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Abstract 

In this thesis I present a pipeline for the instance segmentation of vertebral bodies 

from joint CT/FLT-PET image volumes that have been purposefully under-sampled 

along the axial direction to limit radiation exposure to vulnerable HSCT patients. The 

under-sampled image data makes the segmentation of individual vertebral bodies a 

challenging task, as the boundaries between the vertebrae in the thoracic and cervical 

spine regions are not well resolved in the CT modality, escaping detection by both 

humans and algorithms. I train a multi-view, multi-class U-Net to perform semantic 

segmentation of the vertebral body, sternum, and pelvis object classes. These bone 

structures contain marrow cavities that, when viewed in the FLT-PET modality, allow 

us to investigate hematopoietic cellular proliferation in HSCT patients non-invasively. 

The proposed convnet model achieves a Dice score of 0.9245 for the vertebral body object 

class and shows qualitatively similar performance on the pelvis and sternum object 

classes. The final instance segmentation is realized by combining the initial vertebral 

body semantic segmentation with the associated FLT-PET image data, where the 

vertebral boundaries become well-resolved by the 28th day post-transplant. The vertebral 

boundary detection algorithm is a hand-crafted spatial filter that enforces vertebra span 

as an anatomical prior, and it performs similar to a human for the detection of all but 

one vertebral boundary in the entirety of the HSCT patient dataset. In addition to the 

segmentation model, I propose, design, and test a “drop-in” replacement up-sampling 

module that allows state-of-the-art super-resolution convnets to be used for purely 

asymmetric upscaling tasks (tasks where only one image dimension is scaled while the 

other is held to unity). While the asymmetric SR convnet I develop falls short of the 

initial goal, where it was to be used to enhance the unresolved vertebral boundaries of 

the under-sampled CT image data, it does objectively upscale medical image data more 

accurately than naïve interpolation methods and may be useful as a pre-processing step 

for other medical imaging tasks involving anisotropic pixels or voxels.  
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Chapter 1 

Introduction 

Over the past decade the convolutional neural network has proliferated to become 

an essential component – and often the essential component – in state-of-the-art solutions 

to certain digital image processing and computer vision tasks such as object detection [1] 

and image segmentation [2]. In this thesis I deploy a few of these networks towards a 

specific application in the medical imaging domain: the segmentation of individual 

vertebral bodies, pelvis, and sternum bone structures from under-sampled dual-modality 

CT/PET volumes of hematopoietic stem cell transplant (HSCT) patients. In one context, 

“under-sampled” means these image volumes have a lower spatial sampling rate in one 

dimension than the others, creating non-cubic voxels. In another context, “under-

sampled” means that the image volumes are not sampled at a high enough rate to 

adequately represent the phenomena of interest. Both contexts apply to this problem. 

CT and PET medical image volumes are captured by taking a sequence of 2D scans, 

typically along the length of the body. Commonly, the sampling rate along the length of 

the body matches the span of the pixels in the 2D scans, creating isotropic voxels that 

represent discrete cubic regions of space [3]. Sometimes, however, it is necessary to limit 

the radiation exposure to a vulnerable patient, such as one undergoing hematopoietic 

stem cell transplantation [4]. One way to limit radiation exposure is by under-sampling 

along the length of the body, which results in anisotropic voxels in the shape of 

rectangular prisms instead of cubes. Under-sampling in this way presents a set of unique 

challenges to the medical imaging practitioner undertaking a task that, by typical 

methods, requires a higher resolution. In many respects overcoming the obstacle of low 

resolution is the premise of this thesis: I show in Chapter 3 that even a human has trouble 

detecting the individual boundaries between the vertebrae using under-sampled CT 

image volume data; in Chapter 4 I attempt to increase the resolution along the under-

sampled axis by developing a method for asymmetric super-resolution; and in Chapter 

5, I overcome the low resolution by using PET image volumes to detect the vertebral 

boundaries that were otherwise undetectable in the CT modality. Crucially, the PET 

image volumes I use were obtained using the uncommon “FLT” radiotracer [5] (described 

in Section 2.1.2) which is actively being studied for potential clinical use in HSCT [6, 7]. 
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The end result is a robust method of instance segmentation for the vertebral bodies of 

post- hematopoietic stem cell transplant patients from dual-modality CT/PET image 

volumes. The convolutional neural network -based semantic segmentation method I 

present in Chapter 3 is also able to segment the pelvis and sternum bone structures. 

1.1 Motivation for This Work 

This thesis is primarily motivated by ongoing research that studies cell proliferation 

as it occurs in the bone marrow compartments of HSCT patients by using PET imaging 

in combination with the uncommon FLT radiotracer [5, 6, 7]. Previously, a similar 

imaging analysis of marrow cavities was conducted by Agool et. al for patients with 

aplastic anemia [8]. PET imaging of the FLT radiotracer provides us with a non-invasive 

tool for examining hematopoietic stem cell (HSC) proliferation within bone marrow 

cavities post-transplant [5]. In contrast to the typical method of examining the body’s 

marrow cavities (i.e., targeted invasive biopsies), the cell proliferation measurements 

obtained by FLT-PET imaging are an informational boon. The FLT radiotracer offers a 

representation of hematopoietic cellular proliferation and makes it possible to track the 

patterns of HSC proliferation towards engraftment throughout the entire body [7]. FLT 

was introduced as a PET imaging radiotracer in 1998 by Shields et. al [9] and has since 

been used in various preclinical trials, mostly in oncology [5].  

There is significant potential for improving HSCT patient outcomes through FLT-

PET imaging. Williams et. al have shown that FLT-PET imaging can provide detection 

of engraftment early enough to allow for the administration of a second HSCT in cases 

of engraftment failure [6]. In addition, a potentially life-saving research question (which 

is regrettably not answered in this thesis) is: can analysis of spatiotemporal cell 

proliferation patterns leading to engraftment be used to predict HSCT patient outcomes 

post-engraftment? Towards answering this question, it may help to have more granular 

information about stem cell proliferation activity within the body, and the bone marrow 

compartments within the vertebra, pelvis, and sternum are areas where cell proliferation 

is typically high post-transplant [6]. 

Presently, this post-transplant FLT-PET data is assessed in a labor-intensive process 

where expert physicians locate, draw, and view regions of interest (ROIs) in 2D using 

special medical imaging software packages. This labor requirement makes analysis of 

volumetric structures, such as bone, difficult or impossible in clinical practice. Automatic 

segmentation and visualization of 3D bone marrow cavity ROIs throughout the entire 

body, when combined with the (preclinical, in this setting) FLT radiotracer, would allow 
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medical researchers or physicians to study the cell proliferation patterns of HSCT 

patients in finer detail; and with much less time invested.  

1.2 Contributions and Organization 

In this thesis I provide a system for robust automated instance segmentation of the 

individual vertebral bodies using joint CT and FLT-PET image volumes. The system is 

also able to segment the pelvis and sternum bone structures. The patient image volumes 

used in this thesis are under-sampled in the axial direction. The practice of under-

sampling is used to limit the total radiation exposure to patients, in this case during the 

vulnerable period post-HSCT of recovery to engraftment [6]. The poor resolution along 

the axial direction makes the vertebral body instance segmentation task considerably 

more challenging. In many respects this thesis can be viewed as an extension to related 

work which used the same CT/FLT-PET volume data [10, 11]. These methods will be 

differentiated from my contributions in Chapter 2, along with a brief review of some 

relevant medical terminology.  

Convolutional neural networks (or informally, convnets) play a central role in this 

thesis. I present two distinct convnets for image processing tasks: A semantic 

segmentation convnet for the automatic segmentation of bone structure regions of 

interest (Chapter 3), and a convnet for learned asymmetric super-resolution to more 

accurately upscale under-sampled medical images (Chapter 4). Background on these 

artificial neural network architectures is provided in Chapter 2. Chapter 2 also includes 

background on the image processing tasks of image segmentation and super-resolution, 

which are two topics explored as part of my original contributions in the following 

chapters. 

1.2.1 Multi-View Ensemble 2D U-Net Model 

I use CT image volumes for an initial semantic segmentation of the vertebral body, 

pelvis, and sternum bone structure ROIs. For this I train a semantic segmentation 

convnet (specifically, a modified U-Net [12]). Presently, convnets are widely used for 

medical image segmentation tasks, and U-Net has proven to be an effective convnet 

architecture when paired with data augmentation on smaller training datasets [13, 14, 

15, 16]. I was fortunate to inherit ground-truth masks (heretofore unused in publication) 

for the vertebral body, pelvis, and sternum bone structures for a small dataset of CT 

image volumes [17]. I use these ground-truth annotations to train the convnet to segment 

the regions of interest from full body 3D image volumes. The vertebral bodies, pelvis and 
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sternum are ROIs with high levels of hematopoietic stem cell proliferation post-HSCT, 

and these segmentations are used in Chapter 5 for extraction and analysis of PET data.  

The current best-in-class convnets for semantic segmentation of image volume data 

use computationally expensive 3D convolutional layers [18, 19]. The acceleration 

hardware used for the convnet training and inference in this thesis is a Nvidia GTX 1070, 

which has 8GB of video RAM (VRAM) available for training. This computational 

limitation puts the 3D semantic segmentation convnets just out of reach. Instead, I use 

a multi-view ensemble of 2D U-Nets to increase the accuracy of the segmentation by 

incorporating information from more than one anatomical plane. In this ensemble 

method, the results of three different 2D U-Nets are combined to form a single prediction 

volume. Each of the three U-Nets has been trained on scans from a different “view” – in 

this case the views are the sagittal, axial, and coronal anatomical planes. This approach 

is discussed in detail in Chapter 3. The ensemble method effectively segments the 

vertebral body, pelvis, and sternum bone structure object classes. 

1.2.2 Asymmetric Upsampling Module for Super-Resolution Convnets 

Following the initial semantic segmentation, we can achieve a more granular 

segmentation by separating the individual vertebral bodies into distinct 3D objects 

(instance segmentation). The poor resolution and high level of noise along the axial 

direction of the CT volumes make this task particularly challenging. Many of the 

vertebrae above the lumbar region are impossible for even a human to differentiate 

visually, as is exhibited by the lack of separation between vertebra in the human-labelled 

ground-truth segmentation masks for the vertebral body class. While convnets have 

achieved excellent (and in some cases super-human) performance on computer vision 

tasks which humans find intuitive, we generally do not expect them to perform well on 

tasks that are nearly impossible for humans.  

To increase the poor resolution of the CT volumes along the axial direction, I explore 

the use of single-image super-resolution (SR) as a preprocessing step to the semantic 

segmentation. For this, my working hypothesis is that SR might be able to reconstruct 

enough details in the spinal regions of the CT image volumes to allow individual 

vertebrae to be separable, by human or machine. The CT volumes of the HSCT patient 

dataset are under-sampled such that the voxels have an anisotropic size of approximately 

1 × 1 × 3 mm. I endeavor to use SR to increase the resolution in the third (axial) 

dimension to create inferred isotropic voxels of size 1 × 1 × 1 mm by sequentially 

applying an SR algorithm to 2D image slices.  
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Convnet architectures have recently achieved state-of-the-art performance in image 

SR [20]. These models have focused on symmetric scaling factors where both dimensions 

of an image are scaled equally. Few of them have the capability to perform SR with an 

asymmetric scaling – one which resizes the dimensions of an image with a different scaling 

factor for each dimension. In fact, I am aware of only one example of a convnet for 

asymmetric scaling factors that has been reported in the literature; but it focuses on 

generally asymmetric scaling factors where both dimensions are scaled at different factors 

and does not test the case where one dimension is not scaled [21]. Purely asymmetric 

upscaling (where only a single dimension is scaled while the other is held to unity) is 

required for the intended use case of super-resolving the under-sampled image volumes. 

To address this I propose, implement, and test a “drop-in” purely asymmetric upsampling 

module based on transposed convolutional layers that can be used in place of the default 

sub-pixel [22] symmetric upsampling modules that are used in most of the state-of-the-

art SR convnets [20]. This asymmetric upsampling module is discussed in detail in 

Chapter 4. 

1.2.3 Vertebral Boundary Detection Algorithm 

While the asymmetric SR convnet achieves good performance on the asymmetric SR 

task compared to the baseline of naïve interpolation, it does not reconstruct enough detail 

of the spine along the axial direction to allow segmentation of individual vertebral bodies 

from the under-sampled CT volume image data. However, the boundaries between the 

vertebral bodies that are undetectable in the under-sampled CT modality are found to 

be well-resolved in the under-sampled FLT-PET modality. The reason the boundaries 

between the vertebral bodies are visible in the FLT-PET but not CT is at least twofold. 

First, the FLT-PET data was captured at a slightly higher resolution in the axial 

dimension than the CT data. Put another way, it is “less under-sampled”. Second, the 

cell proliferation activity that the FLT-PET makes visible has a smaller spatial extent 

than the vertebral body bone in which it resides. I develop an algorithm that enforces 

expected vertebrae size as an anatomical prior to search for the vertebral boundaries 

from FLT-PET image volume data. The method is very simple. After reducing the FLT-

PET data to a single dimension along the axial direction, the algorithm iteratively locates 

vertebral boundaries one-at-a-time by searching the signal for the minimum within a 

window defined by the vertebral span prior. This approach has great performance on the 

HSCT patient dataset for detecting the lumbar and thoracic vertebral boundaries. The 

methods and the algorithm are discussed in Chapter 5. 
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1.2.4 3D Visualization Tool for Segmented FLT-PET ROIs 

Finally, I develop some tools for generating visualizations of the FLT-PET data in 

the vertebral column, the individual vertebral bodies, the pelvis, and the sternum. These 

visualizations use translucent isosurfaces to display levels of cell proliferation activity, 

giving a sense of the overall proliferation patterns in 3D. The levels of the various 

isosurfaces can be determined programmatically from the distribution of FLT-PET 

intensity values or they can be set to specific target values. The visualizations have the 

potential to assist clinicians by providing a more comprehensive view of the FLT-PET 

data with less labor than current commercial software, and in the future may also 

facilitate fully automated assessment of HSCT recovery to engraftment. These results 

are presented in Chapter 5. 

1.2.5 List of Specific Contributions 

Below I provide a succinct list of my original contributions contained in this thesis. 

• A multi-view 2D ensemble multi-class U-Net model for the semantic 

segmentation of the column of vertebral bodies, the pelvis, and the sternum from 

CT image data. The flexibility of the U-Net model to predict multiple complex 

unconnected bone structures is an improvement over the previous methods, 

which were hand-crafted to segment only the vertebral bodies.  

• An asymmetric upsampling module based on transposed convolutional layers 

that can be easily “dropped in” to many existing state-of-the-art single-image SR 

convnets to enable purely asymmetric super-resolution. Asymmetric SR convnets 

may be useful as a preprocessing step in place of naïve interpolation methods to 

reconstruct under-sampled medical images with anisotropic voxels to higher-

resolution isotropic volumes.  

• A boundary detection algorithm that enforces a vertebra size prior to detect the 

boundaries between the individual vertebrae in under-sampled CT/FLT-PET 

volumes. When combined with the vertebral body column segmentation of 

Chapter 3 this allows for the instance segmentation of vertebral bodies, even in 

cases where a human cannot distinguish the vertebral boundaries in the CT 

modality.  

• A tool for automatically generating 3D visualizations based on isosurfaces of the 

FLT-PET image volume data in segmented ROIs. The visualizations may help 

medical researchers analyze the FLT-PET data in greater detail. 
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Next, in Chapter 2, I provide the necessary background for these contributions and a 

review of related work.  
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Chapter 2 

Background 

In this Chapter I provide the required background to understand and motivate the 

medical image segmentation tasks undertaken in this thesis, starting with a review of the 

medical terminology. An introduction to convolutional neural networks is also provided, 

followed by sections dedicated to the image segmentation and super-resolution tasks. 

Previous works related to the image segmentation and super-resolution tasks described 

in this thesis are reviewed in Section 2.3 and Section 2.4, respectively. 

2.1 Anatomical, Biological, and Medical Imaging Terminology 

2.1.1 Hematopoietic Stem Cell Transplantation (HSCT) 

Hematopoietic stem cells (HSCs) act as progenitors for all other types of blood cells 

in a process called definitive hematopoiesis [22]. In definitive hematopoiesis, an HSC 

differentiates into the various specialized blood cell and renews itself through asymmetric 

division. In this way the hematopoietic system produces new blood cells while 

maintaining the population of HSCs [23]. Hematopoiesis takes place in the bone marrow 

– semi-solid tissue found within cancellous (“porous”) bone regions. Within the vertebrae, 

the cancellous bone where HSCs are found is called the vertebral body. 

Hematopoietic stem cell transplantation is a medical procedure that seeks to 

regenerate functional bone marrow in patients by intravenous injection of HSCs [24]. It 

is a high-risk procedure used to treat a variety of life-threatening conditions. The most 

common applications for HSCT are immune deficiencies and certain malignancies 

occurring in the bone marrow or blood, such as leukemias [24]. In the latter cases HSCT 

allows patients to recover from the use of myeloablative (“high-dose”) radiation and/or 

chemotherapy, where high-dose radiation treatments ablate a patient’s bone marrow and 

HSCT is used regenerate it. Since the inception of HSCT, applications for the procedure 

have expanded to include marrow failure syndromes and congenital red cell disorders 

[24]. A successful engraftment is the primary goal of HSCT. Engraftment has occurred 

when the donor HSCs have proliferated to the extent that they can self-sustain long term 
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hematopoiesis within the body’s marrow compartments (a threshold for which there are 

various practical definitions) [25].  

2.1.2 3'-Deoxy-3'-[18F]Fluorothymidine ([18F]FLT) 

[18F]FLT, or in this thesis simply FLT, is a radiotracer used in conjunction with 

positron emission tomography (PET) to measure hematopoietic cell proliferation non-

invasively [9]. Cell proliferation is the process by which a cell grows and divides, 

producing two daughter cells. In some preclinical trials for cancer research FLT has been 

used as an alternative to the more common radiotracer 2-[18F]-fluoro-2-deoxy-D-glucose 

([18F]FDG), which measures the cellular metabolism in the form of glucose uptake [5]. In 

contrast to FDG, FLT offers a granular, more exacting view of hematopoietic cell-

proliferation and does not accumulate in metabolically active organs [5]. Both 

radiotracers, FLT and FDG, can be measured by PET and then normalized to units of 

standardized uptake value (SUV). SUV is the ratio of the radiotracer activity per unit 

volume to the average radiotracer activity of the entire body [26]. The calculation of 

SUV is non-trivial and is susceptible to various sources of error [27]. Depending on what 

radiotracer is used (i.e., FLT, FDG, or another radiotracer), SUV represents the activity 

level of different cellular mechanisms. In the medical research literature SUV is commonly 

associated with FDG, but that is not the case in this thesis, where the FLT radiotracer 

is used to measure hematopoietic cell proliferation [6]. For this thesis, SUV normalization 

of the FLT-PET scans of the patient dataset has been already determined by the work 

of Williams et. al [6], and the “FLT-PET” volumes are already in units of SUV (i.e., 

each voxel is valued according to the SUV of the FLT radiotracer for the anatomical 

volume it represents). 

2.1.3 Anatomical Planes 

In this thesis the terms axial, sagittal, and coronal are used to describe the standard 

anatomical planes that bisect a human body. The axial plane bisects a human between 

the head and the toes, the sagittal plane between the eyes, and the coronal plane bisects 

the “front” from the “back”. Examples of the three planes are shown in Figure 1. 

Sometimes I will refer to the axial, sagittal, or coronal “axis” or “direction”. This should 

be taken to mean “the axis normal to the anatomical plane” and is meant to spare myself 

and the reader from having to keep track of an additional handful of terms used to 

describe anatomical direction that are more descriptive than required for this thesis. 
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Figure 1. From left to right, CT scans from the axial, sagittal, and coronal anatomical planes. Images 

sliced from the VerSe 2019 dataset [28, 29, 30]. 

2.1.4 The Spine and Vertebrae 

Image segmentation of the spine plays a central role in this thesis. The bottom-most 

five vertebrae in the spine are referred to as lumbar vertebrae and are labelled upwards 

starting above the coccyx (“tailbone”) as: L5, L4, …, L1. Following the lumbar vertebrae 

are the twelve thoracic vertebrae labelled upwards as: T12, T11, …, T1. Last are the 

cervical vertebrae, of which there are seven, similarly labelled upwards as: C7, C6, …, 

C1. The size, shape, and even structure of each vertebra varies. Figure 2 shows an 

example of a lumbar vertebra. This thesis is concerned mostly with the segmentation of 

the vertebral bodies; these contain cancellous bone tissue and, in healthy living 

vertebrates, the bone marrow [6]. 

2.2 Artificial and Convolutional Neural Networks 

Recently the deep convolutional neural network (or commonly, convnet) has 

achieved state-of-the-art performance on many computer vision tasks that can be 

formulated in terms of “spatial pattern recognition” – tasks like object detection [31] and 

image segmentation [2]. Convnets are a specialized deep artificial neural network that 

incorporates convolutional layers. A comprehensive introduction to the deep artificial 

neural network is provided by Goodfellow et. al [32], but here I will focus on the concepts 

most relevant to the convolutional neural networks used in this thesis.  

Artificial neural networks (ANNs) are often used for supervised machine learning. In 

supervised learning a model is trained by presenting a training set containing examples 

of inputs and their associated outputs (or targets) to the learning algorithm [32]. When  



11 
 

Figure 2. An example lumbar vertebra. The vertebral body is labelled “Body”. Illustration from “Anatomy 
of the Human Body” [33]. 

“training” a supervised ANN, the algorithm iteratively makes predictions (or inferences) 

which are graded against the target by a performance-measuring loss (or cost) function, 

and the measured loss is used to update the numerical parameters that the learning 

algorithm uses to make predictions. The goal of the training process is the reduce the 

generalization error (the error the model yields on unseen data) by minimizing the 

training error [32]. During training, the generalization error is often tracked by 

intermittently inferencing a validation set that is unseen by the training algorithm. A 

test set can be held in reserve to test the final model on unseen data. 

2.2.1 Deep Artificial Neural Networks 

A deep artificial neural network is a multi-layered computational structure for 

machine learning that iteratively and incrementally learns representations (or features) 

from a distribution of inputs and maps these features to an output. The fundamental 

unit of computation in an ANN is the artificial neuron, the function of which can be 

considered a weak analogue to that of the biological neuron [32]. In the most typical case 

the artificial neuron ingests an input vector, computes an inner product with the learned 

parameters (also commonly called weights), applies a learned bias and nonlinear 

activation function, and outputs the result. Formally, the output ℎ of an artificial neuron 

with input vector �, nonlinear activation function �, weights vector � and bias b is 

given by [32] 

ℎ(�) = �(�� � +  �). (1) 
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The neurons of an ANN are most often grouped together in N-dimensional 

interconnected layers, and layers between the input and output layers of a neural network 

are called hidden layers [32]. The number of hidden layers is often referred to as the 

“depth” of the network. The state-of-the-art artificial neural networks being developed 

presently typically have many hidden layers (e.g., ResNet-152 with up to 152 hidden 

layers [34], RCAN with over 400 hidden layers [35]). These layers can be connected to 

each other’s neurons in different ways and by different operations, giving rise to a 

taxonomy of different types of layers and connections [36]. Not all layers contain 

learnable parameters. Pooling layers are an example of a layer with zero learnable 

parameters [37]. A pooling layer reduces the dimensionality of the preceding layer by 

performing an operation (average, max, etc.) on subsets of the preceding layer’s outputs. 

A particular configuration of layers and the operations which connect them is commonly 

referred to as a deep neural network architecture [32]. 

It is the incorporation of the nonlinear activation function � that allows the neural 

network to represent complex nonlinear functions [32]. Historically, smooth and 

saturating activation functions such as the sigmoid and hyperbolic tangent have been 

used for the activation of an ANN’s neurons. However, presently the rectified linear unit 

(ReLU) and its variants are the recommended practice [38]. The basic ReLU is a simple 

piecewise function that returns 0 for negative arguments and returns identity for positive 

arguments [39].  

2.2.2 Loss, Optimization, and Backpropagation 

The ability of a modern neural network to learn effective representations, or features, 

is enabled by gradient-based optimization. Optimization in ANNs involves iteratively 

minimizing a loss function (also commonly called a cost or objective function) [32]. The 

choice of loss function will depend on the task [40, 41]. It is common that the 

mathematical representation of performance on the true task is not suited for iterative-

based optimization methods like those used for training neural networks [32]. The goal 

in such cases is to find a suitable proxy for the true loss whereby minimizing the proxy 

function generally increases the performance on the true task. Some common loss 

functions (often used as proxies) include L1 loss, L2 loss, log loss (also called cross entropy 

loss), and hinge loss [40]. There are a multitude of specialized loss functions found in the 

neural network literature. The loss functions used in this thesis will be introduced as 

they arise so that they may be better understood with more context.  
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Optimization has been an active area of research alongside the recent deep learning 

boom. The focus of this research has been to get models to converge more consistently, 

faster, and towards lower minima during training [42, 43, 44, 45]. Still, nearly all of these 

recent optimization algorithms for modern deep ANNs use some form of stochastic 

gradient descent (SGD) [46]. SGD is an application of “vanilla” gradient descent, the 

latter being a method where a convex cost function can be optimized by procedurally 

following the direction opposite its gradient towards a global minimum [47]. We can 

define the gradient descent optimization procedure for a deep neural network as trying 

to find the learnable parameters � (also known as the weights and biases) that minimize 

a particular loss function �(�) over the available training set. In deep neural networks 

the dimensionality of � is often so huge that computing the gradient over the entirety of 

the training set at once is computationally prohibitive [32]. This is where SGD comes in, 

which considers the gradient ∇��(�) to be a statistical expectation that can be estimated 

by iteratively taking a single training pair (or a random sampling of pairs called a 

minibatch), computing the gradient of the loss function with respect to the parameters 

�, and updating the parameters � in the direction of steepest descent (opposite the 

gradient) [46]. The only question left to answer is: “how fast do we descend?”, and the 

answer to this question is the learning rate. The SGD parameter update process just 

described can be succinctly described by (adapted from [32]) 

� = � − ����(�, �, �) (2) 
for a single-example-per-iteration case of a training pair of input �, target �, and learning 

rate �. Or, for the minibatch case by [32] 

� = � − �� ∑ ���(��, ��, �)�
�=1

, (3) 
where � is the minibatch size. The parameters � are iteratively updated in this way until 

the ANN converges to solution that performs well enough for the intended application. 

Selecting the best learning rate is a subject that has recently received significant 

attention, and schemes or schedules have been designed to adjust the learning rate 

algorithmically [48, 49, 50]. A classic example of such a method is momentum, where 

successive parameter updates in a similar direction increase the learning rate (with an 

exponential decay term to control the growth) [51]. More recently, adaptive learning rate 

algorithms (many of which incorporate momentum as a feature) have gained popularity 

[42, 43, 44, 45]. Adaptive learning rate algorithms adjust each parameter’s learning rate 
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individually during the training process. A widely used adaptive learning rate 

optimization algorithm is the Adam optimizer [44]. A recent extension of Adam, AdamW, 

changes the weight decay component of Adam from additive to multiplicative, which has 

shown improved generalization performance for some tasks [45]. In this thesis I use both 

Adam and AdamW for training the convnet models. 

The optimization algorithms just described are fundamentally SGD. As such, all rely 

on gradients of the loss function with respect to the parameters, as shown in (3). In deep 

ANNs the computation of these gradients is almost always accomplished using the 

backpropagation (colloquially “backprop”) algorithm [52, 32]. Backprop is used for 

automatic differentiation, and it is at its core a computationally efficient application of 

the chain rule of calculus. 

2.2.3 Convolutional Neural Networks 

The convolutional layer is what differentiates a convolutional neural network from 

the more general ANN. The convolutional layer has learned parameters �, but the 

parameters here are unique in that the weights explicitly form filters or “kernels” used 

in convolution operations on the output of the previous layer [32]. The convolution 

operation ensures neurons are only connected to local neighborhoods of neurons in the 

previous or following layers; those neighborhoods are limited by the kernel size, which is 

typically much smaller than the image size. This makes them very efficient spatial feature 

extractors, particularly when compared to the fully-connected layer where each output 

neuron connects to every input neuron [32]. 

Ironically, the convolutional layers implemented by many machine learning 

frameworks use cross-correlation instead of the convolution operation [53, 54]. Cross-

correlation can be viewed as convolution without flipping the kernel. Since the 

parameters of the kernel are learned and cross-correlation is just convolution with a 

mirror-image kernel, the two methods are effectively equivalent in that they have the 

same capacity for learning spatial representations [32]. Practically, the cross-correlation 

operation looks like a “sliding window filter” where a filter/kernel slides around an input 

and computes sums of element-wise products at each new location, mapping the result 

to a feature map in the next layer. Convolutional layers often perform many such 

operations in parallel, allowing them to expand or reduce the feature space by increasing 

or decreasing the number of feature channels at the layer’s output (e.g., in a U-Net the 

initial “encoding” arm performs expansion of the feature space, while the “decoding” arm 

performs reduction of the feature space [12]). When an  -dimensional convolutional layer 
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sees ( + 1)-dimensional data at its input, the kernels become ( + 1)-dimensional 

“stacks” of learnable  -dimensional filters, where each stack is associated with its own 

output feature map. The typical design parameters for a convolutional layer are [53]: 

• Number of input feature channels: Determines the “width” of the stacks of 

( + 1)-dimensional kernels used for the  -dimensional convolution on the 

previous layer’s outputs (or, commonly for images, “feature maps”). 

• Number of output feature channels: Determines the total number of ( +
1)-dimensional kernels used for  -dimensional convolutions on the previous 

layer’s output feature maps. Each ( + 1)-dimensional kernel maps to an output 

feature map. 

• Kernel size: For an  -dimensional convolution, the kernel size is an  -

dimensional parameter that determines the neighborhood size of the filter kernel. 

Note that the actual kernels used in the convolution operation have an additional 

dimension with size equal to the number of input feature channels. 

• Stride: Outputs from the previous layer can be downsampled during the 

convolution operation by adjusting the “stride”. Visually, the stride parameter 

controls the step size of the sliding kernel. Practically, increasing the stride of the 

convolutional layer reduces the size of the next layer. In an  -dimensional 

convolutional layer, the stride parameter is  -dimensional (i.e., the stride can be 

set individually for each dimension of convolution operation). 

• Padding: Padding edges of the input data is sometimes required to maintain or 

adjust the size of data output from a convolutional layer. 

2.2.4 Batch Normalization 

Batch normalization was proposed by Ioffe et. al as a means to improve the training 

of a deep artificial neural network by reducing “internal covariate shift” [55]. By applying 

batch normalization to outputs of learnable neural network layers, training the neural 

network becomes faster for some tasks. Essentially, batch normalization computes the 

mean and variance at each dimension of a layer’s outputs and uses these statistics to 

normalize the values of the outputs [55]. Today, batch normalization layers are provided 

as modules for the popular deep learning frameworks [53, 54] and have been used 

alongside convolutional layers in image processing tasks like super-resolution [56] and 

object segmentation [18].  
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2.2.5 Data Augmentation 

Data augmentation is an often-used technique in supervised machine learning in 

general and is prevalent in convolutional neural networks for image processing tasks [57]. 

The goal of data augmentation is to increase the diversity of the training set. It can be 

viewed as a form of regularization in that it is used to reduce generalization error but 

may increase training error [58, 32]. By performing various realistic transformations on 

the available training data, the network learns features that better generalize on those 

transformations. There is a critical guiding rule for data augmentation, which is that the 

transformations should generate reasonable examples from the distribution of images 

from which a training set is sampled [32]. Reasonable geometric transformations for image 

data often include mirroring, rotation, scaling, and shifting of the image. Other 

augmentations operate on the pixel data; these may include histogram/contrast 

manipulation, adding noise, adding occlusions, or color manipulation [57]. When image 

augmentation is implemented, augmentations are typically used in a stochastic fashion 

where the chance of application or parameters of augmentation are randomly determined.  

2.3 Image Segmentation 

Image segmentation is a digital image processing or computer vision task where the 

goal is to classify, label, or otherwise partition parts of an image from each other and the 

background [59]. For the segmentation of objects, one typically wants to achieve one of 

two related goals – semantic segmentation or instance segmentation [2, 60]. In semantic 

segmentation the goal is simply to classify all the pixels constituting the objects of 

interest. In instance segmentation the goal is to classify all the pixels constituting the 

objects of interest and to represent each individual object as a separate instance of that 

object class. When objects of the same class do not overlap in an image and are not 

occluded by objects of other classes, instance segmentation is a trivial extension of a 

semantic segmentation algorithm (e.g., by application of a connected component 

algorithm to the semantic prediction map). However, when multiple objects of the same 

class overlap, touch, or otherwise appear contiguous, instance segmentation becomes a 

challenging task itself [61].  

The primary aim of this thesis is one of instance segmentation: to segment and label 

each individual vertebral body from dual-modality CT/FLT-PET image volumes. While 

instance segmentation is the end goal, semantic segmentation is a critical component in 

the segmentation framework I develop. The process starts with a semantic segmentation 

convnet where the voxels of vertebral bodies are classified as “vertebral body voxels” 
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with no distinction between them. The under-sampled axial CT scans make the vertebral 

bodies difficult to instance algorithmically, as the individual bodies appear to be 

connected when viewed in the sagittal and coronal views. This compels me to search for 

other methods to label the vertebral bodies into separate instances, and ultimately label 

them with their anatomical names (L1, L2…, T1, T2…, etc.).  

2.3.1 Traditional Image Segmentation 

Prior to the recent insurgence of the convolutional neural network, the image 

segmentation task was accomplished with a variety (and often a combination) of hand-

tuned algorithms [59, 62, 63, 64]. Today these methods are sometimes used in conjunction 

with the more recent convnet-based segmentation methods [65].  

Edge-based methods aim to locate the edges of objects in an image and use them for 

the segmentation task. Most edge detection algorithms rely on spatial filter kernels to 

measure the local gradients of the pixels in an image [59]. More advanced algorithms like 

the canonical Canny Edge Detector have improved edge detection by qualifying edges 

with mathematical criteria which reduce false positive and false negative edge responses, 

optimize for edge localization accuracy, and impose an “edges have single-pixel width” 

rule [66]. For an object segmentation task, the edge response of the object must still be 

differentiated from the other edge responses in the global image.  

Threshold-based methods partition objects in images based on their pixel intensity 

values. Simple “global” thresholding (where every pixel in the image is classified based 

on a single threshold value) is an effective method when there is high and consistent 

contrast between the object(s) and the background. In cases where contrast between 

object and background changes throughout an image, more advanced adaptive 

thresholding techniques may be successful [59]. There are many situations where even 

advanced thresholding-based methods are not viable. As a relevant example, consider 

the vertebrae segmentation task that is the focus of this thesis. Thresholding can be an 

effective method for segmenting bone vs. not bone; the 3D adaptive method presented 

by Zhang et al. [67] is suited for this kind of task. However, as shown in [67], even 

adaptive thresholding techniques are not able to effectively differentiate between different 

cortical bone structures. 

Region-based methods attempt to find regions by algorithmic approaches with an 

emphasis on spatial relationships and feature similarity between neighboring or nearby 

pixels. A common region-based method is region growing. Region growing methods rely 

on the initialization of one or more seed pixels from which the segmentation is “grown” 
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by iteratively comparing neighboring pixels against decision criteria [59]. A decision 

criterion can be a simple threshold, whereby the region growing algorithm is effectively 

a connected component extraction. Region-based methods are often used in combination 

with thresholding-based methods. This is the case for the previously mentioned 3D 

adaptive thresholding method [67] which incorporates a region growing algorithm to 

isolate individual bone structures from the thresholded full-body CT scans. Other region-

based methods include segmentation via k-means clustering [68], super-pixels [69], graph 

cuts [70], and morphological watersheds [59].  

Model-based methods use prior information about the expected shapes of the objects 

in an image and use this to search for and label the objects. The most basic 

implementation of a model-based image segmentation algorithm may be object extraction 

via rigid template matching [71]. This kind of rigid model works well in applications 

where objects are highly regular in shape (e.g. in vision tasks for manufacturing). In 

contrast, anatomical components in humans can be non-rigid and are decidedly non-

uniform; the exact shape of anatomical structures varies across our species’ population 

[72]. To apply model-based segmentation techniques to medical images, flexible models 

have been developed based on the statistics of shape, where statistical models are derived 

by machine learning on ground-truth segmentation data [73]. These statistical shape 

models (SSMs) have been successfully deployed to solve a variety of medical image 

segmentation tasks (including spine and vertebrae segmentation); an overview of the 

technique and a survey of SSM implementations for 3D medical image segmentation are 

contained in a review article by Heimann and Meinzer [73]. A more recent and 

particularly relevant work by Neubert et al. shows a statistical shape model for vertebral 

body segmentation of MR volume images achieving a dice score of 0.91 [74]. Note that 

so-called “atlas-based” methods such as [75] are essentially model-based methods where 

segmentation is performed by registering templates or “atlases” to objects in an image; 

this latter work achieved a mean Dice score of 0.94 across their test dataset.  

Combinations of these approaches were prolific in medical image segmentation before 

the deep-learning-based convnet methods became the state-of-the-art. An excellent 

survey article comparing the performance of several such traditional methods in the 

vertebrae segmentation task is provided by Yao et al. [76]. This paper reviews algorithms 

submitted to the “Vertebrae Segmentation Challenge” held during the 2014 International 

Conference on Medical Image Computing and Computer Assisted Intervention 

(MICCAI). These algorithms, all of which use some form of shape model, report 

segmentation Dice scores ranging from 0.868 to 0.947. The authors also show that the 
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segmentation task becomes harder when segmenting vertebrae higher up the spine; these 

methods reported a mean Dice score of 0.933 on the lumbar (lower) vertebrae, compared 

to a mean Dice score of 0.867 on the upper thoracic vertebrae. It should be noted that 

this work focused on the segmentation of entire vertebrae and not just the vertebral 

bodies. 

2.3.2 Vertebral Body Segmentation for HSCT Patients 

This thesis is largely motivated by recent work that studies cell proliferation within 

the bone marrow cavities of post-HSCT patients by PET imaging of the unique FLT 

radiotracer [6, 7, 10, 11]. Specifically, I use the same dataset as Williams et al. in [6]. 

Their pilot study showed that dual-modality CT/FLT-PET imaging can be used to 

measure cell proliferation throughout the entirety of the body’s bone marrow 

compartments non-invasively. The authors suggest that FLT could be used as a 

biomarker for hematopoietic recovery [6]. The dataset used in these works and in this 

thesis consists of joint CT/FLT-PET scans of hemopoietic stem cell transplant patients. 

All patients underwent myeloablation to obliterate their existing bone marrow including 

hematological malignancies, followed by hematopoietic stem cell transplantation. The 

patients were imaged on multiple days during their treatment: on the day before stem 

cell transplantation (when the patient’s haemopoietic system has been ablated), between 

5 and 8 days after transplantation, and on the 28th day after transplantation [6, 10, 11].  

The analysis of post-HSCT cell proliferation in the pilot study [6] was enabled in 

part by the automated marrow cavity segmentation methods from Nguyen et al. in [10] 

and [11]. Their vertebral body segmentation framework uses a bilateral filter as a 

preprocessing step, a graph-cut method to perform the segmentation of the full body 

bone structure, an iterative thresholding algorithm to isolate the column of vertebral 

bodies, a Kalman Filter algorithm to locate the boundaries between the vertebrae, and 

a morphological erosion filter to shave cortical bone from the cancellous bone target. 

Although I use the same patient data in my experiments, I accomplish the vertebral body 

segmentation using entirely different methods. The authors in [10, 11] grade their 

algorithm using what they call a “percent agreement” criterion: 

!"#($" , $%� )  =  100 × |$" ∩ $%� ||$%� |  , (4) 
                   =  100 × *+*+ + ,  , (5) 
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where VP represents the predicted segmentation volume, VGT represents the ground-truth 

segmentation volume, and the notation |.| represents taking the number of positively 

identified class voxels contained in the binary segmentation volume X. Equation (5) is 

written in the language of a confusion matrix (see Table 1 for definitions of the terms 

TP and FN). This metric only measures the ratio of true positive voxels to ground-truth 

voxels. Another name for this criterion is the “true positive rate”, or TPR. The problem 

with relying on this metric as the sole measure of segmentation performance is that it 

ignores false positives. The blind spot this can create is clearly seen by application of a 

test case where we declare “the entire prediction volume VP is bone”. In such a case 

|$" ∩ $%� | is equal to |$%� | and the “percent agreement” (or TPR) criterion CPA reports 

100% accuracy even though many (and possibly most) of the VP voxels are false positives. 

For this reason, I disagree with the authors’ claim that “a perfect segmentation result is 

100%” [10] under this metric. A general-purpose performance metric for image 

segmentation should account for cases of pixel misclassification along with the true 

positives. Thus, in my experiments I use more representative metrics to grade the 

vertebral body segmentation task. In [10] the authors report a mean CPA (or true positive 

rate) on the test set of approximately 91% for the vertebral body bone structure. 

2.3.3 Performance Metrics for Image Segmenation 

Heretofore I have mentioned a few performance metrics for the image segmentation 

task. There are some widely reported simple-but-effective ways to grade an image 

segmentation [13, 14, 15, 16]. These are easily computed from elements of the canonical 

binary confusion matrix, shown in Table 1, which provides a frequency-based 

representation of the classification ability of an algorithm [77]. At its core, image 

segmentation is a classification task. One of the more naïve performance metrics for 

image segmentation is the pixel-wise accuracy metric, or pixel accuracy. This metric 

simply answers: “what proportion of the pixels in the image were classified correctly?” 

and can be mathematically described (in terms of the elements of the confusion matrix) 

by [77]  

/001�203 = *+ + * *+ + * + ,+ + ,  . (6) 
 Accuracy makes intuitive sense as a general-purpose classification performance 

metric; it weighs all the components of the confusion matrix. Accuracy ranges from zero 

to one. A larger proportion of correct predictions makes the accuracy go up, and a larger 

proportion of incorrect predictions makes the accuracy go down. Accuracy is a good 
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enough metric for many classification tasks, but it can misrepresent the effectiveness of 

a classification algorithm on imbalanced datasets with a small proportion of actual 

positive examples. Such is the case for many image segmentation tasks, where the objects 

are represented by a small subset of the total pixels in an image. In a hypothetical 

segmentation task where the objects make up 5% of an image, an “empty” prediction  

where all pixels are classified as background would still score 95% on the accuracy metric. 

So, while pixel accuracy does weigh true positive and true negative results against both 

types of classification errors, its descriptive ability is highly sensitive to the frequency (or 

infrequency) of classes appearing in a dataset. This fact motivates the use of other 

performance metrics for grading image segmentation. 

The Sørensen–Dice coefficient (commonly known as the Dice score) and the Jaccard 

index (also known as intersection-over-union, or IoU) are two closely related similarity 

measures which mitigate the major pitfall of the accuracy metric by ignoring true 

negatives [78]. For a binary classification task these metrics can be defined as 

5607 = 2 × *+2 × *+ + ,+ + ,  , (7) 
9:; = *+*+ + ,+ + ,  , (8) 

where the Dice score simply weighs true positive results twice as heavily in both the 

numerator and denominator. Like accuracy, Dice and IoU range from zero to one. The 

Dice and IoU measures are positively correlated, and in fact one can calculate either 

metric from the other by the following relation [78]: 

9:; = 56072 − 5607 . (9) 
When presented with the same hypothetical image segmentation that I used to show 

the deficiency of the accuracy metric, Dice and IoU both report scores of 0.0 (since there 

were no true positives detected, and the metrics do not weigh true negatives). This result 

TABLE 1. THE CONFUSION MATRIX 

 Actual Positives Actual Negatives 

Predicted Positives True Positives (TP) False Positives (FP) 

Predicted Negatives False Negatives (FN) True Negatives (TN) 
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would often be considered more representative than the 0.95 reported by the accuracy 

metric. In many segmentation tasks we intuitively (and practically) value true positives 

more than true negatives. Most recent works in semantic segmentation report either Dice 

score or IoU, as shown in the review article from Garcia et al. [79]. Although Dice and 

IoU are often more representative, they have their own blind spot: without additional 

information they cannot tell us anything about the ability of a model to detect true 

negative cases. 

Two other important classification metrics are sensitivity and specificity. These are 

perhaps best explained by their respective alternative names, the true positive rate 

(TPR) and the true negative rate (TNR) given by [77] 

*+> = *+*+ + ,  , (10) 
* > = * * + ,+  , (11) 

where TPR represents the ability of a classification algorithm detect a positive case and 

TNR represents ability to detect a negative case (the latter being related to the false 

positive rate by ,+> = 1 − * >) [77]. A convnet-based image segmentation algorithm 

commonly produces a prediction image where each pixel is assigned a confidence level of 

belonging to a certain object class [12, 80, 81]. These confidence levels are output by the 

network in the range [0, 1] and the threshold that decides object vs. not object may be 

set by the practitioner or by the algorithm itself. By decreasing this classification 

threshold, the algorithm can be compelled to generate more true positives at the expense 

of increasing false positives. This effect is perhaps most clearly seen using a receiver 

operating characteristic (ROC) curve which is a plot of TPR vs. FPR acquired by varying 

the classification threshold [77]. Such a representation is useful for selecting between 

models and classification thresholds in cases where true positives and false positives are 

valued differently. 

Finally, sometimes in the medical image segmentation literature we encounter less-

common segmentation metrics. When used to grade image segmentations, these less-

common measures are typically provided alongside IoU or Dice. One example is the 

Hausdorff Distance [82], which is used to quantify the deviation of the contour (or surface, 

in the 3D case) of a segmentation from that of the ground-truth object mask. Hausdorff 

Distance and the other metrics used for 3D medical image segmentation have been 
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reviewed by Taha and Hanbury in [78]. The article also examines the representation 

capabilities of the more common segmentation performance metrics discussed above. 

2.3.4 Convnets for Medical Image Segmentation 

Recently the convolutional neural network has become the state-of-the-art tool of 

choice for image segmentation tasks, including medical image segmentation [83]. Long et 

al. [84] were the first to train a “fully-convolutional network” end-to-end for segmentation 

tasks. In their work the fully-connected layers traditionally used in previous artificial 

neural networks for image segmentation were replaced with convolutional layers. The 

resulting deep learning network achieved state-of-the-art segmentation performance and 

large efficiency gains due to the removal of the fully-connected layers.  

Building on the fully-convolutional network, Ronneberger et al. [12] introduced a 

deep convnet for 2D medical image segmentation called the U-Net. The name is derived 

from the shape of the network when drawn as a diagram, as shown in Figure 3. The U-

Net has an autoencoder structure that consists of a feature encoding path and a feature 

decoding path. The encoding path is composed of repeated feature-expanding 

convolutional layers and dimension-reducing max-pooling layers. The feature-decoding 

path is composed of repeated dimension-expanding transposed-convolution layers (“up-

conv” in Figure 3) and feature-reducing convolution operations. They also critically add 

skip connections to concatenate the features from the encoding path’s convolutional 

layers to the equidimensional layers in the contracting path. This architecture allows 

both context and localization information to pass through the network and consequently 

the U-Net performs very well in image segmentation tasks [12]. U-Net has been modified 

and implemented in a myriad of medical image segmentation tasks, including bone [13], 

brain tumor [14], liver [15], lung nodule [15], and cell nuclei [16], to name just a few. U-

Net has also been used for image segmentation tasks in other fields: for defect detection 

in pavement [85], road and building extraction from satellite imagery [86, 87], and even 

more recently for segmentation of roots in soil [88]. 

Motivated by 3D medical image data, a natural extension of convnets for 2D 

semantic image segmentation are convnets for 3D semantic image segmentation. One of 

the first such works is the 3D U-Net from Çiçek et al. who replace the 2D convolutional 

layers in U-Net with 3D convolutional layers [18]. They also make a few other 

modifications such as the incorporation of batch normalization layers into the network 

architecture. That same year, V-Net was developed as another 3D extension of the U-

Net architecture [19]. V-Net makes more modifications to the U-Net inspired 
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architecture. Two of the most impactful are the residual connections around groups of 

convolutional layers and the learned downsampling convolutional layers in place of the 

max-pooling layers. The challenge of these implementations is the model size and the 

computational complexity of the 3D convolution operations. This can be mitigated by 

training on volume “tiles” or “patches” sampled from 3D image data, which is the 

approach taken by [18]. However, training in this manner forces the network to learn 

representations from smaller neighborhoods, sacrificing more global information.  

Seeking more computationally feasible networks that can still leverage 3D data in 

semantic segmentation convnets, some “pseudo-3D” semantic segmentation convnet 

models have been investigated. One method uses 2D convolutions on stacks of 

neighboring 2D inputs [89]. Instead of processing a single 2D image this network processes 

a stack of 2D slices as a single input with multiple channels, obtaining relevant (albeit 

limited) 3D context information from neighboring 2D slices. Another pseudo-3D method 

uses multiple 2D segmentation convnet models trained from multiple views of the input 

data volume [90, 91]. By learning to perform the segmentation on multiple views, these 

models incorporate 3D information into their segmentation predictions with much less 

computational overhead than what is required for a fully-3D convolutional network. 

Lastly, the long-short-term-memory (LSTM) variant of the recurrent neural network can 

be used to treat the 3D segmentation problem as a sequence of 2D segmentations [92]. 

These pseudo-3D implementations were developed for processing 3D medical image data. 

Figure 3. The original U-Net architecture. Image from Ronneberger et. al [12].  
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It is difficult to compare the relative efficacy of the methods because they were developed 

and trained with niche datasets for a very specific research purpose.  

Particularly relevant to my work is that of Shigeta et al. [91] who use two of the 

pseudo-3D methods just described (depth-as-channel inputs and multi-view ensemble 

models) to perform spinal segmentation. They report a mean Dice score of 0.964 from a 

model trained and validated on their in-house spinal segmentation test set – a very good 

result. An interesting “iterative” approach to instance segmentation of individual 

vertebrae via convnets is provided by Lessmann et al. [93], but it relies on the separation 

of the vertebrae in the sagittal views of the image volume which is lacking in the under-

sampled volume data that is the focus of my work reported in this thesis. The Large-

Scale Vertebrae Segmentation Challenge (VerSe) [28] was an organized semantic 

segmentation research competition that ran in conjunction with MICCAI 2019 and 2020. 

It serves as perhaps the best example of the dominance of convnet approaches in the 

spine segmentation task, with 23 of the 24 participating teams using a convnet-based 

method, the majority of those being some variety of U-Net, pseudo-3D U-Net, or 3D U-

Net/V-Net. The VerSe competition reveals that in the spinal segmentation task 3D 

convnets perform better than 2D convnets. The highest scoring spine segmentation in 

the VerSe competition was a 3D U-Net with a segmentation Dice Score of 0.917. This 

result, when viewed against the Dice score of 0.964 reported by [91], indicate that the 

dataset upon which the metric is being trained, tested, and reported may have a large 

impact on the perceived “performance” of a model. The VerSe training and test sets are 

particularly diverse (at least for medical image data), with CT images captured from a 

variety of scanners and imaging protocols. These dataset inconsistencies make it hard to 

make definitive comparisons between models trained and tested on different datasets. 

Notably, the spinal segmentation task undertaken by these related works is different than 

the vertebral body segmentation task I undertake in Chapter 3. Still, these results provide 

a good baseline for what is possible using a pseudo-3D U-Net or fully-3D U-Net for the 

segmentation of complex 3D shapes. 

2.4 Image Super-Resolution 

Image super-resolution (SR) is the task of reconstructing higher-resolution digital 

images from lower-resolution digital images [20]. The problem is challenging because it 

is ill-posed; any given low-resolution image could have been sampled from a multitude of 

different high-resolution images. The goal of a super-resolution algorithm, then, is to 

limit the solution space as much as possible towards “good” reconstructions. Recently 
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the deep convolutional neural network (or commonly, convnet) has delivered state-of-

the-art performance on image SR [20]. The highest-performing traditional and modern 

convnet-based super resolution algorithms accomplish this through learned-by-example 

training strategies [20, 94, 95]. The common idea in these implementations is to learn 

generalizable representations of natural texture from local image patches for the eventual 

high-resolution reconstruction. 

2.4.1 Traditional Image Super-Resolution 

Prior to modern convnet methods, state-of-the-art SR was still machine-learning-

based. One of the leading methods of this pre-convnet era is Anchored Neighborhood 

Regression [95, 96] which borrows from the Sparse Coding [94] and Neighbor Embedding 

[97] methods. These are all so-called “dictionary-based” SR methods, which use a 

dictionary (essentially a lookup table) to map low-resolution input patches to high-

resolution output patches. Neighbor Embedding gives the dictionary more flexibility by 

allowing a low-resolution input patch to be approximated by a linear combination of the 

patches nearest to it in the dictionary (its neighbors), and likewise for the super-resolved 

output patches. Sparse Coding takes this a step further. Instead of explicitly using a 

dictionary of image patches, the Sparse Coding method involves learning an efficient and 

sparse encoding for the low- and high-resolution image spaces. Anchored Neighborhood 

Regression uses smaller portions of the dictionary (neighborhoods) in the regression 

problem and pre-calculates a transformation matrix for each neighborhood to lower the 

computational complexity at run time.  

2.4.2 Convnets for Image Super-Resolution 

The dictionary-based methods are not so dissimilar to the modern convnet-based 

methods. The conceptual analogues were pointed out by Dong et al. when they produced 

the first convnet for super-resolution: SRCNN [98]. SRCNN has only two hidden 

convolutional layers, making it a very shallow network by modern standards. It relies on 

bicubic interpolation as an upsampling step, where the low-resolution input image is first 

upsampled before its features are extracted and decoded by the convolutional layers. 

This simple design achieved state-of-the-art super-resolution performance, beating all the 

dictionary-based methods. Ironically, the authors found that deeper networks were 

harder to train and had little performance benefit; but since the release of SRCNN the 

convnet-based methods have continuously achieved greater reconstruction performance 

by going deeper and deeper. The authors were correct though: deeper networks are harder 

to train, in general. The increased depth of the more recent SR convnet architectures 
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relies on the residual connection [34]. The residual connection eases the training of deep 

neural networks by allowing information to pass around layers instead of forcing 

information to go through. This frees the parameters from learning identity mappings 

and allows them to focus on more representative features [99].  

 One of the first SR convnets to implement the residual connection was SRResNet 

from Ledig et al. [56]. In contrast to SRCCN’s shallow network of two hidden layers, 

SRResNet uses 16 residual blocks (or ResBlocks), where a residual connection surrounds 

two convolutional layers, each followed by a batch-normalization layer, for a total of 32 

convolutional layers. SRResNet also uses “upsampling post- feature extraction” as 

opposed to SRCNN’s “upsampling pre- feature extraction”, allowing the features to be 

learned in the less computationally expensive low-resolution space. The in-network 

upsampling method implemented by SRResNet is a “sub-pixel” convolutional layer with 

learnable parameters which allow the network to learn the mapping from the low-

resolution (LR) space to the high-resolution (HR) space. The sub-pixel layer was 

introduced by Shi et al. to reduce the computational complexity of learned upsampling 

that was traditionally accomplished by use of transposed convolutional layers [100].  

 Ledig et al. used SRResNet as the generative arm of their SRGAN – an SR 

implementation which focuses on perceptual rather than objective image quality 

assessment [56]. The advent of the Generative Adversarial Network (GAN) allowed the 

development of learned perceptual-based loss for image SR. Minimizing pixel-wise 

reconstruction error is not always the goal of an SR algorithm. Sometimes it is only of 

interest to make the image “look better” (according to a human observer) relative to 

alternatives. For this subset of SR tasks perceptual-based losses are used, which focus on 

enforcing natural image features [56, 101]. In their quest to minimize pixel-wise error, 

objective-based losses tend to make fine detail overly smooth, washing out high frequency 

detail. By ignoring or regularizing/weakening the pixel-wise error constraint, perceptual-

based losses can generate realistic looking textures with fine synthetic details [56]. 

SRGAN was built for this purpose. Whether a given generative SR convnet will produce 

an objective-based output or a perceptual-based output depends on the selection of loss 

function, a choice which is entirely task-dependent. Although SRResNet was initially 

used as the generator alongside an adversarial perceptual loss, SRResNet can be paired 

with an objective-based loss function and can be used as a stand-alone generative SR 

convnet with better mean-squared-error reconstruction performance than SRCNN [56]. 

For super-resolution on medical images (where synthetic data can potentially change an 

assessment with life-or-death consequence) the generation of spurious image data should 
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be avoided. The asymmetric super-resolution module I develop in Chapter 4 can be used 

for either objective- or perceptual-based losses, but my implementation uses an objective 

L1-pixel loss function because I intend to use it on medical images. Most objective-based 

SR convnets in the literature have been trained with either L2- or L1-pixel loss as the 

primary loss function [20]. 

 The more recent SR convnets improve reconstruction performance even further. 

This is largely attributed to their wider (with more learned features per convolutional 

layer) and deeper (with more convolutional layers, most often in the form of ResBlocks) 

architectures [20]. Two of the most performant of these networks are EDSR [102] and 

RCAN [35]. EDSR improves the SRResNet architecture by making the network twice as 

deep (at 32 ResBlocks or 64 individual convolutional layers) and four times as wide (with 

256 feature maps per layer). They also remove the batch normalization layers from the 

ResBlocks, which they found eased the training of the network [102]. This latter change 

is replicated in most of the more recent SR convnets [20]. RCAN implements an even 

deeper network (with 200 ResBlocks or 400 convolutional layers) and adds a channel-

attention mechanism. This increased depth is accomplished by implementing “residual-

in-residual” connections. Simply, these are skip connections that circumvent parts of the 

network at various scales, allowing information to flow around large parts of the overall 

network structure. 

 Research into generative SR convnets continues today, with themes of dense 

residual connections [103, 104], improvements to the attention mechanisms [105], and 

magnification-arbitrary models [106] which can super-resolve at multiple integer scale 

factors in a single model. One aspect that remains mostly unexplored is the case of 

asymmetric super-resolution. Each of the works described above solely focuses on training 

and testing SR convnets for symmetric scaling, where each dimension of the image is 

scaled by the same scaling factor. Alternatively, asymmetric SR seeks to scale the image 

at a different scaling factor for each image dimension. The Scale-Arbitrary SR module 

from Wang et al. [21] is the first (and to my knowledge, only) work that implements 

asymmetric super-resolution. They test their network on a variety of asymmetric scaling 

situations where each dimension is scaled by a different factor. Notably, in [21] Wang et. 

al do not test their module on (what I will call) the purely asymmetric case where only 

one image dimension is upscaled while the other is held at unity – that is the subject of 

Chapter 4 of this thesis. 
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Chapter 3 

Multi-View Ensemble U-Net 

The first step in the segmentation framework I develop is semantic segmentation of 

the column of vertebral bodies. I use semantic segmentation as a steppingstone to the 

ultimate task of instance segmentation of the individual vertebral bodies. Presently 

convnet-based segmentation methods dominate the image segmentation task [2]. I 

implement a modified U-Net [12] to perform this segmentation. While 3D U-Net-like 

architectures have been used effectively on 3D image data, they have much higher 

computational complexity and larger memory footprints [18, 19]. Inspired by the 

performance of 3D convnets on semantic segmentation of vertebrae from CT scans [28], 

I initially attempted to use a 3D U-Net [18] for the vertebral body segmentation task. I 

found that the computational requirements of that architecture were too great for my 

hardware (an Nvidia GTX 1070 GPU with 8GB of memory). Therefore, I focused on a 

pseudo-3D approach like that used by Shigeta et al. [91], consisting of an ensemble of 2D 

U-Nets, each trained from a different anatomical “view” or projection of the image 

volume. In contrast to [91], the model I implement is trained on three object classes: the 

vertebral body, pelvis, and sternum bone structures. As mentioned in Chapter 2, these 

bone structures contain high levels of stem cell proliferation post- hematopoietic stem 

cell transplant (HSCT).  

3.1 Methods 

3.1.1 Dataset 

Being at their core supervised learning algorithms, the training dataset is a critical 

component of any convnet. The medical image data used in my research is the same used 

by Williams et al. in their full-body FLT-PET HSCT imaging pilot study [6]. The dataset 

used in these works consists of joint CT/FLT-PET scans of 23 hematopoietic stem cell 

transplant patients. In this thesis, I use image volume data from 22 of the 23 original 

patients. The dual-modality imaging procedure allows localization of bone structure from 

CT volumes and subsequent measurement of cell proliferation in the associated marrow 

cavities via the FLT-PET volumes [10, 11]. All patients underwent myeloablation to 
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obliterate their existing bone marrow (including hematological malignancies) prior to 

hemopoietic stem cell transplantation [6]. The patients were imaged on multiple days 

during their treatment: on the day before stem cell transplantation (when the patient’s 

haemopoietic system has been ablated), between 5 and 9 days after transplantation, and 

on the 28th day after transplantation. These intervals allowed the authors of [6] to track 

the growth patterns of hematopoietic stem cells (HSCs) in the marrow cavities as they 

progressed towards engraftment.  

Enabling the use of a convnet for this segmentation task are ground-truth 

segmentation masks. These were created manually by a non-physician engineer for three 

bone structures: vertebral body, bone, and pelvis [17]. The annotations were made from 

the axial scans only. While my work mostly focuses on the vertebral body segmentation 

task, the availability of the pelvis and sternum masks allows me to showcase of the 

flexibility of the convnet-based approach to medical image segmentation. These ground-

truth masks were provided for only a subset of the 22 patients, as shown in Table 2. 

Most of the available ground-truth annotations are of the vertebral body class, of which 

35 volumes have been annotated from 19 of the patients. The availability of sternum 

class and pelvis class ground-truth data is more limited. Notably, the volumes which 

have labelled pelvis masks also have labelled masks for the other bone structures. There 

was a labelling inconsistency in the ground-truth data where some of the vertebral body 

class masks contained the coccyx bone structure, but most did not. I fixed this 

inconsistency by removing the coccyx structure from all ground-truth vertebral body 

masks in which it was present. 

The dataset is particularly challenging for the vertebral body instance segmentation 

task because the image volumes are under-sampled along the axial direction, making the 

boundaries between the individual vertebrae difficult or impossible to resolve in the CT 

modality without prior information. The CT scans were acquired axially with a pixel-

resolution of 512 × 512 pixels per axial scan. The oversized step between axial scans 

creates anisotropic voxels where each voxel spans approximately three times as far in the 

axial direction. A glimpse of the dataset is provided in Figure 4, where the under-sampled 

nature of the volumes is made clear by the sagittal and coronal views; the structures 

appear to be “squished” by a factor of three. In this example (which is representative of 

the entire dataset) the separation between the vertebral bodies is not consistently 

detectable by humans. This evidenced in Figure 4 by the mostly-contiguous ground-truth 

mask which contains only one visible vertebral boundary found by the annotator. This 

aspect of the dataset is further exemplified in Figure 5, where the boundaries between 
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the lumbar vertebrae are visible, but there is not enough resolution to accurately discern 

the boundaries between many of the thoracic and cervical vertebrae. 

The FLT-PET data was captured axially at a pixel-resolution of 144 × 144. Notably, 

the FLT-PET data has a higher sample rate than the CT data along the axial dimension. 

The CT volume depicted in Figure 4 has dimensions of 512 × 512 × 188 pixels, while its 

associated FLT-PET volume has dimensions of 144 × 144 × 238 pixels. Since the CT and 

FLT-PET volumes span approximately the same length in the axial direction, the FLT-

PET volumes have slightly higher resolution in the axial direction. However, the FLT-

PET volumes have much lower resolution on the axial plane than their associated CT 

volumes. The additional axial-direction resolution of the FLT-PET scans is exploited in 

Chapter 5 to assist in the instance segmentation of individual vertebral bodies. 

An impactful characteristic of the dataset is that it is class imbalanced. A class 

imbalanced dataset is one where the class examples are not equivalent in number to each 

other (or the background class, in the case of image segmentation). This is a common 

challenge in learning-based semantic segmentation, where often the objects of interest 

can be small relative to the background class [107, 108]. In this dataset, the spine mask 

makes up approximately 0.15% of all voxels, the pelvis mask 0.25%, and the sternum 

mask only 0.019%. This means that around 99.5% of voxels in a given CT scan will make 

up the background class. Aside from the raw volume imbalance of class voxels vs. 

background voxels, the dataset is imbalanced in another way when used in a 2D or 

pseudo-2D fashion: often the 2D slices of the 3D image data will not contain any of the 

object classes at all. This is particularly true in the sagittal and coronal views of the 

spine. The spine is obviously elongated in the axial direction, and a randomly chosen 

axial scan has a relatively high likelihood of containing spine-class voxels. However, in 

the sagittal and coronal views only a fraction of 2D slices contain any spine-class voxels 

at all. These imbalances motivate changes to the loss function, discussed in Section 3.1.3. 

3.1.2 Model Design 

I use a lightly-modified version of the original U-Net [12] for the constituent convnet 

models in the ensemble. The only architectural difference between this implementation 

TABLE 2. AVAILABLE GROUND-TRUTH VOLUMES FOR THE CT/FLT-PET DATASET 
 

Vert. Body Sternum Pelvis All 3 Classes 

# patients 19 7 6 6 

# volumes 35 21 16 16 
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and the original U-Net (shown in Figure 3) is the incorporation of a batch normalization 

layer [55] after each 3 × 3 convolution. The addition of batch normalization layers to the 

U-Net architecture is suggested in [18] for faster convergence during training. The 

PyTorch model was adapted from [109]. Three models are trained independently from 

each of the axial, sagittal, and coronal views on the three bone structure object classes. 

The resulting models are then used in an ensemble configuration to provide a 

segmentation for 3D input volumes. In this configuration, an input volume is sampled 

sequentially in 2D slices along the appropriate plane (axial, sagittal, or coronal depending 

on the model). The slices are fed into the U-Net model and the prediction outputs are 

sequentially recombined to create a prediction volume. In this way, a single input volume 

is used to generate three prediction volumes, one for each of the axial, sagittal, and 

coronal models. The prediction volumes are image volumes where the intensity of each 

voxel (ranging from zero to one) represents a confidence grade that the pixel belongs to 

a certain class (in this case, a particular bone structure). In cases where a model has 

multiple object classes the prediction image has multiple channels, each representing a 

unique object class. In my experiments I use the vertebral body, pelvis, and sternum 

bone structures as the object classes. There are a few ways to combine the models to 

create the final inference volume. Shigeta et. al [91] use only one object class (the 

vertebrae) and combine their three constituent models by voxel-wise averaging of three 

prediction volumes. Given a multi-class input image volume 9 and the predictive U-Net 

models ;# (trained on axial image data), ;? (trained on sagittal image data), and ;@ 

 
Figure 4. An exemplar axial slice and its associated ground-truth vertebral body mask (left), an under-
sampled sagittal slice (middle), and an under-sampled coronal slice (right). 
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(trained on coronal image data), the ensemble-by-averaging model ABCD can be described 

by 

ABCD(9, 0, E) = * (;#(9, 0) + ;?(9, 0) + ;@(9, 0)3 , E) , (12) 
where *  is a thresholding function with threshold E. The result ABCD is a volume image 

mask containing the 3D semantic segmentation of the object class 0. In this chapter I 

test the above ensemble-by-averaging strategy employed by [91], but I also test two 

others. First, an ensemble-by-voting strategy where each raw prediction volume ;#(9, 0), 
;?(9, 0), ;@(9, 0), is thresholded individually by E to create its own prediction mask 

HI(9, 0, E) = * (;I(9, 0), E) which casts a vote as to whether a given voxel belongs to a 

given object class. This strategy is described voxel-wise by 

ACJKL(�,N,O)(0, �) = $(�,N,O)(H#(�,N,O)(9, 0, E) + H?(�,N,O)(9, 0, E) + H@(�,N,O)(9, 0, E), �) , (13) 
where $  is a “voting” transformation applied voxel-wise to the sum of the thresholded 

volume masks of class 0, and a voxel at coordinates (6, R, S) is assigned a positive class 

label in the prediction volume only if it has received enough “votes” � from the 

constituent predicted masks in the ensemble: 

$(�,N,O)(Ĥ(�,N,O), �) = {1 ,       Ĥ�NO ≥ �,0 , otherwise. (14) 

 
Figure 5. Close-up of an under-sampled sagittal view of the spine.  
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In my experiments I use � = 2 for the ensemble-by-voting method, so that a voxel is 

considered an object voxel only if a majority of the three constituent U-Nets have 

predicted so. The last ensemble method I test is an “additive” method. Using this 

method, if any of the models predict an object pixel it is included in the final prediction 

mask. It is essentially just ensemble-by-voting but with � = 1.  

3.1.3 Loss Function 

Cross-entropy (CE, also “negative log-likelihood”) is an obvious and popular choice 

for multiclass semantic segmentation [110], but other loss functions have been recently 

suggested specifically for use in class-imbalanced datasets, such as focal loss, which (in 

the case of pixel-wise semantic segmentation) down-weights well-classified pixels [111]. 

Other interesting choices that have been effective on imbalanced semantic segmentation 

datasets are the “soft” Dice loss [112] and Lovász-softmax loss [113], which aim to reflect 

the Dice and Jaccard metrics (respectively) better than the common surrogate of CE 

loss, while maintaining differentiability for backpropagation (hence “soft”).  

Another option to handle class imbalance is to simply use a weighted cross-entropy 

loss and tune the class weights to under-value the background class while increasing the 

weights on the disproportionate object classes [114]. This is the approach I use, for two 

reasons. First, initial testing on a single-class segmentation task (only vertebral body 

class) showed similar validation set convergence for CE and Focal Loss. Second, due to 

the relative ease of implementation for the multi-class case. The weighted cross entropy 

loss for multiple object classes is given by [40, 114] 

WCE = − ∑ d�e� log E�
h

�=1
, (15) 

where 0 represents the number of object classes (including the “background” class in the 

case of image segmentation), d� is a weight assigned to each object class, e� is the ground-

truth class indicator with a value of 0 or 1, and E� is the model’s prediction confidence 

level on the object class ranging from zero to one. For an image, this loss is calculated 

per-pixel and aggregated. In training a classification neural network this loss is often used 

on a minibatch of prediction/target training pairs, where backpropagation is performed 

from the mean WCE of the minibatch [32].  

3.1.4 Training Scheme 

The dataset is limited and contains multiple CT image volumes for each patient, so 

it also has some redundancy. In such situations, care must be taken to ensure that no 
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patient appears in any two of the training, validation, or test set. There are only six 

patients with all three classes (vertebral body, pelvis, and sternum) labelled. I use 14 CT 

image volumes from five patients for the training set. Two image volumes from one 

patient are used for multiclass validation. Quantitative testing is performed on only the 

vertebral body class, which allows for a much larger than typical test set of 13 volumes 

from 13 patients. The choice to use only five patients for training and 13 for testing may 

seem odd but is motivated by the desire to show a flexible multi-class semantic 

segmentation for bone structures. Since there are only six patients with all three ground-

truth mask volumes, I decide to use all but one of those for training, use the single 

remaining patient’s image volumes for validation, and test the model on only the 

vertebral body segmentation, for which there are many more ground-truth masks from 

the other patients. I still validate the model on the pelvis and sternum segmentations 

and show qualitative results for those object classes to showcase the flexibility of the U-

Net for semantic segmentation.  

The volumes are sliced into 2D slices prior to training. Depending on the model, they 

are sliced along the axial, sagittal, or coronal plane. Geometric data augmentation is used 

to increase the diversity of the training dataset [57]. Input images and their target masks 

are scaled from -20% to 20%, random rotation is applied from -45 to +45 degrees, 

horizontal and vertical translation is applied up to 20% of the image height and width, 

and horizontal and vertical flipping are applied. Training images are also cropped to a 

size of 320 × 320 pixels, with padding-by-mirroring to account for missing image data 

that may arise from the geometric augmentation. All augmentations, excepting the final 

crop, are performed randomly with a uniform distribution.  

For training the models I use the Adam optimizer [44] with i:i7�e1i = 0.9 and 

�7e2j = (0.9, 0.999), and an initial learning rate of 10−4. Final models were trained over 

32 epochs where in each epoch they saw every 2D slice of 3D training volumes, for a 

total of 2579 input training pairs per epoch in the axial-trained model and 7168 input 

training pairs per epoch in the sagittal- and coronal-trained models. A minibatch size of 

6 was used. Validation is performed at regular intervals on the entire validation volumes. 

The learning rate was reduced by an order of magnitude when the validation failed to 

reach a new maximum within 8 epochs. When training with CE loss without weighting 

(all classes have equal weight) the model learns to make positive classifications for object 

classes slowly. It is likely able to quickly reduce loss by simply predicting background 

classes prolifically. This effect is shown in Figure 6, where no object classes make positive 

classifications for at least an epoch, and in the case of the extremely-imbalanced sternum 
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class, for even longer. To mitigate the slow learning I apply class weights d� to the cross 

entropy loss (15). I found setting the background class weight to 0.1 and the three object 

class weights each to 0.3 was effective for encouraging positive classification earlier in the 

training cycle, to within the first epoch for the vertebral body and pelvis classes. The 

sternum class, with its extremely-small volume footprint and low number of 2D examples 

still struggles to achieve positive classification within the first epoch but is greatly 

improved from the non-weighted CE loss. The effect on the training is shown in Figure 

7. Note that the difference in the smoothness of the charts is solely due to a reduction in 

the frequency of running validation on the model (a purely time-saving measure). These 

charts depict the axial-view model training, but the same effect is seen in training both 

the sagittal and coronal models. Notably, I found that intuitively setting class weights 

to be inversely proportionate to the class sizes in the dataset (for my case, a proportion 

of voxels) was not effective, generating erratic validation curves and lower validation 

convergence. Figure 8 charts the validation of all three constituent models (axial, sagittal, 

and coronal) for the vertebral body class. The coronal-view U-Net model had trouble 

converging, so it was trained further with a reduced learning rate for an additional 6 

epochs. When evaluated individually, the model trained with axial image data achieves 

the highest validation score on the vertebral body class.  

3.2 Results 

3.2.1 Quantitative Results 

The constituent models were scored individually and in the ensemble configuration. 

The scores were obtained by using a classification threshold of E = 0.5 on the raw 

prediction volumes and comparing the resultant prediction masks to the ground-truth 

prediction volume. Of the three constituent U-Net models, the axial-trained model 

performs the best on the test data with a mean Dice score of 0.922 on the vertebral body 

class, with the sagittal model close behind at 0.902. The coronal model performed poorly 

relative to the others with a Dice score of 0.849 on the vertebral body class. The 

ensemble-by-voting and ensemble-by-averaging methods reduced the Dice score 

performance to below that of the axial model, both scoring a Dice of approximately 0.914 

on the vertebral body class. The additive models (where the predictions from each 

constituent U-Net are simply added together) saw mixed performance compared with the 
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Figure 6. Training (axial view) with cross-entropy loss with equal class weighting. Positive 
classification is delayed by the class imbalance in the dataset. 

 
Figure 7. Training (axial view) with weighted cross-entropy loss with down-weighted background class. 
Positive classification in encouraged by the higher contributions of the object classes to the loss. 

 
Figure 8. The vertebral-body class validation scores during the training of the 3 constituent (axial, 
sagittal, and coronal view) U-Net models. The coronal view had issues converging and was further 
trained with a lower learning rate. 
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axial model. The additive model that incorporates all three prediction volumes scores 

below the axial model. The additive model using only the axial and sagittal prediction 

volumes scored the highest mean Dice on the vertebral body class, at 0.9245. The results 

are shown for all test volumes in Table 3. 

It is worth investigating the classification performance of each of the constituent 

axial, sagittal, and coronal U-Net models independently. To this end, ROC curves were 

generated by procedurally calculating TPR and FPR across the range of possible 

classification thresholds from 0 to 1. The TPR and FPR for each model is shown in 

Figure 9. The ROC curves appear to show a classifier with high sensitivity and specificity, 

but they may be misleading due to the severely imbalanced segmentation dataset. Since 

the vast majority (over 99.5%) of voxels belong to the background class, even a tiny 

increase in the false-positive rate has a large negative impact on the segmentation 

accuracy as measured by the Dice score. I elect not to report the area-under-curve (AUC) 

measure due to the class imbalance making it an unrepresentative gauge of segmentation 

accuracy. The mean distribution of voxel values in the test prediction volumes output 

from the U-Net models are shown in Figure 10. Each of the axial, sagittal, and coronal 

TABLE 3. DICE SCORES FOR THE MULTI-VIEW ENSEMBLE U-NET MODELS  
ON THE VERTEBRAL BODY OBJECT CLASS 

volume Axial Sagittal Coronal Vote Avg Add "3" Add "2" 

p7d3 0.9012 0.8836 0.7620 0.8971 0.8967 0.9020 0.9005 
p8d3 0.9180 0.8725 0.7576 0.8936 0.8924 0.8940 0.9214 

p9d3 0.9342 0.9094 0.9033 0.9307 0.9303 0.9264 0.9270 
p10d3 0.9297 0.9113 0.8899 0.9261 0.9255 0.9269 0.9328 

p11d3 0.9380 0.8925 0.8575 0.9176 0.9207 0.9089 0.9316 
p12d3 0.9088 0.9074 0.7890 0.9076 0.9047 0.9190 0.9194 

p13d3 0.9198 0.9003 0.8696 0.9115 0.9097 0.8999 0.9216 

p14d3 0.9179 0.9046 0.8579 0.9052 0.9075 0.9221 0.9242 

p16d3 0.9381 0.9212 0.8910 0.9281 0.9311 0.9323 0.9390 

p17d3 0.9019 0.8799 0.8692 0.8956 0.8952 0.9154 0.9091 
p18d3 0.9200 0.8962 0.8223 0.9093 0.9082 0.9186 0.9190 
p19d3 0.9350 0.9171 0.8988 0.9316 0.9323 0.9267 0.9338 
p21d3 0.9258 0.9261 0.8674 0.9245 0.9263 0.9221 0.9387 

mean 0.9222 0.9017 0.8489 0.9137 0.9139 0.9165 0.9245 

Add “3” is the additive ensemble model with all three views included. Add “2” is the additive ensemble 

model with only the axial and sagittal views included, where the low-performing coronal model is 

excluded. Bold is best and underlined is second-best. 
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U-Net models has a similar distribution of prediction confidence levels. Most background 

class voxels have vertebral body class predictions below 0.01, leading to the high 

specificity seen in the ROC curves. One could select nearly any threshold, even E = 0.02, 

and still correctly classify most background voxels. It is also notable that the axial-

trained model has a higher proportion of class predictions in the “very high confidence” 

range between 0.99 and 1.0.  

An interesting result found in the raw prediction volumes of the test set is that 

higher Dice scores could be achieved by setting a different classification threshold than 

the naïve choice of E = 0.5. The average performance gains are small for the higher-

performing axial and sagittal models, but for the comparatively mediocre coronal-view 

U-Net model the gains are high, as can be seen in Figure 11. The mean optimal threshold 

values for the models on the test set are E = 0.427 (axial), E = 0.323 (sagittal), and E =
0.295 (coronal). If these “test set optimal” threshold values were used for classification, 

the mean test set Dice scores on the constituent U-Net models would be approximately 

0.925 (axial), 0.911 (sagittal), and 0.875 (coronal). These performance gains, since they 

   
Figure 9. Receiver-operating characteristic (ROC) curves for the three constituent U-Net models. Note 
that the false-positive axis is limited to the window [0,0.005]. 

 
Figure 10. Histograms averaged from the output prediction volumes of U-Net models. The three models 
show similar distribution. Note that the count axis is logarithmic and begins at a non-zero value. 
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depend on prior knowledge of the test set, should only be taken as evidence of a trend: 

lower classification thresholds may lead to improved Dice scores for these U-Net models. 

The distribution of the optimal thresholds of the test set make it very likely that the 

true mean optimal classification thresholds lie below E = 0.5 on CT data similar to the 

test set. Assuming a normal distribution with unknown variance, the 99% confidence 

intervals for the mean optimal classification thresholds are [0.38, 0.47] for the axial model, 

[0.28, 0.36] for the sagittal model, and [0.23, 0.36] for the coronal model. The performance 

of the ensemble models at these optimal thresholds remains untested since the result 

would be based on prior knowledge and would not be representative of performance on 

unseen data. 

3.2.2 Qualitative Results 

The predictive capabilities of the constituent axial-, sagittal-, and coronal-view U-

Net models on the vertebral body class are visualized below in Figure 12. The axial model 

is obviously superior in predicting the vertebral body shape with high confidence and 

consistency, but all three models localize their predictions well. The sagittal and 

particularly the coronal model have higher variance in the confidence level within the 

vertebral body. Confidence levels fall sharply outside of the ground-truth mask region, 

indicative of the high specificity in each of the constituent segmentation models. The 

noise-like effect seen in some sagittal and coronal predictions in Figure 12 is attributed 

to these being reconstructions of the axial view for these models. Figure 13 and Figure 

  
Figure 11. (Left) Mean test set Dice score vs classification threshold level. (Right) Boxplot of optimal 
classification thresholds for entire test set for each constituent model. “×” indicates the mean value. 
Whiskers extend to largest/smallest value within 1.5 times the interquartile range. 
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14 show similar prediction slices but reconstructed in the sagittal and coronal views. 

Notably, the sagittal view reveals that the models are able to detect a few of the 

boundaries between the vertebrae, even when the human annotator was not able to 

discover them in the ground-truth. This is likely due to human inconsistency in the 

difficult task of labelling the vertebral bodies. Some ground-truth masks (e.g., Figure 4) 

contain one or more identified vertebral boundaries in the lower lumbar region, and the 

model has learned from these examples. The sagittal views of Figure 13 also reveal the 

relatively poor performance of the coronal model. 

A visualization of the 3D vertebral body segmentation volumes from the additive, 

axial, sagittal, and coronal models are shown in Figure 15 with false positives shown in 

red and false negatives shown in blue. True positives are grey. The visualization tends 

to perceptually overstate the presence of classification errors since the false classification 

surfaces occlude the true positive surface. Still, it is a useful tool for analyzing the 

qualitive classification performance of the models. At the E = 0.5 classification threshold 

the models are more prone to false negatives than false positives. This visualization also 

makes it easy to understand the effect of the additive ensemble models on true positives 

and true negative predictions. False negatives from the constituent models only persist 

through the additive model if the false negatives appear in all constituents. Conversely, 

false positives will persist if they appear in any of the constituent models. This means 

that the additive model will only be effective if the constituent models tend to generate 

more false negatives than false positives – which appears to be the case with these models 

and the average test set CT volume. Lastly, the visualization is also useful for revealing 

errors in the ground-truth volume. Intermediate analysis of the prediction volumes 

showed ground-truth labelling inconsistencies between the training and test sets. 

Specifically, the volumes selected as test set volumes contained the coccyx (colloquially 

called the tailbone) as part of the vertebral body mask, while the volumes used for 

training the U-Net models did not include the coccyx in the vertebral body class. This 

issue was only revealed by indications of the coccyx bone structure appearing as false 

negatives on the test set, as shown in Figure 16. I fixed the inconsistency by removing 

the coccyx from the vertebral body class masks of the test set volumes. The quantitative 

results presented earlier in this chapter are from the corrected test set volumes. 
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Figure 12. U-Net output predictions of the vertebral body class from the constituent axial, sagittal and 
coronal U-Net models on a collection of test volume inputs. Confidence scores range from zero (dark blue) 
to one (dark red). 
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Figure 13. U-Net output-predictions of the vertebral body class (reconstructed in the sagittal view) from 
the constituent axial, sagittal and coronal U-Net models on a collection of test volume inputs. Confidence 
scores range from zero (dark blue) to one (dark red). 

 

 

 
Figure 14. U-Net output-predictions of the vertebral body class (reconstructed in the coronal view) from 
the constituent axial, sagittal and coronal U-Net models on a collection of test volume inputs. Confidence 
scores range from zero (dark blue) to one (dark red). 
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Finally, I present some qualitative results for the pelvis and sternum classes to 

highlight the flexibility of the deep learning-based convnet approach to the image 

segmentation task. Figure 17 shows the pelvis class prediction from the axial U-Net model 

on the validation volume, and Figure 18 shows the sternum class. Even the singular 2D 

model does a good job of segmenting the very irregular shape of the pelvis and the small-

volume footprint of the sternum. More qualitative segmentation results for the vertebral 

body, pelvis, and sternum classes are provided in Appendix A for the rest of the test set 

CT volumes. Some predictions show small groups false positive results far from the bone 

structures of interest, indicating segmentation could be further improved by 

morphological filtering such as close/open filters or connected component extraction. 

Some of these morphological operations are explored in Chapter 5 as a preprocessing step 

in the vertebral body instance segmentation.  

Figure 15. Predicted volume masks at the E = 0.5 classification threshold for various models. Additive 
(2) is the Axial + Sagittal additive model. Grey indicates true positives, red indicates false positives, and 
blue indicates false negatives.  
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3.3 Discussion 

In this chapter I presented a multi-view ensemble U-Net model for segmenting 

vertebral body, pelvis, and sternum bone structures from CT volume data. Due to the 

limited ground-truth data for the pelvis and sternum classes, quantitative results were 

reported for only the vertebral body class. Of the constituent axial-, sagittal-, and 

coronal-view models the axial-view model performs the best with a mean Dice score of 

0.922 on the test set for the vertebral body class. It may be argued that the vertebral 

body segmentation task, when limited to 2D, is easier in the axial plane than the others. 

The result matches intuitive reasoning. The shape of the 2D masks is much more regular 

in the axial plane compared to the sagittal or coronal planes. Conversely, due to the 

typical shape of the spine, slicing 2D images along the coronal plane creates discontinuous 

and sporadic vertebral body images and class masks, the features of which are naturally 

more difficult to learn.  

On the vertebral body class, the proposed ensemble-by-voting and ensemble-by-

averaging models performed worse than even the singular axial-view model. The 

“additive” ensemble method which preserves the true positives of the constituent models 

and filters the true negatives did perform slightly better on the test set when used in the 

“axial-view model plus sagittal-view model” configuration. However, the small 

performance increase of +0.0023 Dice score on the test set hardly seems worth the extra 

effort of generating additional U-Net models. I also show that with a reasonable degree 

of certainty, the mean optimal classification threshold is likely below the naïve choice of 

 
Figure 16. False negatives (blue) and false positives (red) near the coccyx tailbone structure of a test 
set volume. The persistent false negative pattern revealed an underlying labelling inconsistency between 
the test set and the training set (which has since been fixed).  



46 
 

E = 0.5 for CT image volumes similar to those of the test set. Qualitative results in the 

form of thresholded model output predictions are provided in Appendix A. These show 

the effectiveness and flexibility of even the singular axial-view 2D U-Net for the 3D bone 

segmentation task.  

 
Figure 17. Ground-truth pelvis class mask and a prediction of the pelvis class from the axial-view 
U-Net model. True positives are grey, false negatives are blue, and false positives are red.  

 

 
Figure 18. Ground-truth pelvis class mask and a prediction of the sternum class from the axial-view 
U-Net model. True positives are grey, false negatives are blue, and false positives are red.  
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Chapter 4 

Asymmetric Super-Resolution 

In Chapter 3 it is shown that the under-sampled nature of the HSCT patient dataset 

makes it difficult to identify the boundaries between individual vertebrae to perform 

instance segmentation of the vertebral bodies, even for human annotators. In this chapter 

I investigate the use of super-resolution as a preprocessing step for such under-sampled 

medical image data, with the hope that it may be able to accurately reconstruct 

anatomical “texture” to the point that these vertebral boundaries may be revealed. 

Super-resolution as implemented in the research literature nearly always uses 

symmetric scaling where both dimensions of the low-resolution image are scaled equally 

[20]. This type of scaling assumes that the pixels in a low-resolution digital image 

represent square areas in the real image plane. This assumption is very reasonable in 

nearly all SR use cases. However, there are cases where asymmetric scaling may be useful. 

Specifically, in 3D medical imaging a single dimension is sometimes under-sampled 

relative to the others to limit the overall radiation dose experienced by a patient [4]. In 

these cases the resultant voxels are anisotropic in shape – they are discrete 

representations of non-cubic volumes in the real image space. When this under-sampled 

volume is sliced and viewed in 2D, two of the three anatomical image planes will contain 

asymmetric pixel data (the images in these planes appear to be “squished”). For example, 

in a case where the axial dimension is under-sampled, the sagittal and coronal views will 

have anisotropic pixels. To view the under-sampled sagittal and coronal image data in a 

realistically proportionate way it needs to be re-scaled. Scaling can be done with no prior 

information by naïve interpolation-based methods, but super-resolution algorithms 

outperform interpolation-based scaling and will yield a more accurate reconstruction [20]. 

 Motivated by the medical imaging use case, I propose an asymmetric SR 

upsampling module that allows many of the modern state-of-the-art convnets to be used 

in a novel way – with purely asymmetric scaling. I define purely asymmetric scaling to 

be scaling of 2D images in only a single dimension, in contrast to the generally 

asymmetric method of [21]. The module I develop could be generalized to 3D for networks 

operating with 3D image data and 3D convolutions. I show the effectiveness of the 
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asymmetric upsampling module by implementing it alongside a modified SRResNet [56]. 

The architectural similarities between many of the modern SR convnets (discussed in the 

following section) allow this module to “drop into” top-performing architectures such as 

SRGAN [56], EDSR [102], and RCAN [35] – to name a few. 

4.1 Methods 

4.1.1 Purely Asymmetric Super-Resolution Upsampling Module 

In many modern SR convnets purely asymmetric scaling can be implemented by 

replacing the upsampling module. Most networks have put this upsampling module at 

the end of the convolutional ResBlocks, allowing features to be extracted in the 

computationally less expensive low-resolution space. This design trend is shown in the 

SR convnet survey from Wang et al. [20]. They also show that most of these networks 

use the sub-pixel upsampling module first implemented in [100]. This upsampling method 

has been preferred because it is much more efficient than the alternative of transposed 

convolutional layers. Presently, the PyTorch [53] and TensorFlow [54] implementations 

of the sub-pixel layer (nn.PixelShuffle in PyTorch) do not allow for asymmetric scaling 

factors. It is possible to implement the sub-pixel layer with purely asymmetric integer 

scaling, but investigation of the source code reveals that the functionality of the module 

lies embedded in C++ code. For this proof-of-concept, at this time I am more interested 

in a drop-in solution based purely on Python code. I stay in the PyTorch environment 

by using transposed convolution as the upsampling method. This choice comes at the 

cost of computational complexity, but with no SR reconstruction performance impact, 

as the authors of the original sub-pixel upsampling paper show the functional equivalence 

of the two methods in their addendum [115]. The transposed convolutional layer 

(nn.ConvTranspose2d in PyTorch) implicitly allows for purely asymmetric scaling factors 

by allowing asymmetric stride and kernels [53]. I define a purely asymmetric scaling 

factor jl as being the integer scaling factor applied to only one of the image dimensions. 

I emphasize purely asymmetric because in [21] they define the asymmetric scaling factor 

to be the more general case of a different scaling applied to each image dimension, one 

of which may or may not be unity (the authors do not test the purely asymmetric case 

in that paper). 

The purely asymmetric upsampling module I propose is a very simple design 

consisting of two layers (depicted in Figure 19): 
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• Layer 1: An initial convolutional layer used for expanding the number of 

feature channels prior to the mapping from low- to high-resolution space. This 

design choice is inspired by the initial convolution in the sub-pixel upsampling 

module [100]. A 3 × 3 kernel is used with unit stride. For this layer, the 

number of output feature channels is set to equal the number of input feature 

channels multiplied by the purely asymmetric scaling factor jl. In this way 

the upsampling module becomes wider for larger scaling factors. The feature 

channels output from this layer are used to map into the SR space by the 

transposed convolution Layer 2. 

• Layer 2: A transposed convolutional layer with asymmetric stride and 

asymmetric kernels. The asymmetric stride is set to [jl, 1] and the asymmetric 

kernels are sized [jl, 3]. To avoid padding the scaled dimension, a patch size 

with dimensions that are divisible by many integer factors (e.g., 96 × 96 pixels) 

may be desirable. Another option is to have the patch size depend on the 

scaling factor jl. However, the unscaled dimension will require padding of 1 

on each side due to combination of stride and kernel length in that dimension. 

The number of input feature channels is equal to the number of output feature 

channels from Layer 1. The output of this layer will be the final SR image, so 

the number of output feature channels will be equal to the number of color 

channels in the input image (i.e., three for RGB images, one for grayscale). 

4.1.2 Model Selection 

The module described above can be dropped into many different modern convnet 

architectures, so long as they use the “post-feature extraction” upsampling method 

(where the learned features are mapped from low- to high-resolution by a convolutional 

upsampling layer at the end of the network, after feature extraction [20]) such as the 

highly performant EDSR [102] and RCAN [35]. EDSR is a large network with over 43 

million learnable parameters and takes almost a week to train on my Nvidia GTX 1070 

GPU. For testing the purely asymmetric upsampling module I have decided to use a 

modified SRResNet (similar to the “baseline” model in [102]) with: 

• 16 standard ResBlocks with no batch normalization layers. 

• 64 feature channels in each convolutional layer. 

• 96 × 96 high-resolution patch size for training. 

• A purely asymmetric upsampling module as described in Section 4.1.1. 
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This model can be trained relatively quickly on my hardware. It is meant to serve 

as a proof-of-concept for the purely asymmetric SR task, rather than a new or competitive 

state-of-the-art implementation. My implementation for the modified SRResNet model 

described above is coded in the PyTorch [53] deep learning framework. I borrow code 

from the official EDSR for PyTorch Github repository [102] and have made modifications 

to implement the asymmetric upsampling module for training and inference. This 

modified implementation can run both the EDSR and the modified SRResNet (and many 

other SRResNet-based variations) simply by adjusting hyperparameters passed as 

arguments to the training function. The user can also toggle between purely asymmetric 

or symmetric scaling modes. I also test the model with the asymmetric upsampling 

module replaced by the original symmetric sub-pixel upsampling module; this provides a 

baseline to validate the proposed model against those that appear in the literature (e.g., 

the “baseline” model used in [102]). 

4.1.3 Datasets 

Many of the modern SR convnets have been trained on the DIV2K natural image 

dataset [116]. The dataset contains 800 images for training, 100 images for validation, 

and 100 images withheld by the authors for competition testing. Since I do not have 

access to the test set ground-truth I elect to instead split the validation images into two: 

I use DIV2K images 801-850 for the validation and withhold images 851-900 for testing. 

    
Figure 19. The proposed “drop-in” asymmetric up-sampling module for use in existing SR convnets 
such as SRResNet, EDSR, or RCAN that use a long chain of residual blocks to learn representations in 
the low-resolution (LR) feature space. The module is to be placed at the end of the network in place of 
the symmetric upscaling module.  
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The DIV2K dataset does not contain asymmetric low-resolution images to use for 

network training, so I generate them from the high-resolution images by bicubically 

down-sampling the DIV2K dataset by 2x∗, 3x∗, and 4x∗ in only the vertical dimension 

(throughout this chapter, I use the * notation to indicate asymmetric resampling 

operations). I also create a version of the DIV2K dataset in grayscale for training image 

SR on a single color channel. The reasoning is that most medical images are single 

channel, including the under-sampled CT scans from the HSCT patient dataset that I 

am most interested in applying this network to. 

In addition to the DIV2K benchmark, I have created a custom training and test 

dataset using the publicly available VerSe 2019 CT image volume data [29]. The 

motivation is to compare the reconstruction performance of an SR model trained on the 

natural images of DIV2K to that of a model trained exclusively on medical images (when 

the network is used for re-scaling medical images). I compare the performance of the 

DIV2K-trained model and the VerSe-trained model quantitatively on a holdout VerSe 

test set to see if training an SR model on a task-specific dataset confers any 

reconstruction performance benefit. The highest-resolution CT volumes from the VerSe 

2019 dataset were selected to create the 2D VerSe training data. The high-resolution 

volumes were sliced along the sagittal plane to generate the high-resolution images. The 

resulting high-resolution sagittal slices were then asymmetrically downsampled in the 

same way as the asymmetric DIV2K dataset. The asymmetric VerSe training dataset I 

create contains 800 training images of sagittal views of the spine, 50 validation images 

of sagittal views of the spine, and a holdout test set contains 10 images of the same. The 

reason for the relatively small test set is to maximize the training data. To avoid bias, if 

an image was taken from a volume for the test set, no other images from that volume 

were used for the training set. Further, each of the 10 images from the test set comes 

from a unique CT volume, so the 10 images represent 10 entire CT volumes that cannot 

be used for training.  

4.1.4 Performance Metric for Super-Resolution Reconstruction 

I measure the reconstruction performance by pixel-wise PSNR, one of the most 

popular metrics for objectively grading an image reconstruction [20]. This PSNR is based 

on the mean-squared-pixel-error (MSE) in dB, given by [20] 

HoA = 1i� ∑ ∑[q>(6, R) − o>(6, R)]2�−1
N=0

u−1
�=0

 , (16) 
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+o > = 10 log10 ( 9uBv2
HoA) , (17) 

where � and i are the image dimensions (in pixels), q> is the high-resolution ground-

truth image, o> is the inferred super-resolved reconstruction, and 9uBv2  is the maximum 

possible intensity value allowed by the bit-depth of the images.  

4.1.5 Experiments 

In all, 17 modified SRResNet models (henceforth just models) were trained at 

different scaling factors, both symmetric and purely asymmetric. The various trained 

models are used to benchmark on the DIV2K and VerSe training sets. For clarity, Table 

4 shows a list of the experiments with their various training sets, with the asymmetric 

upsampling modules enabled and disabled, and at their various scale factors. PyTorch 

[53] is used as the deep learning framework. All models were trained from randomly 

sampled pairs of low- and high-resolution patches from the datasets. High-resolution 

patches of size 96 × 96 and the corresponding low-resolution patch were used, with the 

size of the low-resolution patch dependent on the scaling factor and upsampling module. 

The low-resolution patch is asymmetric for the models trained with the purely 

asymmetric upsampling module. Basic flip augmentations are performed randomly with 

a uniform distribution on the training patch pairs, with only the symmetric patches 

getting 90° rotations (random 90° rotations on the asymmetric low-resolution patches 

yields size mismatches in the training mini-batch). A mini-batch of 16 patches is used 

for 300 epochs, where the model sees 16,000 random patch pairs per epoch. The models 

trained at 4x and 4x∗ (where * denotes asymmetric) scaling factors used pre-trained 2x 

and 2x∗ models to ease training, a method borrowed from [102]. The Adam optimizer 

[44] is used for training all models, with i:i7�e1i = 0.9 and �7e2j = (0.9, 0.999). L1-

pixel is used as the loss function, given by [20] 

�1(o>,q>) = 1i� ∑ ∑∣o>�,N − q>�,N∣�−1
N=0

u−1
�=0

(18) 
for an i × � ground-truth image q> and predicted image o>, each with spatial 

coordinates (6, R). An initial learning rate of 10−4 was used in all models except the 

finetuning experiments, which used an initial learning rate of 10−5. This adjustment was 

made on the finetuning experiments to mitigate overfitting at the 10−4 learning rate, as 

shown by the validation scores in Figure 20. Validation scores for the rest of the models 

appear in Figure 21, and all show good convergence. A scheduled learning rate 
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adjustment is made at epoch 200 where the learning rate is halved. During the training, 

the model that performed best on the validation set was saved along with the final model. 

Testing was performed on the best-performing model. 

Models 1-3 are trained with the DIV2K set with symmetric scaling. These are meant 

to serve as a baseline from which to compare the performance of the symmetric models 

with results that are reported in the literature. Models 4-6 are trained with the 

DIV2K_GRAY set, again with symmetric scaling. These are meant to be compared 

directly to models 1-3 to check the relative performance of image SR between color (3 

color channel) and grayscale (single color channel) natural images. Models 7-9 are also 

trained on the DIV2K_GRAY dataset, but these use the purely asymmetric upsampling 

module described in Section 4.1.1, and as such also use an asymmetric scaling factor. 

These are meant to provide an initial benchmark for the difficulty of purely asymmetric 

SR by allowing it to be compared to the symmetric models 4-6. Models 10-12 are trained 

on the custom VerSe dataset with symmetric scaling factors. These models can be 

compared to the symmetric DIV2K_GRAY models 4-6 to gauge the relative difficulty 

TABLE 4. GENERATIVE SR MODELS TRAINED FOR EXPERIMENT  

# Training Set Asymm? SF Pre-trained LR 

1 DIV2K No 2x - 10-4 

2 DIV2K No 3x - 10-4 

3 DIV2K No 4x DIV2K_2x 10-4 

4 DIV2K_GRAY No 2x - 10-4 

5 DIV2K_GRAY No 3x - 10-4 

6 DIV2K_GRAY No 4x DIV2K_GRAY_2x 10-4 

7 DIV2K_GRAY Yes 2x* - 10-4 

8 DIV2K_GRAY Yes 3x* - 10-4 

9 DIV2K_GRAY Yes 4x* DIV2K_GRAY_2x* 10-4 

10 VerSe No 2x - 10-4 

11 VerSe No 3x - 10-4 

12 VerSe No 4x VerSe_2x 10-4 

13 VerSe Yes 2x* - 10-4 

14 VerSe Yes 3x* - 10-4 

15 VerSe Yes 4x* VerSe_2x* 10-4 

16 VerSe No 3x DIV2K_GRAY_3x 10-5 

17 Verse Yes 3x* DIV2K_GRAY_3x* 10-5 
Asymm? = “asymmetric upsampling module”, SF = scale factor, LR = learning rate, * indicates 

asymmetric scaling factor. 
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of the general SR task on the VerSe dataset. Models 13-15 are trained on the VerSe 

dataset but use the asymmetric upsampling module with asymmetric scaling factors. 

These are the most relevant models to the larger problem, as they will show qualitatively 

and quantitatively the SR reconstruction performance on under-sampled medical images 

of the spine – this task being the primary motivation for the asymmetric SR module. 

Finally, models 16 and 17 are trained on the VerSe dataset but are pre-trained on the 

DIV2K_GRAY dataset. This is to check if pre-training on DIV2K and finetuning for a 

specific task will confer any reconstruction performance benefit in either the asymmetric 

or symmetric upsampling case.  

The models just described were all tested on holdout data from their own dataset, 

as described in Section 4.1.3. The DIV2K models were tested on both DIV2K and VerSe 

test data. This is to answer whether a model trained on natural image data will perform 

better, worse, or similarly to a model trained on task-specific data when used for inference 

on the task-specific test set. On the other hand, the models trained on VerSe data are 

only tested on VerSe data. “How an SR model trained on CT images of the spine will 

perform on diverse natural image data” is not a research question answered in this thesis. 

Based on imbalance of texture diversity between the two datasets (DIV2K having much 

more diverse texture), my expectation is that the performance would be sub-optimal. 

Finally, the two VerSe-finetuned models with DIV2K pre-training are also tested only 

on the VerSe test set. The reconstruction error from rescaling each test set with bicubic 

interpolation was calculated to provide a naïve baseline for SR performance of every 

model.  

 
Figure 20. Validation scores for finetuning models on VerSe data (pre-trained on DIV2K_GRAY), 
showing the overfitting on this VerSe training set can be mitigated by decreasing the learning rate. 
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4.2 Results  

4.2.1 Quantitative Results 

The experimental results comparing SR reconstruction performance on the test sets 

are found in Table 5. I compare the DIV2K results to those of [102], who also test a 

modified SRResNet on the DIV2K validation set. They report scores of 34.40 dB (2x), 
30.82 dB (3x), and 28.92 dB (4x) for SRResNet tested on holdout DIV2K validation 

 
Figure 21. Validation scores during training of the generative hybrid SR models. Color-coded by 
training/validation dataset, 2x scaling factor models are dots, 3x are dashes, 4x are lines. 
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images. While the results from my symmetric models on this test set are slightly lower, 

the performance is comparable. This finding establishes a baseline: my model’s 

architecture (when used in “symmetric upsampling mode”) performs similarly to the 

modified SRResNet used in [102].  

An interesting result is that the DIV2K and DIV2K_GRAY models saw nearly 

identical SR performance, with DIV2K_GRAY-trained models scoring consistently-yet-

negligibly lower on the DIV2K validation subset that I used as a holdout test set. The 

asymmetric upsampling modules show good SR performance on both the DIV2K and 

VerSe test sets, greatly outperforming bicubic interpolation.  

Scaling asymmetrically by a factor of 2x∗, 3x∗, or 4x∗ is obviously an easier problem 

than scaling symmetrically by the same factors. The VerSe dataset itself also appears to 

be an easier SR problem than DIV2K as measured by PSNR, evidenced by the VerSe 

validation and test scores greatly exceeding those of DIV2K for both the asymmetric and 

the symmetric SR models. This is likely due to the large number of near-black pixels 

that appear in the background of these medical images, forming large featureless dark 

areas that are particularly easy to super-resolve.  

TABLE 5. TEST SET RECONSTRUCTION PERFORMANCE (PSNR) 

  

 s
ca

le
 Training Dataset 

DIV2K VERSE P-VERSE Bicubic 

T
es

t 
D

at
as

et
 

DIV2K 

x2 34.0884 
  

30.8996 

x3 30.5493 28.1880 

x4 28.7131 26.6560 

DIV2K 
_GRAY 

x2 33.997 
  

30.9465 

x3 30.4528 28.2519 

x4 28.6448 26.7381 

DIV2K 
_GRAY  

x2* 36.5112 
  

33.3228 

x3* 32.7557 30.3424 

x4* 30.7876 28.6720 

VERSE 

x2 38.3765 38.7394  31.1532 

x3 35.0802 35.9985 36.0943 28.6109 

x4 33.1451 34.1897  27.2185 

VERSE  

x2* 41.4375 41.7206  34.6101 

x3* 38.0641 38.8349 38.7879 32.0183 

x4* 36.2027 36.9373  30.5153 
* indicates asymmetric scale factor, P-VERSE means pre-trained on DIV2K. Units are dB PSNR. 
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It was also found that training on the task-specific VerSe data did confer a 

reconstruction performance benefit on the VerSe test set as measured by PSNR. On the 

other hand, the DIV2K models finetuned on VerSe training data do not show a consistent 

performance benefit. The symmetric pretrained-on-DIV2K 3x model only slightly 

outperforms the VerSe-trained model, but the asymmetric pretrained model scores less 

than the task-specific VerSe-trained model. This suggests that DIV2K pre-training for 

the task-specific VerSe data does not substantially improve task-specific performance. 

4.2.2 Qualitative Results 

Qualitative results for the asymmetric SR models are provided for the 

DIV2K_GRAY and VerSe test sets. In Figure 22 some SR reconstruction results for the 

2x∗, 3x∗, and 4x∗ asymmetric models are shown below the bicubic interpolations of the 

same scaling factors. The model seems to be good at reconstructing sharp elongated edges 

and is perceptually superior to bicubic interpolation which tends to smooth high 

frequency features such as edges. Figure 23 shows the performance of the asymmetric 

VerSe-trained models on the VerSe test set. On the VerSe test set the SR models are 

able to resolve the boundaries between the lumbar, thoracic, and cervical vertebrae. I 

also applied the asymmetric 3x∗ SR model to the under-sampled HSCT patient volumes 

described in Chapter 3. With this unseen dataset, the SR convnet models seem to have 

more trouble generating boundary pixels between the individual vertebrae. This can be 

seen in the top example of Figure 24, where the lumbar vertebrae are super-resolved with 

good separation, but the thoracic vertebrae are not. This is a qualitatively different result 

than what is shown by the SR results on the VerSe test set, where the boundaries between 

the thoracic and even the cervical vertebrae were resolved clearly. Some larger-format 

examples from the HSCT patient dataset used with the VerSe-trained asymmetric 3x∗ 
SR convnet are provided in Appendix B. 

4.3 Discussion 

Motivated by the task of upscaling under-sampled medical images, I proposed an 

asymmetric upsampling module that “drops in” to most modern state-of-the-art convnets 

for image super-resolution. The module is compatible with SR convnets that use learned 

sub-pixel [100] upsampling after features are learned in the low-resolution space, such as 

EDSR [102] and RCAN [35]. The module is a simple design that uses transposed 

convolution with asymmetric stride and asymmetric kernels to perform the asymmetric 

upsampling. To my knowledge, this is the first convnet built specifically to perform  
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Figure 22. Asymmetric SR at 2x*, 3x*, and 4x* scaling factors trained and tested on the DIV2K_GRAY 
dataset. 
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Figure 23. Asymmetric SR at 2x*, 3x*, and 4x* scaling factors trained and tested on the VerSe dataset. 
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Figure 24. Asymmetric SR at 3x* on the HSCT patient dataset, trained on the VerSe dataset.  
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purely asymmetric super-resolution. The work from [21] provides a convnet for general 

asymmetric SR but they do not test the model on the purely asymmetric case where one 

dimension is held to unity while the other is scaled. I trained, validated, and tested super-

resolution models on the DIV2K dataset as well as a custom-made task-specific medical 

imaging dataset. This custom dataset was built from the publicly available VerSe [29] 

CT volumes, from which I took high-resolution sagittal CT images of the spine. It was 

found that the symmetric models performed nearly identically on the 3-channel DIV2K 

dataset and the single-channel DIV2K_GRAY dataset. The asymmetric performance on 

DIV2K_GRAY is good, with the asymmetric 4x∗ model having similar reconstruction 

performance to the symmetric 3z model. The VerSe-trained models performed better on 

the VerSe test set, outperforming the DIV2K-trained models and the VerSe-finetuned 

models pre-trained on DIV2K. The asymmetric VerSe-trained models on the custom 

VerSe test set attained PSNR scores of 41.72 dB for the asymmetric 2x∗ model, 38.83 

dB for the asymmetric 3x∗ model, and 36.93 dB for the asymmetric 4x∗ model.  

Qualitative performance on CT volumes from the HSCT patient dataset described 

in Chapter 3 is not as good as seen on the VerSe test set. This may be explained by a 

number of factors. Foremost is that the VerSe dataset I created contains low-resolution 

images down-sampled from high-resolution images. The bicubic downsampling procedure 

I used in creating the low-resolution images for the VerSe training set may not be a 

reasonable approximation of the in-situ under-sampling of a CT volume. It is possible 

that training SR convnet models with low-resolution images generated from a more 

representative downsampling procedure may increase the performance on the HSCT 

patient dataset (nearest-neighbor may be a reasonable choice). Of course, there are 

differences in the CT imaging protocols used for capturing the CT image volumes of the 

VerSe and HSCT patient datasets. These technical differences may also play a role in 

the qualitative performance discrepancy. 

Asymmetric super-resolution convnets prove to be a good method to accurately 

upscale under-sampled medical image data. An obvious next step for this SR use case is 

a generative SR convnet architecture for 3D LR/HR training patches with the 

asymmetric implementation in mind. Pham et al. present a fully-3D SR convnet (albeit 

for symmetric upscaling) in [117], but this is a very shallow network built as a 3D 

extension of SRCNN [98] and lacks the representative capability of the more recent and 

much deeper 2D SR convnets. The main challenge with the 3D SR approach is that 

making a much deeper network will be computationally very expensive. EDSR is already 

very large at 43 million parameters, and it is just a 2D image convnet [102]. Another 
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area to improve is the medical imaging training set. The custom VerSe training set that 

I built is not particularly diverse, and I believe generalization performance of the SR 

convnets on the medical image upscaling task could be improved by expanding and 

curating high-resolution medical images to be used as a general benchmark, much like 

DIV2K has become the standard for training on natural image data. Lastly, the sub-

pixel convolutional layer would be a more efficient alternative to the transposed 

convolution used in my purely asymmetric upsampling module. An implementation of 

asymmetric sub-pixel upsampling would be a useful tool to add to the mainstream deep 

learning frameworks. 
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Chapter 5 

Vertebral Body Instance Segmentation 

The convnet-based super-resolution methods described in Chapter 4 fail to 

consistently resolve the boundaries between individual vertebrae in the HSCT patient 

dataset based on the CT data alone, motivating other methods to complete the vertebral 

body instance segmentation task. In many cases the FLT-PET data allows the detection 

of most vertebral boundaries by simple visual inspection of sagittal slices around the 

spine region. This is exemplified by Figure 25. In this chapter I present a simple algorithm 

robustly detects vertebral boundaries from the under-sampled post-HSCT day-28 FLT-

PET image volumes that were captured alongside the CT volumes. Somewhat ironically, 

the FLT-PET data, which is of lower resolution than the CT data (and thus would 

generally be considered less useful for localization) will be used here to localize anatomical 

structures with improved accuracy. The detected vertebral boundaries are used to 

individually segment the vertebral bodies from the vertebral body class mask found by 

the methods of Chapter 3. Note that Nguyen et. al use a Kalman filter for this task in 

[10, 11]. Although the approach I used is relatively simple, it is robust. 

Later in this chapter I use the individual vertebral body segmentations to extract 

standardized uptake value (SUV) [26] measurements from the FLT-PET volumes. I do 

the same for the pelvis and sternum bone structure segmentations, and I show an 

automatic method for visualizing the FLT-PET data from these various regions of 

interest (ROIs) by constructing isosurfaces from the cumulative distribution of FLT-

PET values in a given ROI volume.  

5.1 Methods 

5.1.1 FLT-PET Image/CT Mask Registration 

The vertebral boundary detection algorithm operates on the FLT-PET data, and the 

vertebral body segmentation masks generated in Chapter 3 are used for an initial masking 

of the FLT-PET region of interest. The first challenge is to reconcile the coordinate 

system differences between the segmentation masks and FLT-PET volumes. As 

mentioned in Section 3.1.1, the FLT-PET volumes have an axial slice size of only 
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144 × 144 pixels compared to the CT volume’s (and therefore a segmentation mask 

volume’s) axial slice pixel-resolution of 512 × 512. Bicubic interpolation is used to rescale 

each axial slice in the FLT-PET volume to 512 × 512 pixels to match the axial slice size 

of the mask image volumes. Note that this up-scaling interpolation is simply for detection 

of the vertebral boundaries and is not recommended for analysis of the PET data itself 

for reasons outlined in Section 5.2.2. After the interpolation, the FLT-PET volume has 

a pixel-resolution of 512 × 512 × qPET and the and the segmentation mask volume has 

a pixel-resolution of 512 × 512 × qCT, where qPET and qCT represent the pixel size in 

the axial direction of the FLT-PET and CT data, and in general qPET ≠ qCT. The joint 

CT-PET scanner provides a global “z” coordinate (along the axial direction) for each 

axial slice, allowing the segmentation masks and the PET data to be axially registered 

by interpolation. The interp3() MATLAB function was used for this operation, which 

samples image data from one coordinate grid to another using a selectable interpolation 

method. There are two ways to proceed with this (second) interpolation: interpolate PET 

data from the CT/mask coordinate grid or interpolate mask data from the PET 

coordinate grid. Interpolating a new segmentation mask from the PET coordinate grid 

preserves the additional resolution provided by the FLT-PET volumes (as mentioned in 

Section 3.1.1, the FLT-PET data was captured at a higher resolution than the CT data, 

or qPET > qCT). Additionally, interpolating the segmentation mask to the FLT-PET 

coordinate grid detects the vertebral boundaries in the original PET coordinate system, 

which is useful for analyzing the PET data. For these reasons, interpolating the CT mask 

 
Figure 25. Sagittal view FLT-PET image of a HSCT patient on the 28th day post-transplant. The 
vertebral boundaries are clearly defined by local differences in cell proliferation activity. 
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from the PET coordinate system is the best of the two options, and this is how I proceed, 

using the interp3() MATLAB function with the “linear” interpolation method. Linear 

interpolation will be adequate for resampling the vertebral body mask since the object 

shape change between neighboring axial slices is minor. Interpolated mask values falling 

between zero and one are simply thresholded. After the interpolations, we are left with 

a CT mask volume and a FLT-PET image volume of equal 512 × 512 × qPET  pixel- 

resolution. 

5.1.2 Morphological Preprocessing 

Before masking the FLT-PET data with the vertebral body segmentation mask, 

some preprocessing is performed on the mask to regularize the shape. As shown in 

Chapter 3, sometimes the U-Net will be able to discern the vertebral boundary between 

the wider-spaced lumbar vertebrae, creating a discontinuous vertebral body mask. Since 

the boundary detection is now being performed in the FLT-PET modality, these “gaps” 

need to be filled so that the mask covers the entirety of the FLT-PET data in the 

vertebral body column region-of-interest. To accomplish this a simple 3D morphological 

closing filter is applied (with a small spherical structuring element of radius 1). With the 

vertebral body column now contiguous, a connected-components method is used to select 

and extract the largest contiguous object in the CT mask volume, removing any “islands” 

of false-positive voxels from prediction masks, such as those shown in Figure 26.  

5.1.3 Dimensionality Reduction and Boundary Detection 

After regularizing the vertebral body column mask shape the mask is applied to the 

FLT-PET volume data. At this point a reasonable next step is to reduce the 

dimensionality of the problem by averaging the FLT-PET intensities of the masked pixels 

for each axial slice according to 

9BCD(6) = 1 � ∑ ∑ $"�� (R, S, 6)�−1
O=0

u−1
N=0

, (19) 
where 9BCD(6) is the mean FLT-PET intensity of the ith axial slice in the masked FLT-

PET volume image $"�� .  � is the number of vertebral body object pixels in the ith slice. 
The result is a one-dimensional signal 9BCD, from which the boundaries between individual 

vertebrae are easily identifiable as valleys. This axial-plane averaging approach to 
reducing the problem to one dimension is also used by Nguyen et. al in [10, 11]. 

Inverting the sign of the signal 9BCD allows the peak-detecting MATLAB function 

findpeaks() to locate the valleys in the original signal. Simply using the function with no 
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qualification method for the peaks yields “false” peaks due to small fluctuations in 

hematopoietic cell proliferation activity within the vertebral bodies. This can be seen in 

the central graph of Figure 27. These false peaks can be filtered out by imposing a 

qualification test, such as setting a minimum peak height or a minimum distance between 

peaks. Qualifying peaks by setting a minimum height is challenging because the expected 

height of the peaks representing the vertebral boundaries can fluctuate greatly from 

patient to patient and, for any given patient, from vertebrae to vertebrae. Qualifying 

peaks by setting a minimum distance is decidedly less challenging. While the expected 

minimum distance between “correct” peaks (corresponding to ground-truth boundary 

indicies) also varies from patient to patient, the variance is much smaller. Setting a 

minimum peak distance of “5” removes the false peaks. However, the minimum distance 

between peaks also varies from vertebrae to vertebrae for a given patient. This can be 

can be seen in the bottom graph of Figure 27, where some vertebral boundaries in the 

thoracic and cervical vertebrae (higher up the spine) do not qualify as peaks because 

they are within 5 axial slice indices of another stronger peak. 

Since the MATLAB function findpeaks() does not allow for a linearly decreasing 

minimum peak distance, I write my own detection algorithm for this specific use case. 

The peaks detected by the MATLAB function are used to find a prior for the span of 

 
Figure 26. Major object extraction removes small groups of false-positive voxels (circled in red). 
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the L4 vertebrae in the axial direction, �L4, by taking the difference of the indices of the 

first two detected peaks (which can always be detected robustly). The index of the axial 

slice representing the beginning of the L5 vertebrae is taken to be the index of the first 

nonzero value in 9BCD. Then, from the index between the L4 and L3 vertebrae, the next 

boundary is found by finding the minimum within the next �L4 values of 9BCD, excluding 

the nearest ⌊�L43 ⌋ indices which physically cannot be the index of the next vertebral 

boundary, simply due to their proximity. This “exclude nearest” design mitigates a failure 

mode where two vertebral boundaries can be detected between the same two vertebrae, 

depending on the average intensity values on the “other side” of the next vertebrae. This 

failure mode is typically prone to occur between the lumbar vertebrae, which have wider 

boundary regions spanning two or three axial slices with lower 9BCD values. The value of 

⌊�L43 ⌋ is chosen from analysis of the HSCT patient dataset; no vertebral boundaries are 

ever detected within ⌊�L43 ⌋ indices of the previous vertebral boundary. This is made 

evident in Figure 28, where all the vertebra span at least 13 �L4. So, when 6 is the last 

detected boundary index, the search for the next boundary is limited to the window of 

 
Figure 27. A sagittal slice of the masked FLT-PET data (top). Result from running peak detection 
algorithm with no qualification parameters on the inverted 9BCD signal (center). Result from running 

peak detection algorithm with an established minimum peak distance of “5” (bottom). 
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values between 9BCD(6 + ⌊�L43 ⌋) and 9BCD(6 + �L4), which only contains a single vertebral 

boundary region. Also shown in Figure 28 is that the expected vertebral span decreases 

for vertebrae higher in the spine. Using the initial vertebral span prior �L4 for each 

vertebral boundary search is not feasible, as beginning near the mid- and upper-thoracic 

regions �L4 might span multiple vertebral bodies. So, �L4 is modified after detecting the 

end of the T12 vertebrae to a new value �T12 = ⌈45 �L4⌉, modified again at the T7 

vertebrae to a value �T7 = ⌈34 �L4⌉, and last modified at the T4 vertebrae to �T4 =
⌈35 �L4⌉. These changes to the vertebral spanning prior were determined by the analysis 

of the vertebral boundaries on the HSCT patient dataset shown in Figure 28. The 

detection of vertebral boundaries continues iteratively in the method described above 

until all lumbar and thoracic vertebral bodies have been bounded. The cervical vertebral 

bodies are omitted due to inconsistency of the algorithm in that region. The instance 

segmentation of the lumbar and thoracic vertebral bodies is then a simple matter of 

slicing the 3D vertebral body mask at the detected boundary indices. 

5.2 Results 

Results from the instance segmentation algorithm are very good. Table 6 shows the 

magnitude of the difference between the manual labelling of vertebral boundaries and 

the boundary indices detected by the algorithm. In most of the cases where differences 

appears in Table 6, the algorithm is working as intended. Ground-truth labelling was 

conducted “by eye”, using only a single sagittal view of the FLT-PET data, whereas the 

algorithm is computing the mean value of the masked 2D FLT-PET data in each axial 

slice. Put another way, the algorithm is considering more information than was available 

Figure 28. Mean span of each vertebrae in the HSCT dataset normalized to the initial vertebrae span 
prior (L4).  
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when the ground-truth boundary indicies were manually determined. Additionally, it is 

hard for a human annotator to perceptually determine a minimum between two axial 

slices when both appear to be equal in mean intensity, and this situation arose frequently 

during ground-truth labelling. The algorithm does not have this problem. So, where “1’s” 

appear in Table 6, it is often because the boundary detected by the algorithm is simply 

uses pixel information from each entire axial slice instead of a single sagittal view. Table 

6 also shows the root mean squared error (RMSE) of the algorithmically detected 

boundaries for each patient volume, given by [118] 

TABLE 6. MAGNITUDE DIFFERENCE BETWEEN MANUAL AND ALGORITHMIC  
BOUNDARY INDEX DETECTION METHODS 
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T
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T
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T
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T
2 

T
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RMSE 

p1 - - - - - - - - - 1 - - - - - - - - 0.236 

p2 1 - - - - - - - - - 1 - - - - - 1 - 0.408 

p3 - - - - - - - - - - - - - - - - - 1 0.236 

p4 - - - - - - - - - - - - - - - - - - 0.000 

p5 1 - - - - - - - - 1 - - - - - - - - 0.333 

p6 1 1 - 1 - - - - - - - - - - - - - - 0.408 

p7 - - - - - - - - - - - - - 1 - - - - 0.236 

p8 1 - - - - - 1 - - - - - - - - - - - 0.333 

p9 1 1 1 1 - - - - - - - - - 1 - 1 - - 0.577 

p10 - - 1 - - 1 - - - - - - - - 1 - - - 0.408 

p11 - - - - - - - - - - - - - - - - - - 0.236 

p12 1 1 - - - - - - - - - - - - 1 - - - 0.408 

p13 - - - - - - - - - - - - - - - - - - 0.000 

p14 - - - - - - - - - - - - - - 1 - - - 0.236 

p15 1 1 - - - - - - - - - - - - - - - 1 0.408 

p16 1 - 1 1 - - - - - - - 1 - - - - - - 0.471 

p17 1 - - - - - - - - - - - - - 1 - 1 1 0.471 

p18 - - 1 - - - - - - - - - - - 1 - - 3 0.782 

p19 1 - - - - - 1 1 - - - - - - 1 - - - 0.471 

p20 - - 1 1 1 - - - - - - - - - - - 1 - 0.471 

p21 1 - - - - - - - 1 - - - - - - - - - 0.333 

p22 - - - - - - - - - - - 1 - - - 1 1 1 0.471 

 “-“ indicates a magnitude difference of zero for the boundary. “p_” indicates the patient 

number in the anonymized HSCT dataset. 
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RMSE = √ 1 ∑(�� − ��̂)2�
�

 , (20) 
where �� and ��̂ are the ground-truth and algorithmically derived boundary indexes at 

each index 6, and   is the total number of vertebral boundaries detected. Notably, the 

method I implemented produces lower RMSE for each patient than the Kalman filter 

method shown by [10], in some cases by large margins. However, it must be noted that 

in [10] the authors include the cervical vertebrae, which I omit. It likely that most of 

their reported RMSE comes from this region, so the scores cannot be directly compared 

[10]. As shown in Table 6, the algorithm produces only one obvious mistake at the T1 

vertebrae for the patient 17 image volume. An example of the resulting instance 

segmentation is shown in Figure 29, with examples from the rest of the dataset appearing 

in Appendix C.  

5.2.1 FLT-PET Visualization 

Since the CT mask volume has been registered to the interpolated FLT-PET volume, 

extracting cell proliferation data for a vertebral body instance is as a simple task of 

applying the vertebral body mask. I developed a script for automatic visualizion of this 

data which determines isosurfaces of FLT-PET intensity levels to create a “heatmap-

like” 3D view of cell proliferation within a given bone structure ROI. Following the same 

interpolation procedure as was described in Section 5.1.1, the CT-derived masks are 

intepolated to the PET scan locations, and the PET data is upscaled in the axial plane 

to match the axial dimensions of the segmentation mask volume. FLT-PET isosurface 

values are selected by constucting discrete cumulative distribution functions from 

histograms of the FLT-PET intensity values contained within the ROIs. Setting 

isosurfaces at the approximate 50th, 85th, and 98th percentiles from the FLT-PET 

cumulative distribution creates a good visualization of cell proliferation activity. The 

isosurfaces are interpolated in MATLAB using the built-in isosurface() function. The 

PET activity on the approximate 28th day post-transplant is shown in Figure 30 and 

Figure 31 for the vertebral body and pelvis ROI’s, respectively. Visualizations from the 

rest of the dataset are provided in Appendix D.  

5.2.2 Standardized Uptake Value Measurement (FLT radiotracer) 

In addition to visualization, the segmentations were used to perform a calculation of 

the standardized uptake value (SUV) within the ROIs. For this calculation, instead of 
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upsampling the FLT-PET data (which is already in units of SUV for this HSCT patient 

dataset), the segmentation masks were downscaled to match the PET dimensions in the 

axial plane. The choice to downscale the segmentation masks rather than upscale the 

PET volumes was made for a few reasons. First, since SUV is defined as a normalized 

“radioactivity per volume” (see Section 2.1.2), if the voxel dimensions are rescaled, the 

voxel intensities need to be rescaled as well. Put in other words, rescaling the PET data 

when it is already in units of SUV changes the units to “SUV times a constant”. While 

a ratio of voxel sizes may provide a good estimate for this constant, the interpolation 

still may not conserve the SUV in a volume, depending on the interpolation method. 

This would need to be investigated. Second, interpolation could cause high-intensity 

voxels to propagate outward, and these interpolated voxels may cross the edges of the 

segmented bone structure ROIs (generated in Chapter 3) where they would not be 

accumulated in the SUV measurement as they should be. While it may be possible to 

solve these issues, simply choosing not to rescale the PET data (and instead choosing to 

downscale the segmentation masks) nullifies each of them. 

 

Figure 29. Vertebral-body instance segmentation results from the methods described. The code “pXd3” 
indicates the patient number and scan index (where “d3” is approximately the 28th day post-HSCT). 

 



72 
 

  

 
Figure 30. FLT-PET visualization of vertebral body ROIs via isosurfaces. Yellow surfaces represent 50th 
percentile FLT-PET values, orange surfaces represent the 85th percentile, and red represents the 98th 
percentile. “pXd3” indicates the patient number and scan index in the anonymized HSCT dataset (where 
“d3” is approximately the 28th day post-HSCT). 

Figure 31. FLT-PET visualization of pelvis ROIs via isosurfaces. Yellow surfaces represent 50th 
percentile FLT-PET values, orange surfaces represent the 85th percentile, and red represents the 98th 
percentile. “pXd3” indicates the patient number and scan index in the anonymized HSCT dataset (where 
“d3” is approximately the 28th day post-HSCT). 
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After downscaling the mask volumes, they are dilated with a small spherical structing 

element of radius one. This dilation is to account for the fact that the downscaling 

operation may cause the unwanted exclusion of high-intensity PET voxels near the edge 

of the segmentation that should be included in the SUV calculation. After the dilation, 

calculating the SUV of an ROI is a simple task of masking the PET data with a particular 

bone structure mask and adding up all the voxel intensities therein. By these methods, 

the SUV was computed for the vertebral body column, pelvis, and sternum ROIs. The 

same method was used to compute the SUV for the individual vertebral bodies, with one 

procedural difference: instead of a dilation with the 3D spherical structuring element, the 

volume is dilated with a 2D cross structuring element applied on the axial plane. The 

reason for this deviation in method is to prevent double-counting of the voxels between 

vertebral bodies. Due to the low resolution of the HSCT patient dataset along the axial 

dimension, the boundaries between the vertebrae are often only one voxel (or less) thick; 

a dilation via a spherical structuring element applied to individual vertebral bodies would 

span this gap, but dilation via the cross structuring element applied to the axial plane 

does not. 

The vertebral body ROIs in the lumbar and thoracic vertebrae exhibited a mean 

SUV of 45,932 on the 28th day post-HSCT across the patient dataset. The SUV 

calculation within each vertebra across all patients (on the 28th day post-transplant) is 

shown in the boxplot Figure 32. Similar data for the pelvis and sternum ROIs are shown 

in Figure 33 across all three imaging days. On the 28th day post-HSCT, the mean SUV 

for the pelvis ROI was found to be 62,485 across the HSCT patient dataset, and the 

mean SUV for the sternum ROI was found to be 5,043. The complete tables showing 

SUV measurements for each patient and ROI are shown in Appendix E. A close 

examination of Table 8 in Appendix E reveals the mean SUV for the vertebral body 

column object class across the HSCT patient dataset is 54,051. This value is greater than 

the mean of the combined individual vertebral bodies for two reasons. First, the vertebral 

body column mask includes some PET data from the cervical vertebrae that is truncated 

in the instance segmentation procedure due to the inability of the vertebral boundary 

detection algorithm to function properly in that region of the spine for the under-sampled 

volumes in the HSCT patient dataset. Second, the vertebral body column segmentation 

includes the vertebral boundary regions removed by the instance segmentation, and these 

boundary regions contain low-intensity PET values which are aggregated in the SUV 

calculation. 
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Figure 32. SUV for the vertebral body instances in the lumbar and thoracic spine. “×” indicates the 
mean value. Whiskers extend to largest/smallest value within 1.5 times the interquartile range. 

 

   
Figure 33. SUV of pelvis and sternum ROIs across the 3 imaging days. 1st scan is the day before 
transplant (ablated), 2nd scan is between 5 and 9 days post-HSCT, 3rd scan is 28 days post-HSCT. “×” 
indicates the mean value. Whiskers extend to largest/smallest value within 1.5 times the interquartile 
range. 

L5   L4   L3   L2    L1  T12  T11  T10   T9   T8   T7   T6    T5   T4   T3    T2   T1 
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5.3 Discussion 

The vertebral body instance segmentation method described in this chapter is 

effective for dual-modality CT/FLT-PET image volumes (under-sampled in the 

axial/scanning dimension) of HSCT patients around the 28th day post-transplant. The 

algorithm is simple and robustly detects vertebral boundaries that are undetectable by 

humans and algorithms in the CT modality, and achieves lower root mean square error 

(RMSE) detection accuracy than the Kalman filter method of [10] for each patient in the 

HSCT test set, but only on the subset of the vertebral column containing the lumbar 

and thoracic vertebrae. Combining the detected vertebral boundaries with the vertebral 

body class segmentation masks predicted by the U-Nets of Chapter 3 allows the 

quantitative and qualitative analysis of FLT-PET data from specific vertebral body 

ROIs. However, there are some limitations. The method relies on FLT-PET imaging of 

stem cell proliferation in patients post-HSCT, which is currently an uncommon imaging 

technique. It also requires that the image volumes contain enough cell proliferation 

activity in the vertebral bodies that they can be bounded, as is the case with the 28th-

day FLT-PET image volumes. Additionally, the method assumes that the vertebrae can 

be accurately split along axial slices from the image volume. This is often a good 

assumption, but not always. Some vertebral boundaries, particularly those in the upper-

thoracic and cervical region in some patients, would be more accurately split by taking 

an oblique cut with respect to the axial plane. Another assumption is made in the 

visualization component of this chapter that bicubic interpolation of the FLT-PET data 

is a sufficient up-scaled visual representation of the original data. This is likely a 

reasonable assumption, but it would need to be critically examined before clinical use. 

Lastly, the algorithm used in this chapter is designed to work on the under-sampled 

image data of the HSCT patient dataset. The “minimum peak distance” parameter used 

to select the initial L4 vertebral body span prior from the MATLAB function findpeaks() 

would need to be adjusted (increased) for image data obtained from a higher axial 

sampling frequency. However, it should be noted that with such well-sampled image data 

the vertebral boundaries would likely be able to be detected directly in the CT modality 

using a convnet-based segmentation method and individually-labelled vertebral body 

training data. In other words, well-sampled CT volumes would negate the need for the 

instance segmentation algorithm of this chapter. Still, for the analysis of stem cell 

proliferation in under-sampled CT/FLT-PET image volumes, these methods are 

effective. 
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Chapter 6 

Conclusion 

The novel FLT radiotracer paired with PET imaging provides an unprecedented 

ability to examine post-HSCT cell proliferation in the entirety of the body’s bone marrow 

compartments [6]. Compared to the traditional method of examining a patient’s bone 

marrow compartments for hematopoietic activity – targeted invasive biopsy – FLT-PET 

imaging is an informational boon [8]. Typically, examination of this FLT-PET data is a 

time-consuming process where expert physicians draw and analyze regions of interest by 

hand. The drawing of ROIs is undertaken in 2D, or for 3D volumes, in 2D slice-by-slice. 

Automatic instance segmentation of 3D bone marrow cavity ROIs offers physicians and 

researchers a more granular view of the cell proliferation patterns, with less time invested. 

The vertebral bodies are marrow compartment ROIs with high cellular proliferation 

activity during a patient’s hematopoietic recovery to engraftment, and therefore they are 

a common target for analysis – both clinically and in HSCT research [7, 24]. In this thesis 

I have developed and presented an effective method of performing instance segmentation 

of individual vertebral bodies from under-sampled CT/FLT-PET image volumes of 

HSCT patients on the 28th day post-transplant. The image volumes have been under-

sampled in the axial direction to limit the radiation exposure to patients during their 

vulnerable recovery towards engraftment. The under-sampled imaging protocol does not 

resolve the individual vertebral boundaries in the CT modality, making instance 

segmentation challenging. I use a semantic segmentation convolutional neural network 

[12] as a steppingstone to the eventual instance segmentation. Inspired by the high 

performance of fully-3D U-Net-derived networks on 3D medical image segmentation tasks 

[18, 19], but unable to implement such a model due to the high computational complexity 

and large memory footprint, I attempted a so-called “pseudo-3D” U-Net model to 

incorporate information from multiple 2D views of the object classes and thereby improve 

the prediction result [89, 90, 91]. 

Using new vertebral body, pelvis, and sternum class masks [17] for an HSCT patient 

dataset first introduced by Williams et. al for their FLT-PET imaging pilot study [6], I 

constructed multi-class, multi-view ensemble U-Net models from three constituent 2D U-
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Nets. These constituent U-Nets were trained on image-mask pairs sliced from 3D patient 

volumes along the axial, sagittal, and coronal planes using a weighted cross entropy loss 

with down-weighted background class. I tested an ensemble-by-averaging strategy, 

following the work of Shigeta et al. [91], but also tested an ensemble-by-voting strategy 

and an additive ensemble method. Of the three constituent U-Net models, the axial-

trained model performs the best on the test data with a mean Dice score on the vertebral 

body class of 0.922, with the sagittal model close behind at 0.902. The coronal model 

performed poorly relative to the others with a Dice score of 0.849. The only ensemble 

method to outperform the constituent axial-trained model on the test set was the additive 

ensemble method consisting of only the axial- and sagittal-trained U-Net models, which 

resulted in a Dice score increase of +0.0023 over the singular axial model on the vertebral 

body class. 

The slight performance benefit is likely not worth the extra time and effort in 

developing additional models to use in such an ensemble configuration. I am not able to 

directly compare this result to the previous automatic segmentation on the HSCT patient 

dataset by Nguyen et al. [10, 11], since they only report true positive rate which is not a 

representative performance metric for the segmentation task (the true positive rate of 

the axial U-Net model I trained ranges anywhere from 0.0 to 1.0 depending on the 

selection of the classification threshold). Still, the quantitative performance of the 2D U-

Net on the vertebral body semantic segmentation task is good. The qualitative 

performance on the pelvis and sternum classes also shows the versatility of the U-Net 

model. This flexibility – being able to train the same deep architecture to handle multiple 

object classes – combined with state-of-the-art object segmentation performance, makes 

convnets like the U-Net great models for image segmentation when sufficient labelled 

training data is available. It is very likely that the segmentation accuracy could be 

improved further towards state-of-the-art by using a fully-3D convnet such as 3D U-Net 

[18] or V-Net [19], and I would certainly recommend this for practitioners that have the 

computational capability. 

I also presented a module for purely asymmetric super-resolution that “drops in” to 

most modern state-of-the-art SR convnets such as SRGAN [56], EDSR [102], and RCAN 

[35]. This drop-in method is possible because these SR convnets use a common 

architectural theme of feature extraction in the low-resolution space via long chains of 

convolutional residual blocks, followed by a sub-pixel [100] upsampling layer. The module 

I implement is a simple design that replaces the sub-pixel up-sampling used by the 

symmetric SR convnet with a transposed convolution layer. The transposed convolution 
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layer has a higher computational cost, but much easier implementation for the 

asymmetric case, with no SR performance impact [115]. The PyTorch implementation of 

the transposed convolutional layer [53] implicitly allows for asymmetric upsampling by 

allowing asymmetric stride and asymmetric kernels, which I use to create an SR convnet 

based on the SRResNet generator as implemented in SRGAN [54]. To my knowledge, 

this is the first convnet built specifically to perform purely asymmetric super-resolution. 

The work from [21] provides a convnet for general asymmetric SR but they do not test 

the model on the purely asymmetric case where one dimension is held to unity while the 

other is scaled. 

Motivated by the use-case of using SR to upscale under-sampled medical images, I 

created a custom task-specific medical imaging dataset for SR training. This custom 

dataset was built from the publicly available VerSe [29] CT volumes, from which I took 

high-resolution sagittal CT images containing the spine and down-sampled them along 

the axial direction by various scaling factors to create the low-resolution training pairs. 

In addition to the custom medical image dataset, I validated the SR convnet in both 

asymmetric and symmetric scaling modes using the DIV2K natural image dataset [116], 

which has been widely used in recent super-resolution convnet research. I also adapted 

DIV2K by making it grayscale, to match the single-channel nature of most medical 

imaging modalities. It was found that the symmetric models performed nearly identically 

on the 3-channel DIV2K dataset and the single-channel DIV2K_GRAY dataset. The 

asymmetric performance on DIV2K_GRAY is good, with the asymmetric 4x∗ model 

having similar reconstruction performance to the symmetric 3x model. 

The VerSe-trained models performed the best on the VerSe test set, outperforming 

the DIV2K-trained models and the VerSe-finetuned models pre-trained on DIV2K. The 

asymmetric VerSe-trained models on the custom VerSe test set achieved PSNR scores of 

41.72 dB for the asymmetric 2x∗ model, 38.83 dB for the asymmetric 3x∗ model, and 

36.93 dB for the asymmetric 4x∗ model. Quantitatively, all the SR models I trained far 

exceeded reconstruction performance of the naïve bicubic interpolation-based method. 

The overall performance was limited by use of a shallower, narrower, and therefore less-

capable network than the current state-of-the-art SR convnets. Baseline performance 

could be increased simply by using this asymmetric upsampling model on larger networks 

with greater representation power, such as EDSR [102] or RCAN [35]. Still, the 

reconstruction results are very good. 
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Qualitatively, the asymmetric models perform very well on the VerSe test set. I show 

in Figure 23 that the SR models reconstruct the complex texture of the spine with good 

accuracy, which is made particularly evident with the 4x∗ scaling factor examples. 

However, qualitative performance on sagittal slices from the HSCT patient dataset 

described in Chapter 3 is not as good as the qualitative performance seen on the VerSe 

test set. Appendix B shows some examples where the asymmetric SR model fails to 

consistently resolve the boundaries between the thoracic vertebrae. In most cases the 

lumbar vertebral boundaries are well resolved, but at least some thoracic vertebrae 

incorrectly appear fused. The lower qualitative performance on the unlearned HSCT 

patient dataset may be explained by one or more factors. The bicubic downsampling 

procedure I used in creating the low-resolution images for the VerSe training set may not 

be a reasonable approximation of the in-situ under-sampling of a CT volume. It is 

possible that training SR convnet models with low-resolution images generated from a 

more representative downsampling procedure may increase the performance on the HSCT 

patient dataset (nearest-neighbor interpolation may be a reasonable choice). Of course, 

there are also differences in the CT imaging protocols used for capturing the CT image 

volumes for each of the datasets, and these technical differences may play a role in the 

qualitative performance discrepancy. 

The asymmetric super-resolution convnet I created proves to be a good method to 

accurately upscale slices from under-sampled medical image volume data. An obvious 

next step for this SR use case is a generative SR convnet architecture for 3D input-

output training patches with the asymmetric implementation in mind. Pham et al. 

present a fully-3D SR convnet (albeit for symmetric upscaling) in [117], but this is a very 

shallow network built as a 3D extension of SRCNN [98] and lacks the representative 

capability of the more recent and much deeper 2D SR convnets. The main challenge with 

the 3D SR approach is that making a much deeper network will be computationally very 

expensive. EDSR is already very large at 43 million parameters, and it is just a 2D image 

convnet. Another area to improve is the medical imaging training set. The custom VerSe 

training set that I built is not particularly diverse, and I believe generalization 

performance of the SR convnets on the medical image upscaling task could be improved 

by expanding and curating high-resolution medical images to be used as a general 

benchmark, much like DIV2K has become the standard for training on natural image 

data. Lastly, the sub-pixel convolutional layer would be a more efficient alternative to 

the transposed convolution used in my purely asymmetric upsampling module. An 
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implementation of asymmetric sub-pixel upsampling would be a useful tool to add to the 

mainstream deep learning frameworks.  

Since the asymmetric SR convnet was unable to consistently resolve the vertebral 

boundaries in the CT modality of the HSCT patient dataset, I complete the vertebral 

body instance segmentation task using other methods. I present a simple algorithm that 

is able to robustly detect vertebral boundaries from the under-sampled post-HSCT day-

28 FLT-PET image volumes. Using the semantic segmentation prediction from the U-

Net model, the FLT-PET data is initially masked by the vertebral body class. Next, the 

dimensionality of the FLT-PET image data is reduced. This is accomplished by averaging 

the masked FLT-PET values in each axial slice, creating a 1D signal representing the 

average intensity per unit masked area. The algorithm iteratively detects valleys in this 

signal by using a window with a dynamic size determined by the expected vertebral span 

in the axial direction. This prior is adjusted (decreased) at the T9 vertebrae and T12 

vertebrae to account for the relative size of vertebrae. The vertebral span prior and the 

adjustments were determined by empirical analysis of the FLT-PET volumes in the 

HSCT patient dataset. While the algorithm is simple, it robustly detects vertebral 

boundaries from the 28th-day FLT-PET image volumes that are undetectable in the CT 

modality.  

I also showed a method for visualization of segmented FLT-PET image data. The 

method uses isosurfaces of FLT-PET intensity levels to create a “heatmap-like” 3D view 

of cell proliferation within a given bone structure ROI. FLT-PET isosurface values are 

selected by constucting discrete cumulative distribution functions from histograms of the 

FLT-PET ROIs. I found setting isosurfaces at the approximate 50th, 85th, and 98th 

percentiles of the discrete FLT-PET cumulative distribution creates a good visualization 

of cell proliferation activity. Many of these visualizations are shown in Appendix D, and 

the method is generalizable to work with any combination of mask and PET data. Lastly, 

I calculated SUV content of the segmented ROIs by applying the segmentation masks 

for the pelvis, sternum, and individual vertebral bodies to the FLT-PET image volumes.  

In sum, I have developed a practical method for the instance segmentation of 

individual vertebral bodies from under-sampled 28th day joint CT/FLT-PET image 

volume data. This automatic instance segmentation of 3D bone marrow compartment 

ROIs in the FLT-PET modality provides a more granular view of the cell proliferation 

patterns in HSCT patients, with less time invested compared to conventional “by-hand” 

drawing of ROIs. The method starts with a semantic segmentation U-Net model to create 
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a prediction mask of the vertebral body bone column. The vertebral body column is used 

to mask the FLT-PET volume data, and the masked FLT-PET data is then used to 

locate the boundaries between the vertebrae. Finally, the vertebral body mask is sliced 

at the detected boundaries to reach the final instance segmentation. The algorithm is 

very robust, with only a single mis-identified vertebral boundary in the available HSCT 

patient data. 

6.1 Original Contributions 

The specific original contributions I made in this thesis include: 

• A multi-view 2D ensemble multi-class U-Net model for the simultaneous semantic 

segmentation of the column of vertebral bodies, the pelvis, and the sternum from 

CT image data. For the HSCT patient dataset, the flexibility of the U-Net model 

to predict multiple complex unconnected bone structures is an improvement over 

the previous methods, which were hand-crafted to segment only the vertebral bodies 

[10].  

• An asymmetric upsampling module based on transposed convolutional layers that 

can be easily “dropped in” to many existing state-of-the-art single-image SR 

convnets to enable purely asymmetric SR. Asymmetric SR convnets may be useful 

as a preprocessing step in place of naïve interpolation methods to reconstruct under-

sampled medical images with anisotropic voxels to higher-resolution isotropic 

volumes. The asymmetric SR task was trained and tested on both the DIV2K 

natural image dataset [116] and a custom medical image dataset sampled from the 

VerSe dataset [28]. 

• A boundary detection algorithm that enforces a vertebra size prior to detect the 

boundaries between the individual vertebrae in under-sampled CT/FLT-PET 

volumes. When combined with the vertebral body column segmentation of Chapter 

3 this allows for the instance segmentation of vertebral bodies, even in cases where 

a human cannot distinguish the vertebral boundaries in the CT modality. The 

method I implemented produces lower RMSE (for the detected boundaries) than 

the Kalman filter method shown by [10], in some cases by large margins. However, 

it must be noted that in [10] the authors include the cervical vertebrae, which I 

omit. 

• A tool for automatically generating 3D visualizations based on isosurfaces of the 

FLT-PET image volume data in segmented ROIs. The visualizations may help 

medical researchers analyze the FLT-PET data in greater detail.  
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6.2 Recommendations for Future Research 

Based on my work in this thesis, I have targeted the following areas for potential future 

research: 

• Implementation of a 3D U-Net [18] (or similar 3D autoencoder image segmentation 

architecture [19]) may increase the segmentation performance for the multiclass 

segmentation task that is pursued in Chapter 3. In the Large-Scale Vertebrae 

Segmentation Challenge (VerSe) [28], the winning model was a 3D U-Net that 

achieved a segmentation Dice Score of 0.917. As I noted in Section 2.3.4, dataset 

inconsistencies make it hard to make definitive comparisons between models trained 

and tested on different datasets. Testing a fully-3D U-Net-like model on the existing 

patient data would allow a direct comparison of the 2D and 3D methods on the 

HSCT patient dataset.  

• Increasing the number of object segmentation classes to include more bone marrow 

cavity regions of interest (such as the bones of the arm and leg) could be a great 

help towards further studying the proliferation of hematopoietic stem cells in 

marrow cavities throughout the body in the days and weeks post-HSCT. This 

manual labelling would be a time-consuming task, but the data may be useful 

enough to warrant the investment. Additionally, a more comprehensive and diverse 

CT volume dataset with many types of labelled bone structures could be helpful 

even for applications outside of the HSCT use case that is discussed in this thesis. 

• While the reconstruction results for the asymmetric super-resolution task of Chapter 

4 are very good (particularly when compared to naïve methods like bicubic 

interpolation), the overall performance was limited by use of a shallower, narrower, 

and therefore less-capable network than the current state-of-the-art SR convnets. 

Baseline performance could be increased simply by using this asymmetric 

upsampling model on larger networks with greater representation power, such as 

EDSR [102] or RCAN [35]. 

• As mentioned in Section 4.3, there is a qualitative performance discrepancy between 

the HSCT patient dataset and the VerSe dataset on the asymmetric SR task. 

Performance appears to be better on the test data from the VerSe dataset, 

particularly at the intentioned sub-task of resolving the vertebral boundaries. The 

bicubic downsampling procedure I used in creating the low-resolution images for 

the VerSe training set may not be a reasonable approximation of the in-situ under-

sampling of a CT volume. It is possible that training SR convnet models with low-

resolution images generated from a more representative downsampling procedure 
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may increase the performance on the HSCT patient dataset. A variety of 

downsampling procedures could be tested to see if a more representative method 

exists.   

• Generalization performance of the SR convnets on the general medical image 

upscaling task could be improved by expanding and curating high-resolution 

medical images to be used as a training dataset and general benchmark, much like 

DIV2K has become the standard for training on natural image data. This could be 

done for various imaging modalities such as X-ray, CT, MR, and PET. In contrast 

to the manual labelling of ground-truth image segmentation data, super-resolution 

training data is relatively easy to create, requiring only high-resolution ground truth 

examples from which low-resolution examples can be algorithmically derived. 

• The sub-pixel convolutional layer [100] would be a more efficient alternative to the 

transposed convolution used in my purely asymmetric upsampling module. An 

implementation of asymmetric sub-pixel upsampling would be a useful tool to add 

to the mainstream deep learning frameworks.  

• The vertebral boundary detection algorithm of Chapter 5 may be improved by 

allowing segmentation of the cervical vertebral bodies in addition to the lumbar and 

thoracic. One idea to increase accuracy in the cervical spine region is to adjust the 

vertebral prior upon every new detection of a vertebral boundary, instead of at the 

defined values of �T12 = ⌈45 �L4⌉, �T7 = ⌈34 �L4⌉, and �T4 = ⌈35 �L4⌉ which were 

determined though analysis of the ground-truth data.  
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Appendix A.  

Multi-Class Prediction Volumes 

 

 

 
Figure 34. Combined vertebral body, pelvis, and sternum prediction volumes from the axial-view U-Net 
model used on the HSCT image volume test set (described in Section 3.1.1). Classification threshold  
is set to E = 0.5. “pNd3” indicates the patient number N and scan index d3 in the anonymized HSCT 
dataset (where “d3” is approximately the 28th day post-HSCT). 
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Figure 35. Combined vertebral body, pelvis, and sternum prediction volumes from the axial-view U-Net 
model used on the HSCT image volume test set (described in Section 3.1.1). Classification threshold  
is set to E = 0.5. “pNd3” indicates the patient number N and scan index d3 in the anonymized HSCT 
dataset (where “d3” is approximately the 28th day post-HSCT). 
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Appendix B.  

Asymmetric SR on the HSCT Patient Dataset 

 
Figure 36. Comparison between the bicubic upsampling method and the convnet-based asymmetric SR 
upsampling model introduced in Chapter 4. The low-resolution image from which this example is produced 
is sampled from the HSCT dataset introduced in Chapter 3. 
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Figure 37. Comparison between the bicubic upsampling method and the convnet-based asymmetric SR 
upsampling model introduced in Chapter 4. The low-resolution image from which this example is produced 
is sampled from the HSCT dataset introduced in Chapter 3. 
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Figure 38. Comparison between the bicubic upsampling method and the convnet-based asymmetric SR 
upsampling model introduced in Chapter 4. The low-resolution image from which this example is produced 
is sampled from the HSCT dataset introduced in Chapter 3. 
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Figure 39. Comparison between the bicubic upsampling method and the convnet-based asymmetric SR 
upsampling model introduced in Chapter 4. The low-resolution image from which this example is produced 
is sampled from the HSCT dataset introduced in Chapter 3. 
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Appendix C.  

Instance Segmentation of Vertebral Bodies 

 

 

Figure 40. Instance segmentation of vertebral bodies by the method shown in Chapter 5. “pNd3” indicates 
the patient number N and scan index d3 in the anonymized HSCT dataset (where “d3” is approximately 
the 28th day post-HSCT).  
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Figure 41.  Instance segmentation of vertebral bodies by the method shown in Chapter 5. “pNd3” 
indicates the patient number N and scan index d3 in the anonymized HSCT dataset (where “d3” is 
approximately the 28th day post-HSCT). 



92 
 

 

Figure 42. Instance segmentation of vertebral bodies by the method shown in Chapter 5. “pNd3” indicates 
the patient number N and scan index d3 in the anonymized HSCT dataset (where “d3” is approximately 
the 28th day post-HSCT). 
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Appendix D.  

FLT-PET Visualization in Bone Marrow ROIs 

 

 
Figure 43. FLT-PET visualization via isosurfaces. Yellow surfaces represent 50th percentile FLT-PET 
values within the masked volume, orange represents the 85th percentile, red represents the 98th percentile. 
“pNd3” indicates the patient number N and scan index d3 in the anonymized HSCT dataset (where “d3” 
is approximately the 28th day post-HSCT). 
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Figure 44. FLT-PET visualization via isosurfaces. Yellow surfaces represent 50th percentile FLT-PET 
values within the masked volume, orange represents the 85th percentile, red represents the 98th percentile. 
“pNd3” indicates the patient number N and scan index d3 in the anonymized HSCT dataset (where “d3” 
is approximately the 28th day post-HSCT). 
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Figure 45. FLT-PET visualization via isosurfaces. Yellow surfaces represent 50th percentile FLT-PET 
values within the masked volume, orange represents the 85th percentile, red represents the 98th percentile. 
“pNd3” indicates the patient number N and scan index d3 in the anonymized HSCT dataset (where “d3” 
is approximately the 28th day post-HSCT). 
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Figure 46. FLT-PET visualization in the pelvis ROI via isosurfaces. Yellow surfaces represent 50th 
percentile FLT-PET values within the masked volume, orange represents the 85th percentile, red represents 
the 98th percentile. “pXd3” indicates the patient number and scan index in the anonymized HSCT dataset 
(where “d3” is approximately the 28th day post-HSCT). 
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Figure 47. FLT-PET visualization in the pelvis ROI via isosurfaces. Yellow surfaces represent 50th 
percentile FLT-PET values within the masked volume, orange represents the 85th percentile, red 
represents the 98th percentile. “pXd3” indicates the patient number and scan index in the anonymized 
HSCT dataset (where “d3” is approximately the 28th day post-HSCT). 
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Figure 48. FLT-PET visualization in the pelvis ROI via isosurfaces. Yellow surfaces represent 50th 
percentile FLT-PET values within the masked volume, orange represents the 85th percentile, red 
represents the 98th percentile. “pXd3” indicates the patient number and scan index in the anonymized 
HSCT dataset (where “d3” is approximately the 28th day post-HSCT). 
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Figure 49. FLT-PET visualization of the combined vertebral body, pelvis, and sternum ROIs via 
isosurfaces. Yellow surfaces represent 50th percentile FLT-PET values within the masked volume, orange 
represents the 85th percentile, red represents the 98th percentile. “pNd3” indicates the patient number N 
and scan index d3 in the anonymized HSCT dataset (where “d3” is approximately the 28th day post-
HSCT). 
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1861 

1762 

1396 

1220 

1267 
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p6 

6057 

6370 

6299 

6083 

6072 
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4350 

4033 

3592 

3469 

2622 

2522 

1849 

1668 

1213 

1137 

967 

p7 

3465 

3894 

4456 

4678 

4642 

3771 

3484 

3328 

2789 

2364 

2462 

2068 

1594 

1628 

1336 

1172 

928 

p8 

1736 

1750 

1954 

1835 

1802 

1739 

1273 

1354 

973 

893 

1157 

767 

823 

652 

437 

638 

416 

p9 

3978 

3645 

3820 

3507 

3561 

3248 

3012 

2545 

2521 

2034 

1831 

1412 

1393 

1095 

572 

1158 

936 

p10 

4852 

5088 

5167 

4315 

4425 

3977 

4268 

3217 

2723 

2534 

2091 

1561 

1624 

1009 

1244 

911 

914 

p11 

6265 

6091 

5851 

5727 

5723 

4860 

3757 

3128 

3190 

3322 

3052 

2566 

1907 

2265 

1752 

1972 

1309 

p12 

2842 

2846 

3217 

3163 

2876 

2747 

2173 

1925 

1689 

1427 

1239 

1095 

987 

657 

867 

998 

626 

p13 

5979 

5747 

5724 

5545 

5662 

5681 

5266 

3937 

3590 

3281 

2337 

1989 

1681 

1588 

1251 

1633 

2055 

p14 

4074 

4820 

4899 

4606 

4928 

4928 

4165 

3623 

2708 

2361 

2306 

1967 

1595 

1312 

1491 

1329 

1110 

p15 

4407 

4027 

4278 

3792 

3647 

3812 

3467 

2947 

2579 

2502 

2279 

1799 

1429 

1319 

1010 

1335 

1032 

p16 

4604 

4760 

4549 

4266 

4010 

4153 

3141 

2711 

2201 

1980 

1585 

1181 

1357 

857 

1178 

1515 

793 

p17 

3707 

4345 

4799 

4111 

3828 

3527 

3166 

2923 

2856 

2445 

1703 

1198 

1268 

1090 

819 

819 

956 

p18 

3485 

3275 

3344 

2912 

3093 

2761 

2860 

2425 

1959 

2169 

1665 

1521 

1209 

914 

880 

922 

573 

p19 

5005 

4817 

4861 

4699 

4638 

5031 

3995 

3731 

3596 

2978 

2487 

2079 

1459 

1264 

1292 

1407 

1205 

p20 

4544 

5276 

4765 

4762 

4694 

4383 

3494 

2515 

2867 

2541 

2252 

1946 

1383 

1300 

1314 

929 

549 

p21 

1881 

2079 

2117 

2250 

2235 

2146 

2069 

1647 

1775 

1261 

1140 

1204 

1092 

814 

833 

725 

529 

p22 

4295 

4928 

4720 

4625 

5159 

4938 

3507 

3466 

3017 

2636 

1926 

2067 

1532 

1427 

1031 

1439 

790 

VB 

L5 

L4 

L3 

L2 

L1 

T12 

T11 

T10 

T9 

T8 

T7 

T6 

T5 

T4 

T3 

T2 

T1 

TABLE 7. SUV FOR VERTEBRAL BODY ROIS ON THE 28TH DAY POST-HSCT. 

SUV extraction method is outlined in Chapter 5. 
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p2 
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p3 
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p3 
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689 

3447 

p4 

7763 

13062 

89862 

 

p4 

4540 

7995 

66604 

 

p4 

553 

890 

6090 

p5 

9454 

10106 

70750 

 

p5 

7425 

9438 

64991 

 

p5 

953 

998 

6655 

p6 

11326 

19605 

87545 
 

p6 

7802 

15287 

74643 

 

p6 

1803 

3008 

13221 

p7 

21693 

16562 

59016 

 
p7 

9149 

12724 

56730 

 

p7 

767 

1142 

6175 

p8 

12932 

10486 

29992 

 

p8 

7838 

7180 

24882 

 

p8 

745 

699 

2114 

p9 

43528 

12526 

45127 

 

p9 

7865 

8465 

47140 

 

p9 

440 

971 

3517 

p10 

9316 

16125 

67332 

 

p10 

4522 

10160 

57536 

 

p10 

709 

1509 

5049 

p11 

8929 

15078 

88198 

 

p11 

5027 

10319 

75834 

 
p11 

796 

1206 

8916 

p12 

9267 

- 

48395 

 

p12 

3302 

- 

35564 

 

p12 

460 

- 

3243 

p13 

15306 

14599 

90640 

 

p13 

5106 

6044 

72727 

 

p13 

706 

769 

7241 

p14 

18071 

38110 

74802 

 

p14 

7505 

40584 

61472 

 

p14 

1098 

2082 

4961 

p15 

10371 

12912 

67166 

 

p15 

8003 

5102 

54042 

 

p15 

1208 

801 

2078 

p16 

14740 

10371 

69105 

 

p16 

5881 

8003 

52517 

 

p16 

1028 

1208 

3933 

p17 

14516 

7952 

59468 

 

p17 

8928 

6655 

49412 

 

p17 

1511 

1339 

3738 

p18 

5111 

8148 

55187 

 

p18 

2756 

4979 

42875 

 

p18 

408 

727 

3805 

p19 

11544 

13236 

68098 

 

p19 

6132 

9505 

63968 

 

p19 

1478 

1622 

4957 

p20 

9572 

- 

66948 

 

p20 

6523 

- 

63095 

 

p20 

1164 

- 

4640 

p21 

12895 

21399 

29333 

 

p21 

8485 

31614 

30630 

 

p21 

1080 

2152 

2565 

p22 

6416 

7726 

70244 

 

p22 

3498 

5558 

61382 

 

p22 

571 

787 

4930 

PELVIS 

1st scan 

2nd scan 

3rd scan 

 

VBC 

1st scan 

2nd scan 

3rd scan 

 

STERNU

M 
1st scan 

2nd scan 

3rd scan 

 

TABLE 8. SUV FOR VBC*, STERNUM, AND PELVIS ROIS ACROSS 3 IMAGING DAYS 

VBC is “Vertebral Body Column” – the semantic segmentation. 
1st scan is day before HSCT (ablated); 2nd scan is between 5 and 9 days post-HSCT; 3rd scan is 28th day post-HSCT.  

SUV extraction method is outlined in Chapter 5. 
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