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Abstract 

Floods triggered by extreme precipitation are the most frequently occurring and disastrous 

natural hazards in the world. However, it is still challenging to provide accurate and flood 

mapping, flood damage estimation, and flood forecast. The purpose of this dissertation is to 

develop a hydrological and hydraulic coupled flood prediction system, inundation MApping and 

Prediction (iMAP), which can provide comprehensive flood simulation and prediction including 

channel flow rate, flood return period, flood extent, surface flow speed, and direction, as well as 

inundation depth and soil moisture. Up until now, the Coupled Routing and Excess STorage 

(CREST) model family has been well documented and established both in research and in real-

world operation. As a new member of the CREST family, the work in this dissertation carries on 

the features of CREST model, as being robust, efficient, automated, and globally applicable. 

Moreover, the study also evaluates multiple remote sensing and precipitation prediction 

technologies during the historical event Hurricane Harvey. The results of the studies demonstrate 

that the CREST-iMAP system has the ability to provide comparable Harvey flood simulation as 

multiple real-time and operational flood monitoring systems in the world, and the best result 

comes from using Multi-Radar Multi Sensor (MRMS) Quantitative Precipitation Estimates 

(QPE), which the combination considers as the best practice in the Contiguous United States 

(USA). The results also indicate that the uncalibrated precipitation estimates perform better 

during extreme events like Hurricane Harvey, and precipitation forecasts still need more 

improvement to provide more information on flood prediction. However, the Numerical Weather 

Prediction (NWP) product can provide a preliminary forecast of the maximum flood extent, 

while the deep learning method could potentially improve the displacement issues from NWP 

forecasts.
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Chapter 1. Introduction 

1.1 Problem statement 

In the United States, severe storm-triggered floods cause $3.7 billion in property losses and 

about 110 fatalities per year (Ashley and Ashley, 2008). In  recent years, the U.S. was not short 

on severe storm-related hazards, such as Hurricane Harvey, Irma, Maria, Michael and Florence 

causing the catastrophic flooding events in Houston TX, Key West FL, Puerto Rico etc. in 2017 

and 2018, as well as the historic 2016 Louisiana Flood which was not triggered by a tropical 

cyclone. According to Barthel and Neumayer (2012), although there were increases in 

observations and early warning systems, more information about the infrastructure vulnerability 

and better construction and planning technologies, the impact of the storm-related natural 

disasters was still rising. This trend can be led by the increase of population, developing 

intrusion into the potentially hazardous area, transportation infrastructure expansion (Spiker and 

Gori, 2000), the increase of wealth and changing climate (Changnon, 2011). As the trend of 

more frequent flooding is almost certain, it is important to estimate and predict where and 

when the flooded water would present, how deep the water would be and how fast the 

water would flow to fully evaluate the impact of a future flood to building structures, soil 

erosions, outdoor safety factors, etc. Therefore, the public needs a well-informed 

forecasting and warning system, which can assess, quantify, and present the life cycle of a 

flood comprehensively.  

Since the 1970s, the scientific community has made a great improvement of the capacity of 

flood modeling by combining with climate models, weathers models, hydrological models, and 

hydrodynamic models (Teng et al., 2017). The applications of flood modeling vary from flood 

risk assessment and mapping (Dutta et al., 2006), flood damage assessment (Merz et al., 2013), 
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global real-time flood forecasting (Flamig et al., 2020; Gourley et al., 2017; Sampson et al., 

2015; Wing et al., 2017), engineering for flood prevention (Gallegos et al., 2009), post-flood 

river system hydrology (Dutta et al., 2013), soil and river bank erosion (Hardy et al., 2000), 

catchment hydrology (Abbott et al., 1986), and floodplain ecology (Zonta et al., 2005). 

Generally, the application requires considerations of the predictive output, spatial-temporal scale, 

and resolution while balancing the accuracy requirement and computing efficiency. For real-time 

simulation and forecast, faster run time and data assimilation are required to provide reliable 

results (Chen et al., 2013). However, despite decades of efforts from the hydrological and 

hydraulic research community, it is a great challenge to provide accurate flood modeling at a 

high spatial-temporal resolution even in regional scales (Teng et al., 2017). 

The “grand challenge for hydrology” was raised by Wood et al. (2011) to provide the 

hyperresolution hydrological prediction capacities to the public, as the society critically demand 

the high spatial-temporal resolution forecasting for the floods and droughts. New remote sensing 

technology provides accurate, spatially and temporally fine observation over the globe, which 

helps to advance physics-based models for atmosphere, hydrologic and hydraulic processes. As 

well as the computing technology allows the high volume of the data computation, which further 

allows the combination of different modeling systems into an integrated real-time forecasting 

chain that could forecast all the cascading storm-related disastrous events while considering their 

related uncertainties. All these advancement in technology would all support the real-time 

decision making for risk management. Over the last decade, fundamental tools were gradually 

prepared to meet the “grand challenge” and provide new information to society. Yet, much effort 

is still needed to meet the challenge and to provide reliable information for flood monitoring and 

prediction. 
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1.2 Literature review 

1.2.1 Hydrological modeling 

Hydrological models have been implemented for water management since the first watershed 

hydrological model was developed in 1966 (Crawford and Linsley, 1966). Hydrological models 

have been evolving over the years with complexity from lumped-process models (Sugawara et 

al., 1984; Williams and Hann, 1978) to semi-distributed models (Beven and Kirkby, 1979) and 

fully distributed models (Abbott et al., 1986; Wang et al., 2011; Wigmosta et al., 1995).  

In recent years, remote-sensing technologies provided new insights about global precipitation 

and runoff responses with real-time availability, which has improved the monitoring of the 

precipitation and modeling its cascading effect, such as the flood, landslides, debris flows, 

drought, etc. (Brakenridge et al., 2007; Hong et al., 2007b). To understand the environmental 

change and the terrestrial water cycle, the field of hydrology evolved to develop the global scale 

models and using remote sensing data as the observation sources (Hong et al., 2007a; Wang et 

al., 2011), with the addition of advanced weather and climate models, which further motivated 

the development of land surface hydrological models (National Research Concil, 1991). In the 

new generation of satellite missions, more data sources are enabling the development of better 

hydrological models, such as the Soil Moisture Active-Passive (SMAP) mission which provides 

global soil moisture at 1-10 km resolution (Entekhabi et al., 2010), the Surface Water and Ocean 

Topography (SWOT) mission which provides the surface water storage (Durand et al., 2010), 

and CoReH2O mission which provides the snow extent along with the equivalent water (Heliere 

et al., 2009). Advanced global and continental hydrologic models have shown very promising 

results thus far, which provide critical information over large spatial domains regarding the 

behavior of surface runoff (Hong et al., 2007a), streamflow, soil moisture, soil infiltration, and 
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evapotranspiration, with applications of coupled land surface model of the Coupled Routing and 

Excess Storage model- Ensemble Framework for Flash Flood Forecasting (CREST- EF5) (Clark 

et al., 2017; Flamig et al., 2020; Gourley et al., 2017; Wang et al., 2011), and Weather Research 

and Forecasting model – Hydrological Model (WRF-Hydro) (Arnault et al., 2016; Cohen et al., 

2018; Gochis et al., 2017; Lin et al., 2018; Zhang et al., 2018). 

Notwithstanding the remarkable achievements of the emerging data resources and advancing 

models in the field of hydrology, it is believed that the current models are not able to meet the 

societal demand of water management (Wood et al., 2011). For example, the prediction of water 

movement and storage alongside the accessible water with adequate water quality for target 

population was challenging to meet the demand of the developing counties (Sachs and 

McArthur, 2005). One specific societal demand from the hydrological model is flood simulation 

and forecasting, which require higher spatial-temporal resolutions than what is currently 

available. The high-resolution modeling at continental scales would better represent the reality 

when considering the spatial heterogeneity in topography, soils, and vegetations, which will 

impact the hydrology dynamics. Therefore, the simulation would consider in better details of the 

effects on solar radiation at slopes, snowmelt, soil moisture and evapotranspiration, as well as the 

channel routing, inundation extent, flood water depth, impact population and potential 

infrastructure damage. However, the available land surface models are constrained by the 

resolution of the global weather and climate models and the hydrological models’ low spatial 

resolution (Wood et al., 2011). 

1.2.2 Observation and conceptual modeling approaches to flood inundation mapping 

Flood inundation mapping has been studied for over a century, and two traditional groups of 

research effort gained most of the attention of the research community: observations and 
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hydraulic models.  The observations include ground measurements, survey, remote sensing 

technology (Shen et al., 2019b, 2019a) and statistical models (Kundzewicz et al., 2013). As the 

remote sensing technology could identify the flood extent over a vast area, while other methods 

can only provide data at single points, the flood mapping using remote sensing data has gained 

popularity in recent years. However, due to the limited representation of reality and the 

forecastability, the observation results are more often served as an input or benchmark data to 

validate and calibrate the hydrological and hydraulic models (Teng et al., 2017).  

Instead of hydraulic modeling, a new branch has emerged in recent years for its simplicity 

and computing efficiency, which was labeled as the simplified conceptual models. This type of 

models is non-physics-based but are built on simplified hydrological concepts. The Rapid Flood 

Spreading Method (RFSM) model is one of the signature models in this group (Samuels and 

European Conference on Flood Risk Management Research Into Practice, 2009), which has a 

pre-processing stage to divide the flood plan into elementary depressing areas, and then uses a 

filling/spilling process to simulate the flood extent. Another popular model in this group is 

named Height Above the Next Drainage (HAND), which has been operating at a continental 

scale (Johnson et al., 2019; Nobre et al., 2011; Zhang et al., 2018). This model normalizes the 

topography based on the relative height of each cell in the drainage network, then simulate the 

flood extent using the “bathtub method”.  

The studies indicated that the conceptual model could approximate the final inundation 

distribution when there was no more excessive water input in the basin, and the computing time 

can be 1000 times faster comparing to hydraulic models (Néelz and Pender, 2013). This group of 

models is suitable for the applications with less demand of accuracy of flow dynamics but is a 

good approximation to the shallow water equation 2D model in the final inundation extent, 
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overbank water volume, and water depth. However, the conceptual models are not suitable for 

the cases of complex topographies, or modeling tsunamis, flash floods, or dam breaks types of 

flooding (Teng et al., 2017).   

1.2.3 Hydraulic modeling approaches to high temporal-spatial resolution flood inundation 

As another traditional approach for flood inundation mapping, the hydraulic models include 

one-dimensional, two-dimensional and three-dimensional methods that use the physical 

equations and laws to describe the fluid motion, where the degree of complexity varies. One-

dimensional hydraulic model is considered the simplest representation of floodplain flow and it 

could simulate the open surface water flow with the assumption that the water flows in the same 

direction and the flow velocity is the average over the channel cross-section (Brunner, 2016). 

Generally, the one-dimensional model is to solve the St. Venant equation.  

The two-dimensional models are believed to be the most widely implemented technologies 

for the flood extent simulation and risk estimation studies (Teng et al., 2017). The 2D models 

assume the water as a shallow ditch where no flow occurs vertically and solve the shallow water 

equation from the depth-averaging Navier-Stokes equations (Roberts et al., 2015).  

In some special cases which need detailed information for engineering solutions, such as dam 

breaks, tsunamis or embankment failures, the 3D hydraulic models are implemented. However, 

for most of the floodplain analysis and simulation, the 2D shallow water approximation is 

considered adequate after proper model construction and validation (Alcrudo, 2004).  

It is challenging to provide rapid and accurate simulation at high spatial-temporal resolution, 

due to the complex nature and the uncertainties of flooding (Rougier et al., 2013). Many efforts 

were made to overcome the challenge that the hydraulic models are enduring, to provide an 
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efficient floodplain simulation. One of the options is to utilize the advanced High-Performance 

Computation (HPC) tools and techniques, and another option is to utilize certain assumption to 

simplify the model, but in most cases, both methods were used. The studies showed that 

implementing the Graphics Processing Unit (GPU) could improve the computation speed by 100 

times compared to the single core Central Processing Unit (CPU) 2D land surface runoff 

simulation using finite volume method, fully solved shallow water equation (Lacasta et al., 2014; 

Vacondio et al., 2014). Studies stated that the Message Passing Interface (MPI) parallel 

computing technique was mostly useful for large domain 2D land surface hydraulic modeling 

(Neal et al., 2009; Sampson et al., 2015), while the computation time approximately decreases 

linearly with the addition of the computational nodes (Roberts et al., 2015).  

The fully solved 2D St. Venant equation for shallow water equation using the finite volume 

and the finite element methods were considered having the higher complexity among the 2D 

hydraulic modeling methods (Bates and De Roo, 2000). The storage cell or the cellular automata 

approach by solving Manning equation with finite difference methods was suggested to be a 

good approximation to the physical based model and the computation time was reduced by 30 

times (Bates et al., 2010; de Almeida and Bates, 2013; Ghimire et al., 2013). It was further tested 

to prove the method was as efficient as other classes of models implementing HPC techniques 

(Bates et al., 2010; Sampson et al., 2015; Wing et al., 2017). 

1.2.4 Coupling hydrologic and hydraulic modeling 

Integrating hydrologic and hydraulic models has the benefit of utilizing the computation 

efficiency to model the hydrologic conditions over a long period and the flow dynamic 

representations when extreme hydrometeorological events occur (Anselmo et al., 1996). A recent 

study (Tanaka et al., 2018) has integrated a distributed hydrological model, Geomorphology-
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Based Hydrological Model (GBHM), a 1D hydraulic model Mike11 and a 2D hydraulic model, 

Local Inertial Equation (LIE) model. The study found the integrated framework yields good 

agreement with the observation data of the stream discharge and the lake water level over four 

years span and was able to simulate a significant flooding event in 2000 over the study area. The 

author also indicated that the framework could simulate sediment movement downstream in the 

future research plan. The EF5 framework integrated the distributed hydrological model, CREST, 

and 1D hydraulic model, Kinematic Wave model, which successfully simulated multiple extreme 

precipitation events that caused flash flooding events in Oklahoma City and Houston at a 

continental scale implementation (Clark et al., 2017; Flamig et al., 2020; Gourley et al., 2017).  

The National Water Center (NWC) took an effort on integrating WRF-Hydro and HAND at 

the national scale with 10 meters spatial resolution as the new National Water Model (NWM) 

(Cohen et al., 2018; Gochis et al., 2017; Johnson et al., 2019), as the agency was convinced that 

the HAND model performed good simulation of a 2016 Texas flooding event with good 

agreement with remote sensing observations and less computation cost (Zhang et al., 2018). 

However, based on the service assessment done by the National Water Service for 2017 

Hurricane Harvey, the NWM simulation was not applied in the field operation due to the 

significant run-to-run variability and the consequential lack of confidence and distractions 

among the field operatives and agencies. The report suggested further improvement and 

communications (Murphy, 2018). The operational hydrologic models are currently still 

considered as academic projects but not an information vehicle that supports the public and 

government decision making. 
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1.3 Research objective 

The overarching goal of this dissertation is to extend the capability of the existing multi-

scale flood early warning system (e.g. CREST-EF5) and hydrological prediction of the 

terrestrial water by integrating two-dimensional hydrodynamic modeling and advanced 

numerical weather forecast products in the regional scale at the 10-m resolution. 
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1.4 Hypotheses 

Based on the overarching objective, the following hypotheses are made in this dissertation: 

A. The existing global flood early warning framework can successfully simulate the 

flooding events using both spaceborne and ground radar precipitation products in the one-

dimensional fashion. 

B. The 2D hydrologic & hydraulic coupled model can extend the capability of the existing 

flood early warning framework to simulate both riverine and terrestrial inundation extent and 

depth. 

C. The flood predicting system can be enabled by the precipitation forecasts from Numerical 

Weather Prediction (NWP) products, and the uncertainties will be considerably neutralized 

through the model simulation. 
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1.5 Outline of the dissertation 

This dissertation consists of five Chapters: the first Chapter is the introductive Chapter which 

describes the problem and raises the hypotheses, Chapters 2 to 4 are the three main Chapters 

followed by Chapter 5 which is an overall summary of this dissertation.  Each chapter are 

relatively independent, however there are some repetitions in the content. 

For the hydrological modeling and the water balance portion of the promoted hydrological 

and hydraulic coupled modeling is the CREST-EF5 (Flamig et al., 2020; Wang et al., 2011). The 

study area and all experiments are established in Harris County, TX and the Spring Basin 

locating at the northwestern region of Harris County. In Chapter 2, the MRMS products, the 

Global Precipitation Mission (GPM) Integrated Multi-satellitE Retrievals IMERG products, and 

the National Center of Environmental Prediction (NCEP) 4 km gridded precipitation field are 

evaluated by using CREST-EF5. In Chapter 3, the CREST-EF5 is coupled with a finite volume 

hydraulic model, Australia National University and Geophysics of Australia (ANUGA), which is 

added to the CREST modeling family and named CREST-iMAP. The CREST-iMAP simulated 

flood extent and flood depth are compared with other real-time operational flood monitoring 

maps in the world, such as the Radar Produced Inundation Diary (RAPID), National Water 

Model (NWM), and Fathom US, as well as the USGS survey being the benchmark. In Chapter 4, 

two NWP products, Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR), as well 

as Artificial Intelligent (AI) based deep learning nowcast are used to simulate the flood flowrate, 

extent, and depth to examine the predictability of CREST-iMAP. 

  



12 

 

1.6 List of publications from the dissertation 

Journal Publications: 

Chapter 2 

Chen, M.; Nabih, S.; Brauer, N.S.; Gao, S.; Gourley, J.J.; Hong, Z.; Kolar, R.L.; Hong, Y. Can 

Remote Sensing Technologies Capture the Extreme Precipitation Event and Its Cascading 

Hydrological Response? A Case Study of Hurricane Harvey Using EF5 Modeling Framework. 

Remote Sensing. 2020, 12(3), 445. Doi: 10.3390/rs12030445 

Chapter 3 

Chen, M.; Li, Z.; Luo, X.; Wing, O. L.; Gourley, J.J.; Kolar, R. L.; Hong, Y. A comprehensive 

flood inundation mapping for Hurricane Harvey using an integrated hydrological and hydraulic 

model. Journal of Hydrometeorology. 2021 Accepted for publication. 

Chapter 4 

Chen, M.; Gao, S.; Gourley, J. J.; Xue, M.; Kolar, R. L.; Hong, Y. A flood predictability study 

for Hurricane Harvey with the CREST-iMAP model using high resolution Quantitative 

Precipitation Forecasts and U-Net deep learning precipitation nowcasts. Journal of Hydrology. 

2021 Accepted for publication. 

Conference Presentations: 

Chapter 2 

Chen, M.; Luo, X.; Hong, Y. An efficient high-resolution hydrologic model for forecasting flood 

inundation at local to regional scales (poster). Oklahoma Transportation Research Day, 

Oklahoma City, Oklahoma, October 2018 23rd 

Chen, M.; Luo, X.; Hong, Y. An efficient high-resolution hydrologic model for forecasting flood 

inundation at local to regional scales (poster). 39th Oklahoma Governor's Water Conference and 

Research Symposium, Midwest City, Oklahoma, December 2018 5- 6th 

Chapter 3 

Chen, M.; Luo, X.; Hong, Y. An Integrated Approach for a Real-time Forecasting and Risk 

Assessment of the Cascading Storm Triggered Flood Inundation (presentation). Beijing University 

3rd Youth Remote Sensing and GIS Forum, Beijing, China, May 2019 15-18th 

Chen, M.; Luo, X.; Hong, Y. A Hydrologic and Hydraulic Modeling Approach for the Storm 

Triggered Cascading Flood Inundation (poster). CUAHSI Hydroinformatics Conference, Provo, 

Utah, July 2019 29- 31st 

Chen, M.; Luo, X.; Hong, Y. A Hydrologic and Hydraulic Modeling Approach for the Storm 

Triggered Cascading Flood Inundation (poster). OU International WaTER Conference, Norman, 

Oklahoma, September 2019 16- 17th. 



13 

 

Chen, M.; Nabih, S.; Gao, S.; Gourley, J. J.; Kolar, R. L.; Hong, Y. A 2D hydrologic and hydraulic 

modeling approach for the storm triggered cascading flood inundation- a case study of Hurricane 

Harvey (Presentation). AGU Fall Meeting, San Francisco, California, December 2019 9- 13th. 

Chen, M.; Nabih, S.; Li, Z.; Luo, X.; Gao, S.; Gourley, J. J.; Wing, O.; Bates, P.; Shen, X.; 

Anagnostou, E.; Kolar, R. L.; Hong, Y. An Integrated Approach for a Real-Time Forecasting and 

Risk Assessment of the Cascading Extreme Storm Triggered Flood Inundation 

(Presentation).  American Meteorological Society’s 34th Conference on Hydrology, AMS 

100th Annual Meeting, Boston, Massachusetts, January 2020 12- 16th. 

Chapter 4 

Chen, M.; Li, Z.; Gao, S.; Xue, M.; Gourley, J.J.; Kolar, R.L.; Hong, Y. A Flood Inundation 

Prediction for Hurricane Harvey Using a Hyperresolution Hydrologic & Hydraulic Model 

Driven by the Remote Sensing Observations and Precipitation Forecasting Products (Interactive 

Poster). American Geophysics Union Fall Meeting, Virtual, December 2020 1-17th. 

Chen, M.; Li, Z.; Gao, S.; Xue, M.; Gourley, J.J.; Kolar, R.L.; Hong, Y. A case study of a 

hydrological and hydraulic coupled flood prediction for Hurricane Harvey using CREST-iMAP 

system (Presentation). American Meteorological Society’s 35th Conference on Hydrology, AMS 

101st Annual Meeting, Virtual, January 2021 7 – 15th.  



14 

 

Reference 

Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., Rasmussen, J.V., 1986. An 

introduction to the European Hydrological System — Systeme Hydrologique European, 

“SHE”, 1: History and philosophy of a physically-based, distributed modeling system. 

Journal of Hydrology 87, 45–59. 

Alcrudo, F., 2004. A state of the art review on mathematical modelling of flood propagation. 

Anselmo, V., Galeati, G., Palmieri, S., Rossi, U., Todini, E., 1996. Flood risk assessment using an 

integrated hydrological and hydraulic modelling approach: a case study. Journal of 

Hydrology 175, 533–554. https://doi.org/10.1016/S0022-1694(96)80023-0 

Arnault, J., Wagner, S., Rummler, T., Fersch, B., Bliefernicht, J., Andresen, S., Kunstmann, H., 

2016. Role of Runoff–Infiltration Partitioning and Resolved Overland Flow on Land–

Atmosphere Feedbacks: A Case Study with the WRF-Hydro Coupled Modeling System 

for West Africa. Journal of Hydrometeorology 17, 1489–1516. 

https://doi.org/10.1175/JHM-D-15-0089.1 

Ashley, S.T., Ashley, W.S., 2008. Flood fatalities in the United States. Journal of Applied 

Meteorology and Climatology 47, 805–817. https://doi.org/10.1175/2007JAMC1611.1. 

Barthel, F., Neumayer, E., 2012. A trend analysis of normalized insured damage from natural 

disasters. Climatic Change 113, 215–237. https://doi.org/10.1007/s10584-011-0331-2 

Bates, P.D., De Roo, A.P.J., 2000. A simple raster-based model for flood inundation simulation. 

Journal of Hydrology 236, 54–77. https://doi.org/10.1016/S0022-1694(00)00278-X 

Bates, P.D., Horritt, M.S., Fewtrell, T.J., 2010. A simple inertial formulation of the shallow water 

equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology 

387, 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027 

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin 

hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin 

versant. Hydrological Sciences Bulletin 24, 43–69. 

https://doi.org/10.1080/02626667909491834 

Brakenridge, G.R., Nghiem, S.V., Anderson, E., Mic, R., 2007. Orbital microwave measurement 

of river discharge and ice status: MICROWAVE MEASUREMENT OF RIVER 

DISCHARGE. Water Resour. Res. 43. https://doi.org/10.1029/2006WR005238 

Brunner, G.W., 2016. HEC-RAS, River Analysis System Hydraulic Reference Manual (User 

Manual). US Army Corps of Engineers, Hydrologic Engineering Center, Davis, California. 

Changnon, S.A., 2011. Temporal distribution of weather catastrophes in the USA. Climatic 

Change 106, 129–140. https://doi.org/10.1007/s10584-010-9927-1 

Chen, H., Yang, D., Hong, Y., Gourley, J.J., Zhang, Y., 2013. Hydrological data assimilation with 

the Ensemble Square-Root-Filter: use of streamflow observations to update model states 

for real-time flash flood forecasting. Advances in Water Resources 59, 209–220. 

Clark, R.A., Flamig, Z.L., Vergara, H., Hong, Y., Gourley, J.J., Mandl, D.J., Frye, S., Handy, M., 

Patterson, M., 2017. Hydrological Modeling and Capacity Building in the Republic of 

Namibia. Bulletin of the American Meteorological Society 98, 1697–1715. 

https://doi.org/10.1175/BAMS-D-15-00130.1 

Cohen, S., Praskievicz, S., Maidment, D.R., 2018. Featured Collection Introduction: National 

Water Model. J Am Water Resour Assoc 54, 767–769. https://doi.org/10.1111/1752-

1688.12664 



15 

 

Crawford, N.H., Linsley, R.K., 1966. Digital simulation in hydrology: Stanford watershed model 

IV (Technical report No. No. 39), Stanford University. Dept. of Civil Engineering. 

Stanford University, Stanford, California. 

de Almeida, G.A.M., Bates, P., 2013. Applicability of the local inertial approximation of the 

shallow water equations to flood modeling: APPLICABILITY LOCAL INERTIAL. Water 

Resour. Res. 49, 4833–4844. https://doi.org/10.1002/wrcr.20366 

Durand, M., Fu, L.-L., Lettenmaier, D.P., Alsdorf, D.E., Rodriguez, E., Esteban-Fernandez, D., 

2010. The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface 

Water and Oceanic Submesoscale Eddies. Proc. IEEE 98, 766–779. 

https://doi.org/10.1109/JPROC.2010.2043031 

Dutta, D., Herath, S., Musiake, K., 2006. An application of a flood risk analysis system for impact 

analysis of a flood control plan in a river basin. Hydrological Processes 20, 1365–1384. 

Dutta, D., Teng, J., Vaze, J., Lerat, J., Hughes, J., Marvanek, S., 2013. Storage-based approaches 

to build floodplain inundation modeling capability in river system models for water 

resources planning and accounting. Journal of Hydrology 504, 12–28. 

Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Entin, 

J.K., Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J., Piepmeier, J.R., Koster, R.D., 

Martin, N., McDonald, K.C., Moghaddam, M., Moran, S., Reichle, R., Shi, J.C., Spencer, 

M.W., Thurman, S.W., Tsang, L., Van Zyl, J., 2010. The Soil Moisture Active Passive 

(SMAP) Mission. Proc. IEEE 98, 704–716. https://doi.org/10.1109/JPROC.2010.2043918 

Flamig, Z.L., Vergara, H., Gourley, J.J., 2020. The Ensemble Framework For Flash Flood 

Forecasting (EF5) v1.2: Description and Case Study (preprint). Hydrology. 

https://doi.org/10.5194/gmd-2020-46 

Gallegos, H.A., Schubert, J.E., Sanders, B.F., 2009. Two-dimensional, high-resolution modeling 

of urban dam-break flooding: A case study of Baldwin Hills, California. Advanced in 

Water Resources 32, 1323–1335. 

Ghimire, B., Chen, A.S., Guidolin, M., Keedwell, E.C., Djordjević, S., Savić, D.A., 2013. 

Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. 

Journal of Hydroinformatics 15, 676–686. https://doi.org/10.2166/hydro.2012.245 

Gochis, D.J., Dugger, A.L., Yu, W., Yates, D.N., Sampson, K., Barlage, M., Pan, L., Zhang, Y., 

McCreight, J.L., RafieeiNasab, A., Karsten, L., Read, L., Gaydos, A., McAllister, M., Mills, 

J., Towler, E., Grim, J., FitzGerald, K., 2017. The NOAA National Water Model: Research 

to Operations to Research (Presentation). CUAHSI, Boulder, CO. 

Gourley, J.J., Flamig, Z.L., Vergara, H., Kirstetter, P.-E., Clark, R.A., Argyle, E., Arthur, A., 

Martinaitis, S., Terti, G., Erlingis, J.M., Hong, Y., Howard, K.W., 2017. The FLASH 

Project: Improving the Tools for Flash Flood Monitoring and Prediction across the United 

States. Bulletin of the American Meteorological Society 98, 361–372. 

https://doi.org/10.1175/BAMS-D-15-00247.1 

Hardy, R.J., Bates, P.D., Anderson, M.G., 2000. Modelling suspended sediment deposition on a 

fluvial floodplain using a two-dimensional dynamic finite element model. Journal of 

Hydrology 229, 202–218. 

Heliere, F., Lin, C.C., Fois, F., Kern, M., Thompson, A., Bensi, P., 2009. Cold region hydrology 

high-resolution observatory (CoReH2O): A new microwave earth explorer core mission 

candidate, in: 2009 IEEE Radar Conference. Presented at the 2009 IEEE Radar Conference, 

IEEE, Pasadena, CA, USA, pp. 1–6. https://doi.org/10.1109/RADAR.2009.4977083 



16 

 

Hong, Y., Adler, R.F., Hossain, F., Curtis, S., Huffman, G.J., 2007a. A first approach to global 

runoff simulation using satellite rainfall estimation. Water Resources Research 43. 

https://doi.org/10.1029/2006WR005739. 

Hong, Y., Gochis, D., Cheng, J.-T., Hsu, K., Sorooshian, S., 2007b. Evaluation of PERSIANN-

CCS rainfall measurement using the NAME event rain gauge network. Journal of 

Hydrometeorology 8, 469–482. https://doi.org/10.1175/JHM574.1. 

Johnson, J.M., Munasinghe, D., Eyelade, D., Cohen, S., 2019. An integrated evaluation of the 

National Water Model (NWM)–Height Above Nearest Drainage (HAND) flood mapping 

methodology. Nat. Hazards Earth Syst. Sci. 19, 2405–2420. https://doi.org/10.5194/nhess-

19-2405-2019 

Kundzewicz, Z.W., Pińskwar, I., Brakenridge, G.R., 2013. Large floods in Europe, 1985–2009. 

Hydrological Sciences Journal 58, 1–7. https://doi.org/10.1080/02626667.2012.745082 

Lacasta, A., Morales-Hernández, M., Murillo, J., García-Navarro, P., 2014. An optimized GPU 

implementation of a 2D free surface simulation model on unstructured meshes. Advances 

in Engineering Software 78, 1–15. https://doi.org/10.1016/j.advengsoft.2014.08.007 

Lin, P., Rajib, M.A., Yang, Z.-L., Somos-Valenzuela, M., Merwade, V., Maidment, D.R., Wang, 

Y., Chen, L., 2018. Spatiotemporal Evaluation of Simulated Evapotranspiration and 

Streamflow over Texas Using the WRF-Hydro-RAPID Modeling Framework. J Am Water 

Resour Assoc 54, 40–54. https://doi.org/10.1111/1752-1688.12585 

Merz, B., Kreibich, H., Lall, U., 2013. Multi-variate flood damage assessment: a tree-based data-

mining approach. Natural Hazards and Earth System Sciences 13, 53–64. 

Murphy, J.D., 2018. Service assessment August–September 2017 Hurricane Harvey (US DOC). 

NOAA National Weather Service, Silver Spring, Maryland. 

National Research Concil, 1991. Opportunities in the Hydrologic Sciences. National Academies 

Press, Washington, D.C. https://doi.org/10.17226/1543 

Neal, J., Fewtrell, T., Trigg, M., 2009. Parallelisation of storage cell flood models using OpenMP. 

Environmental Modelling & Software 24, 872–877. 

https://doi.org/10.1016/j.envsoft.2008.12.004 

Néelz, S., Pender, G., 2013. Benchmarking the latest generation of 2D hydraulic flood modelling 

packages (Techical report No. SC120002). Environment Agency, Bristol, UK. 

Nobre, A.D., Cuartas, L.A., Hodnett, M., Rennó, C.D., Rodrigues, G., Silveira, A., Waterloo, M., 

Saleska, S., 2011. Height Above the Nearest Drainage – a hydrologically relevant new 

terrain model. Journal of Hydrology 404, 13–29. 

https://doi.org/10.1016/j.jhydrol.2011.03.051 

Roberts, S.G., Nielson, O.M., Gray, D., Sexton, J., Davis, G., 2015. ANUGA User Manual 2.0. 

(Manual). Commonwealth of Australia (Geoscience Australia) and the Australian National 

University. 

Rougier, J., Sparks, S., Hill, L.J., 2013. Risk and Uncertainty Assessment for Natural Hazards. 

Cambridge University Press, New York, New York. 

Sachs, J., McArthur, J., 2005. The Millennium Project: a plan for meeting the Millennium 

Development Goals. The Lancet 365, 347–353. https://doi.org/10.1016/S0140-

6736(05)17791-5 

Sampson, C.C., Smith, A.M., Bates, P.D., Neal, J.C., Alfieri, L., Freer, J.E., 2015. A high-

resolution global flood hazard model: A HIGH-RESOLUTION GLOBAL FLOOD 

HAZARD MODEL. Water Resour. Res. 51, 7358–7381. 

https://doi.org/10.1002/2015WR016954 



17 

 

Samuels, P., European Conference on Flood Risk Management Research Into Practice (Eds.), 2009. 

Flood risk management: research and practice ; proceedings of the European Conference 

on Flood Risk Management Research into Practice (FLOODrisk 2008), Oxford, UK, 30 

September - 2 October 2008. Presented at the European Conference on Flood Risk 

Management Research into Practice, CRC Press, Boca Raton, Fla. 

Shen, X., Anagnostou, E.N., Allen, G.H., Robert Brakenridge, G., Kettner, A.J., 2019a. Near-real-

time non-obstructed flood inundation mapping using synthetic aperture radar. Remote 

Sensing of Environment 221, 302–315. https://doi.org/10.1016/j.rse.2018.11.008 

Shen, X., Wang, D., Mao, K., Anagnostou, E., Hong, Y., 2019b. Inundation Extent Mapping by 

Synthetic Aperture Radar: A Review. Remote Sensing 11, 879. 

https://doi.org/10.3390/rs11070879 

Spiker, E.C., Gori, P.L., 2000. National Landslide Hazards Mitigation Strategy A Framework for 

Loss Reduction (Open-File Report No. 00–450). U.S. Department of Interior, Reston, 

Virginia. 

Sugawara, M., Watanabe, I., Ozaki, E., Katsugama, Y., 1984. Tank Model with Snow Component 

(Techical report No. 65). National Research Center for Disaster Prevention of Japan, 

Ibaraki-Ken, Japan. 

Tanaka, T., Yoshioka, H., Siev, S., Fujii, H., Fujihara, Y., Hoshikawa, K., Ly, S., Yoshimura, C., 

2018. An Integrated Hydrological-Hydraulic Model for Simulating Surface Water Flows 

of a Shallow Lake Surrounded by Large Floodplains. Water 10, 1213. 

https://doi.org/10.3390/w10091213 

Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F.W., Dutta, D., Kim, S.S.H., 2017. Flood inundation 

modeling: A review of methods, recent advances and uncertainty analysis. Environmental 

Modelling & Software 90, 201–216. 

Vacondio, R., Dal Palù, A., Mignosa, P., 2014. GPU-enhanced Finite Volume Shallow Water 

solver for fast flood simulations. Environmental Modelling & Software 57, 60–75. 

https://doi.org/10.1016/j.envsoft.2014.02.003 

Wang, J., Hong, Y., Li, L., Gourley, J.J., Khan, S.I., Yilmaz, K.K., Adler, R.F., Policelli, F.S., 

Habib, S., Irwn, D., Limaye, A.S., Korme, T., Okello, L., 2011. The coupled routing and 

excess storage (CREST) distributed hydrological model. Hydrological Sciences Journal 56, 

84–98. https://doi.org/10.1080/02626667.2010.543087 

Wigmosta, M.S., Nijssen, B., Storck, P., 1995. The Distributed Hydrology Soil Vegetation Model 

(Techical report). Pacific Northwest National Laboratory, Richland, Washingtong USA. 

Williams, J.R., Hann, R.W., 1978. Optimal operation of large agricultural watersheds with water 

quality restraints (Techical report No. TR-96). Texas Water Resources Institute, Temple, 

Texas. 

Wing, O.E.J., Bates, P.D., Sampson, C.C., Smith, A.M., Johnson, K.A., Erickson, T.A., 2017. 

Validation of a 30 m resolution flood hazard model of the conterminous United States: 30 

m RESOLUTION FLOOD MODEL OF CONUS. Water Resour. Res. 53, 7968–7986. 

https://doi.org/10.1002/2017WR020917 

Wood, E.F., Roundy, J.K., Troy, T.J., van Beek, L.P.H., Bierkens, M.F.P., Blyth, E., de Roo, A., 

Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P.R., 

Kollet, S., Lehner, B., Lettenmaier, D.P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., 

Wade, A., Whitehead, P., 2011. Hyperresolution global land surface modeling: Meeting a 

grand challenge for monitoring Earth’s terrestrial water: OPINION. Water Resour. Res. 47. 

https://doi.org/10.1029/2010WR010090 



18 

 

Zhang, J., Huang, Y.-F., Munasinghe, D., Fang, Z., Tsang, Y.-P., Cohen, S., 2018. Comparative 

Analysis of Inundation Mapping Approaches for the 2016 Flood in the Brazos River, Texas. 

J Am Water Resour Assoc 54, 820–833. https://doi.org/10.1111/1752-1688.12623 

Zonta, R., Collavini, F., Zaggia, L., Zuliani, A., 2005. The effect of floods on the transport of 

suspended sediments and contaminants: A case study from the estuary of the Dese River 

(Venice Lagoon, Italy). Environment International 31, 948–958. 

 

  



19 

 

Chapter 2. Can Remote Sensing Technologies Capture the Extreme 

Precipitation Event and Its Cascading Hydrological Response? A Case Study 

of Hurricane Harvey Using EF5 Modeling Framework 

Abstract 

A new generation of precipitation measurement products has emerged, and their performances 

have gained much attention from the scientific community, such as the Multi-Radar Multi-

Sensor system (MRMS) from the National Severe Storm Laboratory (NSSL) and the Global 

Precipitation Measurement Mission (GPM) from the National Aeronautics and Space 

Administration (NASA). This study statistically evaluated the MRMS and GPM products and 

investigated their cascading hydrological response in August of 2017, when Hurricane Harvey 

brought historical and record-breaking precipitation to the Gulf Coast (>1500 mm), causing 107 

fatalities along with about USD 125 billion worth of damage. Rain-gauge observations from 

Harris County Flood Control District (HCFCD) and stream-gauge measurements by the United 

States Geological Survey (USGS) were used as ground truths to evaluate MRMS, GPM and 

National Centers for Environmental Prediction (NCEP) gauge-only data by using statistical 

metrics and hydrological simulations using the Ensemble Framework for Flash Flooding 

Forecast (EF5) model. The results indicate that remote sensing technologies can accurately 

detect and estimate the unprecedented precipitation event with their near-real-time products, and 

all precipitation products produced good hydrological simulations, where the Nash–Sutcliff 

model efficiency coefficients (NSCE) were close to 0.9 for both the MRMS and GPM products. 

With the timeliness and seamless coverage of MRMS and GPM, the study also demonstrated the 

capability and efficiency of the EF5 framework for flash flood modeling over the United States 

and potentially additional international domains.  



20 

 

2.1 Introduction 

Floods are believed to be among the most hazardous and frequent natural disasters to human 

society (Ashley and Ashley, 2008; Barredo, 2007; Benito et al., 2004; Smith and Ward, 1998). 

Flooding can generally damage infrastructure, cost lives, and even cause further water 

contamination as well as waterborne diseases(Zhang et al., 2015). In particular, floods over 

urbanized area are more likely to cause fatalities and severe economic damage because of the 

population density and developed infrastructure, which leads to the intensification of the 

meteorological extremes (Nigussie and Altunkaynak, 2019; Zhang et al., 2018) and increased 

surface runoff peaks (Zhang et al., 2015). Globally, the Gulf Coast of North America is one of 

many places that is heavily affected by tropical storms and their cascading floods in an urbanized 

area (Adhikari et al., 2010). On August 25th, 2017, Hurricane Harvey made its first landfall at 

the northern end of San Jose Island, TX. Since then, Harvey stalled over the greater Houston area 

and produced over 1500 mm of rain in 4 days, which set the US record of total precipitation 

since the 1880s, when the reliable rainfall records started (Eric and Zelinsky, 2018). During this 

event, southeast Texas received 20 to 30 trillion tons of water with a return period exceeding 

9000 years at some locations (van Oldenborgh et al., 2018), interconnected the Colorado River 

and San Bernard River overland, and caused unprecedented flooding. Hurricane Harvey was 

estimated to cause about USD 125 billion worth of damage and 107 fatalities, and 127 flash 

flood warnings were issued during the event (Murphy, 2018). As much as technology has 

advanced, society is still searching for tools to improve prediction and mitigate the damage from 

floods. 

Over the past few decades, the scientific community has made great improvements in the 

capacity of flood modeling by combining climate models, weather models, hydrological models, 



21 

 

river models, and hydrodynamic models (Teng et al., 2017). The applications of flood modeling 

vary from flood risk assessment and mapping (Dutta et al., 2006) to flood damage assessment 

(Merz et al., 2013), real-time flood forecasting (Cohen et al., 2018; Flamig et al., 2020; Gourley 

et al., 2017; Sampson et al., 2015), engineering for flood prevention (Gallegos et al., 2009), post-

flood river system hydrology (Dutta et al., 2013), soil and riverbank erosion (Hardy et al., 2000), 

catchment hydrology (Abbott et al., 1986) and floodplain ecology (Zonta et al., 2005). Generally, 

such applications require considering both the acceptable predictive accuracy and high 

spatiotemporal resolution while balancing the computational efficiency for real-time operations. 

For real-time simulations and forecasts, faster run times, and data assimilation are required to 

provide reliable results (Chen et al., 2013). Recent advances in global and continental 

hydrological models have shown very promising results thus far, which have provided critical 

information regarding surface runoff, streamflow, soil moisture, soil infiltration and 

evapotranspiration (Hong et al., 2007b; Kocalets et al., 2015; McAllister et al., 2018; Pasquier et 

al., 2019; Senatore et al., 2015; Werner et al., 2005; Wu and Johnston, 2007). One example is the 

application of the Coupled Routing and Excess Storage model embedded within the Ensemble 

Framework for Flash Flood Forecasting (CREST-EF5) framework (Clark et al., 2017; Flamig et 

al., 2020; Gourley et al., 2017; Wang et al., 2011). The CREST-EF5 framework integrates the 

distributed hydrological model, CREST, and 1D Kinematic Wave routing to simulate multiple 

excessive precipitation-triggered flash-flooding events in Oklahoma City and Houston at a 

continental scale (Gourley et al., 2017). As errors originally contained in the precipitation 

forcibly propagate through the hydrological model (Hong et al., 2006), the accuracy of 

precipitation datasets is also vitally crucial for hydrological modeling performance. 
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There are three common precipitation observations in the modern world—rain gauges, 

weather radars, and satellite-based remote sensing technologies (Li et al., 2013). Rain gauge 

measurement is traditionally the most straightforward in situ method to estimation the surface 

precipitation, which, for decades, has been regarded as the closest approximation to the true 

value at a point (Ciach and Krajewski, 1999; Hong et al., 2007a; Tang et al., 2016; Villarini et 

al., 2008). Many efforts have been made to interpolate the rain gauge data into a distributed 

precipitation field, and many versions of the optimal rainfall estimation procedures have been 

adapted by National Center for Environmental Prediction (NCEP) and National Weather Service 

(NWS) (Seo, 1998). However, the rain gauge network density varies spatially and is low over 

many developing regions (Huffman et al., 2001). Rather than estimating rainfall at a point in 

space, weather radar networks provide Quantitative Precipitation Estimates (QPE) covering 

much larger spatial domains (ranges up to 230 km), at spatial resolutions of the order of 1 km2 

for each pixel. Since the 1990s, the Next Generation Weather Radar (NEXRAD) WSR-88D 

system has been improved and utilized, such as the dual-polarization capabilities in 2010 (Cifelli 

et al., 2011), for more advanced precipitation products including the MRMS system. The MRMS 

system integrates data from over 180 operational NEXRAD radars, over 7000 hourly rain gauges 

from the Hydrometeorology Automated Data System (HADS), the hourly High Resolution Rapid 

Refresh model analysis data and precipitation climatology(Hong and Gourley, 2015); it 

seamlessly covers the conterminous United States (CONUS) and Southern Canada at 1 km 

spatial resolution and a two minute temporal resolution using sophisticated algorithms and 

supplemental input data from ground gauges and environmental models (Zhang et al., 2016). 

However, the MRMS radar network still potentially suffers from radar miscalibration, reduced 

low-level coverage in mountainous areas and errors in the QPE algorithms. Earth observation 
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satellites provide the potential to estimate precipitation on a global scale (Chang and Hong, 

2012). One such unprecedented effort, the NASA Global Precipitation Measurement (GPM) 

mission was launched in 2014 by building upon the success of previous Tropical Rainfall 

Measuring Mission (TRMM) from 1997 (Hou et al., 2014). To date, the GPM mission has used 

the Integrated Multisatellite Retrievals for GPM (IMERG) algorithm to generate the quasi-global 

precipitation products at 0.1 by 0.1 arc-degree spatial resolution and 30 minutes temporal 

resolution (Huffman et al., 2012, 2019a). 

Today, given the availability of the above mentioned three precipitation data sources, the 

scientific community has exerted efforts on various precipitation product evaluations and 

intercomparisons, with particular foci over complex terrains and extreme events including the 

2017 Hurricane Harvey event on the Mexico Gulf Coast (Eric and Zelinsky, 2018; Murphy, 

2018; Pham et al., 2018; Thakur et al., 2018; Yang et al., 2019). Omaranian et al. (2019) 

compared the GPM IMERG final run precipitation estimates with NCEP Stage IV radar QPE and 

indicated that GPM IMERG could capture the pattern and trace the storm, but significantly 

overestimated the precipitation amount. Hayatbini et al. (2019) investigated the improved 

method for Precipitation Estimation from Remotely Sensed Information Using Artificial Neural 

Networks- Cloud Classification System (PERSIANN-CCS) to match the cloud detection of GPM 

during Hurricane Harvey, which increases the possibility for PERSIANN-CCS to accurately 

detect extreme precipitation amount. Kao et al., (2019) again studied NCEP Stage IV QPE data 

for Hurricane Harvey using Probable Maximum Precipitation (PMP) estimation methods, and the 

study suggested a possible link between the extreme precipitation event and global climate 

change. Recently, a NASA report presented a precipitation estimations comparison between 

MRMS QPE and GPM IMERG products for Hurricane Harvey. The results indicate that GPM 
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IMERG had a coherent difference from MRMS QPE during Hurricane Harvey, where it 

underestimated precipitation in the storm core but overestimated it in the outer rainbands 

(Huffman et al., 2019b). All studies used different precipitation data as the ground truth and 

yielded various conclusions. Thus, it is necessary to evaluate the precipitation products based on 

high-density ground reference network and also further investigate how well they perform in a 

hydrologic context during this extreme event. 

The overarching goal of this study is to investigate which precipitation product can better 

represent the true surface precipitation during the extreme event and further capture its cascading 

hydrological responses using a very high-density ground gauge network and an operational 

hydrological modeling framework. The specific objectives are to a) statistically compare 

interpolated rain gauge, MRMS QPE and GPM IMERG precipitation products with the local 

independently managed rain gauge precipitation observation in Harris County, TX and b) 

examine the corresponding hydrological response between interpolated rain gauge data, MRMS 

QPE and GPM IMERG products as forcing data for the hydrological simulation over the Spring 

Basin in the northern part of Harris County, TX. The study aims to answer the following research 

questions: 1) Is this type of extreme event detectable and quantifiable using remote sensing 

technology? 2) Can the hydrological model capture the extreme responses? 3) Which 

precipitation product performs better during extreme events? 

This paper is organized as follows. Section 2.2 describes the study area, data used in this 

study, a short description of Ensemble Framework for Flash Flood Forecasting (EF5) 

hydrological model, and methodology. Section 2.3 inter-compares the MRMS, GPM IMERG, 

NCEP gauge-only precipitation products with Harris county rain gauge data and evaluates the 
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above precipitation products using the EF5 modeling framework. Section 2.4 concludes the study 

and proposes future directions. 
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2.2 Materials and methods 

2.2.1 Study area 

Figure 2.1 displays the impact area of Hurricane Harvey, Harris County, TX, and Spring 

Creek Basin. Despite the 79,000 square kilometers of impacted area by Hurricane Harvey, Harris 

County, TX was the most impacted, as almost half of the casualties from this event were from 

this area (Blake and Zelinsky, 2017). It is also the third most populated county in the USA, with 

4.65 million people, and has an area of 4602 km2, where the dense population leads to the 

vulnerability to flood extremes and often relates to fatalities and significant economic loss. There 

are 147 rain gauges managed by the Harris County Flood Control District (HCFCD) and 

Hydrometeorological Automated Data System (HADS) from NWS in Harris County, which 

provided the 1-hour precipitation accumulation data for the study.  

To further study the hydrological responses, Spring Basin was selected as the study 

watershed. Spring Basin is located at the northern end of Harris County, which contains four 

major rivers: Spring Creek, Willow Creek, Little Cypress Creek, and Cypress Creek, covering 

over 1960 km2 before entering Lake Houston. The elevation of Spring Basin ranges from 13 to 

136 meters above sea level, with an average of 61 m. The slope varies from 0° to 39°, with an 

average of 1°. Spring Basin has urban structures concentrated at the southern and eastern part of 

the basin, agricultural ranches in the southwest portion, and forest in the northwest and middle of 

the basin along Spring Creek. 
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Figure 2.1. Study area showing Hurricane Harveyimpact (a), Harris County (b), Spring 

Basin, rain and stream gauges, and the landcover (c) as well as the topography (d) of 

Spring Basin. 

2.2.2 Precipitation, stream flow, and geographic data 

Five precipitation products (Table 2.1) were evaluated by the Harris County-managed HADS 

and HCFCD rain gauge observation data from 0:00 Central State Time (CDT) August 25th, 2017 

to 23:00 CDT August 31st, 2017, with a total of 168 hourly time-steps. For the precipitation 

product evaluation, the ground rain-gauge should not overlap with those used by NSSL and 

NWS in developing or correcting the QPE estimates. Therefore, the HADS rain gauges (green 

dots in Figure 2.1) were removed from all analysis in this study. After quality control and HADS 

gauges removal, only 99 out of 147 rain gauge observations remained, where the gauges that had 

more than 60 out of 168 time-steps with continuous stationary values or NA values were 

eliminated. We obtained the NCEP and Environmental Modeling Center (EMC) national 

interpolated rain gauge-only hourly precipitation data from Earth Observing Laboratory (EOL) 

data archive (https://data.eol.ucar.edu/dataset/21.004) from August 15th to September 18th, 
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2017. This dataset utilizes measurements of about 3000 rain gauges across the CONUS (Kats, 

2011) and uses the optimal estimation of rainfall fields methods to interpolate into 4 by 4 km 

gridded hourly precipitation data (Seo, 1998). 

Two MRMS precipitation products from April 1st to September 30th, 2017, radar-based QPE 

(PCP_RATE), and 1-hour gauge bias-corrected radar precipitation accumulations 

(Q3GC_SHSR_1H), were obtained from the Iowa Environmental Mesonet NWS data archive 

(https://mesonet.agron.iastate.edu/nws/). PCP_RATE is the radar-based MRMS product that uses 

multiple R-Z relationships and is derived from MRMS Seamless Hybrid Scan Reflectivity 

(SGSR), which has a temporal resolution of 2 minutes and 0.01 by 0.01 arc-degree spatial 

resolution in real-time. Q3GC_SHSR_1H is the CoCoRaHS rain-gauge-corrected 1- hour radar 

QPE accumulation using a three steps method, which has the temporal resolution of 1 hour and 1 

km2 spatial resolution with a 1.5-hour latency (Zhang et al., 2016). 

Table 2.1. Summary of characteristics of the precipitation products in this study 

ID Products 
Spatial 

Resolution 

Temporal 

Resolution 

Median 

(mm/hr) 

Mean 

(mm/hr) 

Maximum 

(mm/hr) 

OBS 
HCFCD rain gauge 

observation 
Point data 1 hour 2.03 7.33 171.70 

NCEP NCEP hourly gauge only 4 km 1 hour 1.00 4.66 65.90 

MRMS 

QPE 
MRMS radar based QPE 0.01° 2 min 2.61 8.07 124.28 

MRMS 

Corr 

MRMS 1-hr gauge bias-

corrected precipitation 

accumulation 

0.01° 1 hour 1.90 6.70 105.60 

V06AUncal 

GPM IMERG satellite-

based precipitation 

product 

0.1° 30 min 3.82 6.55 66.80 

V06ACal 

GPM IMERG gauge 

calibrated precipitation 

product 

0.1° 30 min 3.34 5.68 59.58 

Two GPM IMERG Version 6 (V6) final-run precipitation products (Huffman et al., 2014) 

from August 15th to September 15th, 2017, PrecipitationUncal (V06AUncal), and Precipitation 

Cal (V06ACal), were obtained from the NASA GES DISC data archive 
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(https://disc.gsfc.nasa.gov/). The GPM IMERG system runs twice in near-real-time to produce 

early run and late run results, where the early run has the morphing scheme only propagated 

forward, and the late run has the morphing scheme applied both forward and backward (Huffman 

et al., 2019a). The IMERG final run has a 3.5-month latency, where the uncalibrated 

precipitation product (V06AUncal) is close to IMERG late run and then calibrated with the local 

rain gauge data to generate the calibrated precipitation product (V06ACal) (Huffman et al., 

2019c). Both IMERG datasets have a 30-minute temporal resolution and 0.1 by 0.1 arc-degree 

spatial resolution. 

Before any analysis, all precipitation products were aggregated or interpolated into 4 by 4 

kilometers spatial resolution and hourly temporal resolution to make all data comparable. The 

MRMS product family has a higher spatial and temporal resolution, so MRMS QPE and MRMS 

Corr data were aggregated using an arithmetic mean and the 30-min data were summed to 

produce hourly precipitation accumulation. The GPM IMERG product family has lower spatial 

resolution, so V06AUncal, and V06ACal data were interpolated using the bilinear method and 

then aggregated into hourly time steps using an arithmetic mean. 

Five U.S. Geological Survey (USGS) stream gauges, representing the upper, middle, and 

downstream branches of Spring and Cypress Creek, were selected to validate and calibrate the 

hydrological modeling process (Figure 2.1). The 15-min streamflow data of each gauge from 

April 1st to September 30th, 2017 were obtained from USGS National Water Information 

System (https://waterdata.usgs.gov/nwis). A high-resolution (15 arc second) hydrologically 

conditioned Digital Elevation Model (DEM), Flow Direction (FDR), Flow Accumulation (FAA), 

and major river network data were obtained from the HydroSHEDS (Lehner et al., 2008, 

https://www.hydrosheds.org/). The potential evapotranspiration (PET) data used in this study 
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were from USGS Famine Early Warning Systems Network (FEWS NET, 

https://earlywarning.usgs.gov/fews). The daily 1 by 1 arc-degree PET data were calculated from 

the Global Data Assimilation System (GDAS) using the Penman-Monteith method (Verdin et al., 

2005). The US landcover data were obtained from Multi-Resolution Land Characteristics 

Consortium (MRLC, https://www.mrlc.gov/) and the 1 by 1 km EF5 parameters in CONUS were 

from the previous study by Vergara et al. (Vergara et al., 2016). 

2.2.3 EF5 Modeling Framework and Hydrological Evaluation Method  

EF5 is a framework built on multiple hydrological model cores including the Coupled 

Routing and Excess Storage (CREST) model version 2.0, co-developed by the University of 

Oklahoma and NASA Applied Science Team (Wang et al., 2011), and its grid-based water 

balance component is coupled with the kinematic wave water routing model (Chow et al., 1988). 

EF5 supports multiple water balance methods and comes with an automatic calibration module 

(Clark et al., 2017). EF5 was adapted as an operational tool across the NWS for flash flood 

forecasting by local NWS Forecast Offices in the Flooded Locations and Simulated Hydrographs 

Project (FLASH) (Gourley et al., 2017). The current modeling research was modified from the 

basic implementation from FLASH and was used here to evaluate the hydrological responses of 

remotely sensed observations and rain gauge interpolated precipitation products. 

2.2.4 Statistical metrics 

Seven common statistical metrics were used to evaluate the performances of different 

precipitation products and their performances in the hydrological model (Table 2.2). The 

correlation coefficient (CC) represents the degree of agreement between the precipitation 

estimates and the rain/stream gauge observation as the “ground truth.” Two metrics were 

selected to discover the error and bias between the precipitation products and observations, 
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which were the relative bias (RB) to describe the systematic bias as a ratio, and the root-mean-

square error (RMSE) to measure the average error magnitude. Four additional metrics were 

calculated to evaluate the hydrological responses of different precipitation products, which were 

the conventional Nash–Sutcliffe coefficient of efficiency (NSCE), peak flow error (PE), peak 

time error (PTE), and runoff volume ratio (RR). 

Table 2.2. List of statistical metrics used in this study 

Statistic metrics Equationa Value 

range 

Perfect 

value 

Correlation coefficient (CC) 
𝐶𝐶 =

∑ (𝑓𝑛 − 𝑓)̅(𝑟𝑛 − �̅�)𝑁
𝑛=1

√∑ (𝑓𝑛 − 𝑓)̅
2𝑁

𝑛=1 √∑ (𝑟𝑛 − �̅�)2𝑁
𝑛=1

 
-1, 1 1 

Relative bias (RB) 𝑅𝐵 =
1

𝑁
∑

𝑓𝑛 − 𝑟𝑛

𝑟𝑛

𝑁

𝑛=1

 -∞, +∞ 0 

Root-mean-square error (RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑓𝑛 − 𝑟𝑛)2

𝑁

𝑛=1

 0, +∞ 0 

Nash-Sutcliffe coefficient 

efficiency (NSCE) 
𝑁𝑆𝐶𝐸 = 1 −

∑ (𝑓𝑛 − 𝑟𝑛)2𝑁
𝑛=1

∑ (𝑟𝑛 − �̅�)2𝑁
𝑛=1

 -∞, 1 1 

Peak flow error (PE) 𝑃𝐸 =  𝑓𝑚𝑎𝑥 − 𝑟𝑚𝑎𝑥  -∞, +∞ 0 

Peak time error (PTE) 𝑃𝑇𝐸 =  𝑡(𝑟𝑚𝑎𝑥) − 𝑡(𝑓𝑚𝑎𝑥) -∞, +∞ 0 

Runoff volume ratio (RR) 𝑅𝑅 =
∑ 𝑓𝑛

𝑁
𝑛=1

∑ 𝑟𝑛
𝑁
𝑛=1

 0, +∞ 1 

a Variables: n and N, sample index and a total number of samples, f represents the precipitation estimate 

products from gauge interpolation, radar, and satellite, r represents the reference observation including 

the HCFCD rain gauge and USGS stream gauge observations. 
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2.3 Results 

2.3.1 Precipitation evaluation 

 

Figure 2.2. Accumulated precipitation from 25/08/2017 to 31/08/2017 during the Hurricane 

Harvey event in Harris County, TX. Hourly data from a) Multi-Radar Multi-Sensor 

(MRMS) quantitative precipitation estimates (QPE), b) MRMS Corr, c) V06AUncal, d) 

V06ACal, and e) NCEP gauge-only 

Two series of comparisons were performed to evaluate the precipitation products, county-

averaged analysis, and grid-based analysis, where the statistic results are listed in Table 3. The 

precipitation accumulation of Hurricane Harvey from all precipitation products is shown in 

Figure 2. This figure demonstrates that most precipitation products agreed that the southeastern 

part of Harris county received the highest precipitation amount, and the post-real-time 

corrections reduced the amount of precipitation for both MRMS and IMERG. In addition, 

V06ACal not only reduced the peak precipitation accumulation but also increased the minimum 

precipitation accumulation from V06AUncal. Contradictory to the majority agreement, the 
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NCEP gauge-only product shows the lower accumulative rainfall amount closer to the inner core 

of Hurricane Harvey (Figure 2.2). 

The county-averaged comparisons were conducted by averaging the precipitation data from 

different products over the whole Harris county and Spring Basin area. Then, we averaged all 99 

valid local HCFCD rain gauge data as the reference of the truth and calculated the statistics. For 

the grid-based comparisons and evaluations, we extracted all hourly precipitation rate data for 

the grids in which the 99 rain gauges were located from all five precipitation products and then 

calculated the statistics. Both local rain gauge corrections reduced the bias of MRMS Corr and 

V06ACal from positive 20% to negative 7% (positive 20% to negative 11% for grid-based) and 

from 56% to 33% (80% to 58% for grid-based), respectively, as shown in Table 2.3. However, 

the corrections only made minimal reductions in the RMSE, which could be attributed to the 

positive/negative biases being offset. The post-real-time correction of MRMS products has a 

slight overcorrection (Table 2.3 and Figure 2.3). In addition, the correlation coefficient between 

V06AUncal and V06ACal is exactly 1, possibly because GPM IMERG uses a fairly simple 

algorithm to calibrate data (Huffman et al., 2019c). Based on the first level statistical analysis, 

the MRMS product family has the highest correlation coefficient and the lowest RMSE 

compared with the local rain gauge observation, then NCEP gauge-only precipitation stands the 

second closest, and the GPM IMERG product family is the least accurate. The NCEP 

precipitation product has a small relative bias value in the grid-based analysis but much greater 

negative bias in the county-averaged analysis, which is further investigated in this study. 
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Table 2.3. Summary of the statistical evaluations of county-averaged and grid-based 

comparison of precipitation products at 4 km and hourly resolution 

 County-Averaged Statistics  Grid-Based Statistics 

Precipitation Product ID CC RB (%) RMSE (mm/hr)  CC RB (%) RMSE (mm/hr) 

MRMS QPE 0.92 19.57 3.14  0.91 20.09 5.75 

MRMS Corr 0.92 −7.18 3.04  0.93 -10.59 4.74 

V06AUncal 0.79 55.97 5.02  0.45 80.45 11.98 

V06ACal 0.79 32.80 5.47  0.45 57.61 11.87 

NCEP 0.81 -28.88 5.57  0.61 3.48 10.84 

 

Figure 2.3. County averaged precipitation rate (left) and accumulative rainfall (right), 

where the MRMS family is in red (solid and dash), Global Precipitation Measurement 

Mission (GPM) family is in blue (solid and dash), National Centers for Environmental 

Prediction (NCEP) is in green, and HCFCD is in black 

The county-averaged hourly rainfall rate and accumulated rainfall are shown in Figure 3. The 

MRMS product family has a strong correlation with the OBS (CC = 0.92), which caught most of 

the precipitation peaks, except for the highest one. IMERG V06 data overestimated at low 

precipitation intensities but underestimated at high precipitation intensities, which is consistent 

with the findings in the recent technical report (Huffman et al., 2019b). NCEP has an obvious 

unresponsive condition after the midday of 28th August 2017, which could be caused by the 

malfunctions of rain gauges that the algorithm utilized. This could possibly be the cause of the 

low precipitation accumulation of NCEP (Figure 2.2 and Figure 2.3). Generally speaking, the 

remotely sensed precipitation products (MRMS and IMERG) performed better than rain gauge 

interpolated product during Hurricane Harvey, as NCEP had a greater RMSE (Table 2.3). Before 
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the peak rainfall arrived in Harris county on early 08/27/2017, the OBS (HCFCD rain gauge 

observation) data had the best match with MRMS Corr, then NCEP, MRMS QPE, V06ACal, and 

V06AUncal was the last. After the peak rainfall, the ranking changed to MRMS QPE, 

V06AUncal, MRMS Corr, V06ACal, and NCEP. The uncalibrated precipitation products 

(MRMS QPE and V06AUncal) performed better than calibrated products (MRMS Corr and 

V06ACal) after the rainfall intensity picked up. 

 

Figure 2.4. Grid-scale evaluation of hourly precipitation at 99 extracted 4 km grid cells 

between precipitation products and the rain gauge observations. Data from a) MRMS 

QPE, b) MRMS Corr, c) V06AUncal, d) V06ACal, and e) NCEP 

As shown in Figure 2.4, the grid-based scatter plot has a similar finding as to the county-

averaged analysis, where the MRMS product family performed the best during Hurricane 

Harvey. The NCEP product performed slightly better than the GPM IMERG product family. 

This difference indicates that rain gauge interpolation could potentially create large errors or 

patchiness that reduce the accuracy of the precipitation estimates over large spatial extents. The 

mean relative bias mathematically tends to generate a large positive value when the observation 



36 

 

value is small during overestimations, as the lowest possible value of relative bias is −1 for 

positive datasets such as precipitation. This mathematical nature resulted in the large positive 

bias of GPM IMERG products due to their overestimation during the low-intensity precipitation 

period (Figure 2.3). 

 

Figure 2.5. The distribution of the grid-scale evaluation statistics: a) CC, b) RB, and c) 

RMSE within 95% confidence interval and the vertical lines indicate the median of data 

If focusing on the statistical results within the 95% confidence interval of all 99 grid points 

(Figure 2.5), one can find that the pattern differs where all precipitation products underestimated 

the precipitation rate during Harvey except for MRMS QPE. The MRMS Corrected product had 

a slight underestimation, but it was the closest to the perfect value. As shown in Figure 2.6, the 

GPM IMERG products had little temporal agreement with OBS in almost all 99 sites, and most 

of their higher RMSE values were concentrated close to the storm core, which indicates the 

accuracy of IMERG decreases as the precipitation intensity increases. NCEP had the same high 

RMSE concentration close to the storm core, possibly due to rain gauge malfunction. Even 

though the positive and negative bias offset gave the NCEP gauge-only product the best the 

average bias value (Table 2.3), the data quality is spatially inconsistent across the county. 
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Among all the precipitation products, MRMS products shows the lowest RMSE and highest CC; 

however, the error has minor increases near the storm core. 

In general, MRMS precipitation products show good agreement with HCFCD local rain-

gauge observations, while IMERG and NCEP gauge-only products are comparable in quality 

(Table 2.3). This can be attributed to the following factors: first, Hurricane Harvey was an 

unprecedented precipitation event that potentially caused failures in the ground instruments that 

could impact methods relying on rain gauge interpolations and bias adjustments. Second, the 

GPM multi-satellite algorithm relies on passive sensors from satellites in low-earth and 

geostationary orbits to obtain high temporal resolution, while the radar QPE algorithm enjoys 

close proximity to the event and active sensors. Overall, MRMS products can best represent the 

surface precipitation field according to HCFCD rain gauge comparison, with high correlation 

coefficient (> 0.9) and low RMSE (~3 and ~5 mm per hour) at the county and grid-scale and all 

the post-real-time correction showed overcorrection for Hurricane Harvey. 
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Figure 2.6. The grid-based statistic spatial distribution of different precipitation products 

during Hurricane Harvey 

2.3.2 Hydrological evaluation 

The evaluation of hydrological response using MRMS QPE, MRMS Corr, V06AUncal, 

V06ACal and NCEP products was carried out in the northwestern basin of Harris county, where 

all products had generally acceptable performances according to the previous section. Two rivers 

were studied using the EF5 modeling framework in this section (Table 2.4). 

Table 2.4. Summary of stream gauges selections and calibration results  

Stream 

Name 
Location 

USGS 

ID 

Drainage 

Area (km2) 

Overbank 

Flow in 

Harvey? 

Calibration Results 

NSCE CC 
RB 

(%) 

RMSE 

(m3/s) 

Spring Midstream 08068275 483 No 0.99 0.94 8.78 21.23 

Spring Downstream 08068500 1059 No 0.99 0.91 -8.34 19.99 

Cypress Upperstream 08068720 280 No 0.90 0.90 34.64 5.15 

Cypress Midstream 08068800 540 Yes 0.91 0.87 7.36 4.93 

Cypress Downstream 08069000 738 Yes 0.95 0.97 -3.53 20.15 

The first river, Spring Creek, has a larger channel network with a total of 179 km of open 

channels and a large natural floodplain. The Spring Creek watershed remains mostly 

underdeveloped and natural, except for downstream, where the Woodland Township and the city 

of Tomball are located. Due to the lack of urban development, the flood risk of Spring Creek is 

comparatively less, and there were no signs of overbank flow from two USGS stream gauges on 

this river during Harvey. This river was studied to evaluate the performance of different 

hydrological responses of MRMS, GPM IMERG, and NCEP precipitation products. 

The second river, Cypress Creek, is a smaller river with 137 km of open water channel and a 

well-developed drainage area. The middle and downstream portion of Cypress Creek has 

experienced intensive urbanization in the past 20 to 30 years, hosting a population greater than 

350,000 according to the 2010 U.S. census, while only the upstream area remains as agricultural 

land (Figure 2.1). Perhaps exacerbated by the impacts of urbanization, both the middle and 
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downstream USGS gauges showed overbank flow during Harvey (Figure 2.9), despite the effort 

of a 200,000 m2 detention basin and multiple detention ponds located around the upper stream of 

Cypress Creek. This river was studied to examine the early warning capability of the coupled 

hydrological modeling system when the ground instruments were damaged or malfunctioning 

during the extreme event. 

Table 2.5. Summary of hydrological simulation of Spring Creek 

 Spring Creek 08068275  Spring Creek 08068500 

 MRMS 

QPE 

V06A

Uncal 

MRMS 

Corr 

V06AC

al 

NCE

P 
 

MRMS 

QPE 

V06A

Uncal 

MRMS 

Corr 

V06A

Cal 

NCE

P 

NSCE 0.62 0.9 0.81 0.83 0.84  0.98 0.88 0.97 0.91 0.93 

RB (%) 50.64 23.69 33.4 42.03 7.93  2.9 -7.96 -1.64 8.25 -15 

CC 0.96 0.96 0.97 0.96 0.94  0.99 0.96 0.99 0.96 0.98 

RMSE (m3/s) 167 84 116 111 107  59 161 86 144 125 

Peak Error 

(m3/s) 
1066 97 736 326 392  -298 -787 -475 -581 -542 

Peak Time 

Error (min) 
33 -28 31 -28 -52  13 40 12 40 27 

RR 1.51 1.24 1.33 1.42 1.08  1.03 0.92 0.98 1.08 0.85 

First, the EF5 model was forced by MRMS Corrected precipitation data, considered as the 

most accurate data source during non-extreme events, to benchmark the model parameters from 

1st April 2017 to 15th August 2017, with two 15-minute USGS streamflow observations 

(midstream and downstream of Spring Creek) using the Differential Evolution Adaptive 

Metropolis (DREAM) algorithm (Vrugt et al., 2009). The model then proceeded to warm up for 

the same period and the same forcing precipitation data (MRMS Corr) was used during the 

benchmark generating process to create a uniform initial condition for all precipitation product 

evaluations. Table 4 displays good agreement between simulated streamflow and the 

observations during the calibration period, with very high NSCE (0.99) and CC (~ 0.93), as well 

as a small RMSE (~20 m3/s), slight overestimation at midstream (8.78%) and underestimation at 

downstream (-8.34%). The MRMS, GPM IMERG, and NCEP rain gauge interpolated 

precipitation products were then set as the model forcing data to simulate the hydrological 
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responses from 15/08/2017 to 15/09/2017 separately for Hurricane Harvey. All products were 

read at their original spatial and temporal resolution by the model, as listed in Table 2.1. 

 

Figure 2.7. Comparison of EF5 simulated streamflow with USGS stream gauge observation 

during Hurricane Harvey at midstream (left) and downstream (right) of Spring Creek 

In the hydrological simulations, all precipitation products generally had acceptable 

performances with a NSCE greater than 0.8, except for one, and a high CC (Table 2.5). All 

products overestimated the streamflow at the midstream of Spring Creek, and MRMS QPE had a 

large spike of simulated streamflow at the peak due to data sensitivity (Figure 2.7). 

Moreover, the total runoff ratio (RR) of MRMS QPE at the midstream was large (Table 2.5), 

which could be due to the error propagation from the MRMS QPE as its errors were mostly 

located at the upstream of Spring Creek (Figure 2.6), which could partially cause the spike as 

well. All products yielded reasonable simulation hydrographs that could capture the flow peak 

with high CCs (> 0.94), and MRMS products were able to simulate the peak with over 30 

minutes of lead time, which is crucial and beneficial for flood early warnings. At the downstream 

gauge, all products underestimated the streamflow peak and MRMS Corrected, V06AUncal and 

NCEP products had negative bias compared to the USGS stream gauge data. One observation of 

the simulation statistics is that the near-real-time remote sensing precipitation products 

performed almost equally well as the post-real-time corrected products, where the differences of 
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NSCE (< 0.1), bias (< 0.2), and RMSE (< 50 m3/s) between the two groups were minimal (Table 

2.5). We can conclude that MRMS QPE and IMERG V06AUncal (equivalent to IMERG late 

run) are sufficient to drive hydrological model to provide flood warning information. As the 

near-real-time products can provide timeliness, the remote sensing technologies can significantly 

increase the accuracy and reliability of global flood early warning systems. As shown in Figure 

2.7 and the statistic metrics in Table 2.5, the MRMS product family performed best if not 

considering the sensitivity effect in the midstream, followed by NCEP gauge only and GPM 

IMERG, according to the metrics of NSCE, RB, CC, and RMSE. 

 

Figure 2.8. The 3-dimensional scatter plot using CC, PE, and PTE as variables for all three 

precipitation product families. The perfect point is the left lower corner 

In Figure 2.8, the three relatively independent statistics are plotted in a 3-dimensional scatter 

plot, where the lower-left corner is the perfect point with the correlation coefficient of 1 and no 

flow peak nor peak time error. As shown in Figure 2.8, the MRMS products are closer to the 

perfect point overall, followed by GPM IMERG and then NCEP gauge-only, indicating that the 

performance of GPM IMERG and NCEP gauge-only are comparable for Hurricane Harvey in 

Spring Basin. Since products that are not based on rain gauge corrections show hydrological 

performance superior to the gauge-forced product within Spring Basin, we can infer that the 

gauge-interpolated precipitation product is reliable only when the gauge network is well 
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functioning. Downstream of Spring Creek, the NCEP gauge-only product yielded a hydrograph 

which had significant deficit in total runoff (RR=0.85), which shows the disadvantage of using 

the NCEP product as the underestimation occurred near the storm core and this error propagated 

to the hydrological simulation. 

In summary, MRMS performed the best in capturing the hydrological response in Spring 

Creek, compared to USGS stream gauge observations during Hurricane Harvey, followed by 

GPM IMERG and NCEP gauge-only precipitation products which had comparable hydrological 

responses. The post-real-time corrected remote sensing precipitation products did not provide 

significant improvement in hydrological responses, which justifies the global real-time 

operational flood warning system based on the near-real-time products. 

 

Figure 2.9. Comparison of EF5 simulated streamflow with USGS stream gauges during 

Hurricane Harvey at upstream (left), midstream (middle), and downstream (right) of 

Cypress Creek 

For Cypress Creek, the EF5 model was calibrated and warmed up using the same 

methodology as with Spring Creek, enabling comparison with three USGS stream gauges located 

at upper, middle and downstream reaches. Table 2.4 shows the statistic results during the warm-

up period at Cypress Creek stream gauges, which have high NSCE (> 0.9) and CC (> 0.87) 

values for all gauge locations during non-extreme periods, which indicates that the EF5 
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simulation had good agreement with the stream gauge observations. The CREST-EF5 simulation 

has a tendency towards slight overestimation at the upstream and gradually changed to 

underestimation at the downstream, which matches the findings of the previous study (Xue et al., 

2016). 

Figure 2.9 shows the hydrographs at three stream gauges along Cypress Creek and EF5 

simulated results using MRMS, IMERG, and NCEP products during Hurricane Harvey. At the 

upstream location (USGS 08068720), the observed hydrograph has an obvious long and gentle 

receding limb, which was caused by the 650,000 m2 Warren Reservoir located 6.4 km ahead of 

the upstream gauge. The slow-release and regulation of the water caused the long receding limb 

and was not considered in this study. Since the Cypress Creek drainage area has been under rapid 

development during the past three decades, HCFCD reported that overbank flow was the 

common problem of the region and extensive water detention-related engineering jobs were 

completed. Additionally, as shown in Figure 9, both the mid and downstream observed 

hydrographs also have longer receding limbs. However, during this intense event, the engineered 

infrastructure did not prevent the overbank flow and flooding in the middle and downstream of 

Cypress Creek, where both observed hydrographs (USGS 08068800 and 08069000) have an 

unnatural plateau. Furthermore, the linear appearance of the rising and falling limbs at the 

midstream gauge was a result of no data being recorded from noon 27/08/2019 until 01/09/2019 

due to gauge malfunction. 

Due to the lack of information on Warren Reservoir and its operational details during 

Hurricane Harvey, EF5 simulation results could not capture the reduction in peak flow 

magnitude nor the long receding limb from the slow release of detained stormwater. In Figure 

2.9, all simulated hydrographs have a very steep receding limb, which represents a more typical 
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hydrological response in urban areas. Therefore, it is inferred that EF5 simulated the urban 

hydrological conditions without the reservoir interferences, which is sufficient for flood 

conditions in the related warning scenarios. For the upstream gauge (USGS 08068720), MRMS 

QPE could closely capture the first peak almost at the same time as the stream gauge 

observation, and the mismatch of the second peak could be caused by the structural flood 

control. IMERG performed poorly for Cypress Creek, as its simulated hydrograph was rather 

“smooth” when not considering structural flood control, unlike typical urban hydrographs. At 

this point, we can conclude that MRMS products performed the best in the urban hydrological 

condition, and we can use MRMS products to regenerate a well-approximated hydrograph when 

the stream gauge is damaged or over bank flow occurs. The simulated streamflow could be 

utilized for many applications, including but not limited to flood warning, flood risk analysis, 

flood inundation calculation, and flood control performance assessment. 

In summary, the EF5 modeling framework can simulate close-to-reality streamflow using 

MRMS precipitation products during the extreme precipitation event, especially when the ground 

stream gauges are damaged, or no gauge is implemented, or when overbank flow occurs. 

IMERG products might not be suitable for simulating extreme events in small basins (e.g., < 200 

km2), but given its global coverage, it is sufficient for major rivers and sub-basins, where most 

CREST and satellite precipitation studies were found successful when applied to different basins 

globally (Huang et al., 2014; Tang et al., 2016; Zhang et al., 2015). Overall, the EF5 modeling 

framework combined with current remote sensing technologies (IMERG and MRMS) can 

provide a robust flood-early-warning system for real-time operational uses at the regional, 

continental, and even global scale. 
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2.4 Discussion 

Three results from the previous section require further explanation. First, the result in Figure 

2.3 indicates that after the peak rainfall intensity occurred, the uncalibrated precipitation products 

(MRMS QPE and V06AUncal) outperformed the calibrated precipitation products (MRMS Corr 

and V06ACal). This might be caused by a combination of overcorrection of the underestimation 

of GPM IMERG during the high-intensity precipitation period, possible rain gauge malfunctions, 

and post-real-time calibration error. Due to the unprecedented nature of Hurricane Harvey, it 

could cause errors to the post-real-time correction algorithms at such an intensity. Therefore, the 

current precipitation correction algorithms for MRMS and GPM IMERG are less valid for 

unprecedented events like Hurricane Harvey. We also suspect that the insensitive precipitation 

observation from the NCEP data is caused by the damage to instruments by the flood or objects 

and the mechanical saturations caused by the intensive rainfall. However, the true causes of the 

suspected rain gauge malfunction are unknown. 

Second, the results from Figure 2.7 show a spike on the MRMS QPE simulated hydrograph. 

This could be caused by the sensitivity to the high quality and high temporal resolution of 

MRMS QPE product with the combination of smaller channels in the upstream. When simulated 

with MRMS Corr, the resulting streamflow had a dramatically smoother spike as the temporal 

resolution is hourly. 

Third, the Cypress Creek hydrological evaluation yields an untypical hydrograph at the upper 

stream from IMERG produced simulation. However, as stated in the previous section, EF5 did 

not consider the impact of flood control infrastructure. This result could be caused by the low 

spatial resolution of IMERG combining with the smaller drainage area which undermined the 

precipitation representativeness. It was a fact that there were less than 4 grid cells from IMERG 
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products within the drainage area of the upstream gauge. At the downstream location, the 

IMERG yielded a more reasonable hydrograph, as there were 12 grid cells covering the drainage 

area. 
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2.5 Conclusions 

The results of this study indicate that the remote sensing technologies and gauge 

interpolation method could all detect the unprecedented extreme rainfall associated with 

Hurricane Harvey, as well as capturing the cascading hydrological responses. This study first 

focused on statistically comparing the MRMS QPE, MRMS Corr, IMERG final V06AUncal and 

V06ACal, as well as NCEP gauge-only interpolated precipitation products with the very dense 

HCFCD local rain gauges. Then, hydrological responses were evaluated using the EF5 modeling 

framework in Harris County and Spring Basin of Texas, USA. The findings and results from this 

study can be potentially applicable to other subtropical zones impacted by tropical cyclones or 

low-lying flood-prone areas that are similar to southeast Texas, particularly in extreme events. 

The main conclusions from the cross-evaluation of MRMS, IMERG, and NCEP gauge-only 

precipitation products at county- and grid-based scales during Harvey, are summarized below: 

1. MRMS precipitation products are the best remote sensing rainfall measurements that 

perform most comparably to the local dense network rain gauge observations. IMERG and 

NCEP rain gauge-interpolated precipitation products are comparable to each other statistically, 

but IMERG has the advantage of global coverage, and is not limited to the national radar and 

local rain gauge network coverage. 

2. The post-real-time corrections for remote-sensing-based precipitation products were not 

necessarily valid for the unprecedented precipitation event and caused overcorrections to MRMS 

and IMERG, as overcorrection occurred for both product families. 

3. IMERG products tended to overestimate the low–moderate precipitation intensity but 

underestimate the highest precipitation intensities. The NCEP product showed significant 
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underestimation, especially near the storm core region, due to possible instrumental failure 

during the record Harvey event, implying its high dependence on the functionality and reliability 

of the ground instruments during extreme events. 

In terms of the hydrological evaluation, Spring Basin was selected because no precipitation 

product had significant errors within the basin from the above analysis. Two rivers were 

analyzed separately for their differences in urban and natural hydrological environments. The 

main conclusions are as follows: 

1. Consistent with statistical evaluations, MRMS performs the best, showing comparable 

simulations with USGS stream gauge observation in Spring Basin during Hurricane Harvey, 

followed by IMERG and NCEP with acceptable performances. 

2. The current remote-sensing-based, near-real-time precipitation products are sufficient to 

capture the extreme precipitation and its cascading hydrological responses. Providing the 

advantages of timeliness and vast spatial coverage in national and global scale, the user 

community is encouraged to integrate the latest remote sensing products into their operational 

flood disaster warning systems for the public to be informed, and to reduce and mitigate the risk 

of extreme precipitation events. 

3. The EF5 modeling framework can capture the hydrological responses during such 

unprecedented extreme precipitation events; and, more powerfully, such a system can be 

integrated with the latest remote sensing forcing data (i.e., MRMS and IMERG) into national and 

even global modeling frameworks to alternatively compliment the vast ungauged regions. 

This study proved the value of MRMS precipitation products for extreme precipitation 

detectability and accuracy, as well as their capability in hydrological prediction when combined 
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with the EF5 model framework, which further confirmed the success of the FLASH project run 

by the NOAA National Severe Storm Laboratory (NSSL) and the University of Oklahoma 

(http://flash.ou.edu). Even though the GPM IMERG’s performance during Hurricane Harvey is 

second to MRMS, its simulated hydrological response is sufficient to provide flood magnitude 

and peak-timing warnings and to potentially build an operational flood early warning system at 

the global scale given satellite products’ global coverage. Furthermore, it is reasonable to expect 

the evolving IMERG products will keep improving for hydrological and water resource 

applications. Concurrently, as the recent remote sensing technologies have progressed to 

accurately capture an unprecedented rainfall event, the EF5 modeling framework will need 

further improvement to provide not only the streamflow estimation but also the flood inundation 

extents and even water-depth over inundated urbans. Ultimately, future interdisciplinary building 

blocks are encouraged to connect extreme rainfall, hydrological responses and consequent flood 

risk analysis, as well as loss quantifications, in order to maximize the socio-economic value of 

the latest remote sensing observations for the general public, nationally and globally. 
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Chapter 3. A comprehensive flood inundation mapping for Hurricane Harvey 

using an integrated hydrological and hydraulic model 

Abstract 

As climate change will increase the frequency and intensity of precipitation extremes, especially 

for tropical storms causing severe coastal flooding, there is a clear need for an integrated 

hydrology and hydraulic system that has the benefit of utilizing the modern computation 

technology to model the hydrologic conditions over a long period and the flow dynamic 

representations when extreme hydrometeorological events occur. This system coupling provides 

comprehensive information (flood wave, inundation extents and depths) about coastal flood 

events for emergency management and risk minimization. This study provides an integrated 

hydrologic and hydraulic coupled modeling system that is based on the Coupled Routing and 

Excessive Storage (CREST) model and the Australia National University- Geophysics Australia 

(ANUGA) model to simulate flood. Forced by the near-real-time Multi-Radar Multi-Sensor 

(MRMS) Quantitative Precipitation Estimates (QPEs), this integrated modeling system was 

applied during the 2017 Hurricane Harvey event to simulate the streamflow, the flood extent, and 

the inundation depth. The results were compared with post-event Water High Mark (WHM) 

survey data and its interpolated flood extent by the United States Geological Survey (USGS) and 

the Federal Emergency Management Agency (FEMA) flood insurance claims, as well as a 

satellite-based flood map, the National Water Model (NWM) and the Fathom (LISFLOOD-FP) 

model simulated flood map. The proposing hydrologic and hydraulic model simulation indicated 

that it could capture 87% of all flood insurance claims within the study area, and the overall error 

of water depth was 0.91 meters, which is comparable to the mainstream operational flood models 

(NWM and Fathom). 
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3.1 Introduction 

Flooding triggered by excessive precipitation is the second-deadliest and most common 

natural hazard in the United States and worldwide (Ashley and Ashley, 2008; Barredo, 2007; 

Benito et al., 2004; Smith and Ward, 1998), which accounts for 43% of total United Nation (UN) 

recorded natural disasters from 1995 to 2015 (Wallemacq et al., 2015). The Gulf Coast and the 

South Atlantic Coast of the USA are profoundly affected by extreme precipitation from tropical 

cyclones and their resulting floods (Adhikari et al., 2010), which is responsible for around 

25,000 fatalities in the USA since 1942 (Rappaport, 2014, 2000). For pluvial floods, the 

precipitation rate, duration, the land use of the region, topography, and antecedent soil moisture 

conditions are the main factors to determine the overall flood severity (Brauer et al., 2020). 

Recent studies indicate that the frequency and intensity of extreme rainfall and tropical cyclones 

will increase (van Oldenborgh et al., 2018) and the propagation of the cyclones will decrease due 

to climate change (Kossin, 2018). It is thus likely that the future flood risk and its consequential 

socio-economic damage will escalate. On top of the changes in the tropical cyclone 

characteristics, rising sea level in a warming climate can intensify coastal flooding (Wing et al., 

2019). There is a clear need for tools that can facilitate the current and future flood risk 

mitigation.  

One of those tools is an improved, real-time flood prediction system, which supports multi-

disciplinary decision making including but not limited to: first-responder preparedness, 

temporary flood defense planning, insurance budgeting, and supply chain management. Flood 

prediction and inundation mapping have been studied for over a century, and two traditional 

groups of research efforts have gained most of the attention of the research community: 

observations and hydraulic models (Teng et al., 2017). The observation methods include ground 
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measurements, surveys, and remote-sensing technology (Shen et al., 2019b, 2019a; Syvitski and 

Brakenridge, 2013). As remote-sensing technologies can identify the flood extent over a vast 

area, while other observation methods can only provide data at single points, flood mapping 

aided by remote sensing has gained popularity in recent years. However, due to limitations such 

as data latency, the observation-based results are more often used as an input or as a benchmark 

to validate and calibrate hydrological and hydraulic models (Teng et al., 2017).  

Hydraulic models include one-dimensional, two-dimensional, and three-dimensional 

methods that use the physical equations and laws to describe fluid motion where the degree of 

complexity varies. The one-dimensional hydraulic model is considered the most straightforward 

representation of floodplain flow, as it simulates the open surface water flow with the 

assumption that the water flows in the same direction. The flow velocity is then averaged over 

the channel cross-section (Brunner, 2016). The 2D model assume the water as a shallow ditch 

where no flow occurs vertically, and the shallow water equation is solved from the depth-

averaging Navier-Stokes equations (Roberts et al., 2015). In some individual cases which need 

detailed information for engineering solutions, such as dam breaks, tsunamis, or embankment 

failures, 3D hydraulic models are implemented. However, for most of the floodplain analysis and 

simulation, the 2D shallow-water approximation is considered adequate after proper model 

construction and validation (Alcrudo, 2004). The fully solved the 2D St. Venant shallow water 

equations using the finite volume and the finite element methods are considered to have a higher 

complexity among the 2D hydraulic models (Bates and De Roo, 2000). The storage cell or the 

cellular automata approach by solving Manning’s equation with finite difference methods, such 

as LISFLOOD-FP model, was suggested to be a good approximation to the physics-based model 

and the computation time was reduced by 30 times (Ghimire et al., 2013). It was further tested to 
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prove the method was as efficient as other classes of models implementing HPC techniques 

(Bates et al., 2010). 

Integrating hydrologic model and hydraulic models has the benefit of utilizing present-day 

computational resources to model dynamic representations of extreme hydrometeorological 

events (Anselmo et al., 1996). A recent study (Tanaka et al., 2018) has integrated three 

difference models: a distributed hydrological model called Geomorphology-Based Hydrological 

Model (GBHM), a 1D hydraulic model named Mike11, and a 2D hydraulic model called Local 

Inertial Equation (LIE). The study found the integrated framework yielded good agreement 

between with the observation data of the stream discharge, as well as the lake water level over 

four years span. It was able to simulate a significant flooding event in 2000 over the study area. 

The authors also indicated that the framework could simulate sediment movement downstream in 

the future research plan.  

Since 2016, the Ensemble Framework For Flash Flood Forecasting (EF5) integrated  the 

Coupled Routing and Excess Storage (CREST) distributed hydrological model, a 1D hydraulic 

model, with kinematic wave channel routing, to successfully simulate multiple extreme 

precipitation-triggered flash flooding events in Oklahoma City and Houston at a continental scale 

implementation (Flamig et al., 2020; Gourley et al., 2017). While outside the USA, the CREST 

was coupled with an 1D fully distributed linear reservoir routing scheme and found success over 

a study in China (Shen et al., 2017). The National Water Center (NWC) led an effort to integrate 

the WRF-Hydro hydrologic model and the Height Above Nearest Datum (HAND) inundation 

mapping method into the new National Water Model (NWM; Cohen et al., 2018). The HAND 

method performed a simulation of a 2016 Texas flooding event with good agreement with 

remote-sensing observations and less computation cost (Zhang et al., 2018). A recent study by 
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(Wing et al., 2019), compared the flood mapping performances for Hurricane Harvey between 

NWM+HAND and Fathom, a LISFLOOD-FP based hydraulic modeling system that contains all 

major hydrological and hydraulic components to describe the water dynamics. The study results 

indicated that Fathom outperformed NWM+HAND according to all statistical metrics and could 

better capture the pluvial and coastal flooding phenomena. The public would greatly benefit from 

a comprehensive and accurate flood extent and inundation depth predictions for tropical cyclone 

events to improve local risk management. 

A “grand challenge for hydrology” was raised by (Wood et al., 2011) to provide 

hyperresolution hydrological prediction capacities to the public, as the society critically demands 

the high spatial-temporal resolution forecasting for floods and droughts. New remote-sensing 

technology provides accurate, and high spatially and temporally resolved observations over the 

globe, which helps to advance physics-based models for atmospheric, hydrologic and hydraulic 

forecasting. However, the remote-sensing products are not error-free and these errors in 

precipitation products can be further propagated to the hydrologic & hydraulic modeling results 

(Hong et al., 2006); therefore the accuracy of the input precipitation data is crucial for flood 

applications. The Multi-Radar Multi-Sensor system (MRMS), which utilizes data from over 180 

NEXRAD radars and covers the conterminous United States at 1 km spatial resolution with a 2-

min update frequency (Zhang et al., 2016), has been shown to have the best performance during 

Hurricane Harvey event relatively to NASA’s Global Precipitation Mission (GPM) Integrated 

Multi-satellitE Retrievals (IMERG) v6 product, and National Centers for Environmental 

Prediction (NCEP) gridded gauge only precipitation production; and has a good agreement with 

the Harris County Flood Control District (HCFCD) rain gauge data (Chen et al., 2020; Li et al., 

2020). This study, again, uses Hurricane Harvey as the study case, since it was considered a 100 
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to 500-year flood event, which caused the local streams’ return period reduced 20% to 35% after 

the event (McDonald and Naughton, 2019; Vu and Mishra, 2019). 

The overarching goal of the study is to first introduce the newly developed hydrology and 

hydraulic model CREST- inundation Mapping And Prediction (CREST-iMAP) as a latest 

addition of the well-documented CREST hydrologic modeling family; and to further test and 

compare this new coupled system with some other the-state-of-the-art flood mapping models in 

an extreme storm event setting. Additionally, the physics-based 2D hydrological-hydraulic 

CREST-iMAP model provides ease on scale-up implementation with less data preparation 

requirement and streamflow-only calibration processes. More specified objectives of this study 

are to (a) design and develop the CREST-iMAP which couples the hydrologic and hydraulic 

components, while bypasses the river channel data requirement; (b) evaluate the flood extent by 

comparing the modeling results with the observed USGS flood map, satellite-based (SAR) flood 

map, Fathom flood map, NWM+HAND flood map, and the FEMA flood insurance claims map 

for Hurricane Harvey, and (c) evaluate the flood inundation depths between the USGS Water-

High-Marks (WHMs), Fathom flood map, NWM+HAND flood map, and CREST-iMAP 

simulated flood map using statistic methods. This paper is organized as follows. Section 2 

describes the study area, data, the description of the CREST hydrologic model and 1D hydraulic 

model, Fathom, and the evaluation methodology. Section 3 discusses the results of the inter-

comparison of the flood maps from the USGS interpolation, SAR data, the Fathom simulation, 

the NWM+HAND simulation, and the CREST-iMAP based simulation. Section 4 concludes the 

study and proposes future directions. 
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3.2 Methods and data 

3.2.1 Study area and data 

 

Figure 3.1. Study area showing Hurricane Harvey storm-track, City of Houston Spring 

Basin, WHM locations as well as the topography of Spring Basin 

Hurricane Harvey made the first landfall on northern San Jose island, TX, on August 26th, 

2017, and moved along the Texas Coast for almost 5 days before the second landfall on August 

30th, 2017 (Eric and Zelinsky, 2018). Hurricane Harvey poured over 1,500 mm of water on the 

Great Houston area (Brauer et al., 2020). Figure 3.1 displays the Hurricane track, the boundary 

of Houston, the Spring basin, major flowlines, and the USGS Water-High-Marks (WHMs) 

within the Spring basin. The Spring basin, located in the northwestern part of the Great Houston 

area, was selected for this study. The Spring basin is among the most impacted area during 

Hurricane Harvey (Murphy, 2018). It has mixed landcover types across the basin (Chen et al., 

2020), which was believed to be an underperforming area by another study (Wing et al., 2019). 

There are four major rivers within the Spring basin: Spring Creek, Willow Creek, Little Cypress 

Creek, and Cypress Creek, entering Lake Houston and 55 USGS WHM sites measured for the 

Hurricane Harvey event. The WHM sites are more concentrated along Cypress Creek and the 

southeastern part of the basin because the area has more urban development. 
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The MRMS radar-based QPE was obtained from the Iowa Environmental Mesonet NWS 

data archive (https://mesonet.agron.iastate.edu/nws/). The 15-min streamflow data of five stream 

gauges across the basin from April 1st to September 3rd, 2017, were obtained from the USGS 

National Water Information System (https://waterdata.usgs.gov/nwis). The hyper-resolution (10 

meters) Digital-Elevation-Model (DEM) was obtained from USGS Earth Explorer 

(https://earthexplorer.usgs.gov/). The 250-meter resolution hydrologically-conditioned DEM was 

obtain from HydroSHEDS (https://www.hydrosheds.org/; Lehner et al., 2008). And the 10-meter 

resolution CREST parameters were derived and calculated using methods described in (Vergara 

et al., 2016) from the USGS Soil Survey Geographic Database (SSURGO). The 1-km resolution 

CREST parameters were passed from the beginning phase of FLASH project to input to the 

hydrological modeling portion of the CREST-iMAP. The US landcover data was obtained from 

Multi-Resolution Land Characteristics Consortium (MRLC, https://www.mrlc.gov/), and it was 

extended to arrive at gridded Manning’s roughness coefficients as described in (Liu et al., 2019). 

The USGS Water High Mark (WHM) data and FEMA property claim data during Hurricane 

Harvey were obtained from HydroShare (https://hydroshare.org; Arctur et al., 2018). 

3.2.2 CREST inundation mapping and prediction (CREST-iMAP) framework 

CREST is a grid-based, distributed hydrological model that was developed by the University 

of Oklahoma and NASA Applied Science Team (Wang et al., 2011). The EF5 framework later 

included CREST as one of the water balance modeling cores and coupled it with the kinematic 

wave channel routing method, and the framework can provide hydrological simulation at 

continental and global scales (Clark et al., 2017). Researchers have adapted the EF5 framework 

for high-resolution flash flood forecasting in the USA (Flamig et al., 2020). It now serves as the 

backbone of the Flooded Locations and Simulated Hydrographs project (FLASH), which was 
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transitioned to the NWS in Nov. 2016 and has evolved the tools for operational flash flood 

forecasting (Gourley et al., 2017). The NWS Weather Forecast Offices (WFOs) have reported 

that having FLASH data was extremely useful by allowing staff to focus in on threats and 

upgrade warnings more rapidly and timely (Murphy, 2018). This study uses a modified EF5 

framework from the implemented version in the FLASH project, which is used as water balance 

component of the CREST-iMAP. CREST is coupled with the Australia National University and 

Geoscience of Australia (ANUGA) hydraulic model (Nielson et al., 2005). The ANUGA model 

was built based on a finite volume method for solving the 2D Shallow Water Equation (Roberts 

et al., 2015), to simulate the floodplain flow movement and assume that water depth is much less 

than the water movements in x and y directions (Teng et al., 2017). However, the ANUGA 

model only simulates the 2D water depth distribution and flow velocity, while the water-soil and 

water-atmosphere interactions are not considered in the modeling framework. Therefore, an 

additional component of water balancing is needed to meet that need. 

In this study, the EF5-CREST model was one-way and offline coupled with the ANUGA 

model to comprehensively provide flood information, including streamflow, flood extent, and 

inundation depth. Figure 3.2 illustrates the schematic flow chart of CREST-iMAP coupling 

mechanics. CREST-iMAP receives the forcing precipitation data, such as radar/satellite QPE, 

machines learning modeled or numerical modeled Quantitative Precipitation Forecasts (QPFs), 

or interpolated rainfall field. The hydrological model simulates and generates excessive rainfall, 

soil moisture and streamflow, where excessive rainfall as well as soil moisture are further used to 

drive and set the initial soil condition for the hydraulic model (ANUGA), and the streamflow is 

the 1-dimensional output from the CREST-iMAP. The water balance module has 17 parameters 

to describe the physical interactions between water, soil, and air (Wang et al., 2011), while the 
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hydraulic model has only the Manning’s roughness coefficient that governs the water flow 

(Roberts et al., 2015). The simulated streamflow is the variable used to calibrate the model 

parameters based on comparisons with USGS stream gauge records. The hydraulic model 

receives the excessive rainfall data field from each time step and simulates two variables in a 

single raster file to illustrate the flood extent and the flood inundation depth to the end user. 

 

Figure 3.1. The schematic data flowchart of CREST-iMAP. One component (specified in 

rectangular boxes) becomes the input of another, where arrows represent the data flow 

In this study, the MRMS near-real-time QPE was input to CREST-iMAP at 2-min temporal 

resolution. To imitate the nested real-time operational scheme, the water balance module 

calculates the excessive rainfall at 250-meter resolution and simulated streamflow on all water 
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channels using 250-meter DEM and 1-km parameters, which were calibrated with five USGS 

stream gauges described in (Chen et al., 2020), using DREAM methods (Vrugt, 2016; Vrugt et 

al., 2009). The calibrated excessive rainfall was then read by a hydraulic module at 2-min 

temporal resolution, and the internal calculation time step is 10 seconds on an approximated 10 

by 10 m2 area triangular mesh. Throughout the hydrologic-hydraulic modeling processes, the 1 

km resolution MRMS QPE is first derived into 250 m excessive rainfall, and then calculated for 

water depth and water fluxes at 10-m resolution. The model output was extracted every 15 min 

and further interpolated to the 10-m resolution raster files. For more accurate simulation of the 

flooding impact of Hurricane Harvey, the water balance module utilized a warmup period from 

01/04/2017 to 25/08/2017 and coupled the simulation period from 25/08/2017 to 03/09/2017. 

This approach is an attempt to use the native DEM with no manipulation and bypass the detailed 

river channel information, which is not available at all locations and problematic for an 

operational flood prediction system (Lejot et al., 2007; Merwade et al., 2006; Orzech et al., 

2011). All flow direction and flow accumulation data were derived from the original DEM and 

relied on its quality. Therefore, CREST-iMAP can reduce the data requirement for model 

applications comparing to traditional 2D hydraulic modeling (Brunner, 2016). CREST-iMAP is 

designed to operate at the real-time and provide timely flood information, therefore, the 

comparing group of flood maps are from the real-time operational system over the world. 

3.2.3Fathom model (LISFLOOD-FP) 

Fathom-Global is a framework that combines multiple continental-scale hydraulic model 

implementations (Wing et al., 2017), among which was first described by (Sampson et al., 2015). 

Fathom utilizes the LISFLOOD-FP as the computational core, which solves the local inertial 

form of the shallow water equations using a 2D regular grid (Bates et al., 2010; Bates and De 
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Roo, 2000; de Almeida and Bates, 2013). In this study, the Fathom simulated flood map was 

generated using the river discharge data as the forcing, which was the USGS stream gauge 

observations at the related inflow points in the stream network (Wing et al., 2019). The pluvial 

flood was also considered by inputting the US Weather Prediction Center (WPC) Stage IV 

rainfall data onto the grid cells. The infiltration was considered using a simplified infiltration 

capacity method, using the information from the Harmonized World Soil Database derived by a 

modified Hortonian infiltration equation (Morin and Benyamini, 1977). The simulation also 

included levee information, burned in channels, and storm surge simulation to capture the 

multiple phenomena contributing to the Hurricane Harvey flood at 10-meter spatial resolution. 

This data is from an operational Fathom-US version, which was built upon and updated from a 

high resolution global flood hazard model (Sampson et al., 2015; Wing et al., 2019), which 

continuously updates the flood frequency analysis at all catchments in the world. The model was 

operating at the operational level to produce the flood map. 

3.2.4 NWM coupled with HAND 

As a part of the National Flood Interoperability Experiment (Maidment, 2017), the NOAA 

National Water Center has been exploring to couple the NWM and HAND to provide the flood 

map and prediction. The HAND method created a normalized HAND DEM from the original 

DEM, which indicates the height of each grid above its nearest flow channel. Then the NWM 

streamflow data at each drainage reach is converted to the water stage long the channel grids by 

reversing the flow-stage rating curve, and then any HAND DEM grid values that is small than its 

nearest water channel stage is considered “wet” and the inundation depth equals to the difference 

between the stage and the HAND DEM cell value. This simple and conceptual approach was 

executed at one third arc second spatial resolution for every day during and after Hurricane 



68 

 

Harvey (28/08/2017 – 03/09/2017). A maximum extent flood simulation was generated based on 

the daily inundation data and was downloaded from HydroShare platform (Arctur et al., 2018). 

NWM v1.1 was deployed for operational uses to NCEP in late 2016 until October 2017, the v1.2 

was delivered. This data is based on the NWM v1.1, which includes over 49 thousand 

catchments and the Harris County area had high positive bias but high correlation coefficient 

when comparing to USGS during an official assessment during the NWM training seminar in 

2017 (Gochis et al., 2017). 

3.2.5 Reference flood data 

Following Hurricane Harvey, the USGS field team visited multiple impact areas and 

collected over 2,000 HWMs with the official guidelines (Feaster and Koenig, 2017; Koenig et 

al., 2016). The HWM ground survey was conducted by measuring the GPS elevation of the mud, 

debris, and water stain lines on the side of buildings, trees, fences, poles, and other structures. 

(Watson et al., 2018) utilized over 2,000 HWMs and 47 peak stage heights and interpolated them 

into a flooded water plain at 19 locations, aided by a LiDAR-derived DEM with 1.4 to 3.0-m 

resolution. This interpolation result was believed to be the best reconstruction of the flood extent 

and has been used as a benchmark in another study (Wing et al., 2019). However, this data set is 

not error-free, and (Watson et al., 2018) indicated the uncertainty ranged from 0.01 to 0.55 

meters at specific points. This data was obtained from the USGS data release 

(https://doi.org/10.5066/F7VH5N3N). 

Remote sensing technology provide another potential reference for flood extend as there are 

clear Synthetic Aperture Radar (SAR) images on August 29th and 30th of 2017, that capture the 

Hurricane Harvey and its flooding impact on Harris county, TX (Shen et al., 2019a). As satellite 

data can objectively illuminate the earth surface, theoretically, it has the potential to be the 
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unbiased ground truth for the flood extent only if the information can be extracted accurately. In 

this study the flood map produced from Radar-Produced Inundation Diary (RAPID) system, 

which was derived from Sentinel-1 SAR data captured on August 29th, 2017 and then went 

through binary classification, morphological processing, compensation, and machine learning 

correction. Yet, the automated algorithms to detect water surface through vegetations and urban 

structure are not available when RAPID was put online, so RAPID is not capable to extract flop 

map from SAR data at its current version. The RAPID system was calibrated using a 2016 

flooding event in China, before processing the data for Hurricane Harvey. The data was obtained 

from the University of Connecticut Hydrometeorology and Hydrologic Remote Sensing Group, 

RAPID flood map archive (https://rapid-nrt-flood-

maps.s3.amazonaws.com/index.html#RAPID_Archive_Flood_Maps/20170829/flooding_S1A_I

W_GRDH_1SDV_20170829T002645_20170829T002710_018131_01E74D_3220/). RAPID 

system is an operational system designed to quickly extract flood maps from SAR images during 

or after the event, therefore many amateur water identification technologies are not incorporated 

in the system. The RAPID flood map was interpolated using the Floodwater Depth Estimation 

Tool version 2 (FwDET v2; Cohen et al., 2019), to generate the flood depth by subtracting the 

elevation surface created by the edge of the flooded polygon by the 10-meter resolution DEM. 

3.2.6 Statistical metrics 

Two levels of statistical tests were used in the evaluation. First, the reference data from 3.2.5 

were used to test the extent to which the models capture the spatial patterns of flooding. In this 

case, we used standard binary pattern measures listed in Table 3.1.  

The Probability of Detection (POD) measures the model’s ability to capture the referencing 

flood extent or the proportion of the reference flood extent that was replicated by the model. The 
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False Alarm Rate (FAR) reflects the model’s tendency to overestimate the reference flood extent 

or the proportion of the modeled flood area that was classified as positive while the reference 

data was classified as negative. The Critical Success Index (CSI) measures the performance of 

the model estimates compared to the reference flood extent, which accounts for both 

overprediction and underprediction by the model.  

Table 3.1. List of statistical metrics used in this study 

Name Equationa 
Value 

range 

Perfect 

value 

Probability of detection 
POD =

𝐹1 ∧ 𝑅1

𝐹1 ∧ 𝑅1 + 𝐹0 ∧ 𝑅1
 

0,1 1 

False alarm ratio 
FAR =

𝐹1 ∧ 𝑅0

𝐹1 ∧ 𝑅0 + 𝐹1 ∧ 𝑅0
 

0,1 0 

Critical success index 
CSI =

𝐹1 ∧ 𝑅1

𝐹1 ∧ 𝑅1 + 𝐹0 ∧ 𝑅1 + 𝐹1 ∧ 𝑅0
 

0,1 1 

Correlation coefficient 
𝐶𝐶 =

∑ (𝑓𝑛 − 𝑓)̅(𝑟𝑛 − �̅�)𝑁
𝑛=1

√∑ (𝑓𝑛 − 𝑓)̅
2𝑁

𝑛=1 √∑ (𝑟𝑛 − �̅�)2𝑁
𝑛=1

 
-∞, 1 1 

Root-mean-square error 

(RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑓𝑛 − 𝑟𝑛)2

𝑁

𝑛=1

 0, +∞ 0 

a Variables: F and f represent the model simulation results of binary classification and values respectively; R 

and r represent the reference data of binary classification and values respectively; 1 and 0 means positive (wet) and 

negative (dry) classifications; n and N represent sample index and a total number of samples. 

Second, the 50 USGS WHMs in the study area were used as the reference to calculate the 

difference produced by the model simulations. Two metrics were used (Table 3.1), where the 

Correlation Coefficient measures the relationships between model-simulated inundation depth 

and WHMs and Root Mean Squared Error (RMSE) measures the average magnitude of the errors 
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from the model simulations. These traditional statistics test if the models capture the pattern and 

accurate water inundation depth. 
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3.3 Results and discussion 

3.3.1 Flood extent evaluation 

A display of flood maps from the USGS mapping, SAR data interpolation, NWM+HAND, 

Fathom (LISFLOOD-FP), and CREST-iMAP are listed in Figure 3.3. To visually compare all 

data sets, all data were cropped within the USGS HWMs interpolation boundaries, and the max 

values of each pixel in the modeled time series were taken from the model outputs. For the ease 

of observing, only the inundation depth pixel value that is larger than 1 inch (0.0254 m) was 

displayed in Figure 3.3. 

 

Figure 3.3. The flood extent and depth of A) USGS inundation mapping, B) SAR image 

flood mapping, C) NWM+HAND, D) Fathom model, and E) CREST-iMAP model, and 

their flood depth distributions 

The satellite-based flood mapping was not able to capture most of the flood inundation 

compared to other methods. Therefore, the satellite-based flood mapping failed in this study area 

and will not be included for further analysis. However, the SAR data captures a small area of 
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flood at the southwestern corner of the boundary (green line), which indicates that the SAR and 

RAPID system performs slightly better at the ranch area instead of mountainous or urban area. 

The NWM+HAND method has a very limited flood extent but better than the satellite-based 

flood mapping. Especially, the NWM+HAND method could not capture the large flooded area at 

the upper stream of the Cypress Creek (lower-left corner of the study boundary), where USGS 

mapping, Fathom and CREST-iMAP all found inundation in the area.  The USGS mapping only 

captures the fluvial flooding along the three main streams (Spring Creek, Cypress Creek, Little 

Cypress Creek). In contrast, the two modeling methods can capture more inundation along 

smaller channels. The major flooding occurred at the southwestern side of the basin, which was 

captured by the two simulations and the USGS interpolation. However, by looking at the flood 

depth distribution at subplots and the color scales of each map, the simulated inundation depths 

are quite different as the Fathom simulation output appears to have more “red” pixels than the 

other methods and its maximum inundation depth reaches over 10 meters. To note that the 

NWM+HAND method produced eight ‘noise’ pixels that have the values around 11 meters while 

the majority of the pixel values are less than 0.4 meters, which can be caused by the DEM error 

or during the data processing. One observation of the different flood maps is that the max flood 

depth ranges from 0.4 meter to over 10 meters, where the USGS mapping, Fathom, and CREST-

iMAP all include the channel water depth, while SAR and NWM+HAND do not. The vary of 

flood depth can be caused by the different DEM treatments by each automated operating system, 

even though all automated methods use the DEM from USGS National Elevation Dataset (NED). 

Fathom has river channels “burned” into the DEM, while CREST-iMAP uses the native DEM 

and SAR flood map interpolation and NWM+HAND use ditch-filled DEM. The benchmark 
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USGS flood map uses its own lidar detected data as DEM, which is unique and different from all 

other methods. The more detailed flood depth analysis will be done in 3.3.2. 

Table 3.2. The comparison results of NWM+HAND, Fathom (LISFLOOD-FP), and 

CREST- iMAP to the benchmark USGS flood mapping. The POD, FAR, and CSI were 

described in section 2 and Table 1, with the threshold of 1 inch (0.0254 meters) 

Name NWM+HAND Fathom  CREST-iMAP 

POD 0.22 0.72 0.72 

FAR 0.13 0.40 0.45 

CSI 0.21 0.49 0.45 

Assuming the USGS flood mapping is the ground truth and is set as the benchmark of the 

study, and only over 1 inch (0.0254 meters) of water depth is considered as an inundated pixel, 

the comparison results are listed in Table 3.2. The previous study indicated that Spring Creek 

and San Jacinto River area were one of the poor performance basins (Wing et al., 2019). This 

study confirmed the performance where the POD indicates 72% of the area matched the 

benchmark, and the CSI was only 0.49. The CREST-iMAP has a comparable performance, 

where the POD was 72%, and CSI was 0.45. Both models produced false alarms, and their FARs 

were over 40%, which was caused by the large underrepresentation of pluvial flooding between 

the two main streams according to the benchmark USGS flood map (Figure 3.4. Blue area). 

Compared to other two models, the NWM+HAND approach dramatically underperformed 

giving only 22% detection and the CSI is only 0.21. As the NWM+HAND simulated flooded 

area is very small, the FAR is as low as 13%. 
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Figure 3.4. Maps were displaying the intersection of the (A) NWM+HAND, (B) Fathom, 

and (C) CREST-iMAP flood extents with those from the USGS flood mapping 

Figure 3.4 demonstrates the spatial distribution of the match between the model simulations 

and the USGS flood map. The NWM+HAND shows clear underestimation where only the center 

lines of the two main downstreams appear to have inundations, and all the upper streams 

flooding are not captured. Since NWM-HAND only considers the overbank flow, there is no 

pluvial flood showing between two main streams, which leads to the low FAR value. Besides the 

large false alarms from Fathom and CREST-iMAP models, the general performance over two 

major streams appears to be good. CREST-iMAP performed better than Fathom on Spring Creek 

(northern stream), and Fathom performed better at the upper part of Cypress Creek (southern 

stream) than CREST-iMAP. Both model simulations did not fully capture the east end of the 

upper Cypress Creek flood, where Cypress City is located (29.98N 95.74W). The CREST-iMAP 

simulation showed a more inundated area in the eastern portion of the study area, which is more 
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developed and lower in elevation. Fathom simulation showed more flooding at the middle and 

upper streams of the study area, especially along the flowlines and small water channels.  

It is reasonable to raise speculations about how under-representative the USGS flood 

mapping was for Hurricane Harvey. First, the methodology of the USGS flood mapping does not 

consider any physical water movement nor hydrological cycling dynamics. Second, both models 

showed a significant amount of false alarms in the area between two major rivers, which 

indicates the benchmark data might be underrepresenting. To investigate further, we counted the 

number of FEMA flood/water damage insurance claims that landed on the “wet” pixels of 

different flood maps. The results are illustrated in Figure 3.5. 

 

Figure 3.5. The filed FEMA flood/water damage insurance claims that land within the 

“wet” area from each flood mapping sources: A) USGS flood mapping, B) satellite-based 

flood extent, C) NWM+HAND, D) Fathom model simulation, and E) CREST-iMAP model 

simulation 
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The flood/water damage insurance claims included water damages, flood, water-related 

electrical damages, and property rupture or cracks, with a total of 10,459 cases within the study 

area. Since it is difficult to determine how much water could cause water damage, any pixel has 

value more than 0 meter was considered as a wet area for all datasets. The satellite-based flood 

map is very sparse, so there were only 107 (1.0%) claims collocated with the flood extent. The 

NWM+HAND is proven to underestimate the flooding by Hurricane Harvey, and there were 

only 1,692 (16.2%) claims inside the simulated flood extent. For the USGS flood map, there 

were 4,610 (44.1%) claims inside its flood extent approximation, which is mainly aligning along 

the two main river channels, as the USGS interpolation heavily focused on the fluvial flooding. 

The Fathom simulated flood extent has a comparable number of claims as USGS mapping of 

4,284 (41.0%). However, the claims associated with flooded pixels in the Fathom simulation are 

visually more widespread compared to the USGS map, where it shows many more claims 

between the two main rivers (Figure 3.5c). We speculate that since no model simulation showed 

as much flood inundation area at the City of Cypress as the USGS mapping, concentrated 

flood/water damage claims (1,896 out of 10,459 claims) were partially counted in the Fathom 

simulation. Therefore, even though Figure 3.5c visually shows more widespread claims, the 

USGS flood map has a higher count of claims associated to inundated pixels. The CREST-iMAP 

simulated flood extent contains the most claims of 9,085 (86.9%), which indicates the benefit of 

the full pluvial flood simulation scheme can better capture the extreme precipitation triggered 

flood inundation. From Figure 3.5e, the claim points are well spread across the study area, and 

especially in the northern river, Spring Creek, the model simulation captured more flood/water 

damage insurance claims than all other methods.  
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Overall, it is difficult to conclude which flood prediction method is better than others or 

which methods can better be used as the benchmark data that represent the ground truth during 

the event. Theoretically, the satellite-based (SAR) flood map should have provided the “ground 

truth” as the data was derived from the snapshot when Sentinel-1 passed over the area on 

2017/08/29 (Shen et al., 2019a). According to the CREST-iMAP simulated results, the study 

area had the most wet pixels at 11:45 am on 2017/08/29 during Hurricane Harvey, which is 

consistent with the date of the peak USGS gaged and EF5 simulated streamflow in a previous 

study (Chen et al., 2020). However, the SAR flood map shows the SAR and RAPID method only 

captures very small flood inundation at the southwestern ranches of the study area. As the water 

detection through vegetation and urban buildings from SAR data is not available for an 

automated system like RAPID, the lack of flood extent detection exposes the limitation of the 

satellite-based automated flood mapping system when detecting through large objects is not 

available. The USGS flood map has been used as the benchmark in other studies, but it is 

unrealistic to have no inundation away from the river channels, and only less than half (44.1%) 

of the flood insurance claims landed within its flood extent. The NWM+HAND method 

underperforms but the data was generated by NWM v1.1, and as of today, the model has 

developed to v2.0 and v2.1, which we can believe it should have better performs now. However, 

this NWM+HAND is still limited to the stage-flow conversion, DEM manipulation, and other 

systematic errors (Johnson et al., 2019). The Fathom and CREST-iMAP simulated flood extents 

showed promising results that can capture the pluvial flood. However, Fathom’s simulation of 

flood extent captures less inundation at the downstream of the basin and around Spring Creek, 

which leads to fewer insurance cases within its flood extent (41%) compared to USGS mapping 

and CREST-iMAP simulation. The Fathom system uses the return period of the streams as the 
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main forcing to the model, and the infiltration capacity method might undermine the effects of 

the overland flow and subsurface flow. Meanwhile, LISFLOOD-FP uses local inertial method to 

simplify the St. Venant Shallow Water Equation, which requires individual flood surveyed flood 

extent for each catchment for calibration to reach optimal result, but it is hard to achieve for a 

continental scale, automated operational flood model (Horritt and Bates, 2002). The CREST-

iMAP shows the broadest coverage over insurance claims in the basin (80+%). At the same time, 

the FAR (45%) is similar to the Fathom simulation (FAR=40%) compared with the USGS flood 

map, which means that the CREST-iMAP simulation has a comparable amount of 

overestimation as the other modeling approach in this study. Therefore, it is reasonable 

speculation that the CREST-iMAP simulation can cover the majority of the flood insurance 

claim is due to the better description of the water movements during Hurricane Harvey, by using 

the fully solved Shallow Water Equation instead of the simplified local inertial form in Fathom 

or a conceptual interpolation used in HAND. Both Fathom and CREST-iMAP do not represent 

the mid and upper Cypress creek flood very well, compared to USGS flood map, which is where 

the City of Cypress is located. This shows a certain degree of inability of simulating urban 

flooding by automated flood modelling, since Cypress city was heavily flooded during Hurricane 

Harvey based on news and social media posts. 

The flood extent analysis shows that the CREST-iMAP model at its current setting has a 

comparable result as the operational Fathom system, by comparing with the benchmark USGS 

flood map, which also matches well with FEMA flood insurance claims. The flood extent from 

SAR and NWM+HAND are shown to be underrepresentative.  
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3.3.2 Flood inundation depth analysis 

The model simulated inundation depth values were extracted from the same locations as the 

50 WHM sites in the study area. Figure 3.6 shows the water depths at each location from 

different data sources.  

 

Figure 3.6. The (A) flood inundation depth at 50 USGS WHM locations and (B) error 

distributions of NWM+HAND simulation, Fathom simulation, and CREST-iMAP 

simulation 



81 

 

The first observation from the result is that the Fathom simulated flood depth has much 

higher extreme values compared to other sources, which is consistent with the results in Figure 

3.3 where Fathom has more red area and its inundation value has the largest range among all 

flood approximations. The error distribution of Fathom simulation also indicates that there are 

multiple pixels overestimate the flood depth by 2 to 4 meters. Second, considering 

NWM+HAND does not have pixel values at 31 locations, the rest of the locations appears to 

slightly overestimate the flood depth, with two extreme values (error > 7 meter) that beyond the 

range of the figure. Third, no flood inundation data source aligns perfectly with the USGS WHM 

measurement and CREST-iMAP is the only model that limits the majority of the error withing 

±2 meters. Therefore, no modeling method can approximate the actual ground survey in this 

study, which leaves room for much improvement in the field. The statistical analysis was done to 

analyze and compare the simulated data with the USGS WHM as the reference (Table 3.3). 

Table 3.3. The traditional statistical analysis of HWM+HAND simulation, Fathom 

(LISFLOOD-FP) simulation, and CREST-iMAP simulation. The CC and RMSE were 

described in Section 3.2 and Table 3.1 

Name NWM+HAND Fathom CREST-iMAP 

CC 0.51 0.12 0.38 

RMSE, m 1.81 1.26 0.91 

# of NAs 31 1 1 

The results indicate that all flood inundation depth approximations have poor correlation with 

the USGS WHM records (<0.51) and about 1 meter of error. Despite the fact that there are 31 no 

value pixels extract at WHM locations from the NWM+HAND simulation result, its depth is the 

most correlated to the ground survey with CC of 0.51, but the least accurate with RMSE of 1.81 
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meters. The CREST-iMAP model simulation has a better performance, with CC of 0.36 and 

RMSE of 0.91 meters. The Fathom simulation ranks second-best with RMSE of 1.26 but worst 

on CC of 0.12. The scatter plot (Figure 7) shows the concentration of Fathom simulation results 

close to the left upper corner, which indicates the majority of overestimation occurs when the 

inundation water depth is less than 1 meter. All flood simulation methods yield overestimation 

when the WHM value is 0 (a very small flood inundation), and Fathom tends to have greater 

flood depth values than CREST-iMAP and NWM+HAND. Majority of the overestimation of 

CREST-iMAP occur at the locations with 0 value WHMs and many underestimations occur at 

the locations when WHMs are between 0.5 to 1.5 meters.  

Overall, the correlations between the USGS WHM and different approximations were low, 

where there is no clear pattern along the isoline in this scatter plot. It is partially due to the 

inaccuracy of the flood inundation simulations, as well as the USGS WHM measurements, 

which is based on human observation and claims the uncertainty is between ±0.015 meters (0.05 

ft) to ±0.12 meter (0.4 ft) (Feaster and Koenig 2017). Another reason could be the location 

information of the WHM sites is not accurate enough, which the USGS WHM data set provide 

the longitude and latitude coordinates at accuracy of 5 digits after the decimal point. However, 

all flood simulation models were operated under hyper resolution (3 m to 10 m). Therefore, only 

10-5 arc-degree accuracy is not enough to precisely extract the right pixel from the modeled 

flood inundation result, which could cause the inconsistency that we found this study. The 

previous Hurricane Harvey study (Wing et al. 2019) also argued that the Fathom model error 

compare to WHM was close to 1.19 meters and justified that the ~1-meter model deviation from 

the WHM was acceptable and informative to flood prevention and preparations for local first 
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responders. This study provides another flood inundation approximation method that marginally 

improved the error (RMSE) to ~0.9 meter. 

 

Figure 3.7. The scatter plot of NWM+HAND (green), Fathom (LISFLOOD-FP) simulation 

(red), and CREST-iMAP simulation (blue) compared with 50 USGS WHM records as the 

reference 
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3.4 Conclusion 

Validation of a flood map for a single event is challenging since such an error-free reference 

data that comprehensively reflects a flood event is not available. This study provides a model 

application that utilizes a coupling scheme that uses excessive rainfall as the input for the 

hydraulic component. The results prove that the CREST-iMAP framework can well capture the 

flood extent and the spatial pattern of the flood extent, that is comparable with current automated 

operational flood-monitoring systems in the world. However, the error (RMSE) is approximately 

0.9 meter using the traditional statistical method. This study compares the five different sources 

of flood inundation approximations for the flood induced by Hurricane Harvey in Spring Basin 

located northern Harris County, TX, which are RAPID extraction from SAR data, USGS WHM 

and stream stage interpolation, NWM+HAND model simulation, Fathom (LISFLOOD-FP) 

model simulation, and CREST-iMAP model simulation. The main conclusions of this study are: 

first, the CREST-iMAP modeling methods can capture the flood extent under extreme 

precipitation as well, if not better than, as other sources; second, satellite-based (SAR) flood 

observation and NWM+HAND model simulation severely underperformed during Hurricane 

Harvey and HAND only considers the fluvial flood; third, this study cannot conclude the most 

reliable method to capture the flood inundation during the extreme event as no method can 

completely reproduce the flood extent and the inundation depth errors are not negligible.  

This study provides a hydrological and hydraulic coupled approach to simulate flood with 

less data requirement in an automated and operational setup using the CREST-iMAP framework, 

which yields acceptable result during the extreme precipitation-driven flood event: Hurricane 

Harvey. The current case study has 41 million computing pixels and a computational efficiency 

of 0.02 second per time step (10 seconds) using 2 nodes (40 computing cores), but a more 
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systematic computational efficiency study for the CREST-iMAP will be needed in the future. 

Even though the simulated flood depth is not perfect, there is plenty of decision-supportive 

information to potentially establish a high-resolution flood prediction system based on the 

weather radar network for not only southeastern Texas but along all high-precipitation intensity 

and flood-prone areas across the globe, as the model is physics-based, compatible with global 

data, built with parameter transformation module. Furthermore, as the CREST-iMAP framework 

can comprehensively provide streamflow, flood extent, flood inundation depth, and soil moisture 

outputs, it can easily connect to other interdisciplinary building blocks (e.g. insurance, supply 

chain, utility management) to further analysis and predict the consequent socio-economic impact 

from any flood event. Ultimately, an action-directing smart system can be built upon reliable 

flood predictions to guide public safety decision-making during flood hazards. 
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Chapter 4. A flood predictability study for Hurricane Harvey with the 

CREST-iMAP model using high resolution Quantitative Precipitation 

Forecast and U-Net deep learning precipitation nowcast 

Abstract 

Flooding is one of the most hazardous natural disasters, and it commonly causes fatalities and 

social-economical damages. The advances of modeling techniques and data in flood prediction 

have found success operationally, and this paper presents a more comprehensive flood prediction 

of Hurricane Harvey in 1-hour lead-time that is not limited to 1D streamflow forecast but also 

2D flood extent and 3D inundation depth. It uses high-resolution quantitative precipitation 

forecasts (QPFs, from operational Rapid Refresh-RAP, and High Resolution Rapid Refresh-

HRRR models) and deep learning nowcasts (AI nowcasts). The results show that the QPFs have 

a well-known displacement issue and the AI nowcast cannot predict the precipitation intensity, 

and an attempt to combine the two methods (AI hybrid) failed to improve the overall accuracy. 

However, the 2D flood extent predictions with the HRRR and AI hybrid forcings can provide 

information indicating the future flooded area with about 50% accuracy (hit rate). In contrast, the 

AI nowcast reveals minimal displacement errors but underpredicts precipitation intensity. The 

deep learning method also indicates that the binary tests with low threshold, which are 

commonly employed in the deep learning field, neglect the importance of precipitation intensity 

errors for extreme event studies.  
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4.1 Introduction 

The increase of frequency and magnitude of extreme weather and precipitation caused by 

climate change has received much attention (Meehl et al., 2000; USGCRP, 2017; van 

Oldenborgh et al., 2018). Further, ‘tropicalization’, a global trend towards a heavier precipitation 

climate, has been modeled in Europe (Gobiet et al., 2014). Consequentially, this change would 

lead to more flood events in the future, which is the second-deadliest and most common natural 

hazard in the United States and world (Ashley and Ashley, 2008; Barredo, 2007; Benito et al., 

2004; Smith and Ward, 1998). According to Brauer et al., (2020), the rate and duration of 

precipitation, land use and soil moisture content, as well as topography all have impacts on the 

severity of flooding. Unfortunately, tropicalization combining with rising sea levels and ocean 

temperatures will only intensify flooding especially along coastal areas (Wing et al., 2019). To  

quantify and mitigate flood risks, many tools have been developed to simulate flooding in post-

event fashion (Bates et al., 2010; Bates and De Roo, 2000; de Almeida and Bates, 2013; 

Srinivasan and Arnold, 1994; Wang et al., 2011; Wood et al., 1992; Xue et al., 2016), and in 

real-time simulation (Cohen et al., 2018; Gochis et al., 2017; Sampson et al., 2015; Wing et al., 

2019, 2017). Instead of post-event analysis or real-time simulation, this study explores the 

options for forecasting flood events, which could potentially provide enough lead-time for 

emergency response officials or even the general public to proactively respond to possible future 

flood risks. 

Almost 40 years ago, Georgakakos and Hudlow, (1984) discuss the use of Quantitative 

Precipitation Forecasts (QPFs) from the Numerical Weather Prediction (NWP) models for 

hydrological forecasting; the operational Limited-Area Fine Mesh (LFM) model (Newell and 

Deaver, 1981) of the National Weather Service at the time had a grid spacing of 127 km, while 
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the on-demand Movable Fine Mesh (MFM) model had a grid spacing of up to 60 km. While 

promising, the lack of spatial specificity needed for hydrological forecasting and the relatively 

low accuracy of QPF limited the application of model-based QPF for driving hydrological 

models. With the advancement of computing and observation technologies, the NWP models 

have improved dramatically in recent decades in terms of their spatial and temporal resolutions, 

accuracy, and coverage (Trenberth, 2010). The current operational High-Resolution Rapid 

Refresh (HRRR, Benjamin et al., 2016; Lee et al., 2019) has a horizontal grid spacing of 3 km 

with hourly updated forecasts over the contiguous United States (CONUS). Convection-

allowing, cloud-resolving NWP models have been run at 1-km grid spacing (Loken et al., 2017; 

Xue et al., 2013). However, accurate QPF remains a challenge because of many complex factors 

involved in precipitation processes (Ebert and McBride, 2000; Golding, 2000). Major errors of 

NWP QPFs include spatial displacement errors, where the location of the precipitating storm is 

in the wrong location (Ebert and McBride, 2000), and errors in intensity especially for extreme 

events (Cuo et al., 2011). For short-range precipitation forecasting, the proper initialization of 

existing precipitation systems within the model initial condition is also an important issue (Kain 

et al., 2010; Sun et al., 2014). 

Precipitation nowcasting typically refers to very short-range (1-6 hr) forecasting of 

precipitation, and traditionally nowcasting is mostly done by extrapolating observed radar 

reflectivity fields. Ligda (1953) demonstrated the possibility of providing reasonable forecasts 

based on the persistence and movement of radar echoes. This technology has experienced a 

recent technological boost with the combination of High Performance Computing (HPC), 

Artificial Intelligence (AI), resulting in successful applications in real-world problems including 

precipitation nowcasting (Agrawal et al., 2019; LeCun et al., 2015). In 2019, Google Research 



94 

 

published a study showing the advantage of using deep learning nowcasts to predict 1-hour lead-

time precipitation over the CONUS, outperforming traditional optical flow extrapolation method, 

persistence, and 1-hour HRRR forecasts (Agrawal et al., 2019). Moreover, many recent studies 

also show successes in deep learning precipitation nowcasting. Franch et al. (2020) introduce a 

new deep learning model, TAASRAD19, to forecast 1-hour lead-time radar reflectivity which is 

then converted to precipitation rate, yielding a Critical Success Index (CSI) of 0.5 over a 9-year 

sample.  While most AI nowcast studies evaluate binary coverage as the performance test, 

Kumar et al. (2020) demonstrate their deep learning model reduces the Root-Mean-Square Error 

(RMSE) between forecast and satellite precipitation estimates to 0.8 mm/hr on 30 min lead-time 

and up to 1.4 mm/hr on 150 min lead-time. Using Global Precipitation Mission (GPM) 

Integrated Multi-satellitE Retrievals (IMERG) datasets, they identify the most significant error 

source being underestimation with extreme events. However, the hydrological performance of AI 

nowcasts is generally underexplored. 

Flood prediction has a history of using Quantitative Precipitation Estimates (QPEs), 

precipitation nowcasts, and NWP QPFs to drive hydrological models (Cuo et al., 2011; Golding, 

2000; Hapuarachchi et al., 2011). Since there is a lag between the precipitation peak and the 

streamflow peak (Bedient et al., 1988), some operational systems are capable of predicting the 

flood without precipitation forecasts. For example, the Scottish Environment Protection Agency 

uses radar and in-situ precipitation data to provide streamflow forecasts (Werner and Cranston, 

2009); the National Center of Environmental Prediction (NCEP) adapts the National Water 

Model (NWM) (Cohen et al., 2018; Gochis et al., 2017), while the National Severe Storm 

Laboratory (NSSL) utilizes the Ensemble Framework For Flash Flood Forecasting (EF5) as part 

of the FLASH project (Flamig et al., 2020; Gourley et al., 2017). Both NWM and EF5 use the 
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Multi-Radar Multi-Sensor (MRMS) QPE to drive streamflow forecasts for the entire CONUS 

and outer territories. To provide longer range and more comprehensive flood predictions, it is 

necessary to utilize nowcasts or QPFs, and the flood predictions can be extended beyond 

streamflow prediction to also include two-dimensional (2D) flood extent and flood depth 

forecasting. However, due to the accuracy issues of QPF, the skill of longer flood range 

prediction is still limited, especially at the scales of urban watersheds (Hapuarachchi et al., 

2011). More recent hydrological evaluation of operational HRRR QPF indicates that even 

though this advanced product is capable of forecasting mesoscale convective systems well, QPFs 

associated with smaller scale precipitation systems often contain significant errors making 

hydrological prediction errors to become too large (Lee et al., 2019; Seo et al., 2018). 

This study is an attempt to utilize advanced NWP QPFs and AI precipitation nowcasting for 

the prediction of flooding triggered by the landfalling Hurricane Harvey in 2017. The 

comprehensive predictions include 1D stream discharge, 2D flood extent, and 3D flood depth, 

using the Coupled Routing and Excessive STorage – inundation MApping and Prediction 

(CREST-iMAP) model. This work evaluates the ability of state-of-art operational QPFs to 

predict not only streamflow but also flood extents and flood depths, it also presents one of the 

first studies to evaluate the hydrological performance of AI precipitation nowcast techniques. 

The precipitation forecasts and flood prediction results are compared with MRMS QPE, US 

Geological Survey (USGS) stream gauge data, MRMS QPE simulated flood extent, Federal 

Emergency Management Agency (FEMA) flood insurance claims, and USGS Water-High Mark 

post-event survey data. The rest of this paper is organized as follows. Section 2 describes the 

QPF datasets, study area, CREST-iMAP model, and the deep learning architecture for AI 

nowcasting. Section 3 demonstrates the results of the predicted streamflow hydrographs, flood 
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extent, and inundation depth compared to the benchmark and other ground observations. Section 

4 discusses the major findings from the results. Section 5 concludes and proposes future studies. 

  



97 

 

4.2. Methodology 

4.2.1 Forecast rainfall 

This study relies on the applications of operational NWP models that provides the QPF 

products, which are archived in NOAA’s National Operational Model Archive and Distribution 

System. The Rapid Refresh (RAP) was first developed in May 2012, built upon the first hourly 

updated operational NWP system in the world, Rapid Update Cycle (RUC), back in 1998 

(Benjamin et al., 2016, 2004). After two major improvements in 2014 and 2016, RAP now 

consists of multiple meteorological data and models to increase accuracy, such as the NOAA 

Gridpoint Statistical Interpolation (GSI), a version of Weather Research and Forecasting (WRF) 

regional model, and the National Center of Environmental Prediction (NCEP) Unified Post 

Processor (UPP). The current RAP QPF product can provide hourly updated precipitation 

forecasts out to 18 hours at 13-km spatial resolution over the entire North America. In this study, 

the 1-hour lead-time data was obtained from the NOAA’s National Center for Environmental 

Information (NCEI) website (https://www.ncdc.noaa.gov/data-access/model-data/model-

datasets/rapid-refresh-rap). The HRRR was first released in September 2014 and finished its first 

upgrade in 2016, then was deployed as a new operational model in July 2018 (Lee et al., 2019). 

HRRR is a nested model that is heavily relied on RAP data assimilation, which covers the 

Continental United States (CONUS) and provides hourly forecasts up to 18 hours in the future at 

3-km spatial resolution (Benjamin et al., 2016). In this study, the 1-hour lead-time HRRR v2 

forecast data obtained from the University of Utah HRRR data archive 

(http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/cgi-bin/hrrr_download.cgi). All forecast 

products are 1-hour lead-time since the deep learning precipitation nowcasting method in this 

about:blank
about:blank
about:blank
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study can only produce a 1-hour forecast due to the limitation of computational resources. The 

basic statistics of precipitation forecast datasets are listed in Table 4.1. 

Table 4.1. List of precipitation estimation and forecasting productions and the basic 

statistics during Hurricane Harvey 

Name 

Temporal 

resolution 

Spatial 

resolution 

Precipitation rate, 

mm/hr 

 Total precipitation (25/8/2017 to 31/8/2017), 

mm 

Max Mean  Max Mean Min 

MRMS 

QPE 
2 mins 1 km 202.60 6.16  1793 830 287 

RAP QPF  1 hour 13 km 49.83 7.45  1469 1081 730 

HRRR 

QPF 
1 hour 3 km 236.87 6.65  1640 928 502 

AI 

Nowcast 
6 mins 1 km 71.27 3.18  851 190 80 

AI Hybrid 6 mins 1 km 236.87 7.10  2633 930 419 

 

4.2.2 Deep learning rainfall nowcast 

The advancement in machine learning (deep learning) recently has been successful when 

applied to the short-range nowcasting of precipitation (Shi et al., 2015). AI precipitation 

nowcasting, as a data-driven and localized method, is adapted to the local environment and 

requires no prior knowledge about weather systems from the model developer, which predicts 

next-step precipitation distribution by a series of previous frames from a well-trained model 

structure. In this study, we select the U-Net model structure for the following reasons. First, it is 

a widely adopted structure for precipitation estimation and prediction (Li et al., 2020b; Sadeghi 

et al., 2020). Second, the lightweight framework necessitates a fewer number of parameters 

compared to other models, also requiring less system memory to train the model. Before model 

training, some preprocessing steps are conducted for unifying precipitation estimates from 

multiple events. Due to the nature of the non-Gaussian distribution of precipitation per frame, 
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one way to normalize precipitation data is via logarithmic transformation. Similar to Sønderby et 

al. (2020), precipitation data is transformed and normalized based on the following equation. 

𝑅 = log(𝑥 + 0.01) /4, 

where x is the input rainfall rate, and R is the normalized rainfall rates. Subsequently, rainfall 

data are grouped every 10 frames at 6-min increments to target next-hour precipitation forecasts. 

The Mean Square Error (MSE) and Adam, a deep-learning optimizer (Kingma and Ba, 2017), 

are chosen as the objective function and optimizer in this setting. The initial learning rate (𝛼)1 is 

set at 0.001 but is scheduled to decrease exponentially with training process to avoid blowing up. 

Due to the limitation of the Graphics Processing Unit (GPU) capacity, this study can only predict 

a 1-hour lead time given the size of the study area. In this study, the U-Net structured deep 

learning model is trained by the MRMS QPEs for 16 precipitation events listed in NOAA Storm 

Report (Table 2) that caused flooding in the Houston area from 2015 to 2019, except Hurricane 

Harvey, with a total of over 30,000 images. The intensive-precipitation-focused deep learning 

model is then forecast 1-hour lead-time from 24/08/2017 to 02/09/2017 (10 days). The 

experiment is conducted using a Nvidia GTX 960M GPU card. 

AI-based nowcasting can effectively capture the spatiotemporal correlation with 

observations, yet it may misrepresent the event magnitude, which is a common weakness of AI 

nowcast (Kumar et al., 2020). On the other hand, the physical simulations are apt at identifying 

storm cores and thus the event rainfall magnitude. It is presumably advantageous to take the 

respective advantages of both to produce a hybrid product. In this study, a conventional non-

 
1 Learning rate is a hyperparameter that controls how much change the deep-learning model in response to estimated 

error each time the model weights are updated. Some considers the learning rate is the most important hyperparameter 

for neural network configuring. 
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parametric probability matching scheme is taken at each nowcast time step to increase the 

rainfall magnitude of the AI-produced product close to the HRRR forecasts. The basic idea is to 

conserve the ranks of the initial rainfall rate for a given frame, and its empirical cumulative 

density function (CDF) is modified to match the target CDF. 

Table 4.2 List of heavy precipitation events used for deep-learning training 

Index Start location Flood date County Fatality Damage (million dollars) 

1 Orr St. 31/10/2015 Harris, TX 2 1.7 

2 SW Houston St. 18/03/2016 Harris, TX 0 0 

3 NW Hockley St. 18/04/2016 Harris, TX 8 51 

4 Hooks homepark 01/06/2016 Harris, TX 0 0.005 

5 SW Almeda Rd. 18/01/2017 Harris, TX 0 0.5 

6 S Houston St. 29/03/2017 Harris, TX 2 0.62 

7 NE McNair St. 04/06/2017 Harris, TX 0 0.01 

8 NE Little York Rd. 24/06/2017 Harris, TX 0 0.001 

9 Satsuma Dr. 09/07/2017 Harris, TX 0 0 

10 S Deer Park 21/09/2017 Harris, TX 0 0.005 

11 NE Spring St. 04/07/2018 Harris, TX 0 0 

12 SE Englewood St. 08/12/2018 Harris, TX 0 0 

13 NW Huffman 07/05/2019 Harris, TX 0 0.25 

14 NW Katy  09/05/2019 Harris, TX 0 0.05 

15 E Wallis Rd. 23/08/2019 Harris, TX 0 0 

16 NE Humble St. 19/09/2019 Harris, TX 2 565 

 



101 

 

4.2.3 Observed rainfall, flood benchmark, and data 

The observed precipitation product is chosen to be the MRMS radar-only, 2-min QPE, which 

showed high correlations and small error compared to the Harris County Flood Control District 

rain gauge network in previous studies (Chen et al., 2020; Li et al., 2020a). This data is obtained 

from the Iowa Environmental Mesonet NWS data archive 

(https://mesonet.agron.iastate.edu/nws/). The benchmark flood map is simulated by CREST-

iMAP using MRMS 2-min QPE as the forcing data. To create the benchmark flood map, the 

CREST-iMAP goes through a warmup period from 01/04/2017 to 24/08/2017 using the MRMS 

1-hour gauge corrected QPE and then simulates the Hurricane Harvey induced flood from 

24/08/2017 to 02/09/2017 (10 days), driven by the MRMS 2-min QPE. The CREST-iMAP is 

calibrated against the USGS gauge 08069000 (Cypress Creek) and 08068500 (Spring Creek) 

from 01/04/2017 to 24/08/2017 to optimize the water balance parameters. The 10-meter 

resolution Manning’s roughness coefficient field is derived from the landcover data from Multi-

Resolution Land Characteristics Consortium (MRLC, https://www.mrlc.gov/), using a look-up 

table from the literature (Liu et al., 2019; McCuen, 2005). 

Other benchmark data include the two USGS stream gauge data downstream of Spring 

(08068500)  and Cypress Creek (0809000), which are obtained from the USGS Water 

Information System (USGS WIS, https://waterdata.usgs.gov/). The USGS Water-High-Marks 

(WHM) data are manually surveyed post-event water depths by measuring the residual water 

stain or mudlines left on buildings and other infrastructure, which is considered as the true 

ground observations of flood depth (Feaster and Koenig, 2017). The National Flood Insurance 

Program was passed by the US Congress in 1968 and placed under Federal Emergency 

Management Agency (FEMA) since 1979 (Bedient et al., 1988). The FEMA flood claim dataset 

about:blank
about:blank
about:blank
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for Hurricane Harvey includes the coordinates of the claims that experienced water damage, as 

well as water-related electric damage, rain damage, and property cracks caused by water. The 

USGS WHM and FEMA flood insurance claim datasets are obtained from the HydroShare 

Hurricane Harvey collection (Arctur et al., 2018, 

https://www.hydroshare.org/resource/2836494ee75e43a9bfb647b37260e461/).  

4.2.4 The CREST-iMAP model 

CREST-iMAP is a hydrological and hydraulic coupled model developed by the 

Hydrometeorology and Remote Sensing Laboratory at the University of Oklahoma, and is 

designed to operate in near-real-time. It is the newly added member of a well-documented CREST 

modeling family, which has been widely applied to multiple operations and applications over the 

world (Clark et al., 2017; Flamig et al., 2020; Gourley et al., 2017; Wang et al., 2011). The CREST-

iMAP coupled the water balance component of CREST and the 2D hydraulic routing using a fully 

solved Shallow Water Equation with a finite volume method. The model can be nested with the 

CREST/EF5 framework for near-real-time operation or as a standalone operation. The model 

receives precipitation data as the driving input over topographical datasets and the CREST water 

balance component generates excessive rainfall, which is then routed through the unstructured 

triangular mesh to generate channel flow rate, flood extent, and flood depth. The model calibration 

is conducted for the period from 2017/04/01 to 2017/08/24, using the DREAM algorithm (Vrugt, 

2016; Vrugt et al., 2009) to optimize all water-balance parameters by targeting five different USGS 

stream gauges at midstream (08068275) and downstream (08068500) of Spring Creek, as well as 

upperstream (08068720), midstream (08068800), and downstream (08069000) of Cypress Creek. 

https://www.hydroshare.org/resource/2836494ee75e43a9bfb647b37260e461/
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4.2.5 Study area 

Harris County, TX was the most impacted area during Hurricane Harvey with 103 casualties, 

over 40,000 people evacuated, and over 30,000 water rescues conducted (Murphy, 2018). Figure 

1 shows the impacted area of Hurricane Harvey, the hurricane track, and the study area of this 

research. The statistical analysis of different QPFs is conducted throughout the entire Harris 

County area, and the flood analysis is conducted at the Spring basin, which is located at the 

northern part of Harris County. 

 

Figure 4.1. The Harris County, TX and Spring Basin, showing the track of Hurricane 

Harvey, WHM locations, USGS gauge locations, and the DEM of Spring Basin 

4.2.6 Statistic metrics 

To compare each forecasting product and evaluate the flood predictability, three levels of 

statistical tests are conducted in this study. First, the benchmark precipitation in 2.3 is used to 

compare QPFs and AI-based nowcasts using statistical measures. Second, the CREST-iMAP 

simulated hydrographs are analyzed using not only standard statistic metrics but also 

hydrological modeling efficiency measures. Third, the CREST-iMAP simulated flood extents are 
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analyzed using standard binary pattern measures. All three levels of statistical metrics are listed 

in Table 4.3. 

Table 4.3. List of statistical metrics used in this study 

Statistic metrics Equationa Value 

range 

Perfect 

value 

Correlation coefficient 

(CC) 
𝐶𝐶 =

∑ (𝑓𝑛 − 𝑓)̅(𝑟𝑛 − �̅�)𝑁
𝑛=1

√∑ (𝑓𝑛 − 𝑓)̅
2𝑁

𝑛=1 √∑ (𝑟𝑛 − �̅�)2𝑁
𝑛=1

 
-1, 1 1 

Relative bias (RB) 

𝑅𝐵 =
1

𝑁
∑

𝑓𝑛 − 𝑟𝑛

𝑟𝑛

𝑁

𝑛=1

 

-∞, +∞ 0 

Root-mean-square 

error (RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑(𝑓𝑛 − 𝑟𝑛)2

𝑁

𝑛=1

 

0, +∞ 0 

Probability of detection 

(POD) 
𝑃𝑂𝐷 =

𝐹1 ∧ 𝑅1

𝐹1 ∧ 𝑅1 + 𝐹0 ∧ 𝑅1
 

0,1 1 

False alarm ratio (FAR) 
𝐹𝐴𝑅 =

𝐹1 ∧ 𝑅0

𝐹1 ∧ 𝑅0 + 𝐹1 ∧ 𝑅0
 

0,1 0 

Critical success index 

(CSI) 
𝐶𝑆𝐼 =

𝐹1 ∧ 𝑅1

𝐹1 ∧ 𝑅1 + 𝐹0 ∧ 𝑅1 + 𝐹1 ∧ 𝑅0
 

0,1 1 

Nash-Sutcliffe 

coefficient efficiency 

(NSCE) 

𝑁𝑆𝐶𝐸 = 1 −
∑ (𝑓𝑛 − 𝑟𝑛)2𝑁

𝑛=1

∑ (𝑟𝑛 − �̅�)2𝑁
𝑛=1

 
-∞, 1 1 

Peak flow error (PE) 𝑃𝐸 =  𝑓𝑚𝑎𝑥 − 𝑟𝑚𝑎𝑥 -∞, +∞ 0 

Peak time error (PTE) 𝑃𝑇𝐸 =  𝑡(𝑟𝑚𝑎𝑥) − 𝑡(𝑓𝑚𝑎𝑥) -∞, +∞ 0 

a Variables: n and N, sample index and a total number of samples, f represents the precipitation forecast products 

from the numerical modeling and AI nowcasts, r represents the reference including the MRMS QPE and USGS 

stream gauge observations, F and f represent the model simulation results of binary classification and values 

respectively; R and r represent the reference data of binary classification and values respectively; 1 and 0 means 

positive (wet) and negative (dry) classifications. 

The correlation coefficient (CC) over a time series measures the strength of an estimate to 

capture the temporal pattern of the observation. The Relative bias (RB, fraction) measures the 
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errors of the estimate as a fraction of the observation value. The Root-mean-square error (RMSE, 

mm/hr for precipitation, and m3/s for streamflow) measures the distance between the estimates 

and the observation. The Probability of detection (POD) measures the ability to predict the 

benchmark flood extent. The False Alarm Rate (FAR) reflects the tendency to overpredict the 

benchmark flood extent. The Critical Success Index (CSI) measures the overall performance of 

the flood predictions compared to the benchmark. The Nash-Sutcliffe coefficient of efficiency 

(NSCE, unitless) measures the effectiveness of the model prediction compared to the stream 

gauge observation. The peak flow error (PE, m3/s) calculates the difference between predicted 

and observed peak flow. The peak time error (PTE, hour) calculates the arriving time difference 

between predicted and observed peak flow. 
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4.3 Results 

4.3.1 Precipitation analysis 

To observe the first level differences of all the precipitation forecast products, the accumulated 

precipitation from 25/08/2017 to 31/08/2017 is plotted in Figure 4.2. 

 

Figure 4.2. The accumulative precipitation during Hurricane Harvey of A) MRMS QPE, 

B) RAP QPF, C) HRRR QPF, D) AI nowcast, and E) AI hybrid, the red ovals circle the two 

examples of displacements 

The first clear observation appears to be the spatial resolution differences, as RAP and 

HRRR show coarser resolution grid cells across the map compared to MRMS and the AI 

nowcasts. Due to the low spatial resolution, RAP can only provide a basic depiction of the 

precipitation core and has a smooth transition from high precipitation (southeast) to lower 

amounts (northwest). As listed in Table 4.1, RAP’s highest mean precipitation rate (7.45 mm/hr), 

a mean accumulated precipitation (1,081 mm), but low maximum precipitation rate (49.83 
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mm/hr) means that it does not simulate extremes like MRMS. The second clear observation is 

the underprediction of the AI nowcasts. The average precipitation rate of AI nowcast during 

Hurricane Harvey is 3.18 mm/hr and its mean accumulated precipitation is only 190 mm, which 

is much less than the values of MRMS QPE, which are 6.16 mm/hr and 830 mm, respectively. 

Even though Google shows the U-Net framework providing well-performed nowcasting 

precipitation prediction from July 2017 to July 2019 (Agrawal et al., 2019), but for an extreme 

event like Hurricane Harvey, the result indicates there are difficulties for machine learning 

methods to predict the magnitude. Magnitude-wise, HRRR QPF is comparable with MRMS QPE 

with the mean precipitation rate of 6.65 and 6.16 mm/hr respectively (Table 4.1). However, the 

spatial displacement of large precipitation amounts from the HRRR is visually clear, where the 

red circles provide simple examples where MRMS has low accumulated precipitation but the 

HRRR has a large amount of total precipitation forecast and vice versa. The AI hybrid method 

shows improved precipitation magnitude from 3.18 mm/hr to 7.10 mm/hr and the mean 

accumulated precipitation increases from 190 to 930 mm. The CDF-matching method to hybrid 

machine learning and numerical modeling causes multiple problems: first, the high values of 

accumulated precipitation appeared to be concentrated at the east and northeast pixels at the 

edge; second, the horizontal, belt-shaped high-precipitation artifacts appear at the northern part 

of Harris County.  

To quantify the difference between the benchmark precipitation and the precipitation 

forecasts, the first level statistics are applied to the county-wide averages as well as to each pixel 

from 25/08/2017 to 31/08/2017. The statistical results are listed in Table 4.4. 
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Table 4.4. The first level statistical results between precipitation forecasts and the 

benchmark precipitation estimation 

Name County averaged statistic  Pixel statistic 
 

CC RB RMSE, mm/hr  CC RB RMSE, mm/hr 

RAP QPF 0.76 255.46 5.41  0.31 129.60 15.72 

HRRR QPF 0.55 364.42 7.31  0.13 144.75 20.06 

AI nowcast 0.98 5.18 5.36  0.80 0.91 11.87 

AI hybrid 0.62 446.81 6.51  0.66 75.40 13.16 

Both county-averaged and pixel-level statistics agree that the AI nowcast precipitation 

forecast has the highest correlation coefficient (0.98 and 0.8), the lowest relative bias (5.18 and 

0.91), and the least RMSE (5.18 mm/hr and 11.87 mm/hr). Among all precipitation forecasts, AI 

nowcast can capture the temporal pattern very well, despite that there is a large deficit in 

precipitation magnitude. HRRR QPFs show a very low correlation with benchmark precipitation 

both at county average (0.55) and pixel-level (0.13). The HRRR QPFs also have the largest 

RMSE among all other precipitation forecasts. RAP QPFs have a good correlation with the 

benchmark when averaged over Harris County (0.76) but poor correlation at each pixel (0.31), 

which might be caused by its coarse spatial resolution. The AI hybrid method is proved to be less 

correlated with the benchmark compared to AI nowcasts and has higher RMSE. The attempt to 

combine AI nowcast and HRRR provides worse statistical results, which can be caused by the 

artifacts found in Figure 4.2. To visualize the differences, the county-averaged precipitation 

estimates and forecasts are plotted in Figure 4.3. 
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Figure 4.3. The county averaged precipitation rate (left) and the county averaged 

accumulative precipitation (right) 

The AI nowcast (green) appears to follow all the peaks as the benchmark (black) and match 

well when the precipitation is light. However the magnitude of the peaks are only equivalent to a 

fraction of the benchmark data, and the accumulated rainfall amount indicates a severe 

underprediction. All other precipitation forecasts (RAP, HRRR, and AI hybrid) overpredict most 

of the precipitation peaks before 27/08/2017 and after 29/08/2017, while underpredicting during 

28/08/2019, which explains the poor statistical results displayed in Table 4.3. As shown in 

Figure 3, the HRRR QPF (blue) and AI hybrid (plum) forecasts are overlapped in most days, 

which indicates that the CDF-matching method not only increases the magnitude of AI nowcasts 

but also picks up a lot of information from the HRRR. Since the HRRR has the spatial 

displacement problem, this property also passes along to machine learning causing the reduced 

predictability.  

The pixel-level statistical results are plotted in Figure 4.4. As shown in the plot and Table 

4.4, RAP and HRRR have a very low correlation with benchmark data throughout the area, and 

AI nowcasts and AI hybrid predictions have a higher correlation. Deep learning predictions 

appear to create minor artifacts in multiple radial circle patterns on the temporal correlation with 
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the benchmark data. For Relative Bias (RB), the numerical modeling forecasts (RAP and HRRR) 

have most of the high RB concentrated at the southeastern corner, which is towards the storm 

core. This indicates overprediction of precipitation at the highest intensity cores for the 

numerical modeling forecasts. The artifact of the AI hybrid found in Figure 4.2 is magnified in 

the bias analysis, where the horizontal stripes of high RB values concentrate at the northern half 

of the map. In this study, RAP has lower RMSE than HRRR, despite the fact that the HRRR is a 

newer and higher-resolution version of RAP, and the large RMSE values are concentrated 

towards the storm core.  

 

Figure 4.4. The statistic results (CC, RB, and RMSE) at each pixel for RAP QPF, HRRR 

QPF, AI nowcast, and AI hybrid, compared to the benchmark precipitation (MRMS QPE) 

Based on the statistical analysis, the results indicate that there are significant differences 

between the precipitation forecasts and the benchmark, which should be carried through the 

CREST-iMAP simulations. The AI nowcasting method statistically matches the benchmark 
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except the magnitude, and the AI hybrid matches the magnitude but also carries the undesirable 

differences from the HRRR. 

4.3.2 Hydrological analysis 

The CREST-iMAP yields simulated hydrographs using forcing from the MRMS benchmark 

and all the precipitation forecasts from 15/08/2017 to 03/09/2017 at two USGS gauge locations 

at Cypress Creek and Spring Creek. Spring Creek is located at the northern part of the Spring 

basin, which includes an underdeveloped area and did not show too much overbank flow during 

Hurricane Harvey; while Cypress Creek is located at the southern part of the basin, across 

multiple developed urban areas, and had obvious overbank flow during Hurricane Harvey (Chen 

et al., 2020). The simulation results are plotted and listed in in Figure 4.5 and Table 4.5. 

 

Figure 4.5. The flowrate simulation during Hurricane Harvey at the Cypress Creek 

(southern stream) and Spring Creek (northern stream) 

In Figure 4.5, with the exception of the AI nowcasts, all precipitation forecasts generate a 

second flood peak at both Cypress and Spring creek, which was not observed by USGS stream 

gauges. As AI nowcasts underpredict the precipitation amounts and rates, they generate a smaller 

flood peak consequentially, but it has a NSCE (0.71) and CC (>0.9) with the USGS gauge data 

as shown in Table 4. The AI hybrid provides an undesirable flood forecast with NSCE less than 
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0.7 and positive PTE, which means the forecasted flood peak is later than the observed flood 

peak. The AI hybrid (plum line in Figure 4.5) carries some undesirable features from the HRRR, 

which causes a non-existent second flood peak. The NWP modeled QPFs produce less accurate 

flood prediction comparing to the deep-learning methods, in general. Particularly, RAP produces 

a negative NSCE at the Cypress Creek due to large overprediction. Overall, the precipitation 

forecasts cannot match the performance of the benchmark, which has the NSCE close to 0.9, CC 

close to 0.95, RMSE less than 100 m3/s, and small but negative PTE. The benchmark 

precipitation data (MRMS) is utilized in the FLASH project as the forcing data for the CREST-

EF5 model to produce the near-real-time streamflow (Flamig et al., 2020; Gourley et al., 2017). 

The FLASH project has shown its benefit as a supporting tool during Hurricane Harvey 

according to the NWS service assessment report (Murphy, 2018), therefore, with the 

consideration of the error propagated from the precipitation forecasts, the 1-hour lead-time flood 

prediction can be a very useful tool. Especially, the AI nowcast can prediction the flood timing 

accurately, so if the first responders know exactly when the flood is coming with hours of lead-

time, it is a successful step for flood prediction. 

As shown in the hydrological analysis, the current structure of using precipitation forecasts to 

drive CREST-iMAP has considerable value for the automated real-time flood prediction operation. 

Even though, no forecast data can provide a comparable flood prediction as MRMS benchmark 

observation, but the errors from the precipitation forecasts are expected and the prediction results 

do provide flood information with much longer lead-time. There is additional value from the AI 

nowcast method since it provides acceptable statistics despite the significant underprediction on 

magnitude. 
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Table 4.56. The hydrological analysis of precipitation forecasts and benchmark compared 

to the USGS stream gauge data 

  Cypress Creek 08069000 

  MRMS RAP HRRR AI Nowcast AI Hybrid 

NSCE 0.85 -0.05 0.66 0.71 0.44 

RB (%) 71.96 219.36 141.16 3.51 84.75 

CC 0.94 0.97 0.91 0.92 0.90 

RMSE (m3/s) 90 255 135 135 187 

Peak Error (m3/s) 301 834 219 -149 579 

Peak Time Error (hour) -6 16.75 56.5 -9.25 2 

 Spring Creek 08068500 

NSCE 0.98 0.50 0.48 0.71 0.67 

RB (%) 146.76 413.92 117.23 80.62 192.55 

CC 0.99 0.92 0.77 0.99 0.85 

RMSE (m3/s) 59 588 627 441 367 

Peak Error (m3/s) -298 340 -198 -1118 -544 

Peak Time Error (hour) -3.25 -11.25 -30.5 -2.75 11.5 

 

4.3.3 Flood extent analysis 

The CREST-iMAP can not only simulate the streamflow but also the 2D flood extent and 

flood depth. We take the maximum flood depth at every pixel through all the time steps to 

construct the maximum flood extent map for all precipitation forecasts and benchmark-forced 

simulations, which is shown in Figure 6. The binary statistical results are listed in in Table 4.6. 
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Figure 4.6. The 2D flood extents maps display the intersection of A) RAP QPF, B) HRRR 

QPF, C) AI nowcast, D) AI hybrid predictions with those from the benchmark flood map 

 

Table 4.6. The flood extent binary statistics and FEMA flood claim coverage results 

 
POD FAR CSI Covered FEMA claims Percentage, % 

RAP QPF 0.57 0.46 0.38 3157 30.18% 

HRRR QPF 0.62 0.47 0.40 3327 31.81% 

AI Nowcast 0.48 0.43 0.35 2581 24.68% 

AI Hybrid 0.63 0.47 0.40 3292 31.48% 

MRMS 1.00 0.00 1.00 9085 86.86% 

Although previous statistical and hydrological analysis shows drastic differences between the 

different precipitation forecasts, the maximum flood extent maps are very similar, and the binary 

statistics in Table 5 are very comparable, too. The AI nowcast is the only one that has a lower 

POD (0.48) and a lower CSI (0.35), which is due to its underestimation of precipitation amount 
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as shown in Table 1 and Figure 3. The CREST-iMAP can neutralize most of the differences 

between different precipitation forecasts to produce similar maximum flood maps since the 

dominant factor for the maximum flood extent is the total precipitation during the event. 

However, there are no successful predictions for the upper Cypress Creek (southwestern part of 

the map). All flood predictions other than the AI nowcasts can achieve a CSI of about 0.4 and 

POD about 0.6, which can still provide limited information and guidelines for future flooding. 

However, the over 45% false alarming could mislead preparatory action to the flood.  

There are 10,459 flood insurance claims within the Spring Basin, which the data included 

water damage, flood damage, water-related electrical damage, and property rupture or cracks due 

to water. Although not all of those claim locations were likely caused by being immersed in the 

accumulated stormwater, this FEMA flood insurance claims data can be a good indicator telling 

where the flood is located. By finding the number of claim cases that land within the maximum 

flood extent, the results simulated by different precipitation forecasts show around 30% 

successful prediction. Comparing to the benchmark flood extent (MRMS), the claim coverage 

reaches about 87%, so the flood extent predictions are still underperforming during Hurricane 

Harvey. 
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Figure 4.7. The half-hourly flood inundation time maps between the benchmark flood map 

(left) and the predictions (middle), as well as the time differences distribution (right) 

The analysis of the initial inundation (water depth > 5 cm) time is listed in Figure 4.7, where 

the color ramp represents the unified time steps, which is equivalent to 30 mins. The dark blue 

color represents the first day of the study period (25/08/2017 00:00) and the dark red color 

represents the end of the last day of the study period (29/08/2017 24:00). For example, in the 

figure, all maps show dark blue color as the center of the main streamlines, which represent the 

river channels that have water running at the beginning of the period. The bar plot on the right 

column of Figure 7 represents the distribution of the flood time difference between the flood 

prediction and the benchmark flood extent, where the red dashed line is the 0-difference line and 
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the black dashed line represents the mean differences. Negative values mean the predicted flood 

comes earlier than the benchmark and the positive value means the predicted flood comes later 

than the benchmark. 

For the benchmark flood map, most of the inundation occurs around 88 ~ 150 time-steps, 

which are late in the 26th to the morning of the 28th of August 2017. This result corresponds with 

the county-average precipitation results in Figure 3, where the benchmark (black line) shows the 

first peak of precipitation about 20 mm/hr around 1200 UTC on the 26th and two large rainfall 

peaks (30 mm/hr) on the 27th and early on the 28th of August. The flow dynamic analysis also 

picks up the overbank flow of the rivers where the color ramp changes from the center outward, 

from dark blue (flooded on 25th) to light green (flooded on 27th) then to dark red (flooded on 

29th), which represents the river experiencing multiple overbank flows throughout the study 

period. The flood prediction from the RAP and HRRR QPF show much more blue (earlier 

inundation) compared to the benchmark, which corresponds to the time when the RAP (red) and 

HRRR (blue) have their largest peak precipitation rates (46 mm/hr and 34 mm/hr respectively) 

on the 26th of August (Figure 4.3). These extreme precipitation rates can cause flood inundation 

immediately, which leads to an earlier inundation than the benchmark. Since the HRRR has 

higher spatial resolution and greater peak precipitation rates than the RAP presented in Table 1, 

the initial inundation time map of the HRRR has more late (red) inundation along the river 

channels than RAP predicted inundation time, which indicates that there is more overbank flood 

with reasonable time lags represented in the HRRR than thje RAP. The AI nowcast-predicted 

inundation time map shows more light blue (32 hr) and green (48 hr) compared to other 

predictions, which is caused by the low precipitation intensity that caused the delayed water 

accumulation on the surface. The AI hybrid prediction shows earlier inundation than the 



118 

 

benchmark, which is very similar to the HRRR prediction. Overall, AI hybrid and HRRR 

predictions have over 70% of wet pixels (74% and 72% respectively) that are flooded earlier 

than the benchmark, and RAP prediction has 66% of wet pixels flooded earlier than the 

benchmark. Even with the significant underprediction of precipitation rate from AI nowcast, its 

flood prediction has about 50% of wet pixels flooded earlier than the benchmark. 

The predicted flood extent provides slightly more useful information than the hydrograph 

predictions. Since the maximum flood extent reflects the total precipitation, the flood map 

predicted by the HRRR and RAP QPFs can provide information about the location of possible 

fluvial and pluvial floods, however, the flood prediction times are not reliable. Machine learning 

prediction methods show no advantage in the flood extent analysis, as much of the differences of 

precipitation forecasts are smoothed by the CREST-iMAP model. 

4.3.4 Flood depth analysis 

50 WHM sites are located in the basin, where the water depth values are extracted from all 

flood maps including the benchmark and predicted flood maps. In Figure 8, the scatter plot of the 

benchmark flood depth and predicted flood depth against the WHM data is presented. As the 

previous study indicates the error of simulated Harvey flood depth is up to 1 meter (Wing et al., 

2019), it is no surprise that the benchmark (black dots) cannot align perfectly along the diagonal, 

and the predicted flood depths only perform worse. As shown in Figure 8, almost all predicted 

flood depths are below the diagonal except one location that is predicted by HRRR QPF with 

CREST-iMAP (blue dots). Since AI nowcast underpredicts the precipitation and associated 

flood, there are 38 out of 50 WHM sites that are predicted to be not inundated under this 

scenario. Other above-the-diagonal dots are the ones that WHM data shows 0 and the flood 
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predictions indicate positive values. Overall, all the flood predictions underpredict the inundation 

depth and provide little value for flooding emergency responses. 

 

Figure 4.8. the scatter plot of flood inundation depths of benchmark flood map and 

predicted flood map against USGS WHM data 

The error distributions of inundation depths are plotted in Figure 9. The plots show that no 

flood prediction error is as centered to 0 as the benchmark estimation (MRMS). Second to the 

benchmark, the RAP QPF can lead to a predicted flood depth that is slightly better than HRRR 

QPFs and the AI hybrid method-predicted flood depths. This result, again, demonstrates the 

similarity of HRRR QPF and AI hybrid forecasting, where their flood depth prediction errors are 

almost identical. It raises the speculation that using CDF-matching technique to hybrid machine 

learning and numerical modeling might pick up too much unnecessary information from the 

target dataset (HRRR in this study). 
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Figure 4.9. the flood depth error distribution between USGS WHMs and benchmark flood 

map (MRMS QPE) and predicted flood maps of RAP QPF, HRRR QPF, AI nowcast, and 

AI hybrid 

In general, using RAP QPF, HRRR QPF, AI nowcast, and AI hybrid forecast can only 

provide limited information about the upcoming flood inundation depths for an extreme event. 

However, in the results, the AI nowcast precipitation forecast shows acceptable statistics 

compared with MRMS QPE except the rain-rate magnitude, so this method has the potential to 

yield good predictions if the extreme precipitation intensities could be properly forecasted. Even 

though the AI hybrid method in this study fails, other exploration can be done to improve the AI 

nowcasting products for extreme events. 
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4.4 Discussion 

The NWP-based QPFs show poor predictability in precipitation spatial and temporal 

distribution, even though their predicted total quantity is relatively accurate. One possible cause 

could be the selection of the forecasted rain fields, which we select the +1-hour lead time 

forecasts while RAP and HRRR can forecast up to +18 hours. The study of Seo et al. (2018) 

suggests that the RAP and HRRR QPFs perform better with +4 ~ +6 hour lead time, indicating 

that the +1-hour forecasts are not necessarily the most reliable QPF product. However, due to the 

limited computational resources, the requirement of hyperresolution precipitation for 

hydrological forecast, and the heavy computational requirements of AI machine learning, the AI 

methods will not likely forecast more than 3 hours of lead time (only limited to 1-hour lead time 

in this study). Therefore, the underperformance of numerical modeling forecasts can be excused, 

and the predictability study over different lead-times will be conducted in the future. 

Unfortunately, the well-known QPF issues still exist, such as the underforecasting the convective 

system rainfall (RAP) and spatial displacement errors (HRRR), which are likely to be present 

with the other forecast periods.  

The AI nowcast method lacks the ability to forecast the extreme precipitation event, such as 

Hurricane Harvey. The AI model is trained by all precipitation events in the Houston area from 

2015 to 2019 that are listed in NOAA storm report and caused urban flooding, except Hurricane 

Harvey, which means it is trained specifically for high-intensity precipitation scenarios. But the 

results indicate the method cannot reproduce the precipitation intensity of Hurricane Harvey and 

provides no useful information for local flood prediction. Based on the study done by Google 

Research, the U-Net machine learning method outperforms HRRR QPF and the Optical Flow 

method using precision-recall curve analysis (Agrawal et al., 2019). This statement still holds in 
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this case study, however, as a binary analysis, the lack of predicted precipitation intensity is not 

revealed in the precision-recall curve analysis. Although the precision-recall curve is a common 

and powerful scoring tool for machine learning, this test is not sufficient for hydrological and 

hydrometeorological studies, since the precipitation intensity is as important, if not more, as its 

spatial-temporal placement. Therefore, deep learning methods for hydrological prediction still 

require much effort from the scientific community to improve the technology. 

As a preliminary attempt to combine the results of AI nowcasts and numerical model outputs, 

the CDF-matching technique is used in this study to produce the AI hybrid forecasts, but failed 

to perform well in this case study. It has been shown in the previous section that the technique 

creates artifacts and border effects, but it also shows that the technique alters the spatial-temporal 

distribution of AI nowcasts towards HRRR, which leads to the similarities between HRRR and 

AI hybrid in section 3.3 and 3.4. As the AI nowcast captures the spatial-temporal pattern of 

MRMS estimation very well, increasing the precipitation intensity but not changing its pattern 

could be a future direction for machine-learning nowcasting approaches.  

Lastly, the maximum flood map analysis using CREST-iMAP neutralizes or smooths much 

of the differences between precipitation forecasts as the accumulated precipitation dictates the 

maximum flood extent. Since the RAP and HRRR QPFs have a reasonable forecast of total 

precipitation amount over the region, the flood extent analysis results for numerical modeling are 

not completely unacceptable. Therefore, even with certain missing inundation scenarios, the 

QPF+CREAT-iMAP could still potentially provide preliminary information about the final 

outcome of a future flood event. 
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4.5 Conclusion 

The ability of precipitation forecasts to predict flood discharges, inundation extent, and flood 

depth has been tested using numerically modeled QPFs (RAP and HRRR) and deep learning 

nowcasts (AI nowcast and AI hybrid) with +1-hour ahead lead time. None of the precipitation 

forecasts can provide comparable flood information as the radar-based benchmark (MRMS). 

However, as the total precipitation amount dictates the maximum flood extend, numerical 

weather prediction model QPFs can provide general information about inundation outcomes, 

where the HRRR slightly outperforms the RAP. The AI nowcast is incapable to capture the 

precipitation intensity of Hurricane Harvey, which indicates the potential inability of the method, 

as well as the inability of common machine learning performance tests to reveal such 

information. 

The AI nowcast method can forecast the spatial-temporal pattern and extent of the 

precipitation; it will be the future objective to combine the AI nowcasts and QPFs using different 

methods, as the CDF-matching technique fails to improve the performance of the hybrid 

approach evaluated in this study. Since the NWP spatial displacement errors underly most of the 

QPF total error, taking advantage of spatial accuracy of AI nowcasts and the intensity accuracy 

of numerical modeling can be a promising research path. Further, flood predictability analysis 

with longer lead-time is needed to study the possible best combination of QPF+CREST-iMAP to 

provide the best possible flood forecast for local emergency response agencies. 
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Chapter 5. Overall Conclusion 

Climate change is anticipated to bring more frequent and severe flooding around the globe. 

Therefore, tools are necessary to provide accurate and reliable flood prediction with enough lead-

time for responses, which is, and will be the constant request from the society to protect public 

properties and human lives. Therefore, consistent effort is needed from past decades and 

continuously to the future in real time operational flood monitoring and prediction. The recent 

improvement of remote-sensing technology not only improves the coverage of flood monitoring, 

but also increases the accuracy of flood simulation. Moreover, improvement of precipitation 

forecasting technologies has been significant in recent years, which has higher accuracy, higher 

spatial resolution, and temporal resolution that is possible for hydrological models to predict 

flooding with longer lead time. In this work, different remote sensing precipitation estimates and 

different precipitation forecasting products are evaluated to find the best practice for the potential 

real-time operational flood predictions for an extreme event. Meanwhile, to expand the efficacy 

of the flood prediction modeling, this work develops a comprehensive, hydrologic and hydraulic 

coupled flood prediction model that can provide multi-level information including but not 

limited to the streamflow rate, flood extent, overland flow speed and direction, and flood depth. 

The hypothesis A is confirmed by the study in Chapter 2 regarding the advanced remote 

sensing technologies can indeed provide accurate precipitation observation to generate very 

accurate flood simulations using CREST-EF5 during the extreme event, which can even 

compensate the cases when the measuring instruments are damaged or overbank flood occurs. 

Chapter 2 also shows that the MRMS QPE can provide high accuracy on flood simulation, and 

the GPM IMERG provides acceptable flood simulation, too, while the uncalibrated products 

performed better than calibrated products for the unprecedented event. The CREST-EF5 model 
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is once-again proven to be an effective hydrological model that is capable for potential 

applications beyond CONUS. 

Built on the knowledge from Chapter 2, the CREST model is coupled with ANUGA model 

to simulate the flood during Hurricane Harvey, and the simulation results are compared with 

three other operational flood-mapping systems in the world. The hypothesis B is confirmed by 

the study in Chapter 3, where the CREST-iMAP model is developed and tested. The results not 

only show the success of simulating the flood caused by Hurricane Harvey that is comparable to 

or better than three other prestigious real-time flood monitoring systems in the world, but also 

takes the advantage of the fully solved St. Venant equation, which allows it to bypass certain 

data requirements that are commonly needed for 2D flood simulation, such as channel geometry. 

Therefore, the CREST-iMAP can potentially be applied to many locations by utilizing the 

remote sensing data and existing CREST-EF5 parameters, regardless of the limitation of local 

data supply. The CREST-iMAP has the potential to be a nested system of CREST-EF5 for flood 

monitoring when the flood warning alerts, which can be implemented globally to provide 

comprehensive flood predictions and early warning. 

The proposed hypothesis C is confirmed by the study described in Chapter 4. First, the 

CREST-iMAP model is proven to be able to neutralize a portion of the uncertainties from the 

precipitation forecasts. The NWP products with CREST-iMAP can predict about 60% of 

maximum flood extent (POD) of the benchmark with 1-hour lead-time, which can provide some 

information about the upcoming flood for the local emergency responders and planners. 

Moreover, the deep learning precipitation nowcast shows its advantage to eliminate any well-

known displacement error from NWP models, which leads to a possible future study to combine 

the advantages of deep learning precipitation nowcasting and NWP forecast. 
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In the future, the CREST-iMAP simulation can be extended to the entire Hurricane Harvey 

impact area and utilize the economic analysis to further test the scaling-up capability. It can also 

be implemented as a nested model in the FLASH project, which is designed to be triggered when 

the flood warning is issued at concerning locations. It is also a promising research track in the 

future to improve the NWP and deep learning forecast, which can potentially produce more 

accurate flood prediction by utilize the forecast success of the accurate precipitation intensity 

from NWP model and the lack of displacement error from deep learning model. 


