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Abstract 
In this paper, the multi-agent coordination problem 
is studied. This problem is addressed for a class of 
robots for which control Lyapunov functions can be 
found. The main result is a suite of thcorcms about 
formation maintenance, task completion time, and for- 
mation velocity. I t  is also shown how to moderate the 
requirement that, for each individual robot, there exists 
a control Lyapunov function. An example is provided 
that illustrates the soundness of the method. 

1 In t roduct ion  

In this paper we investigate the problem of how to co- 
ordinate a collection of robots in such a way that they 
maintain a given formation relative to  each other. The 
main assumption about the dynamics of the individual 
robots that we initially make in this paper is that they 
can be globally, asymptotically stabilized. Based on 
this assumption, an abstract and theoretically sound 
coordination strategy can be developed based on the 
theory of controlled Lyapunov functions. 

Multi-agent formation control problcms have been ex- 
tensively studicd in the litcraturc and our main con- 
tribution is that we use control Lyapunov functions to 
define the formation. By doing this we convert the for- 
mation control problem, typically a constrained motion 
control problem of multiple systcms, into a stabiliza- 
tion problem for one single system. By this approach 
we neither cast the problem without real dynamics , 
nor with an explicit nonlinear robot model [7]. Instead 
we believe that by requiring the existencc of control 
Lyapunov functions, we can capture the essential some 
aspects of the platform dynamics, while not having to  
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spend our main effort on nonlinear robot control. We 
can thus focus on the coordination problem at a higher 
level. 

In addition to  the control Lyapunov function approach 
we use the idea of virtual vehicles introduced in [3]. 
Concepts of similar flavor are the “action reference” 
suggested by Kang et. al. [2] and the “dynamic coordi- 
nation variable” proposed by Beard et. al.[4]. h r t h e r -  
more, in the terminology of Beards in [5], our approach 
would fall into the category of “virtual structures”. 

The motivation for studying this type of multi-agent 
coordination problem mainly stems from the observa- 
tion that there is robustness and strength in numbers. 
If more than one agent is asked to  carry out a given 
task, e.g search a disaster arca, the likelihood of suc- 
cess increases as more agents arc included in the mis- 
sion. In other situations, cost and energy efficiency 
indicates that using many small robots might be more 
beneficial than using one big robot. 

The outline of this paper is as follows: In Section 2 
we define what we mean by a formation, and show how 
this can be done implicitly through the null-set of a for- 
mation function. In Section 3 we then prove a suite of 
thcorcms about bounded formation errors, task com- 
pletion times, and group velocities. This is done for 
the casc where each individual robot can be globally, 
asymptotically stabilized, In the following section, we 
relax this requirement, but show how the theory holds 
for this case as well. We conclude, in Section 5, with 
an example, illustrating the usefulness of our proposed 
method. 

2 Formation Functions 

Our primary object of study is a collection of m robots, 
whosc dynamics can be described by the following set 



of controlled differential equations 

k; = f ; ( x ; )  +gi(xi)u;,  i = 1 , .  . . ,m, (1) 
where f ; , g ;  E Cm, xi E W", and U ;  E W p ' .  

Now, a desired formation in W"" is simply a set 
{.io,. . . xmo} E W"'", and we define this set implicitly 
through the null-set of a so called formation function. 

Definit ion 2.1 (Formation Function) Given afor- 
mation {x lo(s ) ,  . . . , z,,,o(s)} E W"" parametrized b y  
a scalar s. We say that a positive definite, contin- 
uously d:.ferentiable map F : W x W"" + R is a 
formation function to  the set { X I O ( S ) ,  . . . , x m ~ ( s ) }  if 
{ s , x I , .  . . , x m ]  E F-'(O) gives a unique {q,. . . , x m }  
for each choice of s E W. 

In this paper, we connect the formation function with 
the concept of control Lyapunov functions. In this way 
we can simplify the controller design for each agent and 
focus on the high-level coordination issues. We assume: 

Assumpt ion  2.1 Each of the m subsystems can be 
globally, asymptotically stabilized. 

Since there is no a priori reason why the stabilizing 
controllcr has to be smooth, wc can takc advantage of 
thc following result, found for example in [l, 81. 

T h e o r e m  2.1 (Arstein-Sontag Theorem)  Given 
f , g  E C" and an 50 E R". Then there ezists a 
feedback law U = a ( x )  (smooth everywhere except at xo  
where at is continuaus), which globally, asymptotically 
stabilizes 5 = f ( x )  + g(x)u  to xo if and only if there 
ezists a control Lyapunou function, i.e. a smooth and 
positive definite function V(x,zo) (zero only a t  zo) 
such that the following holds: 

aV av -g ( z )  = 0 * -f(z) < 0,  v x  # 20. ( 2 )  aZ ax 

Wc refer to  181 for the proof. Theorem 2.1 moreovcr 
ensures us that we can choosc a control such that 

Ex < 0,  vz # xo 
i 3 X  

Assumption 2.2 Given a curve ZO(S) of equilibrium 
points in the state space the control Lyapunov function 
of the system for each point can be written QS a smooth 
function V ( z , z o ( s ) ) .  

R e m a r k  2.1 This is D reasonable assumption since 
most velocity controlled, planar, mobile robotic systems 
have a translational invariance in position coordinates 
and thus the V ( X , X O ( S ) )  above just contains a coordi- 
nate translation in zg(s). 

With this additional assumption it is possible to  for- 
mulate the formation function to a given set in tcrms 
of the cowex cone spanned by the control Lyapunov 
functions from the previous paragraphs. 

Lemma 2.1 
m 

F ( s , z , ( t ) ,  ... , xm( t ) )  = ~ B K ( x i ( t ) , x ; o ( s ) )  (3) 
i=l 

is a formation function to the formation 
{x lo(s ) ,  . . .xmo(s)} as long as io; > 0 , i  = 1,. . . , m. 

Proof: The proof follows directly from the fact that the 
individual K:s only vanishes a t  x ; ( t )  = xi0(s). 

R e m a r k  2.2 The choice of coeficients in Equation 
(3) reflects how large deviations from zero are allowed 
for each V;. By specifying an upper bound, Fu ,  on 
F ( s , x ) ,  each particular choice of p; implies an upper 
bond on each V,, proportional to Fu/,B. 

3 Coordinated Control 

By cstablishing these somewhat straightforward ob- 
scrvations about the formation functions dcrivcd from 
the individual control Lyapunov functions, we can now 
shift our attention to  actually controlling the evolution 
of the formation. The onc paramctcr that wc can con- 
trol is thc s-parameter, i.c. the parameterization of 
the time evolution of the dcsircd positions. We do this 
by specifying the trajectory that wc want the so callcd 
virtual leader (or leaders), xo(s ( t ) ) ,  to  follow. This non- 
physical leader is a rcfercncc point in thc state spacc 
with respect to  which we can definc thc rcst of the 
formation. We dcnotc the trajectory executed by the 
virtual leader by xo( s ( t ) )  = p(s ( t ) ) .  Intuitivcly onc 
might want to  sct s ( t )  = t. But, due to robustness 
considerations we incorporate error feedback into the 
time cvolution of s and let S he given by 

\ - I  

Here 6 > 0 is a small positivc constant that prcvcnts B 
from hccoming singular and Fu is a uscr defined upper 
hound on thc formation function F ( s , x ) .  The idca is 
to  say that thc formation is bcing rcspcctcd as long as 
F ( s , x )  5 Fu. Furthermore, 210 is thc nominal velocity 
that wc want thc formation to movc with, and as we will 
see later, it holds that I lzo(s(t)) l l  % uo whcn F is small. 
Finally, U is a function of class IC, i.e. U : 10, k) --t R+ 
is a continuous function that satisfies u(0) = 0, U(.) > 
0 ,  Vx  > 0,  and U is nondccreasing everywhcrc. 
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Before we can proceed to  actually showing the main 
results in this paper, the following assumption about U 

in Equation (4) must be made: 

Assumption 3.1 Given the class K function U in 
Equation (4). We assume that there exists a control 
u(s,z), and a constant L > 0 ,  such that 

Furthermore, this expression goes to infinity as F ap- 
proaches zero. 

Remark 3.1 Assumption 3.1 essentially means that 
- ( g)T x, can be bounded from below b y  a nondecreas- 
ing function u ( F ( s , s ) )  when F ( s , a )  # 0.  The limit 
property will furthermore be used when proving Theo- 
rem 3.3 about the nominal group uelocity. 

We move on to  showing that Assumption 3.1 actually is 
satisfied by a group of systems as long as it is satisfied 
by each of the individual subsystems. As a special case 
we also show that Assumption 3.1 is satisfied when the 
individual systems are globally asymptotically stabiliz- 
able. 

Lemma 3.1 If Assumption 3.1 holds for the indiuid- 
ual control Lyapunou functions Vi then it holds for the 
convez cone 

m 

F = -ypilG. 
i=1 

Proof: By the hypothesis it holds that 

We thus have that 

t 

where 

m T 

x 
i=l 
m 

The second inequality in (6) follows since there exists 
a j such that Vj 2 A, and thus 

The limit property also follows from this last inequality. 

Lemma 3.2 Assumption 3.1 holds for globally, ezpo- 
nentially stabilizable systems with U(.) = 2. 

Proof: If the m subsystems are globally, expo- 
nentially stabilizable the control Lyapunov function 
K(z i ( t ) ,  zi0(s)) satisfies 

Cilllsi(t)-xio(s)ll2 5 K(Z i ( t ) ,  Z i O ( S ) )  5 cizIlzi(t)-Zio(S)1!2 

along trajectories for some choice of positive scalars 
c . .  i = 1 , .  . . , m, j = 1,2,3.  This directly gives that '3 1 

for some ci > 0. Thus a choice of u ( z )  = z would fulfill 
the lower bound property hut to  achieve the limiting 
behavior we choose u(z )  = 2. 

3.1 Theoretical Properties 
In the following paragraphs we will investigate what 
theoretical properties the evolution of the multi-agent 
formation exhibits when letting S be given by Equation 
(4). We will show that if F(s( to) ,z( to))  5 F" then 
F remains houndcd by F" along trajectories for all 
times greater than to. We will also show that if s E 
[sStevt, sf,,,.l] and if S is governed by Equation (4) then 
s reaches s,in,,~ in finite time. We will conclude our 
theoretical investigations by showing that Ilio(s(t))ll 
vo if the formation function is small enough. 

Theorem 3.1 If F(s( to) ,x( to))  5 F", then 

F ( s , z )  i Fu, Vt  2 to ,  

i.e. the formation function will never ezceed F". 

Proof. We directly have 

L = min(8iL.i) 

and - r 
u ( F ( s , z ) )  = minu,(- 1. 

P,..m 
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Now, assume that F(s( to) ,s( to))  2 Fu, which gives Theorem 3.3 IJ the formation error is small, 
F ( s , z )  << FU and6 << li@& then 

F(s( to) ,z( to))  5 0 

This directly gives that if F(s( to) ,s( to))  2 FU then 
p(s,z) 5 0 along trajectories. Thus F ( s ( t ) , z ( t ) )  5 FU 
for all t 2 to. rn 

Theorem 3.2 If s E [..tart, sj,,,.~] (user given), then 
by  using the controller in Equation (4) we can find an 
upper bound M < CO such that 

Tjin.i 5 M .  

In other words, there is an upper bound on the comple- 
tion time. 

Proof. Let the completion time he defined in such a 
way that 

TiSnaa 
s = S/.".l - Satart. J Ta,="C 

If there exists a constant 
we obviously have 

> 0 such that S 2 va then 

S f % " O l  - Sstort Tjlnoi 5 + T,t,rt. 
VS 

The proof thus consists of finding such a lower hound 
on S. Let 

= vs > n, 

- *  

which concludes the proof. 

i.e. the formation velocity is vo 

Proof. We will start by showing that the right hand 
term in the brackets of equation (4) grows to infinity 
as F approaches zero. 

-+ CO, as qs, .) + n 
by Assumption 3.1. Thus the left hand term governs S 
when F is small. In that case we have 

rn 

4 Generalization 

The assumption from the previous section that each 
individual robot is globally, asymptotically stabilizahle 
might seem a hit restrictive. The many nonholonomic 
platforms encountered in the robotics literature do not 
exhibit this property. Despite this fact, we believe that 
our proposed approach sheds some light on the general 
multi-agent coordination problem. One observation to 
he made is that Assumption 3.1 is all we need in order 
to hare Theorems 3.1, 3.2, and 3.3 go through. We 
state this as a corollary: 

Corollary 4.1 (Generalization) Given any contin- 
uously differentiable, positive semidefinite function F : 
R x R"* --t R (a semidefinite formation function). If 
there are controls U; E Rp' ,  i = 1,. . . , m  such that 
Lemma 3.1 holds then Theorem 3.1, 3.2, and 3.3 also 
hold. 

Thc proof of this is just a repetition of the proofs of 
the previous theorems, and is thus omitted. 
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It should he noted that by allowing semidefiniteness in 
F we allow formations with some dcgrccs of frccdom, 
e.g. polygons with fixed arc lengths hut free oricnta- 
tions. 

Theorem 4.1 If for each s E W, z E W""' there exists 
a control U E Wp' x . . . x Wp'" such that Assumption 3.1 
holds, then the assumption also holds for the control 

where U is the set of admissible controls 

Proof. Since Assumption 3.1 statcs that 

and 

the proof follows directly. m 

5 Example: Two Robots Carrying a Beam 

Inspired by ,the picture on page 25 in the latest issue 
of thc IEEE Robotzes E# Automation Magazzne (91 wc 
consider thc coordination problem of two robots car- 
rying a beam on a Mars construction site. This mo- 
tion is constrained by the fact that the distance he- 
tween the two robots should be "closc" to the lcngth 
of the heam. We moreover want thc ccntcr of grav- 
ity of the heam to follow a givcn path zn(s). It is 
thus possible to  use a formation function like F ( z ,  s) = 
I ~ Z A  - ( ~ n ( ~ ) + ( O , 0 . 5 ) I I * + l / ~ s  -(zn(~)-(O, 0.5)1l2. This 
choice is positive definite and fulfills the conditions in 
Definition 2.1. To make matters more interesting we 
take advantage of the generalization described earlier 
and let F be a scmidcfinitc formation function with a 
rotational degree of frccdom: 

F ( z , s )  = (1l.a - zs1I2 - R2)* + 11,- - zn(s)l12. 

Setting the length of the beam to R = l m  and Fu = 0.1 
we can guarantee that the distance 11x4 - 5811 E 

(0.82,1.15) = ( d z ,  d x )  which we as- 
sume can he handled hy the way in which the heam is 
mounted on the robots. 

Wc model the robots using thc standard unicycle model 
(sec for example [6, 71). Such a model is applicable to  
e.g. the Nomadic Scout (as seen in Figurc l(a)) and 

XA f z B  

Figure 1: Nomadic Technologies' Scout (a) and the uni- 
cycle model (b). 

most syncro drive robots as well as all-terrain catcrpil- 
lar vehicles. 

The equations of motion are 

il = ucose 
i2 = usin8 
0 = U, 

with the output z1 = z1 + Icos(8), z2 = z2 + lsin(8) 
being the position of the ccntcr of gravity. ((z1,z2) 
must lie between the wheel axis and the castor wheel 
for stability reasons, as shown in Figure l(h).) We 
assume that the beam bearing device is mounted at 
(z1,z2). This gives the output dynamics 

XI = ucos8 - wlsin(8) 
x2 = usin0 + wlcos(8) 

(A similar argumcnt is carried out for the more complex 
Hilare-typc robot model in (51.) The limited velocities 
available on the Scout are approximately givcn by IuI 5 
0.5m/s and IwI 5 2.5s-'. 

We choose the control of robot a E [ A ,  B }  as 

(2) = ( COS(80)  sin(&J ) (-$) 
-sin(O,)/l cos(S,)/l -- ' 

a=,z 
with the velocity saturations implied. With this choice 
of control it is straight forward to  check that 

2 U(.) = 2 

together with the proposed F ( z ,  s) satisfies Assump- 
tion 3.1. Furthermore, V = llz - zo(s)1I2 is a control 
Lyapunov function for this system. 

The desired motion of the heam is just that its ccntcr 
of mass is translated eastwards. Thc cxpression for the 
virtual leader is thus zg(s) = (s,O.5). 

If we would execute this motion as it stands the two 
robots would just move eastwards (to the right] whilc 
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maintaining a constant relative distance. To make the 
examplc more interesting we let one of the robots he 
exposed to  a partial battery failure such that its maxi- 
mal speed is lowered from VB,., = 0.5 to  VB,,, = 0.1 
while VA,,,,,. = 0.5 all the time. We set (as already 
mentioned) the distance between the robots to  R = 1 
and let the formation error bound be Fu = 0.1. Finally, 
we let 6 = 0.01 in Equation (4). 

This example will show the workings of both Theorem 
3.1 and Theorem 3.3 as well as demonstrating how the 
unspecified degrees of freedom (in this case rotation) 
can be taken advantage of. 

Running the simulation we see from the top view in Fig- 
ure 2 that the reduced speed of robot B causes the for- 
mation t o  rotate as robot A tries to  keep the center of 
gravity of the beam moving at a high speed ( u g ) .  Then 
the rotation levels out and robot A must slow down to 
the velocity of robot B. Thereby the whole formation 
velocity approaches that of robot B, as can be seen in 
Figure 4. Meanwhile the attempts to  drive the group 
at the (now unavailable) velocity 2ro has forced the for- 
mation function up to  the hound of FU (Figure 3). The 
reason that F does not approach zero before the hat- 
tery failure is not inherent in the method, i t  is due to 
thc fact that our chosen controller is proportional to  
aF a= . 

--U 4 

02 Fill:: 0 
I 
0 0.5 1 2 2.5 

Figure 2: Top view of the two robot positions. Robot A 
starts at ( 0 , l )  and robot B at (0,O). Notice 
how the reduced speed of robot B (after the 
battery failure) is compensated for by a rotat- 
ing motion. 

6 Conclusions 

In this papcr wc propose a stable coordination strat- 
cgy for a team of formation constrained autonomous 
agents. If thc individual robots can he globally, asymp- 
totically stabilized, a formation function can bc formed 
from the convcx cone spanned by the individual control 
Lyapunov functions. This formation function further- 
more decreases along trajectories, which shows that the 
robots maintain the formation as time cvolvcs. 

The assumption that each individual robot can be glob- 
ally, asymptotically stabilized can, howcvcr, be relaxed. 

Figure 3: The formation function: First F is driven to- 
wards an equilibrium around 0.06 but after the 
battery failure the value approaches (but never 
exceeds) the upper hound Fu = 0.1 as stated 
in Theorem 3.1. 

0.35 I 

Figure 4: The formation velocity: Notice that at first 
Ildzo/dtll zz vo = 0.3 as stated in Theorem 3.3 
hut then, as F grows, V \r V B ~ , ,  = 0.1. 

In fact, as long as it is possible to  construct a formation 
function and individual controls such that thc forma- 
tion function decreases, thcorems about bounded for- 
mation errors, task completion times, and nominal for- 
mation velocities can be proved. 

In this paper, we also present an example that illus- 
trates the soundness of our method. 
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