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Abstract

Quantum sensing is an emerging field of quantum optics that seeks to take advantage of

quantum correlations available in quantum states of light to enable sensitivities beyond

the fundamental classical limits. The sensitivity of measurements and sensing apparatus

when using classical states of light is limited to the shot-noise limit (SNL), which is

achieved with coherent states of light.

Two-mode squeezed states of light (twin beams) have quantum correlations both

in time and space, leading to temporal and spatial squeezing properties. Several ap-

plications can benefit from such noise reduction to enable new approaches, such as

quantum-enhanced interferometry, quantum imaging, and quantum sensing. The emer-

gence of quantum technologies has been referred to as the second quantum revolution.

For metrology and sensing applications, in particular, it has led to new state-of-the-art

sensitivity limits.

In this thesis, we discuss the implementation of quantum sensing based on squeezed

states of light and plasmonic sensors as a platform for the demonstration of real-life

quantum sensing. We present a quantum-enhanced plasmonic sensing setup that

can detect changes in the refractive index of air beyond the SNL. Furthermore, we

generalize such experimental apparatus to probe an array of sensors using the quantum

correlations present in different spatial locations to demonstrate a parallel quantum-

enhanced plasmonic sensing scheme that can simultaneously detect changes in the

refractive index of air in multiple locations with a single probing beam. These results

xvi



prove the applicability of twin beams for real-life applications based on plasmonic

sensors. The spatially resolved sensing scheme can be extended to pixel-size sensing

of multiple sensors for multi-parameter estimation and detection applications to reach

more complex sensing architectures.
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Chapter 1

Introduction

Classical states of light are fundamentally noisy. Even if we can overcome the noise from

technical imperfections, there is intrinsic fundamental noise originating from vacuum

fluctuations of the electromagnetic modes of light. Laser light, for instance, is coherent

and monochromatic; however, it is noisy in its core photon statistics, as its photons

are randomly emitted with no correlations between them. An ideal laser beam without

any technical classical noise represents a “coherent state,” whose photons are randomly

distributed in space and time, following a Poisson distribution. The noise of such

a coherent state determines the fundamental noise limit for classical states of light,

called the shot-noise limit (SNL), and is set by the uncertainty principle in quantum

mechanics. The SNL defines the bound for the sensitivity of optical readout sensing

and measuring devices when probed with classical states of light.

Quantum mechanics provides the solution to overcome this fundamental noise

limit through the use of quantum-correlated states of light that show reduced-noise

properties. Therefore, sensors and measurements which use such states can provide

sensitivities beyond the SNL when probed with equal numbers of photons as their

classical counterpart. While classical states are limited by the SNL, the states that

can beat the SNL are referred to as the “quantum states” [1]. Anti-bunched states,

Fock states, entangled and squeezed states are among the quantum states that have

been introduced and studied both theoretically and experimentally over the past few
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decades. Each of these quantum states can provide different advantages for particular

applications.

In this thesis, we focus on two-mode squeezed states of light, also known as the “twin

beams”. These states can exhibit significant quantum correlations between their photons,

and therefore can reach large noise cancellations, or “squeezing,” compared to coherent

states at the SNL. We can generate twin beams with high quantum correlations on-

demand and with high intensities. Moreover, there are sensing devices that can benefit

from these states without a significant modification in their setup for implementing

quantum sensing.

The main goal of this thesis is to demonstrate the applicability of twin beams of light

for enhancing the sensitivity of compatible shot-noise limited sensing and measurement

devices. In particular, we use plasmonic sensors [2] and enhance their sensitivity in

the detection of changes in refractive index beyond the SNL. Plasmonic sensors are

nano-fabricated devices that are widely used in biochemical and medical diagnosis

applications. These sensors have been reportedly reached the SNL when classical states

are used to probe them [3]. Since the resonance response of these nanohole-structured

sensors can be tuned to show maximum sensitivity at the wavelength of interest, we

can use them as a platform for implementing quantum-enhanced sensing compatible

with real-life applications. Moreover, using spatial quantum correlations in the twin

beams, we implement quantum plasmonic sensing in a parallel configuration. Such

experiments take the quantum states of light from fundamental studies into more

practical applications, paving the way for other quantum-enhanced applications in
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metrology, imaging, and information processing that can benefit fields such as biology,

chemistry, and so on. Over the past two decades, the emergence of quantum-correlated

states opened new opportunities for different applications, which has drastically changed

the field of sensing and metrology. In this chapter, I briefly review the evolutionary

progress of quantum sensing.

1.1 Quantum Revolution

Near the end of the nineteenth century, classical physics was at its highest level

of maturity, which made physicists of that time confident in classical formulations

of physical phenomena, ranging from the everyday motion of objects and fluids, to

electromagnetic waves and optics. However, some problems were not fully understood,

as they did not follow the expected behavior from classical theories [4]. Some of these

phenomena include the photoelectric effect, black-body radiation, and atomic structure,

to name a few. The pivotal point in the history of physics was Albert Einstein’s

interpretation of light as composed of particles, which was able to successfully explain

the photoelectric effect in 1905. In his theory, he proposed light to be consisting of

“quantized” packages of energy, called “photons.”

This theory and other follow-up studies and discoveries revolutionized the Newtonian

interpretation of light as “waves” and built the foundations of a new field of physics:

quantum mechanics. This new formulation studies physical phenomena based on the

probability of events happenings and the introduction of the uncertainty principle
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for complementary variables. Moreover, the act of measurement and observation are

described by operators that affect the physical system under study. Some of these

approaches were counter-intuitive compared to the classical picture. Furthermore,

the probabilistic interpretation of events in quantum mechanics leads to fundamen-

tal uncertainties in measurements, in contrast to classical measurements which are

deterministic.

Apart from its success in explaining unanswered questions in physics, quantum

mechanics has also been able to predict new experimental realizations based on its

assumptions. The invention of the laser by Maiman in 1960 [5] provided a source of

coherent photons in space and time and opened a new chapter in quantum optical

phenomena that rely on nonlinear behaviors from materials. The emergence and

development of nonlinear optics provided the required infrastructure for the generation

of correlated photons, leading to the generation of new quantum states of light.

1.2 Second Quantum Revolution: Quantum Sensing

Science and technology provide the two platforms for evolving our understanding of the

universe. Sometimes science predicts new concepts, which directs the engineering efforts

for inventing new apparatuses and techniques, and sometimes new technologies lead to

opportunities for physicists to enrich and deepen related sciences. These two fields also

complete each other and emerging new concept in one leads to evolving the other one.

For example, the uncertainty principle defines the relation between non-commuting
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operators, and leads to a fundamental uncertainty in a measurement, independent of the

measuring apparatus, and hence limiting the sensitivity and resolving power of classical

measurements [6]. This concept fundamentally limits the sensitivity of measurements

but provides technological opportunities to reach that limit.

In 1963, Glauber [7] developed the quantum optical theory of coherence and predicted

the possibility of surpassing the SNL with particular quantum states while still satisfying

the uncertainty principle. In 1977, Kimble and Mandel [8] showed the experimental

realization of photon anti-bunching in resonance fluorescence from a two-level atom as

the first demonstration of quantum states of light. Later, in 1985 Slusher [9] showed

the first experimental realization of squeezed states of light through the nonlinear

interaction between laser beams and sodium atoms.

The theory of quantum mechanics led to the first quantum revolution, which revolu-

tionized our understanding of atomic and photonic physics. The new theoretical tools

from the first quantum revolution evolved into practical technologies that translated

fundamental science into application. Due to the importance of the emerging quantum

technologies, the beginning of the 21st century is referred to as the beginning of the

second quantum revolution [10]; the era for the advent of new quantum technologies:

quantum computers, quantum information, and quantum metrology (including sensing,

detecting, and imaging) [11].

The field of quantum sensing is evolving rapidly and includes applications in spec-

troscopy [12, 13, 14], interferometry [15, 16, 17] and gravitational wave detectors,

such as LIGO [18, 19, 20, 21], precision measurement [22, 23], below-shot-noise sens-
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ing applications [24, 25], chemical detection [26, 27, 28, 29, 30], and imaging sys-

tems [31, 32, 33, 34, 35]. In particular, quantum sensing and metrology seek to use

quantum states to enhance measurements or parameter estimation to a level better

than the corresponding classical strategies at the SNL [36, 37, 38], through the use

of photonic states [39], atomic states [40], and even molecular states [41]. Optical

quantum sensing and metrology can benefit different measurement techniques by taking

advantage of quantum states to improve their sensitivity and detect smaller signals.

1.3 Thesis Outline

In chapter 2, we define the quantum states of light that we use in our experiments, twin

beams, and their reduced noise properties, as well as theoretical and experimental tools

for producing and characterizing them. These states provide the tools for enhancing

the sensitivity of compatible measurements. The definition of sensitivity and the ways

to enhance it will be studied in chapter 3, clarifying the role of quantum states in

reaching sensitivities beyond the SNL. In chapter 4, we study plasmonic sensors and

their role as a real-life platform to implement quantum-enhanced sensing. We study

their functionality, as well as their characteristic response to an incident probing light.

Combining the quantum states and the plasmonic sensors, we demonstrate a quantum-

enhanced plasmonic sensing configuration in chapter 5. Moreover, we experimentally

show the capability of twin beams to realize a quantum-enhanced plasmonic sensing

scheme. In chapter 6, we extend this implementation to an array of plasmonic sensors
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and implement a parallel quantum plasmonic sensing scheme that uses the temporal

quantum correlations at different spatial locations within the twin beams. Finally, in

chapter 7, we discuss the possibility of future work for providing further enhancements

in the sensitivity of the presented quantum plasmonic sensor configurations.
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Chapter 2

Squeezed States of Light: Twin Beams

Following the first theoretical studies on the quantization of an electromagnetic field,

Glauber in 1963 developed the theory of coherence that predicted quantum states of

light with sub-Poissonian photon statistics [42], such as photon anti-bunched states.

Less than a decade later, squeezed states of light [43, 44, 45] were first introduced

theoretically by Stoler [46, 47]. Later, Yuen [48, 49] and Caves [6] proposed using

these states for enhancing the sensitivity of an interferometer below the SNL. The

first experimental observation of squeezed states was in 1985 by Slusher [9]. They

generated quadrature-squeezed states with sodium atoms. Such squeezed states provide

the noise-reduced tools for probing sensors to reach sensitivities better than the SNL.

In this chapter, we introduce some definitions required to understand the properties

of squeezed states, in particular two-mode squeezed states (TMSS) or twin beams of

light, as well as techniques for generating them. We also present the theory needed for

the noise analysis through measurement methods to study the temporal and spatial

quantum correlations in the twin beams.

2.1 Quantum Description of Light

As first derived by Glauber in 1963 [7], in quantum mechanics, a single mode monochro-

matic field of light at frequency ω can be described by quantizing it with a single cavity

mode that behaves like a simple harmonic oscillator of unit mass. Such an electric field
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can be described in time (t) as:

Ê(t) = E0(âeiωt + â†e−iωt), (2.1)

where â and â† are the annihilation and creation operators, and E0 is the unit field per

mode volume. In this notation, the hat “ˆ” indicates an operator, and i =
√
−1.

The intensity of a beam of light is directly proportional to the number of photons

reaching a detector within the detection time, or the detection bandwidth. The number

of photons in the field is obtained by applying the number operator to a number state,

as n̂|n〉 = n|n〉, where n refers to the number of photons in state |n〉, and n̂ = â†â

is the Hermitian observable counting these photons. The annihilation and creation

operators, â and â†, are non-Hermitian (â 6= â†) and obey the bosonic commutation

relation [â, â†] = ââ† − â†â = 1. These operators act on the number state |n〉 to lower

and raise the number of photons in the field by one, that is â|n〉 =
√
n|n − 1〉 and

â†|n〉 =
√
n+ 1|n+ 1〉.

In order to describe Ê in terms of observable quantities, we can write the annihilation

operator in terms of its real and imaginary parts, as:

â = X̂ + iŶ . (2.2)

With this definition, the quantized electric field in Eq. (2.1) can be written as:

Ê(t) = 2E0

[
X̂ cos(ωt) + Ŷ sin(ωt)

]
, (2.3)

where X̂ and Ŷ represent the Hermitian quadrature operators for the real (in-phase)

and imaginary (out-of-phase) components of the field. The field can also be visualized
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Figure 2.1: An electric field (left) can be displayed in phase-space (right)

in terms of its real, X̂, and imaginary, Ŷ , components.

in a phase space diagram, where the x- and y-axis represent the amplitude and phase

quadratures of the electric field, respectively, as shown in Fig. 2.1.

Following the commutation relation between â and â†, we have that [X̂, Ŷ ] = i/2.

Therefore, the uncertainty principle, which determines the relation between the uncer-

tainties of conjugate observables X̂ and Ŷ , takes the form:

〈
∆2X̂

〉〈
∆2Ŷ

〉
≥ 1

16
, (2.4)

where the uncertainty in each quadrature is given by its variance, defined as
〈
∆2X̂

〉
=

〈
X̂2
〉
−
〈
X̂
〉2

. The bracket notation
〈〉

represents the expectation value of an operator,

which means the statistical average of the outcomes of a series of experimental mea-

surements. The square root of the variance represents the standard deviation of an

observable V̂ ,
〈
∆V̂

〉
=
√〈

∆2V̂
〉
.
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2.1.1 Coherent State

The uncertainties of the field quadratures cannot be less than the minimum uncertainty

value determined by the uncertainty principle. In general, classical states of light have

uncertainties greater than the minimum uncertainty value given by the uncertainty prin-

ciple. A particular case where both quadratures have equal and minimum uncertainties,

〈
∆2X̂

〉
=
〈
∆2Ŷ

〉
= 1/4, is called a “coherent state” which represents a classical state

with the least amount of noise and defines the SNL.

In operator notation, coherent states are given by displaced states from a vacuum

mode, as |α〉 = D̂(α)|0〉, where D(α) is the unitary displacement operator:

D̂(α) = exp(αâ† − α∗â), (2.5)

and α = |α|eiφα is the eigenvalue of the annihilation operator, â|α〉 = α|α〉, and indicates

the amplitude of the electric field of a coherent state as |α|. The creation and annihilation

operators are transformed by the displacement operator as D̂†(α)âD̂(α) = â+ α, and

its adjoint as D̂†(α)â†D̂(α) = â† + α∗.

In a phase space diagram, a coherent state is represented by a disk corresponding to

the contour plot of the Wigner probability distribution, as shown in Fig. 2.2(a), which

forms a Gaussian distribution with minimum equal uncertainties in both quadratures.

A coherent state contains equal noise in both amplitude and phase of the field, as

is shown in Fig. 2.3(a). By convention, we define the X̂ and Ŷ quadratures, as the

amplitude and phase of the field, respectively∗, if the amplitude of the light is large

∗We use this convention throughout the thesis.
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Figure 2.2: Wigner distribution of Gaussian states: (a) coherent state and

(b) squeezed state. Angle θ gives the rotation of the squeezing ellipse in

phase space.

enough, |α| � 1. Therefore, the uncertainty area in phase space, also represents the

uncertainty of amplitude and phase of the field, as shown in Fig. 2.3(a). The size of

the uncertainty disk of a coherent state is the limit between classical and quantum

states, such that the states with less uncertainties (noise) along any direction in phase

space than a coherent state are quantum states. Therefore, for a given quadrature,

the minimum uncertainty of a coherent state defines the SNL, also called the standard

quantum limit if radiation pressure is negligible.

A laser beam is a close approximation to a coherent state with equal and minimum

noise levels in each of its quadratures. Based on the definition of the SNL, the sensitivity

of a measurement performed with a laser beam, as a classical state of the light, is

limited fundamentally to the SNL achieved with a pure coherent state. A sensitivity

better than this limit can only be obtained with quantum states, as those introduced in
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Figure 2.3: Presentation of an electric field in time (left) and in phase space

(right). (a) A coherent state has equal uncertainty in both the amplitude

and phase quadratures, which defines the SNL. (b) A phase-squeezed state

has phase noise less than the SNL (dashed circles), but excess noise in

the amplitude quadrature. (c) An amplitude-squeezed state has amplitude

noise less than the SNL, but excess noise in the phase quadrature.
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the following section.

2.1.2 Single Mode Squeezed State

Although the SNL is a fundamental limit for classical states of light, quantum mechanics

provides a way to surpass this limit. Quantum squeezed states, as opposed to classical

states, can beat the SNL by redistributing the fluctuations in conjugate components of

the field. According to the uncertainty principle, a reduction in the uncertainty below

the SNL can only happen in one quadrature to generate squeezing at the expense of an

increase of uncertainty, anti-squeezing, in the other conjugate quadrature [50]. That

means, from the uncertainty relation shown in Eq. (2.4), that the uncertainty for the

quadratures of a squeezed state can be either:

〈
∆2X̂

〉
< 1/4 and

〈
∆2Ŷ

〉
≥ 1/4, (2.6)

or:

〈
∆2X̂

〉
≥ 1/4 and

〈
∆2Ŷ

〉
< 1/4. (2.7)

As shown in Figs. 2.3(b) and (c), the uncertainty area for a squeezed state is

represented by an ellipse, which here is aligned with the X̂ or Ŷ directions. When the

uncertainty in the phase quadrature is reduced below the SNL and excess noise is present

in the amplitude quadrature, the state is called a phase-squeezed state, Fig. 2.3(b). On

the other hand, when the uncertainty in the amplitude quadrature is reduced below

the SNL and an excess noise is present in the phase quadrature, the state is called an

amplitude-squeezed state, Fig. 2.3(c). Using squeezed states for detection purposes, if
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the measurement is only sensitive to the amplitude (phase) of the light, we can benefit

from the reduced noise property of an amplitude (phase) squeezed state.

Squeezed states are non-classical (quantum) states due to the fact that the uncer-

tainty of one of their quadratures falls below the SNL. Additionally, due to the field

quantization and the commutation relation between the field quadratures, squeezed

states require a non-positive Glauber-Sudarshan P distribution [36], which is an indica-

tion of their quantum nature.

A bright quadrature squeezed state is mathematically defined as:

|α, ζ〉 = D̂(α)Ŝ(ζ)|0〉, (2.8)

where Ŝ(ζ) is the squeezing operator that shrinks a quadrature while amplifying the

other one, and the displacement operator makes it bright. Alternatively, we can also

generate bright squeezed states with a reversed ordering of the operators than the one

presented in Eq. (2.8). In that case, the displacement operator first generates a bright

coherent state, then the squeezing operator generates a coherent squeezed state [6, 48].

These two approaches are related to each other, and can lead to the same results with

proper transformations [44].

The unitary squeezing operator is defined as:

Ŝ(ζ) = exp

[
1

2
(ζ∗â2 − ζâ†2)

]
, (2.9)

where ζ = seiθ is the complex squeezing parameter. Here s represent the magnitude of

squeezing parameter. Moreover, θ indicates the phase of squeezing operator, and the

rotation of the noise ellipse with respect to the X̂ quadrature in phase space is given by
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θ/2. Generally, the noise ellipse of a squeezed state can be rotated to show squeezing

along a superposition of phase and amplitude quadratures, as shown in Fig. 2.2(b).

2.1.3 Two-Mode Squeezed State: Twin Beams

The squeezing operator contains terms proportional to â2 and â†2, pointing to the fact

that in a squeezing process photons are absorbed and created in pairs. If the generated

photon-pairs are indistinguishable, the outcome state is a single mode squeezed state

in which the photon pairs are generated in a single beam of light. The generation

of photon pairs can be generalized to more than one mode, leading to higher order

squeezed states. For example, when the photon pairs are distinguishable, such that one

can separate them into two isolated beams, generating the TMSS, also known as twin

beams [51]. In this thesis, we are interested in the study of these states for quantum

sensing applications.

A bright TMSS is described by:

|α, β; ζ〉 = D̂a(α)D̂b(β)Ŝa,b(ζ)|0, 0〉, (2.10)

where α and β are the complex amplitudes of the two coherent modes of light, â and b̂.

The two mode squeezing operator:

Ŝa,b(ζ) = exp(ζ∗âb̂− ζâ†b̂†), (2.11)

mixes the two input modes of light∗, in such a way that two photons are simultaneously

absorbed from (or generated into) these two modes of light. Similar to the single mode

∗Operators â and b̂ represent the annihilation operators for these two modes.
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Ŷ�
<latexit sha1_base64="UFkM2aZvFNlAFCuEi5FD3oWukgA=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoMgCGFXRT0GvXiMYF4kS5idTJIhM7PLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXGAtu0PO+ndzK6tr6Rn6zsLW9s7tX3D+omyjRlNVoJCLdDIlhgitWQ46CNWPNiAwFa4Sju6nfeGLa8Eg94jhmgSQDxfucErRSqzMkmLYm3bNuseSVvRncZeJnpAQZqt3iV6cX0UQyhVQQY9q+F2OQEo2cCjYpdBLDYkJHZMDalioimQnS2cET98QqPbcfaVsK3Zn6eyIl0pixDG2nJDg0i95U/M9rJ9i/CVKu4gSZovNF/US4GLnT790e14yiGFtCqOb2VpcOiSYUbUYFG4K/+PIyqZ+X/avyxcNlqXKbxZGHIziGU/DhGipwD1WoAQUJz/AKb452Xpx352PemnOymUP4A+fzB6UJkFA=</latexit>

Ŷ+
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Ŷa

Figure 2.4: Phase space representation of a TMSS. (a) The quadratures

of each mode of the TMSS show excess noise. Dotted circles indicate the

SNL. (b) The joint sum and difference quadratures of a TMSS are squeezed.

Reproduced from [52]

squeezed state, the order of squeezing and the displacement operators in Eq. (2.10)

can be swapped with appropriate relation factors. As will be explained later, we

experimentally generate a TMSS by applying the squeezing operator to a coherent state.

In particular, for generating a bright TMSS, the squeezing process is seeded by a bright

coherent state, rather than a vacuum mode. Moreover, the annihilation and creation

operators undergo the following unitary transformations by the two mode squeezing

operator:

Ŝ†a,bâŜa,b = â cosh(s)− b̂†eiθ sinh(s),

Ŝ†a,bb̂Ŝa,b = b̂ cosh(s)− â†e−iθ sinh(s).

(2.12)

As the squeezing operator mixes the photons from the two modes of light, we can
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define joint quadratures from the four quadratures of the two modes as:

X̂± =
1√
2

(X̂a ± X̂b) and Ŷ± =
1√
2

(Ŷa ± Ŷb), (2.13)

with the commutation relations given by:

[X̂±, Ŷ±] = i/2 and [X̂±, Ŷ∓] = 0. (2.14)

As a result, the joint quadratures X̂− and Ŷ+ (and X̂+ and Ŷ−) can be squeezed

simultaneously in a two-mode squeezed state. As shown in Fig. 2.4, while both

quadratures of each mode are noisier than the SNL, the quantum correlations between

the two modes, due to the simultaneous generation of photons in pair, lead to a decrease

in the amplitude difference quadrature, X̂−, and an increase in the variance of its joint

quadrature, the phase difference quadrature Ŷ−. Or similarly, when the phase sum

quadrature Ŷ+ is squeezed, the amplitude sum quadrature X̂+ contains excess noise.

Therefore, the squeezing is distributed across the quadratures of the two distinguishable

modes, and hence its name is called a twin beam.

2.2 Nonlinear Process to Correlate Photons

The pair photon production needed for the generation of a TMSS is described by a

nonlinear Hamiltonian of the form:

Ĥ = ~[χ(n)âb̂+ χ(n)â†b̂†], (2.15)

which leads to the two-mode squeezing operator. In this Hamiltonian, χ(n) is the

nonlinear susceptibility of the medium. For a single mode squeezed state, both modes
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in Eq. (2.15) are degenerate, â = b̂. A nonlinear process deforms the noise distribution

of a coherent state by introducing different gains for different quadratures of the field.

This deformation of the noise through a nonlinear light-matter interaction can reduce

the amplitude (or phase) noise in the generated photons [53].

We can see how a nonlinear process leads to pair photon generation by studying the

response of a nonlinear material to the interacting fields of light. The electric response

of a medium is described by its electric dipole moments per unit volume:

P (~r, t) = ε0
[
χ(1)E(~r, t) + χ(2)E2(~r, t) + χ(3)E3(~r, t) + . . .

]
, (2.16)

where ε0 is the vacuum permittivity. The first term on the right hand side of Eq. (2.16)

is the linear response of the material, as it is proportional to the E-field linearly. When

the intensity of the light is strong enough, or the nonlinear coefficients of the material

are large enough, higher order terms of the nonlinear response of the medium become

significant and lead to interesting phenomena.

From Maxwell equations, we can obtain the wave equation for the propagation of

an electromagnetic wave in the medium coordinate ~r and time t:

∇2E(~r, t)− 1

c2

∂2E(~r, t)

∂t2
=

1

ε0c2

∂2P (~r, t)

∂t2
, (2.17)

where c is the speed of light in vacuum and ε0 is the permittivity of vacuum. Substituting

the polarization from Eq. (2.16), we obtain∗:

∇2E(~r, t)− ε(1)

c2

∂2

∂t2
E(~r, t) =

1

ε0c2

∂2PNL(~r, t)

∂t2
, (2.18)

∗In this thesis, we ignore the magnetic response, µ = µ0.
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where ε(1) = ε0χ
(1) is the relative permittivity which depends on the linear response

of the medium electric polarization, and PNL refers to the nonlinear terms in the

polarization Eq. (2.16). The right hand side of this inhomogeneous wave equation acts

as a source for the electromagnetic wave propagation in the medium. Therefore, the

nonlinear response of the medium makes it possible to produce new frequencies as a

result of the light-matter interaction.

The χ(2) nonlinear term of the polarization acts as the source for second-order

nonlinear processes, such as optical parametric amplification (OPA) and second harmonic

generation (SHG). It only occurs in nonlinear crystals that do not show inversion

symmetry (noncentrosymmetric). On the other hand, third order nonlinear effects, such

as third harmonic generation (THG), the Kerr effect, and four-wave mixing (FWM),

can occur in materials with nonzero χ(3) susceptibility, regardless of their inversion

symmetry [54]. Both of these nonlinear orders show up in the same Hamiltonian

described with Eq. (2.15), and can be used for generating squeezed light. In this thesis,

we only focus on the FWM process.

2.2.1 Four-Wave Mixing in Rubidium Atoms

Due to the inversion symmetry of atoms, even orders of susceptibility, including χ(2),

vanish, and the most dominant nonlinear response of the medium becomes χ(3). It

means that the third order nonlinear response of atoms can mix different modes of light.

As shown in Fig. 2.5(a), a χ(3) medium allows mixing of the three input fields for the

generation of a fourth field. Here, we refer to the two photons in the stronger mode
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Figure 2.5: (a) A χ(3) medium allows an ideal FWM process, which couples

three waves to generate a new fourth field. (b) A four-level atom allows

the absorption and emission of photons in pairs.

as pumps (ωP1, ωP2). The two other modes are called the probe (ωpr) and conjugate,

(ωc). A four-level atomic system is capable of hosting the FWM process, as shown in

Fig. 2.5(b).

All frequency components of the interacting fields satisfy the wave equation (2.18).

That means, if we write the field components as E(~r, t) = A(~r, t)ei(
~k·~r−ωt), the wave

equation satisfies:

dAj
dz

= i
ωj

2ε0njc
P (ωj)e

−ikjz, (2.19)

In this equation, Aj is the slowly-varying amplitude of the field, ε0 is the permittivity

and c is the speed of light in vacuum, and kj , ωj , and nj are the wavevector, frequency,

and refractive index, and P (ωj) is the nonlinear polarization of the medium. Each

mode is labeled by subscript j = P1, P2, pr, c, for the two pumps P1 and P2 and the

probe and conjugate modes pr and c, respectively. The nonlinear polarization P (ωj), is

the driving term of Eq. (2.19) which leads to the excitation of fields in the nonlinear
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medium, and is given by:

PNL
j ∝ χ(3)ωjAiAjA

∗
ke
i(ki+kj−kk)z, (2.20)

for all permutations of j, j, k subscripts.

Under the rotating-wave approximation, we can eliminate the time dependence of

the wave equation, leading to:

ωP1 + ωP2 = ωpr + ωc, (2.21)

which is the energy conservation for the FWM process. In particular, the propagation

equation for the conjugate mode simplifies as:

dAc
dz
∝ iχ(3)AP1AP2A

∗
pre

i∆kz. (2.22)

Similarly, we can write the wave equations for the coupled-amplitudes of the other

three components of the field. In Eq. (2.22), ∆k = (kP1 + kP2 − kpr − kc) represents

the relation between the momentum components of the four field wavevectors and is

referred to as the “phase-matching condition”. It means that the FWM occurs most

efficiently when the momentum vectors satisfy ∆k = 0. We will revisit this condition in

section 2.4.

Under an undepleted pump approximation, which can be satisfied when implementing

the FWM process with intense pump beams, we can assume that the AP1 and AP2

modes stay constant, i.e. (dAP1/dz) = (dAP2/dz) = 0. Therefore, we have the following
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coupled-amplitude wave equations for the probe and conjugate modes:

dApr
dz

= iχ(3)IPA
∗
c , (2.23)

dAc
dz

= iχ(3)IPA
∗
pr, (2.24)

where IP ∝ AP1AP2 is a constant that depends on the intensity of the pump modes.

Therefore, the FWM process couples the probe and conjugate photons through the

χ(3) nonlinearity of the material when intense pump beams are used. Moreover, when

the photons of the probe mode seed the FWM process, the stimulate the process to

generate bright probe and conjugate beams.

2.2.2 Experimental Setup for Generating Twin Beams

Here, we discuss the generation of twin beams from a FWM process in the D1 line

of 85Rb atoms in a hot vapor cell. A scheme of the experimental setup is shown in

Fig. 2.6(a), where the process is pumped with a strong pump beam from a Titanium-

Sapphire laser at the wavelength of λ = 795 nm. As shown in Fig. 2.6(b), the D1 line

of 85Rb atoms represents the transition between levels 52S1/2 and 52P1/2. The hyperfine

splitting is 3.035 GHz for the ground states and 361 MHz for the excited states. Due to

the effect of Doppler broadening in a vapor cell, the hyperfine structure of the excited

level cannot be resolved with a simple absorption spectroscopy, and requires saturation

absorption spectroscopy (SAS). We use a SAS setup (not shown here) to measure the

absolute frequency of the laser beams and their detuning from atomic level transitions.

As shown by green lines in Fig. 2.6, the two pump photons are generated from a

23



final: FWMexpschem.pdf

<latexit sha1_base64="WQNyhLpZ1adE/pbMzvxAPsjiw2s=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZNNuGJtk1yQpl6Z/w4kERr/4db/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCye3c7zxRpVkkH8w0pr7AI8lCRrCxUrevRFoNzmeDcsWtuRnQKvFyUoEczUH5qz+MSCKoNIRjrXueGxs/xcowwums1E80jTGZ4BHtWSqxoNpPs3tn6MwqQxRGypY0KFN/T6RYaD0Vge0U2Iz1sjcX//N6iQmv/ZTJODFUksWiMOHIRGj+PBoyRYnhU0swUczeisgYK0yMjahkQ/CWX14l7XrNu6zV7y8qjZs8jiKcwClUwYMraMAdNKEFBDg8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AKSOj7c=</latexit>

(b)

<latexit sha1_base64="1Xl0pOHYxbaJwHYoivQ4nW0BWdA=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZNNuGJtk1yQpl6Z/w4kERr/4db/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCye3c7zxRpVkkH8w0pr7AI8lCRrCxUrevRFrF57NBueLW3AxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n2b0zdGaVIQojZUsalKm/J1IstJ6KwHYKbMZ62ZuL/3m9xITXfspknBgqyWJRmHBkIjR/Hg2ZosTwqSWYKGZvRWSMFSbGRlSyIXjLL6+Sdr3mXdbq9xeVxk0eRxFO4BSq4MEVNOAOmtACAhye4RXenEfnxXl3PhatBSefOYY/cD5/AKMIj7Y=</latexit>

(a)

<latexit sha1_base64="/zonVXXZIaVqAM6pjIT5aB79O4w=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgKiSlWLsQim5cVrAPaEKZTCbt0JlJmJkIJVTc+CtuXCji1p9w5984bbPQ1gMDh3PO5c49QUKJVI7zbRRWVtfWN4qbpa3tnd09c/+gLeNUINxCMY1FN4ASU8JxSxFFcTcRGLKA4k4wup76nXssJIn5nRon2GdwwElEEFRa6ptHHtXhEF7W6lW7Xqs7bvXBEyzjbNI3y47tzGAtEzcnZZCj2Te/vDBGKcNcIQql7LlOovwMCkUQxZOSl0qcQDSCA9zTlEOGpZ/NbphYp1oJrSgW+nFlzdTfExlkUo5ZoJMMqqFc9Kbif14vVdGFnxGepApzNF8UpdRSsTUtxAqJwEjRsSYQCaL/aqEhFBApXVtJl+AunrxM2hXbPbcrt9Vy4yqvowiOwQk4Ay6ogQa4AU3QAgg8gmfwCt6MJ+PFeDc+5tGCkc8cgj8wPn8As1aWTA==</latexit> �
=

7
9
4.

9
7
9
0
1
4

n
m

<latexit sha1_base64="UEKiZX0B21Y26ajPDkeuh/Fvbsg=">AAAB+nicbVDLTsMwEHR4lvJK4cjFokLiVJKI17GCC8ci0YfUhshxndaq7US2A6pCPoULBxDiypdw429w2xygZaSVRjO72t0JE0aVdpxva2l5ZXVtvbRR3tza3tm1K3stFacSkyaOWSw7IVKEUUGammpGOokkiIeMtMPR9cRvPxCpaCzu9DghPkcDQSOKkTZSYFfO7jMv70meNfIgc0+8PLCrTs2ZAi4StyBVUKAR2F+9foxTToTGDCnVdZ1E+xmSmmJG8nIvVSRBeIQGpGuoQJwoP5uensMjo/RhFEtTQsOp+nsiQ1ypMQ9NJ0d6qOa9ifif1011dOlnVCSpJgLPFkUpgzqGkxxgn0qCNRsbgrCk5laIh0girE1aZROCO//yIml5Nfe85t2eVutXRRwlcAAOwTFwwQWogxvQAE2AwSN4Bq/gzXqyXqx362PWumQVM/vgD6zPH4Ktk4U=</latexit>

52P1/2

<latexit sha1_base64="46sVS978h2W7nQ7hCvki69HgLsg=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSp5JUvI4VXDgWQR9SGyLHdVqrthPZDqgK+RQuHECIK1/Cjb/BbXOAlpFWGs3sancniBlV2nG+rcLS8srqWnG9tLG5tb1jl3dbKkokJk0csUh2AqQIo4I0NdWMdGJJEA8YaQejq4nffiBS0Ujc6XFMPI4GgoYUI20k3y6f3qe1rCd5epv5qXtcy3y74lSdKeAicXNSATkavv3V60c44URozJBSXdeJtZciqSlmJCv1EkVihEdoQLqGCsSJ8tLp6Rk8NEofhpE0JTScqr8nUsSVGvPAdHKkh2rem4j/ed1EhxdeSkWcaCLwbFGYMKgjOMkB9qkkWLOxIQhLam6FeIgkwtqkVTIhuPMvL5JWreqeVWs3J5X6ZR5HEeyDA3AEXHAO6uAaNEATYPAInsEreLOerBfr3fqYtRasfGYP/IH1+QOHTpOI</latexit>

52S1/2

<latexit sha1_base64="oDnmSbb3nWxT2GZC9AnssCBd5KQ=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvgqsxUqS6LbroRKtgHdIaSSTNtaJIZkoxSx/onblwo4tYvceffmLaz0NYDFw7n3Mu99wQxo0o7zreVW1ldW9/Ibxa2tnd29+zifktFicSkiSMWyU6AFGFUkKammpFOLAniASPtYHQ19dt3RCoaiVs9jonP0UDQkGKkjdSzi56iHJ5W3SdP8vS6/jDp2SWn7MwAl4mbkRLI0OjZX14/wgknQmOGlOq6Tqz9FElNMSOTgpcoEiM8QgPSNVQgTpSfzk6fwGOj9GEYSVNCw5n6eyJFXKkxD0wnR3qoFr2p+J/XTXR44adUxIkmAs8XhQmDOoLTHGCfSoI1GxuCsKTmVoiHSCKsTVoFE4K7+PIyaVXKbrVcuTkr1S6zOPLgEByBE+CCc1ADddAATYDBPXgGr+DNerRerHfrY96as7KZA/AH1ucPb96Tew==</latexit>⇠ 361 MHz <latexit sha1_base64="W5pYe1d+UnUI6WBg/L3j+qjl6xM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9ktol6EoiAeK9gPaJeSTbNtaJJdkqxQlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFldW19Y3iZmlre2d3r7x/0NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GN9mfvuJKs0i+WgmMfUFHkoWMoJNJt2dXtf65YpbdWdAy8TLSQVyNPrlr94gIomg0hCOte56bmz8FCvDCKfTUi/RNMZkjIe0a6nEgmo/nd06RSdWGaAwUrakQTP190SKhdYTEdhOgc1IL3qZ+J/XTUx45adMxomhkswXhQlHJkLZ42jAFCWGTyzBRDF7KyIjrDAxNp6SDcFbfHmZtGpV76Jaeziv1G/yOIpwBMdwBh5cQh3uoQFNIDCCZ3iFN0c4L8678zFvLTj5zCH8gfP5A/AxjYU=</latexit>

F 0 = 2

<latexit sha1_base64="Ay9bp17nkZlNQqC9d2YbExyRpUo=">AAAB63icbVBNSwMxEJ31s9avqkcvwSJ6KrtV1ItQFMRjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb2dpeWV1bb2wUdzc2t7ZLe3tN3WUKEIbJOKRagdYU84kbRhmOG3HimIRcNoKRreZ33qiSrNIPppxTH2BB5KFjGCTSXcn12e9UtmtuFOgReLlpAw56r3SV7cfkURQaQjHWnc8NzZ+ipVhhNNJsZtoGmMywgPasVRiQbWfTm+doGOr9FEYKVvSoKn6eyLFQuuxCGynwGao571M/M/rJCa88lMm48RQSWaLwoQjE6HscdRnihLDx5Zgopi9FZEhVpgYG0/RhuDNv7xImtWKd1GpPpyXazd5HAU4hCM4BQ8uoQb3UIcGEBjCM7zCmyOcF+fd+Zi1Ljn5zAH8gfP5A/G1jYY=</latexit>

F 0 = 3

<latexit sha1_base64="7vEpze++J/5oovBFr1q1wPu0b8I=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6kUICuIxonlAsoTZSW8yZHZ2mZkVwpJP8OJBEa9+kTf/xsnjoIkFDUVVN91dQSK4Nq777Swtr6yurec28ptb2zu7hb39uo5TxbDGYhGrZkA1Ci6xZrgR2EwU0igQ2AgGN2O/8YRK81g+mmGCfkR7koecUWOlh9ur006h6JbcCcgi8WakCDNUO4WvdjdmaYTSMEG1bnluYvyMKsOZwFG+nWpMKBvQHrYslTRC7WeTU0fk2CpdEsbKljRkov6eyGik9TAKbGdETV/Pe2PxP6+VmvDSz7hMUoOSTReFqSAmJuO/SZcrZEYMLaFMcXsrYX2qKDM2nbwNwZt/eZHUyyXvvFS+PytWrmdx5OAQjuAEPLiACtxBFWrAoAfP8ApvjnBenHfnY9q65MxmDuAPnM8fkR2NVQ==</latexit>

F = 3
<latexit sha1_base64="7E6QU7yR2aCiSASg02eQDjXBcpY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGUS9CUBCPEc0DkhBmJ73JkNnZZWZWCEs+wYsHRbz6Rd78GyfJHjSxoKGo6qa7y48F18Z1v53cyura+kZ+s7C1vbO7V9w/aOgoUQzrLBKRavlUo+AS64Ybga1YIQ19gU1/dDP1m0+oNI/koxnH2A3pQPKAM2qs9HB7VekVS27ZnYEsEy8jJchQ6xW/Ov2IJSFKwwTVuu25semmVBnOBE4KnURjTNmIDrBtqaQh6m46O3VCTqzSJ0GkbElDZurviZSGWo9D33aG1Az1ojcV//PaiQkuuymXcWJQsvmiIBHERGT6N+lzhcyIsSWUKW5vJWxIFWXGplOwIXiLLy+TRqXsnZcr92el6nUWRx6O4BhOwYMLqMId1KAODAbwDK/w5gjnxXl3PuatOSebOYQ/cD5/AI+ZjVQ=</latexit>

F = 2

<latexit sha1_base64="0RGItYBMn2+WpmeOjemEPL2XKRM=">AAAB+3icbVDLTsJAFJ3iC/FVcelmIjFx1bSg4pLoQpaYyCOBhkyHKUyYaZuZqRGb8iluXGiMW3/EnX/jAF0oeJKbnJxzb+69x4sYlcq2v43c2vrG5lZ+u7Czu7d/YB4WWzKMBSZNHLJQdDwkCaMBaSqqGOlEgiDuMdL2xjczv/1AhKRhcK8mEXE5GgbUpxgpLfXNYsWyKxfTaqU87Qme3Naf0r5Zsi17DrhKnIyUQIZG3/zqDUIccxIozJCUXceOlJsgoShmJC30YkkihMdoSLqaBogT6Sbz21N4qpUB9EOhK1Bwrv6eSBCXcsI93cmRGsllbyb+53Vj5V+5CQ2iWJEALxb5MYMqhLMg4IAKghWbaIKwoPpWiEdIIKx0XAUdgrP88ipplS3n0irfnZdq11kceXAMTsAZcEAV1EAdNEATYPAInsEreDNS48V4Nz4WrTkjmzkCf2B8/gAT8JMz</latexit>

3.035 732 GHz

<latexit sha1_base64="vv9TP7MLfeFEW9lPGIeFvPiPzEE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9SImkPTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6u1+4tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AJPWjyM=</latexit>

�

<latexit sha1_base64="xJxXFUtrDhA1OiJyVCRbxrDGvSU=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkR9VjUg8cK9gPaUDbbSbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqDg2upNLtgBmQIoYGCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9UdivuDHSZeDkpkxz1Xumr21c8jSBGLpkxHc9N0M+YRsElTIrd1EDC+IgNoGNpzCIwfja7dkJPrdKnodK2YqQz9fdExiJjxlFgOyOGQ7PoTcX/vE6K4ZWfiThJEWI+XxSmkqKi09dpX2jgKMeWMK6FvZXyIdOMow2oaEPwFl9eJs1qxbuoVO/Py7XrPI4COSYn5Ix45JLUyB2pkwbh5JE8k1fy5ijnxXl3PuatK04+c0T+wPn8AWLWjwM=</latexit>

�

<latexit sha1_base64="10dz06iAlj0sWxQHg5G+VlMt848=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ie0oUy2m3bpbhJ2N0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkesabgRrJMohjIQrB2Mb2d++4kpzePowUwS5kscRjzkFI2VHnsjNBlO+26/XHGr7hxklXg5qUCORr/81RvENJUsMlSg1l3PTYyfoTKcCjYt9VLNEqRjHLKupRFKpv1sfvCUnFllQMJY2YoMmau/JzKUWk9kYDslmpFe9mbif143NeG1n/EoSQ2L6GJRmApiYjL7ngy4YtSIiSVIFbe3EjpChdTYjEo2BG/55VXSqlW9y2rt/qJSv8njKMIJnMI5eHAFdbiDBjSBgoRneIU3RzkvzrvzsWgtOPnMMfyB8/kDuIOQXA==</latexit>

â0
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Figure 2.6: (a) Schematic for the FWM experiment. (b) Hyperfine energy

levels of 85Rb D1 line (left) used in the FWM process with a double-Λ

configuration (right). ∆: one-photon detuning, δ: two-photon detuning.

Color code: green: pump, red: probe, blue: conjugate, gray dashed line:

vacuum mode.
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single intense beam, ωP1 = ωP2 . By sending the strong pump beam to the Rb vapor

cell, pairs of photons are generated through a spontaneous FWM process, to generate

vacuum two-mode squeezed state (VTMSS). To generate bright two-mode squeezed

states of light (BTMSS), we seed the FWM process with photons at the frequency of

the probe beam. The seeding beam is generated by taking a small fraction of the pump

beam using a beam sampler. This portion double-passes an accousto-optical modulator

(AOM) to red-detune it by 2× 1.52 GHz. By seeding the FWM process, pairs of the

probe and conjugate photons are generated as a result of a stimulated FWM process:

the seeded probe beam is amplified and a new conjugate beam emerges [55].

The efficiency of the FWM process in converting energy from the pump photons to

the quantum correlated twin beams depends on the strength of the χ(3) nonlinearity

in the Rb atoms. Large nonlinearities occur when the pump frequency is tuned

on-resonance with an atomic transition. However, on-resonance transitions increase

unfavorably the absorption and spontaneous emission rates, both of which reduce the

coherency of the light-matter interaction and act as loss mechanisms. To overcome

these effects and extract a large nonlinear response from the atoms, we use a double-Λ

configuration to generate bright squeezed states with high intensity naturally from the

atomic interaction [56, 57, 58, 59]. To prevent atomic absorption, the pump frequency

is detuned from the F = 3 of the 52S1/2 ground level to the 52P1/2 excited level, called

the single-photon detuning as is indicated by ∆ in Fig. 2.6(b).

The efficiency and gain of the FWM process determines the amount of quantum-

correlations between the generated twin beams. As will be discussed in section 2.3.1, the
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quantum correlations between twin beams are characterized by measuring the level of

noise-reduction, or squeezing, between them. There are several important experimental

parameters that need to be optimized to obtain the best squeezing. For example, the

density of the Rb atoms involved in the FWM interaction, which can be controlled by

the temperature of the Rb vapor cell, the coupling of the atomic transition, which is

defined by the pump’s size and power, the single-photon detuning ∆, the relative pump

and probe detuning δ (two-photon detuning), and their angle of overlap inside the Rb

cell, to name a few. Depending on the specific application for the temporal or spatial

distribution of the squeezed photons, these parameters are optimized at different values,

as will be described in chapters 5 and 6.

2.3 Detection Methods

The quantum correlations between the twin beams produced from the FWM can be

characterized by choosing an appropriate detection method. The simplest measurement

consists of a differential measurement between the photocurrents of the photodetectors

used to measure the twin beams. With this method, we can cancel the common classical

and quantum noise between the twin beams and measure the noise reduction with

respect to the SNL. However, obtaining more information about the quantum properties

of the twin beams, such as the quadrature squeezing, the level of entanglement, and the

pureness of the generated states, require more elaborate techniques for state detection,

such as a homodyne measurement.
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b̂

Figure 2.7: Intensity-difference measurement for twin beams. Photodetec-

tors measure the intensity (proportional to the number of photons) in each

mode. A spectrum analyzer is used to obtained the noise power spectrum

of the difference signal from the two photodetectors.

2.3.1 Intensity-Difference Detection

An intensity-difference (ID) measurement is performed by subtracting the photocurrents

of two independent photodetectors and then analyzing the noise of the difference

signal on an spectrum analyzer (SA) [60], as shown in Fig. 2.7. The outcome of such

measurement is given by:

M̂ = n̂pr − n̂c, (2.25)

where n̂pr = â†â and n̂c = b̂†b̂, are the photon number operators indicating the intensity

of the two modes under study. Here, these modes are the probe (â) and conjugate (b̂)

beams from the twin beams. The uncertainty (noise) of the ID between the twin beam

is obtained by calculating the variance of measurement M̂ , as:

〈
∆2M̂

〉
=
〈
(n̂pr − n̂c)2

〉
−
(〈
n̂pr − n̂c

〉)2
,

=
〈
∆2n̂pr

〉
+
〈
∆2n̂c

〉
− 2

[〈
n̂prn̂c

〉
−
〈
n̂pr
〉〈
n̂c
〉]
,

(2.26)
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where the last term is the covariance (cov) between the two measured beams, and is

determined by the correlation between them.

When the two beams under study are coherent states, there is no correlation between

them and the covariance term vanishes. The noise of the ID for two uncorrelated coherent

state of light is the sum of the noise of the individual beams. This noise level for the

coherent states,
〈
∆2M̂

〉
CS

, defines the SNL. On the other hand, if the two input beams

are probe and conjugate modes from a FWM process, the covariance term is non-zero

and the noise of the ID measurement,
〈
∆2M̂

〉
TB

, is reduced below the noise of the SNL,

leading to the measurement of squeezing.

Since we are interested in calculating the variance of an ID measurement for the twin

beams, we use the unitary transformations performed by the squeezing and displacement

operators. For example, to calculate the mean value an arbitrary operator Ô, we use:

〈
Ô
〉

= 〈α, β, ζ|Ô|α, β, ζ〉

= 〈0, 0|D̂†b(β)D̂†a(α)Ŝ†a,b(ζ)ÔŜa,b(ζ)D̂a(α)D̂b(β)|0, 0〉. (2.27)

If both modes are seeded with coherent states α = |α|eiφα and β = |β|eiφβ , the mean

values of each beam is given by:

〈
n̂pr
〉

=|α|2 cosh2(s) + |β|2 sinh2(s)

− 2|αβ| cos(ψ) sinh(s) cosh(s) + sinh2(s), (2.28)

〈
n̂c
〉

=|β|2 cosh2(s) + |α|2 sinh2(s)

− 2|αβ| cos(ψ) sinh(s) cosh(s) + sinh2(s), (2.29)
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where ψ = (θ−φα−φβ), with θ the phase of the two-mode squeezing operator, ζ = seiθ.

Similarly, the uncertainty of each mode by itself is:

〈
∆2n̂pr

〉
=
[
|α|2 cosh2(s) + |β|2 sinh2(s) + 2|αβ| cos(ψ) sinh(s) cosh(s)

]
×

[
cosh2(s) + sinh2(s)

]
+ sinh2(s) cosh2(s), (2.30)

〈
∆2n̂c

〉
=
[
|β|2 cosh2(s) + |α|2 sinh2(s) + 2|αβ| cos(ψ) sinh(s) cosh(s)

]
×

[
cosh2(s) + sinh2(s)

]
+ sinh2(s) cosh2(s). (2.31)

In Eqs. (2.28)–(2.31), the terms which are multiplied by the seeding field α and β,

represent the stimulated emission of photons from the FWM process. On the other

hand, even when there is no seeding, α = β = 0, there still exist nonzero means and

variances of the photon numbers, representing the spontaneous emission of photons

from the FWM process. Throughout the rest of this thesis, we focus on the case where

only the probe beam is seeded with a bright coherent state, |α| � 1, and the conjugate

mode is seeded with a vacuum mode, |β| = 0. This means that the FWM process

becomes insensitive to the relative phase between the seeding beams and the squeezing

operator, i.e. ψ, as can be seen from Eqs. (2.28)–(2.31). Then, the mean values of the

probe and conjugate photon number simplify to:

〈
n̂pr
〉

= |α|2 cosh2(s), (2.32)

〈
n̂c
〉

= |α|2 sinh2(s), (2.33)

where we ignore the sinh2(s) term for the photons emitted spontaneously, as we assume

|α| � 1. These results clearly show the amplification of the seeded probe beam and the
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generation of the conjugate beam. Therefore, the gain of the input seed probe due to

the FWM is given by g = cosh2(s). The uncertainties of the two modes also simplify to:

〈
∆2n̂pr

〉
= |α|2 cosh2(s)

[
cosh2(s) + sinh2(s)

]
, (2.34)

〈
∆2n̂c

〉
= |α|2 sinh2(s)

[
cosh2(s) + sinh2(s)

]
. (2.35)

Moreover, due to the emission of photons in pairs, the twin beams have a non-zero

covariance, given by:

cov =
〈
n̂prn̂c

〉
−
〈
n̂pr
〉〈
n̂c
〉

= 2|α|2 cosh2(s) sinh2(s). (2.36)

Using Eq. (2.26), the variance of the ID between the twin beam becomes:

〈
∆2M̂

〉
TB

= |α|2, (2.37)

which means that, for an ideal TMSS with perfect quantum correlation, the common

noise between the twin beam can be canceled with an ID measurement, while only the

noise of the input seeding coherent state remains.

To characterize the amount of noise reduction with the twin beams, we calculate

the noise of an equal measurement but with pure coherent states to determine the

SNL. That means, we replace the probe and conjugate beams from the twin beam with

two coherent states of the same optical power. For coherent states, the mean and the

variance are equal, as can be seen from Eqs. (2.32) and (2.34), for example, when s = 0.

Therefore, we calculate the noise of two coherent states of the same optical power as

the twin beams given by the mean values in Eqs. (2.32) and (2.33).
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(a)

Figure 2.8: Typical squeezing traces in an ID measurement. (a) Noise power

spectrum for coherent states (CS), twin beams (TB), and electronic noise

of the detectors (EN). (b) Absolute squeezing obtained after subtracting

EN and normalizing the twin beam ID noise to the SNL.

The level of squeezing is measured by taking the ratio of the relative noise in the

twin beam to the noise of a coherent state with equal power as the probe and the

conjugate beams:

Rlin =

〈
∆2M̂

〉
TB〈

∆2M̂
〉

CS

=
1

sinh2(s) + cosh2(s)
. (2.38)

This result can also be written in terms of the gain of the FWM as Rlin = 1/(2g − 1),

which clearly shows the noise reduction in the twin beam compared to the coherent

state when g > 1. We usually report the squeezing in log-scale:

Rlog[dB] = 10 log (Rlin). (2.39)

Some typical experimental results demonstrating the noise of the twin beams with

respect to the noise of the coherent states with an ID measurement are shown in Fig. 2.8.
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As we have seen, an ID measurement allows us to cancel the common technical

classical noise as well as the quantum correlated noise in the twin beams, and provides

a simple and efficient method to perform quantum-enhanced measurements. Moreover,

since it’s technically hard to have a perfect coherent state, the cancellation of classical

noise in an ID technique makes it possible to reach the SNL with a classical state of light

from a laser beam. Another advantage of an ID measurement for our quantum sensing

application is that, as we will see in chapter 5, it can be used in optical readout sensors

to detect changes in the intensity of the probing light. However, an ID measurement is

not sensitive to the quadratures of two measured fields. Such measurements require a

phase-sensitive technique, such as the homodyne method, which will be described in

section 2.3.5.

2.3.2 Optical Losses

In an experimental setup, the detection and optical elements are not ideal and optical

losses are inevitable. In quantum mechanics, optical losses are modeled with a beam

splitter (BS) with an unused input port. As shown in Fig. 2.9, the input state enters

from the left port and exits from the transmitted port (on the right) with not only a

reduced amplitude, but also with the addition of a vacuum mode that enters from the

unused port of the beam splitter. The vacuum mode âv couples with the input mode â,

as:

âout =
√
tâ+

√
râv, (2.40)
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t

Figure 2.9: Optical loss can be modeled with a beam splitter (BS), which

couples a vacuum mode with the input mode.

where t and r = (1− t) are the intensity transmission and reflection coefficients for the

beam splitter.

To calculate the effect of optical losses on the level of squeezing obtained with an ID

measurement, we model losses on the twin beam after the FWM using beam splitters

in the probe and conjugate arms with intensity transmissions ηpr and ηc, respectively.

That is, the losses in each arm are given by (1− ηpr) and (1− ηc). These beam splitters

represent all the losses in the optical elements from the source to the detectors, as well

as the detectors inefficiencies, combined. Therefore, by generalizing previous results to

include the vacuum modes coupled due to the losses, the noise of the twin beams on an

ID measurement will be given by:

〈
∆2(n̂pr − n̂c)

〉
=η2

pr|α|2 cosh(2s) + 2η2
c |α|2 sinh4(s)

− 2ηprηc|α|2 cosh(2s) + |α|2
[
ηpr cosh2(s) + ηc sinh2(s)

]
, (2.41)

where we assume seeding only the probe beam |α| � 1 and ignore the spontaneously
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emitted photons. The level of squeezing then becomes:

Rloss
lin = 1 +

2η2
c sinh4(s) + 2 sinh2(s) cosh2(s)(η2

pr − 2ηprηc)

ηpr cosh2(s) + ηc sinh2(s)
. (2.42)

Compared to the case of no losses, Eq. (2.38), the noise-reduction of the twin beam is

degraded. The effect of loss can be partially compensated by optically or electronically

balancing the twin beam noise to find the optimum noise cancellation.

2.3.3 Optimized Measurements of Squeezing in Presence of Optical Losses

The optical losses in the twin beam result in an imbalance of the noise and the optical

power between probe and conjugate. Moreover, losses in the twin beams reduce the

quantum correlations between the photons. Therefore, the presence of optical losses

prevents the efficient common noise cancellation and leads to obtaining less squeezing.

By introducing extra optical losses on the beam with more intensity, we can recover

some of the initial squeezing and improve the squeezing measurement. As we can see

in Fig. 2.10(a), even when there is no optical loss in the conjugate beam (ηc = 1), we

can enhance the noise cancellation and therefore the level of squeezing by introducing

some optical losses to the probe beam. This is because the probe beam is amplified

during the FWM process to g|α|2 from a seeded beam |α|2, and is brighter than the

unseeded conjugate beam, (g − 1)|α|2. Therefore, by inserting some losses to the beam

with more intensity, we can improve the squeezing measurement.

When there are some losses in the conjugate beam, for example ηc = 0.85 as shown

in Fig. 2.10(b), the optimum squeezing is obtained when there are losses in the probe
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Figure 2.10: Squeezing in an ID measurement as a function of optical losses

in probe beam for (a) ηc = 1, and (b) ηc = 0.85. blue trace: Rloss, red

trace: optimum REA
loss, dashed green: initial squeezing level without optical

losses (s = 2). Due to the imbalance in twin beams power, even without

losses (ηpr = ηc = 1), we can obtain better squeezing levels with inserting

optical losses in the beam with more power (probe beam here). Inserting

an EA always reaches better squeezing.

beam to have the intensity transmission of the probe beam becomes almost balanced

with the intensity of the conjugate beam. This leads to measuring the best squeezing

at ηpr ≈ 0.8. However, for large imbalances in losses between the twin beams, the ID

measurement leads to excess noise, even above the SNL.

For a particular case when the losses in the twin beam are the same, ηpr = ηc = η,

35



the measured squeezing becomes:

Rbalanced loss
lin = 1 + η

2 sinh2(s)

cosh2(s) + sinh2(s)

= η

(
1

cosh2(s) + sinh2(s)

)
+ (1− η)

= ηRlin + (1− η), (2.43)

where Rlin, is the noise reduction between the twin beams with respect to the SNL

without losses, as defined in Eq. (2.38). The first term in Eq. (2.43) indicates the intensity

transmissions of the initial squeezed states through the two BSs, while the second term

indicates the noise of the vacuum mode which is coupled into the measurement. The

noise of these two uncorrelated modes adds in quadrature in the final measurement,

weighted by the intensity transmission or reflection of each mode.

While inserting optical loss can recover some of the initial squeezing, these losses

couple vacuum noise into the field that introduces extra noise in the measurement. If

we are able to modify the electronics of individual detectors to change their gain, we

can optimize the noise cancellation between the twin beams without the added vacuum

noise.

Since an amplifying gain (G > 1) requires an active electronic amplifier that can

add extra noise to the measurement, we insert an electronic attenuation (G < 1) to

the photocurrent of the detector which has suffered less from optical losses. Electronic

attenuation (EA) can be performed with passive electronic elements that do not add

extra noise to the measurement. If we assume we have more optical loss on the probe

beam, we insert the EA to the conjugate detector, as shown by G in Fig. 2.11.
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Figure 2.11: Optimum ID measurement. Optical losses for measuring

squeezing of twin beams can be partially compensated either optically or

electronically. G: EA.

The variance of the ID measurement with this EA, that is M̂ = (n̂pr −Gn̂c), then

becomes:

〈
∆2M̂

〉ID
=
〈
∆2n̂pr

〉′
+G2

〈
∆2n̂c

〉′ − 2G[cov]′, (2.44)

where the prime notation indicates the measurements of noise and mean values with

optical loss. These values can be calculated as:

〈
∆2n̂pr

〉′
= η2

pr

〈
∆2n̂0

pr

〉
+ ηpr(1− ηpr)

〈
n̂0
pr

〉
, (2.45)

〈
∆2n̂c

〉′
= η2

c

〈
∆2n̂0

c

〉
+ ηc(1− ηc)

〈
n̂0
c

〉
, (2.46)

[cov]′ = ηprηc[cov]0, (2.47)

where the zero superscript indicates the initial mean and variances of the twin beams

right after the FWM and without optical losses, as defined in Eqs. (2.32) to (2.36).

By taking the derivative of Eq. (2.44) with respect to G, the minimum uncertainty

of the measurement becomes:

〈
∆2M̂

〉ID,TB

min
=
〈
∆2n̂pr

〉′ − [cov′]2〈
∆2n̂c

〉′ , (2.48)
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or:

〈
∆2M̂

〉ID,TB

min
= ηpr|α|2 cosh2(s)

[
1 +

2ηpr sinh2(s)[1− 2ηc]

1 + 2ηc sinh2(s)

]
, (2.49)

for an optimum value of G given by:

Gopt =
2ηpr cosh2(s)

2ηc sinh2(s) + 1
. (2.50)

In order to calculate the maximum noise reduction and hence the best squeezing,

the corresponding SNL for this measurement is calculated using Eq. (2.44), and by

replacing the twin beams with coherent states of the same power, while keeping the

same optical losses and the same optimum G that minimizes the noise of the twin

beams. Moreover, as mentioned before, for coherent states, there is no correlations,

[cov] = 0, and the mean is equal to the noise,
〈
∆2n̂0

c

〉
=
〈
n̂0
c

〉
. Therefore, the noise of

the ID measurement at the SNL is given by:

〈
∆2M̂

〉ID,SNL

opt
= ηpr|α|2 cosh2(s) + ηc|α|2 sinh2(s)G2

opt

= ηpr|α|2 cosh2(s)

[
1 +

2ηprηc sinh(2s)

[1 + 2ηc sinh2(s)]2

]
, (2.51)

where the “opt” subscript means that the optimum EA is used, which is given by

Eq. (2.50). The noise reduction is then given by:

REA
loss =

[
1 + 2 sinh2(s)[ηpr + ηc − 2ηprηc]

1 + 2ηc sinh2(s)

]
. (2.52)

The optimum squeezing level with EA is shown by red traces in Fig. 2.10. This figure

also compares the two methods introduced here to partially overcome an imbalance in

optical losses in an ID measurement of the twin beams. As we can see, the use of an

EA leads to more squeezing. As opposed to optical balancing, the EA method does
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not couple vacuum modes into the measurement, and therefore better maintains the

quantum correlations in the twin beams. Both methods can partially overcome an

imbalance in optical losses and enhance the squeezing measurement.

2.3.4 SNL Calibration

The level of squeezing in the twin beams is measured with respect to the SNL, obtained

with coherent states. As explained before, for a coherent state, the noise is equal to the

mean number of photons. Therefore, the noise of a coherent state grows linearly with

the intensity of the light. Any deviation from this linear behavior indicates that the

noise measurement is not shot-noise limited, which means the state is not a coherent

state, but a state with excess noise with respect to the SNL. When a noisy state is

used, the SNL is not calibrated properly, which leads to an overestimation of the SNL

and the wrong measurement for the level of squeezing.

Technically, it is hard to have pure coherent states to measure the SNL. We usually

use a laser beam, which contains classical technical noise. To obtain the SNL from a

measurement with such a laser beam, we can use an ID measurement to cancel the

classical noise and reach the SNL. However, to verify that this measurement is truly

at the SNL, we need to measure the noise of the laser with the same ID measurement

as a function of the input laser power. To perform this test, we split the laser beam

using a 50/50-BS, and take an ID measurement between the two outputs. When the

noise vs. power behavior is linear, as shown in Fig. 2.12, the measurement is shot-noise

limited and we can measure the accurate level of the SNL. On the contrary, if the noise
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Figure 2.12: Sample data for calibrating the SNL: A linear behavior of

the noise power vs. total optical power indicates that the measurement is

shot-noise limited.

shows a quadratic growth with increasing power, the measurement is not capable of

cancelling the classical noise and the SNL is not measured properly [60].

Proper calibration of the SNL becomes even more important when we introduce

an optimum EA to compensate for losses in measurements with twin beams. This

optimum EA becomes a part of the detection system, and we need to verify if the

measurement is still shot-noise limited to obtain the actual SNL. It is worth noting that

if we had a pure coherent state to substitute for the probe and conjugate beams with

the same optical power, we could directly measure the real SNL. But for a laser beam

with classical noise, we verify that the measurement with unbalanced optical powers

and an optimum EA is capable of cancelling the noise and reach the SNL.
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Ĵ

<latexit sha1_base64="VO7kkoJVz3JPHmkkvHEU+5NdVno=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ie0oWy2m3bpZhN2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx96IYqamfa9frrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/OApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JwOhOUM5sYQyLeythI2opgxtRiUbgrf88ipp1areZbV2f1Gp3+RxFOEETuEcPLiCOtxBA5rAIIJneIU3RzsvzrvzsWgtOPnMMfyB8/kDzeKQag==</latexit>

n̂1

<latexit sha1_base64="MRPMiYG+vhX2uyF0xDIgxaGOM5A=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ie0oWy2m3bpZhN2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx96IYqam/Vq/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+cFTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZl9TwZCc4ZyYgllWthbCRtRTRnajEo2BG/55VXSqlW9y2rt/qJSv8njKMIJnMI5eHAFdbiDBjSBQQTP8ApvjnZenHfnY9FacPKZY/gD5/MHz2aQaw==</latexit>

n̂2

Figure 2.13: Balanced HD: the signal is mixed with a strong LO on a

50/50-BS. The ID of the two detectors provide the phase dependence signal

from the resulting interfere. The phase of the LO is scanned by the piezo

on its path (not shown).

2.3.5 Homodyne Detection

Although an ID technique is an easy setup for measuring squeezing in the twin beam,

it is not sensitive to the phase of the fields under study. Phase-sensitive measurements

of an optical field that oscillates at terahertz frequencies is possible with a balanced

homodyne detection (HD) technique [61, 62, 63]. A HD measurement is one of the

standard techniques that are used to measure the noise of the amplitude and phase

quadratures of the fields under study to characterize their quantum correlations.

The schematic of a balanced homodyne detection is shown in Fig. 2.13. The desired

field to be measured, the signal, can be described as Ês(t) ∝
[
âe−iωt + â†eiωt

]
. The

signal field is combined on a balanced beam splitter with a strong field called the local

oscillator, LO, described as ÊLO(t) ∝
[
âLOe

−iωt+iθ + â†LOe
iωt−iθ

]
. The combined output
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light from the two ports of the BS is collected by two photodetectors and their output

photcurrents are electronically subtracted.

The output modes of the beam splitter are given by:

â1,2 =
âLOe

iθ ± â√
2

, (2.53)

which leads to the difference photocurrent intensity, Ĵ = n̂1 − n̂2 = â†1â1 − â†2â2, to take

the form:

Ĵ ∝ â†LOâe
−iθ + âLOâ

†e+iθ. (2.54)

Here, we refer to the output of the HD as Ĵ , to distinguish it with the output of the

intensity different measurement. Since the LO is a high-intensity field, we can treat it

as a classical field, i.e. âLO ≈ αLO. Therefore, the output signal from the HD can be

approximated as:

Ĵ ∝ αLO
[
âe−iθ + â†e+iθ

]
. (2.55)

As we can see, the HD operator can scan between amplitude and phase quadratures of

each mode, depending on the phase of the LO. The phase of the LO can be scanned by

using a piezoelectric in its beam path. For example, with θ = 0 we have Ĵ ∝ (â+ â†),

and with θ = π/2, the HD operator becomes Ĵ ∝ (â− â†), which are the amplitude X̂

and phase Ŷ quadratures, respectively.

Following the notation of [64], to measure the quadrature noise of the twin beams,
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probe LO

conjugate LO

Figure 2.14: Double balanced HD for an optimum characterization of twin

beams in presence of optical losses and an EA.

we define the generalized quadrature operators of each of the two fields, as:

Ĵpr = e−iθLO,pr â+ eiθLO,pr â†, (2.56)

Ĵc = e−iθLO,c b̂+ eiθLO,c b̂†, (2.57)

where we assume each field is measured with a separate HD such that the phase of the

two LOs, θLO,pr and θLO,c, can be individually scanned, and modes â and b̂ represent

the probe and conjugate beams, respectively. The outputs of the balanced HDs for the

probe and the conjugate beams are then send to a hybrid junction (HJ) to generate the

sum and difference signals Ĵpr ± Ĵc. These outputs provide access to the generalized

joint quadrature sum and difference of the twin beams. i.e. X̂± and Ŷ±.
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To take into account imperfections in the measurement, we include optical losses

in the two beams with the same notation as used in the previous section, as shown in

Fig. 2.14. Moreover, similar to the concept of introducing an EA to partially compensate

optical losses, we insert an EA after the HD for the mode which suffers less optical

losses, assumed to be the conjugate mode. Therefore, the outcome of the measurement

becomes: M̂HD
± = Ĵpr ±GĴc.

The final field operators for the probe and the conjugate modes on the HDs are

shown by a2 and b2 in Fig. 2.14. These two modes, after generating with the FWM

process and optical losses, are given by:

â2 =
[
â0 cosh(s)− b̂†0 sinh(s)eiθ

]√
ηpr + âv

√
1− ηpr, (2.58)

b̂2 =
[
b̂0 cosh(s)− â†0 sinh(s)eiθ

]√
ηc + b̂v

√
1− ηc, (2.59)

where θ is the phase of the squeezing operator in the FWM process, and the subscript

v represents the vacuum modes that couple due to optical losses.

Using these field operators for the twin beam, we can calculate the mean and

variances for each HD to show that they take the form:

〈
Ĵpr
〉

= 2
√
ηpr|α| cosh(s) cos(θLO,pr), (2.60)

〈
Ĵc
〉

= −2
√
ηc|α| sinh(s) cos(θLO,c + θ), (2.61)

〈
∆2Ĵpr

〉
= 2ηpr sinh2(s) + 1, (2.62)

〈
∆2Ĵc

〉
= 2ηc sinh2(s) + 1. (2.63)
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We can also calculate the covariance to be of the form:

[cov]HD =
〈
ĴprĴc

〉
−
〈
Ĵpr
〉〈
Ĵc
〉

= −√ηprηc sinh(2s) cos(θLO,pr + θLO,c + θ). (2.64)

The mean and variance of the difference of the two HD measurements can then be

calculated as:

〈
M̂−
〉HD,TB

=
〈
Ĵpr
〉
−GHD−〈Ĵc

〉
, (2.65)

〈
∆2M̂−

〉HD,TB
=
〈
∆2Ĵpr

〉
+ (GHD−)2

〈
∆2Ĵc

〉
− 2GHD−[cov]HD, (2.66)

where the minus subscript indicates the difference measurement between the two HDs.

By optimizing over the EA, GHD−, the variance of the difference HD reaches a

minimum given by:

〈
∆2M̂−

〉HD,TB

min
= 1 +

2ηpr(1− 2ηc) sinh2(s)

1 + 2ηc sinh2(s)
, (2.67)

for an optimum EA of [65]:

GHD−
opt =

√
ηprηc sinh(2s) cos(θLO,pr + θLO,c + θ)

1 + 2ηc sinh2(s)
. (2.68)

In order to access the generalized joint sum quadrature of the twin beams, we can

monitor the sum signal from the HJ. Using our calculation results, by adding the two

HDs, we obtain the mean and variance signal as below:

〈
M̂+

〉HD,TB
=
〈
Ĵpr
〉

+GHD+
〈
Ĵc
〉
, (2.69)

〈
∆2M̂+

〉HD,TB
=
〈
∆2Ĵpr

〉
+ (GHD+)2

〈
∆2Ĵc

〉
+ 2GHD+[cov]HD, (2.70)

where the plus subscript indicates the summation of the two HDs. Therefore, by

monitoring both the sum and the difference signal of the two HDs, we can access both

joint quadratures of the twin beams.
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2.3.6 Entanglement

The quantum correlations between the twin beams can be characterized by the amount

of quantum entanglement between the photons in the two beams. There are several

standards to quantify this entanglement that are suitable for different applications.

Here, since we are interested in characterizing the amplitude and phase entanglement

between the twin beams, we use the “inseparability” criteria [66], which is defined as

the sum over the joint quadratures and indicates the presence of entanglement if:

I =
〈
∆2X̂−

〉
min

+
〈
∆2Ŷ+

〉
min

< 2. (2.71)

The joint quadratures,
〈
∆2X̂−

〉
min

and
〈
∆2Ŷ+

〉
min

, have been normalized such that

their SNL is equal to 1. That is, for a two-mode coherent state, the inseparability

parameter I equals to 2, meaning no entanglement. Therefore, the presence of squeezing

in both generalized quadratures of the twin beam is a signature of continuous variable

entanglement. Lower values of I indicate a larger degree of entanglement, providing a

direct measure of the degree of entanglement in the system.

Since characterizing the inseparability parameter requires accessing the joint quadra-

tures of the twin beam, we can use a balanced HD for each mode of the twin beam

and use the signals for the difference of the HDs,
〈
∆2M̂−

〉HD
, and the sum of the HDs,

〈
∆2M̂+

〉HD
, given by Eqs. (2.66) and (2.70) respectively. Therefore, we can access the

joint amplitude-difference quadrature
〈
∆2X̂−

〉
=
〈
∆2M̂−

〉HD
=
〈
∆2(Ĵpr− Ĵc)

〉
, and the

phase-sum quadrature
〈
∆2Ŷ+

〉
=
〈
∆2M̂+

〉HD
=
〈
∆2(Ĵpr + Ĵc)

〉
of the twin beam for

the correct choice of the LO phases. These two measurements allow us to quantify the
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inseparability criteria. An example of such measurement will be presented in chapter 5,

where we characterize the quantum entanglement between the twin beams before and

after interacting with plasmonic sensors.

2.4 Spatial Quantum Correlations

During the FWM process, energy conservation leads to the relation between the

frequencies of the pump and the twin beams. Moreover, the momentum of the four

fields must also be conserved, which leads to correlations in the distribution of the

photons in space. Here in this section, we study such spatial correlations between the

twin beams.

As mentioned before, the twin beams are coupled via the FWM process. In particular,

the relation between the momentum vectors is given by Eq. (2.22). These momentum

vectors represent the direction of the Poynting vector that determines the direction of

the EM wave of propagating for each mode.

For a special case in which the process is phase-mached, ∆k = 2kP − (kpr + kc) = 0,

the FWM process occurs most efficiently and the twin beams are generated with the

most quantum correlations. That means the energy from the pump photons flows

efficiently to the pair production of the twin beams in the FWM process. As shown

by Eqs. (2.23) and (2.24), for a phase-matched condition, the amplitudes of the twin

beams grow exponentially with propagation inside the nonlinear medium.

Generally, ∆k 6= 0, and the efficiency of generating twin beams is reduced from the
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Figure 2.15: The intensity of the conjugate mode represents the efficiency

of the FWM process and depends on the phase-matching condition along

the propagation of the beams inside the nonlinear medium.

phase-matched condition. For simplicity, we assume the amplitude of the pump beam

remains constant as the undepleted pump approximation (dAP1/dz = dAP2/dz = 0).

Therefore, the amplitude of the conjugate beam at the end of the nonlinear medium of

length L becomes:

Ac(L) ∝ AP1AP2

∫ L

0

A∗pre
i∆kzdz, (2.72)

where the initial values of the field amplitudes are at z = 0, and the proportionality

factor depends on χ(3), the 3rd order nonlinear susceptibility of the medium. The

intensity of the unseeded conjugate mode (initiated from vacuum, Ac(0) = 0) generated

from the FWM is then given by [67]:

Ic ∝ IP1IP2IprL
2sinc2 (∆kL/2) . (2.73)

The intensity of the conjugate beam as a function of the mismatch condition is plotted

in Fig. 2.15, which shows the efficiency of the FWM process. Assuming pump photons
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Figure 2.16: Phase-matching condition in FWM between pump (green),

probe (red), and conjugate (blue) (a) in free space, (b) with phase-mismatch

due to a dispersive medium, and (c) with phase-matching by tuning the

angle θ between the beams.

propagate along z-direction of the Rb cell, the phase-mismatch ∆kL/2 gives the range

of the k-vectors for the twin beams over which the FWM can occur efficiently. On the

contrary, for the case of phase-mismatching, the energy flows from the generated twin

beams to the pump beam, which reduces the efficiency of the FWM process of interest.

Due to the dispersive behavior of the medium, the frequency dependence of the

index of refraction for each field needs to be taken into account. This leads to a change

of the k-vectors by the refractive index, according to k = n(ω)ω/c. However, the

dispersive behavior for the pump beam can be neglected because the Rb atoms are

effectively populated in the upper ground state due to the optical pumping in the FWM

process, as shown in Fig. 2.6(b). Moreover, the conjugate beam is fur away from atomic
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transitions and its dispersive response is not significant. The dispersive behavior for

the probe beam is the most dominant dispersive term. Therefore, the phase-matching

condition that needs to be satisfied for an efficient FWM, is effectively modified to:

∆k = 2kP − (nprkpr + kc) = 0, (2.74)

where the k-vectors are considered to the be in vacuum. This equation explicitly shows

the effect of the refractive index of the medium on the probe beam.

The effective phase-matching condition, Eq. (2.74), can be satisfied by introducing

an angle θ between the pump and the probe beams, as shown in Fig. 2.16(c) [52].

Therefore, when the two photons from the pump are co-propagating with kP along the

z-direction, the phase-matching condition becomes:

∆kz = 2kP − nprkpr cos(θ)− kc cos(−θ). (2.75)

This means the twin beam photons will be generated with equal but opposite angles

symmetrically with respect to the pump beam. Moreover, as shown in Fig. 2.15, the

range of the k-vectors that can satisfy the phase-matching condition leads to a range of

angles. Therefore, the FWM process can efficiently generate the twin beams over an

acceptance angle ∆θ, which defines the angular bandwidth of the process, as shown in

Fig. 2.17.

The phase-matching condition also governs the spatial distribution of the twin beam

photons, which leads to position-dependent quantum correlated subregions in the twin

beams. The smallest correlated subareas of the twin beams is called the coherence

area [68]. The size of these coherence areas determines the spatial resolution of the
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Figure 2.17: The phase-matching condition allows the FWM to occur within

an acceptance angle, forming a cone of spontaneously generated vacuum

TMSS, around the pump beam. Only the seeded area generates stimulated

TMSS, or bright twin beams.

twin beams. That means, smaller coherence areas lead to finer spatial resolutions and

are favorable for imaging applications. The optimum experimental parameters for the

FWM process to generate spatially correlated twin beams with high resolution, or small

coherence areas, depend on the analysis plane, whether in the near field or the far field.

2.4.1 Near Field vs. Far Field

Assuming the center of the Rb cell to be the plane where the FWM process occurs and

where the twin beams are simultaneously born, a Fourier transform of the cell center

generates the far field, while a plane that is an image of the cell center is the near field.

When the analysis plane is on the far field, the momentum of the twin beams at their

birth-plane is mapped on to position in the far field. Following the phase-matching
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(a)

Figure 2.18: Distribution of coherence areas for multi-spatial twin beams

(red: probe, blue: conjugate) in (a) the near field and (b) the far field. Star

and circle represent independent neighboring subregions in the multi-spatial

mode twin beams.

condition, the emission directions of the twin beams are symmetrically opposite to

each other with respect to the pump beam. Also, if we assume that the probe photons

have a flat wavefront with a single k-vector, a spread of the probe kpr-vectors can be

phase-matched with a range of conjugate kc-vectors. Therefore, in the far field, a point

in the probe beam is correlated to the coherence area in the conjugate beam, distributed

symmetrically with respect to the pump beam, and vice versa, as shown in Fig. 2.18.

The size of the coherence area for the twin beams in the far field is determined by the

pump beam’s waist size and the flatness of its wavefront at the center of the vapor

cell [34].

The near field corresponds to a plane that images the twin beam photons from the

center of the Rb cell, and provides information about the location where the twin beam
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photons are generated. Given that the probe and conjugate photons are generated at

the same transverse spatial locations, the correlated areas of the twin beams on the

image plane occur with the same orientation. The phase-matching condition needs to

be satisfied along the atomic medium where the FWM occurs, determined by the length

of the Rb cell, as shown in Fig. 2.15. As a result, the smaller the length of the atomic

cell, the larger the spread of the acceptable k-vectors for an efficient FWM. Coupling of

the k-vectors with more spread leads to a higher spatial resolution of the twin beams in

the near field. Therefore, in order to have smaller coherence areas in the near field, a

shorter vapor cell is needed.

2.4.2 Multi-Spatial-Mode Properties of Twin Beams

A coherent state of light does not contain any temporal or spatial correlations in its

subregions and the photons are randomly distributed in space and time. That is, if we

produce two coherent states by splitting a laser beam on a balanced BS, there are no

correlations between any pairs of subregions. Therefore, the noise of an ID measurement

between such subregion pairs of these two coherent states always stays at the SNL.

On the contrary, if there are spatial quantum correlations between the photons

of the two beams under study, clipping the beam to select subregions would have a

different effect on the noise of these two subregions. In particular, when twin beams

are used, the deviation from a linear change of the noise-power as subregions of the

twin beams are clipped is an indication of the existence of multi-spatial mode quantum

correlations in the twin beams [34, 68, 69], as illustrated in Fig. 2.18.

53



final: clippingbeamNearFar.pdf

0.5 1 1.5
freq. [MHz]

-5

-4

-3

-2

-1

0

sq
ue

ez
in

g 
[d

B
]

whole beam
clipping lower half
clipping 3/4
SNL

Sq
ue

ez
in

g 
[d

B
]

Freq. [MHz]

Figure 2.19: Quantum correlated subareas in the twin beams in the near

field maintain the level of squeezing in the whole twin beam at both low

and high frequencies.

In order to check the distribution of coherence areas in the twin beams, and verify

their multi-spatial-mode nature, we measure the level of squeezing within subareas of

the twin beam by clipping the beams and performing ID between different subregions

of the twin beam. Maintaining the initial squeezing measured with the whole beam

for measurements between correlated subareas indicates that independent isolated

coherence areas exist in the twin beam. Otherwise, if the size of the coherence area is

larger than the selected subareas of the twin beam, the clipping mechanism degrades

the level of squeezing obtained with the ID measurement. This is similar to losing

quantum correlations between the photons with a loss mechanism, because the blocked

subareas lose the quantum correlated photons and leads to coupling of vacuum modes.

The parameters of the FWM can be optimized to have multi-spatial modes in either

the near or far field. However, only in the near field the coherence areas of the twin
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beam lead to squeezing in both low and high frequencies due to competing nonlinear

processes. As we can see in Fig. 2.19, the subregions of the twin beam have almost the

same level of squeezing as the whole twin beam in a near field plane. On the contrary,

in the far field, subareas from the twin beam shows excess noise, sometimes above

the SNL, at low frequencies due to cross talk between the twin beams in the FWM

process [70].
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Chapter 3

Quantum-Enhanced Sensing
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Quantum sensing has emerged as an important field of study in quantum science and

technology. It includes estimating a physical quantity based on quantum phenomena, as

well as enhancing the sensitivity of existing measurement schemes beyond the SNL by

using quantum correlated resources. A quantum-enhanced sensing configuration can be

achieved by using quantum squeezed states with reduced noise properties [6, 37, 15, 25].

This means that conventional detection techniques and sensing devices that have

reached the SNL can in principle be enhanced with the use of quantum states. A famous

example of this is the LIGO, where the phase noise of the interferometer is reduced by

coupling a squeezed vacuum into the unused port of a Michelson interferometer [17].

Such a quantum enhancement can be used for quantum metrology [16], quantum

imaging [33, 35], and sub-shot-noise sensing with optical readout devices like plasmonic

sensors [72, 73, 74, 75] and other devices in biology [38, 76].

With the goal of showing the viability of quantum enhancement for real-life applica-

tions, in this thesis, we focus on a quantum sensing protocol that takes advantage of
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quantum correlations between squeezed states of light as probing tools. To implement

such quantum sensing configurations, quantum states of light substitute their classical

counterparts to enhance the sensitivity beyond what is possible with classical states:

the SNL.

In this chapter, based on the definition of sensitivity, we discuss the building blocks

needed to implement a quantum-enhanced sensing configuration and study approaches

for taking the most advantage of the available quantum resources. Although several

quantum states can be used for quantum sensing application, our focus in this thesis

is on BTMSS (twin beams), introduced in chapter 2. Furthermore, we discuss the

importance of the response of the sensor and its transfer function on the advantage

that can be obtained with the use of the quantum correlations. We focus on this by

studying the fundamental sensitivity bounds for “optical resonant sensors.” These

passive sensors, with a linear response, include a broad class of sensors that operate

based on a shift of their resonant response caused by an external physical stimuli. In

chapter 4, we study plasmonic sensors as a particular example of an optical resonant

sensor.

3.1 Measurement and Sensitivity

Any measurement contains uncertainties or as noise indicating the separation between

the measured quantity and its true (or mean) value. In particular, in an optical

measurement with an electromagnetic field, the origin of such uncertainties can be
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classical or quantum in nature. Classical sources of noise originate from environmental

random fluctuations and are not fundamental, therefore can be eliminated by well-

designed schemes for generating and detecting the light. Quantum sources of noise,

on the other hand, are inherently fundamental to the generation of the fields, and

independent of detection methods. The quantum noise originates from the vacuum

fluctuations that are always present, even in the absence of field [44], and even using

perfect detectors. As introduced in chapter 2, we can cancel all the classical noise and

reach the SNL for classical states of light at best, while with quantum states we can

surpass this fundamental noise limit.

In quantum mechanics, we perform a measurement by applying operator M̂ on

the state of the system under study. The outcome of a measurement with a normal

(Gaussian) probability distribution, can be described as:

M̂
gives−−→

〈
M̂
〉
± σ, (3.1)

where
〈
M̂
〉

is the mean (expectation value) and σ =
√〈

∆2M̂
〉

is the standard deviation

of observable M̂ , as introduced in section 2.1. In any measurement, a natural question

is the precision, or sensitivity of the measurement. The sensitivity determines how

well we can resolve two mean values in a measurement, or alternatively quantifies

the smallest resolvable separation between these two measured mean values. This is

pictorially shown in Fig. 3.1(a) when the outcomes of measurement M̂ are given by

a normal probability distribution function (PDF). The PDF shows the probability of

obtaining a given measurement outcome. In this figure, the outcomes of measurement
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M̂ have two mean values M̂1 and M̂2. The separation between the two measured mean

values indicates the sensitivity to resolve the outcome of a measurement uniquely from

other mean values.

One conventional definition of the sensitivity is based on the standard deviation, σ,

to quantify how far apart the two measured mean values are. The sensitivity is then

reported by integer multiplications of σ, such as 1σ, 2σ, and 3σ, as shown in Fig. 3.1(b).

Another common way to define the sensitivity is by calculating the confidence level (CL)

of the measurement from the PDF. The CL indicates the percentage of data points that

fall below this level, and therefore, represents our confidence in expecting the outcome

of the measurement to fall within a specific interval from the mean value of the desired

measured parameter. The CL is related to the standard deviation, but not in terms of

discrete values. Standard values of 90%, 95%, and 99% CL, are shown in Fig. 3.1(b).

When the measured parameter can be modulated around its mean, we are interested

in finding the smallest magnitude of the modulation that the sensor can resolve from

noise. Comparing the size of the modulation signal to the noise of the measurement

gives the signal-to-noise-ratio (SNR), providing a measure of useful information (signal)

to the undesired information (noise). Hence, increasing the SNR value increases the

capability of the sensing apparatus to resolve information about the desired modulation

out of the noise in the measurement. Therefore, the sensitivity of this measurement

determines the smallest resolvable modulation signal compared to the noise of the

measurement. For example, when the magnitude of the signal becomes equal to the

noise, that is SNR= 1.
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Figure 3.1: (a) The outcomes of measurement M̂ have a Gaussian probabil-

ity distribution function (PDF) with two mean values
〈
M̂
〉

1
and

〈
M̂
〉

2
. (b)

Uncertainty levels around the mean value of a measurement with Gaussian

PDF.
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Using the definitions for the sensitivity of a measurement, the smaller the uncertainty

(noise) in the measurement, i.e. σ, the closer two mean values can get while still being

able to resolve them, which leads to a better sensitivity. In this thesis, we define the

sensitivity of measurement M̂ as its standard deviation,
√〈

∆2M̂
〉

min
. Therefore, the

smaller the uncertainty (noise) the higher the sensitivity (minimum uncertainty leads

to maximum sensitivity).

3.1.1 Sensitivity of an Estimation Parameter

Not every parameter can be directly measured. However, we can estimate such pa-

rameters via performing a measurement on another dependent variable. Let’s say the

parameter of interest n depends on a measurable parameter M̂ , as n = n(M̂). The

sensitivity of the desired parameter n will then be defined through the error propagation

relation as:

〈
∆2n

〉
=

1

|∂M̂/∂n|2
×
〈
∆2M̂

〉
. (3.2)

That is, in order to find the sensitivity of our parameter of interest,
〈
∆n
〉
, first its

functional dependence on the measurement parameter M̂ needs to be defined through

characterizing the transfer function of the sensing apparatus. Then, the sensitivity of

the sensor for the estimated variable can be calculated by using the transfer function of

the sensor and the uncertainty of the measurement parameter.

For example, an optical readout sensor can introduce changes in the transmission

of the probing light, T . The uncertainty of transmission ∆T can then be estimated

by measuring the uncertainty of the intensity of the probing light, ∆I, using the error
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propagation relation given in Eq. (3.2). Moreover, if the change in transmission itself is

introduced by another parameter, we can use the error propagation relation once more

to estimate the sensitivity of the parameter of interest through a proper measurement

on the probing light.

3.2 Enhancing the Sensitivity

There are several ways to enhance the sensitivity of a measurement or a sensing device.

One way is through increasing the intensity of the probing light, which reduces the

relative noise of the measurement as
√〈

∆2M̂
〉
/N for classical states, where N is

the mean number of photons used for probing the system. However, increasing the

number of probing photons is not always a feasible option due to multiple reasons. One

is the limitation on the available resources, as the number of photons in an intense

beam of light is limited. Another limitation is the damage threshold of the sample

under study or the sensor itself that limits the amount of permitted optical power for

probing. Moreover, the amount of optical power that we can send into a detector is

finite [26, 76, 77, 78, 79]. Considering these limitations, it is crucial to keep track of

the number of probing photons for comparing different sensing methods with equal

resources.

With a fixed number of photons, the noise of the measurement can also be reduced

by increasing the detection time to average over more measurements. Because in this

thesis we are interested in enhancing the sensitivity of a sensor with the use of quantum
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squeezed light, to have a fair comparison between measurements with classical and

quantum resources we keep the number of photons and the detection time the same as

our sensing resources throughout this thesis. With equal resources, we can perform a

fair comparison between the sensitivities with quantum twin beams and coherent states

and quantify the amount of advantages with the use of quantum-correlated states of

light.

To understand how to enhance the sensitivity, we consider Eq. (3.2). The first term

on the right hand side of this equation is the inverse of the rate of changes in the

measured variable with respect to the estimated physical parameter of interest, 1

|∂M̂/∂n| ,

and depends on the transfer function of the sensor. Larger rates of such changes lead

to smaller uncertainties in our estimation, consequently, a higher sensitivity of the

sensor. The sensor’s transfer function defines the characteristic response of the sensor

to different variables, which can be adjusted to obtain large rates of changes within the

fabrication limitations. Here, we assume that the response of the sensor is the same for

both classical and quantum states of light and we are able to tune the response of the

sensor to operate at the point where we achieve the maximum sensitivity [80].

The second term on the right hand side of Eq. (3.2) is the uncertainty of the

measurement parameter,
〈
∆2V̂

〉
, which is fundamentally limited by the noise properties

of the probing state of light. The smallest variance of the measurement parameter

is given by the fundamental limits due to quantum mechanics [3]. Enhancing the

sensitivity is particularly critical when we want to detect small modulations with

magnitudes comparable to the noise at a fundamental limit. When classical states of
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light are used, the lowest noise level will be obtained with coherent states, defining the

SNL in the sensitivity of our measurement. Moreover, when quantum states of light as

used, such as the twin beams that we introduced in chapter 2, the uncertainties of the

measurement can reach values below the SNL, and therefore a quantum enhancement

is possible.

Since the sensitivity of a sensor depends both on the response of the sensor and

the noise properties of the probing light, both factors need to be taken into account

to estimate its overall sensitivity. The interplay between these two factors changes

the optimum operating point depending on the measurement variable and sensor’s

transfer function. In the next section, we introduce the constituting elements of a

general quantum sensing configuration, which clarifies the connection between different

sensitivity factors. In section 3.4, we will use the example of optical resonant sensors to

better demonstrate the interplay between responses of the sensor and properties of the

probing light.

3.3 Quantum Sensing Building Blocks

In general, quantum-enhanced sensors consist of three main parts: the source of quantum

states∗, the sensing device, and an appropriate detection method, as shown in Fig. 3.2.

For our particular implementation, the light source can generate BTMSS of light with

uncertainties below the SNL, as introduced in chapter 2. The probe of the twin beams

∗Since we are studying applications for quantum states of light, we consider quantum states and

coherent states of light to probe optical readout sensors.
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Figure 3.2: Quantum sensing building blocks: a source of quantum states,

a sensing device, and a detection scheme. N : number of photons probing

the sensor, n: physical quantity of interest. Arrows indicate the coupling

of vacuum modes due to optical losses.

is used to probe an optical readout sensor, while the conjugate beam is used as the

reference. Such sensors can sense changes in the physical parameter of interest by

introducing measurable changes in the probing light field [81].

To implement the classical counterpart configuration, the light source can generate

coherent states of light to replace the twin beams and perform the sensing at the SNL.

However, as we will see later in this analysis, the optimum measurement with coherent

states is one with a single mode used to probe the sensor, as using the second mode

increases the uncertainty of the measurement. To include experimental imperfections,

we model optical losses with BS in the probe mode both before and after the sensor, as

well as the losses in the reference mode, as introduced in chapter 2.

The optical readout from the probe and the reference beams, after interacting
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with the sensor, are measured using detection methods compatible with the measuring

variable. It is important to note that with both classical and quantum states the number

of photons probing the sensor, N , and the detection settings are kept fixed as they

represent the resources for sensitivity estimation.

3.4 Optical Resonant Sensors

Optical resonant sensors are passive optical devices with linear responses and are

characterized by a transfer function that exhibits a resonance in its transmission

spectrum, T (λ), where λ is the wavelength. As a result of the resonance, the phase

of the light field probing these sensors, φ(λ), undergoes changes corresponding to the

transmission resonance, where the relation between the phase and the transmission is

governed by the Kramer-Kronig relationship [82, 83]. These sensors are widely used as

label-free sensors with an optical readout, whose sensitivities are limited to the SNL

when probed with classical states of light [84]. Examples of these sensors include optical

cavities [85], whispering-gallery mode sensors [86, 87], photonics crystal sensors [88],

and plasmonic sensors [27, 89].

Optical resonant sensors can be used to estimate changes in an external physical

quantity, such as temperature, pressure, force, index of refraction, etc., based on

measuring changes in the transmission or the phase of the probing light, as shown in

figure 3.3. When the physical parameter of interest, n, changes by an amount ∆n, it can

lead to changes in transmission and phase by ∆T and ∆φ, respectively [90, 91, 92, 93].
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Figure 3.3: The optical resonance in the transmission spectrum (blue traces)

and the corresponding phase spectrum (red traces) shift to the dashed

lines due to changes in a physical quantity n. This leads to changes in

transmission and phase of the probing light at the operational wavelength.

Thus, we can use optical resonant sensors to estimate changes in the external physical

parameter by measuring changes in transmission, transmission-based scheme, or phase,

phase-based scheme, of the probing light.

Sensing schemes based on phase and transmission can provide different sensitivities,

and have been compared for particular cases of resonant sensors [81, 89, 91, 92, 93],

but not at their fundamental sensitivity limits. Moreover, the sensitivity of these

sensors with both schemes can be enhanced beyond the SNL by replacing the coherent

states with quantum correlated states, such as the twin beams that were introduced in

chapter 2. Twin beams have already proved applicable for quantum-enhanced schemes

based on phase [64, 94] and transmission [95].

Here, to have a fair and absolute comparison between the sensitivity of both
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schemes, we consider the uncertainties based on transmission and phase to be at the

their fundamental bounds, given by the quantum Cramér-Rao bound (QCRB) [96, 97].

The QCRB provides the fundamental bound for the sensitivity of each sensing scheme,

T or φ, and sets the maximum quantum enhancement with given resources. This

fundamental bound gives the maximum information we can extract from a sensor with

any possible measurement using a given state of light. The QCRB depends on the

properties of the states of light used for probing, the unitary transformation of the

sensing device, and the losses involved before or after the sensing device. The QCRB is

calculated by optimizing over all possible measurements, and therefore, it is independent

of the measurement procedure.

In this section, we focus on comparing the sensitivity of resonant sensors based

on the transmission and phase schemes, for sensors with a peak in their transmission

spectrum. However, this study can be generalized to other possible sensing schemes

and to sensors with an arbitrary transfer function response as we showed in [71].

3.4.1 Sensitivity of Sensing Schemes

For an optical resonant sensor, we can estimate the changes in a physical quantity of

interest n by measuring transmission T and phase φ from the probing light. Following

the notation of Eq. (3.2), the sensitivity is then defined as the minimum uncertainty of

changes in the physical parameter
〈
∆n
〉

that the sensor can resolve [73, 3]:

〈
∆n(X)

〉
min

= min

[(
∆X

|∂X/∂λ|

)
· 1

|∂λ/∂n|

]
, (3.3)
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where the variable X(λ) indicates transmission T (λ) or phase φ(λ), as illustrated in

Fig. 3.3.

Since the transmission and phase depend on the wavelength of light, the sensitivity

of the sensor will have a spectrum. The fundamental bound for this sensitivity spectrum

of a resonant sensor depends on both the response of the sensor through its transfer

function and on the QCRB for the scheme, which itself depends on the noise properties

of the probing state of light. A trade off between these two factors determines the

overall fundamental bound of sensitivity of an optical resonant sensor.

The dependence of the physical quantity of interest on the estimation parameters,

n = n(X(λ)), is obtained from the characteristic behavior of the resonant sensor and is

determined by its unique design and fabrication parameters. Such dependence can be

characterized by the sensor’s transfer function spectrum. The two rates in Eq. (3.3) are

then directly obtained from the shift of the transfer function in response to the changes

in the physical quantity of interest. On the other hand, the uncertainty of a parameter

〈
∆X(λ)

〉
is fundamentally limited by the QCRB and only depends on the intensity

and the noise properties of the probing states of light.

The first term on the right hand side of Eq. (3.3) can be written in terms of the

sensitivity of shifts in the resonant wavelength,
〈
∆λ
〉
X

=
〈
∆X

〉
/|∂X/∂λ|. The second

term on the right hand side of Eq. (3.3), 1/|∂λ/∂n|, represents the rate of change in

the resonance wavelength due to changes in the external physical parameter, and is a

common factor for both sensing schemes. In this study, when we compare the sensitivity

of the transmission and phase schemes, this term cancels out, but needs to be included
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for calculating the absolute sensitivity of the sensor with each scheme.

3.4.2 Optical Resonant Sensor Transfer Function

The transfer function defines the characteristic transmission spectrum of the resonant

sensor to the interrogating light. Since we consider sensors with linear responses,

transmission and phase are related by the Kramers-Kronig relationships. Therefore,

we can extract the analytical phase spectrum response of a resonant sensor from its

transmission transfer function.

In this thesis, we focus only on sensors with a transfer function that has a peak

resonance on its transmission spectrum, which can be written as:

T(λ) = TresT0(λ), (3.4)

where Tres is the transmission at resonance, and T0 defines the resonance lineshape.

A general transfer function for intensity transmissions with arbitrary peak or dip

resonances is studied in [71].

The lineshape T0(λ) that we consider in Eq. (3.4) has a unit transmission at resonance

while the tails go to zero as |λ| → ∞. Here, as the transfer function, we consider a

Lorentzian lineshape, as it describes the resonant response of homogeneous interactions,

such as a two-level atom or a Fabry-Perot cavity, with isolated resonances, and is given

by:

T0(λ) =

∣∣∣∣∣
1

λ−λ0
∆L

+ i

∣∣∣∣∣

2

, (3.5)

where λ0 is the resonant wavelength, ∆L is the half-width half-max (HWHM), and
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i =
√
−1. To make the transfer function independent of the HWHM and the resonant

wavelength of the Lorentzian lineshape, we define the generalized wavelength as Λ =

(
λ−λ0
∆L

)
. With this definition, the sensitivity of the resonant sensor will be re-scaled as

〈
∆Λ
〉
X

= (∆L)2
〈
∆λ
〉
X

, which represents another common factor in our comparison

between the sensing schemes based on transmission and phase.

For arbitrary values of Tres, the transmission and phase transfer functions for a

Lorentzian lineshape takes the form:

T (Λ) =
Tres

1 + Λ2
, (3.6)

φ(Λ) = arctan

(
1

Λ

)
. (3.7)

From these relations, we can directly calculate the derivatives of the transmission or

phase response with respect to wavelength, constructing the transfer function part of

the sensitivity spectrum.

3.4.3 QCRB: Fundamental Uncertainty Bounds

By using the QCRB for parameter X, we can calculate the fundamental sensitivity

bound for an optical resonant sensor. This bound provides the smallest changes in

the physical parameter of interest that can be resolved using a particular state. Based

on the sensing configuration where one mode of the twin beam is used to probe the

sensor and the other one is used as a reference, as shown in Fig. 3.2, the QCRB for

transmission for a BTMSS is given by [95]:

〈
∆2T

〉BTMSS ≥ T

ηp2N
− 2T 2ηp1

N

sinh2(s)[2ηr − 1][
1 + 2ηr sinh2(s)

] , (3.8)
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Figure 3.4: The uncertainties (standard deviations) at the QCRB of trans-

mission (blue traces) and phase (red traces) for a lossless configuration, as a

function of transmission through the resonant sensor. Dashed lines indicate

when a coherent state is used, while solid traces are for a BTMSS with

s = 2. A smaller uncertainty indicates a larger sensitivity of a parameter.

where ηp1, ηp2, ηr, are the intensity transmissions before and after the sensor in the probe

beam and in the reference beam (the conjugate mode of the twin beam), respectively.

On the other hand, the QCRB for phase is given by [71]:

〈
∆2φ

〉BTMSS ≥ 1

4Tηp2N
− ηp1

2N

sinh2(s)[2ηr − 1][
1 + 2ηr sinh2(s)

] . (3.9)

In Eqs. (3.8) and (3.9), N is the number of photons probing the resonant sensor, which

we keep fixed as our resource, and is given by losses before the sensor and the photons

generated from the source.

The QCRB for the estimation parameter with a coherent state is calculated by

setting the squeezing parameter to zero, s = 0, in Eqs. (3.8) and (3.9). This means
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that the first term in these two equations represent the SNL for each sensing scheme.

By increasing the level of squeezing from zero, the quantum correlations between the

twin beams reduce the uncertainty of the estimation parameter. In our comparison

between the SNL and the twin beams, we consider the particular squeezing of s = 2,

corresponding to ≈ −14.5 dB of ID squeezing. This level of squeezing has been

experimentally generated for single-mode squeezed states [98] and is within reach for

the case of bright twin beams.

Figure 3.4 shows the QCRB for transmission and phase, given by taking the square

root of Eqs. (3.8) and (3.9), as a function of transmission T for a BTMSS with s = 2 and

a coherent state, s = 0, without optical losses. As we can see, the QCRB for transmission

has local minima (corresponding to the most sensitivity points) when T goes to one

or zero. These points refer to the cases where all or none of the photons probing the

sensor reach the detector and lead to the least uncertainty of transmission. For the

QCRB for phase, the sensitivity worsens monotonically with reduced transmission due

to the loss of photons carrying information about the phase. In the limit of no photons,

the uncertainty goes to infinity, as we do not have any information about the phase.

Moreover, the reduction in the uncertainty (enhancement in sensitivity) can be clearly

seen when using twin beams with respect to a coherent state.

3.4.4 Experimental Setups to Saturate the QCRB

The fundamental QCRB for the uncertainty of a parameter is a theoretical value.

However, we show here that we can reach the QCRB for transmission and phase
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experimentally. Based on the results we got in section 2.3.5, we can show that a HD

technique with an EA, as shown in Fig. 2.14, can saturate the QCRB for transmission

and phase.

As given in section 2.3.5, we can access the squeezed joint quadratures of the twin

beams, the amplitude-difference and phase sum-quadratures, by subtracting and adding

the output signal of the two HDs, given by M± = Ĵpr ±GĴr, where Ĵpr and Ĵr are the

HD measurements for the probe and the reference beams, respectively, and G is the

variable EA. Following the configuration in Fig. 3.2, in order to calculate |∂M̂/∂X|,

the resonant sensor is placed on the path of the probe beam, Ĵpr, such that only the

HD of the probe beam contains information on the phase and transmission introduced

by the sensor.

The uncertainty of the phase can be obtained from the error propagation relation

according to:

〈
∆2φ

〉
M̂+

=

〈
∆2M̂+

〉

|∂
〈
M̂+

〉
/∂φ|2

. (3.10)

Moreover, the mean of the quadrature sum measurement between the two HDs can be

obtained from Eqs. (2.60) and (2.61), and is given by:

〈
M̂+

〉HD
=2
√
ηp1ηp2T |α| cosh(s) cos(θLO,pr + φ)

− 2G
√
ηr|α| sinh(s) cos(θLO,r + θ), (3.11)

where |α| is the magnitude of the probe beam seeding the FWM process. For the

denominator of Eq. (3.10), by keeping the EA its constant optimum value, we have:
∣∣∣∣∣
∂
〈
M̂+

〉

∂φ

∣∣∣∣∣ = 2
√
ηp1ηp2T |α| cosh(s) sin(θLO,pr + φ), (3.12)
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which can be maximized by setting the phase of the probe LO such that sin(θLO,pr + φ)

becomes one. Moreover, the optimum variance of measurement M̂+ is given by:

〈
∆2M̂+

〉HD,TB

opt
=2ηp1ηp2T sinh2(s) + 1

− 4ηp1ηp2ηrT cosh2(s) sinh2(s)

1 + 2ηr sinh2(s)
, (3.13)

with optimum EA [65]:

Gopt =

√
ηp1ηp2ηrT sinh(2s)

1 + 2ηrsinh2(s)
. (3.14)

Using these results, the optimum uncertainty for phase estimation is given by:

〈
∆2φ

〉
opt

=
1

4ηp2TN
− ηp1

2N

sinh2(s)[2ηr − 1](
1 + 2ηrsinh2(s)

) , (3.15)

which is the same as the QCRB for phase given in Eq. (3.9). Similar to the previous

definition, the number of photons probing the sensor is equal to N = ηp1|α|2 cosh2(s).

In order to access the amplitude-difference quadrature for the twin beams, we

consider the difference of the two HD measurements, M̂− = Ĵpr −GĴr. Using such a

measurement, the uncertainty in transmission is obtained from:

〈
∆2T

〉
M̂−

=

〈
∆2M̂−

〉

|∂
〈
M̂−
〉
/∂T |2

. (3.16)

For the denominator, we have:

∣∣∣∣∣
∂
〈
M̂−
〉

∂T

∣∣∣∣∣ =

√
ηp1ηp2
T
|α| cosh(s) cos(θLO,pr + φ). (3.17)

To have the minimum uncertainty in the estimation of transmission, the phase of the

probe’s LO is set such that cos(θLO,pr+φ) becomes maximum. Moreover, the variance of
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measurement M̂− has the same optimum value as measurement M̂+, given in Eq. (3.13).

Using these results, the optimum uncertainty for transmission results in:

〈
∆2T

〉
opt

=
T

ηp2N
− 2T 2ηp1

N

sinh2(s)[2ηr − 1][
1 + 2ηr sinh2(s)

] , (3.18)

which is the same as the QCRB of transmission shown in Eq. (3.8).

An ID method with a variable EA can also saturate the QCRB for transmission [95].

This method is easier to implement that a HD as it does not require the generation of

the LO, and therefore, lacks the need of spatial mode matching between the LO and

the signal beams and the complication of locking the phases of their LOs. We can show

that by using the model introduced in section 2.3.1 for calculating the sensitivity of an

ID measurement, we can also saturate the QCRB of transmission [71].

3.4.5 Interplay between QCRB and Transfer Function

Knowing the transfer function of a given sensor and the the QCRB for transmission and

phase, we can calculate the fundamental sensitivity bound of a resonant sensor based on

either sensing scheme. The two factors determine the optimum operating wavelength

and the overall sensitivity of the sensor. Since the minimum value of the QCRB with

twin beams and the sharpest rate of changes for the sensor’s transfer function do not

coincide at the same wavelength, there is an interplay between these two quantities to

obtain the maximum sensitivity of the sensor.

We study this interplay for the particular example of an ideal resonant sensor

without optical losses and with a full-peak resonance Lorentzian lineshape, Tres = 1,
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Figure 3.5: Interplay between the QCRB and the rate of change of the

transfer function for (a) transmission and (b) phase sensing scheme, for

s = 0, 1.0, 1.5, 2.0. Green dotted lines indicate the wavelengths where the

slope of the transfer functions maximize.

shown in Fig. 3.5. In this figure, we plot the inverse of the uncertainty of the physical

quantity of interest multiplied by the square root of the number of photons probing

the sensor, that is
[√

N
〈
∆n
〉QCRB

X

]−1

, for sensing schemes based on transmission and

phase. By studying the inverse of the uncertainty, we can better see the wavelength

where the maximum sensitivities occur.

As the squeezing of the BTMSS increases, the sensitivity for both schemes increases

but at different rates. Also, the optimum wavelength at which the highest sensitivity is

achieved for each scheme is different. As can be seen in Fig. 3.5(a), for the sensitivity

bound of a transmission-based sensing scheme, as the squeezing parameter increases

the wavelengths of maximum sensitivity shift towards the wavelengths of higher trans-

missions, i.e. towards the resonant peak at Λ = 0. As mentioned before, the QCRB for
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transmission minimizes as transmission goes to one, while the slope of the transmission

spectrum is away from the resonance, shown by the green dotted lines in Fig. 3.5(a). As

the level of squeezing increases, higher sensitivities are achieved at higher transmissions.

On the other hand, for a phase-based sensing, shown in Fig. 3.5(b), the maximum

sensitivity always occurs on resonance. This is because both the maximum slope and

the minimum value of the QCRB for phase occur at the resonant wavelength. Therefore,

for all levels of squeezing, the most sensitive wavelength for the phase-based sensing

schemes always occurs at the resonant wavelength.

3.5 Quantum Enhancement

The reduced-noise properties of the twin beams can reduce the uncertainty of sensing

schemes based on the transmission and phase with respect to their equivalent classical

counterparts, when coherent states are used. We first focus on the quantum enhancement

in reducing the uncertainty of the estimation parameter. To quantify this quantum

enhancement, we define the quantum enhancement factor (QEF) as the ratio between

the uncertainty of the estimation parameter with coherent states at the QCRB over the

same bound with the twin beams. With equal resources, the QEF for the estimation of

parameter X is given by:

QEF(X) =

√√√√
〈
∆2X

〉QCRB

SNL〈
∆2X

〉QCRB

BTMSS

=

{
1− T

[
2(2ηr − 1)ηp1ηp2 sinh2(s)

1 + 2ηr sinh2(s)

]}−1/2

, (3.19)

which is the same for both transmission and phase, and depends on the squeezing

parameter, s, transmission, T , and the optical losses in the probing and reference
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beams. A QEF greater than one corresponds to a better sensitivity of parameter

X (transmission or phase) with the use of twin beams compared to a coherent state.

According to Eq. (3.19), such quantum enhancements happen as long as losses in the

reference beam are confined to (1 − ηr) < 1/2, keeping the second term positive. If

losses in the reference beam are high enough, the QEF drops below one, indicating no

advantage in using a twin beam over a coherent state.

Although the quantum enhancement to reduce the uncertainty of the estimation

parameter is important, we are more interested in quantifying the quantum enhancement

in the overall sensitivity bound of the sensor for the physical quantity of interest. Such

quantum enhancement in the sensitivity depends on the sensing scheme because the

response spectrum of a resonant sensor is different for each scheme. To quantify the

quantum enhancement in the sensitivity of the resonant sensor, and to fairly compare

the different sensing schemes, we compare the maximum sensitivities, which occur at

different Λs with a BTMSS and a coherent state, at their fundamental QCRB. To

contrast this comparison with the QEF in Eq. (3.19), we define the “effective quantum

enhancement factor” (EQEF), as:

EQEF(X) =
min

Λ

〈
∆n
〉QCRB

X,BTMSS

min
Λ

〈
∆n
〉QCRB

X,SNL

, (3.20)

which not only includes
〈
∆2X

〉QCRB
, the QCRB of parameter X, but also |∂X/∂n|,

the transfer function response of the resonant sensor.

Since the optimum wavelengths at which the best sensitivity for each scheme occurs

are different, the EQEF contains the interplay between the minimum QCRB of the

79



final: EQEFvssqz.pdf

0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.5 1 1.5 2
0

2

4

6

8

10

12
(a) (b)

0 0.2 0.4 0.6 0.8 1

r

10-1

100

101

m
ax

 S
bo

un
d

T

(a) (b)

0 0.2 0.4 0.6 0.8 1

p

10-1

100

101

m
ax

 S
bo

un
d

T

0 0.2 0.4 0.6 0.8 1

p

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

EQ
EF

T

0 0.2 0.4 0.6 0.8 1

r

0

1

2

3

4

5

6

EQ
EF

T

(a) (b)

<latexit sha1_base64="Ur3bwuRHFK2CUZPXmyn78fHISgA=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVda9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzUL8vV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwB4UGM/w==</latexit>s<latexit sha1_base64="Ur3bwuRHFK2CUZPXmyn78fHISgA=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVda9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzUL8vV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwB4UGM/w==</latexit>s

<latexit sha1_base64="JytKYXE6LBXmGv6kntpAXf77h8M=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyqqMeiVDy2YD9gu5Rsmrah2WRJZsWy9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5YSy4Adf9dnIrq2vrG/nNwtb2zu5ecf+gaVSiKWtQJZRuh8QwwSVrAAfB2rFmJAoFa4Wj26nfemTacCUfYByzICIDyfucErCS3wH2BGm1Xr2bdIslt+zOgJeJl5ESylDrFr86PUWTiEmgghjje24MQUo0cCrYpNBJDIsJHZEB8y2VJGImSGcnT/CJVXq4r7QtCXim/p5ISWTMOAptZ0RgaBa9qfif5yfQvw5SLuMEmKTzRf1EYFB4+j/ucc0oiLElhGpub8V0SDShYFMq2BC8xZeXSfOs7F2Wz+sXpcpNFkceHaFjdIo8dIUq6B7VUANRpNAzekVvDjgvzrvzMW/NOdnMIfoD5/MHIqmRKg==</latexit> E
Q

E
F

<latexit sha1_base64="wQjf4BC/JkLDmtnjQ6zUk419ehc="></latexit> m
ax

h p
N
h�

n
iQ

C
R

B
X

i �
1

Figure 3.6: (a) Maximum fundamental sensitivities and (b) EQEF as a

function of squeezing for sensing schemes based on transmission (blue) and

phase (red). Here Tres = 1.

estimation parameter and the sharpest rates of changes in the estimation parameter

with respect to the physical quantity of interest. In Eq. (3.20), the term “min-Λ”

refers to this interplay and corresponds to the optimum wavelength at which the best

sensitivity for each scheme occurs. These correspond to the points that were indicated

by circles (diamonds) for transmission (phase) in Fig. 3.5, and are shown in Fig. 3.6(a)

as a function of the squeezing parameter. In Fig. 3.6, we assume the sensor has a

full-peak resonant transmission with Tres = 1. As we can see, a phase-based scheme

(red traces) provides a better sensitivity than a transmission-based scheme (blue traces),

even with coherent states, s = 0.

The EQEF for resonant sensors based on phase and transmission are plotted in

Fig. 3.6(b). As the squeezing parameter increases, the EQEF of the phased-based

scheme grows faster than the EQEF for the transmission-based scheme, which indicates
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that the phase-based scheme takes better advantage of the quantum correlations in

the twin beam. However, this feature depends on the lineshape of the sensor’s transfer

function [71], and a transmission-based scheme can outperform a phase-based scheme

for sensors with particular lineshapes.

3.5.1 Effect of Optical Losses

Real-life measurements and sensing setups are not ideal and include losses. To study

more realistic operational conditions, we consider the effect of losses on quantum

resonant sensors. As described by Eqs. (3.8) and (3.9), optical losses increase the

uncertainty in transmission and phase, therefore, deteriorate the sensitivity of the

resonant sensor for both sensing schemes. Also, as shown in Eq. (3.19), as optical losses

external to the sensor increase, the quantum enhancement with the BTMSS is reduced

and can lead to no enhancements. All sources of photon loss in the sensing setup, such

as imperfect optics and photo-detectors, can be integrated into the loss parameters

before and after the sensor in the probing path via ηp1 and ηp2, respectively, and in the

reference arm via ηr, according to the nomenclature used in Fig. 3.2.

Different states of light are also affected differently by optical losses happening at

different points. The sensitivity of a resonant sensor probed with coherent states, for

example, is not affected by the losses before the sensor, as we are keeping the number

of photons probing the sensor unchanged as our resources. Moreover, since there is

no reference beam for the sensing schemes with a coherent state, the sensitivity of

a resonant sensor will be independent of ηr as well. However, the losses after the
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Figure 3.7: (a) Effect of optical losses in the probe beam after the sensor

(characterized by ηp2) on the best sensitivities at the QCRB. (b) EQEF

vs. optical losses in the probe beam before or after the sensor. Blue:

transmission-based scheme, Red: phase-based scheme. Tres = 1, s = 2.

sensor, ηp2, will deteriorate the sensitivity as photons containing information about

the transmission or phase from the sensor will be lost. With a BTMSS, on the other

hand, all three sources of loss reduce the fundamental sensitivity of the sensor, and the

quantum enhancement will be limited when any of these losses exist. This is because

optical losses make the QCRB with a BTMSS tend towards the one with a coherent

state using either transmission and phase schemes.

The effect of optical losses in the probe beam after the sensor (ηp2) is shown in

Fig. 3.7 for twin beams with s = 2 probing a sensor with Tres = 1. The losses after

the sensor not only increase the noise of the probe beam but also lead to the loss of

the transmission and phase information from the sensor. As shown in Fig. 3.7(a), the

maximum sensitivities of both schemes suffer from ηp2, but the phase-based scheme
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Figure 3.8: Effect of optical losses in the reference beam (characterized

by ηr) on (a) the best sensitivities of the sensor at the QCRB and on (b)

the EQEF, for our example full-peak Lorentzian resonant sensor, based on

transmission (blue) and phase (red).

remains more sensitive for all levels of loss. On the other hand, losses in the probe

beam either before or after the sensor have the same mathematical effect on the EQEF.

As shown Fig. 3.7(b), optical losses in the probe beam before or after the sensor reduce

the EQEF towards one, with the phase-based scheme always being able to take more

advantage of the squeezing properties.

The effect of losses in the reference beam is shown in Fig. 3.8, for a BTMSS with

s = 2 and a sensor with Tres = 1. Even though the reference beam does not contain

any information on the transmission and phase from the sensor and is only used to

cancel the quantum correlated fluctuations, losses in this beam (1 − ηr) still change

the photon statistics of the BTMSS and reduce its quantum correlations. Therefore,

losses in the reference beam increase the uncertainty of both sensing schemes based on
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transmission and phase. As losses in this arm increase, the phase-based sensing scheme

stays more sensitive than the transmission-based scheme, as shown in Fig. 3.8(a).

The optical losses in the reference beam also reduce the quantum enhancement

when using a BTMSS, as shown in Fig. 3.8(b). At a critical point where the losses

in the reference beam exceeds (1 − ηr) = 1/2, the uncertainties in transmission and

phase schemes with the BTMSS cannot surpass the uncertainties with the coherent

state, and the EQEF drops below one. This is because each mode of the BTMSS by

itself has more uncertainty than the coherent states. This behavior can also be seen

from Eq. (3.19). Under this condition, the sensor does not benefit from using squeezed

states.

3.6 Figure of Merit

When we have access to either sensing scheme, it is worth studying which one allows us

to obtain better sensitivities and take more advantage of the quantum properties of

twin beams. To quantify such a comparison, we define the “figure of merit” (FOM)

parameter as the ratio between the optimum resonant sensor sensitivities for the phase

and transmission schemes at the QCRB:

FOM =
min

Λ

〈
∆n
〉bound

T

min
Λ

〈
∆n
〉bound

φ

, (3.21)

where min refers to the wavelength where the sensitivity of each scheme reaches its

best values. Here, we assume that we are able to tune the operating wavelength

of the given resonant sensor to operator at the most sensitive wavelength for each
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Figure 3.9: FOM vs. squeezing parameter for various values of Tres. The

phase-based scheme outperforms the transmission-based scheme for a sensor

with a Lorentzian peak-resonance lineshape.

scheme. A FOM greater than one quantifies how much the phase-based scheme can

outperform the transmission-based one, and vice versa. Figure 3.9 shows the FOM

vs. squeezing parameter, for different values of Tres. As we see from this figure, even

with coherent states, the phase-based sensing scheme provides a higher sensitivity than

the transmission-based one. Such a behavior is due to the particular lineshape of the

resonant transfer function of the sensor. However, this advantage is not always there

for lineshapes where the transmission response has sharper slopes. The FOM for those

cases can fall below one, as shown in [71].

The results from this section and section 3.4.5 show two main rules of thumb for

estimating the sensitivity of resonant sensors:

1. A BTMSS with a large squeezing level is more vulnerable to optical losses, either
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external or internal to the sensor. Therefore, the optimum operating wavelength

of the sensor tends towards higher transmissions, although the transmission slope

is not the largest.

2. The overall sensitivity spectrum and the optimum operating wavelength of the

sensor depend on the lineshape of the sensor’s transfer function. As we show in [71],

sensors whose transmission slope is sharper than a Lorentzian lineshape, can have

better sensitivity for the transmission-based scheme than for the phase-based

scheme. Different lineshapes can also affect the amount of quantum enhancement

that the sensor can obtain in either scheme.

The method studied here can be generalized to any passive resonance-based sensor with

a linear response.
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Chapter 4

Plasmonic Sensors

An important example of an optical resonant sensor, discussed in chapter 3, is a

plasmonic sensor. Plasmonic sensors are optical readout passive devices which are widely

used in bio-chemical diagnosis and detection applications. These sensors have found a

number of applications over the past two decades as they are sensitive to local changes in

refractive index. As a result, they have been used for chemical and biochemical sensing

applications as robust diagnostic tools, such as cancer diagnostics [99, 100, 2, 101], and

virus detection [102], and other bio-sensing applications [103].

The response of a plasmonic sensor can be designed to tune the wavelength of its

maximum sensitivity. This tunability allows us to design plasmonic structures that can

operate with maximum sensitivity at the wavelength of the quantum-correlated states

of light, such as the twin beams, used to probe them. Moreover, technological advances

in nanofabrication allow us to manipulate metal thin films and fabricate nanoscale

structured sensors with dimensions and geometries based on numerical simulations [104].

Plasmonic sensors rely on optical readout techniques and have already reached their

fundamental detection limit at the SNL with classical resources [105]. Moreover, as will

be shown in chapter 5, plasmonic sensors maintain the quantum properties of the twin

beams, and hence are compatible with these states [72, 106, 107]. This compatibility

makes it possible to enhance the sensitivity of plasmonic sensors with quantum states

of light [108, 109]. Therefore, plasmonic sensors provide a great platform for providing
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a quantum-enhanced sensitivity through the use of quantum states of light, which is

the main goal of my dissertation work.

In this chapter, we show the general properties and the basic functionality of

plasmonic sensors with subwavelength periodic nanohole arrays. Also, we study their

response to changes in the refractive index of their surroundings. With the help of

a simulation software, COMSOL Multiphysics, we study and predict the resonance

excitation of plasmons and estimate the order of magnitude of their sensitivity to

changes in the refractive index of the air. Experimental tests of the samples fabricated

based on the dimensions from the simulation will also be presented. Finally, in this

chapter we study the sensitivity of plasmonic sensors according to the notation presented

in chapter 3.

4.1 Plasmon Excitation

The plasmonic sensors that we discuss in this section consist of a metallic layer between

two dielectric materials. They are used for detecting changes in the refractive index of

the dielectric environment in their proximity [28], as those changes will modify their

boundary conditions. When an electromagnetic (EM) wave illuminates such a structure,

electronic oscillations at the metal-dielectric interface can get excited, as shown in

Fig.4.1, for a metal-dielectric interface. These excitations form a hybrid mode between

the oscillations of the metallic electrons and the incident photons, which are called

surface plasmon-polariton (SPP) modes [110, 111].

88



final: SPPkretschmann.pdf

ω0

ω

real(kx)kSPk0

ω=
ck x

Δk

m= 2 31

ωp

550 600 650 700 750 800 850 900 950
Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

tra
ns

m
is

si
on

2 µm
200 nm

z

x

z
E

H
k

Ez
metal (m)

dielectric (d)

-- ++ -- ++ -- <latexit sha1_base64="EWBonjiVnMTjHQPPZcu9VmcrAr0=">AAAB73icbVDLSgNBEOyNrxhfUY9eFoPgKeyqqMegF48RzAOSJczO9iZDZmbXmVkhLPkJLx4U8ervePNvnDwOmljQUFR1090Vppxp43nfTmFldW19o7hZ2tre2d0r7x80dZIpig2a8ES1Q6KRM4kNwwzHdqqQiJBjKxzeTvzWEyrNEvlgRikGgvQlixklxkrtboTckJ7olSte1ZvCXSb+nFRgjnqv/NWNEpoJlIZyonXH91IT5EQZRjmOS91MY0rokPSxY6kkAnWQT+8duydWidw4Ubakcafq74mcCK1HIrSdgpiBXvQm4n9eJzPxdZAzmWYGJZ0tijPumsSdPO9GTCE1fGQJoYrZW106IIpQYyMq2RD8xZeXSfOs6l9Wz+8vKrWbeRxFOIJjOAUfrqAGd1CHBlDg8Ayv8OY8Oi/Ou/Mxay0485lD+APn8wcYf5AE</latexit>

�m

<latexit sha1_base64="Y99xyeX+GuHU/Z3eOlrD/wspHyA=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzAOSJczO9iZDZmfXmVkhLPkJLx4U8ervePNvnDwOmljQUFR1090VpIJr47rfTmFldW19o7hZ2tre2d0r7x80dZIphg2WiES1A6pRcIkNw43AdqqQxoHAVjC8nfitJ1SaJ/LBjFL0Y9qXPOKMGiu1uyEKQ3thr1xxq+4UZJl4c1KBOeq98lc3TFgWozRMUK07npsaP6fKcCZwXOpmGlPKhrSPHUsljVH7+fTeMTmxSkiiRNmShkzV3xM5jbUexYHtjKkZ6EVvIv7ndTITXfs5l2lmULLZoigTxCRk8jwJuUJmxMgSyhS3txI2oIoyYyMq2RC8xZeXSfOs6l1Wz+8vKrWbeRxFOIJjOAUPrqAGd1CHBjAQ8Ayv8OY8Oi/Ou/Mxay0485lD+APn8wcK24/7</latexit>

�d

Figure 4.1: (a) SPP mode excitation at a metal-dielectric interface. (b)

Evanescent field at the interface. The decay length into the dielectric

material (δd) is of the same order of magnitude as the wavelength of the

light, while the decay length into the metal (δm) determines the skin depth.

SPPs are EM modes that satisfy Maxwell equation boundary conditions at the

metal-dielectric interface. Taking this interface to be in the x − y plane and the

illuminating field propagation direction to be in the z − x plane, as shown in Fig. 4.1,

the electric and magnetic components of a transverse magnetic (TM) mode of light can

be written as:

Ej(r, t) = (Ex, 0, Ezj) exp[i(kxx+ kzjz − ωt)], (4.1)

Hj(r, t) = (0, Hy, 0) exp[i(kxx+ kzjz − ωt)], (4.2)

where (Ex, 0, Ez) represents the electric field components with wavevector (kx, 0, kz) in

the plane of incidence (z − x), and (0, Hy, 0) represents the magnetic field along the

y-direction. In this notation, the dielectric media are labeled as j = d, and the metallic

layer is labeled by j = m, as shown in Fig. 4.1.

Due to the continuity condition of the field components at the metal-dielectric
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boundary from Maxwell’s equations, the tangential component of the electric field and

the normal component of the magnetic field are continuous at the interface. Also, the

normal component the electric field and the tangential component of the magnetic field

are related to the surface charge and current densities, respectively. These boundary

conditions lead to:

Ex =
kzj
ωεj
Hy , Ezj = − kx

ωεj
Hy,

kzd
εd

= kzm
εm

, k2
x + k2

zj
= εjk

2
0,

(4.3)

where k0 = 2π/λ = ω/c is the wavevector of the light field in vacuum (with ω the

frequency of the incident light and c the speed of light in vacuum), and εj is the

permittivity of j = d the dielectric and j = m the metallic layer. The dispersion

relations for the excited modes of the field at the interface are obtained from the

boundary conditions in Eq. (4.3), and can be written as:

kx = k0

√
εdεm
εd + εm

, (4.4)

kzj = k0
εj√

εd + εm
. (4.5)

The permittivity of the dielectric media (εd) is real and positive, while the metallic layer

has a complex permittivity with a negative imaginary part, that is εm = ε′m−i|ε′′m|, where

prime and double-prime represent the real and imaginary parts, respectively. Since

the permittivity of the metal is complex, its corresponding k-vector becomes complex,

indicating that the field dissipates as it propagates. Therefore, the components of the

light normal to the metal-dielectric interface will exponentially damp along z-direction.

These modes represent the perpendicular SPP modes and are called the evanescent
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for the momentum mismatch ∆k. Dashed lines indicate reciprocal lattice

modes from a periodic hole array. ω0 and k0 are the frequency and the

wavevector of the illuminating light in vacuum. ωp is the plasma frequency

of the metal layer. c is the speed of light in vacuum.

modes. On the other hand, the SPP modes that propagate along the x-direction at the

interface are called the transverse SPP modes, kx = kSPP , as shown in Fig. 4.1.

To excite SPP modes, the momentum (k-vectors) and energy (frequency ω) of the

incoming photons should match with the ones of the SPP modes. Such an energy-

momentum relation for a plasmonic structure is determined by the frequency-dependent

complex permittivity of the metallic layer as given by Eq. (4.4), where εm = εm(ω), and

is plotted in Fig. 4.2. In this figure, ωp indicates the plasma frequency, the frequency

at which the free electron cloud inside the metal can be considered as an oscillating

plasma.
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The SPP modes cannot be excited directly in a metallic layer in air, and require a

coupling device such as coupling prism made out of glass [112, 113]. This configuration,

which is usually referred to as the Kretschmann configuration [114, 115, 116], allows

us to compensate for the momentum mismatch ∆k, and mediate the coupling of the

momenta of the illuminating photons and the SPPs.

When monochromatic light excites the SPP modes on a metallic layer with a coupling

prism, the k-vectors can be matched at certain angles depending on the thickness of

the metal and the refractive index of the metal and prism. The plasmonic excitation

can then be seen as a dip in the reflection spectrum of the incident light on the surface.

Moreover, if the plasmonic structure allows coupling of SPP modes on both sides of

the metallic layer, the structure can be used to operate in the transmission mode. In

this case, the excitation of plasmons leads to a resonance peak in the transmission

spectrum. Alternatively, we can excite SPP modes by coupling via gratings constructed

by a periodic array of nanoholes [117], as we discuss in the next section.

The propagation length and the lifetime of the SPP modes along the surface can be

calculated by finding the distance and the time over which the energy of the SPP modes

drop by 1/e of its initial value along the metal-dielectric interface, and are given by:

δSPP = 1

2k
′′
SPP

= (ε′m)2

ε′′mk0

(
ε′m+εd
ε′mεd

)3/2

,

τSPP = δSPP
vg

= (εd+ε′m)
ck′SPPεdε

′
m

4π(ε′m)2

ε
′′
m

,

(4.6)

where k
′′
SPP is the imaginary part of the complex SPP wavevector and vg is the group

velocity of the SPP modes. The propagation length of SPP modes on a glass-silver

interface, for instance, is ∼ 20 µm (at 500 nm) [113], with a lifetime of 0.83 fs, where
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we used vg ≈ 0.8c for SPPs in silver [118].

Similarly, we can calculate the decay length of the evanescent waves along the

z-direction into the metal and dielectric media, which are given by:

δm = 1
2k′′mz

≈ λ0

4π
√
|εm|

,

δd = 1

2k
′′
dz

≈ λ0
4π

√
|εm|
εd

,

(4.7)

where k
′′
z is z-component of the SPP wavevector in each media. The decay length for

the dielectrics is on the order of the wavelength of the illuminating light, and determines

the depth of the light confinement near the metal-dielectric interface. On the other

hand, the decay length for the metals defines their skin depth which are usually an

order of magnitude smaller than the wavelength of the illuminating light. For example,

the skin depth of silver is ∼ 3 nm at λ = 800 nm [119]. If the thickness of the metal is

less than its skin depth δm, the SPP on both sides of the metal can couple, permitting

a direct transmission of the incident light through the structure. On the contrary, if

the thickness of the metal is greater than its skin depth, the evanescent wave decays

exponentially and cannot transmit through the metallic layer.

4.2 Extraordinary Optical Transmission

When we have a two-dimensional diffractive grating composed of nanoholes, the disper-

sion relation for the k-vectors on the metal-dielectric interface takes the form:

~kSPP = ~kx ± p
2π

Px
x̂± q2π

Py
ŷ, (4.8)
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where ~kx is the wavevector of the illuminating light from the dielectric material, Px and

Py are the periodicities of the nanohole array along the x- and y-directions, respectively,

and p and q positive integers corresponding to the SPP excited modes at each direction.

Assuming a square grating with Px = Py = P , a light field with wavelength λ0 in free

space can be coupled to the SPP modes if:

λ0 = P

√
1

p2 + q2

εmεd
εm + εd

, (4.9)

where εd = n2 is the permittivity of the dielectric medium (n is the refractive index),

and εm is the complex permittivity of the metallic film.

Ebbesen in 1998 discovered an extraordinary transmission of light through an array

of periodic subwavelength nanholes in metal films [120, 121, 122], orders of magnitude

larger than predictions by diffraction theory. Localized plasmonic excitations at each

nanohole can couple to the localized excitations on the back side of the metal that is not

illuminated. This coupling allows a coherent photon-plasmon-photon conversion process

that leads to the transduction of light through the nanohole arrays. This process is

called “extraordinary optical transmission” (EOT) [123]. It is extraordinary because

it gives a result that cannot be predicted with diffraction theory. First, the thickness

of the metallic layer is larger than the skin-depth of the metal. Hence, the metallic

layer is opaque to the incident EM waves. Also, the size of the nanoholes are smaller

than the wavelength of the incident light. According to classical aperture theory, as

developed by Bethe [124], the direct transmission of light (at wavelength λ) through a
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sub-wavelength hole (with diameter a� λ), is proportional to

T ∝ a6

λ4
. (4.10)

Considering these results from diffraction theory, EOT through the periodic nanohole

pattern in a metallic layer can only be possible via the photon-plasmon-photon coupling

effect [121].

When a periodic nonohole array in a metallic film is illuminated with broadband light,

particular wavelengths satisfy the EOT resonance condition. Each plasmonic nanohole

structure has a characteristic EOT spectrum which defines its transmission transfer

function T = T (λ). There are various designs for the periodic subwavelength nanoholes

and nanomaterials to excite EOT plasmonic modes. The geometrical dimensions, such

as the size and periodicity of these structures, the thickness of the metallic layer,

and the optical properties of the metal and dielectric media, determine the resonance

wavelength and the lineshape of different EOT modes. Therefore, by optimizing the

geometrical parameters of the periodic nanholes, we can tune their EOT response

towards a particular wavelength of interest.

In the next two sections, we define the methods we use to obtain the transfer function

of a given nanohole structure either by numerical calculations from simulations or by

direct experimental measurements.
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4.2.1 COMSOL Simulation

4.2.1.1 What is COMSOL?

The interaction and resonance condition of an EM wave with a periodic nanohole array

can be simulated by solving Maxwell’s equations with correct boundary conditions at

the metal-dielectric interface. Here, we use a commercially available software, called

COMSOL Multiphysics, which is a simulating package based on finite element method

(FEM) techniques to solve partial differential equations. COMSOL allows us to couple

various physical problems, such as heat transfer, dynamics, fluid-flow, electromagnetism,

and other physical phenomena together. Here, we only focus on the RF module, which

can solve Maxwell equations in different 2D and 3D domains with specific boundary

conditions. Optical properties, such as frequency-dependent index of refraction or

permittivity of the materials can be imported from reference tables or from the material

library of the software. Also, the geometrical domains of the model can be either

imported from a 3D CAD software (requires separate license) or can be drawn in its

own graphical interface. However, since the accuracy of simulations depends on the

size of the simulation elements (mesh size), it is very memory-intensive and might take

several days to perform high resolution calculations.

Post-processing tools in COMSOL allow the user to generate 2D and 3D visualiza-

tions of different built-in and user-defined variables, such as field concentrations, charge

density on the surface and in bulk, and several more.
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4.2.1.2 Simulation Setup: Boundary Conditions

To simulate the interaction of an arbitrarily polarized EM wave with a subwavelength

nanohole array, the boundary conditions need to be defined properly in different

media. Since it is not possible to model all the nanoholes in the array, we model

a single unit cell containing one hole. By using periodic boundary condition (PBC)

in the x − y plane, we define an infinite array of nanoholes along the x- and y-

directions, which is a good approximation for the typical size of our plasmonic structures

(∼ 200µm× 200µm). Therefore, we define a through-hole with the desired geometry

in a cuboid with dimensions Px and Py representing the periodicity along the x- and

y-directions, and height t defining the thickness of the metallic layer, as shown in

Fig. 4.3. Also, a slab of glass with the same dimensions of the silver unit cell in the x-

and y-directions is defined as the substrate below the silver film. Another slab is defined

above the silver film to represent the air around the structure. The thickness of the

dielectric materials is chosen to be several times larger than the dielectric propagation

length (δd) to avoid transient evanescent responses near the surface of the structure.

In order to truncate the infinite length of the dielectric domains above and below

the domain of interest, we use a perfectly matched layer (PML) domain on top and

below the dielectric slabs. The PML domains absorb the incoming light to avoid

unwanted reflections of the field at the boundaries and back into the simulation domain.

Finally, we import the wavelength-dependent real and imaginary parts of the electric

permittivity for silver and glass from online references [125].
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Figure 4.3: Unit cell for simulation with COMSOL. All four planes parallel

to the z − x or y − z planes are set to PBC. The R and T planes are

used for integrating over the field to obtain intensities for reflection and

transmission calculations, respectively.

As shown in Fig. 4.3, an electric field enters from port 1 right after the PML layer,

interacts with the nanohole in silver layer, and exits from port 2, right before the

second PML layer. To define the “input port”, where the illuminating field enters the

simulation domain, we turn on the “field excitation” of port 1 and we turn off the field

excitation of port 2 defining the “output port”. These setting for the input and output

ports determines the direction of the EM energy flow.

Since the nanohole structure is periodically repeating along the x- and y- directions,

we set PBC on the four planes parallel to the z−x or y− z planes, as shown in Fig. 4.3.

This means that the k-vectors of the field are exact copies of each other on the opposite

PBCs, and repeat over an infinite extent. The PBC also allows us to calculate the

diffraction orders reflected or transmitted at the input and output ports. Depending on

the symmetry of the desired nanohole shape, we can also use perfect electric conductor
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(PEC) or perfect magnetic conductor (PMC) boundary conditions, and model only half

or a quarter of the unit cell. These boundary conditions are the same as continuity of

the tangential or normal components of the electric or the magnetic field components

at each boundary.

4.2.1.3 COMSOL Simulation Results

Through COMSOL simulation, we can optimize the shape and dimensions of the

nanoholes to find the most sensitive response at the desired wavelength. By properly

setting up the input field and the material properties, as well as the mesh size and mesh

distribution in the three materials, we can solve for the propagation of the EM field as

a function of wavelength, resulting in the transmission spectrum through the structure.

Using mathematical integration functions in COMSOL, we integrate over the EM field

at two analysis surfaces near the input and output ports to calculate the reflected

and transmitted EM energy from the metallic film and the glass domains. These two

surfaces are placed just after the input and output ports parallel to the silver-dielectric

interface, as shown by the R and T planes in Fig. 4.3. We can then find the resonance

wavelengths and the electric field distribution on the metal-dielectric interface of the

nanohole array, as shown in Fig. 4.4 for a periodic triangular nanohole array. The

concentration of the electric field at edges of the nanoholes and the resonance peak (or

dip) in the transmission (or reflection) spectrum are typical signatures indicating the

excitation of the SPP modes.

In this thesis, we are interested in designing periodic nanohole arrays for plasmonic
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Figure 4.4: (a) EOT spectrum for triangular nanoholes in a silver film

between glass and air obtained from COMSOL simulations (dashed red

trace) and white light spectroscopy (blue solid trace). Green dotted line

indicates wavelength of the twin beams at λ = 795 nm. (b) SEM images of

the triangular nanoholes. The electric field concentrations at the edges of

the nanoholes were obtained by COMSOL simulations.

sensing with twin beams. Therefore, our aim is to have sharp resonances as well as a

high intensity transmission at or near λ = 795 nm. The first nanohole plasmonic sensors

that we used in our experiments were composed of triangular nanoholes in a silver film

and were fabricated by our collaborators at Oak Ridge National Laboratory (ORNL).

This structure has a resonance near 800 nm and is suitable for our quantum sensing

applications. For this triangular nanohole array, we scan over different parameters

to tune the resonance response to have the sharpest slope as well as the maximum

transmission (least losses) at this wavelength.

The effect of scanning over some parameters of the triangular nanoholes is listed in

table 4.1. These results provide a guide to design and predict the resonance wavelength
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Increase in Shift of Resonance Magnitude of Resonance

htri to higher wavelengths increases

btri to lower wavelengths increases

Px to higher wavelengths decreases

tsil to lower wavelengths decreases

Table 4.1: Effect of scanning over selected parameters of the triangular

nanohole arrays on the main EOT plasmonic resonance peak. htri is the

height and btri is the base of the triangles. tsil is the thickness of the silver

layer. Px is the periodicity of the nanoholes along the incident E-field

polarization.

for fabrication purposes. The behavior of some of these parameters is not restricted to

the triangular nanoholes and can be generalized to other nanohole shapes. For example,

increasing the periodicity of the nanoholes along the polarization of the incident electric

field shifts the resonance wavelength towards higher wavelengths (red-shift) which is

consistent with Eq. (4.9).

4.2.2 Fabrication of Nanohole Structures

Advances in nanofabrication technologies have allowed us to write, cut, and drill metals

to fabricate nanohole geometries based on the numerical simulations. Periodic arrays of

nanoholes can be fabricated in metallic layers using standard top-down nanofabrication

techniques [126]. The EOT-based plasmonic nanohole structures that we study in
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this thesis are fabricated with two different methods at ORNL and Sandia National

Laboratory: electron-beam lithography (EBL) and focused ion-beam (FIB) lithography.

Therefore, we only focus on these two methods.

During the 1970s, through the developments of the scanning electronic microscope

(SEM), researchers noticed that an electron beam could damage some materials. These

findings led to the invention of electronic beam lithography [127]. In this method, an

electron beam is focused on a poly-methyl methacrylate (PMMA) layer as an electron-

sensitive resist material, to drill the nanoholes. The electron beam is then scanned over

the sample to mill the nanoholes one-by-one. The typical voltages for electron beam

fabrication is between 10-100 kV, which provides a de Broglie wavelength as small

as 1 Angstrom and resolutions on the order of 10 nm [104, 128]. The sample is finally

baked to enhance the adhesion of the metal to the substrate.

The FIB lithography method [129] is used to directly fabricate nanoholes in metals

by utilizing a low energy ion beam to ablate material from a metallic layer by collision.

In the FIB technique, the ion beam is generated from a liquid metal that can flow on

a sharp tungsten needle, such as gallium. By applying a voltage between the metal

source and a target aperture, ions will be emitted into a sharp cone. This voltage can

also control the incursion depth of the ion beam into the metallic target layer. The

ions can be focused on a tip with dimensions on the order of several nm for milling the

desired nanohole pattern on the metallic layer. With the FIB method, the smallest size

of the tip can get as small as 10 nm.

During the FIB milling, the sputtered materials will be redeposited and relocated
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on the substrate or the sample itself. This limiting factor can be reduced by using a gas

injection system. Moreover, the FIB method provides a serial lithographic technique

for direct milling of nanohole patterns, with high-resolution and without the need of

the mask. However, this method is time-consuming and expensive, which make it not

suitable for mass production [104, 128].

The fabricated structures in silver with either method are usually spin-coated with

a PMMA layer to prevent oxidation of the silver in ambient air. The oxidation will

deposit on and through the nanoholes and fill them, leading to a broadening of the

plasmonic resonance with a less efficient EOT. Washing this protecting layer shifts the

resonance to lower wavelengths.

4.2.3 White Light Spectroscopy

The characteristic EOT spectrum of a given plasmonic structure can be experimentally

measured with a white light spectroscopy setup, as shown in Fig. 4.5. In this setup, the

white light beam from a Halogen lamp (Osram 64641-HLX-G6.35, λ = 550 nm−1100 nm)

is coupled to a broadband fiber optic (Ocean Optics: P1000-2-VIS-NIR) to form a

uniform spatial mode. The output light from the fiber passes through a Glan-Thompson

polarizer to linearly polarize it. A broadband half-wave-plate (HWP) allows us to

control the polarization of the light to illuminate the nanohole structure. A lens system

is then used to collimate and control the size of the beam on the sample. After the

plasmonic sample, another lens system directs the beam to a beam profiler (a charge-

couple device-CCD camera) to monitor the beam size with respect to the sample area
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Figure 4.5: Experimental white light spectroscopy setup for characterizing

the EOT response of a plasmonic sensor.

and align the center of the plasmonic sample to the input light. After ensuring that the

light is not leaking from the finite size of the plasmonic sample (in our experiments

∼ 200 µm× 200 µm), the transmitted light is coupled to a broadband multi-mode fiber

optic to be analyzed with a spectrometer. The spectrometer (Thorlabs: CCS100) shows

the power spectrum of the light received from the sample.

By rotating the broadband HWP before the sample, we can align the polarization

of the input light along with or normal to the periodic axis of the nanoholes. When

the polarization is aligned with the periodic axis of the nanohole array, the EOT

spectrum shows the maximum resonance response to the incoming light. Finally, to

take into account the effects of optical loss and the polarization dependence of the glass

substrate, we normalize the transmitted power through the plasmonic structure to the

transmitted power through the glass portion of the sample, for the corresponding linear

polarization angle. The sample is mounted on a 3-dimensional translation stage for

alignment and to move between the plasmonic structures and the glass substrate. The

104



normalized transmission from the sample gives the absolute power transmitted through

the nanohole plasmonic array. An example measurement of the normalized transmission

spectrum for a given triangular sample is shown in Fig. 4.4(a).

4.3 Plasmonic EOT for Sensing Applications

4.3.1 Resonance Shift

A given plasmonic nanohole structure has a characteristic EOT resonance response for

transmission or reflection. This response depends on the geometric shape, dimensions,

and the periodicity of the nanoholes, as well as the thickness of the metal film, the

refractive index of the metal and the surrounding dielectrics, and the properties of the

probing light, such as its polarization and angle of incidence. All of these parameters

can act as tuning knobs to set the response of the plasmons to the desired wavelength.

Therefore, the resonance wavelength and the sensitivity of these sensors can be tuned

by changing these parameters, with some of them listed on table 4.1.

For a given nanohole structure, changes in the refractive index of the dielectric

media shifts the EOT resonance of the plasmonic nanohole structure. This shift allows

us to use the EOT structure as a sensor for changes in refractive index of its neighboring

environment. In this thesis, we are interested in using the plasmonic nanohole arrays as

sensors of the refractive index by using such shifts in the resonance response. We can

observe these changes by gradually increasing the refractive index of the environment

using COMSOL simulations or experimentally with the white light spectroscopy setup.
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Figure 4.6: The EOT spectrum shifts with changes in the index of refraction

as a result of increasing the concentration of Glycerin in water. The

plasmonic sensor has periodic triangular nanoholes, as those in Fig. 4.4.

To experimentally characterize the response of our plasmonic structure to changes

of refractive index, ∆n, we generate large changes in refractive index to generate visible

shifts in the EOT spectrum of the sample. We place the sample inside a sealed chamber,

initially filled with air. Then we fill the chamber with deionized (DI) water. Due to the

increase in the refractive index from n = 1.000 (air) to n = 1.333 (water), the EOT

spectrum shifts to higher wavelengths, as shown in Fig. 4.6. We further shift the EOT

spectrum by further increasing the refractive index inside the chamber using incremental

concentrations of Glycerin in water. We add Glycerin, which is a water-soluble liquid,

to the DI water by weight percentages. Also, to prevent contamination from different

weight percentages of Glycerin, we clean wash the chamber after measurements with the

previous concentration before taking the white light spectroscopy with the new Glycerin

concentration. Figure 4.6 shows the the EOT spectrum shifts to higher wavelengths
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Figure 4.7: Plasmonic sensors can be used to detect certain bio-chemical

stimuli, or contaminating elements in a sample flowing through a flow

cell. With this configuration, only target particles can attach to the

functionalized plasmonic sensor and, therefore, their existence can be

detected by the shift in resonance. By making a library of indicators we

can use different sensors for detecting different binding particles. Figure

inspired by [103] licensed CC by 4.0 International.

as we increase the concentration of Glycerin from 0% (pure DI water) to 50% (weight

percentage), corresponding to ∆n = 0.065 RIU∗ associated with the % of Glycerin [130].

4.3.2 Plasmonic EOT for Sensing

Similar to their parent category of optical resonance sensors that we introduced in

section 3.4, plasmonic structures can be used as sensors for detecting changes in the

∗RIU: refractive index unit
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refractive index. The characteristic EOT resonance of the nanohole structures shifts

due to changes in the refractive index (∆n) of the surrounding dielectrics (air and glass).

Such shifts change the transmission of the probing beam at a fixed wavelength and

polarization of the incident probing light [28, 131, 132, 133, 134, 135]. These changes

in the transmission can be detected with a photodetector as long as they are larger

than the noise of the measurement. Therefore, a plasmonic nanohole array, similar to a

resonance sensor, can be used to sense a change in the refractive index of its neighboring

environment, due to temperature, pressure, concentration, or density of the surrounding

materials. As pictorially shown in Fig. 4.7, plasmonic bio-chemical sensors usually use

binding materials that only attach to specific materials to make it possible for it to

detect specific target analytes through the detection of transmission changes [81, 103].

Therefore, EOT plasmonic sensors provide direct sensing suitable for label-free sensing

applications [84, 136].

4.3.3 Order of Magnitude Estimation of Sensitivity

We can estimate the order of magnitude of the sensitivity of the plasmonic sensor with

triangular nanoholes that we use in our quantum sensing experiments. As defined in

chapter 3, the sensitivity is defined as the smallest change in the refractive index that

the sensor can resolve from noise:

〈
∆n
〉

min
=

1

|∂T/∂λ|
1

|∂λ/∂n|

〈
∆I
〉

|∂Î/∂T |
, (4.11)

108



where Î is the intensity of light on the photodetector, which depends on the transmission

spectrum of the plasmonic sensor, as Î = Î(T (λ)).

The first term on the right hand side of Eq. (4.11) represents the slope of the

transmission spectrum at the wavelength of the probing light. We can directly measure

the transmission spectrum and its slope with respect to the wavelength for the refractive

index of air, n = 1. The typical slope of the measured transmission spectrum is

|∂T/∂λ| ∼ 0.005 nm−1 at λ = 795 nm.

The second term on the right hand side of Eq. (4.11) gives the rate of the shift in

the resonance (transmission) peak in response to changes in refractive index. By taking

the direct derivative of Eq. (4.9), we have [137]:

∣∣∣∣
∂λ

∂n

∣∣∣∣ =
P√
p2 + q2

(
εm

n2 + εm

)3/2

. (4.12)

Using the designed nanohole dimensions of our plasmonic structures, P ∼ 400 nm, n = 1

for air, and εm = −24.5+i1.83 at λ = 795 nm [138], we estimate |∂λ/∂n| ∼ 500 nm/RIU

for the first order mode of SPP excitations, p = 1 and q = 0. We can also verify this

result from COMSOL simulations. To do so, we simulate the transmission spectrum

through the nanohole structure for various incremental values of the refractive index

(δn = 0.0001) and track the shift in the resonance peak.

According to Eq. (4.11), the sensitivity of the plasmonic sensor also depends on

the noise and intensity of the probing light, according to
〈
∆2Î

〉
/|∂Î/∂T |2. The EOT

spectrum of the plasmonic sensors changes the intensity of the probing light with a

mechanism similar to the one introduced by optical losses. As introduced in Eq. (2.40),
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optical losses transform the field operator (â) as:

â→
√
T â+

√
1− T âv, (4.13)

where T is the intensity transmission and âv is the corresponding vacuum mode that

couples in as a result of the losses introduced by the plasmonic sensor. The mean and

variance of the light intensity after probing the sensor would then become:

〈
Î
〉

= T
〈
Î
〉

0
(4.14)

〈
∆2Î

〉
= T 2

〈
∆2Î

〉
0

+ T (1− T )
〈
Î
〉

0
, (4.15)

where
〈
Î
〉

0
and

〈
∆2Î

〉
0

represent the mean and variance of the probing light before the

sensor. For the case of a coherent state, the variance is equal to its mean photon number,

that is
〈
∆2Î

〉
0

=
〈
Î
〉

0
. Therefore,

〈
∆2Î

〉
= T

〈
Î
〉

0
, and |∂Î/∂T | =

〈
Î
〉

0
. Putting these

together, we have:
〈
∆Î
〉

|∂Î/∂T |
=

√
T〈
Î
〉

0

. (4.16)

According to this result, the sensitivity scales inversely with the square root of the

number of photons probing the sensor. For example, a probing light with the optical

power of P ≈ 70 µW corresponds to a photon flux of F = P/hν = Pλ/(hc) =

2.8× 1014 photons/sec at λ = 795 nm. Thus, for a measurement bandwidth of 1 Hz,

I0 ∼ 1.5× 1014 photons.

Substituting the individual parts discussed above in to Eq. (4.11), we can estimate

the order of magnitude for the sensitivity of our designed plasmonic sensor to be on

the order of 10−7 RIU/
√

Hz for a single measurement. To estimate the absolute value
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of the sensitivity, the effective bandwidth of the detector and the number of averages

implemented need to be taken into account. As we will see in chapter 5, this estimation

matches well with the measured values for the absolute sensitivities of the plasmonic

sensor that we use in our experiment.

4.4 Novel Nanohole Structures

To design nanohole structures with sharp resonance and large transmission at the

operating wavelength, we use COMSOL to simulate the EOT spectrum for different

nanohole structures. Using these structures, different parameters of the nanohole in

the unit cell can be used to tune the resonance EOT of the structure. For example, as

shown in Fig. 4.8(a), by changing the width of square nanoholes (parameter l), we can

tune the wavelength of the resonance peak or make it narrower [139].

Breaking the symmetry of the nanohole arrays would lead to sharp EOT reso-

nances [28]. For example, by using two nanoholes in a unit cell, the EOT resonance

response demonstrates a sharp resonances on top of a broader spectrum from the

symmetric structures with single nanohole unit cells, as is shown in Fig. 4.8(b). The

depth of the sharp resonance can be adjusted by changing the separation between

the two nanoholes in the unit cell. The interference resonance response of such two

nanohole unit cells is due to a collective response from a large number of such unit cells.

Therefore, even small imperfections in the fabrication process can lead to reducing this

sharp feature.
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Figure 4.8: Sample transmission spectra from COMSOL simulations for

nanoholes in a silver film between glass and air. (a) Transmission spectra

for square hole arrays with different l- sizes. (b) Transmission (blue) and

reflection (red) spectra for asymmetric C-flipped-C nanoholes. Green dotted

lines indicate the wavelength of the twin beams at λ = 795 nm.
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To alleviate the complications associated with the fabrication of small features,

we can simplify the nanohole structures and use circular nanoholes instead. The

transmission and reflection spectra from such circular structures are shown in Fig. 4.9,

for nanohole arrays perforated in a gold film on a silicon substrate. In this figure, the

polarization of the electric field of the illuminating light is along the x axis. Compared

to the C-structures, the circular nanoholes have less transmission, but less loss in

reflection. Since we are interested in large “transmissions” and sharp slopes for plasmonic

sensing applications with twin beams, we can use the circular nanoholes in a reflection

configuration.

When each unit cell contains a single nanohole, the symmetric distribution of the

nanoholes with periodicity Px = 2Py leads to a resonance dip in the reflection (or a

peak in transmission) spectrum at wavelengths near the periodicity of the unit cells, as

shown in Fig. 4.9(a). Keeping the periodicity along the x-direction the same, Px = 2Py,

if we now put two circles in each unit cell asymmetrically, the resonance becomes

sharper, as shown in Fig. 4.9(b). When the separation between the two holes (center to

center) in each unit cell reaches the distance that makes the nanohole array symmetric

inside the unit cells with periodicity Px = Py, the sharp EOT dip resonance due to

the asymmetric unit cells disappears, as shown in Fig. 4.9(c). For this condition, the

periodicity along the x-direction is half of the rectangular unit cells. Therefore, the first

order EOT resonance falls at lower wavelengths. For an electric field with polarization

along y-direction, all of the three structures shown in Fig. 4.9 have the same response,

as the periodicity along this direction is fixed at Py = 392 nm.
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As we can see from these figures, the results from COMSOL simulations match fairly

well with the experimental results. These samples were fabricated at Sandia National

Laboratory, and more detailed analysis of their behavior is presented in [140].

COMSOL simulation also allows us to design other novel structures with the goal

of reaching higher sensitivities with twin beams of light. By tuning the periodicity of

the nanoholes along the x- and y-directions, we can design a periodic nanohole array

that has slightly different pitches along the x- and y- directions, as shown in Fig. 4.10.

Therefore, the resonance response of the structure at the operating wavelength will be

slightly shifted for an incident field with both polarization components along the x- and

y-directions [141]. Such geometry allows us to probe the sensor with two orthogonal

polarization modes and obtain slightly different responses.

As shown in Fig. 4.10, illuminating this structure with two beams of light linearly

polarized along the x- and y-direction, each beam experiences a different transmission

and an opposite transmission slope at λ = 795 nm, for instance. This structure is

particularly interesting for our ID measurement with the twin beams, where we can

probe the sensor with both beams. In this configuration, the ID cancels the common

quantum and classical noise while the changes in transmission have opposite signs for

the twin beams as they observe opposite slopes in transmission. This behavior leads to

an enhancement of the signal-to-noise ratio, compared to the case of probing the sensor

with only the probe beam [142]. We are currently exploring this sensing configuration.

Initial samples fabricated at Sandia National Laboratory show transmission spectra as

predicted by COMSOL. Experimental and theoretical studies for implementing such a
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Figure 4.9: Transmission (blue) and reflection spectra from COMSOL (red),

and experimental reflection spectrum (black) for circular nanoholes in an

80 nm thick gold layer on a silicon substrate. (a) Rectangular unit cell with

single circular hole (Px = 2Py = 784 nm). (b) Rectangular unit cell with

two circular holes (Px = 2Py = 784 nm): breaking the symmetry of the

nanoholes at each unit cell leads to a sharper reflection dip. (c) Square unit

cell with single circular hole (Px = Py = 392 nm). Right column shows the

SEM images. Circle diameters: 210 nm. Green dotted lines indicate the

wavelength of the twin beams at λ = 795 nm.
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Figure 4.10: Experimental (solid) vs. simulation (dashed) EOT spectra of

nanohole array with different periodicities exhibit opposite transmission

slopes at λ = 795 nm (green dotted line) for an illumination with the

electric field polarized along the x-axis (red) and along the y-axis (black).

Px = 478 nm, Py = 485 nm, diameter 287 nm.

quantum-enhanced sensing configuration is currently ongoing.
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Chapter 5

Implementation of Quantum-Enhanced Plasmonic

Sensing

In previous chapters, we introduced the building blocks needed to implement quantum

sensing. In this chapter, we demonstrate a quantum-enhanced plasmonic sensing

configuration to detect changes in the refractive index of air induced by ultrasonic

waves. While there have been proof-of-principle experimental and theoretical studies of

quantum-enhanced plasmonic sensors [24, 75, 109, 143, 144], our results represent the

first implementation of such a sensor with a sensitivity of the same order of magnitude as

the classical state-of-the-art. Although we focus on quantum enhancement for plasmonic

sensors, the techniques used can be generalized and implemented with other compatible

sensors and measurements that already operate at the SNL.

In this chapter, we first prove that plasmonic sensors are compatible with our twin

beams and can maintain their spatial information as well as their temporal entanglement

properties. The compatibility of plasmonic sensors with temporal entanglement is used

in this chapter, while the spatio-temporal quantum correlations in the twin beams will

allow us to demonstrate a parallel quantum plasmonic sensing, as presented in chapter 6.

Next, in this chapter we present the experimental setup for generating squeezed light

to probe a plasmonic sensor. The experimental parameters for the FWM used for the

experiments presented in this chapter are optimized to obtain the maximum temporal

squeezing between the twin beams. Finally, we present and discuss the results by
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demonstrating a quantum enhancement in the absolute sensitivity of our plasmonic

sensor.

5.1 Does EOT Preserve Entanglement?

Acknowledgement

The material presented in this section is published in [72]. The dissertation author is

the second author of this study.

To ensure that the plasmonic sensors we are using are compatible with quantum states

of light, we design an experiment to verify that they maintain the quantum properties

of the twin beam, such as the spatial information in entangled images and the temporal

quantum entanglement. These tests represent the first steps towards implementing

a quantum-enhanced plasmonic sensing configuration. They involve measuring the

quantum entanglement before and after the plasmonic sensors.

5.1.1 Entangled Images and Plasmonic Nanoholes

We first check the compatibility of plasmonic sensors with the spatial information present

in the twin beams by qualitatively comparing the spatial patterns on the twin beams

before and after passing through two plasmonic sensors. Such a classical measurement

allows us to determine if plasmonic sensors can preserve the spatial information of the
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Figure 5.1: (a) By using a DLP, we generate spatial patterns on the seeding

probe (red) beam to generate entangled images from the FWM. Lens system

L1 places the Fourier transform on the input image at the center of the

Rb cell. Lens systems L2 and L3 perform an inverse Fourier transform

of the center of the Rb cell to the sensing plane where plasmonic sensors

are placed. Imaging lens systems L′2 and L′3 transfer the images from the

plasmonic sensors to the detection plane. (b) Entangled images after the

FWM at the sensing plane. (c) Entangled images on the detection plane

after transduction through the two plasmonic sensors.

119



twin beams, which allows applications such as parallel plasmonic sensing with twin

beams.

The experimental setup to generate the entangled images is presented in Fig. 5.1(a).

To generate entangled images with arbitrary spatial patterns on the twin beams, the

input probe beam is sent to a digital light processor (DLP) to modify its spatial profile

before the Rb cell. An imaging system is used such that the probe beam has a flat

wavefront at the plane of the DLP. The DLP (DLP3000-C300REF, Texas Instruments)

is a 608× 684 array of micro-mirrors that can be programmed through its computer

interface to generate an arbitrary binary image on the input probe. The light reflected

from the DLP passes through a 4-f lens system with a 500 µm pinhole at its Fourier

plane to filter the high spatial frequencies of this image. These high k-vector components

are outside the spatial gain bandwidth of the FWM and only introduce uncorrelated

light. The image of the DLP after the 4-f system is then converted to its Fourier plane

at the center of the Rb cell using a single lens, as shown by L1 in Fig. 5.1(a), to seed the

FWM process. The twin beams after the Rb cell pass through separate lens systems

for each beam, as shown by L2 and L3 in Fig. 5.1(a), to form the bright twin images

with the pattern introduced by the DLP at the Fourier plane after the Rb cell. These

images form copies of the seeding image on the probe beam, as explained in chapter 2.

Using the pattern of the logo of the University of Oklahoma (“OU”) on the DLP as

the input image on the seeding probe beam, a pair of entangled images are generated.

The conjugate image is inverted due to momentum conservation, as described in

section 2.4. Two separate and independent plasmonic sensors are placed in the path
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Figure 5.2: EOT spectra for the plasmonic sensors placed in the path of

the probe (blue trace) and conjugate (red) beam. COMSOL simulation of

the triangular nanohole array is shown with a dashed black trace. Green

dotted line indicates our operating wavelength of λ = 795 nm.

of the entangled images on the plane labeled as “sensing plane” in Fig. 5.1(a). The

sensing planes are therefore effectively at the Fourier plane of the Rb cell (far-field).

The entangled images before the plasmonic sensors, shown in Fig 5.1(b), transduce

through the two independent and spatially separated plasmonic sensors and are then

imaged on a beam profiler. Both plasmonic structures used in this experiment consist

of a triangular nanohole arrays in a 100 nm thick silver film. The base size of the

triangles is ∼ 220 nm and their height is ∼ 265 nm, with a periodicity of 400 nm

along the horizontal and vertical directions. The transmission spectra of these two

nanohole arrays, obtained with the white light spectroscopy described in section 4.2.3,

and are shown in Fig. 5.2. Both samples have a transmission peak near ∼ 800 nm,

which provides a non-zero transmission slope at the wavelength of our twin beams.

The intensity transmissions of the samples in the conjugate and probe path are ∼ 65%
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and ∼ 50 %, respectively.

The entangled images generated from the FWM are shown in Fig 5.1(b). Due to

the limited spatial bandwidth of the FWM process, as described in section 2.4, the

entangled images are not as sharp as the input image on the seeding probe beam. The

entangled images after the transduction through the EOT plasmonic structures are

shown in Fig 5.1(c). Comparing the entangled images before and after EOT, we can

see that the resolution of the output images with respect to the input ones are mainly

preserved. This indicates that EOT through the plasmonic structures preserves the

spatial information of the incoming optical field. Overall, these images demonstrate

clearly the spatial multi-mode nature of twin beams and the plasmonic-mediated EOT

process.

Additionally, it is worth noting that the resolution of the entangled images is high

enough to resolve spatial patterns of the seeded input OU logo, which indicates that

the size of the coherence areas in the twin beam is smaller than the smallest feature of

the input seeding image. This point becomes important for spatially resolved sensing

application, as will be described in chapter 6.

5.1.2 Temporal Entanglement and Plasmonic Nanoholes

In the previous section we present a classical measurement to qualitatively verify that

the spatial information in the twin beam is preserved by the plasmonic sensors. In this

section we characterize the quantum entanglement of the twin beams before and after

transduction through the plasmon-mediated EOT process in nanohole structures. As
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defined in section 2.3.6, the inseparability parameter I provides a direct measure of

the degree of quantum entanglement in the twin beams and can be measured using a

double balanced HD system: one HD for the probe and another one for the conjugate.

Moreover, to ensure temporal quantum entanglement in a particular spatial mode of

the twin beams, we pattern the LOs of the two HDs with a non-Gaussian structure,

the “OU” logo, using the DLP, as explained in the previous section. The spatial profile

of LOs effectively selects out the spatial pattern of twin beams being measured.

The experimental setup to measure the inseparability parameter before and after the

plasmonic sensors is given in Fig. 5.3. To generate the required LOs, we duplicate the

FWM process: two spatially separated FWM processes occur simultaneously inside the

same vapor cell. We split the probe (before the DLP) and the pump beams just before

the Rb cell. That means that two pairs of pump-probe beams enter the cell to start

two identical FWM processes and generate two pairs of twin beams. One probe beam

generates the two LOs (probe and conjugate) while the second probe beam is used to

generate the signal twin beam for the two HDs. Therefore, the LOs are automatically

matched to the entangled images that are being characterized as signals on the HDs.

Since the LO should be more intense than the signal, we block the signal seeding probe

beam to let it grow from a spontaneous FWM. On the other hand, the LO seeding

probe generates bright twin beams which grow from a stimulated FWM.

After the vapor cell, the signal twin beams are imaged on the two plasmonic

structures that we introduced in Fig. 5.2, while the LO twin beams pass through the

boro-silicate glass substrate. With this setup, the measurement apparatus for the LO
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and signal twin beams undergo almost the same optical paths to provide a better

mode-matching between the signals and the LOs of the entangled images.

The initial alignment of the HDs for each mode is performed with bright entangled

images for the signal to optimize the mode-matching efficiency of the HDs. The

mode-matching quantifies how similar the spatial profile of the LO is compared to the

spatial mode of the signal, and is calculated from the fringe contrast of the interference

between the LO and the signal. Assuming the LO and the signal have equal power,the

mode-matching efficiency is given by:

Mode-Matching =
Imax − Imin

Imax + Imin

=
Iamp

Iavg

, (5.1)

where I is the DC output of each HD, and the minimum, maximum, amplitude, and

average subscripts are defined in Fig. 5.4. We scan the phase of the LO using a small

mirror epoxied to a piezoelectric transducer (PZT). As we drive the piezo with a

triangular function, the interference of the LO and bright signal beam can be measured

on an oscilloscope synchronized with the function generator driving the piezo-mounted

mirror. For an ideal interference, complete spatial overlap between the LO and the

signal modes leads to a mode-matching of 100%.

For our experiment, we obtain a mode-matching of 97% when the entangled images

pass through the glass substrate, and 94% when they pass through the EOT plasmonic

structures. The fact that the mode-matching does not significantly change with and

without plasmonic structure gives another indication that the photon-plasmon-photon

conversion in the EOT is a coherent process that preserves the spatial information of
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Figure 5.4: Contrast fringes of the HD as we scan the phase of the LO.

the incoming optical fields.

After the initial alignment optimization, the input probe beam for the signal twin

beams is blocked and the process grows from the spontaneous emission, generating

a VTMSS. The spatial profile of the LOs, which are bright and patterned with the

“OU” logo, selects the spatial profile of the signal vacuum twin beams on the two HDs.

Figure 5.5(b) shows the spatial profile of the LOs used for the probe and conjugate

HDs.

The sum and difference signals to obtain the joint quadratures of the twin beams

are generated by adding and subtracting the signals from the two HDs using a HJ.

These signals are then analyzed on a SA. By scanning the phase of both LOs in a

synchronous way, we directly measure the joint quadratures needed for the inseparability

parameter. Figures 5.5(a) and (c) show the results of our measurements on the effect

of the plasmonic structures on the quadrature squeezing for “OU” entangled images.

The blue (red) traces show the noise of the sum (difference) signals normalized to the

SNL as the phase of the LOs are scanned linearly in time, before, Fig. 5.5(a), and after,

Fig. 5.5(c), the vacuum twin beams undergo EOT through the plasmonic structures.
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(c) Normalized noise of the joint quadratures after passing through EOT.

Figure reproduced from [72]

When the phase of the LOs is set to measure the amplitude quadratures, the

minimum of the red trace corresponds to the amplitude difference quadrature
〈
∆2X̂−

〉

and shows squeezing, while at the same time the blue trace corresponds to the amplitude

sum quadrature
〈
∆2X̂+

〉
and shows excess noise. When the phase of the LOs is set to

the phase quadratures, the minimum of the blue trace corresponding to the phase sum

〈
∆2Ŷ+

〉
shows squeezing, while the red trace for the phase difference

〈
∆2Ŷ−

〉
shows

excess noise. Therefore, as expected for the twin beams, the amplitude difference and

phase sum quadratures are squeezed. The traces plotted in Fig. 5.5 are normalized to

the SNL shown by dashed lines at zero.

The noise of both joint quadratures is below the SNL before and after the transduc-

tion process, indicating that entanglement is preserved after undergoing the photon-
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Parameter Value

FWM Gain 4

Pump Size (diameter) 3 mm

Pump Power ≈ 700 mW

Cell Temperature 115◦ C

PZT Amplitude 200 mV

PZT Freq. 500 mHz

Probes Mode-Matching after EOT 94%

Conjugates Mode-Matching after EOT 93%

Table 5.1: Relevant parameters for generating squeezed states and measur-

ing entanglement with two balanced HDs.

plasmon-photon conversion of the EOT. In particular, before the plasmonic structures,

both joint quadratures have a noise of 2.8± 0.2 dB below the SNL, which corresponds

to I = 1.05. After EOT, the noise of the joint quadratures is 1.1± 0.2 dB below the

SNL, corresponding to I = 1.55.

The reduction in entanglement after EOT is consistent with the reduction that

is expected from the losses introduced by the plasmonic structures. As described

in section 2.3, using a BS model for losses, we predict −1.15 dB of squeezing after

taking the losses due to the plasmonic structures and the slight degradation in HD

mode-matching into account. For the configuration used in this experiment, the initial

squeezing of the entangled images by an ID measurement was −3.5 ± 0.2 dB. The
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Parameter Value

Resolution Bandwidth (RBW) 30 kHz

Video Bandwidth (VBW) 100 Hz

Frequency 1 MHz

Span 100 Hz

Attenuation 0 dB

Preamp ON

Table 5.2: Relevant SA parameters used in the experiment.

reduction of squeezing level when measuring the quadrature squeezing without the

plasmonic structures is most likely due to the imperfect mode-matching and alignment

between the LOs and the twin beams. The FWM parameters used in this experiment

are listed in table 5.1 and the settings of the SA are listed in table 5.2.

These results show that entanglement in the twin beams is preserved by EOT

through the plasmonic structures. Therefore, we can conclude that the EOT process

is compatible with quantum entanglement and can maintain the quantum properties

of the twin beams [69, 106, 107, 145]. These results provide the first steps towards

a quantum plasmonic network and pointing to a mechanism for parallel quantum

plasmonic information processing [24, 144].
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5.2 Experiment: Quantum-Enhanced Plasmonic Sensing

Acknowledgement

The material in this section is published in [73]. The dissertation author is the first

author of this publication.

Knowing that plasmonic sensors are compatible with squeezed light, we use them as

the sensing device as described in chapter 3. In this section, we construct our quantum

sensing configuration by probing a plasmonic sensor with twin beams and performing

an ID measurement to detect modulations in the refractive index of air below the SNL.

5.2.1 Experimental Apparatus

The experimental setup for quantum plasmonic sensing is shown in Fig. 5.6. The twin

beams are generated from a FWM process in 85Rb atoms, as explained in section 2.2.2.

The probe from the twin beams is used for probing the plasmonic sensor to detect

changes in the refractive index of the air surrounding it. The probe beam, after

undergoing EOT through the plasmonic sensor is measured with a photodetector. The

conjugate beam of the twin beams acts as the reference and is directly sent to its

designated photodetector. A variable electronic attenuator (see section 2.3.3) on the

conjugate detector is used to minimize the measured noise between the twin beams

in an ID measurement. The difference signal is then analyzed on an electronic SA to
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Figure 5.6: Experimental implementation of quantum plasmonic sensing.

SA: spectrum analyzer, FG: function generator, HJ: hybrid junction. Figure

reproduced from [73]

characterize the SNR.

The parameter space for the FWM was scanned to obtain the maximum gain from the

process and consequently the best squeezing possible in the temporal degree of freedom.

Table 5.3 summarizes the optimized parameters for the FWM used in this experiment.

Since all the probe photons of the twin beams are focused on a single plasmonic sensor,

our sensing configuration is not sensitive to the spatial correlations. The spatial modes

of the twin beams become important in chapter 6 for the implementation of parallel

quantum plasmonic sensing.
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Parameter Value

∆ (one-photon detuning) 800 MHz

δ (two-photon detuning) 4 MHz

Pump waist diameter 1 mm

Pump power 600 mW

Probe waist diameter 0.7 mm

Probe power (seeding) 70 µW

Rb cell size 1 inch (diameter), 12 mm (length)

Pump–probe angle 0.5◦

Rb vapor cell temperature 109◦C

Table 5.3: FWM parameters leading to optimum squeezing for the quantum

plasmonic sensing experiment.
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The plasmonic sensor that we use in this experiment has an overall size of 200 µm

× 200 µm. These sensors were introduced in chapter 4 and the characteristic transmis-

sion spectrum and the SEM images for the particular sensor used for this experiment

are shown in Fig. 4.4. The plasmonic sensor shows an EOT transmission of ∼66%

at the probing wavelength of 795 nm. A layer of PMMA is deposited on top of the

nanohole array to protect the sample from oxidizing. We have verified that this layer of

PMMA does not significantly affect the functionality or the sensitivity of the sensor for

the ultrasound-based measurements described here.

The probe beam is focused to a waist diameter ≈ 20 µm into the plasmonic structure

to avoid beam diffraction and leakage from the edges of the sensor. Moreover, since

the plasmonic response is polarization dependent, we use a λ/2 wave-plate before the

sensor, as shown in Fig. 5.6, to align the polarization of the input light with the base of

the triangles.

5.2.2 Signal Generation: Chamber

We study the response of the plasmonic sensor to modulations in the refractive index

of air induced with an ultrasound buzzer, which is a piezoelectric material used to

generate pressure waves when driven with a modulation voltage. Because the index of

refraction depends on the pressure of air [146], such modulations lead to modulations

in the index of refraction of air around the plasmonic sensor. Moreover, the ultrasound

buzzer allows us to introduce modulations at high frequency, which makes it possible

to perform the measurements away from the low frequency technical noise.
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Figure 5.7: Cross-sectional cut (left) of the chamber (right) built to hold

the plasmonic sensor and ultrasound buzzer in a controlled environment.

To provide a well-controlled and stable modulation of the refractive index, a her-

metically sealed chamber was designed and built to enclose the plasmonic sensor and

the buzzer, as shown in Fig. 5.7. Such a design minimizes the undesired effects of air

currents or humidity changes during the data acquisition time, resulting in a controlled

environment. Moreover, the home-built chamber can be filled with liquids in case

modulations in such environments need to be studied.

5.2.3 Chamber Calibration

The magnitude of the pressure waves generated by the ultrasound buzzer depends on the

amplitude of the driving voltage applied in the buzzer. However, due to the formation

of ultrasound standing waves inside the chamber, the amplitude of the ultrasounds

depends on the frequency of the modulations and the geometry and the volume of the
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chamber. Therefore, each point inside the chamber has a different modulation amplitude

of the refractive index. To have a measure of the absolute changes in refractive index

for each voltage driving the buzzer, we calibrate the chamber via a Mach-Zehnder

interferometer, as shown in Fig. 5.8. Moreover, to ensure we are calibrating the refractive

index modulation at the location of the plasmonic sensor, we keep the location of the

plasmonic sensor fixed with respect to the probe beam.

The interferometer reads the modulations in phase (∆φ) due to the refractive index

modulations (∆n):

∆φ =
2πL

λ
∆n, (5.2)

where λ is the wavelength of the light (795 nm), and L is the length of the chamber

over which the phase change is introduced. Using a 50/50 BS before the chamber, we

use half of the beam to probe the chamber and the other half serves as the reference

beam. These two beams are overlapped to interfere on the second BS to produce the

difference signal at the output of the HJ that subtracts the photocurrents from the

photodetectors at the outputs of both ports of the interferometer. This way, phase

modulations lead to amplitude modulations through the interference signal on the

output of the interferometer.

We scan the phase of the reference arm with a mirror driven by a PZT, which

toggles the output signal of the interferometer between a complete constructive and

destructive interference. As we scan the phase of the interferometer by driving the PZT

with a sine function, a sinusoidal signal appears on the low frequency (DC) output of

the interferometer, similar to the interference pattern shown in Fig. 5.4. By using a
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Figure 5.8: Mach-Zehnder interferometer for calibrating the refractive

index modulation as a function of the voltage applied to the ultrasound

buzzer inside the chamber. FG: function generator, PZT: piezo electric,

BS: balanced (50/50) beam splitter.
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bias-tee (with a cutoff frequency of 100 kHz) at the output of the HJ, we can split the

DC and the high frequency (RF) components of the interference signal. As we scan the

phase of the interferometer, the interference fringes are scanned and we can calculate

the contrast of the interferometer as V = A sin (∆φ), where A represents the amplitude

of the peak-to-peak signal.

The DC port is also used to lock the interferometer to its most sensitive operating

point. The most sensitive point to operate the interferometer is where we have the

sharpest slope for the interference signal, corresponding to the point where Iavg becomes

zero in Fig. 5.4. This is when the signals from the two outputs are completely identical

and cancel each other. Therefore, we lock the phase of the interferometer using the

proportional-integral-derivative (PID) locking setup at this point.

After locking the interferometer to its zero crossing phase, we can calibrate the

amplitude of the phase modulations introduced by the ultrasound buzzer. Since their

frequency is faster than the PID response, they are not attenuated by the locking

setup. Moreover, we monitor these modulations using the RF portion of the bias-tee,

independent from the DC portion which was used for the locking setup. Therefore, the

modulation signal appears on the RF portion and can be analyzed with the SA. We

generate the modulations in the refractive index of air by driving an ultrasound buzzer

with a sinusoidal function at its resonant frequency of 199 kHz.

With small driving voltages of the buzzer that generates the modulation signals

when locked around the most sensitive point, changes in phase are linearly related

to the changes in the amplitude of the interference signal. Using the proportionality
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Figure 5.9: (a) Modulation signal on the oscilloscope from the locked

interferometer as we drive the ultrasound buzzer. (b) Calibration results:

left vertical axis is ∆n and the right vertical axis is the magnitude of the

modulation signal on the SA. Dashed blue trace is the linear fit to the

measured data (red trace). The horizontal axis is time, which is proportional

to the driving voltage of the buzzer.

138



relation, we have:

∆φ

π
=
B

A
=⇒ ∆φ =

πB

A
, (5.3)

where B is the amplitude of the ultrasound modulations around the zero-crossing point

of the interferometer, as shown in Fig. 5.9(a).

Using Eq. (5.2), the average change in the refractive index (∆n) along the effective

propagation length of the chamber (L) can be extracted from the amplitude of the

modulation signal according to:

∆n =
λB

2AL
. (5.4)

The amplitude of the modulation signal depends on the driving voltage of the transducer:

higher driving voltages of the ultrasonic buzzer generate stronger ultrasonic pressure

waves, which lead to larger refractive index modulations. Additionally, the magnitude

of the refractive index modulations generated by the ultrasound buzzer is proportional

to the size of the driving voltage Vd of the buzzer:

∆n ∝ Vd. (5.5)

Therefore, we can measure the amplitude of the modulation signal at different driving

voltages of the buzzer Vd, as shown in Fig. 5.9(b). By fitting a line to the data, we can

directly find the corresponding change in refractive index at each driving voltage of the

buzzer, that is, ∆n to Vd relation of the form:

∆n =

(
1.651× 10−5 [RIU ]

[V ]

)
· Vd, (5.6)

where we used the measured values of B = 272 mV, A = 3.3 V, and L = 6.35 mm for

our calculation. In this analysis, the horizontal intercept of the linear fit in Fig. 5.9(b)
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is bound to zero, due to the fact that when there is no driving voltage, no modulation

exists.

5.3 Experimental Results

After calibrating the ultrasounds inside the chamber, we can probe a plasmonic sensor

with twin beams to detect these modulations in the refractive index of air. When we

drive the ultrasonic transducer at its resonant frequency (199 kHz), if the size of this

modulation signal is large enough, we can see the modulation on top of the noise in the

ID measurement output.

The minimum amplitude of the modulation in the refractive index that the plasmonic

sensor can detect depends on the response of the sensor (defined by the slope of the

transmission transfer function of the sensor), the magnitude of the ultrasound standing

waves, and the optical power and noise properties of the light probing the sensor.

Placing a given plasmonic sensor at a fixed location and with a fixed optical power, a

constant driving voltage of the buzzer (Vd) generates a stable modulation signal. As

described for the calibration process, the magnitude of the modulation in transmission

through the plasmonic sensor is linearly proportional to the modulation in refractive

index, which itself depends on the driving voltage of the buzzer.

The noise of the measurement, on the other hand, depends on the properties of the

probing light: for a classical state, the noise is at or above the SNL, while for the twin

beams it can be reduced below the SNL due to their quantum correlations. The initial
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ID squeezing between the twin beam was −9 dB which was degraded to −4 dB (60%

below the SNL) after 66% intensity transmission through the plasmonic sensor and

with −3.5 dB optimized EA.

For the classical counterpart of our quantum plasmonic sensing configuration, we

replace the twin beams with two coherent states (two laser beams which do not undergo

a nonlinear amplification). One laser beam with the same power as the probe beam

probes the sensor, while another beam of the same power as the conjugate beam

serves as the reference beam, leading to the measurement at the SNL with two beams.

Moreover, to keep the number of photons probing the sensor fixed as our resource, we

lock the optical power in the probe beam at 70 µW with the AOM that generates the

frequency red-shift of the probe beam (not shown in Fig. 5.6). This amount of optical

power is set by the saturation limit of the photo-detectors.

5.3.1 Discrete Signals

First, we apply a modulation signal with a constant discrete driving voltage. Figure 5.10

shows the measured power spectrum normalized to the SNL. In this figure the SA is swept

over a 2 kHz span centered around 199 kHz. For a large driving voltage, corresponding

to ∆n = 1.6×10−7 RIU, the modulation signal at 199 kHz is large enough to be resolved

using both coherent states (blue trace) and twin beams (red trace). By using the twin

beams, we obtain an enhancement in the SNR due to the remaining −4 dB of squeezing.

Such a quantum enhancement allows us to resolve smaller modulation amplitudes with

our twin beam than with coherent states, as can be seen in Fig. 5.10(b). In this case, a
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Figure 5.10: Modulation signal in transmission from the plasmonic sensor

from modulations in the refractive index of air measured with a SA. (a)

Signals due to large changes in the refractive index can be resolved with

both the coherent states and the twin beams while smaller signals. (b)

As the magnitude of the modulation signal reduces, only twin beams can

resolve it. SA settings: RBW= 100 Hz, VBW= 10 Hz, with 50 times

averaging. Figure reproduced from [73].

modulation signal corresponding to ∆n = 8.2×10−9 RIU, can be distinguished from the

noise only with the twin beams. This result explicitly shows the higher sensitivities that

we can obtain with the implemented quantum-enhanced plasmonic sensors, enabling us

to detect modulation signals beyond the SNL.

5.3.2 Ramping Signal and SNR

In addition to detecting the refractive index modulation signal below the SNL using a

plasmonic sensor, we can measure the absolute sensitivity and quantify the quantum
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enhancement, defined in chapter 3. To obtain these values, we linearly decrease the

driving voltage of the ultrasonic buzzer using a down-ramping sawtooth function on

the function generator. Moreover, the SA is set to analyze the signal at the modulation

frequency (199 kHz) using its zero-span feature, while synchronized with the function

generator driving the buzzer. Therefore, effectively, the SA is set to measure the power

in the signal peak, shown in Fig. 5.10. The measured signals are shown in Fig. 5.11,

using classical states (blue trace) and twin beams (red trace). Moreover, to find the

noise of the measurement for each state, we let the SA free-run while the buzzer is not

being driven. The noise level of such measurements is determined by the noise of the

optical field used to probe the sensor, as shown in Fig. 5.11 with pale blue and pale red

traces for the SNL and the twin beams, respectively.

The signal displayed on the SA (SSA) is a quadrature addition of the noise (σnoise)

and the transmission modulation signal itself (Ssig):

S2
SA = σ2

noise + Cs · S2
sig, (5.7)

where the scaling factor Cs is related to the averaging on the SA in log scale, as averaging

the log of a signal is not the same as taking the log of the averaged signal. The scaling

factor depends on the ratio of the RBW to the VBW of the SA and the number of

times averaging over the traces [147], and becomes significant for signals close to the

noise [60]. By setting the SA to power average the traces in linear scale, this correction

factor would be internally taken into account.

As the amplitude of the driving voltage decreases, the magnitude of the modulation
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Figure 5.11: Quantum-enhanced sensing with the plasmonic sensor. (a)

Zero-span at 199 kHz: Decreasing the amplitude of the ultrasound mod-

ulation, hence ∆n, the signal reaches the noise at difference levels with

(i) coherent states and (ii) twin beams. (b) Signal-to-noise ratio (SNR)

vs. changes in the refractive index of air. The values shown indicate the

smallest changes in refractive index where we can be 99% confident that

what we are detecting is “not” noise. (c) Comparison between the SNR

using a balanced classical configuration with two coherent states, trace (i),

twin beams, trace (ii), and the optimal classical configuration with a single

coherent state, trace (iii). SA settings: RBW = 10 Hz, VBW = 1 Hz,

Averaging: 50 times. Figure reproduced from [73].
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signal gets smaller to a level that cannot be clearly distinguished from the noise (pale

traces). According to Eq. (5.7), the SNR in logarithmic scale is calculated as:

SNR [dB] = Signal (mod. ON) [dBm]− Signal (mod. OFF) [dBm]− CF, (5.8)

where the correction factor CF is the same as the Cs in log scale, and varies with the

calculated SNR. Since we are interested in the SNR values in linear scale, we convert

the value obtained in Eq.(5.8) into linear scale:
√

10SNR[dB]/10. The linear values of the

SNR calculated as described above are shown in Figs. 5.11(b) and (c). As expected, the

calculated SNR values have linear relations with respect to changes in refractive index.

According to the definition of the sensitivity in section 3.1, we are interested in the

point where we cannot resolve the modulation signal from the noise. Since the noise of

the twin beams is lower than the SNL, the noise starts to dominate the measurement

at lower values of ∆n with the twin beams than with coherent states. Here, we use

the 99% confidence interval standard for sensitivity, which shows the (∆n)min at which

the signal can be distinguished from the noise, with 99% confidence. Using a linear fit

for the SNR and bounding its intercept to zero, which corresponds to the point when

there is no signal, (∆n)CS
min = 8.6× 10−9 RIU when probing with coherent states and

(∆n)TB
min = 5.5× 10−9 RIU when probing with twin beams, as shown in Fig. 5.11(b).

These results are obtained for particular values of the bandwidths for the measure-

ment system used in our experiment. To make our results independent of the detection

bandwidth, we normalize the absolute sensitivities to the resolution bandwidth (RBW)

of the SA that we used in these measurement, i.e. 100 Hz. The RBW is the bandwidth
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window for the detected power on the SA. Since we are interested in the SNR as the

ratio of the signal to the noise in volts, we take the square root of the RBW. Therefore,

taking the bandwidth of the measurement system into account, the sensitivities become

8.6× 10−10 RIU/
√

Hz and 5.5× 10−10 RIU/
√

Hz when probing with coherent states

and twin beams, respectively.

5.3.3 Quantum Enhancement

As explained in section 3.5, the ratio between the sensitivities obtained with twin beams

to the one at the SNL provides the QEF. This ratio quantifies the enhancement we can

achieve by using the quantum entangled states of light. Therefore, we can measure the

QEF by taking the ratio of the minimum resolvable change in refractive index obtained

with the coherent states to the one with the twin beams, as defined in section 3.5. Since

the plasmonic sensor used to measure the changes in air refractive index is the same

with both states of light, the contribution to the sensitivity due to the characteristic

response of the plasmonic sensor cancels as a common factor. Therefore, for a given

sensor, and with a fixed optical power, the QEF depends only on the amount of noise

reduction in twin beams:

QEF =

√
(∆2M̂−)CS

min

(∆2M̂−)TB
min

=

√
1

Rlin

, (5.9)

where M̂− is the ID measurement signal, and Rlin is the level of squeezing measured in

linear scale, as introduced in Eq. (2.38).

Using the initial−9 dB squeezing right after the 85Rb vapor cell, the QEF corresponds
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to 2.82. This means that we would expect to be able to detect changes in the refractive

index of air as small as (∆n)TB
min = 3× 10−10 RIU/

√
Hz, using the same optical powers

and plasmonic sensor. Due to all the optical losses in the measurement, such as the

optical loss from the optical elements in path as well as the 66% EOT from the plasmonic

sensor, the measured squeezing with our twin beam is limited to −4 dB, corresponding

to a QEF of 1.58.

By comparing the absolute sensitivity using coherent states and twin beams, we

can directly measure the QEF from the experimental results. According to the val-

ues shown in Fig. 5.11, the ratio between these two sensitivities: (∆n)CS
min/(∆n)TB

min =

8.6×10−10 RIU/
√

Hz

5.5×10−10 RIU/
√

Hz
= 1.54, which is consistent with the expected QEF from the remain-

ing −4 dB of squeezing.

5.3.4 Optimal Classical Measurement with a Single Beam

When measuring with a pure coherent state, the optimum measurement corresponds

to using only one coherent state probing the sample. This can be seen in the noise

calculations for the ID measurement in Eq. (2.44), where the SNL gets minimized when

the EA is set to zero, G = 0. This explicitly shows that when we have no quantum

correlations in the reference beam, the addition of the second beam only increases the

noise as their fluctuations are uncorrelated and add up in quadrature. Therefore, instead

of comparing with the classical counterpart of our quantum sensing configuration, it is

interesting to compare the sensitivity with the optimum classical measurement setup

with only one coherent state probing the sensor. Our resource needs to be kept the
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same; that is, the number of photons reaching the plasmonic sensor needs to be kept

equal to those in the probe beam (from the twin beams) before the sensor.

As mentioned before, since it is practically hard to have a pure coherent state, to reach

the SNL it is necessary to eliminate all the technical noise from a beam of light through

an ID measurement. Therefore, to estimate the noise of the single-beam measurement at

the SNL, we perform a balanced measurement with two coherent states, each with equal

power to that of the probe from the twin beams. The result of such measurement is

shown in Fig. 5.11(c) in green, trace (i), and results in (∆n)2CS
min = 9.6×10−10 RIU/

√
Hz.

Since the noise of the ID signal is equal to the sum of the noise in both beams, which is

twice the noise of the single beam probing the sensor, we estimate the sensitivity of a

single coherent state by dividing the noise in half, or in logarithmic scale, subtract 3 dB

from the SNR of the ID measurement with two coherent states. This calculation leads to

the dashed line, trace (iii), in Fig. 5.11(c), which provides an estimation of the sensitivity

of a measurement with a single coherent state to be (∆n)1CS
min = 6.8× 10−10 RIU/

√
Hz,

with the same power as the probe beam from the twin beams. Even compared to

the optimal classical measurement with a single-beam coherent state configuration,

we obtain a QEF = 6.8×10−10 RIU/
√

Hz

5.5×10−10 RIU/
√

Hz
≈ 1.24, corresponding to a ∼ 24% quantum

enhancement in sensitivity.
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5.4 Conclusion

In this chapter we demonstrated an experimental implementation of quantum-enhanced

plasmonic sensing to directly detect modulations in the refractive index of air beyond

the SNL. Although this measurement detects modulations in the refractive index

at 199 kHz, the results can be extended to other sensing applications and at other

frequencies. Plasmonic sensors are typically used to detect slow varying changes in

refractive index. Such measurements can be performed by monitoring the transmission

change at DC frequencies, where technical noise dominates. Technically, it is hard to

generate squeezed light at such low frequencies [148, 149]. However, it is possible to

extend the presented quantum sensing configuration to the regime where the changes

in the refractive index are at low frequencies and benefit from the same quantum

enhancements.

Although this experiment is not the first of its kind, our experiment is nearly five

orders of magnitude more sensitive compared to previous proof-of-principle quantum-

enhanced plasmonic sensing [75, 105, 109, 143]. For example, the smallest detectable

change of refractive index using quantum resources in Ref. [75] is reported to be

0.001 RIU with a 1 kHz bandwidth, which leads to ∼ 3× 10−5 RIU/
√

Hz. Moreover,

the sensitivity of our quantum plasmonic sensing configuration is comparable to the

classical state-of-the-art ultrasound sensing with plasmonic sensors [29], where the

optical power is reported as 14-times higher than the optical power of the probe beam in

our experiment. Using such high powers can cause thermo-plasmonic effects and damage
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the plasmonic sensor, the target sample to be detected, or even the photodetectors.

The achievable QEF is mainly limited by the losses after the source, which can

degrade the initial quantum correlation and the measured level of squeezing between

the twin beams. In our experimental setup, the major sources of optical loss include

the imperfect EOT process through the plasmonic sensor (∼34% loss) and the optical

losses introduced by optical elements (∼27% loss). The loss from the plasmonic sensors

is not fundamental and can be minimized significantly by optimizing their design and

fabrication process. Near-ideal plasmonic structures approaching 100% EOT response

can be expected [150, 151]. However, as mentioned in chapter 3, resonance sensors are

not sensitive to changes in transmission at the peak of their resonance and therefore

introducing some losses is inevitable. By eliminating the losses in the system, or

redesigning the measurement to estimate using phase, for instance, would allow us to

take better advantage of the initial available quantum correlations. Under such ideal

conditions, we would expect a QEF of 182% with the initial −9 dB squeezing in our

twin beams.

These results can be extended to other compatible measurement configurations,

opening new possibilities for real-life applications, such as high precision biomedical

and biochemical detection schemes.
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Chapter 6

Parallel Quantum Plasmonic Sensing
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6.1 Introduction

Parallel measurements can allow us to estimate multiple parameters with available

resources simultaneously. If the sensitivity of these measurements is limited to the

SNL, quantum squeezed states of light can enhance their sensitivity further. In par-

ticular, multi-mode quantum states can perform multiple measurements or probe

multiple sensors simultaneously to estimate multiple parameters in parallel. Therefore,

quantum sensing is extendable to complex sensing architectures. This allows us to

benefit efficiently from available quantum resources for implementing fast measurements

beyond the SNL [152, 153, 154]. Various applications which require parallel optical

readout of multiple parameters, including microscopy, spectroscopy, gravitational wave

detection, molecular tracing [38, 76, 116, 155, 156, 157, 158, 159], can benefit from

multi-spatial-mode twin beams of light to enable a quantum multi-parameter estimation

configuration [160, 161]. Such parallelism requires the existence of quantum correlations

in multiple modes to estimate multiple parameters on a single sensor, or to perform
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multiple measurements on multiple sensors each probed by a different quantum spatial

mode.

In particular, if the quantum correlated modes are spatially resolvable, these modes

can be used to probe an array of spatially distributed sensors in parallel. Twin beams

of light are intrinsically capable of carrying quantum correlations in multiple spatial

modes [162]. Each pair of these temporally correlated modes in the transverse plane

of the probe and conjugate can ideally be treated as independent quantum correlated

beams of light [163]. Spatial squeezing has been shown to be applicable in parallel

quantum-enhanced sensing for biological imaging and molecular tracking [76, 77] and for

enhancing the sensitivity of beam displacements [35, 164]. Similarly, the multi-spatial-

mode nature of the twin beams allows us to perform parallel sensing. For example,

with an array of sensors and a corresponding array of photodetectors, one can utilize

localized correlations in the subregions of the twin beams to perform a spatially-resolved

distributed parallel quantum sensing. These independent spatial subregions of the twin

beams result from the phase-matching condition, as introduced in section 2.4.2.

In chapter 5, we implemented a quantum-enhanced sensing setup to probe a single

plasmonic sensor by using twin beams of light and directly measuring changes in the

refractive index of air with a sensitivity beyond the SNL. In that setup, the spatial

correlations in the twin beams were averaged over all the spatial subareas by focusing

the beam on a single photodetector. Here, we extend that setup to exploit the quantum

correlations embedded in the transverse plane of the twin beam to independently probe

four plasmonic sensors with independent spatial subregions of the twin beam. This
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allows us to enhance the sensitivity of the array of four independent plasmonic sensors

in a parallel configuration. As introduced in chapter 4, plasmonic sensors detect local

modulations in the refractive index of air in their proximity.

The parallel quantum plasmonic sensing described here is a proof-of-principle for

practical parallel quantum information [165] and is a step towards realizing a spatially

resolved quantum sensing configuration. Moreover, it illustrates a new path to take

advantage of quantum resources in various degrees of freedom for sub-shot-noise sensing

applications. These results can be applied to other parallel plasmonic sensing setups

which are conventionally probed with classical states of light [116, 158, 159] to enhance

them through the available temporal and spatial quantum correlations in twin beams.

In this chapter, we first describe the building blocks for the experimental imple-

mentation of our parallel quantum plasmonic sensing. Then, we discuss the results for

parallel detection of modulations in the refractive index of air below the SNL.

6.2 Experimental Setup

The experimental setup that we use for the quantum parallel sensing is shown in

Fig. 6.1, which extends the setup described in chapter 5 [73]. Here, instead of one

plasmonic sensor, an array of four plasmonic sensors (quadrant plasmonic sensor, QPS)

is probed simultaneously with multiple spatial modes in the twin beams to detect local

modulations in refractive index of air at each sensor independently. The corresponding

correlated subareas of the conjugate beam are masked with an array of four masks
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Figure 6.1: Experimental setup for parallel quantum plasmonic sensing.

Function generator (FG) drives the ultrasound buzzer at 400 kHz. QPS:

quadrant plasmonic sensor, QM: quadrant mask, QPD: quadrant pho-

todetector, SA: spectrum analyzer, G: EA, ∆: subtraction port of the

HJ.
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(quadrant mask, QM) to select the four reference subareas. The size and position of

the QM are designed to be identical to the QPS to ensure the corresponding spatial

subareas in both twin beams are selected. The outgoing four pairs of corresponding

subregions of the twin beam after the QPS and the QM are imaged on a pair of quadrant

photodetectors (QPD) to perform four independent ID measurements.

6.2.1 Multi-Spatial-Mode Twin Beams

For our experiment, the twin beams of light are generated with the FWM process in

the D1 line of hot 85Rb atoms, as described in chapter 2. The experimental parameters

used for the experiment described in this chapter are listed in table 6.1. With these

parameters the FWM generates twin beams with an initial ID squeezing of −5.2 dB.

As discussed in section 2.4, subareas in the twin beams can independently preserve

the squeezing level of the initial twin beams. Moreover, the squeezing at our measured

frequency (400 kHz) between subareas of the twin beams is preserved only in the near

field. To verify this behavior, we placed razor blades in the path of the twin beams

at the image plane of the Rb cell (near field) to block half or three quarters of the

beams. As was shown in Fig. 2.19, we verified that the ID noise spectrum between

the remaining subareas of the twin beam almost maintain the level of squeezing of the

whole beam. We have also verified that in a far field plane, the noise of the clipped

subareas of the twin beam cannot be cancelled at low frequencies and show excess

noise (not shown here) [70]. Therefore, we choose the near field as the sensing plane for

implementing our experimental parallel quantum sensing.
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Parameter Value

FWM Gain ∼ 8

Pump Diameter (1/e2) 3.0 mm

Pump Power ∼ 1.9 W

Probe Diameter (1/e2) 2.5 mm

∆ (one-photon detuning) 1.05 GHz

δ (two-photon detuning) 6 MHz

Pump-Probe Angle 0.53◦

Cell Temperature 111◦ C

ID Squeezing −5.2 dB

Table 6.1: Experimental parameters for the FWM process optimized to

generate multi-spatial-mode squeezed states.
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With the experimental settings for the FWM process listed in table 6.1, the initial

−5.2 dB of squeezing is reduced to −4.5 dB when only one subarea of a quarter of

the size of the twin beams is left. As mentioned in chapter 5, the source is capable

of achieving a squeezing level as high as −9 dB with the experimental parameters

listed in table 5.3 [73]. However, those parameters do not provide the large number

of spatial modes needed for parallel sensing. This behavior manifests the trade-off

between producing a large level of squeezing with the whole twin beam vs. having a

large number of spatial modes that exhibit squeezing.

6.2.2 Quadrant Plasmonic Sensors

The sensors that we use for parallel sensing are plasmonic sensors whose operating

mechanism is explained in chapter 4, and have the same nanohole structures as the

single sensors used in the experiments of chapter 5. The particular plasmonic structures

that we use in this chapter are also composed of a periodic array of subwavelength

triangular nanoholes∗. in a thin silver film (≈ 100 nm thick) deposited on a glass

substrate. A microscope image of the QPS is shown in Fig. 6.2(a), where each quadrant

is a single plasmonic sensor (200 µm× 200 µm). The gap between the quadrant sensors

(20 µm) is to isolate the four sensors. Numbers in the microscope image indicate the way

we label each one of the quadrant sensors on the probe beam as pi, with i = 1− 4. The

characteristic transmission resonance responses of these four plasmonic sensors are given

in Fig. 6.2(b). To perform the white light spectroscopy for the transmission of these

∗SEM images are shown in Fig. 4.4(b)
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Figure 6.2: The QPS used in our parallel quantum sensing experiment. (a)

Microscope image of the QPS. (b) Normalized EOT spectra of the four

independent plasmonic sensors. When the sensors are tilted by ≈ 22◦, their

transmissions reach ∼ 50% at λ = 795 nm.

sensors, the angle of incidence on the plasmonic sensor is optimized for transmission

amplitude and slope at 795 nm. By changing the angle of incidence, the effective

periodicity of the nanoholes changes, which can shift the resonance response of the

plasmonic sensors to higher wavelength. These plasmonic sensors show nearly 50%

transmission at ≈ 22◦ ± 2◦ incidence angle.

6.2.3 Imaging System: Beam Size at Sensing Plane

To take advantage of these quantum correlated subareas of the twin beam in the near

field for our parallel sensing purpose, we image the center of the vapor cell onto the

sensing plane (the location of plasmonic sensors). To find the location of the near field

of the Rb cell to place the QPS and QM in the path of the twin beams, we place a

target mask (Thorlabs NBS 1963A) with a pattern of number 18 on the seeding probe
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Figure 6.3: Setup for finding the image planes for the near field using a

Thorlabs target mask with number 18. The QPS and QM are placed at

the “sensing plane”. The quadrant detectors are placed at the “detector

plane”. Not to scale.
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before the Rb cell. Using an imaging lens system, shown as Lseed in Fig. 6.3, we image

this target mask to the center of the Rb cell to seed the FWM process and generate

entangled images. Two telescope systems are placed after the cell, shown as L
′
pr and L

′
c

for the probe and conjugate beams in Fig. 6.3, respectively, to transfer these images

from the center of the cell to the sensing plane. This sensing plane is where we put the

QM and QPS for our parallel sensing. These imaging systems form clear and sharp

near field images with the desired magnification, which will be explained shortly.

Due to the Kerr nonlinear focusing effect caused by the intense pump beam for

the FWM, the sharp image of the probe gets slightly blurry and the imaging plane is

slightly shifted along the beam from where it was without the pump beam. We adjust

the sensing plane to place the QPS and QM accordingly to compensate for this effect.

The images of the alignment mask on the twin beams at the sensing plane are shown

in Fig. 6.3. As we can see, in the near field, the generated entangled images are exact

copies of each other with the same orientation. We need to emphasize that this target

mask was only used for alignment purposes. After finding the near field sensing planes,

the aligning mask was removed to perform the measurement with spatially multi-mode

twin beams with a bright Gaussian profile.

The imaging system after the FWM (L′pr in Fig. 6.3) also demagnifies the probe

beam to illuminate the QPS with a Gaussian waist diameter (1/e2) of 360 µm. This

ensures the illumination of a maximum area of the QPS without being leaked at the

outer edges of the sensor, while having the smallest area of the beam blocked by the

20 µm silver division separating the sensors. This division isolates individual sensors
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from any cross-talk between them while performing parallel sensing.

Another imaging system, shown as L′c in Fig. 6.1, demagnifies the conjugate beam

to illuminate the QM with a Gaussian profile with waist diameter of 1/e2 = 360 µm.

The QM on the conjugate beam allows us to access subareas in transverse plane of the

conjugate beam which are correlated with the corresponding subareas of the probe beam,

while blocking the uncorrelated subregions. The QM is also aligned to the conjugate

beam with the same angle (22◦ ± 2◦) as the QPS is aligned to the probe. These

considerations assure maximum overlap between the correlated subareas in the twin

beams that make it through the QPS and QM, leading to the maximum cancellation of

quantum noise.

The optimum size of the beams illuminating the QPS and QM is obtained from

modeling the optimum size of the Gaussian waist diameter of an incident beam that can

provide maximum transmission through the QM. The Gaussian profile can be described

as:

Gaussian =
1

2πσxσy
exp

[
−
(
x2

2σ2
x

+
y2

2σ2
y

)]
, (6.1)

for waist diameters of σx and σy along the x- and y-directions, respectively, and centered

at the origin. We then integrate the total power of the Gaussian beam with different

waist sizes (σ = σx = σy) to find the maximum total power passing through the QM.

The size and the tilting angle of the QM in this model are set equal to the ones of the

QPS and QM in the experiment, as [d cos(θ)] along the x-direction and d along the

y-direction. As mentioned before, the horizontal tilting is θ = 22◦ and d = 200 µm.

The result of this modeling is plotted in Fig. 6.4, which shows a maximum transmission
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Figure 6.4: (a) Gaussian profile of output beam at the QM or QPS. (b)

Transmission of the Gaussian beam through a QM as a function of the

beam waist diameter. Transmission is maximum for a waist diameter of

about 330 µm. Here, the QM is tilted by 22◦.

of ≈ 80% at a waist diameter of about 330 µm. Due to the technical limitations, the

experimental beam size of the twin beams on the QPS and the QM are 360 µm. As can

be seen from Fig. 6.4(b), the transmission does not change much from the theoretical

optimum beam diameter.

6.2.4 Quadrant Detectors with Home-Built Electronics

The eight quadrants of the twin beam, four from the probe beam after transducing

through the QPS and four from the conjugate after passing through the QM, are

magnified and imaged on two independent QPDs (Hamamatsu, S5980/-10, each quadrant

of the four photodetectors is 2.48 mm× 2.48 mm), with a quantum efficiency of about

95% at 795 nm. A telescope lens system, indicated as L
′′
pr for probe arm and L

′′
c for

conjugate arm in Fig. 6.1, was used for magnifying and imaging the eight quadrants

162



onto the corresponding eight photodetectors. These lens systems consist of an aspheric

lens (Thorlabs A240TM-B) and a 2-inch diameter lens. The aspheric lens has an

effective focal length of EFL0.8 mm and a numerical aperture of NA= 0.5 to capture

the maximum amount of light diffracted from the QPS and QM. The detection plane

for placing the quadrant detectors was also verified by using the target mask on the

seed probe and forming the entangled images, as shown in Fig. 6.3.

Since the QPS and the QM are imaged on the QPDs for each beam, we label the

QPDs according to its corresponding subareas of the twin beam. As we labeled the QPS

on the probe beam with pi (i = 1− 4), we label the QPD for the QPS with the same

labels. Also, we label the QM on the conjugate beam as ci (i = 1− 4). Accordingly, we

label the QPD capturing the light from the QM with the same labels as ci (i = 1− 4).

We have designed and assembled the electronics for the QPD such that we can

access the low- (DC) and high-frequency (RF) components of the individual detectors.

The high-frequency components of a pair of QPDs, one from the probe’s quadrant and

another one from the conjugate’s quadrant, are subtracted with a HJ. The output of

this ID is then analyzed with the SA.

6.2.5 Independence of Multiple Spatial Modes

The presence of multiple spatial modes was verified in section 2.4.2, where we showed

that the squeezing is maintained in twin beam subareas by blocking quarters of the

beams, as was shown in Fig. 2.19. To check the independence of these multiple

spatial subregions in the twin beam, we measure the noise of the twin beam subareas
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Figure 6.5: Noise power from individual quadrants for the probe p3 (yellow)

and the conjugate c4 (red). The ID signal from p3 − c4 (blue) overlaps the

signal from adding (on the computer) the signal from the two quadrants

p3 + c4 (violet). This indicates that the spatial subregions of the twin beam

are independent. SA analysis frequency: 400 kHz.
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individually (subareas pi from the QPS and cj from the QM, for instance), as well as the

ID measurement between them. Due to the spatial multi-mode nature of the quantum

correlations in the twin beams, selecting a pair of quantum correlated quadrants leads to

a noise reduction, while the noise of an ID measurement between uncorrelated quadrant

pairs adds up in quadrature. Since the sensing plane of this experiment is in the near

field, a quadrant subarea of the probe beam is quantum-correlated with the quadrant

subarea of the conjugate beam with the same label, i.e. pi and ci. On the other hand,

uncorrelated quadrant subareas of the twin beam are labeled with different indices: pi

and cj with i 6= j. The results of such a test measurement for quadrant pairs p3 − c4,

are shown in Fig. 6.5, where the noise power of the uncorrelated subareas adds up in

quadrature and reaches the same level as that of adding the noise of the individual

uncorrelated quadrants. This explicitly shows that the quadrant subareas of the twin

beam are independent from each other.

6.3 Implementation of Parallel Quantum Plasmonic Sensing

Similar to the experiment presented in chapter 5, we modulate the index of refraction

using an ultrasound buzzer in a controlled environment and perform measurements

with twin beams. In this chapter, the measurements will be done on all four plasmonic

sensors in parallel. The QPS is probed by four independent subareas of the probe beam

and the QM is used to select the quantum-correlated quadrants on the conjugate beam.

We can perform ID measurements between 16 pairs of QPS and QM. Four pairs have
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Figure 6.6: Initial squeezing spectrum (red) normalized to the SNL (blue)

from an ID measurement. Each beam is focused onto a single photodetector.

quantum correlations and the ID measurement can result in a squeezed measurement.

The other twelve pairs are uncorrelated and will exhibit excess noise as they correspond

to independent spatial regions.

6.3.1 Experimental Results

We first measure the initial squeezing spectrum of the twin beam right after the

FWM process by focusing each beam on a single photodetector and performing an ID

measurement. The squeezing spectrum is shown in Fig. 6.6. The squeezing of our twin

beam has a maximum noise reduction, reaching a −5.2 dB squeezing, at ∼ 400 kHz.

Therefore, we choose to perform our parallel plasmonic sensing with a signal modulated

at this frequency.

When performing the experiment, the probe beam of the twin beams under-
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goes ≈ 48% transmission from the plasmonic QPS (QPS transmission ∼ 50%, glass

substrate transmission ∼ 95%) and the conjugate beam undergoes about 90% transmis-

sion from the QM on its path. Since optical loss in the probe quadrants is significantly

higher than the one in the conjugate beam, the home-built electronics for the QPDs

allow us to insert a variable EA on the conjugate detectors and maximize the noise

reduction in the tiwn beam quadrants. By scanning over different values of the variable

EA, with an EA of −6 dB, we can maximally cancel the quantum noise in the correlated

pairs of quadrant detectors. With these values, we expect theoretically (see section 2.3.3)

to achieve ≈ −2.5 dB of squeezing in each quadrant after losses and the insertion of the

EA. In this estimation, we assume that the size of the coherent areas in the twin beam

are infinitely small, or alternatively, that each quadrant subarea of the twin beams

contains an infinite number of coherence areas. Therefore, selecting the subareas for

the QPS and the QM would not reduce the squeezing in the twin beam subareas.

The remaining squeezing between correlated pairs of quadrant twin beams after the

QPS and QM is experimentally measured to be: p1− c1 ≈ −1.4 dB, p2− c2 ≈ −1.2 dB,

p3 − c3 ≈ −1.0 dB, and p4 − c4 ≈ −1.1 dB. The difference between the expected and

the measured levels of squeezing is due in part to the finite size of the coherence areas

and an imperfect alignment of the imaging planes and corresponding quadrants.

6.3.2 SNL Calibration

The SNL can be measured with coherent states of the same optical power as the twin

beam quadrants while keeping the optimum EA of the conjugate detector fixed to the
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level determined with the twin beams. For a pure coherent state, an ID measurement

with imbalanced optical losses and an optimum EA on the conjugate detector provides

the real SNL. Since we do not have a pure coherent state, we check whether our

measurement becomes shot-noise limited when we use a laser beam which does not

undergo FWM. We verify that our measurement is at the SNL showing a linear behavior

for the noise vs. total optical power. Also, this behavior matches fairly well with the

expected values for calibrating the SNL with a pure coherent state.

6.3.3 Signal Generation

As introduced in chapter 5, we generate the modulation signal by driving an ultrasound

buzzer (Multicomp: MCUSD-11A400B11RS) to emit ultrasound pressure waves at its

resonance frequency, in this case at 400 kHz. Similarly, the ultrasound buzzer and the

QPS are placed inside the same hermetically sealed chamber described in section 5.2.2.

By driving the ultrasound buzzer, the standing pressure waves inside the chamber

generate modulations in the refractive index of air with different amplitudes near each

quadrant of the QPS. As a result, transmission modulations through each quadrant of

the QPS give rise to four modulation signals with different amplitudes on each quadrant

subarea of the probe beam. With the configuration that we use, this informations is

accessed individually and in parallel by the corresponding QPDs. The amplitude of

these signals is proportional to the driving voltage of the ultrasound buzzer as well as

the response of the individual plasmonic sensors, and if large enough, can be resolved

from the noise associated with the probing field.
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Figure 6.7: Parallel plasmonic sensing of local modulations in the refractive

index of air, with 400 mV (blue), and 100 mV (red) driving voltage of the

buzzer. All the traces are normalized to their corresponding SNL (dotted

green). The noise of correlated subareas (solid) falls below the SNL, while

the noise of uncorrelated ones adds up in quadrature (pale traces). SA

settings: RBW: 100 Hz, VBW: 3 Hz, power averaged by 200 times.

169



The power spectra (normalized to the SNL) for parallel detection of the modulation

signal with individual quadrants of the QPS pi (i = 1 − 4), are shown in Fig. 6.7.

For each quadrant, higher driving voltages of the buzzer generate larger signals at

the modulation frequency. However, due to the multi-spatial-mode nature of the twin

beams, the noise for a given measurement with each quadrant for the probe without

the modulation depends on the conjugate quadrant subarea ci (i = 1− 4).

The solid traces in Fig. 6.7 show the modulation signals and the noise levels measured

with ID measurements between QPDs of the corresponding subareas in the twin beams,

i.e. pi−ci for two driving voltages: 400 mV (blue) and 100 mV (red). This configuration

corresponds to the quantum-correlated subareas of the twin beams in the near field. On

the other hand, subtracting the signal from uncorrelated QPD pairs leads to an excess

noise above the SNL, as the noise of the uncorrelated quadrants add in quadrature, as

shown in section 6.2.5. This indicates that the multiple spatial modes of the twin beam

are independent of each other. The higher noise level of uncorrelated quadrant pairs

pi − cj with i 6= j prevents us from resolving the modulation signal, as shown by pale

traces in Fig. 6.7. All traces are normalized to the mean of their corresponding SNL

values, which are shown by dotted green traces.

6.3.4 Ramping Modulations

The results with modulation signals at discrete voltages clearly prove the capability of

the twin beam to simultaneously enhance the sensitivity of the four plasmoinc sensors

and to detect modulation signals below the SNL in parallel. We can also quantify
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the quantum-enhancement in the sensitivity of these sensors by finding the smallest

modulation signal that can be resolved with the twin beam in comparison to a coherent

state. That is, by measuring the SNR using twin beams and coherent states of the

same optical power on each QPS, and then comparing the modulation voltages at

which the SNRs become equal to one. To do so, we linearly increase the amplitude

of the buzzer’s driving voltage, which consequently increases the amplitude of the

modulations in the refractive index of air. The SA is triggered and synchronized with

the function generator to record the increasing modulation signals from each sensor, at

the modulation frequency. Similar to the measurements with discrete driving voltages,

the noise can only go below the SNL when the corresponding correlated quadrants are

chosen.

To measure the SNR for each quadrant of the QPS, we first extract the modulation

signal from the noise by subtracting the signal without any modulations from the signal

with the modulation on. The square root of the ratio between the extracted signal to

the noise for correlated (uncorrelated) quadrant pairs gives the SNR of each sensor

with spatially correlated (uncorrelated) quadrants of the twin beams. Figure 6.8 shows

the SNR traces for parallel sensing with the four plasmonic sensors, which follow a

linear behavior, as shown by solid lines fitted to the data. Out of the 16 possible

combinations of QPD quadrant pairs from the QPS and QM, only four of them show

quantum correlations and have better SNR than the coherent states, as expected.

The magnitude of the modulation signal at each driving voltage depends on the

optical power and the location of the probing subarea of the sensors. To measure the
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Figure 6.8: SNR for parallel quantum sensing with four independent plas-

monic sensors as a function of the driving voltage of the ultrasound buzzer

at 400 kHz. Correlated subareas of the twin beams (blue) have better SNR

than the estimated SNR for a coherent state (red). SNR with uncorrelated

quadrants are shown with gray traces. Arrows indicate the voltages where

the SNR= 1 (shown by black dashed lines) for each QPS. SA settings:

RBW: 1 kHz, VBW: 10 Hz, power averaged 50 times.
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SNR with coherent states, we need to probe the QPS with the same beam size and

optical power. To use the probe beam as a coherent state, we need to block the pump

beam to prevent the nonlinear amplification through the FWM process. However, the

size of the probe mode of the twin beam changes when the FWM process is on, due

to the cross-Kerr lensing effect of the intense pump beam. When the FWM process is

turned off, the size of the probe beam on the QPS increases, which changes the optical

readout of each plasmonic sensor. Therefore, since changing the optical system for

imaging will change the optical path of the probe beam on the QPS and we cannot

ensure probing exactly the same modulations in refractive index, we are not able to

compare the same signals that are measured with a coherent state to the ones we

obtained using the twin beam. However, for large enough signals, we can assume that

the magnitude of the modulation signal can properly be extracted by subtracting the

noise in each measurement. Under this assumption, we can directly measure the SNR

for the QPS using twin beams, while estimating the SNR for a coherent state of the

same power as the probe and conjugate beams before the QPS and QM.

Knowing the SNR of individual sensors with twin beams and a coherent state, we

can quantify the QEF, as defined in section 3.5. Using the SNR plots in Fig. 6.8, we

can find the modulation voltages for which the SNR values become equal to one. For

example, we can calculate the QEF for plasmonic sensor p1. The SNR with a coherent

state becomes one at V CS
d = 644 mV, while the SNR with the correlated quadrant pair

of the twin beams, i.e., p1 and c1, becomes one at V TB
d = 548 mV, as indicated by

arrows in Fig. 6.8. The ratio of these two voltages provides a direct measure of a 17.7%
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QEF by using twin beams over a coherent state at the SNL. This value matches with

the theoretically expected QEF with the remaining 1.4 dB of squeezing in this pair, as

described in section 3.5.

The measured SNR of the QPS quadrant pi with correlated quadrants of the twin

beam are shown with the blue traces in Fig. 6.8, while the estimated SNR values with

a coherent state are shown with the red traces. Solid lines represent linear fits to the

SNR data. The noise of the correlated pairs of the twin beam subareas is below the

SNL, leading to SNR values higher than the SNR of a coherent state. As expected, the

uncorrelated pairs of the twin beam subareas have higher noise than the SNL, leading

to the smallest SNR values, as shown with the gray traces in Fig. 6.8.

Knowing the absolute value of the smallest detectable change in the refractive index,

or the sensitivity of each QPS, requires calibrating the amplitude of the modulations

in the index of refraction of air inside the chamber. By refractometry methods, such

as a Mach-Zehnder interferometer, we can calibrate these changes with respect to the

driving voltage of ultrasound buzzer, as described in section 5.2.3. Since our main goal

was to demonstrate parallel quantum plasmonic sensing below the SNL, the sensors’

absolute sensitivity is not needed, and such calibrations were not conducted in the

current study. However, as we showed in chapter 5, the sensitivity of such QPS is of

the order of the current state-of-the-art for plasmonic sensors [73].
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6.4 Conclusion

The configuration presented here for spatially resolved quantum sensing can open new

doors to numerous sensing configurations and different applications. For example, other

compatible sensors can be used instead of plasmonic sensors, or different parameters,

such as phase or polarization, can be measured with each sensor in parallel. Moreover,

the motion of bio-chemical samples can be detected and tracked at each subarea. These

applications can also be extended to more than four quadrants to increase the spatial

resolution of the sensing configuration.

In conclusion, we have implemented a parallel quantum-enhanced plasmonic sensing

configuration to detect modulations in the refractive index of air in four parallel

independent plasmonic sensors below the SNL. With an average squeezing of about

−1.2 dB on each quadrant of the QPS, we could detect local modulations in the refractive

index of air with up to ≈ 17.7% higher sensitivity than measurements with a coherent

state. Using sensors with less optical losses or using alternative measurement parameters,

such as phase, can improve the overall sensitivity of the presented quantum-enhanced

parallel plasmonic sensing scheme. We believe this study provides a proof-of-principle

for implementing parallel quantum sensing and can be extended to more complex

parallel sensing configurations.
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Chapter 7

Conclusions and Future Work

In this thesis, we studied the building blocks for quantum sensing needed to take

advantage of quantum correlations in two-mode squeezed states of light to surpass the

SNL. In particular, we presented a practical application of these squeezed states to

enhance the sensitivity of a plasmonic sensor and implemented a quantum-enhanced

plasmonic sensor. Moreover, we presented an experimental setup for spatially resolved

quantum sensing for parallel detection of local changes in the refractive index of air

below the SNL.

The implementation of quantum-enhanced sensing presented here points towards

further improvements in the sensitivity of current state of the art plasmonic sensors

to analyse lower concentrations or dynamics of biochemical samples and enable higher

precision levels in single molecule bio-sensing detection. These results are important

when the lower detection limit is bounded by the SNL and detecting smaller changes

beyond that limit is required. In addition to plasmonic sensors, other classical sensing

and measuring devices, and detectors with optical readouts at the SNL can benefit from

the use of these squeezed states of light.

In the future, we will explore different nanohole structures to use as plasmonic

sensors by performing simulations on different shapes and sizes to obtain optimum

values for the sensitivity and higher transmissions that will allow us to take maximum

advantage of the quantum properties. Using COMSOL, we can optimize the parameters
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for designing different nanohole architectures to obtain higher EOT transmissions and

steeper slopes. The main limiting factor is in the fabrication process, which requires

special care to be able to obtain the sensitivities predicted from simulations.

Once we obtain proper samples with predicted resonances for quantum plasmonic

sensing, we will extend the current study to benefit further from the use of squeezed

light. With the design of nanoholes with slightly different periodicities along the x- and

y-directions, we can obtain higher sensitivities by probing the sensor with both of the

twin beams. This way, using an ID measurement reduces the quantum noise between

the twin beams, while the modulation signal from the shift of the EOT resonance adds

up due to opposite slopes. However, this preliminary idea needs more theoretical studies

as losses in the conjugate arm will reduce the amount of quantum-enhancement that

we initially might expect.

Furthermore, with the promising progress in fabricating nanohole structures, we can

perform quantum plasmonic sensing experiments with new nanohole structures that

have asymmetric two-hole unit cells. As we have predicted, we expect to achieve higher

absolute sensitivities with these new designs. Such experiments will further enhance the

sensitivity of state-of-the-art plasmonic sensors, while enabling the detection of changes

in the refractive index below the SNL.

The parallel sensing configurations can also provide several applications and opens

new paths to explore. Since each subarea in the twin beams acts as an independent

probe beam, it offers several applications. Here, we propose a few potential ideas for

future references.
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– Multiple particle detection: Detection of different particles at the location of each

QPS allows simultaneous probing of multiple sensors, each for detecting a different

particle or contamination.

– Multiple parameter estimation: On the detection end, since all the ports of the

QPDs are accessible, we can perform independent measurement for each quadrant

sensor. For example, we can perform HD measurements to estimate phase changes

with one sensor and transmission changes with another sensor.

– Tracking applications: By designing the setup to have smaller coherence areas,

we can increase the spatial resolution and use smaller detectors, such as a CCD

camera, to track the coordinate of a particle withing the probe beam.
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imental study of the spatial distribution of quantum correlations in a confocal
optical parametric oscillator,” Physical Review A, vol. 67, no. 2, p. 023808, 2003.

183



[69] M. Holtfrerich and A. Marino, “Control of the size of the coherence area in
entangled twin beams,” Physical Review A, vol. 93, no. 6, p. 063821, 2016.

[70] M.-C. Wu, N. R. Brewer, R. W. Speirs, K. M. Jones, and P. D. Lett, “Two-beam
coupling in the production of quantum correlated images by four-wave mixing,”
Optics Express, vol. 29, no. 11, pp. 16665–16675, 2021.

[71] M. Dowran, T. S. Woodworth, A. Kumar, and A. M. Marino, “Fundamental
sensitivity bounds for quantum enhanced optical resonance sensors based on
transmission and phase estimation,” arXiv preprint arXiv:2106.07741, 2021.

[72] M. Holtfrerich, M. Dowran, R. Davidson, B. Lawrie, R. Pooser, and A. Marino,
“Toward quantum plasmonic networks,” Optica, vol. 3, no. 9, pp. 985–988, 2016.

[73] M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-
enhanced plasmonic sensing,” Optica, vol. 5, no. 5, pp. 628–633, 2018.

[74] C. Xu, L. Zhang, S. Huang, T. Ma, F. Liu, H. Yonezawa, Y. Zhang, and M. Xiao,
“Sensing and tracking enhanced by quantum squeezing,” Photonics Research, vol. 7,
no. 6, pp. A14–A26, 2019.

[75] R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot
noise limit,” ACS Photonics, vol. 3, no. 1, pp. 8–13, 2016.

[76] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P.
Bowen, “Biological measurement beyond the quantum limit,” Nature Photonics,
vol. 7, no. 3, pp. 229–233, 2013.

[77] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P.
Bowen, “Subdiffraction-limited quantum imaging within a living cell,” Physical
Review X, vol. 4, no. 1, p. 011017, 2014.

[78] G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures
as nano-sources of heat,” Laser & Photonics Reviews, vol. 7, no. 2, pp. 171–187,
2013.

[79] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne,
“Biosensing with plasmonic nanosensors,” Nanoscience and Technology: A Collec-
tion of Reviews from Nature Journals, pp. 308–319, 2010.

[80] L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strate-
gies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today, vol. 10,
no. 2, pp. 213–239, 2015.

[81] F. Yesilkoy, “Optical interrogation techniques for nanophotonic biochemical
sensors,” Sensors, vol. 19, no. 19, p. 4287, 2019.

184



[82] R. H. Kop, P. De Vries, R. Sprik, and A. Lagendijk, “Kramers-kronig relations for
an interferometer,” Optics Communications, vol. 138, no. 1-3, pp. 118–126, 1997.

[83] B. Gralak, M. Lequime, M. Zerrad, and C. Amra, “Phase retrieval of reflection
and transmission coefficients from kramers–kronig relations,” JOSA A, vol. 32,
no. 3, pp. 456–462, 2015.

[84] S. Subramanian, H.-Y. Wu, T. Constant, J. Xavier, and F. Vollmer, “Label-
free optical single-molecule micro-and nanosensors,” Advanced Materials, vol. 30,
no. 51, p. 1801246, 2018.

[85] Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection
using optical microcavities,” Advanced Materials, vol. 29, no. 12, p. 1604920, 2017.

[86] M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,”
Advances in optics and photonics, vol. 7, no. 2, pp. 168–240, 2015.

[87] J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in
analytical chemistry,” Annual Review of Analytical Chemistry, vol. 9, pp. 1–25,
2016.

[88] G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and
imaging,” Journal of Optics, vol. 20, no. 7, p. 073004, 2018.

[89] S. Deng, P. Wang, and X. Yu, “Phase-sensitive surface plasmon resonance sensors:
Recent progress and future prospects,” Sensors, vol. 17, no. 12, p. 2819, 2017.

[90] X. Zhou, L. Zhang, and W. Pang, “Performance and noise analysis of opti-
cal microresonator-based biochemical sensors using intensity detection,” Optics
Express, vol. 24, no. 16, pp. 18197–18208, 2016.

[91] A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude
sensitivities in surface plasmon resonance bio and chemical sensing,” Optics
Express, vol. 17, no. 23, pp. 21191–21204, 2009.

[92] K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boost-
ing the figure-of-merit of lspr-based refractive index sensing by phase-sensitive
measurements,” Nano Letters, vol. 12, no. 3, pp. 1655–1659, 2012.

[93] I. Humer, H. Huber, F. Kienberger, J. Danzberger, and J. Smoliner, “Phase and
amplitude sensitive scanning microwave microscopy/spectroscopy on metal–oxide–
semiconductor systems,” Journal of Applied Physics, vol. 111, no. 7, p. 074313,
2012.

[94] B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett,
“Optimal phase measurements with bright-and vacuum-seeded su (1, 1) interfer-
ometers,” Physical Review A, vol. 95, no. 6, p. 063843, 2017.

185



[95] T. S. Woodworth, K. W. C. Chan, C. Hermann-Avigliano, and A. M. Marino,
“Transmission estimation at the cramér-rao bound for squeezed states of light in
the presence of loss and imperfect detection,” Physical Review A, vol. 102, no. 5,
p. 052603, 2020.

[96] S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of
quantum states,” Physical Review Letters, vol. 72, no. 22, p. 3439, 1994.

[97] C. Sparaciari, S. Olivares, and M. G. Paris, “Gaussian-state interferometry with
passive and active elements,” Physical Review A, vol. 93, no. 2, p. 023810, 2016.

[98] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15
db squeezed states of light and their application for the absolute calibration
of photoelectric quantum efficiency,” Physical Review Letters, vol. 117, no. 11,
p. 110801, 2016.

[99] M. Li, S. K. Cushing, J. Zhang, S. Suri, R. Evans, W. P. Petros, L. F. Gibson,
D. Ma, Y. Liu, and N. Wu, “Three-dimensional hierarchical plasmonic nano-
architecture enhanced surface-enhanced raman scattering immuno-sensor for
cancer biomarker detection in blood plasma,” ACS Nano, vol. 7, no. 6, p. 4967,
2013.

[100] S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh
sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low
limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology, vol. 20,
no. 43, p. 434015, 2009.

[101] S.-H. Oh and H. Altug, “Performance metrics and enabling technologies for
nanoplasmonic biosensors,” Nature Communications, vol. 9, no. 1, pp. 1–5, 2018.

[102] A. M. Shrivastav, U. Cvelbar, and I. Abdulhalim, “A comprehensive review on
plasmonic-based biosensors used in viral diagnostics,” Communications Biology,
vol. 4, no. 1, pp. 1–12, 2021.

[103] H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a
versatile technique for biosensor applications,” Sensors, vol. 15, no. 5, pp. 10481–
10510, 2015.

[104] N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engi-
neering metallic nanostructures for plasmonics and nanophotonics,” Reports on
Progress in Physics, vol. 75, no. 3, p. 036501, 2012.

[105] X. Wang, M. Jefferson, P. C. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and
A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Optics
Express, vol. 19, no. 1, pp. 107–117, 2011.

186



[106] S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-
time entanglement preservation in plasmon-assisted light transmission,” Physical
Review Letters, vol. 94, no. 11, p. 110501, 2005.

[107] E. Altewischer, M. Van Exter, and J. Woerdman, “Plasmon-assisted transmission
of entangled photons,” Nature, vol. 418, no. 6895, pp. 304–306, 2002.

[108] R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot
noise limit,” ACS Photonics, vol. 3, no. 1, pp. 8–13, 2015.

[109] D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum
spectroscopy of plasmonic nanostructures,” Physical Review X, vol. 4, no. 1,
p. 011049, 2014.

[110] C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nanoscience And Technology:
A Collection of Reviews from Nature Journals, pp. 205–212, 2010.

[111] X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and
M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nature
Nanotechnology, vol. 12, no. 9, pp. 866–870, 2017.

[112] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method
of frustrated total reflection,” Zeitschrift für Physik A Hadrons and nuclei, vol. 216,
no. 4, pp. 398–410, 1968.

[113] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength
optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003.

[114] E. Kretschmann, H. Raether, et al., “Radiative decay of non-radiative surface
plasmons excited by light,” Z. Naturforsch. A, vol. 23, no. 12, pp. 2135–2136,
1968.

[115] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas
detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, 1983.

[116] H. Im, A. Lesuffleur, N. C. Lindquist, and S.-H. Oh, “Plasmonic nanoholes in a
multichannel microarray format for parallel kinetic assays and differential sensing,”
Analytical Chemistry, vol. 81, no. 8, pp. 2854–2859, 2009.

[117] R. H. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance
effect in grating diffraction,” Physical Review Letters, vol. 21, no. 22, p. 1530,
1968.

[118] V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Mea-
suring group velocity of surface plasmons by surface plasmon interferometry,” in
Quantum Electronics and Laser Science Conference, p. QThG3, Optical Society
of America, 2007.

187



[119] W. C. Johnson, “Transmission lines and networks,” McGraw-Hill Electrical and
Electronical Engineering Series, 1963.

[120] T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, “Extraordi-
nary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391,
no. 6668, pp. 667–669, 1998.

[121] F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing
through subwavelength apertures,” Reviews of Modern Physics, vol. 82, no. 1,
p. 729, 2010.

[122] V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic
surface lattice resonances: a review of properties and applications,” Chemical
Reviews, vol. 118, no. 12, pp. 5912–5951, 2018.

[123] L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and
T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength
hole arrays,” Physical Review Letters, vol. 86, no. 6, p. 1114, 2001.

[124] H. Bethe, “Theory of diffraction by small holes,” Physical Review, vol. 66, no. 7-8,
p. 163, 1944.

[125] M. N. Polyanskiy, “Refractive index database.” https://refractiveindex.info.
Accessed on 2021-06-30.
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