
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

IMPLEMENTATION AND ANALYSIS OF ADAPTIVE SPECTRUM SENSING

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

RYLEE MATTINGLY
Norman, Oklahoma

2021

IMPLEMENTATION AND ANALYSIS OF ADAPTIVE SPECTRUM SENSING

A THESIS APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Justin Metcalf, Chair

Dr. Nathan Goodman

Dr. Cliff Fitzmorris

© Copyright by RYLEE MATTINGLY 2021

All Rights Reserved.

Acknowledgments

I want to thank Dr. Justin Metcalf and Dr. Jay McDaniel for giving me the op-

portunity to work at the ARRC and discovery the incredible world of radar systems

and electromagnetics. Additionally, I want to thank Dr. Nathan Goodman and Dr.

Cliff Fitzmorris for agreeing to be on my committee and taking the time to review

my work.

I would also like to thank my sister, Cassi Marlow, and my parents, Ricky and

Treva Mattingly. I am always grateful for their incredible support and encourage-

ment to pursue my goals and persevere through great challenges.

Finally, I want like to thank all of my friends at the ARRC for helping provide

support when encountering especially difficult challenges.

I thank the Defense Advanced Research Projects Agency (DARPA) for their

support of this research under grant HR0011-20-1-0007.

iv

Table of Contents

Acknowledgment iv

Table of Contents v

List of Tables viii

List of Figures ix

Abstract xii

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 Cognitive Sensors and Greedy Fast Spectrum Sensing 5

2.2 Signal Detection . 8

2.2.1 Cyclostationary Feature Detection 9

2.2.2 Energy Detection . 14

2.2.2.1 Classic Energy Detection 14

2.2.2.2 Constant False Alarm Rate Detectors 16

3 Implementation Platform 19

3.1 Software-Defined Radio . 19

v

3.2 RF Network-on-Chip . 22

3.3 Block Interface . 24

3.4 Design and Control of a Block . 28

4 Simple FSS Architecture 41

4.1 Changes to the Algorithm . 41

4.2 Theory of Operation . 42

4.3 Implementation . 43

4.3.1 Data and Registers . 44

4.3.2 FSS State Machine . 45

4.3.3 Send State Machine . 47

4.4 Timing and Performance . 49

4.5 Utilization . 50

4.6 Usage and Verification . 52

5 Hardware Optimized Cell Averaging Estimator 54

5.1 Data Sets . 54

5.1.1 Simulated Data . 55

5.1.2 Real World Data . 56

5.2 CA-CFAR Performance . 59

5.3 OS-CFAR Performance . 62

5.4 Hardware Optimized Cell Averaging Estimation (HO-CAE) 63

5.4.1 Simulation and Performance 65

5.5 Real-World Performance . 69

6 HO-CAE Hardware Architecture 74

6.1 Theory of Operation . 74

6.2 Major Structures . 76

6.2.1 The Buffer . 76

6.2.2 The Accumulators . 77

vi

6.2.3 Sorting Estimate Buffer 78

6.3 Performance . 80

7 Conclusion and Future Work 82

References 84

vii

List of Tables

3.1 A description of the signal used in a simple AXI-Stream interface. . 25

3.2 The relevant signals for the AXI-Stream Data user interface. 26

3.3 The relevant files for the RFNoC block development cycle. 29

4.1 Values used for an example run of the FSS state machine. 45

4.2 Values used for an example run of the FSS state machine. 48

4.3 Kintex®7-410T utilization of the FSS design shown in 3 stages:

default image with FFT, default image with stream endpoints for

FSS, and image with FSS block. This data was provided by the

Xilinx Vivado synthesis tools when the RFNoC images were built. . 51

5.1 The resulting PFA from noise only simulation with PFA of 106 and

window size of 64. 65

5.2 The results of probability simulations for 5, 10 and 20 dB SNR

signals. Probability data is given as wells as data compared to FSS

with perfect knowledge. 67

6.1 A summary of operation carried out by each register in the sorted

estimate buffer. 79

viii

List of Figures

2.1 Perception action cycle for a cognitive sensor streaming data from

an antenna into the sense stage. A transmission band is calculated

and the corresponding signal is generated by the adapt stage and

transmitted. 6

2.2 A 5G downlink signal shown with a threshold used to sort bins into

high and low power groups. High power groupings with a small

number of low power bins are grouped as they are part of a signal. . 7

2.3 Two Gaussian distributions. The not present distribution with a

mean of 0 and the present distribution with a mean of 4. (a) The

probability of false alarm shown as the highlighted area. (b) The

probability of missed detection is shown as the shaded area. 16

2.4 The structure of CA-CFAR used when estimating the σ̂2
w for cell xi.

Reference cells are evenly split on either side of the cell under test

to provide a better estimate. 17

3.1 X310 pictured with top cover removed to show daughter cards in-

stalled. 20

3.2 GNURadio Companion software shown with a simple, two block

flowgraph that takes data streamed from the radio and process it

into a waterfall plot. 21

3.3 An example showing how the internal RFNoC structures may con-

nected for operation [1]. 25

ix

3.4 The timing diagram for a the AXI-Stream Payload Context inter-

face. It shows a 4 word data packet with timestamp [1]. 27

3.5 An example showing how the provided radio and DUC blocks can

be used to replace the USRP Source block used previously [1]. . . . 40

4.1 The basic FSS state machine shown with transition conditions and

transition actions. 45

4.2 The state machine used for transmitting the a packet of data out of

an AXI-Stream port on an RFNoC block. 47

4.3 The state machine used for transmitting the a packet of data out of

an AXI-Stream port on an RFNoC block. 50

4.4 GNURadio block for the RFNoC FSS block. 52

4.5 The state machine used for transmitting the a packet of data out of

an AXI-Stream port on an RFNoC block. 53

5.1 Simulated 5G NR Downlink signal spectrogram with 5 dB SNR. . . 55

5.2 Frame 1 of the of the 5G Downlink spectrogram with 5 dB SNR. . . 56

5.3 Real world spectrogram with 100 MHz of bandwidth. Three dis-

tinct regions of interest are highlighted to capture four different sig-

nals as well as a noise only case. 57

5.4 Area of interest one with amplifier artifact and two distinct signals. . 57

5.5 Area of interest two that contains only noise. 58

5.6 Area of interest three containing a wide band high power signal

with a low power signal. 58

5.7 CA-CFAR applied to the first area of interest. N = 32, G = 28 60

5.8 CA-CFAR applied to the second area of interest of mostly noise. N

= 32, G = 28 . 60

5.9 CA-CFAR applied to the first area of interest. N = 32, G = 28 61

x

5.10 CA-CFAR applied to the first frame of the simulated downlink sig-

nal. N = 32, G = 28 . 61

5.11 OS-CFAR applied to the first area of interest with parameters N =

54, K = 37 . 62

5.12 OS-CFAR applied to the interest where the wideband signals are

missed. N = 54, K = 37 . 63

5.13 The sliding averaging window used to generate the estimates of σ̂2
W .

Here a frame length of 20 is shown with a window length of 10. . . 64

5.14 Steps to generating and simulating a 5G Downlink waveform with

FSS. (a) The no noise signal after being partitioned into a block. (b)

Noise added to the signal. (c) A logical cube on top of a 5G mask.

(d) FSS decision based based on logical grid. 67

5.15 The percentage of exact FSS matches between the perfect case and

HO-CAE over the simulated SNR values. 69

5.16 The result of logical mask where non-detected bins are marked for

a 20dB SNR 5G downlink signal. 70

5.17 The result of logical mask where non-detected bins are marked for

a 0 dB SNR 5G downlink signal. 71

5.18 The first frame of the first area of interest from the real-world data

with HO-CAE applied. 71

5.19 The first frame of the second area of interest from the real-world

data with HO-CAE applied. 72

5.20 The third frame of the second area of interest from the real-world

data with HO-CAE applied. 72

6.1 The DSP48E1 Slice inside 7 Series Xilinx FPGAs 77

xi

Abstract

The electromagnetic spectrum is a finite resource that has become increasingly

crowded as the day-to-day operation of the world has become increasingly reliant

on wireless devices. With the growing deployment of the Internet-of-Things (IoT),

5G Networks, and broadband internet systems, the available spectrum for radar

applications has been reduced and instances of interference across all device types

have increased. To mitigate this problem going forward, devices need to be better

able to intelligently access the spectrum based on the presence of other users.

A cognitive radio or radar system functions by using adaptive spectrum sensing

to detect existing users in the frequency band and adapt to use ’open’ spectrum

bands. To ensure the predictable performance of the system and systems that it

shares spectrum with, it must detect new users and adapt without interrupting its

operation or interfering with the other users. Because modern communications

networks can update their spectrum utilization on a sub-millisecond timescale, the

critical detection and adaption phase must operate in real-time.

This work presents an implementation of a fast spectrum sensing (FSS) algo-

rithm deployed on the field-programmable gate array (FPGA) of an Ettus USRPTM

software-defined radio. This implementation allows for microsecond scale updates

of the environment’s spectrum availability. Unfortunately, this FSS algorithm is

limited by its knowledge of the spectrum, which is ever-changing. To help improve

the system’s dynamic performance a new adaptive detection algorithm is proposed

xii

to replace the static threshold of the first implementation. The new detection algo-

rithm is a constant false alarm rate (CFAR) inspired detector which allows a cogni-

tive sensor to work in a dynamic environment without a-priori information about the

spectrum. Combining the FSS algorithm with dynamic signal detection allows the

cognitive radio system to adapt to the ever-changing environment without requiring

extensive ’listen before talk’ periods before operation.

xiii

Chapter 1

Introduction

Today, almost everyone takes advantage of technology or devices that use the

electromagnetic spectrum for operation. With a projected 29.3 billion networked

devices by 2023, 23.5 billion in IoT and mobile categories, a huge number of wire-

less devices exist in the world [2]. Without deterministic access to this resource,

many critical systems would fail or become unreliable. To mitigate interference,

spectrum is licensed to primary users restricting the use of those frequencies to

specific applications. While this licensing protects primary users of the band, the

band utilization varies widely based on geographic location, leaving gigahertz of

spectrum underutilized [3].

Recently, unlicensed bands have been approved for wireless communications

use. These bands share spectrum using a listen-before-talk (LBT) technique [4]

that requires an incoming unlicensed user to ’listen’ for other users in the spectrum

for some time before operating. Similarly, the unlicensed user must be prepared to

immediately stop operating whenever a primary user is detected. While effective,

operation time can be greatly impacted as new primary users enter and leave the

environment, diminishing the performance for the secondary users.

LBT technique adoption and the availability of unlicensed bands shows a will-

ingness on the part of regulators and the industry to try, at least on a limited basis,

1

spectrum sharing to be used. The expansion to faster and more performant tech-

niques of spectrum sensing and avoidance is necessary to spur further adoption and

better spectrum management in the future.

This thesis analyzes existing fast spectrum sensing algorithms that allow a sys-

tem to detect other users of the electromagnetic spectrum. By detecting a primary

user, a secondary emitter to limit its interference to the primary users. Further,

the implementation of these algorithms in an FPGA on commercial off-the-shelf

(COTS) hardware is investigated, with a focus on real-time performance.

While the real-time knowledge of other emitters would be useful to all wire-

less users to improve performance and avoid interference, a special focus on radar

systems is considered. Specifically, the pulsed radars allow spectrum estimates to

be gathered while the radar is not transmitting, eliminating the need to censor the

system’s emissions when creating estimates. Additionally, the sensitivity of radar

makes its interference avoidance that much more important.

The initial implementations of this system will use a static threshold, but be-

cause of the dynamic nature of the electromagnetic spectrum, a dynamic threshold

estimation technique will also be analyzed. By estimating the noise of the spectrum,

a better understanding of the environment over time can be used to set the spectrum

threshold. This necessitates an investigation into estimation and signal detection

techniques.

1.1 Contributions

This thesis makes the following contributions:

• Real-time FPGA implementation of static threshold, greedy fast spectrum

sensing (FSS) algorithm. Developed novel rotating bucket architecture to

2

minimize latency and utilization resources.

• Demonstrates hardware acceleration on commercial off-the-shelf USRP ra-

dios. Leveraged open-source RF Network-on-Chip (RFNoC) framework to

implement algorithms with real-time performance.

• Develops CFAR inspired noise estimation method designed with implemen-

tation on FPGA in mind. Proposed pipelined implementation to integrate

threshold estimate and FSS into a single block.

1.2 Thesis Outline

This thesis is divided into the following chapters: In Chapter 2, a background

on cognitive radios is given with a discussion on their functional cycle. The fast

spectrum sensing algorithm is presented as the static threshold case. Next, is a

discussion on dynamic signal detection techniques that are used as a primer for the

dynamic threshold method implemented later. Included is a complexity analysis of

the various types of signal detection methods.

Chapter 3 describes the implementation platform that was used for development.

Details about the RF Network-on-Chip (RFNoCTM) FPGA framework are provided,

including issues that were addressed and limitations that were discovered. This

chapter also provides a high-level overview of the software used with the platform

and how the Ettus X310 radio and host computer operate together.

In Chapter 4, the architecture for the static FSS algorithm is presented. The state

machine is discussed with an overview of the data flow in and out of the algorithm

block. An analysis of the clock level timing of the block is presented as a basis for

the discussion on performance. Performance metrics will be derived that provide a

3

numeric performance figure so that the performance of the adaptive implementation

can be compared later. Finally, FPGA resource utilization will be presented using

the Vivado reports generated when the FPGA design was synthesized.

In Chapter 5, a detailed description of the proposed hardware optimized signal

detection method is presented. Real-world data will be presented that provides

a basis for the need for the new algorithm. Additionally, a 5G Downlink signal

simulator that was used to benchmark this new process is presented. Performance

analysis from the simulation across SNR is described with the probability of false

alarm, probability of detection, and resulting FSS of particular interest. The chapter

concludes with the new algorithm being applied to the same real-world data as was

presented at the beginning of the chapter.

Chapter 6 proposes an FPGA architecture to implement the detection method

described in Chapter 5. An analysis of the hardware structures necessary to the

device’s operation and the resources required will be given along with a discussion

on operational performance. A special look at the latency of the FPGA block will

be provided through a cycle-level timing analysis of the block and the previously

derived performance metrics.

In Chapter 7, a conclusion to the work is provided with a discussion about op-

portunities for future work.

4

Chapter 2

Background

Before discussing the implementation details of fast spectrum sensing or signal

detection, the background for the algorithms and existing methods that served as

the foundation of this work should be introduced. First, an introduction to the

operation of a cognitive sensor is given with an introduction to the FSS algorithm.

This chapter concludes with a discussion on detection methods. Specifically, energy

detection and cyclostationary detection will be analyzed.

2.1 Cognitive Sensors and Greedy Fast Spectrum Sensing

The cognitive perception-action cycle (PAC) underlays the primary operation

loop of a cognitive sensor. The cycle works in three stages: sense, decide, and

adapt. Sensing should be occurring at all times on the sensor. Continuous sampling

of the spectrum provides the system with a constant flow of data. The stream can

be divided into ’frames’ for which the fast Fourier transform (FFT) is applied.

These frames then act as spectral snapshots that can be sent to the second stage

of the PAC. To generate the spectral frames the input stream is directly cut into

frames of K samples with no sample overlapping across frames. K is an arbitrary

value that can be set based on the desired frequency resolution given the bandwidth

5

of the system.

When the spectral frames arrive in the second stage, they are used to determine

where signals may exist and the location of optimal band unoccupied spectrum for

the system to operate in. The operation information is then sent into the third stage

of the PAC: ’adapt’. Inside this third stage, a waveform selection system takes in

the operation recommendation and adapts by transmitting the selected waveform

in the appropriate spectrum. The PAC described above is shown as a streaming

methodology in Figure 2.1.

The learning stage is where this work focuses and where the FSS algorithm

lives. In this second stage, the system must ’learn’ from the spectral frames and

decide where other signals exist and what frequencies are available for its function.

To determine where signals exist, we can analyze the magnitude output of the FFT

to classify each frequency bin as either a high-power or low-power sub-band [5]. It

Sense

Learn & Decide

Adapt

Figure 2.1: Perception action cycle for a cognitive sensor streaming data from an
antenna into the sense stage. A transmission band is calculated and the
corresponding signal is generated by the adapt stage and transmitted.

6

is assumed that all low-power sub-bands are unoccupied or noise only and therefore

available for the system to occupy. After the initial classification of each bin, the

bins must be examined again to group the bins. The grouping works to eliminate

narrow, low-power frequency gaps that exist between high-power bands [6]. These

gaps are closed and eliminated from operational consideration as they represent

either a low-power component of the present signal or a gap between signals too

narrow to be useful.

Figure 2.2 shows a threshold applied to a spectral frame with a 5G downlink

signal present. The 5G waveform has variation within its signal structure. This

variability causes a frequency bin, clearly within the 5G waveform’s operational

frequency, to fall below the threshold. The sub-band merging process would catch

cases like this and prevent that single bin, or even an operator-defined number of

Low power
area to be

merged

5G Downlink Waveform

Figure 2.2: A 5G downlink signal shown with a threshold used to sort bins into
high and low power groups. High power groupings with a small number of low

power bins are grouped as they are part of a signal.

7

continuous bins, from being processed further for consideration. By merging these

closely spaced bands, a better understanding of the location of the signal emerges.

For this work, a greedy algorithm is used to find the largest number of continu-

ous open bins. This makes the merging of small bins seem redundant as those bins

won’t be selected anyway. It is still important to do the merging, however, so the

bins don’t have to be considered when looking at the continuous spaces. Merging

is critically important for other types of uses of FSS that optimize for criteria other

than the largest band. This could mean more complex computation may be carried

out on the low power sub-bands than the greedy approach requires, which would be

more costly.

FSS, in its original form, has a static threshold set manually by the operator

from spectrum information gathered before the system is put into operation. This

can cause the system to repeatedly fail or give a false positive over time. For this

reason, signal detection techniques will now be introduced as a basis for the pro-

posed dynamic threshold estimation discussed later.

2.2 Signal Detection

Many methods of signal detection exist today. All attempt to provide the high-

est possible probability of detection while balancing a minimum number of false

alarms . This work also considers mathematical complexity and data requirements

as additional constraints. This section will discuss two detection methodologies:

cyclostationary feature detection and energy detection. Three different implemen-

tations of energy detection will be shown: classic energy detection, cell averaging

CFAR, and order statistic CFAR.

8

2.2.1 Cyclostationary Feature Detection

Human-generated signals have structures and “features” that are not found in

natural noise which is usually modeled as a white Gaussian process [7]. If these

features can be detected then signals should be detectable even in low signal-to-

noise ratio (SNR) circumstances. Detection of signals in low power is one of the

strengths of cyclostationary feature detection.

The autocorrelation function, RXX(t1, t2), provides the expected value of the

product of the random process at time t1 and t2. Further, the distance between t1

and t2 or lag time, τ has its own properties for certain processes. One such case of

interest is for wide sense stationary (WSS) signals.

WSS signals have an autocorrelation function that is strictly dependent on the

lag time [8]. That is to say, for a WSS, if the lag between two points is the same, then

the autocorrelation function is the same. This stationary autocorrelation function

can be described by

Rxx(τ) = E{x(t+
τ

2
)x∗(t− τ

2
)} (2.1)

where τ = t1 − t2.

However, man-made signals are not strictly stationary and are instead called cy-

clostationary [9]. A cyclostationary signal’s autocorrelation function is represented

as a periodic or almost periodic function [10]. Unsurprisingly, the periodicity of

the autocorrelation function of a cyclostationary process can be described as the

Fourier coefficients.

Rxx(τ) =
∑
α

Rα
x(τ)ej2παt (2.2)

where α is the fundamental cyclic frequency.

9

For each value of τ , the series in alpha describes the periodic nature of its au-

tocorrelation. This function, Rα
x(τ), is called the cyclic autocorrelation function

(CAF) [10]. A frequency-domain dual of the CAF also exists and is named the

spectral correlation function (SCF). Similar to the CAF, the SCF provides the cyclic

frequency content of a process over its frequency.

The SCF function can be found by taking the Fourier transform of the CAF.

Sαx (f) =

∫ ∞
−∞

Rα
x(τ)ej2πfτdτ (2.3)

It is of note that the α = 0 value across frequencies is the power spectral density

(PSD) of the signal. This is where this method excels, when the PSD is completely

hidden within noise the other cyclic frequencies remain prominent. By remaining

visible across other α values, the signal is still detectable.

Unfortunately, it is not practical to directly calculate a set of SCFs for a given

real-world signal. Therefore the SCF must be estimated as a cyclic periodogram, in

this case using frequency smoothing [11],

Sαx (f)
∆
=

1

∆f

∫ f+∆/2

f−∆/2

1

T
XT (v + α/2)X∗T (v − α/2)dv (2.4)

Here XT (v + α/2) is the Fourier transform of x(t).

To carry out the frequency smoothing approach, a method called the FFT ac-

cumulation method (FAM) is used to demonstrate the computational complexity of

the algorithm. The FAM method starts with several parameters: N , N ′, P and, L.

N describes the number of samples in the signal observation. N ′ sets the frequency

resolution as it is the length of the initial FFT operation. P sets the number of spec-

tral frames of data that will be considered, while L is the overlap factor of the FFT.

10

P and L are derived from N ′ and N and are given by the following:

L = N ′/4 (2.5)

P = N/L (2.6)

Equation 2.5 shows a value of four selected to set the overlap. As the value in-

creases and the overlap approaches N ′ so does the computational complexity of

the algorithm. A divisor of four was shown to be a sufficient middle ground for

computational complexity and preventing cycle leakage [12].

Before considering the FAM method the resulting domain should be formed.

The desired output is a frequency-alpha matrix. If the sampling frequency is defined

as fs, the frequency dimension of the resulting field ranges from −fs/2 to fs/2

across 2N ′ bins. The α dimension ranges from −fs to fs populating 2N bins. the

resulting field is quite large even considering that only a diamond-shaped area of it

will be used.

Starting the estimate, an N ′ × P matrix is constructed such that a sliding FFT

can be applied to the columns. The sliding factor of L is used to create a matrix

from the signal, s, shown as:

Y =

s(1) . . . s((P − 1)L+ 1)

s(2) . . . s((P − 1)L+ 2)

...

s(N ′) . . . s((P − 1)L+N ′)

(2.7)

A window is then applied down the columns before the FFT of each column is

taken.

11

Each element of the matrix resulting from the previous step is multiplied by

an exponential to smooth across frequency and compensate for any phase distor-

tions introduced by the FFT. A complex conjugate matrix is generated, yielding the

following 2 matricies:

Ȳ =

S(0, f1) . . . S((P − 1)L, f1)

S(0, f2) . . . S((P − 1)L, f2)

...

S(0, fN ′) . . . S((P − 1)L, fN ′)

(2.8)

Ȳ ∗ =

S∗(0, f1) . . . S∗((P − 1)L, f1)

S∗(0, f2) . . . S∗((P − 1)L, f2)

...

S∗(0, fN ′) . . . S∗((P − 1)L, fN ′)

(2.9)

An element multiply is carried out for each combination of rows in the matrix.

The result of the operation is N2 P length vectors, each at a new frequency and

central alpha calculated using the following.

fj =
(fk + fl)

2
(2.10)

α = fk − fl (2.11)

Here fj denotes the new frequency, fk is the frequency from the row of the non-

conjugate matrix and fl is frequency from the row of the conjugate matrix. The

new frequency is calculated for every combination The frequency value is used to

index into the frequency-alpha matrix while the α is the center of the alpha vector

12

denoted by

α + q∆α (2.12)

where ∆α is the resolution of the alpha component of the frequency-alpha matrix

and q ranges from −P
2

to P
2

with a length of P .

A P -point FFT is taken across the rows after the multiplication. Unfortunately,

only the central half of the elements of the resulting vectors are considered a good

estimate of α, which means calculated values were not all used [12]. Therefore,

the central components of the estimate are inserted on the frequency-alpha matrix,

across alpha, with an index of (fj, αi) denoting the center point. This populates a

diamond shape in the resulting matrix.

To determine the presence of a signal at any given frequency-cyclic frequency

location, a simple hypothesis test can be employed. This is trivial as the threshold

for this method can be pre-generated using the estimated SCF of a noise-only signal.

The parameters used to create the matrices that power this method can be used to

describe the calculation complexities. There are a total of 2N ′P multiplies required

to taper the data, PN ′N ′-point FFTs must be carried out and 2N ′P frequency shifts

are carried out [12]. This is a massive amount of calculations, although most of

the operations could be carried out in parallel, but instantiating many hundred or

thousands of parallel FFT logic blocks would quickly devour the available floor

space on the FPGA. A GPU could be used to accomplish this task but that would

introduce latency as the data is transferred to the host PC.

Another big constraint that is connected to the complexity issue is observation

length. To take advantage of the repeating structures of signals the observation of

signal must be longer than a single spectrum estimate that may be used for simpler

methods. The FAM method itself requires what are essentially spectral estimates to

13

populate the columns of the first matrix. These constraints are the reasons that this

thesis concentrates on energy detection methods. However, future work will exam-

ine efficient implementations of FAM or other cyclostaionary estimation methods

to enable signal detection.

2.2.2 Energy Detection

Energy detection describes an entire class of algorithms that are used for deter-

mining the presence of a signal based on power present in a sample of the electro-

magnetic spectrum. These methods work by estimating the noise floor of the envi-

ronment and calculating a test statistic to apply to determine if a signal is present in

a given frequency bin. Because this is only considering the power in a single snap-

shot the detection quality is based on the quality of the noise estimate. This section

will discuss three specific methods: classic energy detection, cell averaging con-

stant false alarm rate detection (CA-CFAR), and order statistic CFAR (OS-CFAR).

2.2.2.1 Classic Energy Detection

Classic energy detection defines the two probability distributions as Gaussian

for the noise-only case, and noncentral chi-squared for the signal present case [13].

For this method, the test statistic, V , is defined as the sum of the squared energy

over a time T , defined by

V =
1

T

∫ t

t−T
x2(t)dt (2.13)

For a signal of length T and bandwidth B to be captured effectively, 2TB samples

must be taken or TB complex samples. This means that the test statistic becomes

the sum of 2TB samples. 2TB, therefore, becomes the non-centrality parameter

while the per-sample input signal to noise ratio (SNR) sets the mean of the noncen-

14

tral chi-squared distribution. The signal-not-present distribution can therefore be

defined as:

x0 ∼ χ2
TB (2.14)

The signal present distribution is defined as:

x0 ∼ χ2
TB(µ) (2.15)

with the µ as the non-centrality parameter.

With the previous parameters set, the threshold, V ′T , for the test statistic can

then be calculated using the following expression with the desired probability of

false alarm [13].

PFA = Prob [x0 > V ′T] (2.16)

Further, the probability of detection can be calculated using a similar probability

expression or with the complementary error function erf(•).

PD = Prob [xp > V ′T] =
1

2
erfc

[
V ′T − 2TB − SNR
2
√

2
√
TB + SNR

]
(2.17)

The SNR term is very limiting in this estimation approach. Signal SNR is one

of the unknowns that signal detection and estimation are trying to solve. CFAR

detectors mitigate this problem by employing a noise estimate that does not rely on

SNR to create the threshold for their hypothesis tests.

Since both classic energy detection and CFAR use hypothesis testing, a brief

discussion of the topic is presented here to give an intuition of what each probabil-

ity value means. Figure 2.3 shows two Gaussian distributions with a vertical line

denoting the threshold selected. These distributions were used for the sake of this

15

(a) (b)

Figure 2.3: Two Gaussian distributions. The not present distribution with a mean
of 0 and the present distribution with a mean of 4. (a) The probability of false
alarm shown as the highlighted area. (b) The probability of missed detection is

shown as the shaded area.

discussion and do not necessarily represent any detection method. The area in plot

(a) shows the probability of false alarm. That is the area on the side of the thresh-

old that registers a detection that is still under the not present curve. Similarly, the

probability of a missed detection is the area to the left of the threshold that still lies

below the present curve.

2.2.2.2 Constant False Alarm Rate Detectors

CFAR detectors, as the name implies, adjust the threshold for each test, or each

set of tests, to maintain a consistent number of false alarms coming through the sys-

tem. Keeping this metric consistent helps to set the performance requirements for

the systems that will be receiving the output of the detector. This is accomplished

by observing the relationship between the threshold, T , and the probability of false

alarm, PFA, for a square law detector for a signal in complex Gaussian noise using

the following expression [14].

T = −σ2
wln(PFA) (2.18)

16

This relation relies strictly on the interference power, σ2
w, which is not known. The

interference power must, therefore, be estimated. Although there are numerous

ways to accomplish this, only two will be discussed here.

It can be shown that the maximum likelihood estimate of σ2
w is the average of

the N available training samples [14]

σ̂2
w =

1

N

N∑
i=1

xi (2.19)

Cell averaging CFAR (CA-CFAR) takes advantage of this and takes the average of

the ’cells’ surrounding the cell under test. To prevent a signal that may be present in

the cell under test from skewing the estimate, the cells around the cell under test are

not included in the average. These excluded cells are called guard cells while the

cells used are called reference cells. Figure 2.4 demonstrates this kind of structure.

Because an estimate for σ2
w is now being used, ln(PFA) is no longer the correct

scalar to be applied to find the threshold. This scalar is generalized as α and must be

determined for each type of CFAR detection. For CA-CFAR the relation between

Xi

Reference Cell

Guard Cell

Figure 2.4: The structure of CA-CFAR used when estimating the σ̂2
w for cell xi.

Reference cells are evenly split on either side of the cell under test to provide a
better estimate.

17

αCA and PFA are defined by

PFA =
(

1 +
αCA
N

)−N
(2.20)

From this equation, it follows that αCA is defined as

αCA = N
(
P
−1/N
FA − 1

)
(2.21)

Order Statistic CFAR (OS-CFAR) uses the same structure described in Figure

2.4, but instead of averaging the cells to create an estimate of σ, the cells in the

reference are ordered and the kth is selected as the estimate. Unsurprisingly, a

new α value is required for this method. However, no direct solution for α exists.

Therefore, it must be solved numerically using the following equation for PFA

PFA =
N ! (αOS +N − k)!

(N − k)! (αOS +N)!
(2.22)

Notice, the calculation of α in both CFAR cases only depend on PFA. This

means that the α value can be precalculated and given to the system as a parameter.

That makes these CFAR methods very computationally efficient. These algorithms

can also operate with a small spectral snapshot.

The simplified operations of CFAR, and classic energy detection to a lesser ex-

tent, do come at the cost of reduced performance. Energy detection methods require

a higher SNR for detection when compared to other, more complex methods. This

degraded performance is one of the consequences of minimizing computation but

also have limited knowledge of the signals to be detected [13].

18

Chapter 3

Implementation Platform

This chapter will discuss the implementation platform as a whole, before then

driving down into the FPGA frameworks that enable the architecture discussed in

Chapter 4. Software-defined radio will be discussed with the interaction between

the radio hardware and the host PC described. An overview of the RFNoCTM frame-

work is given in 3.2 with specific attention to the interconnects that allow data to

move through the device. An analysis of the available interface options within the

framework will be discussed with a justification for the interface that was selected

for this work. The chapter concludes with a discussion on creating and modifying

framework-generated files to make a custom RFNoC block.

3.1 Software-Defined Radio

A software-defined radio (SDR), as the name suggests, allows the user to define

the operation of the radio using only software without the need to change front-end

hardware. Designed to be used for communications, SDRs have allowed for a shift

away from application-specific hardware solutions to allow for more flexibility in

application and use [15]. These systems use tunable oscillators and transceivers to

allow for baseband data to be obtained from a wide range of operating frequencies.

19

Similarly, these radios can take baseband data and mix it up to be transmitted at

higher frequencies. Many radios allow for this to be done with minimal interruption

to operation, only needing to wait long enough for an oscillator lock to be achieved.

An Ettus USRP X310 radio was used for this work and has a Xilinx Kintex®7-

410T FPGA on the main motherboard to handle data movement through the various

RF channels. with dual UBX-160 daughter cards, pictured in Figure 3.1. This

hardware allows for dynamic transmit and receive from 10 MHz to 6 GHz with up

to 160 MHz of instantaneous bandwidth [16]. The X310 provides options of dual

10-gigabit Ethernet and PCI express to enable control and data transfer to and from

the host PC [17]. Dual 10 gigabit Ethernet connections were used to interface with

the radio to ensure the highest data throughput.

Control of the hardware is accomplished using Ettus’ software library, USRP

Hardware Driver (UHD). This hardware driver communicates with the radio and

Figure 3.1: X310 pictured with top cover removed to show daughter cards
installed.

20

allows for the transmission of data between the host computer and the radio [18].

UHD supports a C++ and Python API that can be used to create custom scripts.

The open-source nature of UHD has seen it also be incorporated and extended into

other software packages that can greatly simplify the use of the hardware.

One such open-source project is GNURadio. GNURadio uses drag and drop

blocks connected with virtual wires to build ’flowgraphs’ that visually model the

data processing flow of the program. Figure 3.2 shows a flow graph that streams

data received by the radio to the host computer where the host computer then gen-

erates a waterfall plot showing the frequency content of the collected data. Al-

though the flowgraph shown is very simple, GNURadio offers a large variety of

radio blocks to enable many different types of complex behavior. All of the GNU-

Radio blocks included with the software do the computation on the host PC and

send data back and forth to the radio for transmit or receive as needed.

GNURadio is more flexible than just the included blocks, it is a platform that

allows for the development of streaming algorithms that can be run on the host

Figure 3.2: GNURadio Companion software shown with a simple, two block
flowgraph that takes data streamed from the radio and process it into a waterfall

plot.

21

PC. To enable this development, GNURadio provides tools and tutorials that help

streamline the use of the platform. Moreover, a strong user community exists with a

large number of out-of-tree modules available to build on the already robust library

of preinstalled apps. This helps to bridge the gap between the initial installation and

developing the first block.

3.2 RF Network-on-Chip

Some of the Ettus radios, like the X310, have an FPGA inside with free space

that can be utilized for hardware-accelerated processing [17]. Offloading computa-

tion from the host computer to application-specific FPGA designs not only provides

a performance uplift but also removes the latency associated with the data transfer

to the host PC. To allow for the development of additional capabilities utilizing the

available FPGA space, a common framework is used to interconnect processing

blocks and control data flow. RFNoC provides this function with a block-based

architecture connected through two main operational planes, the control plane and

the data plane [1]. The design steps needed to generate one of these NoC blocks

will be presented in Section 3.4. This step-by-step discussion provides information

that may not be otherwise available in a single place. The design flow also provides

lessons learned to assist future users of the framework and reduce the learning curve

for use.

Both planes use the same bus type called the Compressed Hierarchical Data-

gram for RFNoC (CHDR). This format is packetized with each packet containing a

header, optional timestamp, a user-defined number of optional metadata words, and

some number of payload words. The width of the busses is flexible at the design

stage and can be changed for the entire architecture. This bus width is usually the

22

width of each of the payload words, as the header has a set format width of 64 bits.

One of the only constraints enforced with this bus is that at least one payload word

must be in every packet.

There are four main types of structures that make up the RFNoC framework:

the RFNoC block, the streaming endpoint, the data plane and control plane routing

crossbars, and the main CHDR crossbar. An RFNoC block is where the user devel-

ops and implements their algorithm. Data is fed into the block from the framework,

some operation is carried out on the data, and then that data is transmitted out to the

next block.

Each block or sequence of blocks sends and receives data and control packets

from the block streaming endpoint. These streaming endpoints are responsible for

routing the data to and from the block. Streaming endpoints are the origin of the

data for user blocks and the destination point for the output data of the user blocks

[1].

Between the RFNoC block and the streaming endpoint is the static data crossbar

and the full mesh control crossbar. The control crossbar is mainly tasked with rout-

ing control packets from the origin stream endpoint to the appropriate consumer.

Since this crossbar is full mesh, however, it also carries control packets from block

to block without the need of routing to the stream endpoint.

Data is routed from the stream endpoint to block and back through the static

router. Routes through this crossbar are fixed and require a new FPGA image to be

synthesized to change. There is no rule about each RFNoC block requiring its own

streaming endpoint, in fact, it is possible to link RFNoC blocks directly together

across this crossbar.

Static routing is a critical design decision and the desired flexibility of a block

connection must be considered when making routing determinations. Data flow

23

between two blocks through static routing is preferred over that of the streaming

endpoint as it reduces the FPGA resources and reduces the number of clock cycles

between data leaving one block and arriving at another. So, while every block

could have its own streaming endpoint for full flexibility, there is an incentive to

limit block to block transmission to static connections when appropriate.

A great example of the use of the static crossbar is the radio block and the

digital down-conversion block (DDC). These two blocks are always connected and

therefore all of the default images have the Radio block and the DDC statically

connected. Other blocks, like a hardware FFT, are not always going to be used in

the data chain and therefore need to be connected to streaming endpoints. A single

streaming endpoint connects to the input and output of its assigned RFNoC block

and is connected to the main CHDR crossbar.

The main CHDR crossbar is where all of the dynamic connections take place.

A connection between any two arbitrary ports connected to the crossbar can be

established as it is a fully meshed structure. Additionally, this main crossbar is full

bandwidth and can connect two stream endpoints dynamically without data loss.

Importantly, the CHDR crossbar not only connects the stream endpoints but also

provides the connections to the interfaces that connect to the host PC. Figure 3.3

shows how these structures are arranged for operation.

3.3 Block Interface

The CHDR bus itself is a lightweight implementation of the AXI bus inter-

face introduced by Xilinx to standardize the connection between Xilinx-provided

IP blocks. The RFNoC implementation of this interface utilizes only tdata, tvalid,

tready, and tlast signal lines for each the input and the output [1]. This means

24

RFNoC™ Specification Version 1.0

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 7

1.3 The RFNoC Flow Graph
As shown in Figure 1 an RFNoC flow graph has the following major components

• NoC Blocks
• Stream Endpoints
• Transport Adapters
• Routing Core (Routers and Crossbars)

Legend

 NoC
 Shell

User
Logic

 NoC
 Shell

User
Logic

 NoC
 Shell

User
Logic

 NoC
 Shell

User
Logic

 NoC
 Shell

User
Logic

Control Crossbar

Static Router NoC Blocks
(N instances)

Stream Endpoints
(M instances)

CHDR Crossbar

AXIS CHDR
AXIS Ctrl

AXIS Data

Misc
Control Port

Transport
Adapter

(Eth, PCIe, etc)

Transport
Adapter

(Eth, PCIe, etc)

Autogenerated NoC Core

Transport Blocks
(P instances)

Misc
Logic

IO
AXIS CTRL

to
CTRL Port

0

STATIC

Stream
Endpoint

XB
C
D

Stream
Endpoint

XB
C
D

Stream
Endpoint

XB
C
D

Figure 1: A typical RFNoC flow graph

1.3.1 NoC Block
A NoC block contains the core processing IP (user logic) sandboxed from the rest of the blocks
and from the framework. The user logic interacts with the RFNoC infrastructure using the NoC
Shell module. The NoC shell provides a separate control and data interface that the user logic
can use to send and receive control transactions and processing data, respectively. The details
of each interface will be covered in later sections. A NoC block may also interface with outside
logic or IO that is unmanaged by RFNoC. An RFNoC flow graph can have at most about 1000
NoC blocks per device (if they fit in the FPGA). This maximum number of ports in each FPGA is
limited by a 10-bit address field which is shared for blocks, stream endpoints and transports.

1.3.2 Stream Endpoint
A stream endpoint serves as the start and end for a unique sample stream. The number of
stream endpoints in a USRP design must scale with the number of parallel streams of data
to/from the device. A stream endpoint can exist in the FPGA or in software. A bidirectional
stream can be initiated between any two endpoints dynamically at any point in the application.
Streams can be destroyed and recreated without having to rebuild or partially reconfigure the
FPGA image. RFNoC implements flow control between stream endpoints, so they can flow over
any transport. An RFNoC flow graph can have a user-selectable number of stream endpoints.
The number of stream endpoints is independent of the number NoC blocks. The stream

Figure 3.3: An example showing how the internal RFNoC structures may
connected for operation [1].

that a framer/de-framer is needed to divide the data packets into their respective

header, metadata, and data elements. Fortunately, Ettus provides two framer/de-

framer interfaces, AXI-Stream Payload Context and AXI-Stream Data, as part of

their development tools.

Since both of these interfaces use the AXI-Stream interface to some extent, a

brief overview should be provided before continuing. The AXI-Stream bus is a

subset of a larger set of AXI bus protocols [19]. Table 3.1 describes the signals

that are used in AXI. Notably, this interface provides a valid signal that is fed into

Signal Name Signal Description
tdata The payload word for the data stream.
tlast Asserted on the last payload word of the packet
tvalid Asserted when the value on tdata is valid.
tready Asserted when by the recipient to signal readiness.
tuser Describes the word type for the current word on the bus.

Table 3.1: A description of the signal used in a simple AXI-Stream interface.

the receiving block and a ready signal that comes from the receiving block to the

sender. This allows for the blocks to agree on a successful transmission before

the transaction is complete. This also makes the logic for advancing the stream

25

incredibly simple. If the valid signal and ready signals are both asserted on a clock

cycle then the stream can be advanced. The user signal is not strictly required for

the AXI-Implementation but is used in the AXI-Stream Payload Context interface.

This signal provides information about the currently presented word on the data

line, which is useful if different types of data encodings are used in a single data

stream.

The AXI-Data interface is the simpler of the two available interfaces. The in-

terface provides a standard AXI-Stream interface for the payload data of the packet

but removes user-facing complexity by presenting the header data as separate sig-

nals that are valid throughout the receipt of the data packet. Table 3.2 provides a

list of signals that are provided to the block in addition to the previously described

AXI-Stream signals that are used for the data stream. Although the AXI-Data inter-

Signal Name Signal Description
ttimestamp Timestamp associated with the packet.
tlength Length of the packet in bytes.
teov Signals the end of a vector.
teob Signals the end of a burst of associated packets.

Table 3.2: The relevant signals for the AXI-Stream Data user interface.

face does provide an easier interface to use, it does introduce some ambiguity into

the timing of the packet transmission introduced by the need to generate its header

data and reconstruct a new header if it is changed by the user block.

The other interface option is AXI-Stream Payload Context. This interface pro-

vides an AXI interface for data, like the previous option, but it also provides the

header, timestamp, and metadata information in an additional AXI stream called

the context stream. Because both of these streams are being put onto a single bus

by the framer/de-framer logic it is important to serve the context data before the

payload data. Both of the streams use the signals as they are described in Table

26

3.1 to provide the AXI-Streams, except that the user signal is only provided in the

context stream as the data stream only has one encoding type. The timing diagram

shown in Figure 3.4 shows how the context and payload streams are linked together

and the structure that must be maintained when the packet is forwarded or a new

packet is created. Although this interface requires more consideration for two sep-

arate data streams that are linked in time, it allows a consistent model to be applied

to all data and allows metadata to be used if desired. It is for those reasons that the

AXI-Stream Payload Context interface was chosen for this work.

The framer/de-framer for these interfaces is located in a module called the NoC

shell and can be seen on the architecture graph inside the RFNoC blocks in Figure

3.3. The NoC shell is mostly a black box to the user, except for a first in first out

(FIFO) buffer on each of the ports. This buffer allows the user block to stop ac-

cepting data, using the tready signal, without dropping packets or packet words. A

backend interface is also implemented in the NoC shell as a 512-bit status interface

and a separate control interface that is used by the larger framework and is not of

use to the user [1].

RFNoC™ Specification Version 1.0

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 40

Figure 9: A 4-word packet with a header and timestamp on the AXIS Payload Context port

(CHDR_W = 64)

Figure 10: A 4-word packet with a header, timestamp and 2 metadata words on the AXIS Payload

Context port (CHDR_W = 64)
 Figure 3.4: The timing diagram for a the AXI-Stream Payload Context interface. It

shows a 4 word data packet with timestamp [1].

27

3.4 Design and Control of a Block

RFNoC provides several tools to try to reduce the overhead required to build a

custom FPGA block. One of the ways this reduction is accomplished is by manag-

ing abstraction and requiring the user to interact with and manage a bare minimum

of files required to successfully implement a design. All development took place on

a desktop machine with a Intel®Xeon®processor and 256 gigabytes of ram running

Ubuntu 20.04. The process described in this section was tested using RFNoC 4.0

with no out-of-branch patches applied. Of course, the more complex a block is and

the more the structure deviates from the default configuration, the more manage-

ment must take place. This section seeks to describe the design flow of creating a

block of similar complexity to those presented later in this work. Numerous topics

will be covered in an order that mimics the actual order that a user may take to build

a block. The topics discussed include: generating framework HDL using a config-

uration file, adding additional user registers to the block, changing the number of

ports and their identifier, and making changes to the GNURadio block to reflect the

new additions of the block.

The development journey begins with the rfnocmodtool, a command-line tool

that is used to create RFNoC modules and blocks. Modules contain RFNoC blocks,

this hierarchy allows users to group similar blocks together and help manage files

when many blocks are in development [20]. A module can be created using the

following command:

rfnocmodtool newmod

The user will be prompted to enter information about the module that will be used

to create a directory with the required folder structure. Navigating inside of the file

directory that was created from the newmod command, a user can generate the files

28

necessary to start work on the block.

rfnocmodtool add

The add command above prompts the user for information about the block, of which

only the name is a required field, the defaults for the remaining options are sufficient

for a successful start to the process.

There are seven main files that the user needs to manipulate to make a fully

flexible RFNoC block. Table 3.3 lists the files of interest and their location relative

to the top level of the module. These files will be used throughout the development

flow and their purpose will be discussed as they are used.

The Verilog files rfnoc block blockName.v and rfnoc shell blockName.v are

both generated automatically. rfnoc block blockName.v is the file that describes

the RFNoC block under development and this is where the HDL for the user’s

design will go. The rfnoc shell blockName.v is instantiated inside the main design

and is responsible for the framer/de-framer of the selected interface as discussed

in the previous section. The RFNoC shell also implements a backend interface

that helps control RFNoC that is completely invisible to the user and should not be

modified.

Before jumping into the Verilog files the user should first configure the block

and generate new HDL files to meet their needs. Block configuration settings are the

File Name Location
rfnoc block blockName.v /rfnoc/fpga
noc shell blockName.v /rfnoc/fpga
blockName x310 rfnoc image core.yml /rfnoc/icores
blockName block ctl impl.cpp /lib
blockName impl.cc /lib
blockName.yml /rfnoc/blocks
module blockName.block.yml /grc

Table 3.3: The relevant files for the RFNoC block development cycle.

29

responsibility of the blockName.yml file. YAML Ain’t Markup Language (YAML),

is a human readable format that is used throughout RFNoC and GNURadio to define

parameters and describe blocks and is denoted with the .yml file extension [21].

There are four main sections to the blockName.yml file: block information,

clocks, control ports, and data ports. Block information should not be changed as

it is mostly informative. The clocks section controls the clock frequencies of the

various busses, there are two clocks that can be chosen from on the X310: 200 MHz

and 184.32 MHz. It is critical to ensure that the CE clock is in the list and that 200

MHz is selected as its clock speed, enabling full speed operation. Setting the clock

is as simple as

clocks:
- name: ce

freq: "[200 MHz]"

This work did not utilize the control port as a master port and therefore the default

settings of this section were always used.

The final section defines the configuration of the data ports. Multiple named

ports can be defined using the following parameters.

inputs:
input1:
item_width: 32
nipc: 1
info_fifo_depth: 32
context_fifo_depth: 32
payload_fifo_depth: 32
format: sc16
mdata_sig: ˜

Buffer sizes are mostly up to the user to determine. These FIFOs sit at the port

edges and help to prevent overflows if the user block very briefly stops accepting

input. Ideally these FIFOs should be about one packet length as data beyond a full

30

packet will be backed up to the streaming endpoints. The same settings apply to the

output ports that have identical parameters under an outputs tag instead of an inputs

tag.

Once the block YAML is configured to the users desired state, new Verilog files

can be generated. Ettus provides a script called rfnoc create verilog.py that gener-

ates the framework for the configuration defined in blockName.yml. The script is a

part of UHD and exits in the UHD install directory under /host/utils/rfnoc backtool

directory. When the user is in the same directory as the script it can be executed

from the command line using the following,

./rfnoc create verilog.py -c path/to/block/yaml

-d path/to/Verilog

Now that the two Verilog files have been updated, the user can begin to de-

cide how many user registers they want. Register logic is generated inside of the

rfnoc block blockName.yml file and a single register is defined by default, pro-

viding a template for the addition of more registers. Each register has an address

parameter and a reset parameter, with the default address set to zero and a default

value of 0. These two parameters should be copied and used for each new regis-

ter, incrementing the address by four as the register words are passed in as 32-bit

integers.

First, the user should instantiate a 32-bit Verilog register for each new RFNoC

controlled register that is needed. The next part of the user logic is an always

block synchronized with the control port clock. Inside this always block there are

3 if statements that control register functions. The first of these if blocks checks

the reset line, here the user should add a simple register assignment resetting the

Verilog register to the default value parameter

31

The other two if statements check for a register read or a register write. Both of

these contain case statements using the address to multiplex between the registers.

A copy of the default register logic with the appropriate changes to the parameters

will successfully set up the hardware of the registers. The Verilog code in listing

3.2 provides this user logic as it can sometimes be absent from generated files in

version RFNoC 4.0.

localparam REG_USER1_ADDR = 0; // Address for user register
localparam REG_USER1_DEFAULT = 0; // Defult value

reg [31:0] Reg_One_Value = REG_USER_DEFAULT;

always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
Reg_One_Value = REG_USER_DEFAULT;

end else begin
// Default assignment
m_ctrlport_resp_ack <= 0;

// Read user register
if (m_ctrlport_req_rd) begin // Read request
case (m_ctrlport_req_addr)
REG_USER_ADDR: begin

m_ctrlport_resp_ack <= 1;
m_ctrlport_resp_data <= Reg_One_Value;

end
endcase

end

// Write user register
if (m_ctrlport_req_wr) begin // Write requst
case (m_ctrlport_req_addr)
REG_USER_ADDR: begin
m_ctrlport_resp_ack <= 1;
Reg_One_Value <= m_ctrlport_req_data[31:0];

end
endcase

end
end

32

end

Listing 3.1: The default register logic described above. Provided as it is not always
correctly generated in version 4.0.

Immediately below the register logic, the port signals are set to default values.

The user can replace these default connections and insert their well tested and sim-

ulated Verilog that they would like to operate on their data. User logic is the last

part of the file and concludes the work that needs to be done in the Verilog files.

Next, the software interface must be informed of the changes to the port config-

uration and the additional user registers. blockName block ctl impl.cpp is where

the the API goes to generate the control signals necessary to configure the block

when the block constructor is called by the user script or GNURadio. First, the user

needs to create new uint32 t constants for the registers that were just created in the

Verilog. A call to the register property function should be made inside of the pri-

vate register props function with a closure to provide the functional information.

After the property is registered, a custom property type needs to be instantiated at

the bottom of the file, this is the property that is passed into the register property.

The constant declaration, property call, and property type should look similar to:

const uint32_t Name_block_ctl::REG_USER1_ADDR = 0;
const uint32_t Name_block_ctl::REG_USER1_DEFAULT = 0;

void _register_props() {
register_property(&_user_reg, [this]() {

int user_reg = this->_user_reg.get()
this->regs().poke32(REG_USER_ADDR, user_reg);

});
...
...
}

property_t<int> _user_reg{"user_reg", REG_USER1_DEFAULT,
{res_source_info::USER}}

Similar to the process to create a register property, a block edge property is

33

required for each of the ports that are used on the block. Just like with the register,

constants need to be defined for each of the ports, each property must be registered

and a property type must be instantiated. Unlike the register, the constants should

only be incremented by 1 and the input and output edges are indexed separately

so there should be an output zero and an input zero. A further difference from the

register is an additional property resolver that helps the software to understand what

data types should be sent in and out of the block. This should match the value that

was used in the port definition of the block YAML, but there is not a check to make

sure that the values are consistent.

Below is a sample snapshot of code that helps define the necessary statements

that are required to successfully set up the hardware:

constexpr uint32_t input1_port = 0;
constexpr uint32_t output1_port = 0;

void _register_props() {
...
register_property(&_type_in_input1);
register_property(&_type_out_output1)
...
add_property_resolver({&_type_in_input1},

{&_type_in_input1}, [this](){
_type_in_input1.set(IO_TYPE_SC16)

});
add_property_resolver({&_type_out_output1},

{&_type_out_output1}, [this](){
_type_out_output1.set(IO_TYPE_SC16)

});
...
}
...
property_t<std::string> _type_in_input1 =

property_t<std:string>{ PROP_KEY_TYPE,
IO_TYPE_SC16, {res_source_info::INPUT_EDGE,

input1_port}};
property_t<std::string> _type_out_output1 =

property_t<std:string>{PROP_KEY_TYPE,

34

IO_TYPE_SC16, {res_source_info::OUTPUT_EDGE,
output1_port}};

If the user is planning on using the block with GNURadio then there is one more

step before moving on to the final image synthesis tasks. The graphical represen-

tation of the block that is used for drag and drop connection of the block needs to

know what the port configuration is and what each of the register values should be.

All of this configuration is done in the module blockName.block.yml file, utilizing

three main sections.

The first section is the template section, this provides the import argument and

the constructor parameters so that GNURadio can correctly setup the auto generated

script. Of these parameters only the callbacks need to be manipulated. These call-

backs connect through to the previous properties that were instantiated to manage

the control read and writes to the registers in the blocks. One call back is needed

for each of the registers that are used and it is important that the first argument

in the callback is the same as the one provided in the last property object in the

implementation file.

The second section, parameters, is all of the fields within the GNURadio block.

Register fields for the user to input values into the GUI block are created here. It

is critical that the ID of this value is the same as the one given to the callback in

the previous section of this file. The label and default value can be anything the

user wants to have visible in the GUI. It is a good idea to have the block defaults in

this file be the same as the default parameters previously set but, again, this is not a

requirement.

The last section of this file is used to create the actual ports on the GUI block.

Each port has three parameters: domain, label and dtype. For the purpose of this

work the domain will always be rfnoc and the dtype will be sc16, the label can

35

be whatever the user wants to display. The port assignment between these defini-

tions and the properties defined in the previous file are based on the port number

assigned previously, meaning that the first import port reference in the .block.yml

file corresponds to the zeroth port in the property definition.

An example of each of the necessary fields are provided below for illustration.

callbacks:
- set_int_property('user_reg', $(user_reg))
...
parameters:
- id: user_reg
label: User Register Name
dtype: int
default: 0

...
inputs:
- domain: rfnoc
label: Input Port Name
dtype: 'sc16'

outputs:
- domain: rfnoc
label: Output Port Name
dtype: 'sc16'

With all of the initial block setup and design complete the user can define the

blocks that are needed in the FPGA image and how they are connected through

the various crossbars. Settings for the layout of the blocks are handled in the block-

Name rfnoc image core.yml file. This file is structured into four section: streaming

endpoint definitions, block definitions, block connections, and clock assignment.

First the streaming endpoints need to be defined, each have three block parame-

ters: ctrl, data and buff size. The ctrl and data parameters determine whether or not

traffic from that plane flows through the endpoint. buff size determines the size of

the buffer that is used to prevent dropped packets if the recipient of the stream halts

operation momentarily. The parameters are formated as follows

36

stream_endpoints:
ep0: #Label can be anything
ctrl: False
data: True
buff_size: 32768

Block definitions are next with each having a different set of parameters. The

only common parameter is the block desc, this is the name of the blockName.yml

file and should be formatted as seen below.

noc_blocks:
blockName0: #Label can be anything
block_desc: 'blockName.yml'

Since the block and module were created by the modtool then the software

knows the directory structure and where to find these files.

Next, connections must be defined for each of the blocks. Decisions about the

routing through an endpoint or through the static crossbar only are made at this

point. Two different connection examples are given below. The first provides a

connection from the ep0 as the source of the data to the input of duc0 (Digital Up

Converter) block, then it is routed from the duc0 output to the input of the radio0

block. This is an example of a static connection between two block using only the

static crossbar between the DUC and radio, this forms the transmit chain to the

radio hardware.

The second example shows a block connected with the streaming endpoint on

each end. It is important to note that each endpoint should only be used for a single

pair of signals. If the user’s block has an odd number of ports or multiple pairs of

ports, multiple streaming endpoints are necessary.

connections:

37

- {srcblk: ep0, srcport: out0, dstblk: duc0, dstport:
in_0 }

- {srcblk: suc0, srcport: out_0 dstblk: radio0, dstport:
in_0 }

The final piece of this file defines the clock connections to the block. Clocking

is a critical piece for ensuring that the operation of all of the blocks goes smoothly.

For this work all of the clocks were defined using the compute engine (CE) clock

except for radio blocks which are connected to the radio clock. An example of both

types of clocking connections are shown as,

clk_domains:
- { srcblk: _device_, srcport: radio, dstblk: radio0,

dstport: radio }
- { srcblk: _device_, srcport: ce, dstblk: ddc0,

dstport: ce }

Finally, after all of these files have been updated to set up the configuration of

the block, the module can be built and the FPGA image synthesized. To start the

build and synthesis process the user needs to navigate, within the terminal, to the

module build directory. Once in the directory, the make files for the install need to

be created using

sudo cmake -DUHD FPGA DIR=./path/to/uhd/fpga/dir

After this process completes the make files can be used to install the module into

GNURadio with the command,

sudo make install

At this point the block should be visible inside of GNURadio at the bottom of

the module tree. The make files are now ready for synthesis to the FPGA. Synthesis

requires that the Xilinx Vivado is already installed with version 2019.1 being the

tested version. The Vivado build is initiated by executing,

38

make blockName rfnoc image core.yml

in the build directory.

The build process can take a significant amount of time, throughout this work 45

minutes was found to be very common but times of up to four or five hours were also

encountered depending on the content of the user logic. Once the build is complete

a .bit file is generated in the uhd/rfnoc/top/usrp3/x300/build directory. The .bit file

is used to program the FPGA using the uhd image loader tool. The image loader

was the most successful when using the following argument configurations:

uhd_image_loader --args "addr:Radio.IP.Address"
--fpga_path ./path/to/.bit

After the image loader has completed its operation, the user can power cycle the

radio and test their new hardware block using the UHD API or GNURadio. Figure

3.5 shows the flowgraph enabling the waterfall display implemented with RFNoC

blocks.

It is important to note that when using any RFNoC blocks the entire radio must

be built using the RFNoC block variants. Using the RFNoC components means that

instead of using the USRP source block that is packaged in GNURadio a user must

instead use the RFNoC radio block. Because the RFNoC radio block is statically

connected to the Digital Down Converter (DDC) it also must be inserted into the

flowgraph. Having to model the receive chain using NoC blocks instead of the

provided GNURadio source can present additional concerns. However, this is still

simpler than the alternative of scripting from the UHD API directly, which has to

instantiate the radio chain individually whether custom RFNoC blocks are used or

not.

39

Figure 3.5: An example showing how the provided radio and DUC blocks can be
used to replace the USRP Source block used previously [1].

40

Chapter 4

Simple FSS Architecture

The FSS algorithm discussed in section 2.1 was implemented on the FPGA in-

side the X310 radio. By moving the algorithm to the FPGA inside the radio the

performance can be maximized by optimizing a section of the FPGA hardware just

for this algorithm. Additionally, if the waveform selection and generation algo-

rithm is deployed to the FPGA then the host PC is not in the critical path of the

perception-action cycle. Not requiring the host PC CPU or GPU for calculations

would eliminate the latency of the Ethernet transfer.

4.1 Changes to the Algorithm

Some adjustments must be made to the greedy FSS algorithm to take advantage

of the hardware implementation. The first major step in this endeavor is to remove

the reiterative search that merges closely spaced high power bands. Optimizing for

the desired output accomplishes this goal. The algorithm as discussed in 2.1 not

only wants to make the selection of the largest available space but also wants to

have the power band groupings if additional multi-objective optimization is desired

[6].

The block developed in this work focuses solely on finding the largest contin-

41

uous frequency bins with no signal present as defined by the threshold. Therefore,

the merging parameter, previously used to determine the maximum spacing be-

tween high power bands before they are no longer eligible for merging, can be

used as the minimum usable spectrum size. Consequently, if the largest continuous

bins of the available spectrum are less than the merge parameter then the algorithm

would determine no spectrum to be available for secondary use. This leaves the

areas of the data frame that are small enough to be merged discarded, effectively

eliminating the need to reiteratively check for these merging cases.

4.2 Theory of Operation

With the reiterative component of the algorithm removed, a discussion about the

hardware operation can be presented. This block must scan through the data stream

as it arrives and classify each element as being high power or low power based on

the threshold. The payload AXI-Stream that feeds data into the block provides a

single bin value per clock cycle. Therefore a simple comparison can be carried out

on each element to determine if it is low power or not.

If a bin is the first low-power signal to be encountered, then a ’bucket’, with start

and size fields, should be initialized with a start point of the current index and a size

of one. For each consecutive low power sample after a bucket has been initialized

the size of the existing bucket should be incremented. Once a high-power bin is

encountered the bucket that was being used should be frozen.

This bucket initialization could lead to a very large number of buckets being in-

stantiated, which is unnecessary since the only bucket of interest is the largest one.

This means that only two buckets should ever be needed to retrieve the desired data.

Instead of initializing a new bucket when a new section of the available spectrum

42

is encountered then the smallest of the two buckets should be selected to be over-

written. This is a simple comparison between the size parameter of the buckets.

Selecting the bucket with the smallest size to be the new write space preserves the

data of the currently longest sample set.

Once the largest bucket is found, it needs to be sent out of the block. There

are a few options available. The first option is to add the start point and size to the

metadata at the front of the packet. This was quickly ruled out as it would require

the entire packet to be cached until after a decision had been made. Ideally, the

block would allow the data to stream through such that there was no interruption to

the stream. That means that the block will need a secondary port to move the data

along.

Secondly, the data could be sent across the control infrastructure to the next

block. This would allow the FSS block to utilize a single stream endpoint. Unfor-

tunately, this would prevent the data from being streamed directly to the host PC

without an intermediary block to convert the control data to a standard data stream.

Although the block data is intended to be consumed by another block in hardware

without traveling to the PC, for this work it is necessary to offload the data to the

computer for verification and analysis. This meant that the block would need to em-

ploy a secondary data output stream to enable the full flexibility that is needed. This

comes with the additional overhead of a secondary stream endpoint to dynamically

connect the secondary data output to other blocks of interest.

4.3 Implementation

With the theory of operation now solidified, the hardware elements that make

the operation possible should be discussed. The state machine that powers the logic

43

will also be shown before the section closes with a discussion of the send state

machine.

4.3.1 Data and Registers

The two buckets need to have each of their fields maintained as each frame of

data is processed. The size of these registers should be determined by the length

of the packet, as each of the registers should be able to store this value. The block

designed for this work is fed by a hardware FFT block with an FFT length of 1024

setting the packet size. 1024 was selected as the FFT length because 1024 is ap-

proaching the largest power of two of samples that will comfortably fit in a jumbo

Ethernet frame. The default transporter block puts each CHDR packet in its own

Ethernet frames and cannot split large CHDR packets between multiple Ethernet

frames. This means that our bucket sizes are stored in 11-bit registers so that they

could, if necessary, store 1024 as the possible maximum size of available spectrum

in a frame. The start point fields are stored in 10-bit registers so that that the index

packet word index from 0 to 1023 can be stored.

The packet words that are passed into the block are not tagged with their number

in the packet. That means that an 11 bit counter should also be kept. This packet

counter allows the block to keep track of the word index in the packet. This will

be used to generate the index value that will be stored in the start field of a bucket

when a low power bin is detected.

A final set of buckets is needed to allow for seamless operation. A send bucket

is maintained and on the last sample of a packet, the data associated with the largest

bucket is transferred to this set of registers. This allows all of the fields associated

with the FSS processing state machine to be reset on this last sample. Of course,

44

it is important to consider the effect that the last sample has on the data. This

means that if the last bin is below the threshold then the largest bucket comparison

should be made with this change considered. Similarly, if the value belongs in the

bucket that is being selected, then the value of the size of the send bucket should be

incremented with the transfer.

4.3.2 FSS State Machine

With the variables and structures laid out, the FSS state machine can be pre-

sented. Figure 4.1 shows the FSS state machine with the transition conditions and

transition actions listed.

Consider the stream of samples shown in Table 4.1 as a streaming input with a

packet size of 10 samples with a threshold of one. On startup, the block is in the

Sample Number 0 1 2 3 4 5 6 7 8 9
Value 1 0 0 1 1 1 0 0 0 0

Table 4.1: Values used for an example run of the FSS state machine.

*State transitions only occur when
AXI-Stream signals tready and tvalid are

both asserted high. PacketCounter is
incremented every valid cycle.

(tdata < Thresh) &&
(B1Size < B2Size2 ||

B1Size == B2Size)

B1Start <= PacketCounter
B1Size <= 1

tdata < Thresh &&
BucketSize2 < BucketSize1

B2Start <= PacketCounter
B2Size <= 1

tdata > Thresh

PacketCounter += 1

Transition Condition

Transition Actions

Tdata < thresh

B2Size <= Size + 1
PacketCounter += 1

Tdata < thresh

B1Size <= Size + 1
PacketCounter += 1

Search

Fill Bucket 1 Fill Bucket 2

tdata > Thresh

PacketCounter += 1

tdata > Thresh

PacketCounter += 1

Reset on tlast ||
chdr_reset

PacketCounter = 0
B1Size, B2Size = 0
B1Start, B2Start = 0

Reset on tlast ||
chdr_reset

PacketCounter = 0
B1Size, B2Size = 0
B1Start, B2Start = 0

Figure 4.1: The basic FSS state machine shown with transition conditions and
transition actions.

45

searching state. When tvalid and tready are both asserted then the value on the data

bus is valid and the stream will advance on the next rising edge of the clock. The

first sample in the example stream is a 1, since this is greater than or equal to the

threshold the state machine stays in the searching state. The second sample is the

first sample in the stream that is below the threshold, this triggers a state transition.

Since both buckets have a size of zero, a transition to the Fill Bucket 1 state is

chosen. In addition to this, the size value and start value of bucket 1 is set to one

since this is sample one.

It should be noted that the Packet Counter is incremented every valid transition

that is not a tlast transition where the counter is reset. With that in mind, the third

sample is reviewed next. This value is also below the threshold so the state is

maintained and the Bucket 1 size is incremented. Sample number three is above the

threshold, so the state is set back to searching.

Like sample number three, samples four and five are above the threshold. This

means the state stays set to searching and the only action is the incrementing of

Packet Counter. When sample six comes through less than the threshold, a compar-

ison of the bucket sizes is carried out. This finds the zero in the bucket 2 fields to

be less than the two in bucket 1 and the state is set to the Fill Bucket 2 State. The

transition actions are also done, which sets bucket 2’s size to 1 and the value to 6

from the Packet Counter.

Samples seven and eight are also above the threshold, leaving the state as Fill

Bucket 1 for both. This brings us to the final sample. Because the value is below

the threshold, it must be considered in the decision on which bucket to store in the

send bucket fields. The comparison is between the bucket sizes to determine which

bucket is larger. The current state is Fill Bucket 2 so the comparison is carried out

between the bucket one register and the bucket two registers plus one. A transfer

46

of the bucket two data is triggered as its size plus one is larger. The state machine

then resets its packet counter and the bucket values before asserting the send flag

and returning to the Search state. The state machine is now ready to process the

next packet.

4.3.3 Send State Machine

When the send flag is asserted on the tlast of an input packet, the send state ma-

chine is triggered to run. Figure 4.2 shows the state machine diagram for sending a

packet on the secondary output. The state machine works by faithfully implement-

ing the AXI-Stream protocol across both the context and payload streams. For the

first state, a header must be generated for the output packet. The fields necessary

are shown in Table 4.2 with the values used to send the results packet. The most im-

portant value is the length. The value of length is calculated in bytes, not in words,

and also includes any header, timestamp. or metadata information. For the packet

that is being sent, a single 64-bit header word is used with a single 32-bit data word

for a total of 12 bytes of data being transferred.

Once the header is constructed and put on the data lines, tvalid is asserted in

Send Header Send Data
Send

Cleanup

~context_tready ~payload_tready

context_tdata <= header
context_tvalid <= 1
context_tlast <= 1

context_tuser <= 0x0
payload_tvalid <= 0

context_tready

payload_tdata <= {start, size}
payload_tvalid <= 1
Payload_tlast <= 1
context_tvalid <= 0

payload_tready

payload_tvalid <= 0
context_tvalid <= 0

SendFlag = 0

Figure 4.2: The state machine used for transmitting the a packet of data out of an
AXI-Stream port on an RFNoC block.

47

Field Bits Description Use
Virtual Channel 6 Used for routing the

packet. Utilized by
framework

Field overwritten by
framer

EoB/EoV 2 End of burst and end
of vector are fields left
to the user.

These are unused in
this work

Packet Type 3 This is used to sig-
nify what the packet
is so that the num-
ber of header words is
known.

0x6 Data Packet, No
timestamp

Number Metadata 5 Number of metadata
words

0. No metadata used.

Sequence Number 16 A sequencer so that
the framework can de-
tect dropped packets.

Field overwritten by
framer

Length 16 Length of the packet
in bytes, including the
header.

12 Bytes for this
packet.

DstEPID 16 Used by the frame-
work to route to the
correct streaming end-
point.

Field overwritten by
framer

Table 4.2: Values used for an example run of the FSS state machine.

the same clock cycle. From here the state is maintained until the context tvalid line

coming in from the receiving block is asserted, at which point the state is advanced

to the send data state. The send data state de-asserts the context tvalid signal and

constructs the data word by placing the 11 size bits on the lower eleven bits, while

the 10 start index bits are assigned to bits 16 through 25. Once these are on the

payload data bus the payload tvalid is asserted in the same clock cycle.

Finally, after the payload, the tready line is asserted high then the state machine

advances to the cleanup state. The cleanup state de-asserts all of the valid lines on

the port and sets the state to send header before setting the send flag to zero. After

48

the cleanup state is finished the state machine is back in its starting configuration

and waits for the FSS state machine to set the send flag back high.

4.4 Timing and Performance

It is important to set a uniform way to measure performance such that perfor-

mance across different implementations can be assessed and compared. Creating a

metric for the designs in this work is even more challenging, as much of the design

exists as a module within a black box. Therefore, the metric must be defined for

only the logic that is managed by the user block itself.

Two metrics are developed for the user blocks in this work. The first describes

the streaming efficiency of the block and is the number of clock cycles between the

receipt of the final word in the packet and the transmission of the final word in the

packet. This data latency metric helps classify the efficiency of data management

for blocks that require any data retention or data stream halts. When a result is

produced based on the data in a packet, it is useful to know how many cycles after

the last word of a packet is received does the resultant data product get transmitted.

This is the measure of the second metric that this work will refer to as product

latency.

The first metric is easy to determine. The design goal of this block was to im-

plement the algorithm without interrupting the AXI-Stream flow through the block.

This was accomplished as the input ports and output AXI ports are wired directly

together. This means that any stoppage of the stream comes from the block con-

nected to the output of the FSS block. So the last sample is registered into the output

on the clock cycle after it is registered onto the wire running through the block. This

is the absolute minimum data latency possible for an RFNoC block other than not

49

being present in the stream chain at all.

To understand the result product latency, a timing diagram showing the end of

the packet must be examined. Figure 4.3 shows a timing diagram at the end of the

packet where the send flag is triggered by the tlast signal. Here the send flag is

asserted by the tlast signal during that same cycle that the copy of one FSS bucket

into the send bucket is carried out. On the clock after the tlast, the send bucket is

loaded, the FSS buckets are clear and a valid marked header is on the context bus.

Two clocks after tlast, assuming the consumer of the result is ready, the header is

removed from the context bus and the data is on the payload bus. This means that

the data is consumed by the output block on the rising edge of the third clock after

tlast is asserted. This means that the product latency is three clock cycles. On the

Ettus X310, the FPGA operates at 200 MHz, giving a total time of 15 nanoseconds

between the receipt of the last data word and the output consuming the result.

4.5 Utilization

FPGAs are made up of lookup tables (LUTs) that are used to implement digital

logic, block ram tiles (BRAM), different types of registers, and various specialty

components such as DSP blocks and input/output (I/O) structures. While LUTs,

Figure 4.3: The state machine used for transmitting the a packet of data out of an
AXI-Stream port on an RFNoC block.

50

registers, and BRAM exist in seemingly large quantities in the FPGA, they are

finite resources and therefore it is important to be understand the utilization of each

block to ensure resources aren’t needlessly wasted. It is for this reason that the total

utilization of the design is presented here. Table 4.3 shows the part utilization in

both quantity and as a percentage of the total available on the specific FPGA in the

X310. Here we show that the two streaming endpoints that are required for a block

Default Image Default W/ Streamers Full FSS
Resource Used % Used % Used %

LUTs 133,282 52.43 140,371 55.21 146,693 57.71
Registers 204,487 40.22 216,068 42.50 224,988 44.25
BRAM Tiles 400.5 50.38 408.5 51.38 412.5 51.89

Table 4.3: Kintex®7-410T utilization of the FSS design shown in 3 stages: default
image with FFT, default image with stream endpoints for FSS, and image with

FSS block. This data was provided by the Xilinx Vivado synthesis tools when the
RFNoC images were built.

with two output ports require more resources than the FSS block implementation

itself. The block RAM (BRAM) used by the design is used exclusively in the

NoC core, discussed previously, that parses the raw CHDR bus into the specific

AXI-Stream interface+. In total, the design itself takes up 2.5 % of lookup tables

(LUTs) and just under 2% of the Registers of the FPGA. When the required RFNoC

infrastructure is considered with the design, the total is about 5.3% LUT use and

just over 4% use of the registers. With no DSPs or other limited complex blocks

consumed by the design, it is very small and leaves plenty of resources for the

implementation of other processing hardware blocks.

51

4.6 Usage and Verification

Implementation within the RFNoC framework, in tandem with the gr-ettus GNU-

Radio extension, allowed the hardware block to be controlled using GNURadio

flowgraphs. Figure 4.4 shows the block generated for use within GNURadio com-

panion flowgraphs. This block contains a user register field that allows a user to

select and change the threshold being used by the FSS block at any time. This user

value must be an integer, however, as the RFNoC block uses fixed point integers

and not floating-point values.

To verify the operation of this block, the flowgraph in Figure 4.5 was used for

testing. This graph sources data from the radio frontend and sends it through a

hardware FFT before sending it into the FSS block. From here the flowgraph takes

the pass-through data from the throughput port and the results data from the results

port and stores them in their own files. This data is was then taken into MATLAB

where the simulated FSS algorithm was run on it and verified against the results

from the block. This method was able to verify parity between the operation of

the hardware implementation and the MATLAB script and also show the block was

Figure 4.4: GNURadio block for the RFNoC FSS block.

52

Figure 4.5: The state machine used for transmitting the a packet of data out of an
AXI-Stream port on an RFNoC block.

able to operate at the full 160 MHz bandwidth of the daughter cards in the FPGA.

Additionally, the block was able to cope with a full 200 MS/s streaming rate of the

radio without dropping or needlessly caching packets which would be required if

the processing time of the block is greater than the packet generation time.

53

Chapter 5

Hardware Optimized Cell Averaging Estimator

The static threshold method is effective if the electromagnetic environment is

known before the device begins operation. Unfortunately, the noise and interference

in a given operating environment can change dramatically over time rendering the

threshold method inadequate if set statically. This work then sought a method that

would enable dynamic threshold selection by estimating the noise and interference

environment of each data frame. As discussed in section 2.2, many methods for

estimating the noise and detecting signals in the spectrum exist.

Because of the timing goals of this project, a computationally efficient method

was sought to solve this problem. For this reason, CFAR detection was the main

method of detection investigated, specifically CA-CFAR and OS-CFAR were of

particular interest. Here the application of those methods on real and simulated

data is discussed as a motivation for a new CFAR inspired detection method.

5.1 Data Sets

The performance of the baseline CFAR detection algorithms will be applied to

real-world data and a set of simulated data. This section will discuss what those data

sets look like and what signals they contain. A discussion on the data collection and

54

signal generation methods will be presented.

5.1.1 Simulated Data

The simulated data was generated by a modified version of the 5G downlink

script provided as part of the 5G toolbox in MATLAB [22]. The data generation

script employed the nrWaveformGenerator function and the data sources for all

carrier parameters were randomized. By randomizing the data source signals will

have the same envelope but the amplitude within the envelope and the sidelobes

will vary with each iteration. 614,400 samples are generated with a sample rate of

61.44 MS/s with added noise to yield an SNR of 5 dB. A spectrogram is formed

from the data by dividing it into non-overlapping frames of size 1024 for which

the FFT is applied. Figure 5.1 shows the 600 frames that result from this operation

while Figure 5.2 shows the first cut frequency cut of spectrogram..

-30 -20 -10 0 10 20 30
Baseband Frequency (MHz)

0

100

200

300

400

500

600

F
ra

m
es

Spectrogram w/ 5G Signal and Noise, SNR = 5dB

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Figure 5.1: Simulated 5G NR Downlink signal spectrogram with 5 dB SNR.

55

-30 -20 -10 0 10 20 30
Frequency (MHz)

-70

-60

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

5G Downlink Signal, Frame 1

Figure 5.2: Frame 1 of the of the 5G Downlink spectrogram with 5 dB SNR.

5.1.2 Real World Data

Real-world data was captured on the Ettus X310 radio in the Radar Innovations

Lab at the University of Oklahoma. The center frequency was set to 2.44 GHz

to utilize the operating frequency of the VERT2450 antenna. Complex data was

captured at 100 MS/s providing 100 MHz of bandwidth. Data was stored in pairs of

16-bit integers to help reduce file size and when processing the magnitude is taken

to give a 32-bit value. These values are then divided by 231 to normalize these

values from 0 to 1.

Figure 5.3 shows the spectrogram of the real-world data with three distinct re-

gions of interest highlighted. Note that there is a constant harmonic that exists at

about -40 MHz. This is believed to be an artifact from the internal amplifier of the

radio as it does not appear if the amplifier is disabled. Similarly, when the ampli-

fier is on the artifact persists even if the RF input is connected to a 50-ohm load.

Figure 5.4 shows the first frame of the first area of interest. Here three signals of

interest are shown. Signal A is the artifact which will be ignored for most of this

56

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

0

5000

10000

15000

T
im

e
(
7

s)

Real World Data Spectrogram

Figure 5.3: Real world spectrogram with 100 MHz of bandwidth. Three distinct
regions of interest are highlighted to capture four different signals as well as a

noise only case.

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-90

-80

-70

-60

-50

-40

-30

-20

-10

M
ag

ni
tu

de
 (d

B)

Area One, Frame 1

A

B

C

Figure 5.4: Area of interest one with amplifier artifact and two distinct signals.

section. The signal marked B represents a fairly high-energy signal whose sidelobe

structure is visible above the noise floor. The strong signal provides a challenging

detection environment for signal C as any algorithm with a frame static threshold

must be robust to the roll-off of B.

57

Figure 5.5 presents the first frame of the second area of interest. Area two

presents as close to a noise-only area as was observed in the collection from the real-

world environment. This provides a fantastic baseline for each of the algorithms to

be tested against.

Finally, Figure 5.6 gives the first frame of the third area of interest. Here the

widest band signal in the data set is present at relatively high signal power. This

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-120

-110

-100

-90

-80

-70

-60

-50

M
ag

ni
tu

de
 (

dB
)

Area Two, Frame 1

Figure 5.5: Area of interest two that contains only noise.

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-120

-100

-80

-60

-40

-20

M
ag

ni
tu

de
 (d

B)

Area Three, Frame 1

A

B

Figure 5.6: Area of interest three containing a wide band high power signal with a
low power signal.

58

high power signal, marked as A in the figure, demonstrates how easy it is to mask

other signals present in a frame. To detect the entirety of signal B with a uniform

frame threshold, some of the noise around signal A would necessarily be above the

threshold.

5.2 CA-CFAR Performance

This work focuses on hardware implementations, so when setting the parame-

ters of the algorithms the hardware was considered. Because the CA-CFAR must

take the average of the reference cells, the total number of cells in the reference set

should be a power of two. This allows the divide operation of the average to be

carried out using bit shifting.

For this example the total reference cell was set to 32, leaving 16 reference cells

on each side of the cell under test. 14 Guard cells were inserted between the cell

under test and the reference window on each side. Unfortunately, this means that

the first 30 cells and the last 30 cells of the frame are not tested as they do not have

the cells available to the left or right that can support the estimate. For all testing,

the probability of false alarm was set to 10−6.

Figure 5.7 shows the resulting threshold when CA-CFAR is applied to the first

frame of the first area of interest. Here it is observed that CA-CFAR does a great

job detecting signal B in the area. The threshold hugs B tightly and captures the

entire body of the signal. The performance is not repeated on signal C. Although

the leading edge of the signal is detected, the signal drops its trailing shoulder and

avoids detection.

Figure 5.8 presents the CA-CFAR on the leading frame of the second area. The

detection method performs as expected across this frame of data. Throughout the

59

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-90

-80

-70

-60

-50

-40

-30

-20

-10

M
ag

ni
tu

de
 (

dB
)

Area One Frame 1, CA-CFAR

Figure 5.7: CA-CFAR applied to the first area of interest. N = 32, G = 28

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-120

-110

-100

-90

-80

-70

-60

-50

M
ag

ni
tu

de
 (

dB
)

Area Two Frame 1, CA-CFAR

Figure 5.8: CA-CFAR applied to the second area of interest of mostly noise. N =
32, G = 28

frame the threshold stays above the spurious noise, even managing to avoid some

pretty high peaks emerging from the noise.

So far CA-CFAR has shown to be effective at detecting signals with narrow

bandwidths. Figure 5.9 gives an insight into the performance of detection against

wider band signals that were present in area three. Here it becomes clear that the

guard cells fail to be sufficient to detect either of the signals in the third area. When

the signal exists across many bins it influences the guard cells in a way that raises

60

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-120

-100

-80

-60

-40

-20

M
ag

ni
tu

de
 (

dB
)

Area Three Frame 1, CA-CFAR

Figure 5.9: CA-CFAR applied to the first area of interest. N = 32, G = 28

the threshold to the point where the signal can no longer be detected. Unfortunately,

this is also the case for the simulated downlink signal also as shown in Figure 5.10.

To have a better chance of detecting the signals that occupy a large number of

bins, it would be necessary to increase the size of the guard cells on each side of

the cell under test. This would reduce the number of cells that could be tested using

-30 -20 -10 0 10 20 30
Frequency (MHz)

-70

-60

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

5G Downlink Signal Frame 1, CA-CFAR

Figure 5.10: CA-CFAR applied to the first frame of the simulated downlink signal.
N = 32, G = 28

61

this method as an increased number of guard cells would leave a wider area on each

end of the frame that would not have a sufficient number of flanking cells to create

an estimate. Increasing the number of untestable cells is unacceptable for this work

as it seeks to maximize the amount of usable bandwidth for operation.

5.3 OS-CFAR Performance

OS-CFAR provides more parameter flexibility, as it does not require averaging

and therefore does not require any limit on reference band length. Similarly, order

statistic CFAR does not have guard bands, allowing the reference window to be

longer than those on CA-CFAR. To benchmark the detection performance of the

OS-CFAR detector the reference window was set to 27 on each side with the 37th

bin chosen for the estimate after sorting. The order statistic value, k, of 37 was

chosen as it lies just within the top one-third of the statistics [14].

Figure 5.11 shows OS-CFAR being applied across the first frame of area one of

the real-world data. This provides a similar performance to the CA-CFAR method

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-90

-80

-70

-60

-50

-40

-30

-20

-10

M
ag

ni
tu

de
 (

dB
)

Area One Frame 1, OS-CFAR

Figure 5.11: OS-CFAR applied to the first area of interest with parameters N = 54,
K = 37

62

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-120

-100

-80

-60

-40

-20

M
ag

ni
tu

de
 (

dB
)

Area Three Frame 1, OS-CFAR

Figure 5.12: OS-CFAR applied to the interest where the wideband signals are
missed. N = 54, K = 37

with a similar resolution of detection around signal B but again fails to detect the

trailing half of signal C. Similar performance to CA-CFAR is also observed in the

second and third area with the OS-CFAR missing all of the wideband signals in area

three as shown in Figure 5.12. Again it is shown that the reference window required

to detect these types of signals is too long to be practical for this application. It is

this limitation that motivates the creation of a new type of detector.

5.4 Hardware Optimized Cell Averaging Estimation (HO-CAE)

Hardware Optimized Cell Averaging Estimation (HO-CAE) uses CA-CFAR as

the starting point for creating estimates of the noise in the environment. Specifically,

windows of reference data are used to multiple estimates of the noise variance.

However, drawing inspiration from OS-CFAR, the threshold will be drawn from a

particular ranked estimate. Unlike CA-CFAR, HO-CAE seeks a threshold that can

be applied to the entire frame of data. This will allow the system to run a threshold

check on every cell of the frame without having to ignore the bins at the end of each

63

cell.

To accomplish this a series of estimates are generated by taking an average

across the first N samples of the frame to create the first estimate σ̂2
W (1). The av-

eraging window is then slid down the frame by N/2 samples to create the second

estimate. This continues down the frame as shown in Figure 5.13. Of course, this

means that the value of N should be selected such that the length of the frame is

divisible by N/2.

After the window has made it across the frame the set of estimates can be or-

dered to generate a set of estimates in the form

σ̂2
W =

[
σ̂2
W (1), σ̂

2
W (2), σ̂

2
W (3), ..., σ̂

2
W (n)

]
(5.1)

It is then important to determine which of these estimates should be used. As an

initial approach, we use a Monte Carlo simulation of the noise-only case to guide

an analysis of the performance to determine which ˆσ2
W (i) should be used to provide

a false alarm rate closest to the desired PFA of 10−6. To narrow the initial search

space, two values will be tested: (i) ∈ 1, 5.

Before this Monte Carlo search could be performed, a method for calculating the

value of the multiplier α had to be identified. Because of this methods similarity to

the CA-CFAR estimation type the CA-CFAR multiplier is proposed. The equation

!𝜎!"#

!𝜎!##

!𝜎!$#

Figure 5.13: The sliding averaging window used to generate the estimates of σ̂2
W .

Here a frame length of 20 is shown with a window length of 10.

64

governing α is shown again as [14]

α = N
(
P
−1/N
FA − 1

)
(5.2)

5.4.1 Simulation and Performance

With the procedure and equations for calculating a threshold determined a simu-

lation can be constructed to determine the achieved PFA and the performance when

the resulting threshold is used to set the FSS algorithm. To obtain the false alarm

probability for the two selection options a series of noise-only frames were gen-

erated for which the HO-CAE detector was then applied. The noise was gener-

ated within the framework of the 5G waveform generator yielding blocks with 600

frames of 1024 samples. Table 5.1 shows the PFA from selecting the first estimate

and fifth estimate for 100, 200 and 1000 blocks with an input PFA of 10−6 used to

calculate α and window size of 64 samples.

Blocks Samples Select 1st PFA Select 5thPFA

100 61,440,000 9.0495E-06 1.8717E-06
200 122,880,000 1.0116E-05 2.712E-06
1000 614,400,000 9.8291E-06 2.2021E-06

Table 5.1: The resulting PFA from noise only simulation with PFA of 106 and
window size of 64.

From the results, we can see that the fifth estimate from the ordered list pro-

vides a PFA closer to that of the input across all sample sizes. Further, the resultant

PFA appears to be relatively stable, with smallest estimate of σ2
W providing approx-

imately an order of magnitude greater rate of false alarms than is desired, and the

5th estimate providing approximately a factor of 2 increase in desired false alarm

rate. To get a full understanding of the performance, the approach is simulated fur-

65

ther. This was accomplished using the 5G downlink signal generation techniques

discussed previously. The method allows for the quick generation of ’blocks’ that

each contains 600 frames of data where each frame is 1024 samples in the fre-

quency domain. These blocks have the same shape and location in the frequency

domain making it easy to derive detection statistics, but are random in their content

and roll-off outside of the signal’s defined location.

Once a simulated signal is created it has no noise and only contains the 5G

downlink signal in the time domain. Noise is applied across the entire signal using

the measured signal power to achieve the desired SNR. From here the 614,400 sam-

ples of the block are divided into frames of 1024 samples with no overlap. The FFT

is taken of each frame to generate a spectrogram. HO-CAE is then applied to each

frame, generating a threshold. These thresholds are used to make a logical matrix

from each frame and then combined to create a logical block for the whole cube.

Once this has been done FSS can be applied to the logical matrix to determine what

frequency band would be selected based on the decision from that frame. A logical

mask was generated that defines where the simulated signal is located in the spec-

trogram. Since the signal is located in the same place in the spectrogram for each

block generated the mask is valid for all simulated signals. This logical mask helps

to derive the detection statistics and the probability of false alarm. Similarly, by

using the logical mask we can derive statistics about how the detection affected the

results of FSS. Figure 5.14 shows this process in 4 major steps: signal generation,

noise addition, logical creation, and FSS.

An analysis of the data can provide insight into the detection probabilities and

how they affect FSS when powered by HO-CAE-generated thresholds. Consider

Table 5.2 which shows the data results for both selection options when tested with

100 blocks for a total of 60,000 frames of data.

66

-30 -20 -10 0 10 20 30
Baseband Frequency (MHz)

0

100

200

300

400

500

600

Fr
am

es

Spectrogram w/ 5G Signal without Noise

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

-30 -20 -10 0 10 20 30
Baseband Frequency (MHz)

0

100

200

300

400

500

600

Fr
am

es

Spectrogram w/ 5G Signal and Noise, SNR = 5dB

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

-30 -20 -10 0 10 20 30
Baseband Frequency (MHz)

0

100

200

300

400

500

600

Fr
am

es

Mask: Cells w/ Negative Detection Decision

-30 -20 -10 0 10 20 30
Baseband Frequency (MHz)

0

100

200

300

400

500

600

Fr
am

es

Mask: FSS Transmit Decision
(a) (b)

(c) (d)

Figure 5.14: Steps to generating and simulating a 5G Downlink waveform with
FSS. (a) The no noise signal after being partitioned into a block. (b) Noise added

to the signal. (c) A logical cube on top of a 5G mask. (d) FSS decision based
based on logical grid.

SNR = 20 SNR = 10 SNR = 5
Sel. 1st Sel. 5th Sel. 1st Sel. 5th Sel. 1st Sel. 5th

PD 99.4% 99.3% 95.0% 94.4% 88.4% 86.9%
PFA 0.021 0.019 3.93E-03 3.3E-03 1.35E-03 1.06E-03
FSS Exact
Match

32.2% 33.4% 58.1% 61.5% 69.8% 71.1%

Start Within
2 Bins

40.0% 42.7% 84.7% 88.5% 94.3% 95.7%

Size Within
5 Bins

49.8% 54.6% 93.6% 95.8% 97.1% 97.9%

Size Within
10 Bins

62.7% 69.3% 96.6% 97.7% 97.6% 98.3%

Table 5.2: The results of probability simulations for 5, 10 and 20 dB SNR signals.
Probability data is given as wells as data compared to FSS with perfect knowledge.

67

Reviewing these results reveals a very curious trend. With the two estimate

selection options, there is a very narrow difference in the probability of false alarm

and probability of detection. Selecting the first estimate consistently yields a higher

probability of detection, but of course at the price of a slightly higher probability of

false alarm. As might be expected, the selection of the 5th estimate yields a smaller

detection probability but also a smaller false alarm rate.

Of most significant note for this work is the performance of FSS using HO-

CAE thresholds against the FSS with perfect knowledge. To properly accomplish

the comparison several metrics are introduced. First, FSS exact match helps to

describe what percentage of frames HO-CAE thresholds yield the same FSS match

as the perfect knowledge indicator. Similarly, the second metric compares the start

bin. Of particular interest is what percentage of frames does HO-CAE thresholds

provide a start location within 2 bins of the ideal. Finally, the size of the operational

band is compared as the goal of this system is to utilize as much available spectrum

as possible. Of note, if the FSS algorithm is operating at 100 MHz of bandwidth

generating frames of length 1024, a size differential of 10 bins is equivalent to 976

kHz of lost or interrupted bandwidth. Across all of the above mentioned metrics,

the 5th edges out the lowest estimate. A fairly high percentage of exact matches

were achieved for both selections.

Looking at the exact FSS matches across the several different SNRs, as shown

in Figure 5.15, has unexpected behavior. Where the matches improve from zero to

eight dB SNR it then starts to decline before coming to its lowest point at 20 dB

SNR. A review of the logical plots resulting from the threshold will help to identify

the FSS match trend. Figures 5.16 and 5.17 show the logical mask resulting from

SNR 20 and SNR 0. From there it is clear that the sidelobes resulting from the

20dB SNR signal are visible above the noise floor and are pushing the detected band

68

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

30

35

40

45

50

55

60

65

70

75

P
er

ce
nt

 o
f F

S
S

 E
xa

ct
 M

at
ch

s

Precentage of Exact FSS Matches over SNR (Select 5)

Figure 5.15: The percentage of exact FSS matches between the perfect case and
HO-CAE over the simulated SNR values.

wider around the signal. Similarly, a look at the 0dB SNR plot gives insight into

why a slightly lower probability of detection is not required to have decent exact

match performance. Although there are missed detections inside of the signal, FSS

is still able to mostly avoid them as bins near their edges are detected to define their

boundary. FSS, as studied here, seeks the largest bin and is therefore tolerant to

some missed detection in the gaussian structure of the signal so long as there is a

detection near the boundaries of the signal.

5.5 Real-World Performance

This chapter will conclude as it opened, with a look at performance on the set

of real-world data. Each of the previously examined areas of interest from the real

world collect from Section 5.1.2 will be reexamined with HO-CAE detection.

69

-30 -20 -10 0 10 20 30
Baseband Frequency (MHz)

0

100

200

300

400

500

600

F
ra

m
es

Mask: Cells w/ Negative Detection Decision

Figure 5.16: The result of logical mask where non-detected bins are marked for a
20dB SNR 5G downlink signal.

Figure 5.18 shows the first frame of area one. Here we see very similar per-

formance to that seen with the order statistic and cell averaging CFAR techniques.

One key difference is shown in C. Where both of the previous methods caught the

leading edge and missed the trailing edge, the HO-CAE method just narrowly cap-

tures the trailing edge. Although it misses some of the bins within that third signal,

recall catching the edges is the most important goal for FSS as the interior points

between detections are too narrow in frequency to be considered a viable band.

Next, the mostly noise case is examined in 5.19. Again we see almost identical

performance to that of the previous CFAR techniques. Notably, this threshold is

generated closer to the noise with some of the noise peaks coming close to the

threshold. Importantly none of the peaks breach the threshold here.

Finally, the very wide signals of the third area of interest are presented in 5.20.

It is in this case where HO-CAE stands out among the others. The threshold can

70

-30 -20 -10 0 10 20 30
Baseband Frequency (MHz)

0

100

200

300

400

500

600

F
ra

m
es

Mask: Cells w/ Negative Detection Decision

Figure 5.17: The result of logical mask where non-detected bins are marked for a 0
dB SNR 5G downlink signal.

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-90

-80

-70

-60

-50

-40

-30

-20

-10

M
ag

ni
tu

de
 (d

B)

Area One Frame 1, HOCA-CFARHO-CAE

Figure 5.18: The first frame of the first area of interest from the real-world data
with HO-CAE applied.

71

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-120

-110

-100

-90

-80

-70

-60

-50

M
ag

ni
tu

de
 (d

B)

Area Two Frame 1, HOCA-CFARHO-CAE

Figure 5.19: The first frame of the second area of interest from the real-world data
with HO-CAE applied.

-50 -40 -30 -20 -10 0 10 20 30 40 50
Frequency (MHz)

-120

-100

-80

-60

-40

-20

M
ag

ni
tu

de
 (d

B)

Area Three Frame 1, HOCA-CFARHO-CAE

Figure 5.20: The third frame of the second area of interest from the real-world data
with HO-CAE applied.

72

capture all of wideband signals A and even manages to capture a few bins in the

middle of low power signal B. Unfortunately, no threshold can be applied to the

entire frame that would detect both of these signals without the frame appearing

almost completely closed.

With all of these the previously mentioned performance data considered, from

simulation to real-world, it is determined that this method yields worthwhile per-

formance. The hardware considerations built-in to the creation of this algorithm

similarly should yield latency and resource savings as discussed in the next chap-

ter.

73

Chapter 6

HO-CAE Hardware Architecture

This chapter will discuss the proposed hardware implementation of the hard-

ware optimized, cell averaging estimator discussed in the previous chapter. First, a

high-level theory of operation will be provided as a basis for the hardware elements.

Next, the hardware elements necessary to the operation of this system will be dis-

cussed with a focus on three major pieces: frame buffer, adder blocks, and estimate

selectors. The chapter concludes by considering all of these structures together and

presenting the projected performance using the same metrics defined in Chapter 4.

6.1 Theory of Operation

Unlike the previously presented FSS algorithm, this algorithm requires the data

samples within a frame to sit idle in cache and wait for the threshold to be calcu-

lated. Buffering of the samples could happen in several places, mostly dependent

on where FSS is going to be applied. Three options were considered when first

designing the outline for this block.

The first option considered was to pass them through the HO-CAE block and

buffer them in a separate FSS block until the HO-CAE block passed the threshold

on a separate data channel. This was dismissed fairly quickly. It simply did not

74

make sense to redesign the existing standalone FSS block to buffer the data samples

while waiting for the threshold to be passed.

Next, the buffer was considered in the HO-CAE block itself. Samples would be

considered for the algorithm as they entered the block and stored into a FIFO buffer.

A threshold decision would be reached shortly after the receipt of the last sample

in the packet. At this point, the threshold value would be attached to the front of an

output packet as metadata and transmitted to the FSS block.

This approach was mostly adopted, except the threshold transmit. Even attach-

ing the threshold to the packet would require an (albeit small) rework of the existing

FSS block. Since some work would be required anyway, it was decided to integrate

the FSS block straight into the detection.

By integrating the FSS right into the threshold estimate block the hardware re-

sources required to operate a separate block are mitigated. Effectively, the number

of endpoints and de-framer structures would be the same for a HO-CAE-FSS im-

plementation. If the HO-CAE and FSS blocks were separate, depending on the port

configuration it would require at least an additional two end streaming endpoints

and two additional de-framers.

Caching is required for this block so the appropriate cache size must be deter-

mined. The packet length, P, will be the key metric here with a cache size capable of

storing 2K data words is desired. An extra frame worth of buffer space provides at

least an additional K clock cycles to begin re-transmitting a received packet before

the stream would be halted, which is more than sufficient.

Samples will be read into these buffers and supplied to accumulators as they

come into the block from the data stream. Once an accumulator has reached the

end of its window, the estimated candidate will be shifted and then supplied to a

smaller cache. The estimate buffer stores the lowest five estimates in sorted order.

75

Once the end of the frame is reached, the largest estimate will be fed through a

multiplier which will apply the α value.

From here, the threshold is ready to be applied to the data frame and the same

FSS state machine discussed in Chapter 4 is used to process the frames. As this

data is going out of the block with FSS being applied other data is being read into

the other buffer and the threshold of the next frame is being calculated. When the

bucket has been calculated it will be sent out of its special data port just like with

the standard FSS algorithm.

6.2 Major Structures

The theory of operation discussed three main parts of the implementation and

each are discussed in this section. The operation of the sample buffer, accumulators,

and estimate sorting buffer is of critical importance to the operation of the system.

6.2.1 The Buffer

As previously mentioned a buffer of two times the size of the packet length (i.e.,

2 ·K) is necessary to ensure constant operation. Conceptually, the buffer is main-

tained as two distinct FIFOs that allow the packets to be kept separate. Counters

are employed in each to track where the packet boundary as the first packet is read

out of the buffer and the third packet is read in. As long as the number of clock

cycles required to start sending data does not exceed K, then there will not be any

overruns of the buffers.

In the implementation, the buffer is just a single FIFO, and three counters are

used to track the whole packet in the buffer, the packet being read out, and the

packet being read in. These counters help to keep track of the current state and also

76

are used to help run the next structure, the accumulators.

6.2.2 The Accumulators

For this work, the samples coming into the accumulators will be 16-bit magni-

tude values but the block design should be flexible to accept up to 32-bit magnitude

values. Considering the larger case, the window size for this implementation is 64

bins, which is a 7-bit number, with 32-bit magnitude values, a 39-bit value is the

maximum value the accumulator would yield with saturated ADCs.

The 7 series FPGA in the X310 radio contains 1,540 Xilinx DSP48E1 slices that

handle the math operations and is shown in Figure 6.1. Slices of this architecture

are capable of performing up 48-bit add/accumulate operations in a single clock

latency [23]. Performance like this will enable the samples to be fed sequentially

into the accumulator with each clock cycle.

To reduce the utilization of the FPGA resources, this proposed implementation

only uses two accumulator blocks. A reduced number of DSP slices is achieved

14 www.xilinx.com 7 Series DSP48E1 User Guide
UG479 (v1.10) March 27, 2018

Chapter 2: DSP48E1 Description and Specifics

DSP48E1 Slice Features
This section describes the 7 series FPGA DSP48E1 slice features.

The DSP slice consists of a multiplier followed by an accumulator. At least three pipeline
registers are required for both multiply and multiply-accumulate operations to run at full
speed. The multiply operation in the first stage generates two partial products that need to
be added together in the second stage.

When only one or two registers exist in the multiplier design, the M register should always
be used to save power and improve performance.

Add/Sub and Logic Unit operations require at least two pipeline registers (input, output)
to run at full speed.

The cascade capabilities of the DSP slice are extremely efficient at implementing high-
speed pipelined filters built on the adder cascades instead of adder trees.

Multiplexers are controlled with dynamic control signals, such as OPMODE, ALUMODE,
and CARRYINSEL, enabling a great deal of flexibility. Designs using registers and
dynamic opmodes are better equipped to take advantage of the DSP slice capabilities than
combinatorial multiplies.

In general, the DSP slice supports both sequential and cascaded operations due to the
dynamic OPMODE and cascade capabilities. Fast Fourier Transforms (FFTs), floating
point, computation (multiply, add/sub, divide), counters, and large bus multiplexers are
some applications of the DSP slice.

Additional capabilities of the DSP slice include synchronous resets and clock enables, dual
A input pipeline registers, pattern detection, Logic Unit functionality, single

X-Ref Target - Figure 2-1

Figure 2-1: 7 Series FPGA DSP48E1 Slice
UG369_c1_01_052109

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

X

17-Bit Shift

17-Bit Shift

0

Y

Z

1
0

0

48

48

4

48

BCIN* ACIN*

OPMODE

PCIN*

MULTSIGNIN*

PCOUT*

CARRYCASCOUT*

MULTSIGNOUT*

CREG/C Bypass/Mask

CARRYCASCIN*

CARRYIN

CARRYINSEL

A:B

ALUMODE

B
B

A

C

M

P

P
P

C

MULT
25 X 18

A

18

30

3

PATTERNDETECT

PATTERNBDETECT

CARRYOUT

4

7

48

48

30

18
P

P

5

D 25

25

INMODE

BCOUT* ACOUT*

18

30

4 1

3018

Dual B Register

Dual A, D,
and Pre-adder

Figure 6.1: The DSP48E1 Slice inside 7 Series Xilinx FPGAs

77

by utilizing the packet counters employed in the buffers. For each packet, the first

accumulator consumes all of the samples except the last N
2

samples of a packet,

spinning off an estimate and resetting the accumulator for N samples. The second

accumulator operates similarly but instead, it consumes all of the samples in the

packet except for the first N
2

.

Both of these structures are fed into a single non-circular shifter, putting zeros

into the leading bits. The data cadence coming out of the accumulators makes this

possible. Given that the window is shifted by more than one sample per estimate,

then there will be sufficient time between the generation of each estimate to shift

the amount and send it to the sorting estimate buffer.

6.2.3 Sorting Estimate Buffer

The sorting estimate buffer is designed to keep just the lowest, in this case, five

values that come from the shifters and store them in sorted order which can be

accomplished in a single clock cycle. Effectively, this structure is a chain of 39-bit

multifunction registers with four different operations. The number of registers in

the chain is dependent on which selection the user intends to make, for this work the

5th value is used but ten registers should be instantiated to provide some flexibility.

For discussion of this structure, the left-most register will be register number one

and considered the lowest value with the registers numbered up and considered

larger moving right across the bank.

The first operation state simply holds the register’s current value. Second, the

register is capable of storing an estimate from the shifter. The third operation ac-

cepts the value from the register to left, this makes room for a new value to be

inserted using the second operation. Finally, this register can reset itself to a state

78

where all values are the maximum 39-bit number. The requirements to trigger each

of these operations are critical to a successful operation.

The first operation to be considered is operation two, storing the input received

from the computation. It is clear that this set of registers should only have one

of each value in it and that it has a specific location in the set that it belongs to.

To determine where the value goes in the block of the register, two comparators

are used. The condition that grants a value assigned to a register is if the value is

smaller than the register being considered and larger than the register to the left. All

of the registers are tested simultaneously with the value and only one is selected.

When one register chooses to accept the value then all registers to the right are

commanded to execute the third operation. When a value is inserted into a register

in the chain, the registers to the right of the insertion point accept the value from the

left. This means that if register one is assigned the value then register two takes on

register one’s value affecting all registers up the chain. By writing the new value to

the assigned register and writing each shifted register on the same rising edge of the

clock, no data is lost except for the data that was previously in the largest register.

Table ?? summarizes the operation of the sorted estimate buffer.

When the end of the packet is detected and the required value is extracted from

the registers, the reset condition is triggered. Because this set of registers is looking

for small values they need to be reset to large values. It is for this reason that a reset

Function Description
Reset Reset all bits high.
Hold Maintain the current value
Shift Accept the value from the right. Essentially shifting the values.
Accept Accept the value from the accumulator structure.

Table 6.1: A summary of operation carried out by each register in the sorted
estimate buffer.

79

triggers all bits in each register high. Leading into the final operation, when none

of these conditions are met the registers hold their value.

6.3 Performance

Performance metrics described in the previous chapter should now be discussed

for the HO-CAE-FSS block. The data latency, the amount of time measured from

when the last sample is received to when it is transmitted is of much more interest

for this block. Re-transmission of the blocks adds K clock cycles to the data latency

of the block. In the case of this design, 1024 clock cycles.

The time it takes for the last estimate to propagate through the iterator and hit the

sorted estimate buffer before the multiplication of alpha should also be considered.

One clock cycle after the last sample is read in, the last estimate is shifted. Another

clock cycle and the estimate is selected.

Two clock cycles are allotted for the alpha multiply. If the value of the estimate

is larger than 28-bits then the multiply will take two cycles [23]. Estimates taking

on the maximum should not ever exist. If an estimate this large did come through

the system, that indicates that the ADC in the RF front end is saturated to all ones

and no bin value will exceed the threshold value.

The total data latency is 102 clock cycles. When considering the operation

clock rate of 200 MHz the total data latency time is 5.14 microseconds. The second

metric, product latency, can be easily calculated using the product latency of FSS

and data latency. Combining the two latencies bring the total product latency to

1031 clock cycles or 5.155 microseconds.

Any implementation that requires an analysis of the last sample of the packet

before FSS can be applied, will require buffering somewhere and will have an ex-

80

tended product and data latency. The critical path to be minimized is the threshold

calculation time that requires the last sample of the packet and the time required

to compute and transmit the largest continuous space in the frame. The hardware

optimized, cell averaging estimator was designed with this critical path in mind and

therefore yields an efficient method of calculating the threshold and applying FSS.

81

Chapter 7

Conclusion and Future Work

This work set out to analyze fast spectrum sensing for detecting users of the

electromagnetic spectrum. To make effective use of such sensing techniques, the

implementation of the algorithms would need to operate in real-time, ideally with-

out specialized hardware. Successful strategies and implementations were pre-

sented in this work that met this real-time criterion.

A hardware implementation for using a static threshold was presented. Nanosec-

ond latency between the receipt of the last sample and the generation of the algo-

rithms results was achieved. This is an impressive performance that should allow

any system to react rapidly to avoid emitters entering the field above the threshold in

the current environment. But, because of the changing nature of the environment, a

dynamic method of setting the threshold that would minimize impact to the latency

was required.

To meet the challenge of the dynamic environment problem a new hardware

optimized estimator based on CFAR was developed to estimate the threshold that

should be applied to FSS. HO-CAE was shown to be an effective threshold esti-

mator for the FSS algorithm that could be implemented on FPGA to provide high-

speed results. Performance metrics showed a HO-CAE-FSS block capable of pro-

viding an FSS result 5.145 microseconds after receiving the last data sample of the

82

spectral frame.

There are many ways to expand on this work in the future. First, a formal

analysis of the impact of the window size on the performance of HO-CAE should

be examined. Additionally, more values for the ordered selection of the estimator

should be investigated beyond the smallest and 5th estimates. The potential combi-

nation of these two factors should be fully examined to determine if any additional

performance can be achieved.

To expand the system, the development of a hardware signal generation block

for FPGA would enable loopback and transmission tests that are capable of further

demonstrating the practical application of these implementations. Such a block

would need to use direct digital synthesis to deterministically generate baseband

signals with linear frequency modulation (LFM) across any of the selected trans-

mission bands regardless of the size or baseband location of the interval.

Finally, to be able to expand to the transmission of any number of waveforms,

a further processing step is necessary. Signal censoring would become critical to

remove any self transmitted signals from the environment before running the FSS

algorithms on the data. This would be critical to ensuring that the radio’s signals

aren’t masking new emitters, which would be the result of just ignoring its trans-

mission bands. With the transmission and censoring features built in the system

would then be ready for independent operation ready for the development of fur-

ther hardware-generated waveforms.

83

References

[1] RF Network-On-Chip (RFNoCTM) Specification, 1st ed., Ettus Research, Oct.
2020.

[2] “Cisco annual internet report (2018-2023) white paper,” Cisco, Tech. Rep.,
2020.

[3] A. Petrin and P. G. Staffes, “Analysis and comparison of spectrum measure-
ments performed in urban and rural areas to determine the total amount of
spectrum usage,” International Symposium on Advanced Radio Technologies
(ISART), 2005.

[4] J. Jeon, H. Niu, Q. Li, A. Papathanassiou, and G. Wu, “Lte with listen-before-
talk in unlicensed spectrum,” IEEE International Conference on Communica-
tion Workshop (ICCW), 2015.

[5] B. H. Kirk, R. M. Narayanan, K. A. Gallagher, A. F. Martone, and K. D.
Sherbondy, “Avoidance of time-varying radio frequency interference with
software-defined cognitive radar,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 33, no. 3, pp. 1090–1107, Nov. 2018.

[6] A. F. Martone, K. I. Ranney, K. Sherbondy, K. A. Gallagher, and S. D. Blunt,
“Spectrum allocation for noncooperative radar coexistence,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 54, no. 1, pp. 90–105, feb
2018.

[7] S. Shankar, C. Cordeiro, and K. Challapali, “Spectrum agile radios: Utiliza-
tion and sensing architectures,” IEEE International Symposium on Dynamic
Spectrum Access Networks (DySPAN), 2005.

[8] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic
Processes, S. W. Director, Ed. McGraw Hill Education, 2002.

[9] W. A. Gardner, “An introduction to cyclostartionary signals,” in Cyclostation-
arity in Communications and Signal Processing, W. A. Gardner, Ed. IEEE
Press, 1994, ch. Chapter 1.

84

[10] C. Spooner, “The cyclic autocorrelation function,” 2015. [Online]. Available:
https://cyclostationary.blog/2015/09/28/the-cyclic-autocorrelation/

[11] K. Kim, I. A. Akbar, K. K. Bae, J. sun Um, C. M. Spooner, and J. H. Reed,
“Cyclostationary approaches to signal detection and classification in cognitive
radio,” IEEE International Symposium on New Frontiers in Dynamic Spec-
trum Access Networks (DySPAN), 2007.

[12] R. S. Roberts, W. A. Brown, and H. H. Loomis, “Computationally efficient
algorithms for cyclic spectral analysis,” IEEE Signal Processing Magazine,
1992.

[13] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proceed-
ings of the IEEE, vol. 55, no. 4, p. 9, April 1967.

[14] M. A. Richards, Fundamentals of Radar Signal Processing. McGraw-Hill
Education, 2014.

[15] T. Ulversøy, “Software defined radio: Challenges and opportunities,” IEEE
Communication Surveys & Tutorials, 2010.

[16] UBX Duaghterboard Datasheet, Ettus Research.

[17] USRPTM X300 ans X310 X Series Datasheet, Ettus Research.

[18] “Uhd — ettus knowledge base,” Ettus Knowledge Base, 2020, [Online;
accessed 3-July-2021]. [Online]. Available: https://kb.ettus.com/index.php?
title=UHD&oldid=4720

[19] AXI Reference Guide, Xilinx, 2017.

[20] “Getting started with rfnoc development,” Ettus Research, Tech. Rep., Oct.
2020.

[21] “Yaml ain’t markup language (yaml) version 1.2,” [Accessed 10-July-2021].
[Online]. Available: https://yaml.org/spec/1.2/spec.html

[22] 5G NR Downlink Vector Waveform Generation, R2021a ed., Math-
Works. [Online]. Available: https://www.mathworks.com/help/5g/ug/
downlink-carrier-waveform-generation.html

[23] 7 Series DSP48E1 Slice User Guide, Xilinx.

85

https://cyclostationary.blog/2015/09/28/the-cyclic-autocorrelation/
https://kb.ettus.com/index.php?title=UHD&oldid=4720
https://kb.ettus.com/index.php?title=UHD&oldid=4720
https://yaml.org/spec/1.2/spec.html
https://www.mathworks.com/help/5g/ug/downlink-carrier-waveform-generation.html
https://www.mathworks.com/help/5g/ug/downlink-carrier-waveform-generation.html

	Acknowledgment
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Contributions
	Thesis Outline

	Background
	Cognitive Sensors and Greedy Fast Spectrum Sensing
	Signal Detection
	Cyclostationary Feature Detection
	Energy Detection
	Classic Energy Detection
	Constant False Alarm Rate Detectors

	Implementation Platform
	Software-Defined Radio
	RF Network-on-Chip
	Block Interface
	Design and Control of a Block

	Simple FSS Architecture
	Changes to the Algorithm
	Theory of Operation
	Implementation
	Data and Registers
	FSS State Machine
	Send State Machine

	Timing and Performance
	Utilization
	Usage and Verification

	Hardware Optimized Cell Averaging Estimator
	Data Sets
	Simulated Data
	Real World Data

	CA-CFAR Performance
	OS-CFAR Performance
	Hardware Optimized Cell Averaging Estimation (HO-CAE)
	Simulation and Performance

	Real-World Performance

	HO-CAE Hardware Architecture
	Theory of Operation
	Major Structures
	The Buffer
	The Accumulators
	Sorting Estimate Buffer

	Performance

	Conclusion and Future Work
	References

