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Abstract: Intelligent robots require advanced vision capabilities to perceive and inter-
act with the real physical world. While computer vision has made great strides in re-
cent years, its predominant paradigm still focuses on building deep-learning networks
or handcrafted features to achieve semantic labeling or instance segmentation sepa-
rately and independently. However, the two tasks should be synergistically unified in
the recognition flow since they have a complementary nature in scene understanding.

This dissertation presents the detection of instances in multiple scene understanding
levels. Representations that enable intelligent systems to not only recognize what is
seen (e.g. Does that pixel represent a chair?), but also predict contextual information
about the complete 3D scene as a whole (e.g. How big is the chair? Is the chair placed
next to a table?). More specifically, it presents a flow of understanding from local
information to global fitness. First, we investigate in the 3D geometry information
of instances. A new approach of generating tight cuboids for objects is presented.
Then, we take advantage of the trained semantic labeling networks by using the in-
termediate layer output as a per-category local detector. Instance hypotheses are
generated to help traditional optimization methods to get a higher instance segmen-
tation accuracy. After that, to bring the local detection results to holistic scene
understanding, our method optimizes object instance segmentation considering both
the spacial fitness and the relational compatibility. The context information is im-
plemented using graphical models which represent the scene level object placement
in three ways: horizontal, vertical and non-placement hanging relations. Finally, the
context information is implemented to a network structure. A deep learning-based re-
inferencing frame work is proposed to boost any pixel-level labeling outputs using our
local collaborative object presence (LoCOP) feature as the global-to-local guidance.

This dissertation demonstrates that uniting pixel-level detection and instance seg-
mentation not only significantly improves the overall performance for localized and
individualized analysis, but also paves the way for holistic scene understanding.
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CHAPTER I

INTRODUCTION

1.1 Motivation and background

Computer vision is a powerful tool in robotics in recent years [13–16]. Much research

has been conducted to make robots to be co-inhabitants or co-workers. Previously,

assistance robots wait for human-issued commands, and the human-robot interaction

(HRI) can only be done in a close way. Under this circumstance, assistance robots

have a limited sense of the environment that they are in. The robot is a human-like

co-inhabitant, serves as a housekeeper, and it can do its work without human’s con-

secutive commands. On contrast, the traditional robot, which follows the owner’s

commands from time to time, makes people feel being monitored without much pri-

vacy. In order to understand and comprehensive tasks, the robots need to have good

understanding about the scene they are in [1, 17–19].

Recently, a number of researchers focus on developing a 3D map with the help

of fast development of depth sensors. However, no object information is provided

by the reconstructions. The robot needs a semantic map, which provides a good

understanding of the house. Thus, it can arrange the work for itself. For example,

after finding the owner is making breakfast in the kitchen, the robot moves to the

bedroom to do some organization. So the scene understanding plays an important

role for the robot to assistant people’s living.

Imagine a domestic robot preparing to set a dining table. Which piece of visual

information would it find to be more useful for the task? Seeing a table on the left and

chairs on the right, or seeing a table two meters away from me behind three chairs, the

1



Figure 1.1: Robot for assisted living example [4].

tabletop is one meter above the door, and there is enough empty space on the table

to place the dishes. While performing complex tasks such as preparing dining ta-

bles, autonomous robotic systems would typically benefit from a complete 3D visual

understanding holistically in the scene: their locations and orientations, accessible

space, and spaces acquired by all the objects in the scene. However, most computer

vision algorithms will only produce information to the extent of local relations like

table on the left and chairs on the right from 2D images.This highlights a funda-

mental limitation behind classic 2D image-centric computer vision tasks: they are

targeted at understanding 2D images, but not the 3D physical world behind them.

Moreover, since images are only 2D partial representations of complete 3D scenes,

they can exhibit dramatic variations from minor changes to camera viewpoint, mate-

rials, lighting, and object arrangements, which continue to obscure image recognition

algorithms. In our research, we expect to acquire the relation between indoor objects

which provides holistic scene understanding, and then locate the objects in the 3D

space.
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Figure 1.2: An indoor 3D reconstruction example [5]. The reconstruction provides

an accurate scene layout but with no object label information.

1.2 Research objectives and approach

My research is uniquely defined by the following aspects:

From 2D images to 3D models: Explore the direct use of 3D data as both

input and output presentations for computer vision algorithms, instead of reasoning

over 2D image pixels, where the information is limited by the field of view.

From low-level pattern to high-level meaning: Introduce measures and

models with strong real-life meaning. Incorporate human’s understanding to the

scene and ensure the extrapolation availability at the same time.

From local to holism: Make use of contextual information beyond single objects.

Understand the object pair patterns from small range up to big range, which is the

level of scenes.

3



Figure 1.3: An indoor 2D semantic map eample [6]. The indoor objects are marked

using different color.

The core problem of indoor scene understanding is about knowing what objects

are in the scene, where they are, and why they are set in such ways. The goal of

this dissertation is to develop computer vision algorithms that can understand the

visual world in terms of both low-level 3D structure and high-level semantics of indoor

instances. More importantly, the system should not only be able to recognize what

it sees, but also be able to reason contextual information related to its complete

3D environment - including regions beyond the visible surfaces in the view, such as:

what to expect in the given scene. Towards this goal, this thesis aims to develop 3D

instance level representations and relations from RGB-Depth data captured from 3D

depth sensors such as the Microsoft Kinect, and it is our goal to provide useful 3D

understanding for real-world applications.
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Figure 1.4: Representing objects in the scene using 3D bounding boxes [7].

1.3 Contributions and organization

In this dissertation, we are interested in instance-level representation of an indoor

scene that reveals important and fundamental information of a scene. This disserta-

tion is divided into the following chapters:

Chapter 2: The related work is discussed in terms of the existing research paradigms:

the 3D representation of instances, the semantic labeling methods, the object recog-

nition methods and the benefit of context information to boost the performance for

each of these paradigms. Our research follows the flow of existing paradigms, dig out

the relation between them and finally unite them as complete scene understanding.

Chapter 3: We introduce the object presentation in cuboids, a tight representa-

tion of volumetric occupancy with 3D rotations scene from a single-view depth map

observation. Rather than the traditional voxel-based methods, we developed another

low-level vision feature: the dominant planes. An algorithm is presented to show ob-

ject local structures using tight cuboids by matching dominant planes. This research

is expected to Cuboid detection was first studied in [8] where more useful information

of an object (e.g., 3D orientation and dimensions) is provided compared with the tra-

ditional bounding box approaches. However, over-detection and miss-detection are

often seen when there are many insignificant planar surfaces or the scene is too clut-
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tered. In this work, we want to attack this problem in two ways. First, improve the

quality of plane candidates for cuboid initialization by taking advantage of color and

geometry features of each plane candidate, and then we propose a new local plane

optimization algorithm to find the optimal parameters for each cuboid. This research

is expected to reinforce the object presentation techniques such as point cloud or

voxel method, and to support many object-level tasks for scene understanding.

Chapter 4: To acquire instance-level segmentation, we combine the cuboid gen-

eration method from Chapter 3 with data-driven learning-based methods to make

3D bounding box hypothesis. Specifically, we use the output (i.e., category-specific

score-maps) from any deep network learned from semantic labeling, together with

the object geometric information, to generate holistic object instance level segmen-

tations in 3D. In addition to the conventional evaluation method that calculates the

intersection over union (BB-IoU) between generated bounding box and the ground

truth, we present visible-point IoU (VP-IoU) to accommodate indoor situations where

heavy occlusion exists and object bounding boxes have estimated sizes beyond the

visible range. Our method generates tight bounding boxes and has the potential to

bring back the missing instances that were obligated by baseline detections. Our

contribution has three-fold. First, it is the first step to fully combine the semantic

labeling and instance segmentation to achieve complete scene understanding. Second,

it develops the advantage of the intermediate layers of the fully-trained networks by

applying the category-specific score-maps that are capable of handling a variety of

indoor objects. Third, our method is compatible to boost the performance of any

deep-learning network-based algorithms.

Chapter 5: The instance hypotheses are generated respectively per each category

in Chapter 4. However, objects are placed in certain groups for similar functions.

Thus, we introduce a new instance segmentation module together graphical model-

based context information to directly find object boundaries. Our framework is sig-
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Figure 1.5: Indoor objects appear in different placement relations.

nificantly different from the existing deep learning-based approaches. Moreover, we

are able to efficiently incorporate trained network outputs with non-network models

(dual graphical models) to segment all instances with high objectness without relying

on computational expensive instance-level network training.

Chapter 6: We try to push the boundary even further by combing the relation

models we get in Chapter 5 with the instance bounding box generation method in

Chapter 4 to build a complete flow to generate instance segmentations. We present a

novel framework for holistic 3D instance segmentation using semantic labeling infor-

mation together with graphical model-based context information to generate instance-

level segmentations. We also expand the duo placement relations in Chapter 5 to get

more complete trio-context models (vertical placement model, aka. VPM; Horizontal

Placement Model, aka. HPM; Non-Placement Model, aka. NPM).

Chapter 7: Unlike the graphical model-based context information we use in the

previous chapters, we aim to encode the context information using deep learning net-
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works. We propose a re-inference framework to implement the high-level knowledge

as supportive information for semantic segmentation. Given any semantic segmenta-

tion detectors, our method consider the objects’ Local Collaborative Presence feature

as guidance and re-train a segmentation module to acquire higher accuracy.

Chapter 8: We summarize all the findings and briefly talk about our next research:

generate context models using deep learning methods to boost the collaboration be-

tween the semantic labeling module and the context information. In the preliminary

work we present, the measure of ”collaborative object presence (COP) is introduced

and some simple evaluations are performed to show the effectiveness of it. Our future

work is about applying the COP in a deep learning network frame to be trained for

instance segmentation directly.
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CHAPTER II

RELATED WORK

Core problems on scene understanding in the 3D space include semantic segmentation,

object detection and instance segmentation. Nowadays, researchers are capable of

achieving remarkable results in each of the problems. However, all these problems

have been studied and achieved in separate algorithm flows rather than a united

understanding scheme. Enabling machines to understand objects in 3D scenes as a

whole is a fundamental necessity for many applications, such as autonomous driving,

augmented reality and drone navigation.

2.1 3D object representations

With the popularity of various low-cost depth sensors, RGB-D images are often used

to understand an indoor scene. Research on 3D understanding using RGB-D data

has two main trends. Low-level processing usually focuses on the spatial capacity

for object detection and representation [20–22]. High-level inference is to infer scene

semantics by analysing of the geometry and structure of objects [23–26].

Bounding boxes (2D or 3D) can provide object-level understanding in the scene,

which show not only the location and size of different objects, but also their orienta-

tion and 2D or 3D occupancy [?, 27, 28]. They can also provide a relatively holistic

view of each object. For example, the visible parts of a bed include mainly a head-

board, pillows, sheets and blankets. Instead of recognizing them one by one, we treat

them as one bed object, collectively and holistically [27, 28]. However, when deep

learning is applied for bounding box generation, the outputs are confident scores of
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bounding boxes and box parameters [27, 28]. Bounding box representation cannot

provide detailed label information where the number of distinct objects is usually

much less than that in pixel-level labeling due to the occlusion and sparsity problem

of depth data. Improving the quality of 3D point set is shown as helpful to improve

bounding box generation, like [27], which requires the fully registered point cloud and

identifies limited object categories.

Some researchers attempted to use some geometric primitives to provide an inter-

mediate scene representation, including planes [24, 29, 30] or cuboid [8, 31], or other

geometric constraints as prior shapes to represent indoor objects. However, the geo-

metrical representation is often applied to the whole scene which makes it unable to

show the object category labels or instance level object segmentation.

Traditionally, the bounding boxes are generated around potential objects for the

latter object recognition task. In [32], the bounding boxes are optimized by aligning

with gravity in an indoor scene. The bounding box-based algorithms aim at separat-

ing objects from background by displaying their spacial occupation and position [26].

Although the bounding box contains a possible object, it does not provide any geomet-

rical or shape information about the object. To take advantage of object’s geometry

or shape as well as 3D orientation, a cuboid detection algorithm was proposed in [8]

to detect objects from their visible planar surfaces. Different from bounding boxes,

cuboids can rotate freely in 3D space or lie on the surface of an object, providing

useful mid-level representation for semantic scene understanding.

The wide availability of consumer RGB-D sensors has boosted the research of

object detection where color and depth are often used together due to their comple-

mentary nature. For example, the algorithm proposed in [33] detects and segments

an object from color frames and then generates bounding boxes based on depth infor-

mation. The depth information is not involved in the early state of object detection.

It is our intention to use color and depth thorough the cuboid generation process.
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The method proposed in [34] focuses on the segmentation of an 3D object from a

RGB-D image by using strong shape priors learned from the mesh model of the given

object type. The cuboid in this work is considered as a weak shape prior that can be

general and flexible enough to handle most indoor objects with more or less planar

surfaces.

2.2 Semantic labeling methods

Pixel-level labeling or semantic labeling illustrates semantically important details in

a scene by providing the category label information for each pixel in an image [35,36].

With the development of GPU supported computation, deep learning networks has

become the standard in computer vision tasks including semantic segmentation. The

early approaches generate segmentation masks by classifying region proposals for

saliency detection. Then it is developed to show the contours and areas of different

objects in a scene. Driven by the powerful deep learning approaches, recent labeling

algorithms can identify up to 40-50 object categories in an indoor scene [1,37]. Due to

the fact that the computational cost for semantic labeling is very high, transfer learn-

ing is introduced to store knowledge while training for one problem, then apply it to a

similar but different problem. By adapting a pre-trained network as initialization for

several hidden layers, the training efficiency for semantic labeling using deep learning

networks is boosted. However, pixel-level labeling cannot show instance level object

segmentation. Cluttered objects that belong to one category would not be separated

individually. For example, when a table is surrounded by chairs, semantic labeling is

not designed to tell the range for each chair. The classification information for each

pixel cannot directly support holistic object-level scene understanding. Thus, in ad-

dition to pixel level labeling, the widely used benchmark datasets [2, 3] also provides

instance level ground truth for segmentation as a high-level holistic task.

11



2.3 Object recognition methods

The object detection is to determine where and what objects are present in a scene.

It is a challenging problem in image processing and computer vision because of large

variation in object shapes and significant occlusion. With the development of deep

learning [13,14] and availability of RGB-D data, the performance of object detection

has been improved significantly in recent years. However, challenges still remain to

detect objects in both detailed and holistic ways.

Instance segmentation is more challenging than semantic segmentation as it re-

quires the additional reasoning of objects. Instance segmentation methods can be

categorized into two groups, proposal-based approaches and proposal-free approaches.

Proposal-based approaches build systems upon object detection and append segmen-

tation modules after bounding box proposals. Inspired by the recent success of Mask

R-CNN [38] on 2D instance segmentation, 3D-SIS [39] develops a proposal-based

system. GSPN [40] presents a generative model for generating proposals. Bounding

boxes are effective and intuitive to show the 2D or 3D range for each object [27,35,41],

but they also lack of details of the object boundaries. Researchers have been trying

to use a cuboid-shaped boxes to represent objects and preserve the detailed object

shape information at the same time [19,28]. A two-step approach was proposed in [28]

that combines objectness estimation and object recognition for bounding box gener-

ation. Some approaches [19] generate 3D bounding boxes by removing out irrelevant

3D points according to re-projected 2D bounding boxes. The ground truth data of

bounding boxes are provided independently with that of pixel level labeling, making

them lack consistency and compatibility. Some studies tried to find an intermediate

representation to present the scene both holistically and in a detailed way. Approaches

include using planes [24, 29, 30], cuboid [8, 31] or other geometry primitives as prior

shapes to represent indoor objects. On the other hand, proposal-free methods cluster

points into instances based on the similarity metrics. Bounding boxes were created
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from pixel level labeling for a fully registered 3D point cloud [27] with little occlusion.

SGPN [42] trains a network to predict semantic labels, a similarity matrix between

all pairs of points and point-wise confidence for being a seed point. Some researchers

further develop the idea to investigate on the probability of adjacent 3D points be-

longing to the same object instance [43,44]. However, the geometrical representation

is applied to the point-level without indicating object categories or instance level

segmentation. The process still uses limited holistic information.

2.4 Contextual modeling for scene understanding

There are two main paradigms for object detection: per-pixel semantic labeling and

bounding box generation. The former one provides the spatial areas of different

objects in an image, the latter one provides a holistic view with a set of cuboid-

shaped boxes to represent the location, size and orientation of different objects in

a 3D scene. Usually, more object categories are considered in pixel-level semantic

labeling than those for 3D bounding boxes due to heavy occlusion and sparsity of

depth data. Thus, the two tasks are often studied separately. There are some recent

efforts to combine them in order to take advantage of their complementary nature for

object detection [8, 19,27].

Due to the limited information contained in each single pixel, efforts have been

made to add holistic knowledge for semantic labeling [45]. For example, an image is

segmented into equal-sized cells for labeling [46]. The normal distribution of depth

data at the pixel level is used for object recognition [26]. The distribution along

the gravity direction is considered during pixel level labeling in 3D space [1]. Other

methods [47,48] process 3D point cloud directly without voxelization. While showing

promising results, these methods lack the ability of modelling geometrical structures

of the input point cloud. A point cloud of an indoor space usually contains much more

number of points, which means the network can only process a slice of the input point
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cloud at each time, which disables global reasoning of the space. Recently, Graham

et al. [12] propose an super-efficient volumetric CNN based on sparse convolution to

process the entire point cloud of an indoor scene, which achieves promising results

on the semantic segmentation task, it becomes practical to train networks with sig-

nificantly more layers [49]. Due to the increased complexity of working directly in

3D, especially in large environments, many methods use some type of projection. In

VoxelNet [50], the 3D data is first reduced to a bird eye view before proceeding to the

rest of the pipeline. More recently, deep networks on point clouds are used to exploit

sparsity of the data [12,43,44,51].

Scene understanding usually involves holistic prior knowledge about the scene.

For example, some methods focus on the perpendicular patterns of indoor rooms and

furniture [23,30]. Some algorithms extract indoor structures to find the general room

configuration [24,29,52]. To find and localize all objects in the whole scene, some pre-

defined scene templates were used as prior knowledge for directed local search [53].

Using a graphical model, the spatial occurrence pattern among objects in 2D images

is captured to improve the object detection rate collectively [17,54].
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CHAPTER III

OBJECT REPRESENTATION IN CUBOIDS

In this chapter, we will talk about the indoor object representation using cuboids.

This is a basic approach of extracting low-level vision information from the raw RGB-

D information. We find the traditional point cloud and voxels interpret the scene in

a scatter way. Our cuboid approach is able to show the local structure in the view

of 3D space. In this chapter, there’re four sections: (1) the preliminary work; (2)

local plane detection in RGB-D data; (3) Cuboid initialization and optimization; (4)

experimental results.

3.1 Preliminary work

3.1.1 Point cloud representation

A lot of projects have been focused on point cloud to increase its accuracy, aiming to

show more details [55,56]; some other projects aim to regularize the point cloud from

a big picture [23,57,58]. The mostly used assumption is the Manhattan assumption,

which assumes that the big planes in an indoor scene probably follow one of the

three major coordinates. Researchers used this assumption to segment the map of

the indoor scene to get some understanding of it. However, the main problem for

depth sensors, such as Kinect, is that the sensor can only show the appearances of

scenes. People can understand scenes better not only because we know what is seen,

but also because we can infer what is unseen, especially in the indoor scenes where

many occlusions exist It is almost improbable for the point cloud to get every detail

of the indoor scene. So our goal is to make the computer understand the scene by
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Figure 3.1: The preliminary work from [8]: Row 1 shows the color image, normal

image with the three channels containing the x, y and z components. Row 2 shows the

superpixels generated by using the normal image only and the superpixels generated

by using both the color and normal images.

separating the objects from room structure and inferring the unseen behind the data

points observed from the sensor based the Manhattan assumption.

Research on scene understanding using RGB-D data has two main trends. Low-

level processing usually focuses on the spatial capacity for object detection and rep-

resentation [20–22]. High-level inference is to infer scene semantics by analysing of

the geometry and structure of objects [23–26]. In this work, we are interested in a

mid-level representation of an indoor scene that reveals important and fundamental

structures of a scene. Cuboid detection was first studied in [8] where more useful infor-
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mation of an object (e.g., 3D orientation and dimensions) is provided compared with

the traditional bounding box approaches. However, over-detection and miss-detection

are often seen when there are many insignificant planar surfaces or the scene is too

cluttered. In this work, we want to attack this problem in two ways. First, improve

the quality of plane candidates for cuboid initialization by taking advantage of color

and geometry features of each plane candidate, and then we propose a new local plane

optimization algorithm to find the optimal parameters for each cuboid. This research

is expected to support many object-level tasks for scene understanding.

3.1.2 Voxel representation

Traditionally, the bounding boxes are generated around potential objects for the lat-

ter object recognition task. In [32], the bounding boxes are optimized by aligning

with gravity in an indoor scene. The bounding box-based algorithms aim at separat-

ing objects from background by displaying their spacial occupation and position [26].

Although the bounding box contains a possible object, it does not provide any geomet-

rical or shape information about the object. To take advantage of object’s geometry

or shape as well as 3D orientation, a cuboid detection algorithm was proposed in [8]

to detect objects from their visible planar surfaces. Different from bounding boxes,

cuboids can rotate freely in 3D space or lie on the surface of an object, providing

useful mid-level representation for semantic scene understanding.

The wide availability of consumer RGB-D sensors has boosted the research of

object detection where color and depth are often used together due to their comple-

mentary nature. For example, the algorithm proposed in [33] detects and segments

an object from color frames and then generates bounding boxes based on depth infor-

mation. The depth information is not involved in the early state of object detection.

It is our intention to use color and depth thorough the cuboid generation process.

The method proposed in [34] focuses on the segmentation of an 3D object from a
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RGB-D image by using strong shape priors learned from the mesh model of the given

object type. The cuboid in this work is considered as a weak shape prior that can be

general and flexible enough to handle most indoor objects with more or less planar

surfaces.

3.2 Local plane detection in RGB-D data

Our approach has three stages to improve cuboid detection. First, plane candidate

refinement is to improve the quality of plane patches by involving an additional split-

and-merge operation. Second, dominant plane generation is to select major plane

candidates according to their depth features. Third, cuboid candidates are initialized

by dominant plane candidates and optimized by maximizing local fitness.

3.2.1 Plane candidate refinement

Initial plane candidates can be created by any segmentation (e.g., [9]) or clustering

algorithm (e.g., K-means or Meanshift). The objective is to create a set of super-

pixels as building blocks for cuboid generation. Similar to the implementation of [8],

we use the efficient K-means algorithm followed by connected component analysis to

create initial patches. The K-mean clustering is done in a 7D feature space where

each pixel is represented by the concatenation 1D depth, 3D RGB, and 3D normal.

In practice, it is possible a cluster may contain parts from multiple objects when

they are adjacent, leading to mis-detected cuboids. We propose a plane candidate

refinement technique to improve the quality of initial plane candidates by involving a

split-and-merge operation. The idea is to split a cluster into multiple pieces if it is not

flat enough (i.e., low consistence of normal) and then to merge them with adjacent

clusters if they share similar normal. For each cluster representing a plane candidate,
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Figure 3.2: The dominant plane generation. (a) An input image; (b) The normal

map; (c) Plane candidate generation [8, 9]; (d) Plane refinement + dominant plane

generation (the pixels in black are ignored for cuboid initialization).

its flatness term is defined as:

F = max
d=1,2,3

{Var(Pn(d))}, (3.1)

where Pn(d) is the set of values of the dth dimension from the normal vectors in the

cluster. We only perform the split and merge operation to those plane candidates

with less flatness (e.g, below 20%). The split step is done by K-means clustering of

3D normal to reduce under-detection, and then a merge step is used to regroup newly

generated clusters with adjacent ones if their mean normal are similar. This merge

operation is necessary to avoid over-detection.
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3.2.2 Dominant plane generation

We want to focus on dominant plane candidates for cuboid matching and optimization

that are associated with major objects in the scene. Therefore, we develop a composite

criterion to evaluate the significance of a plane candidate that jointly considers the

flatness, spatial coverage and continuity. For each plane candidate P , its significance

measure is evaluated as:

M = α1 ∗ F + β1 ∗G+ γ1 ∗H, (3.2)

where F , G and H represents the flatness, spatial coverage and continuity, respec-

tively, and α1, β1 and γ1 are the weights to accommodate different scaling factors. Gi

is the number of points in Pi and Hi is the continuity of P defined as:

H = max
p∈P
{ ~Ni · ~p} −min

p∈P
{ ~Ni · ~p}, (3.3)

where ~N is the normal of cluster P and p is a point in P . H is used to penalize the case

that a cluster contains multiple planes. The significance measure M is computed for

all plane candidates and only those top ones for generating cuboid candidates. Fig. 3.3

shows an example of plane refinement and dominant plane generation where plane

generation is improved in the areas of the arm chair and two trash cans.

3.3 Cuboid initialization and optimization

In our work, all cuboid candidates are initialized by dominant planes that have been

verified to be associated with different major objects in the scene, such that we

can lower the risks of over-detection and under-detection of cuboids. We follow the

method in [8] to initialize the cuboid candidates by matching two nearby planes.

Then we develop an optimization process to further improve the accuracy and local

fitness of each generated cuboid. To do so, we define an objective function to reflect

the local fitness of a cuboid candidate that can be optimized numerically.
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Figure 3.3: The cuboids are generated from two dominant planes.

Given a cuboid candidate, its local point set S is selected within the range of

two scaled cuboid sizes (from 1 − σ to 1 + σ). The cuboid parameter is denoted

by x = {xc, xr, xd}, where xc is the center position of the cuboid; xr is the rotation

matrix from the cuboid coordinate to the scene coordinate; xd is the 3D dimension of

the cuboid. The energy function E(x) is defined to quantify the local fitness of the

cuboid,

E(x) = α2 ∗M(x) + β2 ∗ V (x) + γ2 ∗O(x), (3.4)

where α2, β2 and γ2 are weights to adjust the relative importance of three terms;

M(x) is the point fitness term that encourages all points in S to be close to the

cuboid surface; V (x) is the visibility term that penalizes the case if the cuboid lies in

the space where is known empty; and O(x) is the coverage terms which encourages

data points to cover the most area of the cuboid surface. M(x) can be computed
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Figure 3.4: Cuboid optimization illustration. (a) All six directions are optimized. (b)

and (c) show the results before and after optimization.

from S directly while the latter two occupancy-related terms can be computed via

local voxel-based representation.

Specifically, the point fitness terms M(x) is the mean distance from each point in

S to the closest cuboid surface, defined as below,

M(x) =
1

Ns

∑
p∈S

D(p,x), (3.5)

where Ns is the number of points in S and D(p,x) is the distance of point p to the

nearest surface on the cuboid parametrized by x. To compute V (x) and O(x), we first

create a local 3D volume along the cuboid orientation that encloses local point set S,

and then we quantize that volume into voxels that are classified into three groups:

surface voxels which have data points inside; unknown voxels which are block by

surface voxels; and empty voxels which have to be transparent in order to not block

the surface voxels. With the help of local voxel-based representation, the visibility

term V (x) is shown as,

V (x) =
W (x, S)

U(x)
, (3.6)

where U(x) is the total number of voxels in the cuboid and W (x) is the sum of the

numbers of surface and unknown voxels. The coverage term O(x) is computed as,

O(x) = max
c=1:6
{Rc(x, S)}, (3.7)
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Figure 3.5: The Intersection (left) and the Union (right) of two boxes.

where c is the index of the six cuboid facets; Rc(x, S) is the percentage of the number

of voxels on the cuboid’s cth facet covered by the surface voxels in S.

Cuboid optimization is accomplished by maximizing the local fitness between

the cuboid and local point set S. We invoke the heuristic direct search method

[59] to optimize cuboid x by maximizing (3.4) numerically. Specifically, the cuboid

orientation xr is assumed to be fixed due to the fact that all cuboids are initialized by

dominant planes with reasonable reliability and accuracy. Only the cuboid center xc

and cuboid dimension xd are to be optimized. There are six facets of each cuboid each

of which is associated with a scaling factor along the normal direction as shown in

Fig. 2(a). For simplicity, the six scaling factors are treated independently, and each

scaling factor is optimized sequentially and individually. After the optimization of six

scaling factors, the cuboid center and dimension can be computed straightforwardly,

as shown in Fig.2(b) and (c) where the size of the desk is more accurate after cuboid

optimization.

3.4 Experimental results

The experiments were conducted on the NYU v1 Kinect dataset [7] that includes

1074 RGBD images with ground truth bounding boxes. In our experiments, we chose

α1 = 10, β1 = −0.00001, γ1 = 30 for plane refinement, and α2 = 100, β2 = −1
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and γ2 = −1 for cuboid optimization. Most existing object detection algorithms

are based on training or involve additional knowledge, such as the spatial prior [60]

or 3D shape priors [34]. We are interested the case where no training or high-level

priors are involved, like [8]. In addition, we developed three implementations to show

the usefulness of each step. The first one only involves partial local optimization

(with only point fitness) without plane refinement. The second one has full local

optimization without plane refinement. The third one is the complete algorithm.

Specifically, we only focus six major indoor objects for performance evaluation.

We resort to a voxel-based scene representation to evaluate the performance of

cuboid-based object detection. We first partition each scene into voxels. For each

object, we find all visible voxels within the ground truth bounding boxes and those in

the detected cuboid to calculate the IoU (intersection over union) ratio. A successful

detection is declared if the IoU ratio of visible voxels is higher than a given threshold.

The curves of detection rates under different IoU thresholds (from 0 to 1) of some

major indoor objects are shown in Fig. 3.4. Our algorithms with cuboid optimization

show significant improvement of over the baseline algorithm [8]. Specifically, plane

refinement more helpful to those objects with major planes (desk and table), and the

visibility/coverage terms are more useful for all objects due to the occlusion problem

in the depth data. All algorithms drop quickly when the IoU threshold increases.

This because the objects are usually cluttered in an indoor scene, and an object

can be occluded by other ones or with some parts visible. To solve this problem,

a training-based approach is necessary or high-level prior can be used to infer the

occluded objects. Nevertheless, our cuboid-based approach provides an informative

mid-level representation that is amenable to object-level vision tasks.

: the green dashed line: the results using [8]; the magenta dotted line: without

plane refinement and partial optimization with only the point fitness term defined in

(3.5); the blue dotted line: without plane refine and full optimization of local fitness
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(3.4); Red: the proposed algorithm with plane refinement and full optimization of

local fitness.

In addition to the six major objects, our approach is able to detect many other

indoor objects that can be approximately by cuboids of different sizes. Some exemplar

results of our algorithm and the one from [8] are shown in Fig. 3.7 for comparison.

It is shown that the proposed algorithm is more reliable and accurate to detect those

objects with planar surfaces. Our method also works in cluttered scenes, and the

detected cuboids can generally tightly enclose the objects. However, not every major

object (walls or floor) in the scene is detected. That is because that those objects

only have one planar surface visible, while at least two visible planes are required to

generate a cuboid.

3.5 Discussion

In [8], the computational load is mainly due to the massively generated cuboid candi-

dates, most of which are duplications or very small. Plane refinement and dominant

plane generation are helpful to initialize cuboids from significant planar surfaces rep-

resenting meaningful objects in the scene. This process greatly reduces the number

of cuboid candidates for local fitness optimization, and therefore the overall compu-

tational load of our algorithm is comparable with the baseline. The cuboid-based

algorithms are effective for those objects with major planes but they may be limited

to detect non-cuboid shaped objects. Also, occlusion may challenge the effectiveness

of cuboid matching for object detection.

We have proposed three techniques to support robust cuboid matching for object

detection in an indoor RGB-D image. The first to improve the quality of plane can-

didates according to a new flatness term. The second is to select dominant planes for

cuboid initialization according to their significance measures. The third is to optimize

each cuboid candidate with respect to three local terms. Significant improvements
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are achieved compared with the baseline algorithm.

26



0 0.2 0.4 0.6 0.8 1
IoU threshold

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n 
R

at
e

Bed

0 0.2 0.4 0.6 0.8 1
IoU threshold

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n 
R

at
e

Dresser

0 0.2 0.4 0.6 0.8 1
IoU threshold

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n 
R

at
e

Desk

0 0.2 0.4 0.6 0.8 1
IoU threshold

0

0.2

0.4

0.6

0.8

1
D

et
ec

tio
n 

R
at

e
Sofa

0 0.2 0.4 0.6 0.8 1
IoU threshold

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n 
R

at
e

Table

0 0.2 0.4 0.6 0.8 1
IoU threshold

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n 
R

at
e

Toilet

Figure 3.6: The detection rate of selected indoor objects under different IoU thresh-

olds for different methods.
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Figure 3.7: The comparisons of our method (column 1) with [8] (column 2).
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CHAPTER IV

OBJECT REPRESENTATION IN BOUNDING BOXES

In this chapter, we discuss the indoor object representation using bounding boxes.

This is the fundamental method of showing instances in the scenes. Our research is

intended to take advantage of semantics-rich pixel-level labeling and intuition-rich

bounding box representation for more complete scene understanding. Particularly,

the recent rapid advancement in deep learning-based approaches provides a great

opportunity to merge the two tasks in one flow with the goal of producing informative

bounding box hypotheses for each category.

In this chapter, we have the following sections: (1) bounding box generation from

pixel-level labels; (2) Objective function for our bounding box method; (3) optimiza-

tion for bounding box generation and (4) experimental results and (5) Conclusion

and discussion.

4.1 Preliminary work

The objective of our work is to generate the holistic bounding boxes from the detailed

pixel-level labels. Thus, instead of using the results from the networks trained with

the bounding box directly, we generate bounding boxes from the final classification

output from the pixel-level label trained deep-learning network [1] as our baseline

algorithm.

The baseline bounding boxes are generated by finding compact boxes with a min-

imum 3D volume that can contain all the classified points with respect to a target

category. For category i, we define the corresponding Ai as the bounding box param-
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Figure 4.1: The flow of our bounding box hypotheses generation algorithm.

eter set from the baseline bounding box set A = {Ai}, i = 1, 2, ...n, where n is the

total number of categories. Same as the ground-truth, we assume the bounding boxes

to be aligned with gravity. Thus, they have only one dimension rotation. Thus, we

simply get the bounding box volume for each rotation angle r then get the coefficients

from the range of the classified points Ci as shown in Fig. 4.2. The bounding box is

generated using the equation below:

Ai = arg min
r∈{0,π}

{V (Ari )}, (4.1)

where V (·) returns the 3D volume of the input bounding box Ai with the rotation

angle r with respect to the gravity direction. Since the score-maps from the deep

learning network have relatively low resolution, we do not expect the rotation angle

to be very accurate and ri is optimized with a 5-degree increment in this work.
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(a) (b)  (c)

(d) (e)  (f)

Figure 4.2: The comparison of the baseline and our approach. The baseline approach:

(a) the testing image; (b) the network classification output from [1]; (c) the target

object (bed) classified points Ci from (b); the final baseline bounding box Ai shown

in green box in (f). Our approach: (d) the score-map (Score(·)) shown together with

the grid cells (cellj); (e) all bounding box candidates generated from each cellj; (f)

our best bounding box hypothesis shown in red and the ground-truth bounding box

shown in blue as a comparison.
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4.2 Objective function

For each object category i, we define the corresponding Bk
i as the bounding box

hypothesis k parameter set from the bounding box set B = {Bk
i |i = 1, 2...n; k =

1, 2, 3...m} in our results. m is the final number of hypotheses. The bounding box we

generate should agree with both the deep-learning inference results and the visibility

in the scene. To ensure the generated bounding box does not occlude the visible items

in the scene, we quantize the 3D space into voxels and label all the empty ones as set

T . Thus, for a bounding box candidate Bk
i , the evaluation function is defined as:

Ek
i = α ∗ F (Bk

i )− β ∗G(Bk
i , T ), (4.2)

where F (·) returns the average score of Bk
i from the score-map and G(·) returns the

visibility penalty when Bk
i conflicts with the empty area T , as defined below:

G(Bk
i , T ) =

H(Bk
i , T )

V (Bi)
, (4.3)

where H(·) finds the amount of empty voxels T in bounding box hypothesis Bk
i ; and

V (·) returns the 3D volume of a bounding box. This indicates that for small objects,

our method has relatively small tolerance to ensure the majority of the object volume

to be solid. During the optimization process, Ek
i will be maximized by adjusting

bounding box parameters in Bk
i . The benefit of using the visibility terms is shown

in Fig. 4.3. α = 1 and β = 0.001 are used in this work to balance the two terms in

(6.12).

4.3 Bounding box optimization

Our optimization process has two steps: global rough search and the local fine-tuning.

In the first step, to capture all possible bounding boxes in the scene, we initialize the

bounding boxes in each of S×S (e.g., S = 5) grid cells defined on the score-map [46]

using the mean coefficients of each object category in the training data, as shown in

32



(a)                                                  (b)

(c)                                                  (d)

Figure 4.3: Illustration of the visibility penalty term. (a) A RGB-D image for a

room. (b) The volume of a bounding box in red is divided into the visible (green

lines) and invisible (red lines) parts by projecting each 3D point to the camera plane.

(c) Top three bounding boxes generated without the visibility term. (d) Bounding

boxes created with the visibility term.

Fig. 4.2. For each point z in a grid cell cellj, the one with the highest network score

(Score) is selected as the root point Rootj as:

Rootj = arg max
z
{Score(z)}, z ∈ cellj. (4.4)

A bounding box candidate is discarded if its score is too low. During optimization,

the root point Rootj must always stay in the bounding box to preserve the diversity in

3D space and reduce the computational load. In the second step, we optimize the 1D

rotation along the gravity, center position and 3D dimension, a total of 7 parameters.

The optimizer we use is a modified heuristic direct search method [59]. The direct
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search optimizers are simpler and faster than gradient-based ones. We iteratively

optimize the 7 parameters of each bounding box. Instead of using a fixed step size

during optimization, the step size M is updated adaptively for each parameter as

follows:

Mnew =
Enew − Eold
|Enew − Eold|

∗ t1 ∗Mold + t2 ∗Mold, (4.5)

where Enew and Eold are the evaluation score after and before a step move, and t1

and t2 where t1 + t2 = 1 are used to balance the intended step change and the original

step size, respectively. In our experiment, we use t1 = 0.75 and t2 = 0.25. After

optimization, the top three bounding box candidates are kept as our final results.

4.4 Experimental results

We conduct the experiments on the SUN-RGBD dataset [2] that includes 5285 train-

ing RGB-D images and 5050 test images with ground truth bounding boxes. Our

algorithm is compared with the baseline [1] described in previous sections.

We evaluate our algorithm by two metrics. One is to use the traditional bounding

box IoU (intersection over union) ratio (BB-IoU). The bounding boxes in our results

are matched with the ground-truth ones. Our bounding boxes are generated from

visible data points. However, the whole shape of the objects could hardly be seen in

a single RGB-D image. The ground-truth bounding box provides the estimated full

object size in 3D. Thus, part of the ground-truth bounding boxes cannot be obtained

directly from the RGB-D image. To deal with this problem, we provide the visible

point IoU evaluation (VP-IoU) which calculates the IoU only on the visible data

points that are within the bounding boxes.
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BB-IoU VP-IoU

Category Baseline Ours-1 Ours-2 Baseline Ours-1 Ours-2

Cabinet 7.43 11.68 15.37 21.53 32.31 33.89

Bed 24.81 28.81 28.08 51.42 54.14 57.36

Sofa 15.35 21.99 21.21 39.52 46.63 47.4

Table 13.97 21.81 21.61 28.1 37.35 39.78

Bookshelf 11.27 12.00 12.3 40.38 42.9 45.65

Counter 2.18 17.91 16.15 9.83 38.91 41.28

Desk 7.71 17.24 17.05 18.11 36.75 39.91

Dresser 6.6 12.62 20.37 20.25 31.97 39.85

Fridge 4.48 17.62 19.82 19.15 40.00 43.97

Sink 11.69 22.42 20.49 25.82 35.79 37.39

Board 5.15 10.28 10.06 32.78 33.61 35.54

Person 5.21 8.71 7.71 17.42 36.51 39.04

Toilet 27.35 32.61 31.36 44.96 47.97 56.7

Lamp 6.11 9.7 10.59 13.26 24.57 26.96

Nightstand 0 10.56 11.64 0.04 21.32 23.44

Bathtub 12.57 23.87 23.84 28.33 45.14 50.79

MEAN 10.12 17.49 17.98 25.68 37.87 41.18

Table 4.1: The evaluation results (%) in terms of both BB-IoU and VP-IoU for 16

major indoor objects, where Base is the baseline algorithm [1] presented in Section

3.1; Ours− 1 is our method without the visibility penalty term (the second term in

(6.12); Ours− 2 is our final output both terms in (4.2).
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4.5 Discussion

The quantitative results of BB-IoU and VP-IoU with respect to 16 major indoor

objects are shown in Table 1. Ours-1 does not involve the visibility penalty term,

whereas the Ours-2 method uses all terms in the objective function. We can find

that both our methods outperform the baseline method in terms of both BB-IoU

and VP-IoU. For BB-IoU, Ours-2 is comparable with Ours-1. It is understandable

because BB-IoU is evaluated against with the ground-truth bounding boxes where the

visibility term does not help much. For VP-IoU, Ours-2 is significantly better than

Our-1 with a great margin. This indicates that Ours-2 can find much more meaningful

visible points for the target category. It is worth mentioning that our method can

even work well for those objects that cannot be handled by the baseline method (BB-

IoU and VP-IoU are less 10%), such as Nightstand and Counter. Since all results

are obtained by using the same score-maps as the baseline method, our experiment

shows the deep-learning network actually extracts more meaningful information in

the score-maps that is partially lost in the soft-max output.
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Figure 4.4: Example images with annotation from SUN RGB-D dataset [2].
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Figure 4.5: Some bouding box hypothesis generation examples.
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CHAPTER V

RELATIONAL MODELLING OF INDOOR CONTEXT

In this chapter, we introduce a new instance segmentation module together graphical

model-based context information to directly find object boundaries. Our framework is

significantly different from the existing deep learning-based approaches. Moreover, we

are able to efficiently incorporate trained network outputs with non-network models

(dual graphical models) to segment all instances with high objectness without relying

on computational expensive instance-level network training.

We organize this chapter as follows: (1) preliminary wok; (2) dual graphical mod-

els; (3) an application using the dual models: bounding box candidate generation;

(4) experimental results and (5) Conclusion and discussion.

5.1 Preliminary work

Indoor scene understanding has been a challenging problem in computer vision be-

cause of large variation in object shapes and placement, and heavy occlusion and

clutter. There exist three main schemes in scene understanding: per-pixel semantic

labeling [35–37], bounding box generation [27, 28, 35], and scene level holistic under-

standing [?, 1, 8, 15–19, 30, 60]. The first scheme provides the contours and spatial

areas of different objects and structures in an image. The second shows a set of

cuboid-shaped boxes to represent different objects with certain size and orientation

in . The third scheme includes various scene level tasks, including room type recog-

nition [15, 16], scene structure classification [30] or other methods that incorporates

high level knowledge from human understanding [1, 17, 18, 60]. There are two kinds
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Figure 5.1: Illustration of VPM and HPM. (a) A bedroom image. (b) Ground-truth

pixel level labeling of (a) where the bed is labeled as multiple items. (c) The vertical

placement relationship of the bed set. (d) VPM for the bed set. (e) The cropped

portion of the nightstand in (a). (f) Ground-truth bounding boxes in 3D space. (g)

The horizontal object placement from the top-down view. (h) HPM for the bedroom.

of ground truth data used for training and validation, bounding boxes or pixel label-

ing. Usually, the former can be used to represent objects with relatively well-defined

shapes, while the latter is more general and suitable for various objects or structures.

Thus, more object categories are normally considered in pixel level labeling than those

used for bounding box generation. On the other hand, there is a trend to combine

both of them for scene understanding [8, 19]. However, there are some gaps between

2D pixel labels and 3D bounding boxes, both spatially and relationally.

5.2 Dual graphical models

Our objective is to integrate the three-level scene semantics in a bottom-up informa-

tion flow where the two models, VPM and HPM, play complementary roles to bridge

40



the gap among three semantic levels. VPM serves as a bridge from pixel level label-

ing to bounding box initialization, and HPM plays as a propagator to use scene-level

holistic configuration for collective bounding box generation .

There are two challenges in this research. The first one is about the placement

between objects that often leads to occlusion and overlap problems, complicating

bounding box generation. For example, a chair under a table is only partially visible

and a pillow or sheet will cover part of the bed unlabelled. The second one is about

the ambiguity and inconsistency of ground-truth data used for pixel labeling. There

are two often-seen cases. The first is that different objects share the same label, for

example, the nightstand and end-table were often considered to belong to the same

category. The second is the same object was labeled differently. For example, some

beds were labeled with a bed board, and some only include the mattress. Therefore,

we involve two graphical models that capture the objective placement dependency

to cope with those challenges with the aim to create reliable and accurate bounding

boxes from inconsistent and ambiguous pixel-level labels. Traditionally a graphical

model is generated considering the co-existence probability of objects as the edge

weight S, as shown below.

p(n1, ...nk) =
∏

i=1,2...k

S(ni,Mi), (5.1)

where

S(ni,Mi) = p(ni|Mi),

where ni is the node for object i in the graph, Mi is the set of parents of node ni,

k is the total node number, and S stands for the edge weight calculated by the co-

occurrence joint probability. In the following, we introduce the dual graphical models,

VPM and HPM, that involve different weights as the closeness measure and similar

training data.
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5.2.1 Vertical placement model (VPM)

Given the ground-truth pixel labels and bounding boxes, we study vertical placement

modelling by projecting all objects onto the ground plane from the top-down view.

Then a 2D room layout is obtained by aligning all objects with gravity. Small ones

are often placed on top of the bigger ones. Due to the fact that some small objects

could be placed on different objects, we learn VPM with strong pair-wise connections

by trimming off the weak ones [17,54]. In VPM, the nodes are object categories from

pixel level labeling and the edges’ weights are determined by the closeness measure

that considers their co-occurrences and the overlap ratio in the layout view. Therefore,

VPM is specified as,

gV(n1, ...nk) =
∏

i=1,2...k

Sv(ni,Mi), (5.2)

where the edge weight is

Sv(ni,mi) = p(ni|mi)×
A(ni)

A(mi)
,mi ∈Mi, (5.3)

where A(ni) is the mean area of object ni in the layout view. Thus, the edge weight

Sv is calculated using the product of conditional probability and the 2D overlapping

ratio between the two objects in layout view, which indicates the significance in the

bounding box.

5.2.2 Horizontal placement model (HPM)

Similar to VPM, HPM is also learned from the top-down layout view of the projected

3D objects which embraces all object categories. The edge weight Sh is based on the

co-occurrence probability of a pair of objects and the ratio of their center distance D

with reference to their non-overlapping minimum distance B. For the objects without

bounding boxes, the distance ratio is set to be one. HPM is defined as

gH(n1, ...nk) =
∏

i=1,2...k

Sh(ni,Mi), (5.4)
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where the edge weight

Sh(ni,mi) = p(ni|mi)×
D(ni)

B(ni,mi)
,mi ∈Mi, (5.5)

which is the product of conditional probability and the 2D distance ratio in layout

view between the center distance D and B. The non-overlapping minimum distance

B is given by the summation of bounding box half size on the short side. Long

distanced objects are encouraged due to the fact that distanced objects may exist in

the scene outside of the image vision range, which lowers their presence probability.

5.2.3 Model learning

We learn the two models from the fully labeled dataset including two kinds of ground-

truth data, i.e., pixel-level labeling and 3D bounding boxes. Specifically, the VPM

learning involves both ground-truth data, whereas the HPM learning only uses bound-

ing box ground-truth. We follow the framework in [54] and use the Chow-Liu algo-

rithm [61] to maximize the likelihood of the training data (i.e., gV(·) for VPM and

gH(·) for HPM). Firstly, the algorithm computes edge weights (Sv and Sh) as the

mutual information for each object pair. Then, it finds the maximum weight span-

ning tree with the calculated edge weights. This algorithm only keeps strong pairwise

information to generate an undirected graphical model.

5.2.4 Inference and implementation

Figures 5.2 and 5.3 illustrate VPM and HPM, respectively, which are learned from the

ground-truth data (pixel labeling and bounding boxes) in the SUN-RGBD dataset [2].

The two models are versatile for different scene analysis tasks. (1) According to VPM,

indoor objects can be classified into three groups, ground-level base objects, accessory

objects placed on a base object, and stand-alone individual objects. (2) We can find

the co-existence and exclusiveness between every object pair in both VPM and HPM.
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Figure 5.2: The vertical placement model of dataset SUN-RGBD [2]: on the top is the

full model, the bottom shows the object sets in the model. The blue links shows the

closeness while the red ones refer to exclusiveness. The thickness of links indicates

the relation strength. The on-ground objects with bounding box tags are shown

in rectangles while other objects are shown in ovals. The object set are rectangle-

oval connections which stands for the base-accessory object relation. Note that the

object relations are learned from training data. The dashed ovals are added only for

illustration.

(3) The grouping effect in two models indicate different object sets and room types

(denoted by dash ovals). (4) VPM and HPM can be used to refine and rectify ground

truth data where the inconsistency and ambiguity may impede training and testing.

5.3 GM for bounding box generation

As a case study in this work, we will apply VPM and HPM to create 3D bounding

boxes for all objects from pixel-level labeling results obtained from any deep learning

algorithm. The VPM and HPM work together to bridge the gap between pixel-level
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Figure 5.3: The horizontal placement model of dataset SUN-RGBD [2]: the full model

is shown on the top. The bottom defines the scene groups in the model. The blue

links shows the closeness while the red ones refer to exclusiveness. The thickness of

links indicates the relation strength. The accessory objects are contained in the sets

found using VPM as shown in Figure.5.2. The model automatically generates three

object groups for bedroom, restroom and living room scenes.
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labels and object-level bounding boxes in a sequential manner.

5.3.1 Bounding box initialization

Given a pixel-level segmentation map, we transfer the class label to the RGB-depth

data points and then the labeled 3D points are projected from a top-down view to

form a layout map, represented by L, similar to the way we created training data for

VPM and HPM. For a specific given object, the size of the bounding box is obtained

from the range of data points labeled as that object. Thus, we need only to find the

bounding box orientation. We simply generate the bounding boxes for all directions

with a step size of 5 degrees. Then, the bounding box with least points from other

categories is considered to be the tightest and is selected as our initial bounding box.

Given the layout view points set L, the 2D bounding box X̂i is generated as:

X̂i = arg min
r∈{0,π}

{E(Xi(r) | L)}, (5.6)

where Xi(r) is the bounding box parameter set for object i with orientation r in

the layout view L. The bounding box evaluation function E gets the total point

number that falls within Xi(r) but not classified as object category i in the layout

view L. To get the 3D bounding box, we add the height to Xi using the highest

(along the gravity) labeled data point in Xi. Here we consider three kinds of objects,

base objects, accessory objects and individual objects as defined before. Although

pixel level labeling provides more object categories, we only consider the objects with

ground truth bounding boxes.

5.3.2 VPM for base objects

VPM is used to re-label each given base object by finding its accessory objects to

get a re-labeled layout view map. Following the baseline method in Section 4.1, the
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bounding box X̂v
i is generated as:

X̂v
i = arg min

r∈{0,π}
{E(Xv

i (r) | Lvi )}, (5.7)

where Lvi is generated from L after relabelling it with respect to the object i. Lvi

is obtained from VPM represented by gV(...) defined in (2) by relabelling all acces-

sory objects to be the base object underneath. The final bounding box heights are

determined from initial labeled 3D points.

5.3.3 HPM for individual objects

In order to create bounding box generation for individual objects, we need to min-

imize the penalty from two kinds of uncertain 3D points during optimization. The

first includes those with exclusive object labels as specified by HPM. The second

corresponds to those with a low confidence sore as indicated by the segmentation

map from the deep learning network. In other words, these two kinds of 3D points

could be in a bounding box for any category. Hence, individual objects could have

more flexibility in rotation r and dimension d during optimization, resulting in more

accurate bounding box generation as:

X̂h
i = arg min

r,d
{E(Xh

i (r, d) | Lh)}, (5.8)

where Lh is created from L by suppressing the two types of uncertain points. Note

that HPM is used at the scene level, which means Lh is generated for each image

while Lvi is generated for each base object.

5.4 Experimental results

Although VPM and HPM could be applied to various scene analysis tasks, we tested

them for bounding box generation from pixel level labeling (Section 4). We used the

SUN-RGBD [2] dataset that provides 5285 training images and 5050 testing images.

The ground truth labeling provides a 37 classes set for pixel level labeling.
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To generate the baseline bounding boxes, we use the pixel level labeling map

from a recent deep learning method [1] as the input for the algorithm described in

Section 4.1. The widely used evaluation measures mean average precision (mAP)

under certain IoU threshold. We expect this evaluation could show more details

about the real object area detection. We use two metrics to evaluate our method:

the bounding box intersection over union (BB-IoU) and the visible point intersection

over union (VP-IoU). The BB-IoU measures if the bounding box could be correctly

found. In indoor scenes with heavy occlusion and sparse 3D data points, some of

the bounding box ground-truth are inferred from the visible area. Thus, we use the

VP-IoU measure to show if the visible point of the target object could be found. Note

that the in VP-IoU, all the points in the target object bounding box are regarded as

the same label as the bounding box, regardless their ground-truth pixel level labeling.

In Table 1, we quantitatively show that our method can improve the bounding

box accuracy in both BB-IoU and VP-IoU compared with the baseline algorithm

denoted as Base (Section 4.1). In these experiments, not all base objects have related

accessory objects. Thus, some results in VPM are about the same as in the Base

column. Significant improvements in VPM can be found in object categories “bed”

and “sofa” because of the prevalent co-existence of bed-pillow and sofa-pillow, as

shown in Figure 6.3. The scores for bookshelf are also improved thanks to the help of

the inclusion of the book category. The bounding scores increase in general after we

apply dual models because HPM provides more rotation flexibility for all objects. It

is worth mentioning that the baseline method cannot correctly detect the nightstand

class. After applying the dual models, part of the nightstand is recovered with the

help of its related objects (mostly the bed).

Some qualitative results are shown in Figure 5.4 where we show the effect from

VPM and the dual models (VPM+HPM). It is shown that VPM is able to help

the inclusion of accessory objects to the base object, leading to improved bounding
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boxes generation of base objects. Also, the dual models can assist bounding boxes

for individual objects by including more uncertain points according to co-existence

and exclusiveness encoded in VPM and HPM.

BB-IoU VP-IoU

Category Base V PM Dual Base V PM Dual

Cabinet 7.43 7.43 7.66 21.53 21.53 21.76

Bed 24.81 27.67 28.81 52.13 52.79 54.29

Sofa 15.35 16.07 16.67 40.12 38.86 40.2

Table 13.7 13.7 14.7 28.79 28.79 30.43

Desk 7.78 9.74 10.14 18.09 19.02 19.68

Nightstand 0 0 4.8 0.04 0.04 10.4

Bathtub 12.57 13.14 13.46 28.33 28.63 29.22

Bookshelf 11.27 11.68 12.55 40.34 37.52 40.95

Toilet 27.35 27.35 27.85 44.96 44.96 44.78

Fridge 4.48 4.48 6.53 19.15 19.15 22

Dresser 6.6 6.6 7.86 20.12 20.12 20.1

Mean 11.94 12.53 13.73 28.5 28.31 30.35

Table 5.1: The quantitative results (%) in terms of both BB-IoU and VP-IoU for 11

indoor objects, where the baseline (Base) is compared against VPM and the dual

models.

5.5 Discussion

It is worth noting that the ground-truth data of pixel-level labeling and bounding

boxes still have some inconsistency and ambiguity which may complicate quantitative

analysis. Thus the major bottleneck is the pixel-level deep learning algorithm that

provides the input for our bottom-up flow. There are three possible directions that

would enhance the strengths of VPM and HPM to improve the quality of bounding

box generation. First, in stead of using the classification map, confidence maps for
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each object offer more potential to improve the quality of bounding boxes. Second,

we could enhance two models by incorporating more prior regarding the size and

shape to improve the inference and optimization of (5.7) and (5.8). Third, VPM and

HPM can be jointly used to improve the quality of ground-truth data in both training

and testing data which consequentially manifest the contribution from two graphical

models.

We have presented dual graphical models for relational modelling of indoor ob-

ject categories, i.e., the vertical placement model (VPM) and horizontal placement

model (HPM). Specifically, the former captures the co-existence of major and acces-

sory objects, while the latter encodes ground level spatial configuration of different

individual objects. The two models allow us to bridge the gap among the three levels

of semantic scene understanding. As a case study, we apply the two models in a

bottom-up flow to create object-specific bounding boxes in 3D space that are more

informative and intuitive where the input is the pixel-level label result from any deep

neural network. Experimental results show the promise of dual graphical models to

improve the quality of bounding box generation. It is foreseeable the two graphical

models can be used in other holistic object-level and scene-level analysis tasks.
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Figure 5.4: From the results of VPM (top), from left to right, the figures are: (1)

Two RGB images, (2) classified bed points from the deep network [1], (3) the bed

set points after using VPM, (4) the generated bounding boxes (blue: ground truth,

green: baseline, red: ours). From the results of dual models (VPM+HPM, bottom),

from left to right, the figures are: (1) two RGB images, (2) white pixels classified

dresser (the third row) and nightstand (the fourth row) from [1], (3) the uncertain

points added to dresser (the third row) and the uncertain points that are exclusive

with bed and added to nightstand (the fourth row), (4) the generated bounding boxes

(blue: ground truth, green: baseline, red: ours).
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CHAPTER VI

CROSS DOMAIN INSTANCE SEGMENTATION

In this chapter, we further expand the idea of co-existence of indoor instances, enrich

the dual model we described in chapter 5, together with the bounding box opti-

mization method we proposed in chapter 3 and 4, propose an end-to-end instance

segmentation algorithm that works for both RGB-D images and 3D maps.

We organize this chapter as follows: (1) an overview of our approach which crosses

the semantic labeling domain to instance segmentation domain; (2) relational mod-

elling for indoor objects; (3) Instance segmentation; (4) Experimental results and (5)

conclusion and discussion.

6.1 Preliminary work

Inspired by previous work on semantic understanding, we propose the relational

graphical models to support deep neural networks for holistic instance segmenta-

tion. Compared with other approaches that are either for semantic labeling or for

instance segmentation, our method investigates object-object relationships in terms

of co-existence and exclusiveness among different objects, which indicate specific spa-

tial indoor configuration. Therefore, we prevent the over-fitting problem in dealing

with the 7-D input data (RGB-D+3D location). Our approach has the potential to

improve the performance and functionality of many deep learning networks that are

trained for pixel-level scene understanding.

Using RGB-D images as input information, the objective of instance segmentation

is to classify each object and generate a mask in the form of a bounding box to localize
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Figure 6.1: The proposed algorithm takes the score-maps from the deep network

learned from pixel-level labeling as inputs to generate instance segmentation (red

flow) together with the help of context information from tree-based models, which

contain the VPM, HPM and NPM.

it. The depth data are represented as the point-to-plane distance in the camera

coordinates. The camera parameters are known so that we are able to map each pixel

in the RGB image to the 3D space. With the semantic labeling methods provided

pixel-level per-class score maps, we can get the prediction distribution in the 3D space.

Our method takes advantage of those score maps from semantic labeling, together

with the object co-existence context, to gain holistic understanding and generate

masks using 3D information. Fig. 6.1 shows the flow of our proposed algorithm. The

process modules in the figure are introduced as follows.

Score Map Extraction We get the score maps for each object category from any

well-trained neural network for semantic labeling. As the dashed red square shows

in Fig. 6.1, the score maps are extracted before the soft-max layer to preserve the
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original evaluation results.

Relational Model learning Using the location information given by the instance

segmentation ground truth, we train our tree-based relational model which has three

components: Vertical Placement Model (VPM), Horizontal Placement Model (HPM)

and Non-Placement Model (NPM). Each of them describes a specific pattern of how

objects are related in the scenes. The three relational models are jointly trained, then

separately trimmed and applied. Similar to the traditional graphical model, our model

is defined as the set of object mutual co-existence probability R = {rij|i, j = 1, ..., C}

as edge weights where C is the number of object categories. The weight Rij for an

object pair (ni, nj) is defined as follows:

R(ni, nj) = p(ni, nj)Γ(ni, nj), (6.1)

where the p(ni, nj) is the co-existence probability of two objects and the weight func-

tion Γ(ni, nj) differs for the three components based on the object labels of ni and

nj: the VPM RV , the HPM RH and the NPM RN . We will introduce each model

specifically in the next section.

Seed Point Calculation For the instance segmentation process, we find the

object seeds first, then generate a full mask from it. The grid method is used following

the idea in [46] to regulate the object density. Based on the fact that indoor objects

are normally vertically aligned, the top-down view is used in our method to simplify

the task. Specifically, we transfer the class label to the RGB-depth data points and

then the labeled 3D points are projected from a top-down view to form a layout map,

represented by L. We initialize the segmentation mask (cuboid-shaped boxes) in each

of the f × f grid cells. Then, for each grid cell, the one with the highest network

score is selected to represent that cell. Thus, we get the initial object seed set Q

which contains the category information and the score value for each cell. Note that

Q changes when L changes during our re-inference process.

Relational Model Re-Inference We apply the model by maximizing the scene-
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level co-existence probability. Given a relational model R (HPM or NPM), and the

initial object seed set Q, we infer the selected seeds S by optimizing the scene-level

compatibility. It filters out unlikely seeds from Q via the relational constraint R. The

updated S can be further applied to enhance the scope map L under the contextual

influence of R to bring up new cell seeds for object categories not found yet. After

the iterative optimization process, the selected seed set S is converged to describe the

scene holistically.

Segmentation Local Optimization We optimize an object mask Bi for each

final seed si found in S according to its local fitness while ensuring the seed point si

is inside of the mask. The optimization is done in the layout map L and the mask

is in the form of rectangles. At last, heavily overlapped bounding box candidates are

eliminated to get the final results.

6.2 Upgraded relational modelling

In this section, we introduce the three relational models to adjust the co-existence

probability of object pairs, i.e., the Vertical Placement Model (VPM), the Horizontal

Placement Model (HPM) and , the Non-Placement Model (NPM) and how they are

learned to represent 3D context information considering all objects from pixel-level

labeling results obtained from any deep learning algorithm. Then, we introduce how

the context model is trained and how the re-inference is done. In this work, the

context-based graphical model works as prior knowledge to boost the performance

of instance mask generation in the presence level. Therefore, we only consider the

object existence in this section without considering objects’ dimensions. Specifically,

the VPM helps to merge the minor object classes to major objects for a holistic view

to boost the layout score-map L. The HPM considers the object-object coexistence

in the top-down layout view. The NPM (RN) works to improve the identification

of objects that are not placed with gravity, i.e. the hangable objects, by analyzing
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their coexistence with the closest wall. The three models are initialized with edge

weights for each object pair. Then the weak edges are trimmed off during the training

process, rendering the models showing major co-existence information for our next

re-inference process.

Desk

Book
Keyboard

Monitor

M Desk

Desk
Desk

Desk

D

Night Stand

Lamp

Figure 6.2: In the VPM, minor (small) objects are used to boost the detection of the

occluded major object that appears under them. As shown in the figure, the monitor,

the book, the keyboard and the mouse(M) are used to find the desk.

6.2.1 VPM for base objects

Given the ground-truth pixel labels and bounding boxes, we study vertical placement

modeling by projecting all objects onto the ground plane from the top-down bird’s

eye view L, resulting a 2D room layout. Small objects are often placed on top of the

base ones. As the example shown in Fig. 6.2, we could use the detection of small

objects (monitor, book, keyboard and mouse) to enhance the presence of the desk.

Due to the fact that some small objects could be placed on different objects, we learn

the VPM with strong pair-wise connectivity by trimming off weak edges [54]. In the
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VPM, the nodes are object categories from pixel level labeling and the edge weights

are determined by the co-occurrences and the overlap ratio between two objects in

the layout view. Therefore, for each object pair (ni, nj) that ni is placed on top of

nj, the VPM-aware pairwise weight is specified as,

ΓV (ni, nj) =
A(ni ∩ nj)
A(nj)

, (6.2)

where A(·) is the area of an object in the layout view and the edge weight of VPM is

represented as the product of joint probability and the 2D overlapping ratio between

the two objects in layout view:

RV (ni, nj) = p(ni, nj) · ΓV (ni, nj). (6.3)

A learned VPM example is shown in Fig. 6.3 trained from the SUN RGB-D

dataset [2]. The blue edges show the co-existence between objects, while the red

edges mean exclusiveness. The thickness of both blue and red edges represent the

relation strength. Our model extracts the vertical relations from the dataset without

any artificial prior knowledge, and it shows consistency to people’s common sense, for

example: a pillow on top of a bed, a towel on top of a bathtub. Note that the strong

link of chair-table and chair-desk is because the chairs are often placed partially under

the table.

6.2.2 HPM for individual objects

Similar to VPM, HPM is also learned from the top-down layout view of the projected

3D objects which embraces all object categories. The edge weight RH is based on

the co-occurrence probability of a object pair and their adjacency. The pair-wise

adjacency between two objects is measured by the ration between their actual center

distance D(·) and the shortest center distance when they are placed next to each

other D(·)−G(·) (where G(·) is the gap distance along the center-to-center line), as
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Figure 6.3: The vertical placement model of dataset SUN RGB-D [2]: The blue edges

show the closeness while the red ones refer to exclusiveness. The thickness of edges

indicate the relation strength. We use all the objects to train the model, then the

weak edges are trimmed off. Isolated categories are not shown in the figure. This

figure is graphically reproduced for better visualization.

58



shown in Fig. 6.4. Then the HPM-aware weight of a object pair (ni, nj) is defined as:

ΓH(ni, nj) =
D(ni, nj)

D(ni, nj)−G(ni, nj)
, (6.4)

which is intended to enhance the presence of a distant object due to the fact that its

major portion is likely to be outside of the viewing range. For the objects without

bounding boxes, the distance ratio is calculated using the pixel-level classification

ground-truth. Then the edge weight of HPM is:

RH(ni, nj) = p(ni, nj) · ΓH(ni, nj). (6.5)

As shown in Fig. 6.4, we can see that due to the limited camera field of view, only

a corner of the dresser is seen in the image which lowers its presence score, but the

proposed HPM can boost its presence by using other frequent co-existent objects, such

as the bed or the night-stand. A trained HPM example is shown in Fig. 6.5 using

SUN-RGBD dataset [2]. Same as Fig. 6.3, the blue and red edges are for co-existence

and exclusiveness and the thickness represents the relation strength. Our model

extracts the horizontal relations among the objects. It automatically groups objects

together based on their co-existence, which actually reveals the scene type. As shown

in Fig. 6.5, the upper-left is the bedroom scene (bed, nightstand, lamp, dresser);

the bottom is the restroom scene (toilet, mirror, bathtub, sink); the bottom-right is

the living room scene (sofa, TV, cabinet). Thus, the scene understanding from our

relational model is consistent with human understanding.

6.2.3 NPM for hangable objects

Unlike VPM or HPM, which are showing the object-object relationships, NPM con-

siders the hangable objects on the wall. These kinds of objects normally are ignored

in either VPM or HPM. Moreover, it is not easy to segment them out since they have

very thin thickness. Thus, we introduce the help of the wall to enhance the detection

of these kinds of objects. Given all the wall W in the layout map, a NPM is introduced
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Figure 6.4: The HPM can boost the co-existence of two objects in the scene by the

ratio between their actual center distance (D(·))) and the shortest possible center

distance (D(·)-G(·), where G(·) is the gap along the center-to-center line between two

objects, i.e., the bed and the dresser.
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Figure 6.5: The HPM learned from the SUN RGB-D [2]: The blue edges show the

closeness while the red ones refer to exclusiveness. The thickness of edges indicate

the relation strength. Based on the VPM, we remove the minor objects (those on

top of other objects) and keep only the major objects (those placed on the floor) for

training. Then the weak edges are trimmed off. Isolated categories are not shown in

the figure. This figure is graphically reproduced for better visualization.
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Figure 6.6: The NPM is focused on the thin hangable objects each of which is char-

acterized by T (·) (the distance to the wall) and K(·) (the object’s thickness along the

wall-normal direction).
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for any object category that appears next to the wall. NPM is also learned from the

top-down layout view and checks for the wall in four major directions in the scene.

The edge weight RN is based on the co-occurrence probability of the object-wall pair

and related to the object-to-wall-distance T (·) and object thickness K(·) from the

top-down view. The NPM-aware object-to-wall weight is defined as:

ΓN(ni,W ) =
1

T (ni,W ) ·K(ni)
, (6.6)

where T (·) returns the point-to-plane distance from the object center to the wall and

K(·) is the thickness of the object along the T (·) direction as shown in Fig. 6.2.2.

Therefore, the weight of each object-to-wall edge in the NPM is obtained as follows:

RN(ni,W ) = p(ni,W ) · ΓN(ni,W ), (6.7)

which is intended to boost the presence of the hangable objects according to their

thickness and distance to the wall. In Fig. 6.7, we show a trained NPM model using

SUN-RGBD dataset [2] that shows the relationship between each hangable object

and the wall. During re-inference, the recognition of hangable objects could benefit

from the wall that is relatively easy to detect.

6.2.4 Model learning and re-inference

We follow the Chow-Liu algorithm [61] to learn three relational models in an efficient

and effective way [54]. The algorithm first computes empirical mutual information of

all pairs of variables using their sample values. Then, it finds the maximum weight

spanning tree with edge weights equal to the mutual information between the variables

connected by the edge. We do not use any prior knowledge regarding the hierarchical

dependency among object categories during the learning procedure. The Chow-Liu

algorithm can simply select strong pairwise dependencies.

The aim of re-inference of using three relational models is to select the most

evidently possible and contextually plausible object seeds that will be used for later
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Figure 6.7: The NPM learned from the SUN RGB-D dataset [2] that includes all

objects hung on the wall. The thickness of blue edges show the closeness to the wall,

and non-hangable objects have been trimmed off during the training process.

optimization of bounding box or instance segmentation. The input of re-inference

is the output (before the soft-max layer) of any deep networks for RGB-D semantic

labeling, noted as the 3D score map L0, which stores the scores for all category

channels. The output of re-inference is a grid-based object seed set S. Then instance

masks are generated for each element in the object seed set S. Specifically, the re-

inference algorithm has three main steps: (1) Initialization of the 2D layout map;

(2) Local seed initialization via VPM; (3) Contextual seed screening where HPM and

NPM are involved. Step 3 is an iterative process that is intended to suppress unlikely

objects and boost possible ones progressively.

Layout map initialization

Given the fact that most major indoor objects are placed on the ground, the indoor

object placement can be inferred from a 2D layout map of top-down bird’s eye view.

To do so, we can discard the vertical axis of L0 of which the dimension is (3+C)×M ,
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to get the layout map L with dimension (2 +C)×M , where “2” indicates that L is a

2D layout map, N is the number of category channels, and M is the number of total

3D points. In the following re-inference, L will be updated with the help of three

relational models from which the set of object seeds is obtained.

Local seed initialization

We make the first re-inference on L with the VPM RV by focusing only major base

objects. Given the VPM RV , we update each major object category channel Lc in

the layout map L in a point-by-point fashion as:

Lc = max
dc:RV (dc,c)>0

{Ldc , Lc}, (6.8)

where each dc is a minor object category with strong co-existence with the target

major object c in VPM RV . This aims to take advantage of the detection of minor

objects to support the related major objects along the vertical direction. For instance,

the detection of a pillow reinforces the detection of the bed underneath. The updated

layout map L will used to create the set of object seeds. We use a grid-based method

[46] to regulate the object density and reduce the computational load. We divide L

equally into f × f cells. Then we generate the grid-wise point set Q = {qi,j|i, j =

1, 2, ..., f} by finding the local representative point set in each cellqi,j as follows:

qi,j = arg max
c=1,...,C

Lc(p), p ∈ li,j (6.9)

where p represents each point in a cell li,j and Lc(p) is a category-specific score of

channel c for point p in the scope map L. It is worth mentioning that the number

of points p in each cell is not the same due to non-uniform density during the 3D-2D

projection from L0 to L. However, the points along the vertical direction always

belong to the same object. Thus, this process does not cause under-detection but

facilitates the detection of base objects that is expected to benefit the detection of

surrounding objects via HPM and NPM. The scene-level object seed set S is initialized
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by the local winning set Q both of which will be updated iteratively in the following

step.

Contextual seed screening

Given the current seed set S, we can gradually update the score map L with respect

to other object categories by considering contextual information encoded in HPM RH

and NPM RN . This step aims to enhance the score of minor objects that are not in S

yet but have co-existence relationship with those in S or strong dependency with the

detected wall. This is done in a point-by-point fashion for the score maps of object

categories absent in S as follows:

Lc = γ · Lc,

s.t.{RH(c, s) 6= 0 or RN(c,W ) 6= 0, s ∈ S, c /∈ S},
(6.10)

where γ is the scaling factor (> 1) to boost the scores of objects c in the layout map

L due to its strong co-existence with other objects in S. After L is updated, the local

winning set Q is recalculated that is further used to update the scene-level seed set

S via collective pair-wise co-existence scores:

S = arg max
S⊂Q

{
∑

(si,sj)∈S

RH(si, sj)}, (6.11)

where si and sj are any current object pairs in S. As the result, a pair of co-existent

objects will be preserved, and objects that are exclusive with those with stronger

scores will be rejected. The updated S is not only more evidently likely (according

the score L) but also more contextually plausible (according to HPM).

The whole re-inference algorithm works as a variation of alternative inference:

(1) Firstly, we condition on the local winning set Q to infer the object seed set S.

(2) Then we use the object seed set S, which represents the objects so-far-found in

the scene, to update the layout map L and get an updated Q. Note that only the
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4.4.3 Contextual Seed Screening

Given the current seed set S, we can gradually update the score map L with respect to other object
categories by considering contextual information encoded in HPM RH and NPM RN . This step aims to
enhance the score of minor objects that are not in S yet but have co-existence relationship with those in S
or strong dependency with the detected wall. This is done in a point-by-point fashion for the score maps
of object categories absent in S as follows:

Lc = γ · Lc,
s.t.{RH(c, s) 6= 0 or RN (c,W ) 6= 0, s ∈ S, c /∈ S},

(10)

where γ is the scaling factor (> 1) to boost the scores of objects c in the layout map L due to its strong
co-existence with other objects in S. After L is updated, the local winning set Q is recalculated that is
further used to update the scene-level seed set S via collective pair-wise co-existence scores:

S = argmax
S⊂Q

{
∑

(si,sj)∈S

RH(si, sj), } (11)

where si and sj are any current object pairs in S. As the result, a pair of co-existent objects will be
preserved, and objects that are exclusive with those with stronger scores will be rejected. The updated S
is not only more evidently likely (according the score L) but also more contextually plausible (according
to HPM).

The whole re-inference algorithm works as a variation of alternative inference: (1) Firstly, we con-
dition on the local winning set Q to infer the object seed set S. (2) Then we use the object seed set S,
which represents the objects so-far-found in the scene, to update the layout map L and get an updated Q.
Note that only the object seed set S is used in the next step to generate bounding boxes. The complete
re-inference algorithm is detailed as follows:

Algorithm 1: Re-Inference algorithm
Convert the 3D score map L0 from a trained network to a 2D layout score map L that has C category-specific channels;
Update each channel Lc in L by applying VPM RV using the (8);
Divide L equally into f × f cells following the method in [38];
Generate the winning point in each cell of L to get the local winning point set Q using (9);
Initialize the object seed set S by finding the highest-scored-point in Q;
for i = 1 to N do

Update L by applying HPM RH and NPM RN given the seed map S using (10);
Re-generate Q from L using (9);
Find the compatible new set S from Q given RH using (11);

end
Output: the object seed set S; updated layout map L

5 Instance Mask Generation

The basic idea of our bounding box generation algorithm is to fully use the category-specific score-map
L. After finding the object seed set S, we generate the instance masks for each element in L using the
updated score-map L in the form of a 2D bounding box. To get the bounding boxes in 3D space, we will
retrieve the object height by finding the classified points in the original 3D score map L0. In this section,
we first discuss a baseline method for bounding box generation based on pixel-level labeling results; then

object seed set S is used in the next step to generate bounding boxes. The complete

re-inference algorithm is detailed in the pseudo-code.

6.3 Instance segmentation

The basic idea of our bounding box generation algorithm is to fully use the category-

specific score-map L. After finding the object seed set S, we generate the instance

masks for each element in L using the updated score-map L in the form of a 2D

bounding box. To get the bounding boxes in 3D space, we will retrieve the object

height by finding the classified points in the original 3D score map L0. In this section,

we first discuss a baseline method for bounding box generation based on pixel-level

labeling results; then we introduce our objective function for instance mask evaluation

that involves confidence scores and depth visibility; lastly, we present an efficient

optimization algorithm that involves region detection and local fine-tuning.

6.3.1 Instance mask initialization

Our objective is to generate the holistic bounding boxes from the detailed pixel-level

labels. Thus, we use the object seed set S and corresponding updated layout score

map L to generate the bounding box, where S indicates which objects exist in the

scene with a rough location as single seed points; L is boosted for all the relevant
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objects to ensure the detection of the full shape of them. We generate one bounding

box for each seed in S, optimize each bounding box, then eliminate the duplicates

as the last step. To initialize the instance masks which are in the form of bounding

boxes, we assume the seed point si to be in the center of the bounding box because

the center part is considered to be supported by the surroundings which could lead

to a high score in the score maps. The bounding box dimension is initialized using

the statistical values of the target class. Since the bounding boxes are generated from

the 2D layout score map S, only one dimension rotation is considered and randomly

initialized. Since the score-maps from the deep learning network have relatively low

resolution, the rotation angle r is optimized with a 5-degree step-size in this work.

6.3.2 Instance mask optimization

For each box seed sj, we define the corresponding Bj as the bounding box parameter

set. The bounding box we generate should agree with both the deep-learning inference

results and the visibility in the scene. To ensure the generated bounding box does

not occlude the visible items in the scene, we remove the ”floor” points, quantize the

layout map into grids and label all the empty ones to get the empty space map M .

Thus, for a bounding box candidate Bj, the evaluation function is defined as:

Ek
i = α ∗ F (Bj, L)− β ∗G(Bj,M), (6.12)

where F (·) returns the average score of Bj from the layout score map L and G(·)

returns the visibility penalty when Bj conflicts with the empty area M , as defined

below:

G(Bj,M) =
H(Bj,M)

V (Bj)
, (6.13)

where H(·) finds the amount of empty grids M in bounding box hypothesis Bk
i ; and

V (·) returns the 3D volume of a bounding box. This indicates that for small objects,

our method has relatively small tolerance to ensure the majority of the object volume
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to be solid. During the optimization process, Ek
i will be maximized by adjusting

bounding box parameters in Bk
i . α and β are weights to balance the two terms in

(6.12). Our optimization process has two steps: global rough search and the local fine-

tuning. In the first step, to capture all possible bounding boxes in the scene, for each

seed point si in a grid cell cellj, the bounding box is initialized using the object mean

size. During optimization, the seed point sj must always stay in the bounding box to

preserve the diversity in 3D space and reduce the computational load. In the second

step, we optimize the 1D rotation along the gravity, the boundaries of each of the four

edges in top-down view. That is a total of 5 parameters. The optimizer we use is a

modified heuristic direct search method [59]. The direct search optimizers are simpler

and faster than gradient-based ones. We iteratively optimize the 5 parameters of each

bounding box. Instead of using a fixed step size during optimization, the search rate

r is updated adaptively for each parameter as follows:

rnew =
Enew − Eold
|Enew − Eold|

∗ t1 ∗ rold + t2 ∗ rold, (6.14)

where Enew and Eold are the evaluation score after and before a step move, and t1

and t2 where t1 + t2 = 1 are used to balance the intended step change and the original

step size, respectively. In our experiment, we use t1 = 0.75 and t2 = 0.25. We use

physical constraints to find the height of the bounding box. If the bounding box

shows a major object, it must stand on the floor. Otherwise, for a minor object, it

must have a major object underneath.

6.4 Experimental results

We conduct the experiments on the SUN RGB-D dataset [2] and the ScanNet dataset

[3]. In the following, we will first discuss baseline generation followed by detailed

results on two datasets.

69



Bed Desk Chair Nightstand Table Sofa

RGB image                          Ground Truth                      Baseline Detector                        Our Results  

Figure 6.8: Some qualitative results for dataset SUN RGB-D [2]. Our method gen-

erates more accurate bounding boxes than the baseline detector [1]. Moreover, the

example in the third row shows our re-inference approach brings back the nightstand

and the desk. However, our method cannot estimate the full shape of the object if

it is out of the field of view or even fail if only a small part is captured in the image

(row 2).
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6.4.1 Baseline generation

Given a pixel-level segmentation map, we transfer the class label to the RGB-depth

data points and then we generate L from the labeled 3D points in the same way we

created training data for VPM and HPM. For a specific given object, the size of the

bounding box is obtained from the range of data points labeled as that object. Thus,

we need only to find the bounding box orientation. We simply generate the bounding

boxes for all directions with a step size of 5 degrees. Then, the bounding box with

least points from other categories is considered to be the tightest and is selected as

our initial bounding box. Given the layout view points set L, the 2D bounding box

X̂i is generated as:

X̂i = arg min
r∈{0,π}

{E0(Xi(r))}, (6.15)

where Xi(r) is the bounding box parameter set for object i with orientation r in

the layout view L. The bounding box evaluation function E0 gets the total point

number that falls within Xi(r) but not classified as object category i in the layout

view L. To get the 3D bounding box, we add the height to Xi using the highest

(along the gravity) labeled data point in Xi. Here we consider three kinds of objects,

base objects, accessory objects and individual objects as defined before. Although

pixel level labeling provides more object categories, we only consider the objects with

ground truth bounding boxes.

6.4.2 SUN RGB-D dataset results

The SUN RGB-D [2] dataset includes 5285 training RGB-D images and 5050 test

images with ground truth bounding boxes. We follow the ground-truth given by

the dataset to use 3D bounding boxes to present the instance segmentation. The

camera parameters are given and the projected 3D points are aligned with gravity.

We use a semantic labeling network that considers 37 categories [1] to generate 10-

class bounding boxes following [7]. Due to the fact that the view range is limited
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Figure 6.9: Illustration of VPM and HPM for SUN RGB-D dataset [2]. (a) A bedroom

image. (b) Ground-truth pixel level labeling of (a) where the bed is labeled as multiple

items. (c) The vertical placement relationship of the bed set. (d) VPM for the bed

set. (e) The cropped portion of the nightstand in (a). (f) Ground-truth bounding

boxes in 3D space. (g) The horizontal object placement from the top-down view. (h)

HPM for the bedroom.
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for a single RGB-D image, we cannot get high quality wall detection. Thus, the

NPM model, which describes the relations between hangable objects and walls, can

hardly be found. Moreover, no hangable object exists in the 10 target categories.

So, we neglect the NPM in this dataset. The whole process is illustrated in Fig. 6.9.

To generate the baseline bounding boxes, we use the pixel level labeling map from

a deep learning method [1] as the input for the algorithm described in Section 4.1.

The widely used evaluation measures mean average precision (mAP) under certain

IoU threshold (0.5). Note that in indoor scenes with heavy occlusion and sparse 3D

data points, some of the bounding box ground-truth are inferred from the visible

area. Moreover, the bounding boxes are manually labeled by different people that are

with inconsistent standards. Thus, the ground-truth bounding boxes are more like

references rather than the true ranges of objects.

From the results listed in Table. 6.1, we can see that our method brings more

benefits to the small objects where the deep learning detectors are less effective.

The leading algorithm [19] gives very high detection accuracy on typical big objects

which have plenty of details in the input images. Thus, the performance on these big

objects are mainly from the strength of the deep-learning network detectors. While

the small objects, on the other hand, could be boosted by context. We could find

our method reaches a comparable level of the small objects compared to other state-

of-art methods. Note that our method find the nightstand, which is hardly found

by the baseline detector. The problem actually comes from inaccurate labeling of

the nightstand, table and dresser. The confusion comes more from the nightstand

and the end-table, which is sometimes labeled as table. With the context boost, our

method could re-find the nightstand even though the detector is heavily contaminated

by the inconsistent ground-truth. In the semantic labeling task, it considers many

more categories. Our method is easy to extend to generate instance segmentations for

other categories, while the traditional networks require retraining the whole network
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Comparisons Ablation Study

Category PointNet [19] V oteNet [62] COG [63] Base Base + V Ours(Full)

Bathtub 37.26 74.40 76.20 21.27 22.13 48.02

Bed 68.57 83.00 73.20 62.31 71.03 71.74

Bookshelf 37.69 28.80 32.90 28.10 34.29 40.26

Chair 55.09 75.30 60.50 56.79 56.79 65.07

Desk 17.16 22.00 34.50 16.41 19.23 28.00

Dresser 23.95 29.80 13.50 21.08 22.32 23.87

NightStand 32.33 62.20 30.40 0 11.16 28.67

Sofa 53.83 64.00 60.40 41.17 48.52 56.00

Table 31.03 47.30 55.40 37.78 42.45 51.29

Toilet 83.80 90.07 73.70 70.74 71.03 78.04

MEAN 44.07 57.69 51.07 33.86 39.90 49.10

Table 6.1: The evaluation results (%) of dataset SUN RGB-D [2] in terms of bounding

box mAP 10 major indoor objects. Base is our baseline algorithm flow; Base + V

is our method with the VPM only; Ours(Full) is our full version algorithm that

considers the two context models.
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over again.

6.4.3 ScanNet dataset results

ScanNet is an RGB-D video dataset containing 2.5 million views in more than 1500

scans, annotated with 3D camera poses, surface reconstructions, and instance-level

semantic segmentations. The advantage of ScanNet dataset is the vision of the whole

scene. Unlike the single-view dataset SUN-RGBD, ScanNet enables all the objects

visible in the layout. Although partial occlusion still exists due to the complexity

of the indoor scenes, the dataset has well preserved the presence information of all

objects. Thus, our context-based algorithm is well supported. We follow the ground-

truth to use the point-level mask to present the instance level segmentation. Since the

ScanNet dataset provides scene level 3D point clouds that are computationally high,

we collapse the whole scene onto the ground to use the layout map. Moreover, since

almost all the objects appear in the scene level, we limit the coexistence to be within

the wall constraint. The walls and floor points are not considered during the mask

generation process. Unlike the fixed grid size used in the SUN RGB-D dataset [2], we

generate distance-determined grids for the seeding process. The grids are generated

for each 0.5 meter range.

From the Table 6.2, we can see our approach improves the detection rate from

the baseline method. Some qualitative results can be found in Fig. 6.11, which shows

the effectiveness of our method in finding the object full shape, removing outliers

and segmenting each single instance. Some more qualitative results for different

object categories are shown in Fig. 6.12. In general, out method is very effective for

those small objects that could be directed from a typical big object. Our baseline

method is a semantic labeling network. It is possible that the baseline method cannot

catch some of the object features, which limits the potential performance in instance

segmentation. However, semantic segmentation provides us valuable information of
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Comparisons Ablation Study

Category MTML [64] BoNet [65] PANO [66] Base LO V + H Ours(Full)

Bathtub 100.0 100.0 66.7 31.0 48.3 78.1 78.1

Bed 80.7 67.2 71.2 62.2 71.8 73.3 73.3

Bookshelf 58.8 59.0 59.5 53.2 53.2 55.5 55.5

Cabinet 32.7 30.1 25.9 21.1 36.6 38.1 38.1

Chair 64.7 48.4 55.0 17.6 35.4 51.0 52.5

Counter 0.4 9.8 0.0 11.5 14.3 14.3 14.3

Curtain 81.5 62.0 61.3 21.5 21.3 51.7 74.6

Desk 18.0 30.6 17.5 21.1 35.8 34.3 34.3

Door 41.8 34.1 25.0 8.6 18.8 26.9 38.1

OtherFurniture 36.4 25.9 43.4 23.4 34.5 35.2 35.5

Picture 18.2 12.5 43.7 18.9 26.2 23.1 25.7

Fridge 44.5 43.4 41.1 12.6 38.1 42.2 42.2

ShowerCurtain 100.0 79.6 85.7 43.8 55.9 68.1 76.8

Sink 44.2 40.2 48.5 15.0 28.1 40.2 40.2

Sofa 68.8 49.9 59.1 51.5 57.3 62.0 62.0

Table 57.1 51.3 26.7 35.5 35.8 42.2 42.2

Toilet 100 90.9 94.4 86.6 85.3 87.8 87.8

Window 39.6 43.9 35.9 9.3 10.8 27.6 36.0

Average 54.9 48.8 47.8 30.2 39.3 47.1 50.2

Table 6.2: The evaluation results (%) in terms of mAP(mean Average Precision) using

the IoU (Intersection over Union) threshold as 0.50. 18 indoor objects are considered

following the ScanNet dataset benchmark [3]. Base is the baseline algorithm flow;

LO is our method with only local optimization; V +H represents our algorithm with

two context models (VPM and HPM) along with local optimization; Ours(Full) is

our full version algorithm by adding the NPM .
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Figure 6.10: Some scene scan examples in the ScanNet dataset [3].

some classes other than those in the instance segmentation benchmark. For example,

with the information of the class of wall, Objects like door, picture, window and

curtain gain significant improvement, which is mainly from the NPM for their spacial

connection to the walls.

6.5 Discussion

We have presented context-based graphical models for relational modelling of indoor

object categories, i.e., the vertical placement model (VPM), the horizontal placement

model (HPM) and the non-placement model (NPM). Specifically, the VPM captures

the co-existence of major and accessory objects; the HPM encodes ground level spatial

configuration of different individual objects; and the NPM describes the instances

that are hung in the scenes rather than placed with the reference to the gravity. The

context model allows us to bridge the gap among the three levels of semantic scene

understanding: from pixel-level labeling to instance-level identification to scene-level

object grouping. As a case study, we apply the context-based models in a bottom-up
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Figure 6.11: Some qualitative results for the ScanNet dataset [3]. The columns from

left to right are: target object ground-truth segmentation; detector output of the

whole scene; target object directly from the detector output; final object segmentation

after our approach. With our approach, the boundary of the desk is better found;

the outlier of the sofa is removed; the chairs in the scene can be separated as single

instances.
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Fridge                       Chair                      Door                          Table                         Toilet                                     

Figure 6.12: Some more random examples in the ScanNet dataset [3]:(1) the detection

of a featureless fridge is hard for detectors but gets boosted by our relational model;

(2) instance masks become more accurate by removing classification outliers as the

2nd and the 3rd columns show; (3) multiple instances of the same category can be

separated, as shown in the 4th column where two tables are segmented; (4) for the

easy-to-detect objects with typical appearances as the toilet in the 5th column, the

detector is able to make accurate detection that leaves little space to improve.
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flow to create object-specific instance-level segmentation in 3D space that is more

informative and intuitive where the input is the pixel-level label result from any deep

neural network. Experimental results show the promise of our context model to

improve the quality of instance segmentation. It is foreseeable the our method can

be used in other holistic scene understanding tasks.
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CHAPTER VII

LOCAL COLLABORATIVE OBJECT PRESENCE NETWORK

In this chapter, we use the the context information to boost indoor scene semantic

segmentation using deep learning networks. A re-inference module is introduced to

reinforce the semantic labeling baseline network by introducing the Object Collabo-

rative Presence(COP) as the context information. The method is upgraded as Local

COP(LoCOP) to further improve the segmentation accuracy. Our re-inference net-

work architecture can be applied to any deep learning frames and be easily guided

with specific high-level prior knowledge.

In this chapter, we have the following sections: (1) the preliminary work about

encoding context information to networks; (2) Collaborative Object Presence(COP)

network (3) Local Collaborative Object Presence(LoCOP) network; (4) Experimental

results; (5)Discussion.

7.1 Preliminary work

The deep learning technique develops fast in these years. With different kinds of

network architectures, it has potential to solve a variety of real word problems [67,68].

Different from the conventional end-to-end tasks for deep learning networks, recent

researchers try to transfer knowledge to the networks [10,69,70] to improve robustness,

to speed up the training process or to obtain better performances, as shown in Fig. 7.1.

To fully utilize the low-level features from a well-trained network, researchers widely

use the backbone technique which is to initial the low-level network layer weights using

the well-trained network with a similar task [71–73]. However, the backbone method
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Figure 7.1: The idea of transfer learning [10]. The knowledge obtained from the

source domain is applied to guide the learning task in the target domain.

works only for the low-level features. It is very hard to implement any high-level

understanding that people posses.

To use people’s prior knowledge in indoor scene understanding, researchers have

proposed method to utilize context information to guide the networks in semantic

segmentation tasks [11, 74, 75]. Semantic segmentation assigns per-pixel predictions

of object categories, which provides a comprehensive scene understanding including

the information of object category, location and shape. Current semantic segmenta-

tion approaches are typically based on the end-to-end framework [6, 36, 76]. As the

network structure shows in Fig. 7.2, the method proposed in [11] finds the context

features in the context encoding module, fuse them as global regulations in the final

segmentation stage. Given an input image, a pre-trained CNN is used to extract dense
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Figure 7.2: Overview of the the preliminary research EncNet [11]. A Context Encod-

ing Module with an Encoding Layer to capture the encoded semantics. The Semantic

Encoding Loss (SE-loss) is calculated to regularize the training which lets the Con-

text Encoding Module predict the presence of the categories in the scene. Then the

prescenced classes are highlighted before they are fed into the last convolutional layer

to make per-pixel prediction.

convolutional feature maps. A Context Encoding Module is built on top, including an

Encoding Layer to capture the encoded semantics and predict scaling factors that are

conditional on these encoded semantics. These learned factors selectively highlight

class-dependent feature maps (visualized in colors). In another branch, Semantic En-

coding Loss (SE-loss) is calculated to regularize the training which lets the Context

Encoding Module predict the presence of the categories in the scene. Finally, the

representation of Context Encoding Module is fed into the last convolutional layer to

make per-pixel prediction.

As shown in Fig. 7.2, their contextual information is implemented by adding a

weight ratio for the whole image channel before the final convolutional layers for

labeling. However, the contextual information is impaired since the weights of the

upcoming convolutional layers could easily mitigate the contextual weights. Moreover,

it is unwise to suppress the whole channel for the whole scene because the detector

process and evaluate each pixel respectively. It is highly possible that the detector
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works well in some parts of the image but does a poor job in some other parts. Our

work is inspired by their network structure and we focus on the extraction method

and accuracy of the context feature itself without worrying about the final instance

segmentation. We propose the Collaborative Object Presence(COP) feature and its

upgraded version Local Collaborative Object Presence(LoCOP) feature.

7.2 Collaborative object presence (COP) network

To use the scene level information as context to guide the networks in semantic

labeling, we propose the Collaborative Object Presence(COP) feature. which is a

binary vector that indicates which objects presence in the scene. The information

is used as an surveillance in the labeling modules that come next: to remove the

incompatible objects and to enhance the detection of the presence object.

The architecture of our network is described in Fig. 7.3. The upper branch gets

the scene-level COP vector. To apply COP into the final labeling module, we extend

each bit in the COP vector to have the same dimension as the scene score maps,

concatenate them and feed to the final labeling layers. Thus, each kernel in the

coming convolutional layer has the COP information for every part of the image.

In standard training process of semantic segmentation, the network is learned

from isolated pixels (per-pixel cross-entropy loss for given input image and ground

truth labels). The network may have difficulty understanding context without global

information. To regularize the training of COP channels, we calculate loss on the

COP vector which forces the network to understand the global semantic information

with very small extra computation cost. We build additional convolutional layers

with a sigmoid activation function on top of the concatenated score maps to make

individual predictions for the presences of object categories in the scene.The COP

detection is trained separately with binary cross entropy loss that considers big and

small objects equally. Thus, in the next labeling module, the segmentation accuracy
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Figure 7.3: The COP method: start from the scene score maps, the upper branch

generates the COP feature
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of small objects are often improved. To extract the COP vector, we use 2 layers of

Convolutional Neural Networks (CNN) with 256 hidden neurons followed by a Fully

Connected Network (FCN) layer. The final labeling module consists of 3 layers of

CNNs and one soft-max layer to get the final output.

The disadvantage of COP is that the information it provides is for the scene level,

which could be too vague for local labeling inference. We expect the COP that could

carry the scene-level compound knowledge, but still could be helpful for local tasks

since the inaccuracies happen around object boundaries. This leads us to the next

section: Local Collaborative Object Presence(LoCOP) network.

7.3 Local collaborative object presence (LoCOP) network

With the proposed COP structure described in the previous section, we build a Local

COP network to enhance the local guidance from the contextual information. We

follow the method in previous chapters to divide the scene into grids then each grid

contributes one bit in the LoCOP vector. Different from the binary COP, LoCOP

has integers as its value to represent each categories. As shown in Fig. 7.4, the full

LoCOP is a map and get divided into the same patches as the input scene. Each

patch has 2x2 grids that are used during the re-inference process.

The full architecture of LoCOP is shown in Fig. 7.5. The LoCOP map is trained

individually on the scene level information to predict the presence of the object class in

each grid. We use 2 layers of Convolutional Neural Networks (CNN) with 256 hidden

neurons. When doing the re-inference, the map is got divided according to the scene

patches. Similar as the COP structure, the LoCOP channels are expanded to the same

dimension as the score maps of the patch, which means that each channel contains

one label information for the specific position. Similar as the COP architecture, the

final labeling module consists of 3 layers of CNNs and one soft-max layer to get the

final output. After the re-inference process, the patches are put back together to be
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Our re-inference flow

Semantic Segmentation

Object 

Score-maps

Local COP

Figure 7.4: The LoCOP method obtains the COP feature for the whole map. Then

the inference is done for the scene patches.

the final scene level result.

The ground truths for LoCOP map are directly generated from the ground-truth

segmentation mask without any additional annotations. Our COP and LoCOP mod-

ule is differentiable and inserted well with the existing semantic segmentation pipelines

without any extra training supervision or artificial prior knowledges. In terms of com-

putation, both COP and LoCOP are light-weighted since the modules aim only for

re-inferencing.

7.4 Experimental results

We conduct the experiments on the ScanNet dataset [3]. ScanNet is an RGB-D video

dataset. It has more than 1500 scene-level scans that are generated from 2.5 million

views that annotated with 3D camera poses, surface reconstructions, and instance-

level semantic segmentations. The advantage of ScanNet dataset is the vision of the
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Figure 7.5: The architecture of our LoCOP network: the LoCOP map is trained for

the scene level and divided into patches for inferencing to provide top-down regulation

for the target local area. The patches are put back together to obtain the final output.

Since the patches are directed by the same LoCOP map, the divide-and-merge process

does not increase the labeling difficulty.
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whole scene. Unlike the single-view dataset SUN-RGBD with occlusion and limited

field of view, ScanNet enables all the objects visible in the layout. Although partial

occlusion still exists due to the complexity of the indoor scenes, the dataset has

well preserved the presence information of all objects. Note that different from the

previous chapters, semantic labeling is conducted in this chapter and the evaluation

is the labeling accuracy across each pixel.

Since the ScanNet dataset provides scene level 3D point cloud which is computa-

tionally high. We project the whole scene onto the ground to use the layout map as

we described in the previous chapters. We generate distance-determined grids for the

LoCOP map. The grids are generated for each 0.2 meter range. The local patches

are divided for each 2x2 grids. Our experiment system is built in PyTorch. We use

the base learning rate as 0.01 and weight decay rate is set to 0.9. The networks are

trained for 50 epochs for COP/LoCOP feature extraction and 120 epochs for the final

classification module. We didn’t use any data augmentation technique because they

may impair the context information. For example, the widely used cropping method

cuts the scenes into pieces which also cuts off the objects’ possible relations. The rota-

tion method works for shape-based features, but our COP/LoCOP is presence-based

features.

From the results listed in the table, we can see that our method brings benefits to

the objects in general and LoCOP helps more for the small objects where the deep

learning detectors are less effective. The big and typical objects are normally with

little occlusion and placed isolated, which makes them easy to be identified with clear

boundaries, like the bed, sofa and toilet. While the small and occluded objects, on the

other hand, could be boosted by context. COP does limited improvement because the

context information is very vague: the presence is for the whole scene. The presence

information could hardly help to find the boundaries of objects. LoCOP not only

provides local presence but also has orientational information since the object vector
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Comparisons Our Method

Category SparseConvNet [12] MinkowskiNet [77] COP LoCOP

Bathtub 64.7 85.9 65.2 70.1

Bed 82.1 81.8 82.1 82.1

Bookshelf 84.6 83.2 84.6 84.6

Cabinet 72.1 70.9 73.7 74.3

Chair 86.9 84.0 86.9 89.7

Counter 53.3 52.1 53.7 55.1

Curtain 75.4 85.3 75.6 76.8

Desk 60.3 66.0 64.4 67.4

Door 61.4 64.3 61.8 64.3

Floor 95.5 95.1 95.5 95.5

OtherFurniture 57.2 54.4 58.3 60.3

Picture 32.5 28.6 33.8 34.7

Fridge 71.0 73.1 71.3 75.1

ShowerCurtain 87.0 89.3 87.0 88.6

Sink 72.4 67.5 73.1 79.1

Sofa 82.3 77.2 82.3 82.3

Table 62.8 68.3 65.1 66.9

Toilet 93.4 87.4 93.4 93.4

Wall 86.5 85.2 86.6 87.0

Window 68.3 72.7 68.8 69.7

Average 72.5 73.6 73.1 74.8

Table 7.1: The evaluation results (%) in terms of average IoU (Intersection over Uion)

for each catergory. 18 indoor objects are considered following the ScanNet dataset

benchmark [3].

90



has a specific order. Thus, it does much more help to the non-isolated objects. We

could find our method reaches competitive level of labeling objects compared to other

state-of-art methods.

7.5 Discussion

We have presented a re-inference network module for indoor scene semantic segmenta-

tion using the context feature Local Collaborative Object Presence(LoCOP). Specif-

ically, the LoCOP is a map that captures the co-existence indoor objects roughly

without worrying about the real object boundaries. Then the LoCOP works as a

prior knowledge to support the semantic segmentation which is processed in small

patches to enhance the local detection. Experimental results show the promise of

our LoCOP network to improve the quality of semantic segmentation. Similar as the

widely accepted network backbone technique, the re-inference framework we propose

can be applied to other holistic scene understanding tasks using any specific high-

level knowledge. It shows great potential to fuse the bottom-up networks with the

top-down human knowledge.
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Our Results Ground TruthBaseline
Bed Chair UnannotatedTableSofa

Figure 7.6: Some comparisons of qualitative results: the baseline method is [12]. Our

method is able to correct some mislabeled points from the Baseline: the sofa and

the table in the 1st row; the table in the 2nd row; the objects around the bed in the

3rd row. Note that the black points in the Ground Truth are unannotated points,

which means that they are not labeled and will not be evaluated.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

In this thesis, we focus on applying high-level context information to support object

segmentation for indoor scenes. Our goal is to have an holistic scene understanding

that is able to support applications such as robotics and navigation. To achieve this

goal, we proposed approaches at four different levels of details. We start from the

single instance representation level to context-supported instance detection level and

finally to end-to-end instance segmentation. At single instance representation level,

in chapter 3, we estimate the 3D room in cuboids to expose the local geometry of

objects. Then in chapter 4, the idea is developed to find the instance level tight

bounding boxes. Next, at the context-supported instance detection level, we inves-

tigate in the object co-existence patterns using modified graphical models. Then,

we benefit from those algorithms and propose an end-to-end instance segmentation

algorithm. At last, we further develop our idea to be part of the fast-developing

neural network architectures. By adding a re-inference module with an independent

pathway to find the object context information and then getting it back to guide the

local detection results, our approach fuse the high-level knowledge to the network-

based local detectors. We demonstrate the efficacy of each proposed approach with

extensive experiments both quantitatively and qualitatively on public datasets.

8.1 Conclusion

The goal of this dissertation is to build computer systems that can see and understand

our physical world in a way that they are able to safely interact with this world and
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assist us in our daily lives. We believe that this requires machines to understand the

complete 3D scenes around them, especially the instance relations in the scene, which

is a task far beyond just labeling each pixel.

This dissertation work demonstrates that starting from the bottom-up pixel la-

beling detectors, the 3D representations and the context information are able to work

jointly to outperform data-driven algorithms which are designed only for a specific

instance segmentation task. Moving forward, I think it is also important to rethink

the role of the benchmark tasks defined by open-access datasets. Rather than treating

them as fixed hard limitations, which require researchers to get good scores in the

table of a particular task, we should consider them as guidance of our 3D world, and

make use of this to improve the true understanding of the environment holistically.

By reconnecting task-specific detectors with high-level perception, we will be able to

create more powerful and intelligent AI systems.

8.2 Future work

Indoor scene understanding is an comprehensive work that consists many parts in-

cluding semantic segmentation, object detection, instance segmentation and so on.

The state-of-the-art methods normally focus on one of these tasks. As shown in this

dissertation, the approaches for the tasks could work jointly to create holistic scene

understanding. Thus, our future work will aim on the following two points:

Prior knowledge implementation:High-level prior knowledge show its poten-

tial to guide data-driven approaches, like deep-learning networks, to acquire more

comprehensive and accurate understanding. We investigate in the object presence

in this dissertation, we will find and implement other context information to acquire

more complete scene understanding in the future work.

Network architecture optimization: The network architecture we propose to

implement the context information is trained individually from the local detectors.
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The performance could be further improved if they are trained as a whole where the

detector and the context information could support each other during the training

process.
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[34] R. K. Mahabadi, C. Häne, and M. Pollefeys, “Segment based 3D object shape

priors,” in Proc. CVPR, 2015.

[35] V. S. Lempitsky, P. Kohli, C. Rother, and T. Sharp, “Image segmentation with

a bounding box prior,” in Proc. ICCV, 2009.

[36] P. O. Pinheiro and R. Collobert, “From image-level to pixel-level labeling with

convolutional networks,” in Proc. CVPR, 2015.

[37] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical fea-

tures for scene labeling,” IEEE T-PAMI, vol. 35, no. 8, pp. 1915–1929, 2013.

[38] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference

on computer vision, pp. 1440–1448, 2015.

[39] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in neural information

processing systems, pp. 91–99, 2015.

99



[40] M. Jian, C. Jung, and Y. Zheng, “Discriminative structure learning for semantic

concept detection with graph embedding,” IEEE Transactions on Multimedia,

vol. 16, no. 2, pp. 413–426, 2013.

[41] Z. Deng and L. Jan Latecki, “Amodal detection of 3d objects: Inferring 3d

bounding boxes from 2d ones in rgb-depth images,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 5762–5770, 2017.

[42] J. Zhang, Q. Wu, C. Shen, J. Zhang, and J. Lu, “Multilabel image classification

with regional latent semantic dependencies,” IEEE Transactions on Multimedia,

vol. 20, no. 10, pp. 2801–2813, 2018.

[43] J. Lahoud, B. Ghanem, M. Pollefeys, and M. R. Oswald, “3d instance segmen-

tation via multi-task metric learning,” arXiv preprint arXiv:1906.08650, 2019.

[44] C. Liu and Y. Furukawa, “Masc: Multi-scale affinity with sparse convolution for

3d instance segmentation,” arXiv preprint arXiv:1902.04478, 2019.

[45] Y. Li, Y. Guo, J. Guo, Z. Ma, X. Kong, and Q. Liu, “Joint crf and locality-

consistent dictionary learning for semantic segmentation,” IEEE Transactions

on Multimedia, vol. 21, no. 4, pp. 875–886, 2018.

[46] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-

fied, real-time object detection,” in Proc. CVPR, 2016.

[47] A. H. Abdulnabi, B. Shuai, Z. Zuo, L.-P. Chau, and G. Wang, “Multimodal

recurrent neural networks with information transfer layers for indoor scene la-

beling,” IEEE Transactions on Multimedia, vol. 20, no. 7, pp. 1656–1671, 2017.

[48] X. Ding, B. Li, W. Xiong, W. Guo, W. Hu, and B. Wang, “Multi-instance

multi-label learning combining hierarchical context and its application to image

100



annotation,” IEEE Transactions on Multimedia, vol. 18, no. 8, pp. 1616–1627,

2016.

[49] M. Jian and C. Jung, “Semi-supervised bi-dictionary learning for image classifi-

cation with smooth representation-based label propagation,” IEEE Transactions

on Multimedia, vol. 18, no. 3, pp. 458–473, 2016.

[50] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d

object detection,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 4490–4499, 2018.

[51] G. Narita, T. Seno, T. Ishikawa, and Y. Kaji, “Panopticfusion: Online vol-

umetric semantic mapping at the level of stuff and things,” arXiv preprint

arXiv:1903.01177, 2019.

[52] S. Ikehata, H. Yang, and Y. Furukawa, “Structured indoor modeling,” in Proc.

ICCV, 2015.

[53] Y. Z. M. B. P. Kohli, S. Izadi, and J. Xiao, “Deepcontext: Context-

encoding neural pathways for 3D holistic scene understanding,” arXiv preprint

arXiv:1603.04922, 2016.

[54] M. J. Choi, A. Torralba, and A. S. Willsky, “A tree-based context model for

object recognition,” IEEE T-PAMI, vol. 34, no. 2, pp. 240–252, 2012.

[55] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruction in

real-time,” in 2011 IEEE intelligent vehicles symposium (IV), pp. 963–968, Ieee,

2011.

[56] Y. Wang and J. M. Solomon, “Deep closest point: Learning representations for

point cloud registration,” in Proceedings of the IEEE International Conference

on Computer Vision, pp. 3523–3532, 2019.

101



[57] C. A. Vanegas, D. G. Aliaga, and B. Benes, “Building reconstruction using

manhattan-world grammars,” in 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pp. 358–365, IEEE, 2010.

[58] M. Yazdanpour, G. Fan, and W. Sheng, “Online reconstruction of indoor scenes

with local manhattan frame growing,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

[59] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods: then and

now,” JCAM, vol. 124, no. 1, pp. 191–207, 2000.

[60] D. Lin, S. Fidler, and R. Urtasun, “Holistic scene understanding for 3D object

detection with RGBD cameras,” in Proc. ICCV, 2013.

[61] C. Chow and C. Liu, “Approximating discrete probability distributions with

dependence trees,” IEEE Trans. Information Theory, vol. 14, no. 3, pp. 462–

467, 1968.

[62] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting for 3d object

detection in point clouds,” arXiv preprint arXiv:1904.09664, 2019.

[63] Z. Ren and E. B. Sudderth, “Three-dimensional object detection and layout

prediction using clouds of oriented gradients,” in Proc. CVPR, 2016.

[64] M. P. M. R. O. Jean Lahoud, Bernard Ghanem, “3d instance segmentation via

multi-task metric learning,” in Proc. ICCV, 2019.

[65] B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham, and N. Trigoni,

“Learning object bounding boxes for 3d instance segmentation on point clouds,”

in Proc. NIPS, 2019.

[66] T. I. Y. K. Gaku Narita, Takashi Seno, “Panopticfusion: Online volumetric

semantic mapping at the level of stuff and things,” in Proc. IROS, 2019.

102



[67] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[68] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE conference on computer

vision and pattern recognition, pp. 248–255, Ieee, 2009.

[69] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on ma-

chine learning applications and trends: algorithms, methods, and techniques,

pp. 242–264, IGI global, 2010.

[70] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learning,” in

Proceedings of the 24th international conference on Machine learning, pp. 193–

200, 2007.

[71] Y. Zhu, Y. Chen, Z. Lu, S. J. Pan, G.-R. Xue, Y. Yu, and Q. Yang, “Heteroge-

neous transfer learning for image classification.,” in AAAI, vol. 11, pp. 1304–1309,

2011.

[72] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and

R. M. Summers, “Deep convolutional neural networks for computer-aided detec-

tion: Cnn architectures, dataset characteristics and transfer learning,” IEEE

transactions on medical imaging, vol. 35, no. 5, pp. 1285–1298, 2016.

[73] Y. Gao and K. M. Mosalam, “Deep transfer learning for image-based struc-

tural damage recognition,” Computer-Aided Civil and Infrastructure Engineer-

ing, vol. 33, no. 9, pp. 748–768, 2018.

[74] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer net-

works,” in Advances in neural information processing systems, pp. 2017–2025,

2015.

103



[75] H. Zhang, H. Zhang, C. Wang, and J. Xie, “Co-occurrent features in semantic

segmentation,” in Proc. CVPR, pp. 548–557, 2019.

[76] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation,” in Proc. CVPR, 2015.

[77] C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets: Minkowski

convolutional neural networks,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 3075–3084, 2019.

104



VITA

Lin Guo

Candidate for the Degree of

Doctor of Philosophy

Dissertation: Holistic Indoor Scene Understanding By Context Supported Instance
Segmentation

Major Field: Electrical Engineering

Biographical:

Education:
Completed the requirements for the Doctor of Philosophy in Electrical
Engineering at Oklahoma State University, Stillwater, Oklahoma in De-
cember, 2020.

Completed the requirements for the Master of Science in Electrical Engi-
neering at Oklahoma State University, Stillwater, Oklahoma in July, 2015.

Completed the requirements for the Bachelor of Science in Electrical En-
gineering at Tianjin University, Tianjin, China in 2012.

Experience:
Visual Computing and Image Processing Lab (VCIPL), Oklahoma State
University, Sep. 2014 – Dec. 2020

Research Assistant and Teaching Assistant, Oklahoma State University,
Sep. 2014 – Dec. 2020

Professional Memberships:
IEEE Student Member 2017 - present


