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Abstract: This paper presents an optimal scheduling solution for building thermal loads that si-
multaneously participate in the wholesale energy and frequency regulation markets. The solution
combines (1) a lower-level regulation capacity reset strategy that identifies the available regulation
capacity for each hour, and (2) an upper-level zone temperature scheduling algorithm to find the
optimal load trajectory with a minimum net electricity cost. In the supervisory scheduling strategy,
piece-wise linear approximations of representative air-conditioning equipment behaviors, derived
from an offline analysis of the capacity reset mechanism, are used to predict the cooling power and
regulation capacity; and a mixed-integer convex program is formulated and solved to determine
the optimal control actions. In order to evaluate the performance of the developed control solution,
two baseline strategies are considered, one with a conventional night setup/back control and the
other utilizing an optimization procedure for minimizing the energy cost only. Five-day simulation
tests were carried out for the various control strategies. Compared to the baseline night setup/back
strategy, the energy-priority controller led to a 26% lower regulation credit and consequentially
caused a net cost increase of 2%; the proposed bi-market control solution was able to increase the
regulation credit by 118% and reduce the net electricity cost by 14%.

Keywords: demand-side management; frequency regulation; demand response; load scheduling;
model-predictive control

1. Introduction

One essential task for power system operation is to maintain the real-time supply
and demand balance, in order to keep the system frequency stable. However, the ever-
increasing penetration of renewable energy resources on the electric grid contributes to
uncertainties and intermittencies of power generation, which poses challenges to grid
reliability and stability. Unexpected generator failures also cause frequency stability issues.
On 9 August 2019, Britain experienced the most severe blackout in more than a decade,
which was caused by the grid frequency dropping below the safety limits following two
generator outages [1]. To alleviate the frequency stability concerns and to improve grid
resiliency against the risk of generator failures, the power markets have seen dramatic
increase in the procurement of frequency regulation service in recent years [2].

Heating, ventilation and air conditioning (HVAC) systems in buildings are responsible
for 24% of the total electricity usage in the U.S. [3] and are excellent candidates for power
frequency regulation due to the inherent thermal inertia. Various types of HVAC equipment
have been investigated for regulation service, such as variable-speed supply fans [4,5],
electrical space heaters [6], chilled-water pumps [7], residential heat pumps [8], water
heaters [9], commercial-scale chillers [10] and packaged air-conditioning equipment [11].
In addition to frequency regulation support for the bulk power grid, HVAC equipment was
also successfully used for frequency support of microgrids [12,13] and for load following
in mitigating renewable power fluctuations [14]. The published results have demonstrated
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a variety of advantages of using HVAC equipment for frequency regulation compared to
other resources on the market:

• Ramping rate: HVAC equipment can respond to frequency deviations much faster than
traditional generator-side control [15];

• Efficiency loss: although prior studies reported noticeable round-trip efficiency losses
during frequency regulation control of variable-speed fans [16], recent laboratory tests
with controlled environments have shown negligible efficiency loss or even sensible
efficiency gains when appropriate regulation control strategies are adopted [11]; in [17],
it was also proved through a rigorous analysis that regulation control of HVAC
equipment does not cause efficiency losses;

• Regulation performance: incorporating regulation strategies in OEM controllers could
result in PJM (Pennsylvania-New Jersey-Maryland Interconnection, a regional trans-
mission organization serving the northeast of U.S.) regulation performance scores of
up to 0.98; even with an add-on (after-market) regulation control solution, regulation
scores of above 0.9 were obtained consistently [11];

• Procurement cost: HVAC equipment is installed in almost every building; thus, the procure-
ment cost is relatively lower compared to other regulation resources, such as batteries.

There are also limiting factors for buildings’ participation in the frequency regulation
market. Most regulation markets in the U.S. have minimum size requirements for the
bidders [18], e.g., the PJM regulation market has a minimum capacity requirement of
0.1 MW [19]. The relatively small power capacity in a single building, especially for
the residential and light commercial sectors, represents a major barrier for buildings’
contribution to frequency regulation. However, a number of buildings can be aggregated
or coordinated to offer adequate sizes of regulation service; attempts were made to develop
aggregation strategies for multi-building frequency regulation control, e.g., [20–23] to
eliminate the size issue of frequency regulation in a single building.

Time-varying availability of the HVAC regulation capacity is regarded as another dis-
advantage. HVAC equipment is primarily used to deliver indoor comfort and the variable
cooling load, to a large extent, dictates the available regulation service that can be provided
by HVAC equipment. For symmetric markets such as PJM, the HVAC regulation capacity
is lower at excessively high or low load conditions. When a variable-capacity AC unit is
running close to its full load, there is not much room for the unit power to ramp up, leading
to limited regulation capacities. However, regulation control can be combined with load
shifting techniques, e.g., through zone temperature setpoint reset, to adapt the availability
of the HVAC regulation capacity in response to grid needs. This control problem is often
formulated as a multi-market scheduling program in which the net cost (energy cost minus
the frequency regulation credit) is minimized. Maasoumy et al. [24] proposed a model-
predictive control strategy to reduce a building’s net electricity cost when participating in
wholesale energy and frequency regulation markets. A min-max problem was formulated
to ensure robust control performance under all possible realizations of the random regula-
tion signal. Vrettos et al. [25,26] developed and experimentally demonstrated a hierarchical
frequency regulation control solution for supply air fans in commercial buildings. The so-
lution uses a supervisory reserve scheduler to identify the regulation reserve capacity for
the next day, a room controller to find the most efficient supply air flow setpoints and a
local regulation signal tracking controller. The reserve scheduler adopts a similar robust
formulation as in [24] by explicitly considering the randomness in the regulation signal.
The approaches adopted by [24–26] all relied on supply air fans to provide frequency regula-
tion; fan control is straightforward but its power capacity is much smaller compared to that
of compressors in a HVAC system. Blum et al. [27] developed a multi-market optimization
strategy for multi-zone commercial buildings considering control optimization of both the
fan and chiller. In addition to frequency regulation and wholesale energy markets, reserve
service was also considered. In another paper by Blum et al. [28], the trade-off between the
energy cost and regulation reward was investigated from a different point of view, through
evaluating the opportunity cost associated with HVAC frequency regulation; the oppor-
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tunity cost was calculated as the increased energy cost during regulation control, which
would have been avoided when using energy-optimal control strategies. Pavlak et al. [29]
recognized the difficulties of HVAC dual-market (energy plus frequency regulation) control
due to the system nonlinear behaviors, and proposed a predictive scheduling solution that
incorporates a zone temperature perturbation approach to estimate the regulation reserve
for each hour. The optimization problem in their work required 1–6 h of machine time to
solve on a twelve-core workstation, which poses challenges for practical implementation
of the proposed approach.

It is evident that an efficient dual-market control strategy for building thermal loads
is lacking, but is of great importance to accommodate the growing demand for frequency
regulation support of the electric grid. In this paper, we present an efficient and practical
load scheduling strategy to support buildings’ simultaneous participation in the wholesale
energy and frequency regulation markets. The strategy adopts a bi-level control structure
where (1) a lower-level regulation capacity reset strategy is implemented every hour to
identify the control settings that provide the maximum regulation capacity and (2) a
supervisory load scheduling algorithm is called, in a receding horizon manner, to seek the
optimal zone temperature trajectory for minimizing the net electricity cost. The original
problem is highly nonlinear and involves mode switches due to minimum compressor/fan
speed constraints. To improve the numerical feasibility, an offline analysis was performed
for the lower-level capacity reset strategy covering all possible operating conditions. Using
the offline optimization results, piece-wise linear approximations of the lower-level control
behaviors were obtained and used in the supervisory scheduling algorithm. With the
lower-level control approximations, the overall problem can be converted to a mixed-
integer convex program which can be solved very efficiently. In the simulation tests, each
24-h scheduling problem only took less than 0.2 s to solve on a regular laptop with an i5
processor and 8 GB ram. The developed control solution, derived based on a comprehensive
HVAC performance model, explicitly accounts for actual operation characteristics, such
as compressor/fan speed constraints and system part-load efficiencies. All these features
make the proposed solution practical to implement with performance close to optimal.

The paper is structured as follows. Section 2 summarizes prior laboratory test results
of the lower-level regulation capacity reset strategy and describes the case study. Section 3
introduces the control and/or simulation models for the various components involved
in the case study. The proposed control strategy as well as two baseline strategies are
elaborated in Section 4 and the key simulation results are presented and discussed in
Section 5. Concluding remarks are given in Section 6.

2. Case Study Description and Prior Results
2.1. Case Study

This study considers a small office building served by a 5-ton (17.5 kW) variable-speed
air-conditioning (AC) system. The system employs a direct-expansion vapor-compression
circuit with variable air volume comfort delivery. The building has four thermal zones
with a total floor area of approximately 400 m2 and is used as graduate student offices.
A data-driven model was established to characterize the envelope dynamics using field
data and the model was validated with data collected in different seasons [30]. The AC
system employs variable-speed drives for the compressor, supply fan and condenser
fan. The onboard controller uses the following built-in logics for speed control: the
supply fan speed is varied to maintain the zone air temperature (ZAT) setpoint and the
compressor speed is modulated to achieve a desired supply air temperature (SAT) setpoint.
The condenser fan speed is set in sync with the compressor speed. Although component
speeds cannot be controlled externally, the ZAT and SAT setpoints can be adjusted by any
BACnet-compatible control system as a means to indirectly control the component speeds.
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2.2. Prior Results

The author previously developed a frequency regulation control strategy for the con-
sidered AC system [31]. The strategy assumes a hierarchical control scheme: a regulation
capacity reset algorithm is executed prior to each bidding interval, e.g., one hour, to iden-
tify the available regulation capacity for the upcoming bidding period; a fast regulation
power tracking controller adjusts the SAT setpoint in real-time (every second) to modu-
late the compressor power in order to follow the regulation signal. The hourly capacity
reset algorithm takes the current cooling load, estimated with a moving average filter,
and implements a pseudo-optimization routine to determine an appropriate regulation
reference power and the upper and lower limits, which together dictate the regulation ca-
pacity. The optimization routine aims to maximize the regulation capacity while satisfying
relevant operation constraints, such as the load requirements and compressor/fan speed
limits. The hourly capacity reset strategy is summarized in Section 4.1 of the present paper.
The real-time regulation tracking control is implemented in a feedback scheme for dynamic
reset of the SAT setpoint as a means to indirectly control the compressor power. The supply
fan speed is varied by the original thermostat controller to maintain the ZAT setpoint and
indoor comfort.

Figure 1 shows example laboratory test results of the previously developed frequency
regulation control strategy [31]. The test was conducted in twin psychrometric chambers.
Since the chambers have significantly different dynamics compared to an actual building,
a load-based testing approach was implemented, in which the indoor chamber temperature
was varied according to a lumped capacitance load model to reproduce realistic responses
of indoor thermal conditions. In the load model, a representative thermal capacitance
value was identified based on thermostat data collected in a dozen of houses. The 3rd
subplot in Figure 1 depicts the variation of the ZAT during the test. The results proved
that HVAC frequency regulation has negligible impact on indoor temperature control,
with temperature fluctuations smaller than 0.5 ◦C around the setpoint (23.5 ◦C). The test
mirrored a 6-h morning scenario with a monotonically increasing cooling load, as depicted
in the 4th subplot. The 1st subplot shows variations of the regulation signal (actual PJM
historical signal), actual unit power response and the hourly regulation band, determined
by the regulation capacity reset strategy. The 2nd subplot shows the SAT setpoint generated
by the regulation controller as well as the actual SAT value. It can be seen that with the
developed regulation control strategy, the AC unit power was able to closely follow
the regulation signal and the calculated hourly PJM performance scores were almost
always above 0.9. Using PJM historical regulation and wholesale energy prices, we have
demonstrated significant economic benefits for building owners if HVAC systems can be
used to provide frequency regulation service. The regulation credit could offset up to 45%
of the hourly AC electricity cost at the most favorable conditions.

However, previous test results, obtained under a conventional night setup control for
the ZAT, also revealed that the regulation availability of a HVAC system varies significantly
with load and other operating conditions. As can be seen in the 1st subplot of Figure 1,
there is limited regulation capacity during high- or low-load hours, because the compressor
speed can only be modulated in a limited range, e.g., 39% to 100% for the considered AC
unit. The extreme load requirements could result in a baseline compressor speed close
to the upper or lower limit, leading to reduced speed modulation margins. The variable
regulation capacity limits the total regulation service (as well as regulation credits) from
HVAC equipment using the conventional night setup/back control. A previous simulation
study [31] showed that the daily utility savings, associated with regulation credits, drops
to 26% from the maximum hourly savings of 45%.
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Figure 1. Laboratory test results of frequency regulation for a 5-ton variable-speed rooftop unit.

2.3. New Contributions

A building load profile can be optimally shaped through ZAT scheduling to maximize
the daily regulation capacity or minimize the net electricity cost. The present work expands
beyond the previously developed frequency regulation strategy by including a predictive
load scheduler to improve a building’s frequency regulation availability. The control
diagram is given in Figure 2 where the shaded box indicates the strategies proposed in
the present work. The fast regulation power tracking control strategy has been validated
through extensive laboratory tests and is not considered in this paper.

Figure 2. Control diagram of proposed strategy.
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3. Models

This section introduces the various component models used in the simulation tests and
control strategies. It should be noted that the same building envelope model, derived and
validated with field data, is used for control synthesis and simulation tests. For power con-
sumption and regulation behaviors of the AC equipment, different control and simulation
models are utilized.

3.1. Building Envelope

A thermal network model is used to emulate the indoor temperature responses for given
cooling rates delivered by the AC system. Assuming constant convective and radiative heat
transfer coefficients between the indoor/outdoor air body and wall interior/exterior surfaces,
a linear time invariant (LTI) discrete-time state-space model can be established:

x[i + 1] = Ax[i] + Bww[i] + Buq[i] (1)

y[i] = Cx[i] = xz[i] (2)

where x is the state vector consisting of all nodal temperatures in a building thermal
network; xz is the state variable corresponding to the zone air temperature; w is comprised
of non-controllable disturbance inputs including weather conditions and internal heat
gains from occupants and electrical appliances; q is the sensible cooling effect generated by
the AC system, which is the only controllable input; y is the model output. The matrices A,
Bw, Bu and C are constructed based on values of the thermal resistances and capacitances
involved in the thermal network and are time invariant.

An envelope model for the case study building was identified, with the resistance and
capacitance values estimated using two weeks of operation data. The thermal network of
the model consists of two 3-resistance-2-capacitance wall branches, one for the external wall
representing the main indoor-outdoor thermal coupling and the other branch for a concrete
floor which contributes the majority of building thermal mass. The model also includes
a 1-resistance window branch capturing fast thermal interactions with the ambient. The
model has been validated with data collected across different seasons. Modeling details
and training/validation results can be found in [30]. The building moisture dynamics
are not considered, since the case study simulations used actual field data that involved
relatively dry weather. For cases with non-negligible latent loads, a moisture network
modeling approach, which preserves the LTI feature in the resultant model, can be used
to capture the indoor humidity dynamics [32] to which the proposed control solution is
still applicable.

3.2. AC System

A quasi-steady-state model for variable-speed direct-expansion AC equipment is
utilized to predict the cooling capacity (q) and unit power consumption (p) for given
outdoor temperature (To), return air dry-bulb temperature (Ti), compressor speed (s) and
supply air flow rate (ma):

[q, p] = AC(Ti, To, ma, s). (3)

The model is a variant of the ASHRAE Toolkit model, which calculates the total cooling
capacity and energy input ratio using polynomial-type correlations with respect to ambient
temperature, evaporator inlet wet-bulb temperature and airflow rate. The modified model
applies an additional correlation factor that is in a quadratic form of the compressor speed,
to capture its impact on the system efficiency and cooling output. The bypass factor method
is employed to estimate the sensible heat ratio (SHR). For dry-coil operation, the use of the
evaporator wet-bulb temperature would result in an underestimation of the total capacity
and a SHR greater than unity. Therefore, an iterative process is implemented for dry-coil
scenarios to find a fictitious wet-bulb temperature that generates a SHR equal to unity,
and the corresponding capacity and power are used as final model outputs. The original AC
model requires both the dry- and wet-bulb temperatures of the air entering the evaporator
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coil as inputs. However, due to the dry weather and small latent load involved in the
case study, a fixed relative humidity of 30% is used in the AC model and that is why the
wet-bulb temperature input is dropped in Equation (3). The AC model was trained using
manufacturer performance data and the details can be found in [33].

3.3. Wholesale Energy and Frequency Regulation Markets

The PJM hour-ahead energy and frequency regulation markets are considered in
this study to demonstrate the efficacy of the proposed control solution. The PJM market
requires regulation resources to provide a bid of reference power, regulation capacity,
and price prior to each hour of clearing interval. If the offer is accepted, a regulation credit
is issued to the resource after the hour of service and the credit depends on the capacity,
performance of the provided service and the clearing price [34]. For demand-side resources,
the net energy cost for each hour is

cn = e · re − pc · r f r· (4)

where e is the hourly electricity use (kWh), re is the wholesale energy price ($/kWh), pc is
the regulation capacity (kW), and r f r is the combined frequency regulation price ($/kW).
The PJM regulation market has two types of credits, associated with the capacity and
performance, respectively, that are calculated as

crc = pc · ρ · r f r,c

crp = pc · ρ · r f r,p · α

where r f r,c (crc) and r f r,p (crp) are the capacity and performance clearing prices (credits),
respectively, ρ is the performance score, and α is the mileage ratio which is defined as ratio
of the actual regulation signal mileage to the average PJM RegA mileage. Thus, for RegA
(traditional) service, the mileage ratio is close to unity while the RegD (dynamic) service
involves a much higher mileage ratio (α of RegD is close three based on historical PJM
market data). The combined regulation price r f r incorporates both credits as

r f r = ρ · (r f r,c + r f r,p · α).

Figure 3 shows the average diurnal variations of the wholesale energy (locational
marginal price, LMP) and combined regulation prices over the year of 2018, based on PJM
historical data. The plotted regulation price was calculated for RegD (α = 3) based on
a performance score of 0.95 (averaged regulation performance from previous laboratory
tests [11]).

Figure 3. PJM annual average prices in 2018.
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4. Bi-Market Control Strategy

As shown in Figure 2, the proposed strategy consists of a regulation capacity reset
controller (lower-level) that maximizes the hourly regulation flexibility and a supervisory
scheduler (upper-level) to find the optimal ZAT trajectory with minimum net operation
costs. In practical implementations, this bi-level control strategy is executed prior to each
bidding interval, e.g., every hour for PJM markets; the obtained control parameters, such
as the ZAT setpoint and regulation capacity, are fed to the fast regulation power tracking
controller (not considered in the present study) which adjusts the SAT setpoint every a few
seconds to follow the dynamic regulation signal.

4.1. Regulation Capacity Reset

The regulation capacity reset strategy takes the baseline AC load (determined by the ZAT
setpoint generated by the supervisory scheduler) and other operating conditions and outputs
the regulation capacity at each hour of operation, by solving the optimization problem

max
{s,ma}

(min(s− s, s− s)) (5)

subject to

q = ACq(Ti, To, ma, s) (6)

ma ≤ ma ≤ ma (7)

s ≤ s ≤ s (8)

Tsa ≤ ACSAT(Ti, To, ma, s) (9)

Tsa ≥ ACSAT(Ti, To, ma, s) (10)

where the underscored and overlined symbols represent the lower and upper limits of
the corresponding variables. The problem aims to maximize the compressor speed modu-
lation margin ∆s = min(s− s, s− s) (equivalent to maximizing the regulation capacity).
The function subscript indicates the specific sub-function that outputs the corresponding
variable, e.g., ACq represents the sub-function of “AC” that calculates the cooling capacity
q. The first constraint ensures that the average cooling rate delivered by the AC unit
matches the load within the bidding interval. The second and third constraints make
sure the baseline airflow and compressor speed fall within the respective feasible regions.
The airflow rate tends to have a slow variation due to the small PI gains used by the
thermostat controller. The compressor speed, which is the actuating variable to maintain
the desired SAT setpoint, can change at a more aggressive rate because of the fast SAT
dynamics; this makes tracking of a fast regulation signal possible. The last two constraints
enforce the SAT setpoint upper and lower limits (i.e., Tsa and Tsa) during regulation control.
These SAT constraints are necessary for the considered AC unit, because direct compressor
speed control is not available and compressor power modulation is achieved by adjusting
the SAT setpoint; the unit can only accept a SAT setpoint from 45 ◦F (7.2 ◦C) to 65 ◦F
(18.3 ◦C). For AC systems whose compressor speed can be directly controlled, the last two
constraints can be dropped.

For variable-capacity AC systems, both the compressor and fan speeds are control-
lable. Therefore, to meet a given cooling load, there is one degree of freedom for control
optimization and the regulation capacity reset controller aims to identify the optimal com-
pressor and fan speed combination to achieve the maximum regulation capacity. Figure 4,
a contour plot of the AC cooling output with variable compressor speed and airflow rate,
illustrates the optimization process. The shaded areas indicate the infeasible regions where
the SAT goes outside the allowed range. For the considered AC unit, the compressor
speed is allowed to vary between40% and 100% of its nominal speed. Thus, an ideal
base compressor speed setting is 70%, for which the speed is free to ramp up or down
within its maximum margin of 30%. However, this speed setting may be sub-optimal or
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even infeasible due to load and SAT constraints. In Figure 4, the optimal operation points
for cooling loads of 11 kW and 8 kW are highlighted. For the 11 kW load case, optimal
operation is achieved at a base compressor speed of 70% and airflow fraction of 72%,
and no other constraints are active in the full compressor speed modulation range. For the
scenario with a 8 kW load, the 70% compressor speed is not even in the feasible region
due to the low load. The SAT lower limit of 45 ◦F (7.2 ◦C) further limits the compressor
speed modulation margin; the optimal regulation operation occurs at the base compressor
speed of 58% and airflow fraction of 42% with a compressor modulation margin of 18%.
The regulation capacity reset strategy essentially glides on the constant-load curve and
seeks the optimal point that leads to the maximum compressor speed modulation margin.

Figure 4. Illustration of the capacity reset strategy.

Once the optimal control settings are determined, the regulation power upper and
lower limits can be determined as

p = ACp(Ti, To, ma, s + ∆s)

p = ACp(Ti, To, ma, s− ∆s).

The regulation capacity is pc = (p− p)/2 and the reference AC power is p = ACp(Ti, To,
ma, s), which together dictate the regulation flexibility. This is a reasonable approach to
estimate the flexibility because the compressor power has a close-to-linear relationship
with its speed. It should be noted that the regulation flexibility is dependent on the hourly
load, which is determined by the supervisory scheduler.

4.2. Supervisory Scheduler

The supervisory scheduler seeks the optimal ZAT setpoint trajectory and the corre-
sponding load schedule in a look-ahead horizon. The scheduler considers a bi-market
control problem and aims to minimize the net cost within the control horizon:

min ∑
i∈Ik

{
e[i] · re[i] · −pc[i] · r f r[i]

}
(11)

subject to

x[i + 1] = Ax[i] + Bww[i] + Buq[i], ∀i ∈ Ik (12)

Tlb[i + 1] ≤ Cx[i + 1] ≤ Tub[i + 1], ∀i ∈ Ik (13)

[p[i], pc[i]] = CR(Ti, To[i], q[i]), ∀i ∈ Ik (14)
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where Ik = {k, ..., k + Np − 1} is the set of time indices for the look-ahead time horizon, k
indicates the current time step, Np is the length of the prediction horizon, and Tlb and Tub
are the lower and upper limits of zone temperature to ensure indoor comfort. The comfort
limits are time indexed because they vary from one time step to another depending on
the occupancy status. The last constraint is associated with the capacity reset controller
described in Section 4.1, where CR is the capacity reset operator. p is the baseline cooling
power, ∆t is the time step, and e[i] = p[i] · ∆t is the integrated electricity use for time step i.
The capacity reset operator is highly nonlinear and non-convex due to the nonlinearity in
the AC model, which makes the scheduling problem difficult to solve directly. To improve
the computational feasibility, a control-friendly surrogate model is needed to approximate
the behaviors of the capacity reset controller.

At each time step, the maximum cooling capacity that the AC system can provide
is q = ACq(Ti, To, ma, s) (the time indices are dropped for ease of notation). An auxiliary
variable, load ratio q, is introduced to represent the ratio of the instantaneous cooling
demand to the maximum capacity, i.e., q = q/q. The capacity reset operator requires
the indoor temperature (or mixed air temperature at the evaporator inlet for cases with
non-zero ventilation rates) to determine the regulation flexibility. This represents a ma-
jor coupling between the capacity reset controller and the building envelope dynamics.
For ease of control synthesis, this coupling effect can be eliminated by fixing the indoor
temperature Ti to its upper limit Tub of occupied hours. This is an acceptable simplification
since optimal control actions tend to maintain the indoor temperature at the upper bound
during hours with non-zero cooling loads. With this simplification, q is a function of To
only. The cooling demand can be represented as q = q · q. The AC power ratio is defined
in a similar way as p = p/p where p is the total AC power when running at full speeds,
i.e., p = ACp(Ti, To, ma, s). The regulation capacity ratio is defined as pc = pc/p. Then the
regulation capacity reset operator can be re-written as

[p,pc] = CR(To,q).

The regulation capacity reset control problem formulated in (5)–(10) was solved offline
for different ambient temperatures and load ratios. The obtained optimal results for AC
power ratio and regulation capacity ratio are depicted in Figures 5 and 6, respectively.
The x-axis gives the load ratio q. The y-axis corresponds to the power ratio p in Figure 5
and the regulation capacity ratio pc in Figure 6.

Figure 5. Variation of power ratio with capacity ratio.

Figure 5 shows that the minimum load ratio occurs at the minimum compressor speed
(s, 40% of nominal speed) and airflow rate (ma, 35% of nominal airflow), and is close to 0.45.
It can be observed that the ambient temperature has a negligible impact on the functional
relationship between p and q. The dashed line represents a constant-efficiency scenario
where the cooling coefficient of performance (COP) is equal to the full load COP. It can
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be seen that during continuous AC operation (load ratio greater than 0.45), the system
efficiency is always higher (lower power consumption) than that of the full load, mainly
due to reduced pressure lifts across the compressor. Furthermore, the power ratio variation
with respect to the load ratio is close to linear. For load ratios lower than 0.45, the AC
unit starts cycling on and off to meet the demand and it is assumed that the efficiency
remains the same as that at the minimum cooling output. A 2-segment piece-wise linear fit
was obtained, which is shown as the solid lines in Figure 5, and can be represented in a
convex form:

p = max(0.58q, 1.31q− 0.33). (15)

Figure 6 depicts the optimal regulation capacity for different load and ambient condi-
tions. When the load drops below the minimum cooling output, the unit starts cycling and
no regulation service can be provided, because of the symmetric regulation requirement of
the PJM market. When the load increases beyond the minimum cooling rate, the regulation
capacity becomes nonzero and starts to increase as the load gets higher. When the load
reaches a threshold (load ratio of 0.77), the available regulation capacity drops as the load
continues to increase (compressor speed approaching the upper limit). The variation of
the regulation capacity does not change much as the ambient temperature varies; there-
fore, its dependence on To can be safely neglected. Three linear fits were obtained for the
respective load segments, represented by the solid lines in Figure 6. The overall regulation
capacity variation is not concave, due to the existence of the segment for cyclic operation
(q ∈ [0, 0.45]); this makes the overall scheduling problem non-convex. To improve the com-
putational feasibility, the piece-wise linearity is leveraged to reformulate the problem into
a mixed-integer program (MIP), the solution of which is more computationally tractable
(still NP-hard).

Figure 6. Variation of regulation capacity ratio with capacity ratio.

One MIP formulation for a general 3-segment piece-wise linear function, as shown in
Figure 7, is

q = a0λ0 + a1λ1 + a2λ2 + a3λ3 (16)

pc = b0λ0 + b1λ1 + b2λ2 + b3λ3 (17)

1 = λ0 + λ1 + λ2 + λ3 (18)

1 = y1 + y2 + y3 (19)

λ0 ≤ y1 (20)

λ1 ≤ y1 + y2 (21)

λ2 ≤ y2 + y3 (22)

λ3 ≤ y3 (23)

0 ≤ λj, ∀j ∈ {0, 1, 2, 3} (24)

yj ∈ B = {0, 1}, ∀j ∈ {1, 2, 3} (25)



Energies 2021, 14, 1593 12 of 18

where a0 to a3 represent the endpoints of the 3 segments, and b0 to b3 are the functional values
at the four endpoints. The independent variable q is formulated as a convex combination
of the four endpoints with λ0 to λ3 being the coefficients. It may be noted that there are
infinite number of coefficient combinations to represent a given point. To obtain a unique
representation, binary variables y are introduced. Equation (19) ensures only one y is nonzero,
say yj. Equations (20)–(23) guarantee that the point q falls on the jth segment and only the
two coefficients of the corresponding segment endpoints are nonzero, resulting in a unique
representation for each q value. Define y = [y1 y2 y3], a = [a0 a1 a2 a3], b = [b0 b1 b2 b3]
and λ = [λ0 λ1 λ2 λ3]. The MIP formulation for regulation capacity can be put into a
compact form:

q = aλT (26)

pc = bλT (27)

Aeq[y λ]T = αeq (28)

A[y λ]T ≤ α (29)

y ∈ B × B × B (30)

where Aeq, A, αeq, α, a and b are matrices/vectors of appropriate dimensions constructed
based on the coefficients in Equations (16)–(25). The obtained piece-wise fit for the regula-
tion capacity shown in Figure 6 has the following parameter values: a = [0 0.45 0.77 1] and
b = [0 0 0.365 0].

Figure 7. A general 3-segment piece-wise linear function.

The supervisory scheduling problem is then reformulated as

min ∑
i∈Ik

{
p[i] · re[i] · ∆t− bλT[i] · p[i] · r f r[i]

}
(31)

where

p[i] = p[i] · p[i] (32)

p[i] = max(0.58aλT[i], 1.31aλT[i]− 0.33) (33)

subject to (∀i ∈ Ik)

x[i + 1] = Ax[i] + Bww[i] + BuaλT[i] · q[i], (34)

Tlb[i + 1] ≤ Cx[i + 1] ≤ Tub[i + 1], (35)

Aeq[y[i] λ[i]]T = αeq (36)

A[y[i] λ[i]]T ≤ α (37)

y[i] ∈ B × B × B (38)

The formulated problem is a mixed-integer convex program and is solved using the
MOSEK solver [35] in the CVX MATLAB suite [36]. In the simulation tests, a 24-h look-
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ahead horizon was used with a 1-h decision step, i.e., the predictive control problem was
solved at each hour and only the decision for the first time step was applied.

4.3. Baseline Control Strategies

Two baseline strategies are considered for supervisory load scheduling to assess
the performance improvement of the proposed optimal control strategy. Both baseline
strategies adopt the same regulation capacity reset strategy as described in Section 4.1 and
they differ only in the mechanism used for determining the ZAT setpoint (sensible load).

The first baseline strategy, referred to as BaseControl I, applies conventional night
setup/setback control for the ZAT with the setpoints identical to the upper/lower limits
used in the optimal control. In this strategy, the minimum cooling/heating power is used to
prevent the ZAT from drifting out of the comfort zone. BaseControl I can be easily implemented
without any optimization procedure:

qht[i] = (CBu)
−1(Tlb[i + 1]−CAx[i]−CBww[i])

qcl [i] = (CBu)
−1(Tub[i + 1]−CAx[i]−CBww[i])

q[i] = max(qht[i], 0) + min(qcl [i], 0)

The second baseline strategy, referred to as BaseControl II, solves the same optimal
control problem in Equations (31)–(38) but with a modified objective function that includes
the energy cost only:

min ∑
i∈Ik

{p[i] · re[i] · ∆t} (39)

Since the MIP formulation is mainly used for predicting the piece-wise regulation capac-
ity, which is not needed in BaseControl II, the mixed integer constraints in Equations (36)–(38)
can be dropped and aλT needs to be replaced by q with an additional constraint of q ≤ 1.
The supervisory scheduling problem for BaseControl II is convex and is solved with the
SDPT3 solver [37]. The same look-ahead time horizon and decision step settings as in the
optimal control strategy are used.

5. Case Study Results

All three control strategies were simulated for five summer weekdays. The ZAT lower
and upper limits assume Tlb = 20.5 ◦C and Tub = 24.5 ◦C during unoccupied hours and
Tlb = 21.5 ◦C and Tub = 23.5 ◦C for occupied periods. The building is occupied from 9 a.m.
to 9 p.m. and unoccupied for the rest of the day. The simulations used actual weather
and electrical load measurements taken in the case study building for a summer week as
external excitation. Perfect weather and internal gain predictions were assumed in the
predictive control implementations (for optimal control and BaseControl II only).

For simulation-based control performance assessment, a common practice is to use
a high-fidelity plant model to emulate the detailed system behaviors while the controller
employs a simpler model for ease of control implementation. In this simulation study,
the envelope model trained using field measurements was employed for both the control
and plant models, because the model well captures the envelope dynamics with extensive
validations and is more suitable to use than a high-fidelity model without careful calibra-
tions. For AC power calculation, the plant model assumed the original comprehensive AC
model described in Equation (3) while the control model (for BaseControl II and optimal
strategies only) used the piece-wise linear fit given in Equation (15). For determining
regulation capacity, the plant model relied on the pseudo-optimization routine described
in Equations (5)–(10) and the control model adopted the mixed-integer formulation given
in Equations (26)–(30). At each hour, the optimal ZAT setpoint is determined by the super-
visory scheduler, the corresponding cooling/heating load is calculated with the envelope
model, and the AC power and regulation capacity are evaluated via the plant models.
Table 1 summarizes the resultant energy costs and regulation credits for the various cases.
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Table 1. Cost comparisons for different control scenarios.

Control Strategy Energy Cost ($) Reg. Credit ($) Net Cost ($)

BaseCtrl I 0.97 0.19 0.78

BaseCtrl II 0.94 (3%↘) 0.14 (26.3%↘) 0.8 (2.5%↗)

OptimalCtrl 0.99 (2%↗) 0.32 (118.6%↗) 0.67 (14.1%↘)

Figure 8 shows the 5-day simulation results for BaseControl I. The top subplot gives the
variations of the simulated ZAT as well as the upper and lower limits. The bottom subplot
depicts the AC power use and the band of power modulation for frequency regulation; the
latter was estimated with the regulation capacity reset controller described in Section 4.1.
It can be seen that mechanical cooling is requested for a majority of the occupied hours.
The first two days are relatively cool with low cooling loads. For the first day, the load is
always lower than the AC minimum cooling output, leading to cyclic operations for most of
the occupied period. As a consequence, there is no regulation capacity available for the first
day. The second day is slightly warmer with the cooling load higher than the minimum AC
cooling output in the afternoon, resulting in some regulation flexibility. For the remaining
three days, the AC system can provide good amount of regulation service in the afternoon
when the cooling load is moderate. During unoccupied hours, no regulation service can be
provided due to the low or zero cooling demand.

Figure 8. BaseControl I results.

Figure 9 presents the simulation results for BaseControl II. A third subplot is included
that shows variations of the whole energy and frequency regulation prices. The simulations
used the annual averaged prices shown in Figure 3 and assumed identical price profiles for
all simulation days. Although the regulation price is not used in the BaseControl II strategy,
it is included to illustrate the necessity for an improved control strategy. Compared to
the BaseControl I results, a major difference in the BaseControl II simulation results is
the existence of precooling and load shedding on days 3 to 5. BaseControl II tends to
precool the building in early morning hours (e.g., hours 52 to 56) when the energy price
is low in order to reduce the AC energy use during high-price periods. Other driving
factors for building precooling include (1) shifting loads to periods having a lower ambient
temperature to achieve a higher cooling efficiency and (2) flattening the load profile to
leverage the higher efficiency during part-load operations. The latter can be reflected by
the fact that the AC unit is operated at or below the minimum cooling capacity, when the
cooling efficiency is the highest, for longer periods of time, as evidenced by the histogram
plot of the load ratio (q) in Figure 10. Compared to BaseControl I, the BaseControl II
strategy can reduce the energy cost by more than 3%. However, the BaseControl II leads to
a regulation credit 26.3% lower than the BaseControl I case. That is because the BaseControl
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II strategy operates the AC system at or below the minimum cooling output more often,
resulting in a lower integrated regulation capacity.

Figure 9. BaseControl II results.

Figure 10. Histograms of the load ratio associated with the different control strategies.

The optimal control results are plotted in Figure 11. Precooling is also present in the
optimal results. Compared to BaseControl II, the major difference is that the optimal control
precools the building for all five days, and the precooling periods are better aligned with
the high regulation price hours. In addition, the precooling power is maintained close to
the middle of the power modulation range to provide the maximum regulation capacity.
During regular cooling hours, the AC power is also kept at a favorable level for longer
periods of time to increase the regulation availability. This pattern can also be observed in the
histogram plot in Figure 10: the most frequent load ratio occurs at 0.77 when the available
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regulation capacity is the highest. There is a clear trade-off in the control decision making
between efficiency (energy cost) and power flexibility (regulation credit): for a lower cooling
load, the energy efficiency is higher but the available regulation capacity is limited; a higher
cooling demand results in a lower efficiency but leads to improved power flexibility (only
up to load ratio of 0.77); excessively high cooling load is not favorable for either efficiency
or regulation capacity. The optimal control strategy is able to identify the balancing point;
although the energy cost of the optimal control is 2% higher than BaseControl I and 5%
greater than BaseControl II, a significantly higher regulation credit can be achieved, 68.4%
greater than that of BaseControl I and 118.6% higher than the BaseControl II regulation credit.
The net electricity cost is reduced by 14.1% compared to BaseControl I results and by 16.3%
from BaseControl II results.

Mismatch between the control model and the actual plant dynamics (plant model) could
cause sub-optimality in the obtained control decisions. To evaluate the model discrepancies
and the impact on the control performance, Figure 12 compares the AC power and regulation
band estimated using the control and plant (simulation) models. It can be seen that the control
model can predict both the AC power and regulation capacity with satisfactory accuracy.
The prediction errors for the integrated energy cost and regulation credit were within 3%
compared to the results obtained using the plant model.

Figure 11. Optimal control results.

Figure 12. Comparison of control- and simulation-model results using the optimal control actions.
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6. Conclusions

This paper presented a bi-market control solution to support a building’s participation
in the wholesale energy and frequency regulation markets. The control solution was built
on top of a previously developed frequency regulation strategy for variable-capacity AC
systems, and incorporates a predictive control strategy to identify the optimal ZAT and load
schedules to achieve the minimum net operation cost. The scheduling algorithm sits on
top of a regulation capacity reset strategy that is implemented every hour for maximizing
the power flexibility for frequency regulation. Due to the existence of nonlinearity and
mode switches in the regulation capacity reset strategy, the integrated control problem is
difficult to solve directly. To improve the computational feasibility, piece-wise linear fits
were obtained from an offline analysis to approximate the lower-level regulation capacity
reset behaviors and a mixed-integer convex program was formulated, which can be solved
efficiently using mature solvers.

To demonstrate the effectiveness of the proposed control strategy, simulation tests
were carried out for an office building using historical PJM wholesale energy and regulation
prices. Two baseline strategies were also simulated to evaluate the performance gains of
the proposed strategy: the first baseline strategy, BaseControl I, assumes a conventional
night setup/setback control for the ZAT setpoint and the other strategy, BaseControl II,
relies on solving a similar optimal control problem but with an objective function including
the energy cost only. Test results have shown that energy cost-priority strategies, such as
BaseControl II, could lead to even higher net costs, due to the limited frequency regulation
flexibility. The proposed strategy was able to find the balancing point between the energy
cost and regulation credit, resulting in a minimum net cost. Compared to the conventional
night setup/back strategy, the proposed control solution resulted in a net cost reduction of
14% and an integrated regulation credit increase by 118%.
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