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Abstract

All-digital radar architectures allow radar systems to operate with more flexibil-

ity. Multiple Input, Multiple Output (MIMO) radars are especially effective at iden-

tifying multiple targets. Combined with statistical predictive tracking techniques,

All-digital radars can allocate antenna resources during future coherent processing

intervals to improve target signal-to-noise ratio (SNR) over time.

This thesis describes the relationships and models that characterize an all-digital

phased array. The cognitive radar system simulated in this thesis is adaptively di-

vided into several transmitting sub-arrays that are all independently capable of aim-

ing at multiple targets within the radar’s range. This thesis also discusses predictive

tracking strategies that allow the radar controller to continuously track multiple tar-

gets within the radar’s range. It discusses the process of dividing an array while

still maintaining a SNR above the detection threshold. This thesis also examines

the limits on how many targets the simulated all-digital array can track over many

coherent processing intervals. In general, the all-digital array was able to track more

targets compared to a phased array that forms a single transmit and receive beam

each CPI.

xi



Chapter 1

Introduction

The word RADAR is an acronym that stands for RAdio Detection And Rang-

ing. At the most basic level, a radar antenna emits a radio signal that reflects off a

target. The radar system then analyzes the properties of the reflected signal to learn

about the target’s position and movement. James Clerk Maxwell theorized that

these radio signals behave similarly to visible light and were capable of reflection

and refraction. In the 1880s, Heinrich Hertz experimentally proved these theories

to be true. Radio and visible light waves are both examples of electromagnetic radi-

ation; although radio waves have much longer wavelengths and lower frequencies

than visible light, they share many of the same properties. Techniques using radio

wave reflection to detect and locate targets were further studied during the 1930s.

During World War II, the United States, the United Kingdom, Germany, Japan, and

many other countries began the development of rudimentary radar detectors, with

varying degrees of success [1].

Radar systems have existed for nearly a century. During this time, signal gen-

erators, detectors, Field Programmable Gate Array (FPGA) technologies, and com-

puting have all improved immensely. Phased arrays are a specific type of antenna

system that have existed since the 1950s and are now widely used in communica-
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tions, remote sensing, and defense. Instead of having a single radiating element, an

antenna array consists of several radiating elements with comparatively lower trans-

mit power. This allows the phased array to transmit and receive signals in specific

directions. [2]. Phased array operation will be discussed in further depth in Chapter

2.1

1.1 Motivation

Traditional radar systems have a single transmit-receive element that regulates

radar behavior. Modern semiconductor technology for signal transmission, recep-

tion, and processing is sophisticated and relatively low-cost. It is now possible to

utilize a transmit-receive element on each antenna in an array [3]. An all-digital

array has a transmit-receive element on each antenna. Additionally, each array

element is independently capable of waveform generation and digitization. The

digitization of every antenna within an array allows for every element to act inde-

pendently, allowing for flexible operation.

A phased array’s radiation pattern is in a conic beam. Within the main lobe of

the beam, the reflected radar signal has the strongest gain on Signal-to-Noise Ratio

(SNR). The radar’s ability to form beams digitally allows for it to control multiple

beams simultaneously. Some all-digital radar systems are capable of transmitting

several unique waveforms for each transmit beam and measuring many targets si-

multaneously [2] [4].

The goal of this study is to model an all-digital phased-array system capable of

tracking many targets over hundreds of coherent processing intervals. Radar track-
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Figure 1.1: Architecture of a 1-D Phased Array

ing depends on the system’s ability to make accurate measurements. For a reflected

radar signal to have a strong enough SNR to be properly measured, the transmit and

receive beams must be aimed at the target itself. Therefore, the radar must first have

an estimate about a target’s location, aim in the expected target direction, and update

the target’s location based on these measurements. For the purposes of this study,

the radar is capable of dividing the entire phased array into sub-arrays. These sub-

arrays form transmit and receive beams in the directions of specific targets. This

simulation will test the limits of how many targets a divided phased array can track

can be tracked by the system simultaneously compared to an array that only forms a

single transmit and receive beam per coherent processing interval (CPI). The radar

controller will have to decide how best to divide antenna resources and determine

which targets have the strongest priority for measurement.

3



1.2 Thesis Outline

The remaining sections of this thesis are as follows. Chapter 2 reviews funda-

mental radar concepts. This chapter goes into detail about the mathematical models

that govern all-digital phased arrays and describes Multiple-Input, Multiple-Output

(MIMO) radar operation and waveform design. Chapter 3 overviews the main radar

measurement simulation. The simulation models the transmission, reception, and

processing of signals transmitted from a sub-divided digital array.

Chapter 4 overviews the predictive tracking process. This chapter details how

the radar’s controller makes an initial prediction and how future position and ve-

locity predictions are affected by the radar’s measurements. Chapter 5 describes

the logic that governs the controller’s decisions. The controller determines how to

divide the array into different sub-arrays and determines the best aiming vectors for

each transmit and receive beam.

Chapter 6 compares the performance of a divided MIMO array with that of an

undivided array using the same tracking and metrics described in chapters 3 and 4.

It also discusses the relationships between target signal-noise ratio, tracker confi-

dence, and update frequencies. Chapter 7 shows the performance of the system as it

tries to track an increasing number of targets with randomly generated paths. Chap-

ter 8 concludes this thesis and summarizes the concepts that govern the simulation’s

operation.
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Chapter 2

Background and Fundamentals

This chapter describes the mathematical relationships and models that charac-

terize the behavior of a pulsed radar signal transmitted at a given target. The radar

receiver will receive some modified version of the original pulse (x(t)). The pulse

will be scaled, delayed, and phase-shifted according to target and environmental

parameters. All of these effects can be described by well-known radar equations.

For a collocated radar system, where the receiver and transmitter are in the

same location, the signal reflected off a target R0 meters away reaches the receiver

t0 seconds later, where

t0 =
2R0

c
, (2.1)

and c is the speed of light through free-space. It takes the radar signal R0/c seconds

to reach the target initially, and another R0/c seconds for the reflected signal to

reach the receiver. This study assumes that any target’s movement during the time

t0 is negligible; this is often called the stop-and-hop assumption [5]. Measuring the

time delay between signal transmission and reception allows the radar to determine

the target’s range (R0).
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Figure 2.1: Basic Setup of a Collocated Radar Array

A target may be moving with some directional velocity v̂. To measure this ve-

locity, the radar emits multiple identical pulses and measures the target’s velocity

by analyzing the difference between each pulse’s reflection. The delay between

subsequent pulses is called the pulse repetition interval (PRI). The radar measures

several pulses over a coherent processing interval (CPI).

A radar determines a target’s speed by calculating the change in phase between

subsequent pulses. For a target with a radial velocity of v relative to the radar

system, the phase difference between each subsequent pulse, called the Doppler

shift (Fd), is

Fd ≈
2v

λ
, (2.2)

where λ is the wavelength of the pulse in meters. For a transmitted signal with a

carrier frequency (Fc),

λ = c/Fc. (2.3)
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A physical S-band radar pulse is a real-valued analog signal modulated at some

carrier frequency between 2-4 GHz. After the pulse’s reception, it is downconverted

to baseband. The carrier is removed so that the signal can be sampled at a rate cor-

responding to signal bandwidth (β).

For simulation purposes, it is often more useful to model the transmitted signal’s

complex envelope as

x(t) = a(t) exp(j2πFct), (2.4)

where a(t) is an envelope function that will be explained further in section 2.2.

The received signal is a scaled, delayed version of x(t). The mth received pulse

can be modeled by

y(t,m) = â(t− t0) exp[j2πFc(t− t0)] exp[j2πmFd] (2.5)

where α is a scale factor. The reflected signal is weaker than the transmitted signal

because of propagation loss and other factors described further in section 2.3.

2.1 Phased Array Considerations

Radar signals propagate through space as well as time; accounting for space

propagation allows for the estimation of a wave’s angle of arrival.

An all-digital phased array is comprised of multiple smaller antenna elements

7



with waveform generators. The waveform generators are able to delay the phase

between adjacent elements, acting as a sort of phase shifter. While a single isotropic

antenna radiates uniformly in all directions, an array of closely associated antennas

can form a much narrower beam with a stronger gain in the center of the beam. The

phase shifters on each antenna element allow the transmitter to steer the signal in

the direction of a target, as explained below.

2.1.1 Spatial Propagation

The wavenumber (K) relates the number of wave cycles per distance traveled.

A wave will travel 2π radians for each wavelength, but the wavelength depends on

the signal’s carrier frequency, leading to

K =
2π

λ
=

2πFc
c

. (2.6)

This expression means that as the wave moves through space, its phase will change

by some amount related to the wavelength and the distance traveled. For the pur-

poses of this study, we assume the waves are propagating in the three-dimensional

Cartesian plane and free-space. We assume the array is in the x− y plane at z = 0;

the radar’s broadside is in the positive z-direction. The wave vector K̄ has a mag-

nitude of K and is pointed in the direction of r̂, the unit vector pointing from the

array hardware to a target. Therefore, we have

K̄ = Kr̂, (2.7)

8



where r̂ is the unit vector pointing from the center of the antenna array to a target,

and

r̂ = [rx, ry, rz]. (2.8)

Figure 2.2: Spatial Sampling Visualization

The individual antennas are spaced λ/2 meters apart, as shown in Figure 2.2.

Because the propagating wave must travel a different distance to each element, there

9



will be a phase shift between each element of the array. This phase shift is described

by K̄ · r̄, where r̄ is the unit vector pointing from the center of the antenna array

to the antenna located at (x, y). Returning to (2.5), the mth pulse received by an

antenna located at (x, y) will be modeled by

ỹ(t,m, x, y) = αx(t− t0) exp[j2πmFd] exp[j(K̄ · r̄)]. (2.9)

The radar will process the signal in (2.9) in order to determine a target’s range,

radial velocity, and spatial coordinates.

2.2 Pulse Structure

To determine the time delay between a pulse’s transmission and reception, the

received signal is passed through a matched filter [5]. The effectiveness of matched

filtering is dependent on the pulse’s auto-correlation. Ideally, the autocorrelation

should be as low as possible at any delay other than zero seconds, where it should

be maximized. Additionally, the peak in the autocorrelation should be narrow so

that the matched filter has a fine range resolution. Finer resolution means that there

is less ambiguity in the range measurement

The bandwidth of a simple square pulse with a duration of τp seconds is given

by

β ≈ 1/τp. (2.10)

The range resolution for a radar waveform with bandwidth β is given by

∆R =
c

2β
≈ τpc

2
, (2.11)
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which shows that shorter simple pulses have a finer range resolution. However,

longer-duration pulses improve the received signal’s energy and SNR. Using more

complicated pulses, often called pulse compression waveforms, allows for finer

range resolution without sacrificing pulse duration.

2.2.1 MIMO Radar

In order to exploit multiple antenna sub-arrays on transmit, an all-digital radar

system must be able to transmit and receive several unique waveforms in close quar-

ters. The radar waveforms should be highly auto-correlated but not strongly cross-

correlated so that each matched filter can separate the signal from its corresponding

transmit sub-array. [6]. Passing copies of the received signal through multiple filters

is computationally complex, but it is important to identify from which sub-array the

signal originated. For any phased array, the SNR is dependent on the number of an-

tennas pointed at each target (this will be shown in (2.22)).

After each CPI, the radar tracker will update the predicted target locations and

assign a certain number of antennas to point in that direction on the subsequent data

collection.

MIMO radars have been extensively studied as an alternative to traditional phased

arrays [7]. Generally, if a phased array is divided into sub-arrays, each sub-array can

transmit a unique specific radar waveform. In a MIMO array, each radiating element

is potentially capable of transmitting a unique radar pulse. Compared to traditional

phased arrays, MIMO arrays can achieve narrower target resolutions and are more

11



Figure 2.3: Results of multiple matched filters

sensitive to slow-moving targets [8]. Additionally, a MIMO radar transmitting Mt

unique waveforms can detect up toMt times as many targets as a traditional phased-

array system. For the purposes of this study, MIMO radar is especially attractive.

Element-level MIMO can be extremely computationally complex. The all-digital

array simulation described in this thesis will reduce computational complexity by

grouping the elements into transmitting sub-arrays [9] [10].

Waveform requirements for a MIMO radar are very flexible; the waveforms

must be separable [8]. The ideal signals for a MIMO array are orthogonal to one

another; each unique waveform should have no cross-correlation with other wave-

forms transmitted by the array. In practice, no set of waveforms is ideal for all

ranges and Doppler shifts [11] [12]. Instead, determinations must be made con-

cerning which waveforms have attractive properties for specific applications.

One method of waveform modulation for pulse compression is phase coding.
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A phase-coded signal is separated into segments, or chips, of equal duration (τc)

where

τc = 1/β (2.12)

for a signal with bandwidth β. The radio frequency of each chip is modulated by

some discrete phase. Phase-coded signals are easy to generate and process. They

tend to be strongly highly autocorrelated with a large main lobe peak to sidelobe

ratio [13].

Figure 2.4: Two Binary Signals with τpβ = 20

Figure 2.4 shows the real parts of two different random biphase-coded wave-

forms, which have phase jumps between 0 and 180o. The maximum number of

unique codes that can be generated by this method is 2τpβ . As the number of unique

13



signals transmitted by an array approaches 2τpβ , the cross-correlation of the signals

will increase because the individual codes will have more elements in common.

This is not necessarily a concern as 2τpβ will generally be much larger than the

number of unique waveforms transmitted by a MIMO array.

Figure 2.5: Auto-correlation of Radar Pulses with τpβ = 20

As Figure 2.5 shows, a pulsed signal’s maximum autocorrelation occurs at a

delay of τ = 0. For the purposes of matched filtering, this means that the received

signal will have a strong peak at a delay corresponding to 2R0/c. Outside of that

peak, the signal power will be suppressed. When the autocorrelation has strong

peaks at delays other than τ = 0, signals outside of the expected matched filter re-

turn may not be suppressed, causing false alarms or detections at inaccurate target

14



ranges. These peaks are known as sidelobes.

Binary phase-coded signals are not the most efficient pulse-compression wave-

forms in terms of peak sidelobe level or power efficiency. Linear frequency mod-

ulated, or LFM, signals are widely used in radar and communication because they

tend to have weak sidelobes. Figure 2.5 shows the autocorrelation of an LFM and

a biphase-coded signal with the same time-bandwidth product. The biphase coded

signal has stronger sidelobes.

Figure 2.6: Autocorrelation of Radar Pulses with τpβ = 750

The poor performance of the 20-chip pseudorandom binary sequence (PRBS)

pulse can be improved by increasing the number of chips, or the time-bandwidth
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product. Figure 2.6 shows the autocorrelation of an LFM with τpβ = 750 and a ran-

dom binary pulse with 750 chips. The signals in figure 2.6 have the same bandwidth

and therefore the same resolution as the signals in 2.5; the pulse duration increased

in 2.6. The difference in performance between the random binary signal and the

LFM signal is less noticeable; both signals have fine resolutions and their sidelobes

are generally at least 15dB below the maximum. The random binary signal has

a better peak sidelobe level than the LFM signal, meaning that it would perform

better in the matched filter. Therefore, PRBS signals with a large time-bandwidth

product are suitable for this study.

As Figure 2.7 shows, the more chips a binary pulse has, the lower its cross-

correlation with other signals. Lower cross-correlations mean that each matched

filter should separate results based on the corresponding transmitted signal; the

matched filter should suppress results from the other waveforms.

Figure 2.7: Example of the Cross-Correlation between PRBS
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As τpβ increases, PRBS waveforms’ sidelobe levels and cross-correlation de-

crease. However, increasing bandwidth is not always possible. Increases a radar

signal’s pulse durations can limit its pulse repetition frequency. Since the maxi-

mum radial velocity that can be measured by a radar (vua) with a pulse repetition

frequency of fPRF is given by

vua =
λfPRF

4
, (2.13)

increasing τp may interfere with a radar’s ability to measure fast-moving targets

velocities [5]. Furthermore, in a simulated radar, increasing τp or β increases the

computational complexity of modeling signal transmission, reception, and process-

ing.

2.3 Thermal Noise and Signal-to-Noise Ratio

Additive thermal noise is a major issue with the accuracy of radar measure-

ments. Because noise lacks a clear pattern, it is very difficult to remove it com-

pletely. The average noise power (Pn) of a radar signal is

Pn = kbTFsFsys, (2.14)

where kb is Boltzmann’s constant, T is the system temperature (assumed to be 290K

at room temperature), Fs is the analog-to-digital converter’s (ADC’s) sampling fre-

quency, and Fsys is the system’s noise figure.

For the radar to be able to detect a target, its post-processed signal power must

be stronger than the noise floor. Each antenna in this phased array simulation has a
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low transmit power. Pulse compression, Doppler processing, and digital beamform-

ing increase the post-processing signal power so that the radar system can detect

many targets. The SNR also helps establish the interval of confidence in the target

parameter measurement discussed in Section 4.1.

2.3.1 Signal Power Fundamentals

The received signal power (Pr) reflected off a target and received by the radar

receiver is modeled by

Pr =
NtPtGtGrλ

2σ

(4π)3R4
, (2.15)

where σ is the target’s radar cross-section. Pt is the signal power, in watts, transmit-

ted from each individual antenna, Nt is the number of transmitting antennas, and

Gt and Gr are the antenna gains on transmit and receive, respectively. (2.15) is the

standard radar range equation [5]; the overall transmitting power is the transmitting

power of a single antenna multiplied by the total number of transmitting elements.

For the purposes of this project, small groups of antennas may transmit unique

pulses, but the reflected pulses will be received by the entire array.

2.3.2 Transmit Beam Steering

Beam steering increases the gain on the received voltage by the array factor F ,

which is dependent both on the number of array elements and the accuracy of the

aiming vector. r̄ is the unit vector pointing from the center of the antenna array to
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the antenna located at (x, y). For a transmitting antenna array with N elements,

F (K̄aim) =
Nt∑
i

exp
[
j(K̄ − K̄aim) · r̄i

]
= ktNt. (2.16)

When K̄aim = K̄,

F (K̄aim = K̄) =
Nt∑
i

exp
[
j(0) · r̄i

]
= Nt. (2.17)

In this case, F is equal to the number of transmitting antenna elements, Nt. Thus,

the array factor increases with the number of transmitting antennas and the accu-

racy of the aiming vector [14].

The array factor scales the signal’s voltage, so the received signal’s power is

related to k2t . Specifically in (2.15),

Gt = Gak
2
tNT . (2.18)

Assume each individual antenna in the array has a gain of Ga on both transmit and

receive. Therefore,

Pr = k2tGaN
2
t

PtGrλ
2σ

(4π)3R4
0

. (2.19)

2.3.3 Reception Beamforming

When a radar switches from transmitting mode to receiving mode, it stops emit-

ting waves and instead detects reflected signals. A phased array forms narrow re-

ceiver beams focused in a single direction. Figure 2.8 shows the antenna pattern

of a linear phased array where the antennas are at a distance of λ/2 apart from one
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Figure 2.8: Beam Pattern of a 1-D phased array aimed at 90o

another. The front lobe of the beam is pointed at 900. If a target was at exactly 90o,

that target would have an additional gain equal to Nr.

If the target was slightly misaligned with the beam peak, it would have a gain of

krNr. Arrays have small sidelobes as well, such as the ones at 180o and around 70o.

These sidelobes mean that targets not exactly in the main beam can have a small

gain, but all of these sidelobes have a kr < 0.1

Much like with transmitted signals, the phased array can apply some phase shift

to these receiver beams to point them in a specific direction. Figure 2.9 shows the

array described above but aimed at an angle of 120o rather than broadside.

Antenna arrays are capable of forming multiple beams simultaneously. This can

be done by Fast-Fourier-Transform (FFT) processing; performing an FFT across

the received signal is the same as forming all possible beams in an antenna array.
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Figure 2.9: Beam Pattern of a 1-D phased array aimed at 120o

Theoretically, the radar can form as many beams as there are antennas in the array.

This would be a considerable amount for a physical radar to handle. Instead, it is

more effective to form a set of beams in a few specified directions. Figure 2.10

shows the pattern of an array forming beams at 90o, 130o, and 70o. The gain on the

90o and 130o beams do not have a maximum kr of 1, but they are very close.

Figure 2.10: Array Pattern and Response to Multiple incoming Signals
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Forming a receiver beam in direction r̂ is described by

ỹ(t,m, r̂x, r̂y) =
Nx∑
i=1

Ny∑
l=1

y(t,m, ryl, rxi) exp
[
− jπ(i−1)r̂x

]
exp

[
− jπ(l−1)r̂y

]
.

(2.20)

If a receiver beam is not formed exactly in the direction of the target, kr de-

creases. Assuming that the steering vector is fairly accurate, the receiver beam

should have a kr ≈ 1.

After signal reception, phased array signal processing improves the signal power

by a factor of τpβM ; the overall radar gain on receive is

Gr = τpβMNrGa. (2.21)

Replacing Gr with (2.21), each received target should have a measured SNR

value described by equation

SNR = N2
t k

2
tNrτpβM

PtG
2
aλ

2σ

(4π)3R4
0Pn

. (2.22)

22



Chapter 3

All-Digital Phased Array Radar Simulation

This chapter gives a detailed description of the MATLAB simulation that was

developed to model the behavior of an adaptive all-digital MIMO array system. The

radar array consists of several rectangular (or L-shaped, as discussed in Section 5.2)

sub-arrays. Every antenna possesses its transmit-receive element and is capable of

producing a unique waveform. Antenna elements grouped in the same sub-array

transmit the same waveform. Each sub-array transmits a different random-binary

pulsed signal at a common carrier frequency, pulse duration, and bandwidth. Addi-

tionally, each transmitting sub-array can have a unique aiming vector if necessary.

3.1 Overview

Although each target will reflect a portion of each transmitted waveform, kt and

kr will severely degrade if a beam is not pointed at a target [8]. This should limit

some interference due to having multiple targets in a constrained volume.

Each target in this simulation has a randomly generated original position and ve-

locity and has a small random acceleration with a predetermined variance, as well

as a randomly determined radar cross-section (RCS). The target paths are generated
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Figure 3.1: Transmitted MIMO Signal Reflections

such that each target remains within a distance that is well within the unambiguous

range that can be measured by the radar. Additionally, each target travels with a

velocity that can be unambiguously measured by the system. The radar scheduler

determines reconfigurable transmitting sub-arrays as will be described in Section

5.1. The antenna array in this simulation is a square array of 32 x 32 antennas. The

antenna spacing is λ/2 in both dimensions.

The received signal is modeled as the sum of all the scaled and delayed signals

reflected off each target. The signals are also multiplied by a phasor to simulate

Doppler shift and the number of wavelengths traveled between the array and each

target, as described in the previous chapter. There is also Gaussian random noise

with a strength determined by the system’s noise figure. A copy of each transmitted

waveform is saved for matched filter processing.

The received signal is first Doppler processed using an FFT. Then, the receiver
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digitally forms 16 beams around each aiming vector according to (2.20). Copies

of the beamformed signal are passed through each matched filter [7]. The resultant

signals are 4-dimensional with a dimension corresponding to range, radial velocity,

and spatial frequencies in x and y. Some “slices” containing a target are shown in

Figures 3.2 and 3.3. The simulation searches for peaks in the post-processed SNR

map to determine target parameters.

Figure 3.2: Post-Processing Range-Velocity Map

Figure 3.3: Post-Processing X-Y Map
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3.2 Interpolation

Figure 3.3 shows an array slice that contains the 16 slightly offset beams formed

around the aiming vector. Because at least one beam has an SNR of at least

15dB, there is likely a target within one of them. However, further processing

must be done to determine accurate target parameters. Each beam has a width of

2/32 = 0.0625. Because the brightest cells are in the column corresponding to

ry = −0.1875, there is a good chance that a target is in that direction. However,

there are two bright adjacent cells in the rx direction. The target could theoretically

be in either of those beams and is likely between them.

Consider Figure 3.4. If the receiver forms beams centered at 70o and 90o be-

cause of hardware limitations, a target at 80o would have at least 10o error on its

measurement because the receiver searches for the strongest beam return and there

is no beam pointed at 80o. The radar measurement can only be as accurate is as its

resolution. At long ranges, a small unit vector difference can cause a fairly large

difference in Cartesian position.

Figure 3.4: Array Response with two adjacent receiver beams
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To combat this, interpolation was performed on the range-Doppler-angle map

as shown in Figures 3.5 and 3.6. Figure 3.5 is an interpolated version of Figure 3.2

and Figure 3.6 is an interpolated version of Figure 3.3. In this example, ry is still

−0.1875, but rx actually has a value of 0.32031.

Figure 3.5: Interpolated Range-Velocity Map

Figure 3.6: Interpolated X-Y Map
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The peak value in the 4-D interpolated Range-Velocity-Angle map corresponds

to the target’s location and radial velocity. The maximum value in the map is re-

lated to the target’s SNR. The target’s range, velocity, and x and y unit vectors are

recorded along with SNR1 = SNR/N2
t . A target’s SNR depends on the number

of transmitting antennas, as described in Section 2.3. This simulation uses the peak

value in the post-processed received signal to estimate SNR1, the theoretical SNR

of the target if a single transmitting antenna is aimed at it. The MIMO array’s con-

troller will adjust the number of transmitting elements focused on a target such that

SNR1N
2
T is high enough to reach the detection threshold

In Section 2.2.1, the random biphase-coded random pulses had a peak sidelobe

level at least 15dB lower than the mainlobe when Tpβ = 750. This means that

post-processing array cells with a value less than 15dB above the noise floor are

likely sidelobes or noise. Furthermore, Figure 3.7 shows a strong matched filter

output from a target around 18Km away from the radar. The signal power around

the target’s actual range is above the noise floor. Sidelobe power increases as signal

power increases. To avoid sidelobe detections, the signal processor ignores peaks

that are less than 15dB below the maximum signal power.

If a cell in Figures 3.2 and 3.3 lies above the threshold, that cell is considered a

detection.

In a real radar system, the true range, velocity, and unit vector of the target are

not known. The radar would have to determine which detection is most likely to

correspond to the target’s parameters. Because this is a simulation, the true target

parameters are known. Rather than performing the difficult task of target associa-
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Figure 3.7: Matched filter with noticeable sidelobes

tion, the radar saves the detections that are closest to the targets’ actual locations

and radial velocities.

Figure 3.8 shows a range slice of a single beam in the post-processed signal.

Two targets lie in this beam; they are at the same azimuth and elevation but differ-

ent ranges. The nearer and weaker target lies outside the sidelobes of the stronger

and farther target. In this example, the radar would have detected the farther target

first. Because that target has a normalized SNR of approximately 35dB, the simula-

tion would then look for any targets stronger than 20dB above the noise floor. The

simulation ignores any peaks within 2 resolutions (c/2β) of previous detections.

The smaller SNR spike is stronger than 20dB above the noise floor, so the simula-

tion examines it to determine another target’s parameters.
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Figure 3.8: Matched Filter with multiple targets

Although the strongest cell in the array should correspond to the target at which

the transmitting sub-array was aimed, some of the transmitted signal could be re-

flected off other targets. If a transmitting sub-array has a lot of antennas, SNR may

be very strong even if kt is small. Ideally, kt ≈ 1. If kt = 0.6, k2t = 0.36, which

is a 5dB drop compared to kt = k2t = 1. The radar records any target detection,

whether or not a sub-array was intentionally aimed at that target. The radar sys-

tem’s processor and controller will use the measured values to refine the aiming

vector for subsequent CPIs. This prediction process is described in more detail in

the next chapter.
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Chapter 4

Predictive Tracking

Traditional radars consist of some form of antenna emitting a pre-determined

signal and listening back for that signal’s echo; repeating this process to gather tar-

get information. In this context, the collection of information is performed in a

rigid, pre-defined manner.

Advances in computing allowed radar controllers to mimic the cognitive pro-

cess; a capability widely sought by engineers since the 1930s. Machine learning

depends on a machine’s observations and the degree of confidence in these obser-

vations to make decisions about what to do next. The idea of cognitive radar is

especially promising; all-digital radars have many dynamic parameters that can be

managed by a radar’s controller. For example, the controller could determine how

to divide a radar system’s power and/or antenna resources to ideally track many

targets [15, 16].

Cognitive, or fully adaptive radar systems utilize feedback loops like that pic-

tured in Figure 4.1. The radar optimizer and processor examine measurement data

to make decisions about if and how to change the radar’s operating parameters.

In this thesis, the main operating parameter controlled by the radar system is the
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Figure 4.1: Sample Architecture of a Cognitive Radar

number of antenna elements allocated to each target. A typical array may have

thousands of antenna elements that can be controlled. This chapter describes the

processes by which a radar controller may decide how to divide its limited antenna

resources to maintain as many target tracks as possible.

4.1 Kalman Filtering

Because the array factor depends on the accuracy of the steering vector, it is im-

portant for the radar system to accurately predict the target’s direction. One method

of predicting target motion is Kalman filtering. A Kalman filter generates a least-

squares estimate of a dynamic system’s state as it changes over time. The filter

compares the confidence in its initial estimate with the confidence in a measured
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value. The Kalman filter then uses these confidence measurements to update the

state’s posterior estimate. A Kalman filter operates under the assumption that the

dynamic system is linear and has additive Gaussian noise. [17]

Let xk be a state vector at iteration k of the Kalman filtering algorithm. For

the purposes of the target tracking algorithm in this thesis, xk is a column vector

containing a target’s position and velocity data, where

x =

[
x y z Vx Vy Vz

]T
. (4.1)

The Kalman filter assumes

xk = Fxk−1 + wk (4.2)

where

F =



1 0 0 dt 0 0

0 1 0 0 dt 0

0 0 1 0 0 dt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.3)

is the state transition matrix for a target moving with constant velocity, dt is the

interval between consecutive measurements, and wk is additive Gaussian noise.

Although the F matrix assumes that the velocity is constant, there is actually a small

acceleration with a Gaussian random variance of σ2
a. This acceleration represents
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the dynamic nature of the system and is injected via the process noise vector wk

[18–20]. wk has a covariance matrix of Q, where

Q =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 σ2
adt

2 0 0

0 0 0 0 σ2
adt

2 0

0 0 0 0 0 σ2
adt

2


(4.4)

.

The Kalman filter provides a least-squares estimate of the state vector x. Before

each CPI, the radar system predicts a target’s position and velocity using

x̂−
k = F x̂+

k−1. (4.5)

After a measurement is made, the filter uses the measurement vector z, where

z =

[
rx ry R Vr Vx Vy Vz

]T
(4.6)

to update the estimated position and velocity based on the confidence in the initial

prediction (P̂) and the confidence in the measurement (R), according to the Kalman

filter equations. The a priori estimate of P is determined by the posterior estimate

of P from the previous CPI and the plant noise (Q), according to

P̂−
k = FP̂+

k−1F
T + Q. (4.7)
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The hat operator indicates predicted values; the superscripts of + and - indicate pos-

terior and a priori predictions respectively. P̂ is the error covariance of x̂; smaller

values of P̂ suggest that x̂ is a more accurate prediction.

The Kalman gain (K) compares the confidence in the priori state estimate to the

confidence in a measurement and is defined by

K =
P̂−
kH

T

HP̂−
kH

T + R
(4.8)

where H is a linear transform matrix based on h(x), the relationship between the

state and measurement vectors. The next section will describe H and h(x) in more

detail.

The Kalman gain is used to estimate each measurement’s accuracy and to update

the posterior state vector estimate according to

x̂+
k = x̂−

k + K(zk − h(x̂−
k )). (4.9)

As K increases, the posterior state estimate approaches h−1(zk). The state estimate

error covariance is adjusted to reflect the posterior state estimate according to

P̂+
k = (I−KH)P̂−

k . (4.10)

As K increases, P̂+
k decreases, indicating that the Kalman filter is very confident in

the posterior state estimate x̂+
k [17].
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4.1.1 Nonlinear Measurement Updates

The radar modeled in this thesis does not measure the state x directly. Instead,

it measures the x and y components of the unit vector (rx and ry) pointing from

receiver to the target, the range to the target, R, and the scalar target speed relative

to the receiver, Vr = r̂ · v̄.

Each component of the unit vector r̂ can be found unambiguously. rx and ry are

directly measured by the radar. rz is determined by

√
r2x + r2y + r2z = 1

rz = ±
√

1− (r2x + r2y) (4.11)

The positive z direction is defined as straight in front of the array; r̂z must be posi-

tive as the radar cannot measure targets behind it.

Although r̂ and Vr are known, it is impossible to find the inverse of the dot

product of two vectors; however, the actual velocity vector cannot be directly de-

termined. The individual components of V̄ can be indirectly estimated by Vx =

V̂x + ∆v, Vy = V̂y + ∆v, Vz = V̂z + ∆v. ∆v is determined by

V̂r =
x̂V̂x + ŷV̂y + ẑV̂z√

x̂2 + ŷ2 + ẑ2

Vr = r̂xVx + r̂xVy + r̂zVz

= r̂x(V̂x + ∆v) + r̂y(V̂y + ∆v) + r̂z(V̇z + ∆v)

= r̂xV̂x + r̂x∆v + r̂yV̂y + r̂y∆v + r̂zV̂z + r̂z∆v

36



Vr = V̂r + ∆v(r̂x + r̂y + r̂z)

∆v =
Vr − V̂r

r̂x + r̂y + r̂z
(4.12)

.

The Kalman filter assumes that the measurement vector is some linear transform

h(x) of the current state vector plus some Gaussian measurement noise v,

zk = h(xk) + vk (4.13)

In this case, however, h(x) is not linear and does not hold with Kalman filtering

assumptions. Instead,

h(x) =



x√
x2 + y2 + z2

y√
x2 + y2 + z2√
x2 + y2 + z2

xVx + yVy + zVz√
x2 + y2 + z2

Vx

Vy

Vz



, (4.14)

which is not a linear transform. R, rx, ry, and Vr, the parameters directly measured

by the radar, are assumed to be corrupted by additive Gaussian noise, vk. These

measurements can be converted to Cartesian form directly to be in the same form

of x in (4.1); however, this conversion causes the noise to be non-Gaussian [21].
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For a random variable z = h(x) with a distribution p(z), the distribution of x is

given

p(x) = |J|−1p(z), (4.15)

where J is the Jacobian matrix relating h(x) to x, as shown in equation 4.16 [21].

The Jacobian also serves as a first-order Taylor series expansion of h(xk) about

x̂−
k , which is a way of linearizing (4.14) to the transform matrix H in (4.8) and

(4.10).

H = J =
∂h

∂x

∣∣∣∣∣
x = x̂−

k

=



1

R
−
x2

R3
−
xy

R3
−
xz

R3
0 0 0

−
xy

R3

1

R
−
y2

R3
−
yz

R3
0 0 0

x

R

y

R

z

R
0 0 0

Vx

R
−
xVr

R2

Vy

R
−
yVr

R2

Vz

R
−
zVr

R2

x

R

y

R

z

R

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(4.16)

∗R =
√
x2 + y2 + z2
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Because the measurement vector z is in a different form than the state vector

x, the measurement covariance matrix R will also be different. A measurement’s

noise variance depends on the measurement’s resolution and SNR. Range resolution

is directly dependent on the signal’s bandwidth. For a signal with a bandwidth β,

M pulses per CPI, a pulse repetition frequency Fp, and N antennas transmitting in

the x dimension, the resolutions are defined as follows:

∆R = c/2β (4.17)

∆Vr = λ/2MFp (4.18)

∆rx = 2/Ntx (4.19)

∆ry = 2/Nty (4.20)

The components of the target’s velocity, < Vx, Vy, Vz > are estimated to be

equal to V̂− + ∆v , or some very small offset of the predicted velocity. The mea-
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surement error variance matrix, R, is



∆rx
2

2SNR
0 0 0

0
∆ry

2

2SNR
0 0

0 0
∆R

2

2SNR
0

0 0 0
∆Vr

2

2SNR

0

0

P̂−
k 4,4 · · · P̂−

k 4,6

... . . . ...

P̂−
k 6,4 · · · P̂−

k 6,6



. (4.21)

The terms P̂−
k 4,4 through P̂−

k 6,6 are the variances and covariances of the terms in

V̂−, the a priori estimate of the target’s velocity.

4.2 Estimate uncertainty

P̂ is a measure of the state estimate error covariance. P̂+
0 , the initial estimate

covariance, will match the measurement error covariance on the first detection. The

P matrix will become smaller over time if the radar measurements are accurate

[17] [22]. For a strictly linear, one-to-one Kalman filter (i.e., the transform H is an

identity matrix), (4.8) is equivalent becomes

K =
P̂+
k

P̂+
k + Rk

, (4.22)
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The Kalman gain K in this situation approaches the identity matrix as R approaches

zero, or as the measurement confidence increases to a maximum. If K = I and zk

is in the same form as xk, (4.9) becomes

x̂+
k = x̂−

k + I(zk − x̂−
k ) = zk, (4.23)

meaning that the Kalman filter believes the radar measurement to be perfectly ac-

curate.

In this case, (4.10) would become

P̂+
k = (I− I)P̂−

k = 0. (4.24)

It is not possible in a real situation for the measurement error to be zero. However,

the above discussion describes how R weighs the accuracy of the measurement ver-

sus the estimated accuracy of the predicted state vector.

Conversely, if the SNR of a measurement is extremely low, that measurement

should not be strongly weighted. If the radar does not detect one of the targets it

is currently trying to track, it assumes that the SNR is essentially zero, meaning

that the R matrix approaches infinity. This causes the Kalman gain K to drop to

zero. For a Kalman gain of zero, (4.9) and (4.10) become x̂+
k = x̂−

k + 0 and

P̂+
k = (I − 0)P̂−

k , respectively. If a measurement is poor or the radar fails to

measure a track during a CPI, the state and covariance estimates are not updated.

Multiple consecutive missed updates result in a gradual increase in uncertainty that

will be further discussed in Chapter 6.
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Chapter 5

Digital Array Division

All-digital arrays have a transmit-receive element on every antenna, meaning

that every radiating element can produce a unique waveform. Each element can also

apply a phase shift on its transmitted signal to steer the transmit beam in a target’s

direction. When groups of adjacent elements transmit the same signal aimed at

the same target, that target’s SNR increases. This chapter describes the process by

which an all-digital array can be divided into transmitting sub-arrays that contain

just enough elements to detect their intended targets.

5.1 Resource Requirements

A target’s post-processing SNR depends on the square of the number of trans-

mitting antennas steered towards the target, as described in (2.22). To achieve a

certain desired SNR, the radar needs to assign a sufficient number of antennas to

point at each target.

As Figure 5.1 shows, each antenna in the array emits a signal that propagates

straight outward. A steerable beam is formed by applying phase shifts between el-

ements transmitting the same waveform. This means that multiple antennas must
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Figure 5.1: Representation of Phased Array Beam Steering

transmit the same waveform for steering to be possible. Some systems may have

physical and software limitations on the smallest possible sub-array, called a mini-

mum array unit (MAU) [6].

For the radar simulated in this thesis, let L be the side length of the square con-

taining the minimum number of MAUs to theoretically give a target an SNR above

a desired threshold (T ) according to

L =

⌈√⌈√
T/SNR1/16

⌉⌉
, (5.1)

where SNR1 is the theoretical target SNR if the transmitting sub-array consisted of

a single element. For the purposes of this thesis, an MAU consists of a 4x4 square
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array of antenna elements. Therefore

(16L2)2SNR1 ≥ T ; (5.2)

a transmitting sub-array with L2 antennas should provide at least enough SNR so

that a target’s received signal is visible over the noise floor.

5.2 Placement Algorithm

The phased-array radar system described in this thesis contains 1024 total ele-

ments or 64 MAU. The radar must determine how to arrange multiple sub-arrays

within a 64 MAU square to aim at as many targets as possible during a CPI.

The problem of sub-array placement is a subset of widely researched problems

in computer science known as a knapsack problem [23]. The general knapsack

problem involves a number of objects with varying weights and some manner of

boundary or limiting factor. In this case, the objects “weights” are the minimum

array unit requirements. The limiting factor is that all sub-arrays must fit in an 8x8

square of MAUs. Specifically, this problem can be seen as a form of bin packing

problem where each row of sub-arrays can be treated as a bin with a maximum ca-

pacity of 8 [23–25].

The algorithm shown in Figure 5.2 is a modified version of the First-Fit algo-

rithm [24]. The First-Fit algorithm takes a list of objects sorted in decreasing size

order. The algorithm places these objects in the first available spot in any existing

bin, as shown in Figures 5.3 and 5.4. If there is not enough room in any existing
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bin, a new bin is created.

The algorithm described in this thesis also checks to see if there is enough space

below a sub-array that was previously placed. The general “First Fit” equation does

not attempt to fit smaller items below other items already in a bin. Our sub-array

assignment algorithm implements this check to attempt to fit as many sub-arrays as

possible into an 8 X 8 square of MAU.

The following example demonstrated in Figures 5.3-5.8 shows the implemen-

tation of the sub-array packing algorithm on the set of targets in Table 5.1. Each

target in the table requires a certain number of antennas to achieve an SNR at or

above a specific threshold.
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Figure 5.2: Sub-array Assignment Logic Tree
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Target Minimum Number of Antennas L

1 120 3
2 100 3
3 80 3
4 64 2
5 61 2
6 57 2
7 48 2
8 32 2
9 32 2

10 25 2
11 12 1

Table 5.1: Example list of antenna requirements and sub-array sizes

Figure 5.3: Placement of first sub-array
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Figure 5.4: Placement of second sub-array

Figure 5.5: Creation of a new bin
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Figure 5.6: Packing one sub-array under another in the top bin

The final result of the sub-array packing algorithm is shown in 5.6. However,

there is still some unused space in the antenna array. In order to optimize the use of

resources, each MAU should be assigned to some target. If a bin is over half-full,

that bin is horizontally extended to have a length of 8 MAU, as shown in figure 5.7.

Any remaining empty space is assigned to the sub-array above it, as shown in figure

5.8. These rules are not specific to the First-Fit algorithm; they are meant to ensure

that the entire array is used on transmit.
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Figure 5.7: Array after bin-stretching

Figure 5.8: Filling remaining empty space
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The 8x8 square in figure 5.8 is then extended to fit the whole 32x32 array of

antennas. The worst-case scenario is that a sub-array will be L-shaped, causing a

slightly irregularly shaped beam. This project assumes that there are no significant

adverse effects on transmit beamforming based on L-shaped sub-arrays. The more

antennas assigned to a sub-array, the finer the beam in rx or ry is. As table 5.2

shows, each of the sub-arrays in figure 5.8 has at least as many antennas as neces-

sary to meet the required SNR threshold. In general, the algorithm assigns more

antennas than the minimum.

The space-filling process can distort the sub-array sizes somewhat. Consider

target 4 in this example. Sub-array 4 contains 5 MAUs or 80 antennas. Target 4

requires fewer than 80 antennas; however, sub-array 4 is not the 4th largest sub-

array in Figure 5.8; sub-array 5 is. Because target 4 is weaker, it should have more

transmitting elements than target 5. Therefore, the sub-arrays are assigned such that

the targets with the greatest requirements correspond with the largest sub-arrays.
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Target Antenna Corresponding Assigned

Requirement Sub-Array Antennas

1 120 1 144

2 100 2 144

3 80 3 144

4 64 5 144

5 61 6 96

6 57 4 80

7 48 7 64

8 32 8 64

9 32 9 64

10 25 10 64

11 12 11 16

Table 5.2: Array Division Algorithm Results

5.3 Transmit Beam Steering

The Kalman filter predicts a target’s position and velocity, xk for every CPI. The

radar uses xk to predict the unit vector between the radar and each target in order to

aim transmit and receive beams in the targets’ directions.

If multiple targets sit in the same direction, it is unnecessary to point more than

one transmitting sub-array in that direction. The sub-array assignment algorithm

first examines the predicted aiming vectors for each target. If the offset between

multiple predicted aiming vectors is no more than 1/16 in each direction (x, y, z),
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the radar system assumes that the associated targets should be able to be detected by

the same transmit beam. SNR1 for that sub-array is equal to the lowest predicted

SNR1 value across each target.

SNR1 is expected to show only small amounts of change between iterations.

However, since a target’s SNR in the radar equation is dependent on R4; changes

between the predicted and measured SNR1 are taken into account. If a target’s

posterior range estimate for some CPI is R+
k−1 and the Kalman filter predicts that

the target will be R−
k meters away during the next CPI,

SNR−
1k = SNR+

1k−1(R
+
k−1)

4/(R−
k )4. (5.3)

5.4 Target Selection

For each CPI, the sub-array assignment algorithm determines all possible trans-

mit beams and necessary sub-array sizes to aim at every target. There are some

cases where the radar system will not have the capabilities or resources to update ev-

ery target during every CPI. The sub-array assignment algorithm determines which

possible sub-arrays take priority for placement in the actual 32 X 32 element array.

In general, the radar should attempt to aim at the targets it is most likely to lose.

The radar prioritizes aiming at targets that have the lowest number of detections.

Interference from other targets may prevent the radar from detecting some tar-

gets. A missed measurement happens when no detection corresponds with a target’s

predicted range and angle. This can only happen when a target explicitly has a trans-

mitter beam pointed at it. When this happens, the target’s a priori state estimate is
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Figure 5.9: Possible sub-array configuration

not updated according to (4.8)-(4.10) because no valid measurement was made. If

the radar continues to miss measurements on a specific target, it will lose track of

that target. To avoid lost tracks, the radar prioritizes aiming at targets that were

recently missed.

The sub-array assignment algorithm prioritizes sub-arrays that contain the most

targets, especially those that have been recorded the fewest times. It also heavily

weighs the number of consecutive CPIs in which a target has been missed, if appli-

cable. The sub-array with the highest “necessity score” is chosen to be in the actual

transmitting array. As figure 5.9 shows, if the highest weighted sub-array has a

length L, the biggest square that can fit in the transmitting array has a size of 8−L.

The sub-array with the highest necessity score will not necessarily have the greatest

antenna requirement; antenna requirements are based on the target’s distance from

the radar system and RCS.
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5.5 Abandoned Tracks

The radar system monitors when the receiver fails to detect a target. Although

the target selection logic prioritizes lost tracks, there is a point where it is likely that

the target reflection will not be strong enough for the radar to measure at all. If a

target has not been detected for 3 consecutive CPIs where the radar has explicitly

aimed at it, that target is considered lost. The array will stop tracking that target and

save its resources for more visible targets.

The determinant of the state estimate error covariance, P̂, is a good estimate of

the confidence in all estimates. det(P̂) should be very large at the beginning of the

tracking simulation. However, as the radar continues to accurately track a target,

the value of det(P̂) should decrease over time. Conversely, det(P̂) will increase

as long as a target is not being tracked, or if the estimated SNR is very low. If the

value of det(P̂) continues to rise during the tracker’s steady-state operation, the

associated target’s SNR likely dropped enough so that it is no longer feasible to

track.

Finally, if the number of MAUs needed to track a single target, calculated by

L2 in equation 5.1, is greater than 64, the target likely requires more resources than

are available to the system. The radar will label that target as out of range and stop

trying to track it.
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Chapter 6

Minimum SNR Threshold and Update Frequency

This radar system detects a target based on the post-processed signal described

in Chapter 3. The target should have a post-processing SNR of at least 15dB above

the noise floor to be detected. The assumption that the post-processed radar sig-

nal is at least 15dB above the noise floor is a commonly used rule of thumb for

reliable detection. As discussed in Section 2.2, a matched-filtered pseudorandom

binary signal with a high value of Tpβ has sidelobes that are at least 15dB weaker

than the mainlobe. A detection threshold of 15dB is high enough to avoid sidelobe

detections but not so high that targets are ignored. If a target detection has a higher

SNR, the controller becomes more confident in a given measurement.

(5.1) describes the number of antennas needed for a target’s SNR to reach a

certain threshold, T . T is a user-selected parameter; its value affects the system’s

behavior. A high value of T allows the measured targets to have higher SNR and

therefore more confidence in the radar measurements. However, a high front-end

threshold requires more antennas to reach it. This chapter examines the optimal

front-end threshold that gives highly confident measurements without losing track

of other targets due to infrequent measurements.
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6.1 Simulation Setup

To determine the best value for T , the simulation was run on the same set of

targets for T = 13 − 28. Each of the targets’ paths remained well within the

radar’s unambiguous range. Each target also moved with a radial velocity that could

be unambiguously measured by the target. For each CPI, the sub-array packing

algorithm assigns at least as many elements so that the target SNR ≥ T .

6.2 Estimate Uncertainty

Figure 6.1 shows an example of the determinant of the estimate error covariance

P̂+
k over 15 seconds, or 300 CPIs, when T = 13dB. The initial estimate has a high

level of error, significantly in the first half-second. Some of the targets’ det(P̂)

values rise sharply and decay in a sort of sawtooth pattern. A sudden increase in

det(P̂) occurs when the radar fails to detect a target. This is because, according to

(4.7),

P̂−
k = FP̂+

k−1F
T + Q.

For a missed measurement, (4.10) reduces to P̂+
k = P̂−

k . Because Q is a non-

negative matrix, P̂ will continue to increase as a track is not updated. However,

if the radar can update that track within a few CPIs, det(P̂) decreases to a near

exponential decay.
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Figure 6.1: Estimate Uncertainty with T = 13dB

Figure 6.2 is a scatter plot of the SNR measurements of each target over the

whole tracking interval. The target’s SNR varies somewhat over time, but gener-

ally, a targets’ SNR values stay within 5dB of one another.

Figure 6.2: Target SNR with T = 13dB

Figure 6.3 is very similar to Figure 6.1 in structure; there are a few peaks where

target measurements were missed, but the tracking algorithm generally was able

to course-correct. During the steady-state operation, det(P̂) is generally smooth,

has a low value, and is very slowly decaying. This implies that the targets are still
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being measured often and that the radar controller is very confident in those mea-

surements.

Figure 6.3: Estimate Uncertainty with T = 15dB

Figure 6.4 shows that the measured SNR for a front-end threshold of T = 15dB

is nearly identical for the case where T = 13dB. This is because although the an-

tenna requirement may increase, the sub-array packing algorithm usually assigns

more antennas than necessary for each target to have an SNR of T . Any target mea-

sured by the sub-array will have at least 16 elements pointed at it. If the antenna

requirement is higher, the next-smallest possible square of MAUs consists of 64 el-

ements. The possible sub-array sizes before they are stretched to fit the entire array

are 16N2 for N = 1, 2, 3, ..., 8. For similar values of T , targets’ antenna require-

ments will often track to the same size sub-arrays.
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Figure 6.4: Target SNR with T = 15dB

According to Figure 6.5, when T = 18dB, missed measurements happen more

often than when T = 13dB or 15dB. The decrease in update frequency happens be-

cause the transmitting element requirements are high enough that fewer sub-arrays

can fit inside the MIMO array at once. A lower update frequency means causes

the controller to lose confidence in its estimates over time. Figure 6.6 shows that

increasing the front-end threshold from 15dB to 18dB does improve the measured

SNR compared to smaller values of T .
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Figure 6.5: Estimate Uncertainty with T = 18dB

Figure 6.6: Target SNR with T = 18dB

When T = 25dB, Figure 6.7 shows that the plots of det(P̂) look less like a

smooth exponential decay over time. Because fewer sub-arrays that yield T = 25
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can fit in the entire array, the targets are not being updated nearly as often as when

T = 15. P increases sharply as tracks are not updated. However, as Figure

6.8 shows, the SNR of the targets’ measurements is generally higher than when

T = 15dB. This means that when the tracks are updated, the estimate confidence

is higher and det(P̂) is smaller. The measured SNR values are also more varied,

which contributes to the fluctuations in estimate confidence.

Figure 6.7: Estimate Uncertainty with T = 25dB

Figure 6.8: Target SNR with T = 25dB
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Figures 6.9 and 6.10 show the same pattern; as T increases, the plots of det(P̂)

become rougher and the measured SNR values become generally higher but less

consistent. det(P̂) decays to a lower value as T increases.

Figure 6.9: Estimate Uncertainty with T = 28dB

Figure 6.10: Target SNR with T = 28dB
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6.3 Missed Measurements

In our simulated experiments, we specified that after 3 consecutive misses, the

radar should stop tracking a specific target. For an all-digital phased array mea-

suring multiple targets, there is a fundamental tradeoff between target SNR and

update frequency. Larger transmitting sub-arrays improve target SNR. However,

fewer large sub-arrays can fit inside a 32 x 32 element array, meaning the radar

may not detect as many targets per CPI. T should be set at a threshold that is high

enough to ensure strong target detections but not so high that the radar loses tracks

due to low update frequency. Figures 6.11 - 6.17 show that the number of missed

measurements increases as T increases.

Figure 6.11: Missed Measurements with T = 13dB
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Figure 6.12: Missed Measurements with T = 15dB

Figure 6.13: Missed Measurements with T = 18dB
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In Figures 6.11 - 6.17, target 2 consistently gets lost within the first few seconds.

At this point, target 2 is right next to target 4. As figures 6.14 and 6.15 show,

these two targets are about 13 meters away from one another. The signal processor

assumes that the weaker target is in the stronger target’s sidelobes. Since the targets

do not move much between subsequent CPIs, this issue happens three times in a

row, causing the controller to assume it has lost target 2. This could potentially be

dealt with by more sophisticated handling of sidelobe detection for large targets.

Figure 6.14: Target 4 Matched Filter Slice

Figure 6.15: Target 2 Matched Filter Slice
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To attempt to combat the effects of weaker targets being overshadowed by

stronger crossing targets, a simulation was run where targets with similar aiming

vectors were tracked by different sub-arrays. However, this method proved worse.

Figure 6.16 shows the consecutive missed measurements when T = 15 and trans-

mit beams were aimed at each target without grouping them together. Compared to

figure 6.12, there are more misses. Crossing targets still appear in stronger targets’

sidelobes. Because targets theoretically will not be sharing transmit beams, more

transmitting sub-arrays are necessary to implement this method. Because more sub-

arrays are required, update frequency suffers.

Figure 6.16: Missed Measurements Without Grouping

As the threshold T increases above 15dB, more and more targets are lost. Figure

6.17 shows that the radar completely abandons target 14 as well as target 2 when

T = 18dB. Target 14 has several missed measurements as it is one of the weaker

targets in this experiment. Eventually, the radar abandons target 14 in favor of

targets it can more reliably detect.
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Figure 6.17: Missed Measurements with T = 18

When T = 28dB, radar misses occur more frequently. In most cases, the radar

is able to update a target after a measurement is missed. However, the radar still has

to abandon a third target because its detection frequency is not high enough to keep

track of weaker targets.

Figure 6.18: Missed Measurements with T = 28
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6.4 Alternate Method

The best possible SNR that a target measured by an antenna array can achieve

occurs when the whole array is used to measure it. Because there are 1024 antennas

in our simulated array, the gain is log10(10242) ≈ 60dB better than that of a single

radiating antenna. Dividing the array into multiple sub-arrays sacrifices some of

this gain, meaning that there is less confidence in any given radar measurement.

As a comparison, the performance of a phased array that does not divide the

sub-array was tested. This array pointed at a single target every CPI. For example,

if there are 10 targets within the radar’s field of view and the simulation is running

for 300 CPIs, the array should aim at each target 30 times. Theoretically, the SNR

and, therefore, the individual measurement confidence should be higher than that of

the sub-array division method. However, each target will be measured fewer times

overall.

Figure 6.19: Target SNR Without Array Division

Figure 6.19 shows that, when all 1024 targets point at each target, each target’s
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SNR is much higher than when the array is sub-divided to point at many targets.

However, measurement frequency is much lower with this method.

In Section 5.5, the radar chooses to abandon tracks if det(P̂) increases greatly

during the tracker’s steady-state operation. This criterion causes the controller to

abandon several of the tracks in the first few seconds, as shown in Figure 6.21. The

estimate uncertainty has a sawtooth pattern instead of a strictly smooth exponen-

tial decay; the error covariance decreases with every measurement, then steadily

increases until another measurement is made.

Figure 6.20: Estimate Uncertainty Without Array Division

Figure 6.21 shows that the radar is unable to course-correct after a single miss

when the array is not sub-divided. This happens because, if a target is missed, the

algorithm no longer prioritizes re-gaining a missed track. The radar attempts to find

that target after 20 more CPIs but is unable to do so.
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Figure 6.21: Missed Measurements Without Array Division

6.5 Update Frequency

For the purposes of this study, a detection is defined as when a target, whether

explicitly aimed at or not, is measured at (or very near) its true location. Figure 6.22

shows several box-and-whisker plots that describe the number of target detections

over the course of 300 CPIs based on the minimum SNR threshold T . The “+” signs

indicate statistical outliers on the box and whisker plots; these low range outliers

indicate when one of the 20 targets was lost early on during the tracking period. Ta-

ble 6.1 contains information about the number of tracks maintained throughout the

entire tracking period, as well as the median number of detections for each target.

From T = 13 − 15dB, most of the targets are detected during nearly every CPI.

At T = 16dB, another target is lost about halfway through the simulation run. The

mean number of detections drops as T increases. As the minimum SNR threshold

increases, the array division algorithm assigns more antenna elements to each tar-

get; the array is, therefore, unable to detect as many targets. The overall number of

target detections decreases as the antenna requirement increases.
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In the case where the full array is used on transmit, no target is measured more

than 100 times. Many targets are lost after a single detection. This is because the

radar is not confident in the position estimates and devotes its resources to targets

that have higher degrees of confidence.

Figure 6.22: Target Detections vs Minimum SNR

6.6 Conclusion

Dividing a MIMO antenna array into sub-arrays using the methods described

earlier in this paper is very effective at tracking multiple targets. It outperforms an

undivided array system; a divided array gives more certain measurements and does

not lose as many tracks. For a target to be detected above the noise threshold, its

post-processing SNR should be at least 15dB. Equation 5.1 determines the mini-

mum number of transmitting antennas to reach some threshold T . In our case, one
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Minimum SNR (dB) Tracks Maintained Median Target Detections
13 19 300
15 19 300
17 19 300
18 18 299
20 18 299
22 18 280
24 18 178
26 18 170.5
28 15 166.5

Singular 15 20

Table 6.1: 20 Target MIMO Radar Predictive Tracking Results

MAU consists of 16 antennas, and any sub-array must have at least 16L2 antennas,

which will almost always exceed the actual minimum number of transmitting an-

tennas needed to achieve an SNR of 15dB. Because the actual number of transmit-

ting antennas will exceed the minimum in most cases, setting a front-end threshold

slightly smaller than 15dB will generally be sufficient.

When the SNR threshold is set higher, the measurement confidence may be

stronger. However, setting too high of a front-end threshold may cause some tar-

gets’ SNRs to overshadow nearby targets. It also decreases the update frequency,

which decreases the controller’s confidence in the state estimate. A front-end thresh-

old of T = 15dB allows for a high degree of measurement confidence without

over-allocating antennas and sacrificing update frequency.
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Chapter 7

Comparisons for Large Target Count

As Chapter 6 shows, the system is able to track 20 targets fairly easily with a

front-end threshold of 15dB. As the number of targets increases but the front-end

threshold stays the same, targets may not be updated as often. In this section, the

simulation was run on data sets with an increasing number of targets. Additionally,

these targets were generated so that no two targets are in the same spatial frequency

resolution. This eliminates the issue of crossing targets and ensures that when a

target is lost, it is because the radar lacks sufficient resources to track it properly.

The figures in this section do not have legends, as the different colored lines

correspond to the number of targets. As the number of targets increases, it becomes

less important to examine the behavior of individual targets and more important to

focus on the overall trends.

For a randomly generated set of 10 targets, the simulation was able to assign at

least enough antennas to aim at every target over the whole CPI. Because each target

was measured every CPI and no two targets could exist in the same transmit beam,

the sub-array sizes stayed constant throughout the whole tracking period. Figure

7.1 shows the uncertainty in the targets’ state vectors, which quickly converges to
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Figure 7.1: Cumulative Track Estimate Uncertainty for 10 Targets

near zero.

In our simulation setup, each element has a transmitting power of 10w. Each

target is between 10 and 20 km away from the radar system. For the purposes of

this study, each target’s RCS remains constant across all CPIs; the RCS value for

each target is an exponential random variable with a mean of 10m2. Under these

conditions, the phased array can generally aim at around 10-15 targets per CPI. As

the number of targets increases, the radar must decide which targets to ignore and

which ones it should attempt to measure. Figure 7.2 shows the instances where the

radar missed measurements for certain targets. The controller was generally able to

course-correct and re-capture a target after it was missed.

The targets that were missed most frequently had very low RCS values, with

one exception. One abandoned target had a strong RCS value, but its measured

SNR value was not constant, as shown in figure 7.3. This was caused by the array

assigning too many transmitting antennas to that target during one CPI, as shown
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Figure 7.2: Missed Measurements with 20 targets

in 7.4, causing the target’s SNR to surge. The array then used the inflated value of

SNR to allocate resources in future CPIs. The spikes in that target’s SNR caused

the controller to overestimate its actual strength, eventually assigning it too few an-

tennas for it to be properly measured.

Figure 7.3: Oscillating values of Target SNR
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Figure 7.4: Percentage of transmit array assigned to a target

Figure 7.5 shows the determinant of P̂ for the set of 20 target tracks. There are

occasional spikes where the targets are lost for a few measurements, but the overall

estimate confidence remains high.

Figure 7.5: Cumulative Track Estimate Uncertainty for 20 Targets

Figures 7.6 and 7.7 show the radar system’s behavior as it attempts to track 30

targets at once. The radar misses measurements fairly often, but it is generally able

to update tracks after one or two consecutive misses. The radar does lose a few of
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its weaker targets.

Figure 7.6: Cumulative Track Estimate Uncertainty for 30 Targets

Figure 7.7: Missed Measurements with 30 Targets

The radar is still able to course correct after most missed measurements when

tracking 40 targets simultaneously, as shown in Figures 7.8 and 7.9. However,

because there are more targets to update in this experiment, the overall update fre-

quency lowers. This causes det(P̂) to converge more slowly.
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Figure 7.8: Cumulative Track Estimate Uncertainty for 40 Targets

Figure 7.9: Missed Measurements with 40 Targets

This pattern continues when the radar attempts to track 50 targets at the same

time. For some targets, the det(P̂) plots are very smooth. Weaker and more uncer-

tain targets’ det(P̂) values fluctuate over time.
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Figure 7.10: Cumulative Track Estimate Uncertainty for 50 Targets

Figure 7.11: Missed Measurements with 50 Targets

The radar is still able to maintain many tracks as it attempts to track 100 targets

at once, as shown in figure 7.12. The phased array can detect around 10 targets per

CPI; when trying to track 100 targets, the update frequency drops drastically. Most

of the det(P̂) plots exhibit the sawtooth that indicates when tracks are not updated

often. As figure 7.13 shows, the radar is still able to track targets even after a few

consecutive misses. Although the MIMO radar system’s performance decreases as

it attempts to track more targets, the system is still able to update most targets often
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enough to maintain several tracks.

Figure 7.12: Cumulative Track Estimate Uncertainty for 100 Targets

Figure 7.13: Missed Measurements with 100 Targets

7.0.1 Comparison with Sequential Array Method

The sequential array method described in Section 6.4 did not track 20 targets

as efficiently as the divided-array method did. As a comparison, the sequential

array method was run on the same set of 100 targets as in Figures 7.12 and 7.13.

Figure 7.14 shows that, when the array attempts to aim at 100 targets sequentially,
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the estimate confidence is very low because det( ˆmathbfP ) is very high. As table

7.1 shows, the tracker abandons 54 targets over the tracking period. The median

number of detections for each target is 2.5 because the radar only aims explicitly

at each target 3 times over 300 CPIs. Sub-divided radars have better performance

when tracking many targets within a range.

Figure 7.14: Cumulative Track Estimate Uncertainty for 100 Targets Without Array
Division

7.1 Results

This chapter demonstrated an all-digital array’s predictive tracking performance

as it attempted to track many targets. The results of these experiments are shown in

Table 7.1. The radar is able to track maintains at least 80% of the targets within a

range of 10-20km. When the array is not sub-divided, the tracker loses more than

half of the targets. Although the controller is unable to allocate sufficient resources

for each target every CPI, the radar is generally able to update targets after missed
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Number of Targets Tracks Maintained Median of Target Detections
10 10 300
20 18 295
30 24 290
40 37 298
50 41 293

100 84 290
100 (Sequential) 46 2.5

Table 7.1: MIMO Radar Predictive Tracking Results

measurements. However, because the radar system considers a track to be lost after

three consecutive misses, weak or crossing targets are often rejected as the radar

focuses its limited resources on the targets it consistently measures.

A possible way to improve the radar’s performance is to increase the trans-

mitting power. If Pt increases, the radar may assign fewer MAU to each target.

However, the absolute maximum number of targets that can be aimed at per CPI is

64.
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Chapter 8

Conclusions

This study overviews the fundamental operation of an all-digital multiple-input,

multiple-output (MIMO) phased array. It describes pseudorandom biphase-coded

waveforms, a set of waveforms that have a low peak-sidelobe-level and are rela-

tively easy to generate, diverse, and weakly-cross-correlated. This thesis describes

a simulation of a radar signal processor that is able to detect a large number of tar-

gets simultaneously.

This thesis also describes the decision-making process of the radar’s controller:

how it allocates resources to each target and how it predicts target movement over

time. The radar measures spatial frequencies r̂x and r̂y, as well as range and radial

velocity. The actual velocity vector cannot be determined by this set of measure-

ments. Each of these measurements is based on a discretized signal, so their values

may lie within some range based on the radar’s resolution. The controller predicts

target motion based on SNR and measurement uncertainty.

Sub-divided all-digital arrays allow for the tracking of many more targets than

traditional radar systems. The detection rate of this system is much higher than

that of a radar that points at a single target for each CPI. As the number of targets
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increases, the radar favors measuring most of the strong targets and occasionally

abandons targets if their SNR values are too low.

8.1 Future Work

Although this thesis gives a strong implementation of an all-digital radar simu-

lation, there is still room for improvement. The radar simulation assumes that each

target’s RCS does not change between CPIs; RCS values tend to change over the

course of a real target’s motion. Because SNR depends on a target’s RCS, the con-

troller would have to take RCS into account when allocating antenna elements to

each sub-array. Future studies could use more realistic target models and possibly

predict changes in RCS.

This thesis focused solely on tracking and ignored problems related to calibra-

tion and association. The simulated radar was able to determine the peaks in the

post-processed range-Doppler-angle maps that corresponded to each target’s actual

position and velocity. In a real radar system, the issue of determining which detec-

tion is tied to which target is much more difficult. Radar detectors must determine

the likelihood that a detection corresponds to a certain target based on how far each

detection is from the tracker’s a priori predictions. The problem of detection asso-

ciation is extremely complex, especially in the cases where targets cross in front of

one another [26]. Implementing some manner of statistical target association is a

very logical next step for the study of all-digital radar.

In Chapter 6, many of the minimum SNR requirements mapped to similar
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results. This is because the predicted number of antenna elements was always

rounded up to some 16L2 for an integer value of L where 1 ≤ L ≤ 8. This

rounding was necessary for each sub-array to fit a square number of MAUs. How-

ever, some of the sub-arrays were expanded to fill the remaining empty space in

the array. We did not observe any significant adverse effects on detection or track-

ing when the transmitting sub-arrays were rectangular or L-shaped. A future study

could possibly implement a more flexible element allocation algorithm that is based

on rectangular sub-arrays rather than squares.

The simulation and algorithms described in this thesis are extremely space and

time complex. The simulated radar had a range swathe of approximately 10 kilome-

ters; simulating a wider spread of targets caused the machine running the simulation

to run out of memory. All-digital arrays are extremely computationally complex,

but they have a lot of potential in target tracking. This thesis has laid the ground-

work for more innovation in this new and exciting field.
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