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Abstract

Recent advancements in machine learning and neural networks have pushed the

boundaries of what computers can achieve. Generative adversarial networks are

a specific type of neural network that have proved wildly successful at content

generation tasks. With this success, filling in missing sections of images or videos

became a research topic of interest. Research in video inpainting has made steady

progress throughout the years focusing on filling missing content in the center of

a frame while research on video outpainting, which focuses on filling missing

sections on the edge of the frame, has not. This thesis focuses on outpainting re-

search by using conditional generative adversarial networks (cGANs) which apply

a condition, such as an input image, to a generative adversarial network (GAN)

in order to reformat traditional 4:3 video into a modern 16:9 format. This is

accomplished by using a cGAN typically used for image-to-image translation and

adapting it to generate the missing content from video frames. Although gen-

erated frames are not capable of accurately reconstructing missing content, this

process is capable of producing context aware video that many times seamlessly

blends with the original frame. The results of this research provide a glimpse

of the possibility of using conditional generative adversarial networks for video

outpainting.
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Chapter 1

Introduction

In this section an overview of previous work is discussed, the research objective

for the thesis is presented and the results from experimentation are briefly noted.

1.1 Overview

Machine learning has been used to solve many problems that would be incredi-

bly hard or impossible to solve with traditional algorithms. Many approaches to

machine learning, such as neural networks, were formed due to the wide range of

problems to be solved. Originally based off of the human brain, neural networks

can feature multiple layers and thousands of neurons interconnect together to

form a neural network (Engelbrecht, 2007). The adaptable nature of neural net-

works encouraged broad research into various architectures and different forms of

learning. Neural networks can now be found as the industry standard for many

machine learning problems.

With computational power increasing each year, neural networks have be-

come increasingly complex, featuring networks with many hidden layers each
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containing thousands of neurons. These complicated neural networks formed a

new sub-category called deep neural networks and with them more complicated

problems were solved (Goodfellow et al., 2016). Eventually, convolutional neural

networks were developed which made groundbreaking progress in problems such

as computer vision. These networks featured a smaller layer which is sparsely

connected to the previous layer, forcing the layer to focus on whether a feature

is present instead of where it is (Goodfellow et al., 2016).

Generative modeling tasks such as image generation were difficult for tra-

ditional neural networks as the network had to model an extremely complex

output space. This changed with the development of generative adversarial net-

works (Goodfellow et al., 2016). Generative adversarial networks (GANs) are

able to take a random input vector and consistently produce a realistic image

from it due to a separate network that was trained to detect real images from

fake and feed this information back to the generator to learn from. Due to the

modular nature of generative adversarial networks, they have been adapted to a

wide range of generation problems, as any network can be used for the discrimi-

nator or generator. This has led to an abundant amount of research to occur in

the past couple years adapting the generator discriminator architecture to a wide

range of problems (Goodfellow et al., 2016).

Image inpainting is a class of problems focused on filling missing sections of

an image with a content aware result. Due to the complexity of images, neural

networks quickly became the favorite method of addressing such problems. Over

the years, many advances in image inpainting have been made with each result

becoming progressively realistic. Some solutions applied generative adversarial

networks conditionally by inputting a conditional input such as an input image as

well as a random vector to fill the missing sections with impressive results (Isola
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et al., 2017).

Video inpainting built off of image inpainting but has only been a popular

research topic for the past couple of years. Many of the same techniques used

in image inpainting were applied to video with varying levels of success. The

temporal nature of video led to research into flow-based video inpainting methods

where missing pixels were generated by finding them in other sections of the

video (Xu et al., 2019a). This has increasingly been the popular method for

video inpainting as some of the results made have been astonishing. Flow-based

video inpainting can be computationally expensive and is limited in its generative

ability when pixels are found in other sections of video, thus making it a go-to

method for only a subclass of problems.

1.2 Research Objective

Video inpainting research has focused on filling content in the center of the screen.

This is especially true for flow-based inpainting methods, as the main purpose is

filling missing pixels by finding them in other frames. Little research has been

done on video outpainting, also known as video extrapolation, focuses on filling

missing sections outside of the frame. Outpainting video is typically harder as

there are little references in future frames and little context from neighboring

edges. This is an interesting problem and could immediately be used for remas-

tering classic films. Traditional film was shot at a 4:3 aspect ratio which when

shown on modern 16:9 displays leaves a significant amount of the screen black.

Flow-based methods would struggle to fill this section since the information rarely

appears elsewhere, as most shots are either short or remain fixed. Due to this,

a different method for video outpainting should be explored making generative
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adversarial networks a potential option. This thesis builds on a popular image-to-

image translation framework that had success with image inpainting (Isola et al.,

2017), with its architecture adapted to work with video. This method is not only

a possible solution for generating video content, but is also a less computationally

expensive method for video outpainting. This conditional generative adversarial

neural network uses a U-Net based generator originally developed for biomedical

imaging segmentation that can take an input image and translate it to a desired

output image (Ronneberger et al., 2015). This image is then passed to the dis-

criminator which incorporates a Markovian discriminator nicknamed PatchGAN

that forces the generator to model crisp images by critiquing an image on the

scale of patches (Li and Wand, 2016). The output of the discriminator is used

to train the generator until the desired output is achieved. The original purpose

of this cGAN was for a generic approach to image-to-image translation, which

means depending on the film trained on, its output will vary (Isola et al., 2017).

This has the benefit for being a general solution for a wide range of films.

1.3 Results Overview

The model trained on two films over the course of three days. The discriminator

was then removed from the generator and a new film was passed to the generator

for the results. The generator was able to produce context aware content for the

edges of the film which in most cases blended seamlessly with the original frame.

Due to the salient nature of video, most action occurs in the center of the frame

taking attention away from the edges of the screen. Although the generated

frames were not accurate to the original content, they blended well enough to

not take away from the attention of a viewer. Many early attempts at video
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Figure 1.1: Random generated frames

inpainting resulted in temporally inconsistent frames that result in the generated

sections warping over time. The generated content from this work rarely had this

issue (see Figure A.1), but failed to accurately generate content moving on and

off screen (see Figure A.5). Using structural similarity index measure (SSIM) and

peak signal to noise ratio (PSNR) as measures for image similarity, the results

were found to have a 27.451 PSNR, which has a range of 0-30, and a 0.8122 SSIM,

which has a range of 0-1 when measured across the entire output frame. When

measuring generated content only, the results had a 23.23 PSNR and a 0.5483

SSIM. These metrics show that the original image is correctly reproduced while

the generated edges are context aware and consistent with the original frame.

The quality of the results were surprising, especially given the short training

time. With more training and modifications to the generator and discriminator

to take advantage of the temporal structure of film an impressive result could be

achieved.

5



Chapter 2

Related Work

This covers all related work that this thesis builds on. This includes artificial neu-

ral networks, the learning process, differentiable generator networks, generative

adversarial networks, outpainting techniques and flow-guided video inpainting

processes.

2.1 Artificial Neural Networks

Artificial neural networks were originally developed and researched based on the

anatomical construction of the human brain (Engelbrecht, 2007). The brain

consists of billions of basic computational nodes called neurons. These are inter-

connected by synapses which allow signals to be communicated between different

neurons. This structure creates a highly parallel biological computer that is ca-

pable of completing tasks, such as image recognition, faster than any computer.

This has sparked research in artificially modeling the brain in computers, which

results in the creation artificial neural networks. A neural network can be de-
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scribed as a nonlinear mapping from RA to RB

fNN : RA −→ RB (2.1)

where A and B are the dimension of the input and output target and fNN is a set

of nonlinear functions, or the neural network itself. These neural networks have

gained popularity in recent years as more complex and dense neural networks

are able to be created on modern computers. Even with the advancement of

computers, the most complex artificial neural networks are still extremely small

in comparison to the human brain.

2.1.1 Artificial Neuron

Artificial neurons are the basic building blocks of artificial neural networks (En-

gelbrecht, 2007). They are computer models of biological neurons and as such

operate in a similar way. An artificial neuron is simply a nonlinear mapping from

RS to an output defined by an activation function defined on some range such as

[0, 1]. This mapping is defined as

fAN : RS −→ [0, 1] or [−1, 1] (2.2)

where S is the number of input signals to the artificial neuron and the output

[0, 1] or [−1, 1] changing depending on the activation function chosen. Some of

these activation functions are inclusive, where they are able to reach their bounds

while others are exclusive and are not able to. This input can be thought of as a

vector of S input signals. These signals could come from the input of the neural

network, or from other neurons. Each input signal is typically given an associated

7
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Figure 2.1: Artificial neuron

weight to determine the importance of that input signal to the current neuron.

The neuron computes the net input by combining all of the vectors and is then

influenced by a threshold value θ also called the bias. The signal is then applied

an activation function to compute its output signal. This computation can be

visually depicted in Figure 2.1.
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The net input signal can be computed by a weighted sum referred as summa-

tion units.

This weighted sum is formally defined as

net =
S∑

i=1

zivi (2.3)

where S is the number of input signals, zi is the input signals and vi is the weight

of that input signal.

After combining the input signals, an activation function is used to shape the

output of the neuron. There are many activation functions, but typically are

monotonically increasing mappings where

fAN(−∞) = 0 or fAN(−∞) = −1 and fAN(∞) = 1. (2.4)

Rectified linear unit (ReLU) and leaky rectified linear unit (Leaky ReLU)

activation functions are exceptions to this. ReLU is bounded (0,∞)

fAN(net) = max(0, net) (2.5)

and leaky ReLU is bounded (−∞,∞)

fAN(net) =


βnet net < 0

net net ≥ 0

(2.6)

with negatives values having a lesser slope due to a constant β being applied.

A hyperbolic tangent function is specifically used in a layer of the model and
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is bounded by (−1, 1) defined as

fAN(net) = enet − e−net. (2.7)

2.1.2 Feed Forward Networks

Feed-forward neural networks are the basis of many other neural networks. They

are the basis of convolutional neural networks and are used for many commercial

applications. They are called feed-forward networks as the data from the input

moves from the input layer to any number of hidden layers until it reaches the final

output (Engelbrecht, 2007). Unlike other neural networks, a feed-forward network

does not have any feedback connections. Feed-forward networks are considered

neural networks as they are roughly inspired by neuroscience. The output of a

feed-forward neural network given an input is calculated with a single forward

pass through the network layers. This is done by computing the output signal

for each neuron in a layer, moving forward through the network after each layers’

computation is complete. This creates the nonlinear mapping (2.2).

2.1.3 Convolutional Neural Networks

Convolutional neural networks have been used to make massive strides in areas

such as computer vision (Goodfellow et al., 2016). A convolutional neural network

is simply a neural network that uses a mathematical operation called convolution

(defined in Figure 2.2) in one or more of its layers. Traditional neural network

layers use matrix multiplication to combine the input signals with the parameter

weights. This matrix multiplication operation describes the relationship between

10
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Figure 2.2: Convolutional layer

each input and output unit (2.3). Thus, in standard feed-forward neural net-

works, all output units interact with all input units no matter the parameters

weights of the connections. Convolutional neural networks do not have the same

approach and are instead sparsely connected. This is accomplished by making

a layer, called the kernel, smaller than the input (2.2). This results in a layer

that can detect meaningful features in an image by looking at smaller sections

of the input and finding meaning in these sections. With fewer parameters to be

trained, the neural network has a higher statistical efficiency, as well as requires

fewer operations and less memory. Typically, the input and kernel are multi-

dimensional arrays of parameters that will be modified by the learning algorithm

with entries that are not explicitly stored resulting in 0. This allows an equa-

tion for the convolution to be defined as a summation over the number of array

elements. This convolution with an 2-D input image I, a 2-D kernel K and an

output S can be written as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (2.8)
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A convolution layer can also apply a stride to manipulate when the convolution

operation is computed. A stride dictates how many pixels the image patch should

move by after completing an operation. For example, when the stride is set to

1, the convolution will be applied each time after moving a pixel. If the stride is

set to the same size as the image patch, no duplicate pixels will be included for

each convolution operation. Applying a stride to a convolution layer changes the

output layer size as less cells are being computed.

Convolution layers are typically paired with a pooling stage. This pooling

stage modifies the output by instead taking a summary statistic of nearby out-

puts (2.3). For example, the max pooling operation reports the maximum output

found in a rectangular neighborhood. Other pooling operations include averag-

ing the rectangular neighborhood or taking the L2 norm on the neighborhood.

Pooling helps the output invariant to small translations of the input. This gives

precedence to an output that is more focused on determining whether a feature is

present instead of where it is located, which is why convolutional neural networks

have been adopted and used in most computer vision tasks.

Convolution often needs to be reversed in some way, which is common in

encoder-decoder models. Encoders compress an input to a specific size while a

12



decoder does the opposite. This process is called deconvolution and is an inverse

to convolution. The process of deconvolution is not always to recreate the original

input as encoder decoder models have been used for many segmentation tasks

which require an input to be transformed to an output.

2.2 Learning

Training a neural network is an entirely mathematical operation. There are mul-

tiple training methods used for neural networks, but supervised learning is the

only method used in this paper. Supervised learning is the process of training

a neural network given an input-target pair sampled from training data (Engel-

brecht, 2007). This generates an unknown function that the neural network must

create to successfully transform an input to an output. There are many ways

to optimize a neural network to learn this transformation, but the most popular

method is gradient-descent optimization. Gradient-descent optimization occurs

in two stages, a forward pass of the neural network that calculates the output

from an input training pattern, and a backward propagation pass which sends

an error signal back through the neural network. Weights for individual neurons

are then adjusted using this signal.

2.2.1 Gradient Based Learning

Gradient-based learning attempts to minimize a function f(x) by altering x (En-

gelbrecht, 2007). This function is typically called the objective function as the

function represents the goal to be learned, but can be called other names such

as the cost/loss function. When optimizing a function f(x), a gradient vector is

taken ∇f(x), computed by back-propagation (defined in Subsection 2.2.2). This

13



gradient vector points toward a local maximum, so taking the negative of this

points toward the local minima −∇f(x). When optimizing neural networks, find-

ing a good local minima is typically the goal, as finding the global minimum can

be extremely difficult, time consuming and resource intensive. After calculating

the gradient vector pointing toward the local minima, a step is taken toward

that direction η∇f(x) where η is the learning rate. The learning rate is a scalar

that changes the size of the steps taken toward the local minimum. Choosing

the correct learning rate is important, as steps that are too small will result in

learning taking excessive time, while too large of a learning rate might skip over

local minima.

2.2.2 Back Propagation

When a training set is sent through a neural network an output is computed.

This step is called forward-propagation and once it is computed an error signal

is created and sent through the network to adjust weights of individual neu-

rons (Engelbrecht, 2007). This second pass back through the network is called

back-propagation. Back-propagation is required to compute the gradient and ul-

timately learn from the training data. Back-propagation specifically uses the

chain rule of calculus to compute the derivatives of functions by composing other

functions of known derivatives. This is done by computing the gradient of each

layer one by one, working through the network.

2.3 Differentiable Generator Networks

Differentiable generator networks are designed to generate data. For example,

if a neural network is designed to take input images and generate labels, a dif-

14



ferentiable generator network would perform the opposite task: take a label and

generate an image. Differentiable generator networks are the basis of generative

adversarial networks. The generative model transforms samples of a latent vari-

able u to samples or distributions using a differentiable function g(u; θg) (Good-

fellow et al., 2016). This differentiable function is typically a neural network.

Differentiable generator networks can be thought of as a means of generating

samples with the architecture of the generator dictating the possible distribu-

tions to sample from. The parameters fed to the generator then select a sample

from that distribution. Generating samples from complicated distributions which

are difficult to integrate over require a feed-forward network to represent a family

of functions g whose parameters are set by training data. Differentiable generator

networks were created from the success of feed-forward networks and classifica-

tion using gradient descent. Generative modeling has been found to be more

difficult than classification as it must learn a much larger output space. When

generating data, the data does not specify the inputs and the outputs while typ-

ical supervised learning does and thus only needs to learn how to produce the

mapping. With generative modeling, the generator must find and arrange an

input space in a specific way as well as learn how to map the input to the output.

To have success using a differentiable generator network, a better approach for

training when only given an input must be used.

2.4 Generative Adversarial Networks

Generative adversarial networks (GANs) are a generative modeling method based

on differentiable generator networks (Goodfellow et al., 2016). Generative adver-

sarial networks attempt to fix the issue of training only given an input by pairing

15
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Figure 2.4: Generative adversarial network

the generator network with a discriminator network that judges its output (2.4).

This is done by a game in which the generator and discriminator compete. The

generator produces samples directly like a differentiable generator network, pro-

ducing samples xg = g(u; θ(g)). The discriminator network then attempts to de-

termine between samples from the generator and samples drawn from the training

data. The discriminator produces a probability value d(xg; θ
(d)) indicating the

probability that xg is a real training example rather than a fake produced by

the generator. Learning can then be done by a zero-sum game where v(θ(g), θ(d))

determines the payoff for the discriminator. The generator then receives pay-

off −v(θ(g), θ(d)). The generator and discriminator compete for the higher payoff

until convergence where the samples produced by the generator are indistinguish-

able from real data and the discriminator is always outputting 1
2
, as it can no

longer tell the difference. Once training is complete with a generative adversar-

ial network, the discriminator can be discarded and the generator can be used

for further samples. Generative adversarial networks are designed to learn any

distribution, but research has indicated that convergence can be an issue unless

parameters are correctly set when designing the model.

16



2.4.1 Conditional Generative Adversarial Networks

Conditional generative adversarial networks (cGANs) are very similar to normal

GANs, but instead of learning a generative model, it learns a conditional gener-

ative model (Isola et al., 2017). This is necessary for tasks in which the output

needs to reflect an input, such as inpainting or outpainting. While generative ad-

versarial networks typically take a random input vector and map it to an output

G : z −→ y, conditional generative adversarial networks instead learn a mapping

with a condition x, and a random noise vector z to an output y, G : {x, z} −→ y.

Due to the modular nature of generative adversarial networks, the discriminator

can be left unchanged and training can remain the same.

2.4.2 U-Net Generator

The U-Net convolutional network is a specific type of encoder-decoder network

originally developed for biomedical image segmentation (Ronneberger et al., 2015).

An encoder-decoder network has a series of convolutional networks that slowly

downsample the input until a bottleneck layer, where the process is reversed using

deconvolution to output a high resolution image. This architecture encourages se-

mantic image segmentation which is why it has been adapted for image-to-image

translation. The unique feature of a U-Net convolutional neural network is the

addition of skip connections between layers of equal size. Skip connections are

applied by taking the corresponding layer from the encoder and appending it to

the decoder. In a typical encoder-decoder network, information can be lost when

going through the bottleneck. Due to image translation using much of the same

features between its input and output, sharing information between the down-

sampling layers and upsampling layers helps the output more accurately reflect

17
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Figure 2.5: U-Net

the input.

2.4.3 Markovian Generative Adversarial Networks

Image synthesis problems typically encounter the same issue: capture the com-

plex structure of images in a learnable and efficient way. Most have tackled this

common problem by using Markov random field models that can statistically

characterize an image by patches of local pixels (Li and Wand, 2016). Markov

random fields are similar to a Bayesian networks in their representation of depen-

dencies with the main different being Bayesian networks are directed and acyclic

while Markov random fields are undirected and may be cyclic. Most Marko-

vian models are able to produce surprising visual results but are computationally

expensive to produce. In traditional deep Markovian models, iterative back-

propagation is carried out to estimate each pixel causing a low resolution image

to take minutes to synthesize. This can be fixed by applying a strided convolu-
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tional network resulting in a feed-forward model that is able to synthesize images

500 times faster and at the same quality. Using this model as a discriminator has

numerous benefits over traditional L2 and L1 loss. L2 and L1 loss generally pro-

duce blurry results for image generation problems as they tend to only capture

low frequencies. Markov random fields are able to model high-frequencies making

a Markovian model suitable for image generation where crispness is needed.

2.5 Image Outpainting

Many image outpainting methods have been developed based on successful im-

age inpainting techniques. All techniques discussed use generative adversarial

networks to create the painted sections. Ying and Bovik (2020); Krishnan et al.

(2019); Xu et al. (2019b); Xiao et al. (2020); Guo et al. (2019); Yang et al. (2019)

all use an encoder-decoder network with skip connections between layers similar

to a U-Net (Ronneberger et al., 2015). Each paper describes that using the skip

connections results in a higher quality image with many showing a comparison

between adding skip connections and removing them. Krishnan et al. (2019)

specifically uses the image-to-image translation described by Isola et al. (2017)

with the addition of blending technique to smooth the transition between real

and generated. Mastan and Raman (2021); Wang et al. (2019) attempt to solve

the image outpainting problem by finding context features in an image using an

encoder-decoder network then generating the image using a generative adversar-

ial network. Lin et al. (2021); Xu et al. (2020) both use the addition of an edge

completion network to generate missing edges. Lin et al. (2021) uses a three-step

process that starts with a rough output created by an image-to-image translation

network that is then fed into an edge-prediction network. The course output and
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predicted edge are then fed into a final network that refines the output. Xu et al.

(2020) similarly uses an edge prediction network for image outpainting; however,

the edge is computed without the use of a rough output. The output from the

edge-prediction network is then fed into a generative adversarial network where

the output is created. Cheng et al. (2021); Guo et al. (2020); Yang et al. (2019)

iteratively generate missing sections of an image by slowly expanding outward

from the image by the scale of patches. After creating the entire image another

network is then used to remove the seam between generated sections. Kim et al.

(2021) uses an interesting outpainting technique by first splitting the image in

the center and moving the halves oppositely toward the edges. The section in the

middle is then generated using traditional image inpainting techniques with the

output being split in the middle and reordered to its original position. Although

this method produces surprising results, it generally only works for scenic images

and would not correctly generate objects moving on and off screen due to its

process.

2.6 Flow-Guided Video Inpainting

Flow-guided video inpainting attempts to fill missing pixels by finding them in a

previous or future frame of video (Xu et al., 2019a). This is a complicated process

which follows three steps. First, video is converted to a flow completion network

which attempts to extrapolate the movement of objects in the scene. Naturally,

the sections that need to be inpainted will not have information in this flow com-

pletion network, so the network iteratively fills this missing information making

the section to patch smaller and smaller. Next, this flow-guided video is used to

find missing pixels in other frames which are then propagated to fill the missing
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information. Using this method, propagated pixels are temporally consistent al-

lowing for less warping and jitters. Again, this process of propagating pixels is

done iteratively making the inpainted section of video smaller and smaller. When

this process is complete, not all pixels will be found leaving some sections of video

needing further inpainting. This moves to the third step where traditional image

inpainting techniques are used to generate the missing content. This content is

then propagated through the network using the previously computed flow-guided

video, making this purely generated content temporally consistent. Again, this

is done iteratively across the video until all frames are computed. Flow-guided

video inpainting has the benefit of being very temporally consistent and in most

cases is able to fill missing sections accurately. The process is most successful

when the content to be filled is found elsewhere in the video, and is least suc-

cessful when it is never shown. When generating missing content for still video

shots, the network would be forced to generate the content for each frame as it

could not use the flow completion network. The network has not been tested

for these cases and given its traditional inpainting focused algorithm, it would

likely fail to accurately extrapolate the frames. Flow-guided video inpainting can

also be extremely resource intensive as it is both computationally and spatially

expensive.
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Chapter 3

Experimental Design

The conditional generative adversarial network used here for video outpainting

is based on an image-to-image translation cGAN described by Isola et al. (2017).

This conditional generative adversarial network uses a U-Net architecture for

its generator, taking advantage of the encoder-decoder that encourages semantic

image segmentation needed for image-to-image translation. It also uses the skip

connections designed in the U-Net architecture to share similar information such

as edges between the encoder and decoder layers. The use of this generator allows

for a generic approach to any image translation tasks, including outpainting. The

discriminator uses the PatchGAN architecture described in Isola et al. (2017).

Due to the GAN needing to model high-frequencies, using a patch of size N ×

N that is run convolutionally across the input image is sufficient to create the

output of the discriminator. Doing so allows for the discriminator to quickly form

an output instead of analyzing the entire image, which would take considerable

time. Training is completed by a 16:9 film with similar content as the film to be

translated. This training film is then separated into frames and cropped to make

training pairs. Once the training is complete on the similar film, the generator
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can be used to re-format the original film.

3.1 Generator

The generator uses an encoder-decoder with skip connections between the two.

This architecture is called a U-Net architecture and it allows for semantic image

segmentation which makes it a good fit for image translation (Ronneberger et al.,

2015). The encoder uses convolutional layers with batch normalization to slowly

downsample the input by a factor of two for each layer until the bottleneck layer.

Batch normalization is used to help the training process by standardizing the

inputs to a layer, thus stabilizing the learning process. A leaky ReLU activation

is used with a slope of 0.2 for all layers in the encoder. Using this reduces the

chances of the gradients becoming 0 causing the dying ReLU problem where the

neuron will only output 0 and is unlikely to recover. There are eight layers in

the encoder with each layer increasing the filters. The first layer is the input

image, followed by a layer with 64 filters. It is followed by a layer with 128 filters,

then 256 filters and finally four layers of 512 filters. The decoder picks up from

where the encoder left off with some changes to each layer. The decoder consists

of seven deconvolution layers each of which upsample the image by a factor of

two. Deconvolution is completed by doubling the image size then running a

convolutional filter to refine the image. Each layer uses batch normalization and

dropout with a ReLU activation function instead of the encoder’s leaky ReLU

activation function. Dropout, which randomly drops nodes in both visible and

hidden layers, is used in place of standard Gaussian noise for input into the

generator as the generator tends to ignore the noise. Dropout is only applied in

the encoder side of the U-Net. The dropout rate used in the decoder is 50%. The
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decoder begins with four layers of 512 filters, followed by a layer of 256 filters, 128

filters and lastly 64 filters. The final result is sent through a final convolutional

layer using a tanh activation function which maps the number of output channels.

Skip connections between the encoder and decoder layers are added with the

exception of the bottleneck layer. These connections send information directly

to the decoder layers and concatenate their activation functions to the decoder’s

activation functions. This architecture is shown in Figure 2.2.

3.2 Discriminator

The discriminator is only used when training the conditional generative adver-

sarial network. Its architecture uses four convolutional layers with increasing

filters for each. Similar to the encoder, each of the layers in the discriminator

uses a convolutional layer with batch-normalization and a leaky ReLU activation

function with a slope of 0.2. Before the first layer, the produced image and the

conditioning image are concatenated to produce the input. This is then passed

to a layer with 64 filters, followed by a layer of 128 filters, 256 filters and finally a

layer of 512 filters. After the last layer, a convolution is applied to map the result

to a 1-dimensional output which will be used for training. This is based on the

architecture described in Isola et al. (2017) also called PatchGAN. It was designed

with the intent to model high-frequency correctness as L2 loss was found to pro-

duce blurry results. The architecture penalizes structure of the scale of a patch

with the average of all responses creating the output of the discriminator. This

architecture has the benefit of modeling high-frequency structure while having

fewer parameters and running faster than traditional Markovian discriminators.
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3.3 Training

Training and testing was done using two Alfred Hitchcock movies, specifically

North by Northwest and Vertigo. These movies were chosen as they were released

in an aspect ratio of 4:3 as well as 16:9. When choosing a training set, the film

also needs to be similar to the testing film as the model will only generate images

similar to its training set. The films were both exported to frames at 20 frames per

second, resized to 256x256 with both sets cropping them to include black borders.

The training set also kept original images to be used with the discriminator. The

conditional generative adversarial network trained on the frames for three days

with only one epoch as it did not run out of training data.
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Chapter 4

Results

Evaluating the output of synthesized images or video in a quantitative manor

is an open problem. Ultimately the success of the output depends on people’s

ability to determine real from fake. With this in mind, there are rudimentary

metrics that can be used to get a rough sense on the quality of the output versus

the original. Signal-to-noise ration, or SNR, peak signal-to-noise ratio, or PSNR,

and structural similarity index measure, or SSIM, can be used to quantitatively

define how well a reconstructed image matches the original (Gonzalez and Woods,

2018). PSNR is a ratio between the information-bearing signal power and the

level of noise. It uses mean-squared error but scales it according to the image

range on a logarithmic scale as most images have a wide dynamic range. PSNR

outputs a measurement representing the amount of noise in the image with a

lower number meaning less noise and a larger number meaning more noise. SNR

is the same as PSNR with the difference that SNR is relative to signal while

PSNR is relative to the peak dynamic range. This makes PSNR a much better

measure when comparing unrelated images. SSIM differs from PSNR as SSIM

focuses more perceived visual quality. Due to this, SSIM is many times preferred
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Signal to Noise Ratio Peak Signal to Noise Ratio Structural Similarity Index Measure

11.3967 27.4518 0.8122

Generated Image vs Ground Truth (based on 5375 images)

Table 4.1: PSNR and SSIM results from an average of 5375 images

Signal to Noise Ratio Peak Signal to Noise Ratio Structural Similarity Index Measure

5.6298 23.2305 0.5483

Generated Images vs Ground Truth (Generated Portion Only) (Based on 5375 images)

Table 4.2: PSNR and SSIM results (generated sections only) from an average of
5375 images

to over PSNR as a way of determining image or video quality. SSIM extracts three

features from images: luminance, contrast and structure. These were chosen as

the most important features an image have that people perceive. Luminance is

calculated by averaging over all pixel values while contrast takes the standard

deviation of all pixel values. Structure is based off the idea that spatially close

pixels have strong inter-dependencies that make up the important structures of

an image. This makes SSIM perform better for most image comparisons over

PSNR.

The model was trained for three days on two Alfred Hitchcock movies, specif-

ically Rear Window and North-by-Northwest. For training, the discriminator

must have original images as well as generated. These films were chosen with

this in mind as they have both 4:3 and 16:9 versions. After training, the model

was used to generate frames from another Alfred Hitchcock movie, Vertigo. Once

generating these frames they were compared against their originals using SNR,
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PSNR and SSIM and averaged for the 5,375 generated images. These statistics

are typically used to measure video compression, with PSNR’s numbers ranging

depending on the bit-depth of the image. The generated images resulted in an

average PSNR of 27 (4.1), with anything over 30 typically being the standard for

lossy compression (Gonzalez and Woods, 2018) while SNR resulted in 11 with

anything over 10 considered acceptable. SSIM is easier to measure as its range is

between 0 and 1 with the closer to 1 being exactly the same and 0 meaning no

similarity. The average SSIM for the generated images resulted in 0.8122. SNR,

PSNR and SSIM was also computed for generated sections of the frame only, re-

sulting in a 23.23 PSNR, 5.6 SNR and a 0.5483 SSIM (4.2). This shows that the

generated frames were able to fill the cropped edges with a context aware result,

but little results accurately recreated the frame. Images with simple objects near

the edge like buildings or a car seat produced better results (see Figures A.1 and

A.2) with the edges being contextually extended. Moving objects coming into

and out of the frame were not reconstructed on the edges as to be expected as

the model does not exploit the temporal nature of video (see Figures A.4 and

A.6).

28



Input GeneratedOriginal

Figure 4.1: Input, generated and original images
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Chapter 5

Discussion

Video inpainting has been an area of interest for researchers over the past few

years with new techniques and advancements constantly evolving off of their

predecessors. This research focuses on filling information with all edges giving

context to the missing section. However, this thesis tested the possibility of

reformatting video by generating the missing content on its edges. This posed a

new problem unfit for many state-of-the-art methods, such as flow-based video

inpainting relying on the missing section being revealed at some point in the

frames. Many shots in movies lack this information as they are locked off with

the information off screen never being shown. Image-to-Image translation proved

to be a possible solution due to its adaptability, providing excellent results on a

wide range of image translation problems. Although the generated content was

not accurate to the original frames, it was able to fill the edges with a context

aware result that did not distract from the rest of the video (see Figure A.2).

Due to the salient sections of the image or video remaining intact, the viewer

rarely notices inconsistencies toward the side of the screen. The human brain

is wired to fill in information from the peripheral view of the eye, so generating
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context aware imagery proved less distracting than the typical black border in

most instances. One exception to this case is when objects enter or leave the

screen as their movements grabs the attention of a viewer and the model is unable

to generate the content accurately (see Figure A.5). When training the model,

it seems imperative to find a film related to the one to be reformatted as the

model will learn to generate frames similar to its training set. If the training film

does not have similarities with the target film, it will inaccurately reconstruct

the frames and lead to undesirable results.

Many video inpainting methods create undesirable effects due to the gener-

ated sections warping through time. As the model used in this paper does not

take advantage of the temporal structure of video or use previous frames when

generating new content, warping content over time should be present in the gen-

erated frames. Surprisingly, it seems warping rarely occurs in generated content

and in many instances is not distracting (see Figures A.1 and A.7). This is po-

tentially due to many of the shots staying locked in place, allowing the model

to generate a very similar result frame to frame. Further testing would have to

occur to determine if warping occurs more in motion-heavy scenes.

A benefit to using cGANs for video outpainting over flow-based methods is

the memory requirement. Flow-based methods must analyze previous frames

in order to generate their content. In many cases, this leads to more accurate

results but is computationally expense and requires a large amount of memory

not found in most commercial GPUs. For computing high resolution video, using

flow-based methods would be nearly impossible on consumer products. This was

not the case with cGANs as the model used to generate the images was able to

create multiple frames per second on a consumer GPU with the ability to increase

the resolution without GPU memory running out.
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Previous work in image outpainting shows similar results (Krishnan et al.,

2019; Guo et al., 2020; Xu et al., 2020). Edges are filled with a context aware

results which is typically blurred in comparison to the rest of the image. Certain

outpainting methods achieve better results but are more specialized for specific

generation tasks (Ying and Bovik, 2020; Yang et al., 2019; Cheng et al., 2021).

As the variety of frames in a movie could be large, having a generic approach that

produces reasonable results for most to all frames is preferable to a system that

may achieve great results for some frames but poor results for others. All previ-

ous image outpainting methods have not been tested with video, so undesirable

warping effects may be present. Most image outpainting techniques researched

have followed a very similar architecture as used in this paper, so there is a high

likelihood that other results would be similar to the ones found here.
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Chapter 6

Conclusions

While video inpainting has been a popular research topic in recent years, the

specialization of reformatting video which requires outpainting frames has not.

Traditional flow-based methods might fail to accurately fill the edges of a scene,

as it typically relies on the missing section of the image being shown at some point

(Xu et al., 2019a). While this may not be an issue for most video segments, this

can cause issues in film when the content may never be shown. Using a similar

model to the cGAN proposed by Isola et al. (2017) for general image translation,

a model was trained that was able to generate context-aware imagery to fill

the edges of a film. Although it rarely achieved photorealistic results, due to

the salient nature of video the generated sections proved to enhance the video

enough where many times they were not noticeable to a viewer (see Figure A.8).

The model was able to generate convincing results with most static shots and fell

short when objects moved on or off of the screen (see Figure A.5). Many previous

works with video inpainting found the temporal structure of video caused the

generated sections to warp slowly over time creating distractions for an observer

(Xu et al., 2019a). This effect did not occur to the same degree in the results for
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the method used in this thesis, most likely due to a lack of motion in most shots

and the generated content being less detailed than traditional inpainting work

making distortions less noticeable. The quality of results from the cGAN proved

surprising, with better results being possible given a longer training time. The

model also proved to be efficient compared to other video inpainting techniques

which would allow higher resolution images to be generated in less time. Video

outpainting research is still early in its development and this research shows that

there are many ways to achieve the same goal.
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Chapter 7

Future Work

The work shown in this paper could be built on in several ways. Higher quality

results may be achieved by using a modified outpainting technique that uses a

refinement process. Lin et al. (2021) uses a process of generating a coarse output

which is refined by a generated edge map. Incorporating a similar structure

for refining edges may produce highly detailed results but may make the frames

temporally inconsistent. The training time and image resolution of the input

could certainly be improved which could potentially give more valuable results.

The discriminator could be modified from its original Patch-GAN design to give

better feedback to the generator. This could possibly be fixed by increasing

the size of the patch as some of the inconsistencies with training might come

from the limited scope that the discriminator can see at one time. Changing

the patch size will slow training as more information will have to be computed;

however, when the resolution of the input image grows the discriminator could

potentially degrade in performance and will fail to do its job correctly as the

patch size will be too small for the image. The best extension of this research

would be implementing a way for the generator to take advantage of the temporal
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Generator

Figure 7.1: Sliding window

structure of video. In its current state, the generator produces frames without any

knowledge of previous or future frames. This could be alleviated by implementing

a sliding window for the generator to acknowledge multiple frames at a time.

This would benefit the results in numerous ways as objects that move on and off

screen would potentially be tracked, resulting in smoother results. Implementing

a sliding window would also alleviate some warping that occurs frame-to-frame

as the generated content would be more temporally consistent.

Another possible solution would be a recurrent neural network structure that

feeds the previously generated results back into itself, thus becoming more content

aware. This would hypothetically help with frame warping, but would fail to look

ahead at future frames. Either change would most likely produce better results

as it would become more time aware with the downside being longer computation

times.
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Appendix A

Additional Frames
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Figure A.1: Sequential frames showing temporal consistency

Input GeneratedOriginal

Figure A.2: Sequential frames showing temporal consistency
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Figure A.3: Sequential frames showing temporal consistency
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Figure A.4: Sequential frames of object moving into frame
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Figure A.5: Sequential frames of object moving out of frame
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Figure A.6: Sequential frames of object moving out of frame
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Figure A.7: Consecutive Frames from Panning Shot
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Figure A.8: Consecutive Frames from Panning Shot
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Original Difference Generated

Figure A.9: Original and Generated Frames with Difference Highlighted
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