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Abstract

In this paper, the multi-agent coordination problem
is studied. This problem is addressed for a class of
robots for which contrcl Lyapunov functions can be
found. The main result is a suite of theorems about
formation maintenance, task completion time, and for-
mation velocity. It is also shown how to moderate the
requirement that, for each individua!l rebot, there exists
a control Lyapunov function. An example is provided
that illustrates the soundness of the method.

1 Introduction

In this paper we investigate the problem of how to co-
ordinate a collection of robots in such a way that they
maintain a given formation rclative to each other. The
main assumption about the dynamics of the individual
robots that woe initially make in this paper is that they
can be globally, asymptotically stabilized. Based on
this assumption, an abstract and theoretically sound
coordination strategy can be developed based on the
theory of controlled Lyapunov functions.

Multi-agent formation control problems have been ex-
tensively studied in the literature and cur main con-
tribution is that we use control Lyapunov functions to
define the formation. By doing this we convert the for-
mation control problem, typically a constrained motion
control problem of multiple systems, into a stabiliza-
tion problem for one single system. By this approach
we neither cast the problem without real dynamics ,
nor with an explicit nonlincar robot model {7}. Instead
we believe that by requiring the existence of control
Lyapunov functions, we can capture the essential some
aspects of the platform dynamics, while not having to
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spend our main effort on nonlinear robot control. We
can thus focus on the coordination problem at a higher
level.

In addition to the control Lyapunov function approach
we use the idea of virtual vehicles introduced in [3)].
Concepts of similar flavor are the “action reference”
suggested by Kang et. al. [2] and the “dynamic coordi-
nation variable” proposed by Beard et. al.[4]. Further-
more, in the terminology of Beards in [5], our approach
would fall into the category of “virtual structures”.

The motivation for studying this type of multi-agent
coordination problem mainly stems from the observa-
tion that there is robustness and strength in numbers.
If more than one agent is asked to carry out a given
task, e.g. search a disaster area, the likelihood of sue-
cess increases as more agents are included in the mis-
sion. In other situations, cost and energy efficiency
indicates that using many small robots might be more
beneficial than using one big robot.

The outline of this paper is as follows: In Section 2
we define what we mean by a formation, and show how
this can be done implicitly through the null-set of a for-
mation function. In Section 3 we then prove a suite of
theorems about bounded formation crrors, task com-
pletion times, and group velocities. This is done for
the casc where each individual robot can be globally,
asymptotically stabilized. In the following section, we
relax this requirement, but show how the theory holds
for this case as well. We conclude, in Section 5, with
an example, illustrating the usefulness of our proposed
method.

2 Formation Functions

Qur primary object of study is a collection of m robots,
whose dynamics can be described by the following set



of controlled differential equations
:'i"i :fi(zi)+gi(zi)uix 1= 17-"1m1 (1)
where f;,¢; € C®, z; € R®, and u; € R,

Now, a desired formation in R™ is simply a sct
{Z10,---Zmo} € R™™, and we define this set implicitly
through the nuil-set of a so called formation function.

Definition 2.1 (Formation Function) Given a for-
mation {r10(s),...,2mo(s)} € R™ parametrized by
a scalar s. We say that a positive definite, contin-
uwously differenticble map F : R x R*™ — R is a
formation funetion Lo the set {z10(s),...,Zmo(s)} if
{s,21,...,2m} € F~Y(0) gives o unique {z1,...,Zn}
for each choice of s € R.

In this paper, we connect the formation function with
the concept of control Lyapunov functions. In this way
we can simplify the controller design for each agent and
focus on the high-level coordination issues. We assume:

Assumption 2.1 Each of the m subsystems can be
globally, asymptotically stablized.

Since there is no ¢ priori reason why the stabilizing
controller has to be smooth, we can take advantage of
the following result, found for example in [1, 8].

Theorem 2.1 (Arstein-Sontag Theorem) Given
f.g € C and an a9 € R™. Then there exists a
feedback law u = afx) (smooth everywhere except at zy
where it is continvous), which globally, asymptotically
stabilizes £ = f(x) + g(x)u to xo if and only if there
exists a control Lyapunov function, i.e. a smooth and
positive definite function V(z,x9) (zere only at xp)
such that the following holds:

ov

a—Ig(a:) 0= ‘Z—Zf(:c) <0, Yz #z0. (2)

We refer to [8] for the proof. Theorem 2.1 morcover
ensures us that we can choose a control such that

v |
ax <0, Vz # xq.

Assumption 2.2 Given a curve co(s) of equilibrium
points in the state space the control Lyapunov function
of the system for each point can be written os a smooth
function V{z,zo(s)).

Remark 2.1 This is a reasonable assumption since
most velocity controlled, planar, mobile robotic systems
have a translational invariance in position coordinates
and thus the V(x,zo(s)) above just contains a coordi-
nate translation in xg(s).
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With this additional assumption it is possible to for-
mulate the formation function to a given set in terms
of the convex cone spanned by the control Lyapunov
functions from the previous paragraphs.

Lemma 2.1

F(Siz] (t)a cee ’zm(t)) = Zﬂ,‘Vi(Ii(t),I'io(S)) (3)

i=1

85 a formalion function to the formation
{z10(5),. .. Zmo(s)} as long as B; > 0,i=1,...,m.

Proof: The proof follows directly from the fact that the
individual V;:s only vanishes at =;{) = z,0(s)- m

Remark 2.2 The choice of coefficients in Egquation
{(3) reflects how large deviations from zero are ellowed
Jor each V;. By specifying an upper bound, Fy, on
F(s,z), each particular choice of 8; implies an upper
bond an each Vi, propertional to Fy/j;.

3 Coordinated Control

By establishing these somewhat straightforward ob-
scrvations about the formation functions derived from
the individual control Lyapunov functions, we can now
shift our attention to actually controlling the evolution
of the formation. The one paramcter that we can con-
trol is the s-parameter, i.c. the parameterization of
the time evolution of the desired positions. We do this
by specifying the trajectory that we want the so called
virtual leader (or leaders), zo{s(t}), to follow. This non-
physical leader is a refercnce point in the state space
with respect to which we can define the rest of the
formation. We denote the trajectory executed by the
virtual leader by zo{s(t)) = p(s(?)). Intuitively one
might want to sct s(tf) = t. But, due to robustness
considerations we incorporate error feedback into the
time cvolution of s and let § be given by

S = mi %o - (%)Ti o(Fu)
. n{6+n%§lu’ §+ 98] (cr(F(s,z))) '
(4)

Here § > 0 is a small positive constant that prevents §

- from becoming singular and Fy; is a user defined upper

bound on the formation function F(s,z). The idea is
to say that the formation is being respected as long as
F(s,z) < F;. Furthermore, %o is the nominal velocity
that we want the formation to move with, and as we will
see later, it holds that ||Zo{s(#))|| & vo when F is small.
Finally, ¢ is a function of class K, i.c. o :[0,k) = R,
is a continuous function that satisfics ¢(0) = 0, o(z) >
0, ¥x > 0, and ¢ is nondecreasing everywhere.



Before we can proceed to actually showing the main
results in this paper, the following assumption about o
in Equation {4) must be made:

Assumption 3.1 Given the class K function o in
Egquation ({). We assume that there exists a control
u(s,z), and ¢ constant L > 0, such that

ar\T .

—{(§) &

_—____> nm < ,
F(s, 7)) >LVseRzeR"™ |0< F(s,z) < Fy

Furthermore, this expression goes to infinity as F ap-
proaches zero.

Remark 3.1 Assumption 2.1 essentially means thai
- (%)T ¥, can be bounded from below by a nondecreas-
ing function o(F(s,z)) when F(s,z) # 0. The hmit
property will furthermore be used when proving Theo-
rem 3.3 asbout the nominal group velocity.

We move on to showing that Assumption 3.1 actually is
satisfied by a group of systems as long as it is satisfied
by cach of the individual subsystems. As a special casec
we also show that Assumption 3.1 is satisfied when the
individual systems are globally asymptotically stabiliz-
able.

Lemma 3.1 If Assumption 3.1 holds for the individ-
ual control Lyapunov functions V; then it holds for the

conver cone
m

F= E BiVi.
i=1

Proof: By the hypothesis it holds that
a_;ﬁ-)T .

— (5 z
—r s T T < )
oVits. 2D >L;¥seR,zeR"™ | F(s,z) < Fy

We thus have that

( )T:.-,

B_F
or

s avi\" .
;,Bi (_Er_) x

> Y BiLioi(Vi(s,z)) {5)
=1

> min(8;L;)mino; (,6 m)

= Lo(F(s,x)),
where

L= mln(,B,L,)
and
. F
o(F(s,x)) = min ai(ﬂ m).
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The sccond inequality in (6) follows since there exists
a j such that V; > £ and thus

Bmazm?
The limit property also follows from this last inequality.
]

F

Bmaa:m

o3(V3(5,2)) > o (

Lemma 3.2 Assumption 3.1 holds for globally, expo-

nentially stabilizable systems with o(z) = 22,

Proof: If the m subsystems are globally, expo-
nentially stabilizable the control Lyapunov function
Vi(zi(t), x:0(8)) satisfics

callzi{t)—zio(s)||* € Vi(z:i(t), zio(s)) < eallmi(f)—zi0 ()}

(g::)Tif(t) < —cisllz(t) - zo(s)II%,

along trajectorics for some choice of positive scalars
cij»t =1,...,m,j = 1,2,3. This directly gives that

for some ¢; > 0. Thus a choice of 6(z) = z would fulfill

the lower bound property but to achieve the limiting
behavior we choose o{z2) = 22 m

Vi
81‘,‘

T
) .’f,',_(t) 2 Ci%(:ri(t))xiﬂ(s)): (6)

3.1 Theoretical Properties

In the following paragraphs we will investigate what
theoretical properties the evolution of the multi-agent
formation exhibits when letting $ be given by Equation
(4). We will show that if F(s(f),z(te)} < Fy then
F remains bounded by Fy along trajectories for all
times greater than fy. We will also show that if s €
[Sstares Spinat] and if § is governed by Equation (4) then
s reaches $finqr in finite time. We will conclude our
theoretical investigations by showing that ||&o(s(2))]| =
vg if the formation function is small enough.

Theorem 3.1 If F(s(ty),z(ty)) < Fy, then
F(S,I) < FU, Yt > to,

i.e. the formation function will never exceed Fyr.

Proof. We directly have
. AF . r.  OF
F o= (E) I+Es(s,z)
< (OFyr, a_F—(%)Tz'( () )
= oz ds §+ 2L \o(F(s,x)) /]



Now, assume that F(s{to),z(¢0)) > Fy, which gives
F(s(to),z(to)) <0

since
o(Fy}
a{(F(s(to), z(to)))
BF!s!tg!,m to))

s <1
(8 + | 2Elallodal) ) =

<1,

" oFGsl).al)
s(tg), x .
(TR i) < 0.
This directly gives that if F(s(to),z(to)) > Fy then
F(s,x) < 0 along trajectories. Thus F(s(t),z(t)) < Fy
for all ¢ > tg. n

Theorem 3.2 If s € [Sstart, Sfinat] (user given), then
by using the controller in Equation ({) we can find an
upper bound M < co such that

Ttinat < M.

In other words, there is an upper bound on the comple-
tion time.

Progf. Let the completion time be defined in such a

way that r
final
fjﬂa!uv‘l

§ = 8final — Sstart-

If there exists a constant v, >
we obviously have

0 such that § > v, then

Sfinal — Sstart

Tfinul S + Tstnrt-
Vs
The proof thus consists of finding such a lower bound
on 5. Let
8
Ki=  max { +11 p(s)n}
SC{8start 5 finat]
and
ar
Ky = max {a + |—(3’3—)|} .
5€[s.,85]xeR™™ | F(s,2)<Fy ds
Now
aryT .
${s,x) = min - ) 2 ( olFy)
S+ 11" s+ 1551 \o(F(s,2))
. o LG‘(FU)
> Pl I ll 7}
> min { KK,
= v, >0,

since F—ﬁz—) > 1. Thus

. 8final — Sstart
Tyina < — o  t Torars = M,
s

which concludes the proof. =

)}
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Theorem 3.3 If the formation
F(s,z) < Fy and § < (|29 then

error is smaell,

dﬂ:o

i.e. the formation velocity is v

” = Vg,

Proof. We will start by showing that the right hand
term in the brackets of equation (4) grows to infinity
as F' approaches zero.

(& Tz( o(Fy) )

S 0B ~(55)"s
- Ky o(F(s,z))
-~ 00, a8 F(s,z) =2 0

by Assumption 3.1. Thus the left hand term governs s
when F' is small. In that case we have

W)

3?(8)
=55~ ds

dIO

= =l

”MHMH

5’.‘)0

TS

{

Vo

4 Generalization

The assumption from the previous section that each
individual robot is globally, asymptotically stabilizable
might seem a bit restrictive. The many nonholonomic
platforms encountered in the robotics literature do not
exhibit this property. Despite this fact, we believe that
our proposed approach sheds some light on the general
multi-agent coordination problem. One observation to
be made is that Assumption 3.1 is all we need in order
to have Theorems 3.1, 3.2, and 3.3 go through. We
state this as a corollary:

Corollary 4.1 (Generalization) Given eny contin-
wously differentiable, positive semidefinite function F .
R x R®™ — R (a semidefinite formation function). If
there are controls u; € R™, ¢ = 1,...,m such that
Lemma 3.1 holds then Theorem 3.1, 3.2, and 3.3 also
hold.

The proof of this s just a repetition of the proofs of
the previous theorems, and is thus omitted.



It should be noted that by allowing semidefinitencss in
F we allow formations with some degrees of freedom,
c.g. polygons with fixed arc lengths but free orienta-
tions.

Theorem 4.1 If for each s € R,z € R"™ there ezists
a control u € RP* x ... x RP™ such that Assumption 8.1
holds, then the assumption also holds for the control

)Ta':(u).

where U is the set of admissible controls.

JF

Oz

U = Grgmiii, ey (

Proof. Since Assumption 3.1 states that

_(%)Ti>LV RzcR|0< F < Fy (7
W_ ER S ,IE | < (S,:L')_ U()
and
. ar\T aF\T |
—minyey (B_a:) I(U)E—(‘a—z) z

the proof follows directly.

5 Example: Two Robots Carrying a Beam

Inspired by the picture on page 25 in the latest issuc
of the IEEE Robotics & Automation Magazine [9] we
consider the coordination problem of two robots car-
rying a beam on a Mars construction site. This mo-
tion is constrained by the fact that the distance be-
tween the two robots should be “close™ to the length
of the beam. We morecover want the center of grav-
ity of the beam to follow a given path zp(s). It is
thus possible to use a formation function like F(z,s) =
|24 —{zo{s)+{0,0.50* +|lz5 — (zo(s}—(0, 0.5)||. This
choice is positive definite and fulfills the conditions in
Definition 2.1. To make matters more interesting we
take advantage of the gencralization described earlier
and let F be a semidefinite formation function with a
rotational degree of freedom:

A t+2Tg
2

Sctting the length of the beam to B = 1m and Fyy = 0.1
we can guarantee that the distance ||za — zp|| €
(0.82,1.15) = (V1 —+v0.1,v/1+ /0.1) which we as-
sume can be handled by the way in which the beam is
mounted on the robots.

F(z,5) = (llza — z5l* = R*)® + || — zo(s)|[”.

We model the robots using the standard unicycle model
(see for example [6, 7}). Such a model is applicable to
e.g. the Nomadic Scout (as scen in Figure 1(a)} and
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Figure 1: Nomadic Technologies’ Scout (a) and the uni-
cycle model (b).

most syncro drive robots as well as all-terrain caterpil-
lar vehicles.

The cquations of motion arc

Z = wcosl
Z3 = wsin#
8 = w,

with the output 2, = 21 + lcos{f), zo = 22 + Isin(8)
being the position of the center of gravity. ((z),z2)
must lie between the wheel axis and the castor wheel
for stability reasons, as shown in Figure 1(b}.) We
assume that the beam bearing device is mounted at
(z1,z2). This gives the output dynamics

vcosf — wl sin(6)
v sin 8 + wl cos(8).

]
Ty =
(A similar argument is carried out for the more complex
Hilare-type robot model in [5].) The limited velocities
available on the Scout are approximately given by |v| <
0.5m/s and |w| € 2.557 1.

We choose the control of robot « € {A, B} as

(22) - (st i) ().

with the velocity saturations implied. With this choice
of control it is straight forward to check that

o(z) = 2*

together with the proposed F(z,s} satisfies Assump-
tion 3.1. Furthermore, V = |lz — zo(s)||* is a control
Eyapunov function for this system.

The desired motion of the beam is just that its center
of mass is translated eastwards. The expression for the
virtual leader is thus zy(s) = {s,0.5).

If we would cxecute this motion as it stands the two
robots would just move eastwards (to the right) whiie



maintaining a constant relative distance. To make the
example more interesting we let one of the robots be
exposed to a partial battery failure such that its maxi-
mal speed is lowered from Vg0, = 0.5 10 Vppmae = 0.1
while Ve, = 0.5 all the time. We set (as already
mentioned) the distance between the robots to B =1
and let the formation error bound be Fi; = 0.1. Finally,
we let § = 0.01 in Equation (4).

This example will show the workings of both Theorem
3.1 and Theorem 3.3 as well as demonstrating how the
unspecified degrees of freedom (in this case rotation)
can be taken advantage of.

Running the simulation we see from the top view in Fig-
ure 2 that the reduced speed of robot B causcs the for-
mation to rotate as robot A tries to keep the center of
gravity of the beam moving at 2 high speed (vp). Then
the rotation levels out and robot A must slow down to
the velocity of robot B. Thereby the whole formation
velocity approaches that of robot B, as can be seen in
Figure 4. Meanwhile the attempts to drive the group
at the (now unavailable) velocity vy has forced the for-
mation function up to the bound of Fy; (Figure 3). The
reason that F docs not approach zero before the bat-
tery failure is not inherent in the method, it is due to
the fact that our chosen controller is proportional to

“aF
8z °

-

0.8,
—a0.6
0.4

02

. i s

15
fm}

25

Figure 2: Top view of the two robot positions. Rebot A
starts at (0,1) and robot B at (0,0). Notice
how the reduced speed of robot B (after the
battery failure) is compensated for by a rotat-
ing motion.

6 Conclusions

In this paper we propose a stable coordination strat-
cgy for a team of formation constrained autonomous
agents. If the individual robots can be globally, asymp-
totically stabilized, a formation function can be formed
from the convex cone spanned by the individual control
Lvapunov functions. This formation function further-
more decreases along trajectorics, which shows that the
robots maintain the formation as time evolves.

The assumption that each individual robot can be glob-
ally, asymptotically stabilized can, however, be relaxed.
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1.5

robot B x—coord. Iml

Figure 3: The formation function: First F is driven to-
wards an equilibrium around 0.06 but after the
battery failure the value approaches (but never
exceeds) the upper bound Fy = 0.1 as stated
i Theorem 3.1.

0.35

o3}

O.28

[més|

o.2}

0185+

235

0 1 1.8
robot B x—coord. Im]

Figure 4: The formation velocity: Notice that at first
||dzo/dt}] = vo = 0.3 as stated in Theorem 3.3
but then, as F grows, V \; VBmar = 0.1.

In fact, as long as it is possible to construct a formation
function and individual controls such that the forma-
tion function decrcases, thcorems about bounded for-
mation errors, task completion times, and nominal for-
mation velocities can be proved.

In this paper, we also present an example that illus-
trates the soundncess of our method.
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