ 𝑀  // If no updating in 𝑀 synthesis cycles in a row (the second stop criterion, and here we set M<-
5)  

42   Break 

43  t <- t+1  // Move on to the next synthesis cycle 

44 Return best  // Return the final best RMC as the appropriate RMC 

 

36 𝐸𝐼W[𝑅𝑀𝐶6] ≻ 𝐸𝐼W[best] means for the 𝑖th PEI, comparing with the EI of current best, the EI of 𝑅𝑀𝐶6 is closer to the 
ideal value of the PEI. 
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Steps in the RMC-tuning algorithm: 

Determine the evaluation indices (EIs) based on multiple criteria to classify good results from the 

bad ones; 

Initialize the desired range of each EI (DEI) of the test problem; 

Identify auxiliary parameters to assist RMC tuning; 

Bring the EIs into DEI by tuning the auxiliary parameters; 

Update DEI to ensure a proportion of good results out of all results; 

Tradeoff between elitism and randomness to ensure a diversity while getting fast convergence. 
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In today’s presentation, I will address my committee’s questions from last time. First, Dr. Trafalis 
asked “how is the method used in this dissertation different from optimization?” I will introduce 
the frame of reference. Along the way, I will answer this question. 
 

 
Dr. Nicholson asked, “for Chapter 6, how do you know that using the proposed method, we learn 
the correlation among the goals instead of the weight vectors?” I will give the whole picture of my 
dissertation, including its layout and all the research questions and hypotheses, among which, I 
will go deeper in Research Question 3 and Chapter 6, to address Dr. Nicholson’s question. 
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Dr. Neeson asked, “how does the Red River project help or relevant to your future work?” I will 
summarize the contribution and indicate the way forward. Along the way, I will introduce the 
research thrusts and applications in my early career, especially the ones based on the Red River 
project. 
 

 
First, let me frame the reference of this dissertation and answer Dr. Trafalis’s question. How is 
the method used in this dissertation different from optimization? 
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I will frame the reference by analyzing the demand side, which is the characteristics and 
challenges in designing complex systems, then the supply side, which is modeling strategies – 
optimizing and satisficing – and their problems and differences, based on which, I come up with 
the research gaps. 
 

 
If we categorize everything in the model world and physical world, we may observe that there is 
an intellectual disconnection between them. In the model world, we desired a more organized 
world. We expect to obtain all information. If not, we hope that we can predict all kinds of 
uncertainties. But in the physical world, things are quite the opposite. We may have chaos and we 
cannot capture all the information. We may not have time to get aware of or respond to the 
emergent properties. That is where and how the intellectual disconnection comes from. 
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As George Box said, “all models are wrong, but some are useful,” we may encounter some 
difficulties when designing a complex system. For example, we may want to design a ship but end 
up with a submarine because we fail to capture all the requirements. We may overfit the noisy 
data, as a result, we make wrong decisions. For a new project, we may not have any data at all. 
We may lose an optimal solution due to variations. When visualize it in a 2D plane, where the 
horizontal axis is a decision variable and the vertical axis is the value of the goal function, and 
the goal function is the bold black line, we may get an optimal solution, which is on the boundary 
of the model bounded by constraints or bounds and it is a singlße point. However, the physical 
system may be one of the red dotted lines. Designers sometimes fail to capture the gap between 
the black line and the red dotted lines. As a result, the single optimal solution may not work in the 
physical world. There can be a deviation at the optimal solution. That is where some complex-
system designers’ hassle comes from. 
That is the analysis of the “demand side.” 
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Now, it is the analysis of the “supply side.” 
We categorize all the modeling methods into two categories – optimizing strategy and satisficing 
strategy. How did we come up with this conclusion? 
 

 
We critically review the literature on modeling methods. Among 99 publications, essentially, there 
are two modeling strategies. (Let’s go to the backup slides for more information.) 
 

Systems Realization Laboratory @ OU Model Evolution for the Realization of Complex Systems
Lin Guo

Modeling strategies – optimizing and satisficing (Section 1.2)

6 / 28

OPTIMIZATION
POST-OPTIMIZATION 
PROBLEM SHIFT

NO LONGER 
GOOD SOLUTION

system

problem

Optimize

Given
!: ℝ! → ℝ,Ω ⊆ ℝ!
Ω
= )

*
+ ∈ ℝ!|." + ≥ 0, 1 = 1, … ,4, ℎ# + = 0, 6

= 1,… , 7
Find
+∗: ! +∗ ≽ ! + , ∀+ ∈ Ω

COMPROMISE
POST-COMPROMISE 
PROBLEM SHIFT

STILL A GOOD  
SOLUTION

system

problem

Satisfice

Given
!: ℝ! → ℝ,Ω ⊆ ℝ!
Ω
= )

*
+ ∈ ℝ!|." + ≥ 0, 1 = 1, … ,4, ℎ# + = 0, 6

= 1,… , 7, ! + + ;% − ;& = =>?.@A
Find
+': B(∈ * ! + = =>?.@A

• The model is incomplete and inaccurate
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• Design preferences evolve
• Multiple types of uncertainty
• Sensitive to parameter setting
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• Manage incompleteness and inaccuracies by adding
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• Use fuzzy solutions to replace exact solutions
• High computational complexity in post-solution

analysis but no reusable knowledge
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Category Example Methods Advantages Disadvantages

Op
tim

izi
ng

 S
tra

te
gy

Formulate a problem 
exactly and solve it 
approximately

Gradient-based 
methods, pattern 
search methods, 
penalty function 
methods, etc.

- Maintaining a relatively accurate model 
along the solution search (given the 
information that the designer has on hand).

- The solution is still an approximate, inaccurate 
one;
- Cannot get the information of the dual and use 
it to facilitate problem solving or post-solution 
analysis;
- Heuristics are used in solution algorithms, 
which may result in premature convergence or 
unnecessarily high computational complexity.

Sa
tis
fic
in
g

St
ra

te
gy

Approximate a 
problem and solve it 
exactly

ALP, SLP, SQL, etc. - Solutions are on the vertices of the 
approximated problem so the dual of the 
approximated problem can be explored;
- Solutions may be away from the boundary 
of the original problem so they are relatively 
insensitive to variations;
- The approximation of the problem can be 
improved by accumulating the linearized 
constraints during iterating and an 
approximated problem with acceptable level 
of accuracy can be obtained.

- Introducing information loss while doing 
approximation, making the solution inaccurate;
- Heuristics are used in approximation 
algorithms, which may result in premature 
convergence or unnecessarily high 
computational complexity.

Table 1. 2 Advantages and Disadvantages of The Two Categories of Solution Algorithms
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In Table 1.3, we illustrate the major issues that designers focus on when they design complex 
systems. The scholars may have various foci, but their methods all fall into two categories – 
optimizing and satsificing. (Let’s go back to the main slides.) 
 

 
In optimizing strategy, designers seek the optimal solution by maximazing (or minimizing) an 
objective function through determining the value of decision variables. Whereas in satisficing 
strategy, we have a target value for each objective, so the objective becomes a goal. A goal is an 
equation with the objective on the left-hand side and its target value on the right-hand side. So, 
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Table 1. 3 Several Representative Methods and Their Features (based on 99 publications)
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• The model is incomplete and inaccurate
• The boundary evolves
• Design preferences evolve
• Multiple types of uncertainty
• Sensitive to parameter setting
• Interactions among subsystems
• Emergent properties not captured

• Manage incompleteness and inaccuracies by adding
buffers

• Use fuzzy solutions to replace exact solutions
• High computational complexity in post-solution

analysis but no reusable knowledge
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the designers seek the nearest projection of the goal onto the feasible space bounded by the 
constraints and bounds. This is a satisficing solution. This is the difference. 
 

 
What does this difference mean to us? Let me answer this, meanwhile, respond to Dr. Trafalis’s 
question “how is satisficing difference from optimization?” I will answer this question by 
answering three sub-questions. The first is “why can designers obtain good enough but relatively 
robust solutions using satisficing strategy, such as using the compromise decision support problem 
(cDSP), which is the formulation construct, with the Adaptive Linear Programming Algorithm 
(ALP), which is the solution algorithm, and using the decision support in the design of engineering 
systems (DSIDES), which is the platform that implements the cDSP and ALP? 
(In this dissertation, when we mension satisficing strategy, we always refer to the cDSP, ALP, and 
DSIDES as particular tools to realize satisficing strategy. Other people may have other ways of 
realizing satisficing strategy, but we realize it using the cDSP, ALP, and DSIDES.) 
If we explain the difference using the KKT conditions, or Kuhn-Tucker conditions, we observe that 
when using optimizing strategy, designers have to accept three assumptions: 
First, the mathematical model is a perfect abstraction of the physical system, so the optimal 
solutioin to the mathematical model is also the optimal solution to the physical problem. 
Second, all equations of the problem are differentiable. 
Third, the convexity degree of at least one non-zero linear combination of all constraints is higher 
than the convexity degree of the objective function. The non-zero vectors that combine the 
constraints are Lagrange multipliers. 
Using satisficing strategy, designers only accept one assumption, the second one. What is the 
difference between having three assumptions and having one? (Let me use the backup slides to 
explain.) 
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Response to Dr. Trafalis: How is satisficing different from optimization?
- a) Why can designers obtain good enough but relatively robust solutions using satisficing strategy, such as the compromise 
Decision Support Problem (cDSP) with the Adaptive Linear Programming algorithm (ALP) implemented in the decision support 
in the design of engineering systems (DSIDES)?

Optimizing vs. Satisficing
- Difference in the assumptions regarding the KKT conditions (Section 2.1)

Assumption/Requirement 1 – mathematical models are
100% complete and accurate abstractions of physical
problems.

Assumption/Requirement 2 – all equations of the
problem are differentiable.

Assumption/Requirement 3 – the convexity degree of at
least one non-zero linear combination of all constraints is
higher than the convexity degree of the objective function.

OptimizingSatisficing

Go to 
backup slide
36 for details
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First, let’s review the KKT conditions. The first-order or the necessary KKT conditions have four 
parts. The stationary, primal feasibility, dual feasibility, and complementary slackness. What is 
their physical meaning? It means, at a solution point, the primal and the dual are feasible, which 
explains the primal feasibility and dual feasibility, and the objective function is tangent to the 
linear combination of all quality constraints and the active inequality constraints, which explains 
the stationary and complementary slackness. The vectors linearly combine the constraints are 
Lagrange multipliers. This is the meaning of necessary KKT conditions. Both optimal solutions 
and satisficing solutions meet the necessary KKT conditions. 
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First-order (necessary) KKT conditions

Stationary:

∇" #∗ + ∑"#$% &"∇'" #∗ − ∑&#$ℓ )&∇ℎ& #∗ = 0
Primal feasibility:

'" #∗ ≥ 0, ∀ 0 = 1,… ,3
ℎ& #∗ = 0, ∀ 4 = 1,… , ℓ
Dual feasibility:

&" ≥ 0, ∀ 0 = 1,… ,3
Complementary slackness:

&"'" #∗ = 0, ∀ 0 = 1,… ,3

Physical meaning
At the solution point x*, where both the primal and the dual are 
feasible, the gradient vector of the objective ∇" #∗ can be 
represented as the non-zero linear combination of the gradient matrix 
of all equality constraints ℎ" #∗ and the active inequality constraints
∇ %# #∗ for i iff %# #∗ =0.

Figure 2. 2 The first-order necessary KKT conditions are satisfied at 
&∗

How is satisficing different from optimization? (Section 2.1)
- a) Why can designers obtain good enough but relatively robust solutions using satisficing methods, such as the 
compromise Decision Support Problem (cDSP) with the Adaptive Linear Programming algorithm (ALP) implemented in the 
decision support in the design of engineering systems (DSIDES)?

36Backup Slides
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The difference lies in the second-order or sufficient KKT conditions. The physical meaning of the 
sufficient conditions is that at the solution point x*, there exists a nonzero vector s that is 
orthogonal to the gradient matrix of all active inequality and equality constraints, such that the 
second-order matrix of the Lagrange’s equation with respect to decision variables x* and 
Lagrange multipliers λ* and μ* is conditionally positive semidefinite: 𝑠�𝛻��� 𝐿(𝑥∗, 𝜆∗, 𝜇∗)𝑠 ≥ 0, 
∀s∈S.  
In other words, it means that in a small range around x*, the convexity degree of the objective 
should not exceed the convexity degree of the constraints combined by Lagrange multipliers. We 
define the convexity degree of an equation as the average value of the diagonal terms of the 
equation’s Hessian matrix at x*. 
If we visualize this, it means for the first two cases, there exists optimal solutions – either the linear 
combination of the constraints (combined by the Lagrange multipliers) is convex whereas the 
objective is concave, or the linear combination of the constraints is convex, but the objective is 
less convex. However, for the third case, we may have some problem of seeking an optimal solution 
because the convexity of the objective is larger than the convexity of the linear combination of the 
constraints. 
Using optimizing strategy, designers try to identify an optimal solution meeting the sufficient KKT 
condition, so for the third case, they may fail to find a solution. But using satisficing strategy, since 
we do not need to meet the sufficient conditions, we can still find a satisficing solution for the third 
case. In engineering design, we may face a lot of situations as the third case, when the objective 
has a high convexity degree, so we desire using satisficing strategy. It does not mean that meeting 
the sufficient KKT conditions are not useful. Nevertheless, considering the challenges in our 
demand side – the characteristics of complex system design problems, we prefer to choose 
satisficing strategy to manage our problems, by only meeting the necessary KKT conditions. 
That is the answer to the first sub-question. (Let me go back to main slides.) 
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Op#mizing vs. Sa#sficing
- Difference in the assump0ons regarding the KKT condi0ons

Second-order sufficient conditions

For the Lagrangian: 

! ", $, % = ' " + ∑!"#$ %!*! " − ∑%"#ℓ $%ℎ% "
=> .'/(() ! "∗, $∗, %∗ . ≥ 0, where . ≠ 0
And

/(*! "∗ , /(ℎ% "∗
'. = 0

Physical meaning:
At the solution point x*, there exists a nonzero vector s that is orthogonal to the 
gradient matrix of all active inequality and equality constraints, such that the 
second-order matrix of the Lagrange’s equation with respect to decision 
variables x* and Lagrange multipliers λ* and μ* is conditionally positive 
semidefinite: !!"""# # $∗, &∗, '∗ ! ≥ 0, ∀s∈S. 
In a small range around x*, the convexity degree of the objective should not 
exceed the convexity degree of the constraints combined by Lagrange 
multipliers.

Figure 2. 3 The convexity requirements for sa9sfying the second-order sufficient KKT condi9ons
Figure 2. 4 Lagrange multipliers fail to identify an 

optimal for a highly convex objective

✔ ✔ XBack to Slide 7
Optimizing vs Satisficing
regarding KKT Conditions
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The second sub-question is “how can designers obtain satisficing solutions using cDSP, ALP, and 
DSIDES,” given that satisficing solutions are more desired in complex systems design? How do 
we ensure these methods can return us satisficing solutions? Here are the reason. They are in my 
Table 2.1. 
We define that there are four stages in designing a complex system – formulation, approximation, 
exploration, and evaluation. In each of these four stages, there are some differences when using 
satisficing strategy. For example, in formulation, we use goals instead of objectives, and we 
minimize the deviation variables between the achieved value and the target of a goal instead of 
minimizing (or maximizing) the objective function consisting of decision variables. This part is 
similar to the Goal Programming. I will use several toy problems to illustrate the differences in 
each stage. (Go to backup slides.) 
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- b) How can designers obtain satisficing solutions using cDSP (formulation construct) + ALP (approximation and solution 
algorithm) + DSIDES (implementation)?

Table 2. 1 The Advantages of Realizing Satisficing Strategy using cDSP and ALP implemented on DSIDES (Section 2.2, 2.3)

Stage Feature Advantage Introduction 
and Discussion

Formulation
Using Goals and Minimizing 

Deviation Variables Instead of 

Objectives

At a solution point, only the necessary KKT conditions are met, whereas the 

sufficient KKT conditions do not have to be met.

Therefore, designers have a higher chance of finding a solution and a lower 

chance of losing a solution due to parameterizable and unparameterizable 

uncertainties.

Section 2.2.7

Approximation

Using second-order sequential 

linearization

Designers can have a balance between linearization accuracy and 

computational complexity. Section 2.2.5 

and 5.2.1Using accumulated 

linearization

Designers can manage nonconvex problems in a way, and deal with highly 

convex, nonlinear problems relatively more accurately.

Exploration
Combining interior-point 

searching and vertex 

searching

Designers can avoid being stuck into local optimum to some extent and 

identify satisficing solutions relatively insensitive to starting points changing.
Section 2.2.3

Evaluation
Allowing some violations of 

soft requirements, such as the 

bounds of deviation variables

Designers can manage rigid requirements and soft requirements in different 

ways to ensure feasibility.

As a result, goals and constraints with different scale can be managed

Section 2.2.9
Go to backup 

slide 38 for 
details
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In Chapter 2, I use five toy problems. I call them “toy problems” because they are very simple 
problems that allow us to tell the differences between optimizing and satisficing strategy. And I 
want to separate them with the “test problems” in later chapters (which are used to demonstrate 
the proposed methods in this dissertation.) For the toy problems in Chapter 2, each of them 
encounters one more complexity. 
For model formulation construct, for optimizing strategy, I use either Mathematical Programming 
or Goal Programming as the formulation construct, and for satisficing strategy I use cDSP. 
For solution algorithm, for optimizing strategy, I use Constrained Optimization by Linear 
Approximation (COBYLA) agorithm, Trust-region constrained (trust-constr) algorithm, 
Sequential Least Squares Programming (SLSQP) algorithm, and Nondominated Sorting 
Generation Algorithm II/III (NSGA II/III), for satisficing strategy, I use ALP. 
As to solver, I use Python Scipy.optimize for optimizing and DSIDES for satisficing. 
Due to the time limitation, I will only go through Toy Problem II and III to demonstrate the 
differences. 
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How is sa#sficing different from op0miza0on? (Sec%on 2.2)
- b) How can designers obtain sa#sficing solu4ons using cDSP (formula4on construct) + ALP (approxima4on and solu4on 
algorithm) + DSIDES (implementa4on)?

Toy Problem (TP)

Feature
I II III IV V

Two objectives * * * * *

Nonlinear * * * * *

Non-convex * * * *

Objectives with various units (scale) * * *

Target of goals with various levels of 
achievability * *

More than two objectives *

Strategy
Item Optimizing Satisficing

Model formulation 
construct

Mathematical 
programming or
Goal programming

Compromise 
Decision Support 
Problem

Solution algorithm

Constrained 
Optimization by Linear 
Approximation 
(COBYLA) algorithm

Adaptive Linear 
Programing (ALP) 
algorithm

Trust-region constrained 
(trust-constr) algorithm
Sequential Least 
Squares Programming 
(SLSQP) algorithm
Nondominated Sorting 
Generation Algorithm 
II/III (NSGA II/III)

Solver Python Scipy.optimize DSIDES

Table 2. 2 The Features of the Toy Problems (TP) Table 2. 3 Methods for Comparison the Two Strategies
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This is Toy Problem II. We have two objectives in the optimization formulation, so we have two 
goals in cDSP. The difference is that we set a target value for each goal and minimize the deviation 
variables which measure the distance between the achieved goal value and the target. Here we 
use the Archimedean strategy, which is using weight vectors to combine the deviation variables. 
We can also use Pre-emptive strategy, which is also known as Lexicographic, that is to prioritize 
the goals and minimize their deviations one by one. 
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Table 2. 6 The Optimization Model and Compromise DSP of the TP-II

Observation: for a multi-objective (multi-goal) problem with nonlinear, non-
convex functions, some optimizing algorithms (e.g. COBYLA) cannot manage 
the non-convexity, whereas some other optimizing algorithms are easy to 
converge local optima. NSGA II/III is sensitive to parameter setting but can 
return high-quality solutions (if the population size is large enough) which 
are nondominated but not quite diverse and require relatively high 
computational power. The ALP can return “good enough” and relatively 
diverse solutions.

Figure 2. 10 The Solution Points to TP-II on the Objective Space Using Four Algorithms –
Solutions returned by Trust-constr and SLSQP are not “good enough,” solutions returned by 

ALP are “good enough” and diverse, and solutions returned by NSGA II contain 
nondominated solutions but are not diverse
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If we visualize the two objectives, we can observe that the first objective is nonlinear and 
nonconvex. When we use the aforementioned methods in both strategies to formulate and solve the 
problem, using optimization, only the Trust-constr and SLSQP can return feasible solutions but 
COBYLA cannot return any feasible solution because one of the objectives is non-convex. We 
visualize the solutions on the objective space. Since we maximize both objectives, the solution 
points close to the up-right corner are preferred. Using optimization methods, Trust-constr or 
SLSQP, the solutions are relatively far from the up-right corner,  but NSGA II allows us to get one 
solution close to the up-right corner. Using the ALP, there are several solutions close to the up-
right corner. 
 

 
If we visualize the solution points obtained using the ALP and NSGA II in 3D space, 𝑥x𝑥x𝑓(𝑥) −
𝑝𝑙𝑎𝑛𝑒, the red dots are ALP solutions, the dark red ones are NSGA II solutions. They are very 
close. Our observation is that ALP allows us to obtain good enough and relatively diverse 
solutions. When I say “diverse,” I mean that in a good enough small area, there are more solutions 
based on difference scenarios (weight vectors). This can give us more alternatives in engineering 
design, so we prefer diverse solutions to single point solution. 
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So, why does ALP manage non-convex problems and return solutions close to the nondominated 
solutions (and even more diverse)? Because of the two mechanisms in the ALP – using “second-
order sequential linearization” and using “accumulated constraints.” Let me introduce how the 
two mechanisms allows us to manage non-convex problems in detail. 
 

 
The second-order sequential linearization was proposed by Dr. Farrokh Mistree in his 1881 paper. 
The surface of a non-linear equation is first approximated to a parabola at the starting A (used as 
the linearization point) and then linearized to a plane, AB*C*. The coefficients of the parabola 
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• Why does the ALP manage non-convex problems and return solutions close to the nondominated solutions (the

solutions returned by NSGA II/III)?

• Two mechanisms of the ALP allow it to linearize the non-convex function relatively accurately and converge with

good enough solutions.

• First, using “second-order sequential linearization.”

• Second, using “accumulated constraints.”
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• First, using “second-order sequential linearization.”

Figure 2. 12 Illustration of the Sequential Linearization using the ALP with Different 
Views When the Quadratic Approximated Paraboloid Has Real Roots

Figure 2. 13 Linearization using the ALP When the 
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are the diagonal terms of the Hessian matrix at the starting point. We only use the diagonal terms 
of the Hessian matrix instead of all terms because the second-order partial derivatives degenerate 
quickly, especially for engineering-design problems. After we get the parabola, we obtain its two 
real roots, B* and C*, which are the end points of the intersection segment between the paraboloid 
and the 𝑥x − 𝑥� plane. The plane passing through the starting point A and the two real roots B* 
and C* is the surface of the linearized constraint. Essentially, using the diagonal terms is 
projecting the equation onto each dimension and then approximate them. Why is this good? 
Because in this way, we can have a balance between computational complexity and approximation 
accuracy. If the parabola has no real roots, like the one in the right picture, we directly linearized 
the constraint into a plane using the first-order derivative at the starting point. 
 

 
The second mechanism is using “accumulated constraints.” This allows us to manage non-convex 
problems. If a constraint is slightly convex or slightly concave, we use “accumulated constraints” 
to replace it. In the first iteration, we choose a starting point and linearize the equation at it. In 
the second iteration, we choose a new starting point and linearize the equation at it. If the convexity 
degree at the new starting point is greater than or equal to -0.015, we use the linearized constraint 
in the previous iteration together with the linearized constraint in the current iteration to replace 
the original nonlinear constraint. However, if a constraint is highly non-convex, like the one in the 
bottom picture, we do not accumulate the linearized constraints from multiple iteration, because 
if we do so, we will cut off a big chunk of the feasible area. The highly non-convex constraints 
often exist in engineering-design problems. We use difference ways to linearize the constraints 
with different convexity degree. That is how we manage non-convex problems. 
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• Second, using “accumulated constraints.”

Figure 2. 14 Using the 
Accumulated Constraints 

from Multiple 
Linearization Iterations for 

Convex or Slightly Non-
Convex Equations and 
Using Single Linearized 

Constraint for Significantly 
Non-Convex Constraint
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In summary, using Toy Problem II, I demonstrate how the two mechanisms in the approximation 
using the ALP allow designers to have a balance between linearization accuracy and 
computational complexity, and deal with the non-convex problems relatively accurately. 
 

 
Then, I use another toy problem to demonstrate how we deal with another challenge in engineering 
design, that is when the goals have units with different scales. 
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Table 2. 1 The Advantages of Realizing Satisficing Strategy using cDSP and ALP implemented on DSIDES

Stage Feature Advantage Introduction 
and Discussion

Formulation
Using Goals and Minimizing 

Deviation Variables Instead of 

Objectives

At a solution point, only the necessary KKT conditions are met, whereas the 

sufficient KKT conditions do not have to be met.

Therefore, designers have a higher chance of finding a solution and a lower 

chance of losing a solution due to parameterizable and unparameterizable 

uncertainties.

Section 2.2.7

Approximation

Using second-order sequential 

linearization

Designers can have a balance between linearization accuracy and 

computational complexity. Section 2.2.5 

and 5.2.1Using accumulated 

linearization

Designers can manage nonconvex problems in a way, and deal with highly 

convex, nonlinear problems relatively more accurately.

Exploration
Combining interior-point 

searching and vertex 

searching

Designers can avoid being stuck into local optimum to some extent and 

identify satisficing solutions relatively insensitive to starting points changing.
Section 2.2.3

Evaluation
Allowing some violations of 

soft requirements, such as the 

bounds of deviation variables

Designers can manage rigid requirements and soft requirements in different 

ways to ensure feasibility.

As a result, goals and constraints with different scale can be managed

Section 2.2.9

TP-II
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Table 2. 8 The Optimization Model and Compromise DSP of the TP-III

Observation: for a multi-objective (multi-goal) problem 
with nonlinear, non-convex functions, and the scale of the 
objectives varies largely, why some optimizing algorithms 
(e.g. COBYLA) cannot work it out? The answer is given as 
follows.

Figure 2. 16 The Solution Points to TP-III on the Objective Space Using Two Algorithms –
Solutions returned by NSGA II are closer to the nondominated solution and more diverse 

but sensitive to parameter setting and require higher computational power.
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One goal is from -0.75 to 1, whereas the other is from -600 to 400. So, the two goals have very 
different units. This often takes place in engineering problems. Again, we use the methods in the 
two strategies. This time, no methods in optimizing strategy can return any feasible solution but 
NSGA II. We choose NSGA II as a verification method to evaluate whether the solutions identified 
using the selected methods are good enough. 
For this problem, when we set population as 20 for NSGA II, the returned solutions are not quite 
close to the up-right corner. They are not better than the ALP solutions. But when we set 
population as 50 for NSGA II, the NSGA II solutions are closer to the up-right corner comparing 
with the ALP solutions. 
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If we visualize them into the 3D space, we observe that all of the solutions close to the up-right 
corner, either from the ALP or from NSGA II, are concentrated into a small, good enough area. 
Our observation is “for a multi-objective problem with nonlinear, non-convex objectives, and the 
scale of the objectives varies largely, most optimization algorithms cannot work it out, whilst some 
others depend heavily on the hyperparameter setting. Why is that? 
 

 
The answer is that using cDSP, designers minimize the deviation variables that measure the 
distance between the real achieved value of a goal and the target of the goal. In optimization 
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formulation, the objective is the linear combination of the multiple objectives, so the objective is 
consisted of decision variables. In satisficing formulation, the cDSP, the objective is consisted of 
deviation variables instead of decision variables. So, using satisficing, the Lagrange equation does 
not depend on decision variables, so the variation in decision variables does not affect the 
feasibility of the solution. In addition, the goals do not dominate one another even when their unit 
scales are different, because if the target value of Goal i and Goal j varies a lot, the completion of 
Goal i and Goal j is within the same scale. 
 

 
Let me use the KKT conditions to explain it more thoroughly. 
For optimization, the first-order derivative of Lagrange equation with respect to decision variable 
x is a function of the parameters of the model (the coefficients in objectives and constraints), 
decision variables (if any objective or constraint is nonlinear), and the Lagrange multipliers. For 
satisficing, the first-order derivative of Lagrange equation should be with respect to the deviation 
variables because only deviation variables show up in the objective function (no decision 
variables), and it is only consisted of the coefficients of the deviation variables in the objective 
function. If we use Archimedean (weight vectors) format to combine the goals, then such 
coefficients left in the first-order Lagrange equation would be the weights. 
For optimization, for the second-order derivative of Lagrange equation with respect to decision 
variables, it may still have some parameters and decision variables left in the equation because of 
the nonlinearity. As to satisficing, the second-order derivative of Lagrange equation with respect 
to deviation variables degenerates to zero because the objective of a cDSP is a linear combination 
of deviation variables. That’s why using satisficing strategy, we do not need to meet the second-
order KKT conditions – the second order equation degenerates. 
As we know that both optimizing and satisficing requires to meet the first-order or necessary KKT 
conditions. Here we can see that the chance of maintaining the first-order KKT conditions for 
optimizing and satisficing varies. If any uncertainty with probability P takes place to any item in 
the first-order equation, it may or may not bring variation to the item. If the uncertainty takes 

Systems Realization Laboratory @ OU Model Evolution for the Realization of Complex Systems
Lin Guo

Optimizing Satisficing

⇒ ℙ #∗ $ ≪ ℙ #" $
46Backup Slides

How is satisficing different from optimization? (Section 2.2)
- b) How can designers obtain satisficing solutions using cDSP (formulation construct) + ALP (approximation and solution 
algorithm) + DSIDES (implementation)?

!!" #", %, &, ' = !!) % + ∑#$%& &#!!,# #" − ∑'$%( ''!!.' #" −
'()%!!/ #", %
= !!) % + 0 − 0 ± 2 = !!) % ± 2 = 3(5) ±2

The first-order Lagrange equations is a function of 
parameters &, decision variables ', and Lagrange 
multipliers (, *

The first-order Lagrange equation is a function of the
coefficients + of the deviation variables , in the goal function

!*" #, &, ' = 3(7, #, &, ')

!!!+ " #", %, &, ' = !!!+ ) % ≡ 0

The second-order Lagrange equation degenerates to zeroThe second-order Lagrange equation is a functions of 
parameters & and decision variables '
!**+ " #, &, ' = !*3 7, #, &, ' = 3’ 7’, #

ℙ(#"|;) ≈ ∏-$%. 2 − >(?5-|;)

If any uncertainty with probability - takes place (to at
least one item of & ./ ' ./ ( ./ *), the probability ℙ
that an optimal solution is still optimal is

If any uncertainty with probability - takes place (to +), the
probability ℙ that a satisficing solution solution is still
satisficing is

ℙ #∗ ; ≈ ∏0$%
1 2 − > @70 ; ∏2$%

3 2 − ; ?#2 ;
∏#$%
& 2 − ;(?&#|;) ∏'$%

( 2 − ;(A''|;)



 413 

place to parameters that breaks the balance of the first-order Lagrange equation, we denote it as 
𝒑¸𝓟𝒒¿ ä𝑷¹. And the same thing with decision variables and Lagrange multipliers, we denote the 
probability of the uncertainty happens to them not breaking the first-order Lagrange equation as 
𝑷(𝒙𝒏Ê|𝑷), 𝑷(𝝁ÌÀ |𝑷), and 𝑷(𝝀ÍÂ |𝑷). If all of the items under the uncertainty do not vary and break 
the first-order equation, then then optimal solution is still optimal under this uncertainty. The 
probability of it can be represented as the equation in the left bottom. We all know that any 
probability or “one minus this probability” is a value in the range of [0, 1], so the more items on 
the right-hand side we multiply, the lower the value on the left-hand side is. For satisficing strategy, 
if any uncertainty with probability 𝑃	takes place (to 𝓅), the probability that a satisficing solution 
solution is still satisficing is only by multiplying the probability that the uncertainty does not bring 
variation to the coefficients of the deviation variables in the objective that break the balance of the 
first-order Lagrange equation. The multipliers in the bottom-right equations are way fewer than 
the multipliers in the bottom-left equations. Therefore, the chance of maintaining an optimal 
solution under uncertainties is often smaller than the chance of maintaining a satisficing solution 
under the same uncertainties. 
 

 
In summary, in satisficing strategy, the formulation is different from optimization. The advantage 
is that designers have a higher chance of finding a solution and a lower chance of losing a solution 
for parameterizable and unparameterizable uncertainties. (The unparameterizable uncertainties 
are not shown in the equations in the previous slide but they exist.). Again, that is one of the 
reasons why we choose satisficing strategy to manage engineering-design problems. 
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Table 2. 1 The Advantages of Realizing Satisficing Strategy using cDSP and ALP implemented on DSIDES

Stage Feature Advantage Introduction 
and Discussion

Formulation
Using Goals and Minimizing 

Deviation Variables Instead of 

Objectives

At a solution point, only the necessary KKT conditions are met, whereas the 

sufficient KKT conditions do not have to be met.

Therefore, designers have a higher chance of finding a solution and a lower 

chance of losing a solution due to parameterizable and unparameterizable 

uncertainties.

Section 2.2.7

Approximation

Using second-order sequential 

linearization

Designers can have a balance between linearization accuracy and 

computational complexity. Section 2.2.5 

and 5.2.1Using accumulated 

linearization

Designers can manage nonconvex problems in a way, and deal with highly 

convex, nonlinear problems relatively more accurately.

Exploration
Combining interior-point 

searching and vertex 

searching

Designers can avoid being stuck into local optimum to some extent and 

identify satisficing solutions relatively insensitive to starting points changing.
Section 2.2.3

Evaluation
Allowing some violations of 

soft requirements, such as the 

bounds of deviation variables

Designers can manage rigid requirements and soft requirements in different 

ways to ensure feasibility.

As a result, goals and constraints with different scale can be managed

Section 2.2.9

TP-III
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How is satisficing different from optimization? (Section 2.2)
- b) How can designers obtain satisficing solutions using cDSP (formulation construct) + ALP (approximation and solution 
algorithm) + DSIDES (implementation)?
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By the way, why don’t we use NSGA II/III to solve engineering-design problems since NSGA II/III 
performs really well? Here’s the answer. First, besides the solutions, designers want to learn more 
about the model and how we can improve it, but NSGA II/III cannot give such information. Second, 
NSGA II/III’s performance heavily depends on the hyperparameter setting, such as the population 
size and generation number. Designers only know that a larger population or more generations 
end up with better solutions, but they do not know how large is “good enough.” Third, NSGA II/III 
requires much more computational power than the method we use in satisficing strategy. The 
essence of NSGA II/III is to generate a lot of decedents, choose the elites ones, allow some diversity 
and mutation, and mate them to produce a huge number of later generations, so on and so forth. 
It is like the “lower-evolved animals” who reproduce a large number of offspring for natural 
selection. The computational complexity is high. 
However, NSGA II/III are beautiful algorithms that can return good enough solutions. So, we use 
it as a verification method to evaluate whether the solutions obtained by using satisficing strategy 
are good enough, although we do not fully depend on it to provide all information that we need 
for engineering designs. (Let’s go back to the main slides.) 
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Why do not use NSGA II to design complex systems?
- b) How can designers obtain satisficing solutions using cDSP (formulation construct) + ALP (approximation and solution 
algorithm) + DSIDES (implementation)?

First, NSGA II/III cannot give designers insight on the nature of the decision model or the possible ways to
improve the model. NSGA II/III is an interior searching algorithm, which uses metaheuristics to search for
solutions that generationally improve the optimality and diversity of the solutions, but for information, such
as the bottleneck of the model, or the sensitivity of each part of the model, or anything else that may indicate
model improvement, cannot be provided along with the searching.

Second, the performance of NSGA II/III (include convergence speed, optimality of solutions, and diversity of
solutions) is sensitive to hyperparameter setting. Typical hyperparameters, the population size and generation
number, should be predefined by designers. However, designers only have the idea that a larger population
size or a larger generation number can return better solutions, but they may not have a clue how large is
“good enough.” In Toy Problem II and III, I can show how different the solutions can be when setting the
population as 20 and 50 for the same problem.

Third, NSGA II/III requires much more computational power than satisficing algorithms such as the Adaptive
Linear Programming (ALP) algorithm.
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There are three other toy problems and some discussions illustrating the differences in exploration 
and evaluation. I’m not going through all of them in this presentation due to the time limit. They 
are in my Chapter 2. If you have interest, welcome to read it. 
 

 
So far we have answered the first two sub-questions – how is satisficing different from optimizing 
and how can we obtain satisficing solutions using cDSP+ALP+DSIDES. The third sub-question 
is “why do I choose cDSP, ALP, and DSIDES to realize satisficing strategy?” The answer is a 
summary of the first two answers. As we observe that there is an intellectual disconnection between 
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Response to Dr. Trafalis: How is satisficing different from optimization?
- b) How can designers obtain satisficing solutions using cDSP (formulation construct) + ALP (approximation and solution 
algorithm) + DSIDES (implementation)?

Table 2. 1 The Advantages of Realizing Satisficing Strategy using cDSP and ALP implemented on DSIDES (Section 2.2, 2.3)

Stage Feature Advantage Introduction 
and Discussion

Formulation
Using Goals and Minimizing 

Deviation Variables Instead of 

Objectives

At a solution point, only the necessary KKT conditions are met, whereas the 

sufficient KKT conditions do not have to be met.

Therefore, designers have a higher chance of finding a solution and a lower 

chance of losing a solution due to parameterizable and unparameterizable 

uncertainties.

Section 2.2.7

Approximation

Using second-order sequential 

linearization

Designers can have a balance between linearization accuracy and 

computational complexity. Section 2.2.5 

and 5.2.1Using accumulated 

linearization

Designers can manage nonconvex problems in a way, and deal with highly 

convex, nonlinear problems relatively more accurately.

Exploration
Combining interior-point 

searching and vertex 

searching

Designers can avoid being stuck into local optimum to some extent and 

identify satisficing solutions relatively insensitive to starting points changing.
Section 2.2.3

Evaluation
Allowing some violations of 

soft requirements, such as the 

bounds of deviation variables

Designers can manage rigid requirements and soft requirements in different 

ways to ensure feasibility.

As a result, goals and constraints with different scale can be managed

Section 2.2.9
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Response to Dr. Trafalis: How is satisficing different from optimization?
- c) Why do I choose satisficing methods, particularly, cDSP + ALP + DSIDES (implementation) to manage complex-system 
design? Model World Physical World

• Nonlinear, discrete, and non-convex
• Fewer factors to control but a lot of requirements
• Need to explore the ways to combine the multiple goals
• Manage multiple types of uncertainty
• Need to know more about the model robustness and ways to 

improve the model formulation

Intellectual
Disconnection

www.usapangecon.com

We have
proved we
can manage
them better
using
satisficing
strategy

9 / 28



 416 

the model world and the physical world, the physical world is usually nonlinear, discrete, non-
convex, has fewer factors to control (decision variables) but a lot of requirements to meet 
(constraints), has uncertainties, and requires us to know more about the model robustness and 
ways to improve the model formulation, and we have demonstrated that we can manage them using 
cDSP+ALP+DSIDES by identifying and analyzing satisficing solutions and realize the model 
evolution. 
 

 
Based on what we have discussed so far, there are research gaps in both strategies. In optimizing 
strategy, as Albert Einstein said, “So far as the theories of mathematics are about reality, they are 
not certain; so far as they are certain, they are not about reality.” Using optimizing strategy is 
like to improve the accuracy of the solutions (to approach the optimal) without improving their 
robustness to uncertainties. On the contrary, in satisficing, as Herbert Simon said, “The decision 
maker has a choice between an optimal decision from an imaginary simplified world, or decisions 
that are “good enough”, that satisfice, for a world approximating the complex real one more 
closely. So, using satisficing strategy is like to improve the robustness of the solutions without 
improving their accuracy. 
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Research Gaps in both Modeling Strategies – Optimizing and Satisficing (Section 1.4)
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So far as the theories of mathematics are about
reality, they are not certain; so far as they are
certain, they are not about reality.

- Albert Einstein, one of the greatest physicists

The decision maker has a choice between an optimal
decision from an imaginary simplified world, or decisions
that are “good enough”, that satisfice, for a world
approximating the complex real one more closely. –
Herbert Simon, American Economist

Why?
• Satisfying KKT conditions
• No information passing
• Easy to stuck into local optimum
• Hard to compromise goals with different units
• Sensitive to parameter setting
• No mechanism to update metaheuristics

Why?
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Given the research gaps in both strategies, here is the summary. So far till now is some existing 
knowledge that I present or summarize in another way. From now on is something new in my 
dissertation. In summary, the research gap to be filled in this dissertation is “How can designers 
realize model evolution using satisficing strategy so that we can manage the chaos in the physical 
world, overcome the risk of losing an optimal solution, and discover domain-independent 
knowledge to update metaheuristics?” For each of the research gaps, we have a potential 
contribution. We will meet the requirements in complex-systems designing, manage the challenge 
in engineering design, manage the challenge in optimizing methods, and manage the challenge in 
satisficing methods. Our goal is to improve the accuracy and robustness of our design 
simultaneously through model evolution. 
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Research Gaps filled in this Dissertation (Section 1.5)
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Next, I will introduce my dissertation layout, research questions, and hypotheses, along the way 
answer Dr. Nicholson’s question. 
 

 
There are nine chapters in my dissertation. In Chapter 1, 2, and 3, I frame the reference, pose 
research questions, and propose methods. From Chapter 4 to 7, I use test problems to demonstrate 
the internal consistency which is the correctness of the proposed methods. In Chapter 8, I validate 
the methods, which is to demonstrate the utility and application scope of the methods. In Chapter 
9, I describe the way forward base on this dissertation, especially the “I statement,” which is my 
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Overview of Today’s Presentation
Addressing the Committee’s Questions
§ Dr. Trafalis: how is your method different from optimization? 

(Section 1.2, 1.4, 2.1, 2.2, 2.3)
§ Dr. Nicholson: (for Chapter 6), how do you know that using 

the proposed method, we learn the correlation among the 
goals instead of the weight vectors? (Section 6.14, 6.3) 

§ Dr. Neeson: how does the Red River project help or relevant 
to your future work? (Section 9.2.2, 9.2.3) 

A Test Problem
§ Dissertation layout (Section 1.7)
§ Research Questions and Hypotheses

§ Research Question 3: What is the method to speed up learning
the system nature, such as the interrelationship among the 
subsystems? (Section 2.4.2)

§ Specific Hypothesis 3: Learning interrelationship among
subsystems using unsupervised learning and reorganize them
based on it. (Section 2.5)

§ Method 3: Adaptive Leveling-Weighting-Clustering algorithm 
(Section 3.3.3)

§ Test Problem 3: Rankine cycle thermal system design (Chapter 6)
12 / 28

Frame of Reference

§ Characteristics and challenges in designing complex systems
(Section 1.1, 1.3)

§ Modeling strategies – optimizing and satisficing – and their
problems and differences (Section 1.2, 1.4, 2.2, 2.3)

§ Research gaps (Section 1.5)

Contribution and Way forward

§ Answering the research questions (Section 8.1.3) 
§ Managing four types of uncertainties (Section 8.1.4)
§ Verification and Validation (Section 1.6, 9.1.3)
§ Relevant publications (Section 9.1.4)
§ Research thrusts and application in my early career (Section 9.2)
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Dissertation Layout
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research plan in my early career in academia. Now, let me go deeper into Chapter 6 and answer 
Dr. Nicholson’s question. 
 

 
Here are the four research questions in my dissertation. I propose that model evolution is about 
connecting the different stages in the design evolution loop using different methods and algorithms. 
When we establish connections, we can pass information among them, evaluate the heuristics used 
in early stages or iterations, and update the heuristics using the information we learn from later 
steps. This process is the model evolution. 
Each research question is about how I can connect different stages to exchange certain 
information to evolve the decision model of a complex system. For each Research Question, I have 
a specific hypothesis to answer it. In Chapter 6 is about Research Question 3, “what is the method 
to speed up learning the system nature?” The specific hypothesis is “learn system nature such as 
interrelationship among subsystems and reorganize them based on it.” 
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Research Questions and Hypotheses

14 / 28Frame of Reference A Test Problem Contribution and Way Forward
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Heuristics

Deductive

Synthesis

Insights

RQ2 What is the method to evolve model to
update metaheuristics? 

RQ3 What is the method to speed up learning
the system nature? 

RQ4: What is the method that allows model
evolution by incorporating emergent
properties? 

RQ1: What is the method to evolve model
boundary? 
SH1: Explore the sensitivity of the segments of
the model boundary and improve accordingly.

SH2 Learn, evaluate, and update metaheuristics
to improve model performance.

SH3 Learn system nature such as
interrelationship among subsystems and
reorganize them based on it.

SH4:Capture and quantify emergent properties
through scenario planning in simulations.
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To answer the research question, I use a test problem, a concurrent engineering-design problem 
with six goals. We want to boost the system performance by reorganizing the subsystems. This 
problem is to design a Rankine cycle thermal system. There are a lot of possible applications for 
small-scale power systems. For example, to provide power to farming equipment. A common 
approach given a heat source is to build around a Rankine cycle like this. The primary components 
are a power-producing turbine, which transfers the heat source into motion, a pump to pressurize 
the fluid to the turbine, and two exchangers – one is a condenser, and the other is a heat exchanger. 
They make the liquid into vapor or the opposite way to convert energy between different forms. A 
common fluid used in a Rankine cycle is water. Sometimes, we can also have organic fluids in 
chemistry, which makes the Rankine cycle an organic Rankine cycle. Our task is to select the fluid 
and determine the geometry specification of each part of the Rankine cycle. 
We have six goals: to minimize the moisture in the turbine, to maximize the Rankine cycle efficiency, 
to maximize the temperature increase in the heat exchanger, to maximize system efficiency 
indicator 1 and 2, and to maximize heat transfer effectiveness in exchanger. 
Suppose we do not have any domain knowledge on how to combine the six goals, the two most 
popular methods to enumerate all different scenarios of combining the goals are Lexicographic 
(or Pre-emptive) and Archimedean (or weighted combination). However, for a six-goal problem, 
there are 720 Lexicographic scenarios and hundreds of Archimedean scenarios (depends on the 
value of parameter “p” of the Archimedean scenarios they set). And there will be a lot more if we 
mix the Lexicographic and Archimedean scenarios. Either way requires huge amount of 
computation. In the paper where this Rankine cycle problem first published, the authors selected 
15 scenarios to explore the combinations of the goals, based on their domain knowledge, but are 
the 15 scenarios sufficient, and are they the right ones or most representative ones? We don’t know 
and they did not verify. In summary, the authors rely on domain expertise to simplify the problem 
by picking 15 scenarios to combine the goals. They rely on metaheuristics to make rules, like why 
they pick up 15 scenarios, why not 20 or 50. And there is no mechanism to update their 
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Problem statement
Managing many-goal problems

Given a concurrent design problem, how can we learn the interrelationship among subsystems to
reorganize the subsystems to boost the system performance?

Six goals:
•Min Turbine moisture
•Max Rankine cycle efficiency 
•Max Temperature increase in exchanger
•Max System efficiency indicator 1 
•Max System efficiency indicator 2 
•Max Heat transfer effectiveness in exchanger

Why?
• No information passing
• Rely on domain expertise
• Rely on metaheuristics to make rules
• No mechanism to update metaheuristics

Smith, W. F., Milisavljevic, J., Sabeghi, M., Allen, J. K., and Mistree, F., “The realization of engineered systems with considerations of complexity,” Proc. ASME 2015 
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, pp. 
V007T006A019-V007T006A019.
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metaheuristics – what if the 15 scenarios they use are not the most representative ones, and what 
if it is too much or too little? 
 

 
Given the problem, we critically review the literature in managing many-objective or many-goal 
problems. (Go the backup sides.) 
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Features and Limitations of the Methods in Literature (Section 6.1)

Method Gaps
VEGA Vector valued feedback can be subjective; local optimum

SPEA2 The fitness assignment being used to evolve solutions is with heuristics and may be domain-
dependent

MOEA/D Decomposition of the problem may cause inaccuracies and computational complexity

NSGA-II/III No guarantee of the even-distribution of the solution on the near-pareto front; no insight on
formulation improvement

REDGA Losing information when removing partially redundant objectives

HypE Monte Carlo approximation is computational costly

Interval analysis Aiming at geometry determination of the problem

Summary of gaps:
• Aiming at finding near Pareto front, which is consisted of optimal solutions that are sensitive to model errors and

variations

• No decision support on how we can use the solutions in different area under various situations
• Relying on domain knowledge to scale multiple objectives or decompose the problem
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Critically Reviewing Literature on Many-Goal Problems (Section 6.1)
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VEGA (Schaffer 1985) Using vector-valued feedback with adaptive procedures for 
searching high-order multi-objective problems * *

SPEA2 (Zitzler, Laumanns et al. 2001)
Using fitness assignment, archiving and truncating (the near-
Pareto front) to evolve solutions to approach the Pareto-optimal 
set

* * *

MOEA/D (Zhang and Li 2007)
Decomposing a problem into scalar optimization subproblems 
and optimizing them simultaneously * * * *

NSGA-II/III (Deb, Pratap et al. 2002, Seada 
and Deb 2014)

Using the nondominated sorting evolutionary algorithm to 
adaptively update reference points to approach the Pareto front * * *

REDGA (Jaimes, Coello et al. 2009) Reducing the number of objectives by removing redundant (to 
some degree) objectives * * *

HypE (Bader and Zitzler 2011)
Using Monte Carlo simulation to approximate the exact 
hypervolume values and seeking ranking of solutions * * *
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ov
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Multi-Level Decisions (Mistree, Patel et al. 
1994)

Using two design strategies and multi-level decisions to foster 
discussion on multi-objective problems * *

RCEM (Chen, Allen et al. 1997, Choi, Austin 
et al. 2005)

Improving the robustness of the design using indices based on 
the results of exploring the solution space * *

Interval analysis (Hao and Merlet 2005)
Using parallel robots based on interval analysis to determine 
geometries to satisfy all compulsory requirements * *

Level diagrams (Reynoso-Meza, Blasco et al. 
2013)

Comparing multiple Pareto fronts based on different design 
concepts using level diagrams, to support decision making on 
design concept selection

* * *

XPLORE in DSIDES (Smith, Milisavljevic et al. 
2015, Sabeghi, Shukla et al. 2016)

Exploring the design space by exploring different goal structures 
using a compromise Decision Support Problem * * *

CORTHOG (Warwick 2019 Removing poor measurement degrees-of-freedom iteratively 
until pseudo-orthogonality check was optimized * * * *

Table 6. 2 The Features and Limitations of Some Classic Multi-Objective (Multi-Goal) Solution Algorithms and Methods
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Through reviewing more than 60 publications, and the details are in Table 6.2, we summarize that 
there are three research gaps in the field of managing many-goal, engineering-design problems. 
(Go back to main slides.) 
 

 
The first gap is that most authors aim at finding near Pareto front, which is consisted of optimal 
solutions that are sensitive to model errors and variations. 
Second, no decision support on how we can use the solutions under different scenarios. They only 
give a lot of different solutions but without recommendations on when and how designers should 
use each of them. 
Third, they rely on domain knowledge to scale multiple objectives or decompose the problem. 
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Features and Limitations of the Methods in Literature (Section 6.1)

Method Gaps
VEGA Vector valued feedback can be subjective; local optimum

SPEA2 The fitness assignment being used to evolve solutions is with heuristics and may be domain-
dependent

MOEA/D Decomposition of the problem may cause inaccuracies and computational complexity

NSGA-II/III No guarantee of the even-distribution of the solution on the near-pareto front; no insight on
formulation improvement

REDGA Losing information when removing partially redundant objectives

HypE Monte Carlo approximation is computational costly

Interval analysis Aiming at geometry determination of the problem

Summary of gaps:
• Aiming at finding near Pareto front, which is consisted of optimal solutions that are sensitive to model errors and

variations

• No decision support on how we can use the solutions in different area under various situations
• Relying on domain knowledge to scale multiple objectives or decompose the problem

16 / 28Frame of Reference A Test Problem Contribution and Way Forward

Go to backup 
slide 49 for details in
critically reviewing the

literature



 423 

 
We propose the Adaptive Leveling-Weighting-Clustering algorithm (ALWC) to fill the research 
gaps. First, we choose design scenarios – can be weight vectors, or lexicographic scenarios, or 
mixture of the two. We implement the design scenarios into cDSP and get a deviation matrix. For 
a k-goal problem with A design scenarios, our deviation matrix is a A-k dimension matrix. Then 
using the deviation matrix, we process unsupervised learning, which is to learn the correlation or 
orthogonality among the goals (the columns). Other than the correlation and orthogonality, we 
can have more types of interrelationship among the goals, but for this test problem, I only use two 
and they verify each other. (More types of interrelationship can be explored in the way forward.) 
Then we get the interrelationship matrix, which is an upper triangle matrix. Then we perform 
cluster analysis based on the interrelationship matrix. We use multiple algorithms and do cross 
validation to determine the clustering results, based on which, we determine the design scenarios 
of the next iteration – by setting the leveling (lexicographic) and weighting (Archimedean) of the 
goals: we set the goals belong to the same cluster in the one level, and weighted combine the goals 
in the same level. That is the whole procedure of one iteration. With the new design scenarios, we 
process the whole process again for another iteration, so on and so forth until the cluster results 
and the deviation matrix reach to a stable status, we converge. 
But, how do I fill the aforementioned three research gaps by using the ALWC? 
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Proposed method: Adaptive Leveling-Weighting-Clustering algorithm (ALWC) (Section 6.3)
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First, instead of finding new Pareto front, which is consisted of single optimal solutions that are 
sensitive to uncertainties, we search for satisficing solutions set that is relatively insensitive to 
uncertainties, using satisficing strategy. How? Using cDSP, ALP, and DSIDES. 
 

 
Second, unlike most literature in this field that does not give decision support on how to choose 
the solutions, we provide decision support by using the clustering results into the design scenarios 
of the next iteration. 
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Third, to avoid relying too much on domain knowledge and in case we do not have sufficient 
domain knowledge for a new problem, we use calculations to obtain insight, for example, the 
interrelationships among the goals, to manage the multiple goals. 
That’s how we fill the three research gaps. Here are the details of how each part of this algoritham 
works. (Go to backup slides.) 
 

 
In the very first iteration, since we do not have any clustering result yet, the design scenarios are 
randomly generated. But for any later iteration, given we have a clustering result from the previous 
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iteration, we prioritize the goals in different levels according to their clusters. The pseudocode in 
the rounded rectangle enables us to do that. 
 

 
Then we alternate the levels using the pseudocode in this rounded box. 
 

 
Then we generate weights and assign them to the goals in each level using the pseudocode in this 
rounded box. 
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After that, we cluster the goals using their deviations returned by running the multiple scenarios 
implemented in the cDSP, using the pseudocode in this rounded box. 
We run this in iterations until solutions and clustering results do not change much, we converge. 
 

 
Here we illustrate two different cases of the interrelationship between two goals. If by changing 
the design scenario, the deviation of the two goals move parallel with Line OI, the diagonal, we 
define the two goals are highly correlated, as it is shown in the right-hand side picture. If by 
changing the design scenario, the deviation of the two goals move orthogonal to Line OI, we define 
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the two goals are more orthogonal, as it is shown in the left-hand side picture. In a single iteration, 
if by changing a lot of design scenario, two goals are more orthogonal than correlated, it is highly 
likely that they will be grouped into different clusters. (Go back to main slides.) 
 

 
Using the ALWC, we get the converged deviation matrix and we normalize it to ensure every row 
is ranged from 0 to 1, as the one in the rounded box. Its clustering result is shown in the table on 
the right-hand side. In the early iterations, we have different clustering results, but in the last a 
few iterations, they do not change any more. 
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We observe that the result is not that each of the four components forms a cluster. So, unsupervised 
learning may return us something that is not quite in line with our domain knowledge that we 
thought should be right. This indicates that for a problem that we do have domain expertise, such 
expertise can be wrong or misleading. So, we cannot fully rely on domain knowledge even when 
we have it. 
 

 
One of the contributions is that we significantly save the computing power by reducing the number 
of design scenarios – 36 is way smaller than 720 for Lexicographic and 462 for Archimedean. 
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Another contribution is that the 36 scenarios can get us even better results than enumerating the 
Lexicographic or Archimedean strategy of combining the goals. As we plot the deviations using 
Lexicographic, Archimedean, and ALWC respectively in the bottom right, we want to minimize the 
deviations and minimize the variance of the deviations under all design scenarios, so we desire 
the bars close to the horizontal axis and as short as possible. We observe that using the ALWC, 
the deviation of Goal 1 and Goal 5 is improved regarding the value and distribution, comparing 
with both Lexicographic and Archimedean strategy. The deviation of Goal 6 is similar to 
Archimedean but better than Lexicographic strategy.  
In summary, using the ALWC, we not only reduce the computational complexity, but also achieve 
the goals better. 
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So now is a good time to answer Dr. Nicholson’s question, “how do you know that using the 
proposed method, we learn the correlation among the goals instead of the weight vectors?” We 
did three things to ensure we obtain the right result. First, we use a large number of design 
scenarios to combine the goals – not as many as enumerating all the scenarios but large enough, 
which is to “enrich the sample size” and avoid sucking into local optimum through exploitation. 
Second, we run a large number of iterations, which is to “remove correlation” and avoid fake 
convergence through exploitation. Third, we use design scenarios that are more representative, 
that are design scenarios based on the clustering result, which is to “increase the frequency and 
weight of the more representative design scenarios” and avoid local optimum through exploration. 
So, those are the three ways we use to avoid using a wrong interrelationship. 
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a) Using a large number of design scenarios to manage the goals in a lot of different ways

– “enrich the sample size” and avoid sucking into local optimum through exploitation.

b) If we run a large number of iterations, and in each iteration, we use a different group of

design scenarios – “remove correlation” and avoid fake convergence through

exploitation.

c) Inclined to use the design scenarios that are more representative – “increase the

frequency and weight of the more representative design scenarios” and avoid local

optimum through exploration.
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Next, let me move on to summarize the contribution and way forward and answer Dr. Neeson’s 
question. 
 

 
For each of the research questions, I propose a method and use one or two test problems to use 
the method. First, what is the method to evolve model boundary? I propose the formulation-
exploration framework to identify the sensitive segment and the bottleneck of the model, and treat 
it by adding buffer or exploit the potential of the mathematical model in the next iteration. Second, 
what is the method to evolve model to update metaheuristics? I propose to use parameter learning 

Systems Realization Laboratory @ OU Model Evolution for the Realization of Complex Systems
Lin Guo

Overview of Today’s Presentation
Addressing the Committee’s Questions
§ Dr. Trafalis: how is your method different from optimization? 

(Section 1.2, 1.4, 2.1, 2.2, 2.3)
§ Dr. Nicholson: (for Chapter 6), how do you know that using 

the proposed method, we learn the correlation among the 
goals instead of the weight vectors? (Section 6.14, 6.3) 

§ Dr. Neeson: how does the Red River project help or relevant 
to your future work? (Section 9.2.2, 9.2.3) 

A Test Problem
§ Dissertation layout (Section 1.7)
§ Research Questions and Hypotheses

§ Research Question 3: What is the method to speed up learning
the system nature, such as the interrelationship among the 
subsystems? (Section 2.4.2)

§ Specific Hypothesis 3: Learning interrelationship among
subsystems using unsupervised learning and reorganize them
based on it. (Section 2.5)

§ Method 3: Adaptive Leveling-Weighting-Clustering algorithm 
(Section 3.3.3)

§ Test Problem 3: Rankine cycle thermal system design (Chapter 6)
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§ Characteristics and challenges in designing complex systems
(Section 1.1, 1.3)

§ Modeling strategies – optimizing and satisficing – and their
problems and differences (Section 1.2, 1.4, 2.2, 2.3)

§ Research gaps (Section 1.5)

Contribution and Way forward

§ Answering the research questions (Section 8.1.3) 
§ Managing four types of uncertainties (Section 8.1.4)
§ Verification and Validation (Section 1.6, 9.1.3)
§ Relevant publications (Section 9.1.4)
§ Research thrusts and application in my early career (Section 9.2)
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to identify the features and build evaluation indices that reflect the association between the 
parameter setting and the approximation performance, and train the evaluation indices to fall a 
desired range. By doing this, we ensure the parameter setting returns satisficing results. The third 
research question is what I presented a minute ago. Fourth, what is the method that allows model 
evolution by incorporating emergent properties? to speed up learning the system nature? I propose 
the scenario planning in agent-based model, using which, we capture the emergent properties and 
quantify them for modeling. (The details for Method 1, 2, and 4 are in my backup slides. Due to 
the time limit, I am not presenting them today. If you have interest, welcome to read my backup 
slides or dissertation.) 
 

 
Here are the means to fill the research gaps. 
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Another contribution is managing four types of uncertainty. This is also the answer to Dr. 
Trafalis’s question, what do you mean by “robust solutions?” In this dissertation, we define robust 
solutions are solutions that are relatively insensitive to one or more of the four types of uncertainty. 
 

 
Here are the four test problems and their uncertainties that are managed in this dissertation. 
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Manage Four Types of Uncertainties (Section 2.4.1, 3.4.2)
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Type I – noise factors. Noise factors are not 
under a designer’s control
(Taguchi, 1980)
Type II – design variables
(Chen, Allen, and Mistree 1996)
Type III – variations in the mathematical models
(Choi, Allen, and Mistree 2005)
Type IV – variability introduced by a hierarchical, 
multiscale or multidisciplinary formulation of the 
product.
(Seepersad, Allen, and Mistree 2005) Figure 2. 26 Four Types of Robust Solution

(Choi, 2005)
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demand side 
(order fluctuation)

Uncertainty in hyper 
parameter setting 
(Parameters in 
approximation algorithm)

Uncertainty in parameter 
setting in solution algorithm 
(Starting point of searching)

Uncertainty in price (Price 
of agriculture products)

Type II
Uncertainty in outflow 
(water release)

Uncertainty in 
supply side 
(productivity 
fluctuation)

Uncertainty in user 
preferences

Promotion effort and 
timing

Type III
Uncertainty in model 
approximation due to 
heuristics in approximation

Uncertainty in model 
approximation (ways of 
combining multiple goals)

Type IV

Uncertainty in using domain 
knowledge to simplify the 
model (fixing decision 
variables and selecting 
design scenarios)

Interventions that change 
the mathematical relation 
among promotion and 
result (developing local 
market)



 435 

 
How do I know the proposed methods are correct and useful? I use validation square to illustrate 
the verification and validation. (This is the verification and validation of the whole dissertation, 
not for a particular test problem.) In the first three chapters, I give theoretical structural validity 
by framing the reference, posing research questions, and proposing methods and demonstrate they 
are theoretically validated. From Chapter 4 to 7, I use test problems to empirically validate the 
methods. In Chapter 8, I identify the utility and application scope of the methods. In Chapter 9, I 
show the theoretical performance validity by indicating the way forward. 
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Q 1
Theoretical 
Structural 

Validity
Q 2

Empirical 
Structural 

Validity

Q 4
Theoretical 

Performance 
Validity

Q 3
Empirical 

Performance 
Validity

Ch 3. Proposed Methods
- Theoretical verification of hypotheses
- Overview of proposed methods
- Overview of test problems

Ch 9. Way Forward
- On data curation:
synthetic data
generation and
validation

Ch 8. Validation of the 
Hypotheses 
– Checking the utility 
of the method on 
other problems
- Cyber-physical
product-service
systems
- Cyber-physical-social
systems
- Healthcare systems

Ch 2. Research Questions
- Theoretical foundation
- Justified research questions
(RQ1-RQ4)

Ch 1. Frame of Reference
- Establish context
- Problem, gaps, hypotheses

Validity Check
Logical Flow

Ch 4. Exploration of the Boundary
- Formulation-Exploration Framework
- Use Red River as a continuous problem to explore the 
solution space (Paper 1, RQ1)
- Use supply chain design as a discrete problem to realize
formulation-exploration framework (Paper 2, RQ1)
Ch 5. Improving Approximation - ALPPL
- Use hot rod rolling as a test problem to remove heuristics 
in approximation algorithm (Paper 3, RQ2)
Ch 6. Improving Understanding System Nature -
ALWC
- Use a many-goal, concurrent engineering-design problem 
to verify speed up learning interrelationship among
subsystems (Paper 4, RQ3)
Ch 7. Learning Emergent Properties – Identifying
Critical Factors in Simulations
- Use rural sustainable development problem to verify the 
emergent properties identification, interpretation, and
modeling (Paper 5, RQ4)
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Theories Applications Publications and Manuscripts

Multicriteria 
decision making

Dam-network design

Guo, L., Chen, S., Allen, J.K., Mistree, F., 2020, “A Framework for Designing the Customer Order Decoupling Point to 
Facilitate Mass Customization,” ASME Journal of Mechanical Design, 143(2): 022002.
Guo, L., Zamanisabzi, H., Neeson, T.M., Allen, J.K., Mistree, F., 2018, “Managing Conflicting Water Resource Goals 
and Uncertainties in a Dam-Network by Exploring the Solution Space,” ASME Design Automation Conference, 
Quebec City, Quebec, Canada. Paper Number DETC2018-86018. 

Supply chain design

Guo, L., Chen, S., Allen, J.K., Mistree, F., 2020, “A Framework for Designing the Customer Order Decoupling Point to 
Facilitate Mass Customization,” ASME Journal of Mechanical Design, 143(2): 022002.
Guo, L., Chen, S., Allen, J.K., Mistree, F., 2019, “Designing the Customer Order Decoupling Point to Facilitate Mass 
Customization,” ASME Design Automation Conference, Anaheim, CA, USA. Paper Number DETC2019-97379.

Improving 
algorithm 

performance 
using Machine 

Learning

Improving 
approximation 

algorithms

Guo, L., Nellippallil, A.B., Smith, W.F., Allen, J.K., Mistree, F., 2020, “Adaptive Linear Programming Algorithm with 
Parameter Learning,” ASME Design Automation Conference, Online. Paper Number DETC2020-22602.
Guo, L., Nellippallil, A.B., Smith, W.F., Allen, J.K., Mistree, F., 2021, “A Smart Linear Programming Algorithm,” ASME 
Journal of Mechanical Design. Paper Number MD-21-1436, under review.

Managing interactions 
among subsystems

Guo, L., Milisavljevic-Syed, J., Wang, R., Huang Y., Allen, J.K., Mistree, F., 2021 “Managing Many-Goal, Concurrent 
Design Problems using Adaptive Leveling-Weighting-Clustering Algorithm,” Structural and Multidisciplinary 
Optimization, under review.
Wang, R., Guo, L., Huang, Y., Wang, G., 2021, “Decision Guidance Method for the Knowledge Discovery and Reuse 
in Many-Goal Engineering Design Problems,” Advanced Engineering Informatics, under review.

Multiscale 
simulation

Designing smart 
communities

Guo, L., Mohebbi, S., Das, A., Allen, J.K., Mistree, F., 2020, “A Framework for the Exploration of Critical Factors on 
Promoting Two Season Cultivation in India,” ASME Journal of Mechanical Design, 142(12): 124503. 

Knowledge 
management on cyber-

physical systems

Wang, R., Milisavljevic-Syed, J., Guo, L., Huang, Y., & Wang, G., 2021, “Knowledge-Based Design Guidance System 
for Cloud-Based Decision Support in the Design of Complex Engineered Systems,” ASME Journal of Mechanical 
Design, 143(7), 072001 .
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Here are the fields of my theoretical study, relevant application fields, and publications from this 
dissertation. The black ones are published. The gray ones are under review. 
 

 
And I am writing a monograph with my advisors to Springer. Here is the outline of the monograph. 
 

 
In summary, the contributions are in four categories. 
First, I establish the theoretical foundation by demonstrating the utility of satisficing methods in 
complex-system design and how cDSP+ALP+DSIDES can realize satisficing strategy for 
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(Section 2.1)
(Section 2.2)

(Section 2.4.1, 8.1.4)

(Section 3.3.1, 4.2.3, 4.3.3)

(Section 3.3.2, 5.3)

(Section 3.3.3, 6.3)(Section 3.3.4, 7.3)

(Section 8.2, 9.2.3)
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designers. Second, I manage four types of uncertainty. Third, the new knowledge in this 
dissertation comes as four methods. Each of them allows us to answer one research question. Last 
but not the least, there are applications in multiple disciplines. 
 

 
Now, let me answer Dr. Neeson’s question, “how does the Red River project help or relevant to 
your future work?” Here are my research thrusts and relevant applications in my early career. 
They are all based on my dissertation. The Red River problem is in Chapter 4. I identify the 
directed evolution of the data curation methods and algorithm improvement through replacing 
heuristics as my future research that can be a step forward of the Red River project. The 
applications include fail-safe healthcare networks and cyber physical product service systems. 
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Research Thrusts and Application in My Early Career (Section 9.2)

- Response to Dr. Neeson: how does the Red River project help or relevant to your 
future work? 
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Research Thrust Applications Foundation

What is the mathematics that supports 
the directed evolution of the data 
curation methods and processes? 

Designing lean process chains to support fail-safe 
healthcare networks and cyber-physical product-
service systems

Chapter 4

How can we improve algorithms by 
replacing heuristics with insight and 
automate the process? 

Realizing the customization of decision workflows for 
cyber-physical product-service systems (CPPSS). Chapter 4 and 7

Design fail-safe supply networks for healthcare 
systems Chapter 4 and 6

What are the mechanisms and modeling 
strategies to support information sharing 
between multi-scale simulations? 

Managing emergent properties of self-organizing 
systems Chapter 7
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I sincerely thank the people, funds, and organizations who help me in finishing my Ph.D. 
 

 
Now let me address Dr. Trafalis’s new questions from this morning. 
First, what are the connections of satisficing solutions and robust optimization solutions? The 
answer is robust optimization solutions are obtained by minimizing (or maximizing) an objective 
(or multiple objectives) that is consisted of decision variables. When using those methods, people 
attempt to seek optimal solutions that meet both the necessary and sufficient KKT conditions. We 
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have shown the differences between “meeting both necessary and sufficient KKT conditions” and 
“only meeting the necessary KKT conditions” in Slide 37 and 46: 
 

  
When the convexity degree of the objective is larger than that of the constraints combined by 
Lagrange multipliers, meeting sufficient KKT conditions has a higher chance in failing us to get a 
solution. That is one difference between robust optimization solutions and satisficing solutions. 
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How is satisficing different from optimization? (Section 2.1)
Optimizing vs. Satisficing
- Difference in the assumptions regarding the KKT conditions

Second-order sufficient conditions

For the Lagrangian: 

! ", $, % = ' " + ∑!"#$ %!*! " − ∑%"#ℓ $%ℎ% "
=> .'/(() ! "∗, $∗, %∗ . ≥ 0, where . ≠ 0
And

/(*! "∗ , /(ℎ% "∗
'. = 0

Physical meaning:
At the solution point x*, there exists a nonzero vector s that is orthogonal to the 
gradient matrix of all active inequality and equality constraints, such that the 
second-order matrix of the Lagrange’s equation with respect to decision 
variables x* and Lagrange multipliers λ* and μ* is conditionally positive 
semidefinite: !!"""# # $∗, &∗, '∗ ! ≥ 0, ∀s∈S. 
In a small range around x*, the convexity degree of the objective should not 
exceed the convexity degree of the constraints combined by Lagrange 
multipliers.

Figure 2. 3 The convexity requirements for sa9sfying the second-order sufficient KKT condi9ons
Figure 2. 4 Lagrange multipliers fail to identify an 

optimal for a highly convex objective

✔ ✔ XBack to Slide 7
Optimizing vs Satisficing
regarding KKT Conditions

37Backup Slides
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Optimizing Satisficing

⇒ ℙ #∗ $ ≪ ℙ #" $
46Backup Slides

How is satisficing different from optimization? (Section 2.2)
- b) How can designers obtain satisficing solutions using cDSP (formulation construct) + ALP (approximation and solution 
algorithm) + DSIDES (implementation)?

!!" #", %, &, ' = !!) % + ∑#$%& &#!!,# #" − ∑'$%( ''!!.' #" −
'()%!!/ #", %
= !!) % + 0 − 0 ± 2 = !!) % ± 2 = 3(5) ±2

The first-order Lagrange equations is a function of 
parameters &, decision variables ', and Lagrange 
multipliers (, *

The first-order Lagrange equation is a function of the
coefficients + of the deviation variables , in the goal function

!*" #, &, ' = 3(7, #, &, ')

!!!+ " #", %, &, ' = !!!+ ) % ≡ 0

The second-order Lagrange equaGon degenerates to zeroThe second-order Lagrange equaGon is a funcGons of 
parameters & and decision variables '
!**+ " #, &, ' = !*3 7, #, &, ' = 3’ 7’, #

ℙ(#"|;) ≈ ∏-$%. 2 − >(?5-|;)

If any uncertainty with probability - takes place (to at
least one item of & ./ ' ./ ( ./ *), the probability ℙ
that an optimal solution is still optimal is

If any uncertainty with probability - takes place (to +), the
probability ℙ that a satisficing solution solution is still
satisficing is

ℙ #∗ ; ≈ ∏0$%
1 2 − > @70 ; ∏2$%

3 2 − ; ?#2 ;
∏#$%
& 2 − ;(?&#|;) ∏'$%

( 2 − ;(A''|;)
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Another difference is the chance of losing a solution under uncertainty, as it is shown in Slide 46. 
Satisficing strategy allows us to have a higher chance to maintain a solution under uncertainties. 
In addition, using optimization methods, designers have assumptions on the distribution or 
stochasticity of the uncertainty. Those assumptions can be wrong, and the uncertainty must be 
parameterizable. However, in engineering design, we often face some unparameterizable 
uncertainties, we cannot manage them using robust optimization. 
 

 
The second question. We carry on and expand Taguchi’s method (Slide 23:) 
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Taguchi manages Type I uncertainty, that is noise factors. In 1996, Chen and coauthors expanded 
it to Type II uncertainty, that is the design (or decision) variables. In engineering design, in a 
physical system, although we set a certain value to a variable that we though we can fully control, 
unparameterizable uncertainties may bring errors or deviations to the variable or to other relevant 
parts of the system. For example, in a dam network, when we set the water released amount to a 
certain value and at a certain time, due to some factors not considered into the decision model 
(and they are usually unable to be captured or quantified, that is why we do not take them into 
account in the model), such as  sudden change in seepage due to climate change, silt variation due 
to long-term operation, unavoidable tiny operating error, etc., the physical system may not output 
the same result as the mathematical gets to us. Type II Robust Design is to using EMI (error margin 
index) to manage the uncertainty in decision variables. Type III uncertainty is the variation in 
model structure. Choi and coauthors use DCI (design capacity index) to manage it. Type IV 
uncertainty is the uncertainty in the process chain, which is the uncertainty brought by managing 
the first three types of uncertainty. The details of the four types of Robust Design in in Section 
4.3.1 and 5.3.2. In summary, our method is built on Taguchi’s method and we expand it to more 
types of uncertainty. 
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Manage Four Types of Uncertainties (Section 2.4.1, 3.4.2)

23 / 28Frame of Reference A Test Problem Contribution and Way Forward

Type I – noise factors. Noise factors are not 
under a designer’s control
(Taguchi, 1980)
Type II – design variables
(Chen, Allen, and Mistree 1996)
Type III – variations in the mathematical models
(Choi, Allen, and Mistree 2005)
Type IV – variability introduced by a hierarchical, 
multiscale or multidisciplinary formulation of the 
product.
(Seepersad, Allen, and Mistree 2005) Figure 2. 26 Four Types of Robust Solution

(Choi, 2005)
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As to fuzzy optimization and flexible optimization. The answer is the same with the previous 
question. Using optimization methods, the objective is consisted of decision variables and the 
solutions meet sufficient KKT conditions. The differences between optimizing and satisficing also 
comply with the difference between fuzzy optimization and flexible optimization and satisficing. 
 

 
Thank you for the question. I added the definition of robust design in the “definition of terms.” 
Robust design – In this dissertation, robust design means the design that is relatively insensitive 
to one or more types of uncertainty. Type I uncertainty – the uncertainty brought by noise factors, 
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for example, parameters. Type II uncertainty – the uncertainty brought by control factors such as 
decision variables. Type III uncertainty – the variation in the model structure. Type IV – the 
uncertainty brought by managing the first three types of uncertainty. We are aware of other 
definitions of robust design, but in this dissertation, in the context of designing complex systems, 
we define robust design as the above. 
 

 
Here I explain in the next slide, which is a screenshot from Section 1.4.2. 
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31
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The P calligraphic means the nearest projection of the set in the parentheses onto the set 𝛺. 
𝑑∗(𝑥) means the minimum deviation among all deviations. 
 

 
In this dissertation, we simplify the degree of convexity (or convexity degree) of an equation as the 
average value of the diagonal terms of its Hessian matrix, as it is shown in the next slide. 
 

 
This definition is from Farrokh Mistree’s 1993 paper. 
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5. Degree Convexity

Mistree, F., Hughes, O. F., Bras, 
B., & Kamat, M. P. (1993). 
Compromise decision support 
problem and the adaptive linear 
programming 
algorithm. Progress in 
Astronautics and 
Aeronautics, 150, 251-251.
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In Section 2.28, I use Toy Problem IV to demonstrate the satisficing strategy we use 
(cDSP+ALP+DSIDES) is different from Goal Programming. 
 

 
For Toy Problem IV, we formulate one cDSP (the same as Goal Programming regarding the 
formulation) and use both optimization methods and satisficing strategy to solve it. However, none 
of the optimization solution algorithms in the scipy.optimize package can return any feasible 
solutions, whereas the ALP returns solutions. Why does this happen? 
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6. Difference between Goal Programming solution and satisficing
solution
Toy Problem IV: we formulate a goal programming problem and solve it using optimizing methods

Backup Slides 34

Observation: cDSP and ALP are designed to formulate and explore 
engineering-design problems with various completabilities of the goals:
!! "
#!

≫ !" "
#"

Equation 2. 24

Using the ALP, good enough solutions (comparing with the solutions from 
NSGA II) can be obtained, whereas using optimizing algorithms, no 
feasible solutions are returned.

TP The Compromise DSP

IV

Given
$1, $2, (1±, (2±

)" $ = cos $1# + $2$
)# $ = 25 0 ($1 − 2)$ + 50 0 ($2 − 2)$+50 0 $1 0 $2#

Find
$1, $2, ("∓, (#∓

Satisfy
Goals: 

&! '
".# +(1)=1
&" '
*++ +(2

)=5
Constraints:

$1 0 $2 ≤ 1
(,) 0 (,- = 0, 6 = 1, 2

Bounds:
0 ≤ $1, $2 ≤ 2
0 ≤ (1±, (2± ≤ 1

Minimize
7 = ∑,."# 9, 0 ((6) + (6-)

Table 2. 10 The Compromise DSP of the TP-IV
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Because only when we use the ALP to solve a cDSP, can we get a feasible solution that violates 
the upper bound of the deviation variables. That means if the target of a goal is too ambitious – 
the feasible space bounded by constraints are far away from the goal, we have to violate the upper 
bound of the deviation variable to obtain a solution. Such violation is not allowed in Goal 
Programming when using optimization solution algorithms. Only using ALP, can we allow this 
kind of violations. Therefore, if we use optimization methods to solve a cDSP (or a Goal 
Programming problem), the solutions are not satisficing solutions. The difference between Goal 
Programming and cDSP is not in the formulation format, but in the solution algorithm. 
Those are the answer to the six questions from Dr. Trafalis. 
 
Here are all the other backup slides: 
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Research Questions (RQ) and Specified Hypotheses (SH) (2/2)

Chapter Ch1 Ch2

Actions

Research Gap: How 
can designers realize 
model evolution using 
satisficing strategy so 
that they can manage 
chaos in the physical 
world, reduce the risk 
of losing an optimal 
solution, and discover 
domain-independent 
knowledge to update 
metaheuristics? 
Hypothesis: By the 
multiple stages of 
design and passing 
information through 
them, designers can 
improve their decision 
models in iterations.

RQ1: What is the method to 
evolve model boundary?

SH1: Explore the sensitivity of the 
segments of the model boundary 
and improve accordingly.

RQ2: What is the method to 
evolve model to update 
metaheuristics?

SH2: Learn, evaluate, and update 
metaheuristics to improve model 
performance.

RQ3: What is the method to 
speed up learning the system 
nature?

SH3: Learn system nature such as 
interrelationship among 
subsystems and reorganize them 
based on it.

RQ4: What is the method that 
allows model evolution by
incorporating emergent
properties? 

SH4: Capture and quantify 
emergent properties through 
scenario planning in simulation.
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Manage Uncertainties in a Dam-Network

Framework Method

A. Problem Formulation
A1. Problem 

Modeling/Remodeling

A2. Problem 
Approximation

B. Solution Space Exploration

B1. Design Preferences 
Exploration

B2. Capacity Analysis

cDSP Formulation
Given
Find
Satisfy
Minimize

Adaptive Linear
Programming

!!
!"

0

#$
#∗$∗

Surface of
%&"

'#$

%&"('#$)
%&" %%

Linearized
Constraint
2nd Order

1st
Order

*#&$
*#'$ *#'∗

*#&∗

%&"
+

Weight Sensitivity
Analysis

System Capacity
Analysis

Rationale

Seek 
satisficing
solutions

Approximate 
the problem

Manage 
multiple, 

evolving design 
scenarios

Enable the 
system to have 

capacity for 
typical structure 
changes caused 
by uncertainties

Proposed method: Formulation-Exploration Framework

Formulation-Exploration
Given

Decision model
Design scenarios

Find
Sensitive segments
Improvable segments

Satisfy
Remove sensitive segments by
restricting model boundary
Remove improvable segments
relaxing physical boundary and
then restricting model boundary

Minimize
Computational complexity
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Find
System variables

2!" , #!" , !!"
Deviation variables

3#$, 3#%, where , = ., 0, 1
Satisfy

System constraint

2!" + ∑∀ '!∈)*! ! '!
" + )!" + &*!" − !!" − #!" − $!" −&!" = 2!"$+, where 6 = ., 0, 1

System goals 
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Minimize (The deviation function)
? = ∑#4+2 +# < 3#%, @ABCB 9 ≤ +# ≤ ., DEF ∑#4+2 +# = .
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Applications
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Manage Uncertainties in a Dam-Network
Problem statement

Inactive

Conservation

Flood Control

Surcharge

Goals

Decisions

Water flow plans
Model improvement

Expected functions
of a dam-network

Uncertainties

Outflow

• Nonlinear, discrete, and non-convex
• Fewer factors to control but a lot of

requirements
• Need to explore the ways to combine the 

multiple goals
• Manage multiple types of uncertainty
• Need to know more about the model

robustness and ways to improve the model 
formulation

Features of complex systems
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Manage Uncertainties in a Dam-Network
Model and evolution

Given (System parameters)
!"!

", #"!" , $!
" + &!

" , '!!", '(!
" , )!" + &*!" , +#, where , = 1,2,3

Find
System variables

2!
" , #!" , !!"

Deviation variables
3#
$, 3#%, where , = 1,2,3

Satisfy
System constraint

2!
" + ∑∀ '!∈)*! ! '!

" + )!
" + &*!

" − !!
" − #!

" − $!
"−&!

" = 2!
"$+, where 6 = 1,2,3

System goals 

∑!,*∑"∈-(1 −
.!"
.-!"
)/ + ∑!∈*(1 −

.!#
.-!#
)/ + 3+% − 3+$ = 0

∑!,*∑"∈-(1 −
0!"
0-!"
)/ + 3/% − 3/$ = 0

∑!,*∑"∈-(1 −
1!"
1-!"
)/ + 32% − 32$ = 0

Bounds
'(! ≤ S3

4 ≤ '!!, F34 ≥ 0, A34 ≥ 0

0 ≤ 3#
∓≤ 0, 3#% ? 3#$ = 0 +ℎA*A , = 1, 2, 3

Minimize (The deviation function)
B = ∑#6+

2 +# ? 3#
%, where 0 ≤ +# ≤ 1, GHI ∑#6+

2 +# = 1

Inactive

Conservation

Flood Control

Surcharge lb’
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Manage Uncertainties in a Dam-Network
Results and outcome

Model improvement

Guo, L., Zamanisabzi, H., Neeson, T.M., Allen, J.K., Mistree, F., 2019,
“Managing Conflicting Water Resource Goals and Uncertainties in a Dam-
Network by Exploring the Solution Space,” ASME Journal of Mechanical
Design, 141(3): 031702.
Guo, L., Zamanisabzi, H., Neeson, T.M., Allen, J.K., Mistree, F., 2018,
“Managing Conflicting Water Resource Goals and Uncertainties in a Dam-
Network by Exploring the Solution Space,” ASME 44thDesign Automation
Conference, Quebec City, Quebec, Canada. Paper Number DETC2018-
86018.

Publications

New Knowledge

Formulation-Exploration Framework
Given

Decision model
Design scenarios

Find
Sensitive segments
Improvable segments

Satisfy
Remove sensitive segments by
restricting model boundary
Remove improvable segments
relaxing physical boundary and then
restricting model boundary

Minimize
Computational complexity
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Goal1(X)

X

Upper Limit

Lower Limit

Goal
Function

Deviation
at Optimal 
Solution

Design
Variable

Optimal
Solution

Deviation
at Type I, II 
Robust 
Solution

Type I, II
Uncertainty

Formulation

Approximation

Exploration

Evaluation

Heu
ristic

s

Ded
uctiv

e

Synt
hesi

s

Insig
hts

Answer to Research Question 1
RQ1: What is the method
to evolve model to adapt
to uncertainties in
parameters and
variables? 

Formulation-Exploration Framework
Given

Decision model
Design scenarios

Find
Sensitive segments
Improvable segments

Satisfy
Remove sensitive segments by
restricting model boundary
Remove improvable segments
relaxing physical boundary and
then restricting model boundary

Minimize
Computational complexity

New Knowledge

• Detecting hidden bottleneck of healthcare 
networks

• Lean process design for cyber-physical
product-service systems

Potential Applications

• NSF Engineering – UKRI Engineering and
Physical Sciences Research Council (ENG-
EPSRC)

• NSF Advanced Manufacturing (AM) Program

Potential funding sources
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Hypothesis 1
Evolving a model to manage
uncertainties

Manage uncertainties
in a dam-network

Design a supply chain
for mass customization

Ra
w
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t
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t

.
.

.

Push Pull
Make-to-Stock Make-to-Order
Forecast-Driven Order-Driven
Physically Efficient Market Responsive
Cost-Minimized Capacity-Flexible
Rate-Based Time-Phased
Lean Agile
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Problem statement

Decisions

CODP position
Service level
Reliability

Retailer/
Outlet

Regional 
Distribution

Center

Local
Warehouse

Manufacturing 
Plant

Raw Material
Supplier

Cargo 
Ship

Coffee                                                                     

Raw 
materials

Processed
coffee beans

- raw
material of
the retailer

Raw coffee
beans

Components
- raw goods

of the
regional

distribution
center

Components
- raw material

of the
manufacturing

plant

Customer

Electronic 
Cabinet 

Raw 
materials

Position the customer order
decoupling point (CODP)

• Nonlinear, discrete, and non-convex
• Fewer factors to control but a lot of

requirements
• Need to explore the ways to combine 

the multiple goals
• Manage multiple types of uncertainty
• Need to know more about the model

robustness and ways to improve the 
model formulation

Features of complex systems

Design A Supply Chain for Mass Customization

Goals and
constraints

Expected functions of a
supply chain for mass

customization

Uncertainties
Uncertainty in demand
and supply through a
product life cycle
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Research gaps in literature

Method Gaps

Queue model Assumptions of order / customer arrival distribution; over-
simplified using single objective with only cost as the unit

Time scheduling No scaling for multi-objective problems; assumptions in
demand

Stochastic
programming /

dynamic
programming

Assumptions of order / customer arrival distribution; decrease
the frequency but not the severity of the failures

AHP / Network
simulation Relying on domain expertise which can be subjective

Summary of gaps:

• Assumptions in the distribution of non-deterministic parameters can be wrong,
yet no evaluation and improvement mechanics regarding the assumptions

• Lacking mechanism of continuous improvement regarding system bottleneck

Design A Supply Chain for Mass Customization
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Model and evolution

Design A Supply Chain for Mass Customization

SRM      SFG       MRM     MFG    RRM      RFG

Variables:

CODP
Service level of each player
Reliability of each process

Goals:
Profit
Service level
Variance of reliability

Handling cost

Holding cost

shortage cost

Production cost

Holding cost

Shortage cost

Procurement cost

Holding cost

Shortage cost

Production cost

Leadtime Limit

Transportation 
cost

Transportation 
cost

Transportation 
cost

Unit price

Constraints:

Number of CODP
Service level
Profit
Unit price
Leadtime
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Design A Supply Chain for Mass Customization

Results and outcome

Guo, L., Chen, S., Allen, J.K., Mistree, F., 2020, “A Framework for
Designing the Customer Order Decoupling Point to Facilitate Mass
Customization,” ASME Journal of Mechanical Design, 143(2): 022002
Guo, L., Chen, S., Allen, J.K., Mistree, F., 2019, “Designing the Customer
Order Decoupling Point to Facilitate Mass Customization,” ASME 45th
Design Automation Conference, Anaheim, CA, USA, Paper Number
DETC2019-97379.

Publications
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Hypothesis 2
Discover knowledge to update metaheuristics
using deep learning

Methods
Applications
Contributions

Improving approximation
robustness and accuracy
using parameter learning
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Improve Approximation Using Parameter Learning
Problem statement (1/2)

The Hot Rolling Process Chain Problem 

Goals

§Ferrite Grain Size
!!"#$%&'
!!(#()

− "%& + "%' = 1

§Ferrite Fraction
#)(#()
#)"#$%&'

+ "(& − "(' = 1

§Interlamellar Spacing )*
)*(#()

− "*& + "*' = 1

Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., and Mistree, F., 2018, "An 
Inverse, Decision-Based Design Method for Integrated Design Exploration of Materials, Products, 
and Manufacturing Processes," Journal of Mechanical Design, 140(11), p. 111403.

Ferrite Grain Size

Hardness
Yield strength
Tensile strength

!+ ↑ toughness ↓
elongation ↓

!+ ↓ chloride stress 
corrosion 
cracking ↑

Ferrite Fraction

Interlamellar Spacing 

Hardness
Yield strength

Variables
§Cooling rate CR
§Austenite grain size (AGS) (
§Carbon concentration
§Manganese concentration after
rolling Mn
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Problem statement (2/2)
The Satisficing Weight Set 

Why?
• No information passing
• Rely on domain expertise
• Rely on metaheuristics to make rules
• No mechanism to update metaheuristics

Improve Approximation Using Parameter Learning

?Goals

§Achieve Ferrite Grain Size Target
!!"#$%&'
!!(#()

− "%& + "%' = 1

§Achieve Ferrite Fraction Target
#)(#()
#)"#$%&'

+ "(& − "(' = 1

§Achieve Interlamellar Spacing Target )*
)*(#()

− "*& + "*' = 1

Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., and Mistree, F., 2018, "An 
Inverse, Decision-Based Design Method for Integrated Design Exploration of Materials, Products, 
and Manufacturing Processes," Journal of Mechanical Design, 140(11), p. 111403.

RMC=0.1 RMC=0.5 RMC=0.8

!!!
!"!

!#!
!!!

!"!
!#!

!!!

!"! !#!
* ** * *

*
* **

Using Adaptive Linear Programming (ALP) algorithm
Linearize the problem based on Reduce Move Coefficient

Goal 1 Goal 2

Goal 3 All

Hardness
Yield strength
Tensile strength
Elongation
Toughness
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Research gaps in literature
Metaheuristics in the ALP – determining the reduced move coefficient (RMC)

Iteration !

∑!∈#"! # $%&'!, a
subset of( in one weight

scenario

)*$

"!

""

+%&
'*%,$

+%()&
'*%(),$

,%*

,%()*

,%∗

Iteration ! + 1

∑!∈#"! # $%&'!, a
subset of( in one weight

scenario

)*$
""

"!

,%()* ,%(,*

,%()∗

!"!"#$ = "!"%$ + %&' ( ("!"%∗ − "!"%$

!"!"%$ = "!$ + %&' ( ("!∗ − "!$

1.The performance of the algorithm
may not be convex with the RMC
value

2.There is not a definition of the
“performance” of the algorithm

Improve Approximation Using Parameter Learning

Golden Section Search

Summary of gaps:
• Lacking criteria to evaluate the approximation performance associated with parameter value
• No mechanism to make the approximation relatively insensitive to the parameter
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Proposed method: Adaptive Linear Programming algorithm with Parameter Learning (ALPPL)

ALPPL
Given

Decision Model
Design scenarios (DS)

Find
Value of key parameters
Evaluation Indices (EIs)
Desired range of EIs (DEI)

Satisfy
EIs in DEI

Minimize
!!"# for all DS

Improve Approximation Using Parameter Learning

!!
…

!"

Features
Evaluation
indices

"#!

…

"## Tr
ai
ni
ng …

Parameter
setting

$!
…

$$

Desired
range

Model
performance

Robustness

Complexity

Sensitivity

… Performance
evaluation

Meet
stopping
criteria?

Parameter
updating

direction and
value

Stop

Yes

No

Initial
design

Parameter
updating

An algorithm
with sensitive
parameters

Results
extraction
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Results and verification

Parameter learning
is better than golden
section search in
• More evaluation

standards
• Robustness of the

solutions
• Exploring the insensitive

range more sufficiently

Improve Approximation Using Parameter Learning

Method Parameter learning Golden section search

Evaluation Standard EIs (Goal achievement, robustness) Goal achievement

Performance RMC: 0.55 in insensitive range RMC 0.65 not in insensitive range

Insensitive range exploration Explore relatively sufficiently (29%) Explore relatively insufficiently (17%)

We are sure it is good enough
We are confident that
it is good enough
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Contribution and outcome

Improve Approximation Using Parameter Learning

Parameter learning procedure for a variety of
linear algorithms

!!

…

!"

Features
Evaluation

indices

"#!

…

"## Tr
ai

ni
ng …

Parameter
setting

$!

…

$$

Desired
range

Model
performance

Robustness

Complexity

Sensitivity

…

Guo, L., Nellippallil, A.B., Smith, W.F., Allen, J.K., Mistree, F., 
“Adaptive Linear Programming Algorithm with Parameter 
Learning,” ASME 46th Design Automation Conference, Paper 
Number DETC2020-22602.

Publication

Parameter
tuning?

Parameter
calibration

?

Neural net
works?
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Formulation

Approximation

Exploration

Evaluation

Heu
ristic

s
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Answer to Research Question 2

ALWC
Given

Initial design scenarios (DS)
Find

Interrelationship among goals (!!)
Clusters of the goals ℂ"

Satisfy
Improving goal achieved value
Updating DS based on ℂ"

Maximize
Goal achievement
Diversity of solutions

Goal1(X)

X

Upper Limit

Lower Limit

Goal
Function

Deviation
at Optimal 
Solution

Design
Variable

Optimal
solution

Uncertainty in
model structure

Deviation to
model
structure

New KnowledgeRQ2: What is the
method to speed
up learning the
system nature?

Deviation to
parameters

Uncertainty in
parameters

• NSF Smart and Connected 
Communities (S&CC) program 

• NSF Engineering Design and System 
Engineering (EDSE) program

Potential funding sources

• Directed evolution
of cyber-physical-
social systems

• Designing large-
scale,
multidisciplinary
systems using
reinforcement
learning

Potential Applications

Agent Environment
Actions
Rewards

Observations

Scenarios
Model Results Clusters

Guo, L., Milisavljevic-Syed, J., 
Wang, R., Huang Y., Allen, J.K., 
Mistree, F., “Managing Many-Goal, 
Concurrent Design Problems using 
Adaptive Leveling-Weighting-
Clustering Algorithm,” Advanced 
Engineering Informatics, under 
review.

Publication
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!

"!
"" "#

"# ≪ "!
"# = f(α, "!, "")

Hypothesis 4
Capture, quantify, and model emergent
properties through scenario planning

Learning collective behaviors

Methods
Applications
Contributions
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Learn collective behaviors
Problem statement

A social entrepreneur needs to promote second-season cultivation using underground
water in a relatively isolated village.

Questions
• What are the critical factors that affect the collective behaviors under interventions?
• How can we identify the critical factors and select the appropriate scenario to reach

an expected result?
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Research gaps in literature
Learn collective behaviors

Author and Year Problem Description Method Results Contribution

Opiyo, 2019 [11]

Study the neighborhood influence and 

social pressure on temporal diffusion of 

solar home system

Agent-based modeling 

with the data from a 

survey

Visibility of newly installed SHS 

and increasing influence radius 

leads to growth in SHS 

installations

The survey development is helpful 

to acquire relatively quantifiable 

data for a social problem

Qiu, 2018 [10]
Simulate urban land development and 

population dynamics

Use an agent-based 

and spatial genetic 

algorithm framework 

(PDULD)

The government policies have 

dominated the process of land 

development

Community cohesion theory is 

introduced into the model; historic 

data are used to verify the results

Irsyad, 2019 [12]

Estimate the effects of four solar energy 

policy interventions on photovoltaic (PV) 

investments, government expenditure, 

economic outputs, etc.

Use a hybrid energy 

agent-based modeling

Results call for PV donor gift 

policy, the improvement of 

production efficiency, after-sales 

services and rural financing 

institutions

Integrate the input-output analysis, 

environmental factors and 

socioeconomic characteristics of 

households in Indonesia

Rossoshanskaya,

2019 [13]

Simulate labor potential reproduction; 

among the scenario forecast, provide 

decision support on management actions

Agent-based modeling 

with multi-agent and 

multi-scenario

The result is the integrated agent-

based model of labor potential 

reproduction at the municipal 

level

The model is filled with real 

sociological and statistical data and 

has a user-friendly interface

Summary of gaps:

There is lack of a method that enables capturing critical factors for interventions such as promotion 
activities at a community level and gives decision support on scenario selection of the critical factors.
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Learn collective behaviors
Proposed method: Scenario Planning for Identifying Critical Factors in Simulation

Identify factors with
uncertainty

If controllable?

Obtain simulation output of
factors (combination of factors)

for each scenario

Is the simulation result
sensitive to scenario

changing?

Identify scenarios,
meaning, and

how to set each scenario

Yes

Identify scenarios

No

Not a critical factorNo

Learn the mathematical relation
between scenario and output

Yes

Provide decision support on scenario
selection, setting, and timing

Scenario Planning to Identify Critical
Factors
Given
Factors [Scenarios]

Find
Critical Factors [Appropriate
scenarios];

!"#$"#!"#$%&! = &(()*+,-./')
Satisfy
Simulation goals
Simulation constraints

Minimize
Scenario combination
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Learn collective behaviors
Model and scenario planning

Growing only 
one-season 
crops

Being promoted 
by SEs

Growing the second-
season crops

Obtained profit 
from the second-
season crops

Migration work

No profit from
second-season
crops

Factors with uncertainties
Network type
Promotion Effort
Promotion duration
Villagers’ profit anticipation
Real profit
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Learn collective behaviors
Results and outcome

Guo, L., Mohebbi, S., Das, A., 
Allen, J. K., & Mistree, F. 
(2020). A Framework for the 
Exploration of Critical Factors 
on Promoting Two-Season 
Cultivation in India. Journal of 
Mechanical Design, 142(12)

Publication
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Answer to Research Question 4

RQ3: What is the method 
that allows model
evolution by incorporating
emergent properties? 

Goal1(X)

X

Upper Limit

Lower Limit

Goal
Function

Deviation
at Optimal 
Solution

Design
Variable

Optimal
Solution

Scenario Planning to Identify
Critical Factors

Given
Factors [Scenarios]

Find
Critical Factors [Appropriate
scenarios];

Output!"#$%&! = f(Scenario')
Satisfy
Simulation goals
Simulation constraints

Minimize
Scenario combination

New Knowledge

• Policymaking for cyber-physical-
social systems

Potential Application

Solution space
robust to
parameters

Uncertainty in
parameters

Uncertainty in
model structure

Deviation to
model
structure

• NSF Smart and Connected 
Communities (S&CC) program

• Community Service Center Trust
Fund (CSCTF) Grant

Potential funding source

Agent

AgentAgent

Agent

Emergent 
Properties

Guo, L., Mohebbi, S., Das, A., Allen, 
J.K., Mistree, F., 2020, “A 
Framework for the Exploration of 
Critical Factors on Promoting Two 
Season Cultivation in India,” ASME 
Journal of Mechanical Design, 
142(12): 124503. 

Publication
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Way Forward

Research in next 5 years

Potential funding source

Potential collaborations

Relevant courses I can offer

81Backup Slides

Systems Realization Laboratory @ OU Model Evolution for the Realization of Complex Systems
Lin Guo

Algorithm Evolution

New Knowledge

A cloud-based knowledge
management system

Relevant Courses

Introduction to Optimization (4XX/5XX level course)
• In this course, students learn linear programming, integer programming, dynamic

programming, stochastic programming, nonlinear programming, and other
fundamental knowledge and tools in optimization.

Designing for Open Innovation (4XX/5XX level course)
• In this course, students learn how to account for emergent properties associated with 

designing for open innovation, such as a cyber-physical-social system.

Potential Collaboration

•How can we evolve algorithms to
learn streaming data from sensors?

Streaming
data

Algorithm
evolution

Real-time
decisions

Potential Funding

NSF Engineering Design
and System Engineering
(EDSE) program 
https://www.nsf.gov/funding/pgm_summ.jsp?
pims_id=505478

!!

…

!"

"#!

…

"##

Tr
ai
ni
n

g …

$!

…

$$

Robustness

Complexity

Sensitivity

…

Applications

Providing design guidance for cyber-
physical product-service systems

(CPPSS)

•Can a CPPSS “deep learn” and
evolve itself?
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Multiscale Simulation

Relevant Course

Advanced Modeling and Simulations (5XX/6XX level course)

• In this course, students learn and practice modeling and simulation tools, 
methods, theories, and concepts in the context of managing complex
systems. In this course, case studies and team projects are emphasized.

New Knowledge

A computational framework to learn
emergent properties to manage chaos

Low

Lo
w

Complication High

C
om

pl
ex

ity
H

ig
h

Irregular, 
nonrepetitive 

causality

Complex Chaos
No 

perceivable 
causality

Repeatable, 
perceivable, and 

predictable 
causality

Known Knowable

Indirect 
causality

Agent

AgentAgent

Agent

Emergent 
Properties

Policy
making

Streaming data

Sensitivity
analysis

Leverage
social

influencing

Agent-Based Modeling
(ABM): bottom-up design

System Dynamics (SD):
top-down design
Operation targets

(Organizational goals)

Scenario
planning

Applications

Designing smart connected
communities

Potential Collaborations

Lean process design leveraging new 
technologies

• Managing the evolving priority of the 
multiple drivers in sustainable
development in rural communities

Potential Funding

NSF Smart and Connected 
Communities (S&CC) program 
https://www.nsf.gov/funding/pgm_summ.jsp
?pims_id=505364

Community Service Center
Trust Fund (CSCTF) Grant
https://www.bhacf.org/community-service-
center/
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Data Curation

New Knowledge

A synthetic data generation method

Applications

Fail-safe healthcare network planning

•Dynamically positioning of the 
customer order decoupling point 
(CODP)

•Bottleneck detection 

•Mass personalization in the healthcare

Potential Collaborations

Managing complexity of healthcare 
networks.

• Dealing with sparse data in data-driven 
methods

• Data curation for pattern learning
based on sensor data

Potential Funding

NSF Engineering – UKRI
Engineering and Physical
Sciences Research Council
(ENG-EPSRC)
https://www.nsf.gov/pubs/2020/nsf20
510/nsf20510.htm

Relevant Course

Data Curation for Designing Complex Systems (4XX level course)

• In this course, two types of methods are introduced, namely, data-driven
methods and process-driven methods. Methods for verification and
validation are also introduced.

Scenario
sModel Results Clusters

Chaos
to

Simplicity
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Details of the Observations from Toy Problem II
Why does the ALP manage non-convex problems and return solutions close to the
nondominated solutions (the solutions returned by NSGA II/III)?

Two mechanisms of the ALP allow it to
linearize the non-convex function relatively
accurately and converge with good enough
solutions.
• First, “sequential linearization.” The use of

the second-order derivatives function
(when the paraboloid being used to
approximate the nonlinear function has
two real roots) and the first-order
derivatives (when the paraboloid has no
real root) of the nonlinear functions make
the linear problem relatively robust. The
nonlinear equation is first approximated
into a paraboloid and then approximated
into a linear equation.

First-order Linearization
Second-order Parabola
Sequential Linearization
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Why does the ALP manage non-convex problems and return solutions close to the
nondominated solutions (the solutions returned by NSGA II/III)?

Two mechanisms of the ALP allow it to
linearize the non-convex function relatively
accurately and converge with good enough
solutions.
• First, “sequential linearization.” The use of

the second-order derivatives function
(when the paraboloid being used to
approximate the nonlinear function has
two real roots) and the first-order
derivatives (when the paraboloid has no
real root) of the nonlinear functions make
the linear problem relatively robust. The
nonlinear equation is first approximated
into a paraboloid and then approximated
into a linear equation. Mistree, F., Hughes, O. F., Bras, B., & Kamat, M. P. (1993). Compromise decision support problem and 

the adaptive linear programming algorithm. Progress in Astronautics and Aeronautics, 150, 251-251.
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Why does the ALP manage non-convex problems and return solutions close to the
nondominated solutions (the solutions returned by NSGA II/III)?

• Second, using ALP, the nonlinear,
nonconvex equations are sequentially
linearized in iterations
• If the gradient of an equation at a

local area around the starting
point is >= -0.015 (slightly
nonconvex), the equation is
linearized around the starting
point sequentially, and multiple
linear constraints are used to
substitute the nonlinear equation.
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Details of the Observations from Toy Problem II
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• Why does the ALP manage non-convex problems and return solutions close to the
nondominated solutions (the solutions returned by NSGA II/III)?

• Two mechanisms of the ALP allow it to linearize the non-convex function
relatively accurately and converge with good enough solutions.

• First, using ALP, the nonlinear, nonconvex equations are sequentially
linearized in iterations
• If the gradient of an equation at a local area around the starting point is

>= -0.015 (slightly nonconvex), the equation is linearized around the
starting point sequentially, and multiple linear constraints are used to
substitute the nonlinear equation.

• Second, the use of the second-order derivatives function (when the
paraboloid being used to approximate the nonlinear function has two real
roots) and the first-order derivatives (when the paraboloid has no real root)
of the nonlinear functions make the linear problem relatively robust. The
nonlinear equation is first approximated into a paraboloid and then
approximated into a linear equation.
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Details of the Observations from Toy Problem II
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