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Abstract. We investigate the automated reconstruction of piecewise
smooth 3D curves, using subdivision curves as a simple but flexible curve
representation. This representation allows tagging corners to model non-
smooth features along otherwise smooth curves. We present a reversible
jump Markov chain Monte Carlo approach which obtains an approxi-
mate posterior distribution over the number of control points and tags.
In a Rao-Blackwellization scheme, we integrate out the control point lo-
cations, reducing the variance of the resulting sampler. We apply this
general methodology to the reconstruction of piecewise smooth curves
from multiple calibrated views, in which the object is segmented from the
background using a Markov random field approach. Results are shown
for multiple images of two pot shards as would be encountered in archae-
ological applications.

1 Introduction

In this paper we investigate the reconstruction of piecewise smooth 3D curves
from multiple calibrated views. Among other applications, this is useful for the
reconstruction of shards and other artifacts that are known to have “jagged
edges”. A motivating example of a broken pot-shard is shown in Figure 1. Such
objects frequently show up in large museum collections and archaeological digs,
and hence solving this problem would have important implications in preserving
our cultural heritage. One possible application of our work is the automatic
reconstruction of archaeological artifacts [1,2]. Apart from these applied uses,
the problem of representing and performing inference in the space of piecewise
smooth curves is of interest in its own right, and the methods developed here
have potential application for other types of objects that have both continuous
and discrete parameters that need to be optimized over.

We focus on the reconstruction of curves rather than surfaces. Existing 3D
surface reconstruction methods rely on automatically extracted points and/or
lines [3]. In the case of textured objects or when using structured light, these
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Fig. 1. Two automatically segmented pot-shard images. The boundaries derived from
an MRF-based segmentation algorithm are shown in white.

methods can be used successfully to densely sample from the 3D surface of an
object. However, these methods fail to use or capture the fact that an object like
a shard is delineated by a closed boundary curve. In this paper we compliment
traditional 3D reconstruction methods by explicitly recovering these curves.

To model piecewise smooth curves we use tagged subdivision curves as the
representation. This is inspired by the work of Hoppe [4], who successfully used
tagged subdivision surfaces for fitting piecewise smooth surfaces to 3D point
clouds. The curve fitting literature includes use of algebraic curves [5,6], piecewise
polynomials [7,8,9], point curves [10], and B-splines [11,12,13].

To the best of our knowledge, no prior work on fitting subdivision curves
exists. Subdivision curves are simple to implement and provide a flexible way of
representing curves of any type, including all kinds of B-splines and extending to
functions without analytic representation [14]. In [4], Hoppe introduces piecewise
smooth subdivision surfaces, allowing to model sharp features such as creases
and corners by tagging the corresponding control points. We apply the tagging
concept to subdivision curves to represent piecewise smooth curves. Earlier, we
have presented this idea with some preliminary results in a workshop paper [15].
In this paper we significantly extend our approach to automatically determine
the number of control points needed for a good fit. Furthermore, we replaced
the manual segmentation process with an automatic MRF-based segmentation
preprocessing step, obtaining a completely automated system.

To infer the parameters of these curves from the data, we propose Rao-
Blackwellized sampling. In our approach, Markov chain Monte Carlo (MCMC)
sampling [16] is used to obtain a posterior distribution over the discrete variables,
while the continuous control point locations are integrated out after a non-linear
optimization step. We also sample over the number of control points, using the
framework of reversible jump (RJ) MCMC that was introduced by Green [17]
and later described in a more easily accessible way as trans-dimensional MCMC
[18]. In related work, Denison and Mallick [7,8] propose fitting piecewise poly-
nomials with an unknown number of knots using RJMCMC sampling. Punskaya
[9] extends this work to unknown models within each segment with applications
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in signal segmentation. DiMatteo [13] extends Denison’s work for the special
case of natural cubic B-splines, handling non-smooth curves by representing a
corner with multiple knots. However, multiple knots cannot be at the same loca-
tion, and therefore only approximate the corner. With our method, corners can
be represented exactly with a single control point. In addition, we are working
with a much reduced sample space, as we directly solve for optimal control point
locations and hence only sample over the boolean product space of corner tags.

We apply this general methodology to 3D reconstruction of piecewise smooth
curves from multiple calibrated images. While much of the curve fitting literature
is concerned with 1D curves for signal processing [8,7,13,9], in computer vision
it is more common to fit curves in 2D or 3D. For example, 2D curves are often fit
to scattered point data [6] and image contours [11]. For the special case of stereo
cameras, [12] describes reconstruction and tracking of 3D curves represented by
2D B-spline curves that are either coupled through epipolar geometry constraints
or are coupled to a canonical frame model through affine transformations. More
general multiple view curve reconstruction methods are described in [5] using
algebraic curves and in [10] for point curves with uncalibrated cameras.

2 Subdivision Curves

(a) (b) (c) (d)

Fig. 2. The subdivision process: (a) initial control points, linearly interpolated; (b) the
original mesh, subdivided by introducing average points; (c) the result after application
of the averaging mask to the subdivided control points; (d) converged curve.

Here we briefly review subdivision curves. See [14] for more details. A sub-
division curve is defined by repeatedly refining a vector of control points Θt =(
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The type of the resulting curve depends on the averaging mask r. Subdivision
can be used to create a wide range of functions [14], including uniform and
non-uniform B-splines, and functions that have no analytic representation like
Daubechies wavelets. For example, the mask for a cubic B-spline is 1

4 (1, 2, 1).
As explained in [14], the splitting and averaging steps can be combined into

multiplication of the local control points with a local subdivision matrix L, e.g.

L =
1
8

4 4 0
1 6 1
0 4 4


for cubic B-splines. Repeated application of this matrix to a control point and
its immediate neighbors results in a sequence of increasingly refined points that
converges to the limit value of the center point. Eigenvector analysis on the
matrix L leads to an evaluation mask u that can be applied to a control point
and its neighbors, resulting in the limit position for that control point. For
example, the evaluation mask for cubic B-splines is

u =
1
6

(1, 4, 1)

The curve can be refined to the desired resolution before this mask is applied.
It is convenient for the exposition below to view the entire subdivision process

as a large matrix multiplication

C = SΘ (1)

where C is the final curve, the n×1 vector Θ represents the control points/polygon,
and the subdivision matrix S combines all m subdivision steps and the applica-
tion of the evaluation mask into one n2m × n matrix. This can be done as both
subdivision and evaluation steps are linear operations on the control points. The
final curve C is a n2m × 1 vector that is obtained by multiplying S with the
control point vector Θ as in (1).

The derivative of the final curve C with respect to a change in the control
points Θ, needed below to optimize over them, is simply a constant matrix:

∂C

∂Θ
=

∂(SΘ)
∂Θ

= S (2)

While the above holds for 1D functions only, an n-dimensional subdivision curve
can easily be defined by using n-dimensional control points, effectively repre-
senting each coordinate by a 1D subdivision curve. Our implementation is done
in the functional language ML and uses functors to remain independent of the
dimensionality of the underlying space. Note that in this case, the derivative
equation (2) holds for each dimension separately.

3 Piecewise Smooth Subdivision Curves

There are a number of ways to represent sharp corners in otherwise smooth
curves. One solution is to place multiple control points at the location of a
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corner, but consecutive subdivision creates superfluous points at this location.
Furthermore, it places unwanted constraints on the adjacent curve segments. A
commonly used method in connection with B-splines is extra knot insertion.

(a) (b)

Fig. 3. A tagged 2D subdivision curve. Tagged points are drawn as circles. (a) the
original control points, (b) the converged curve with non-smoothly interpolated points.

We employ a more general method here based on work of Hoppe [4] for subdi-
vision surfaces. It allows us to “tag” control points, allowing different averaging
masks to be used at these points. E.g., using the mask (0, 1, 0) forces the inter-
polation of the control point and at this point introduces a discontinuity in the
derivative, while retaining the smooth curve properties for all other points of the
curve (Figure 3). The number of tagged control points does not increase during
the subdivision process, and so the non-smoothness of the curve is restricted to
the tagged control points, which will always be interpolated.

Below we will use the following notation to describe tagged 3D subdivision
curves. The locations of the 3D control points are given by Θ

∆= {x0
0, x

0
1, ..., x

0
n−1},

where n is the number of control points. For each original control point x0
i , a

boolean tag bi indicates whether it is non-smoothly interpolated, i.e. whether
there is a “corner” at control point i. The collection of tags bi is written as
T

∆= {b0, b1, ..., bn−1}.

4 Rao-Blackwellized Curve Fitting

In this section we describe how the parameters of a tagged subdivision curve
can be estimated from noisy measurements Z, irrespective of how those mea-
surements were obtained. In Section 5 this will be specialized to the problem of
fitting from multiple, calibrated segmentations of an object.

Because the measurements are noisy, we take a probabilistic approach. Of
interest is the posterior distribution

P (n, Θn, Tn|Z) ∝ P (Z|n, Θn, Tn)P (Θn|n, Tn)P (Tn|n)P (n) (3)

over the possible number of control points n, the control point values Θn and the
tag variables Tn. Here the control points Θn ∈ R3n are continuous and the tags
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Tn ∈ {0, 1}n are discrete. The likelihood P (Z|n, Θn, Tn) and control polygon prior
P (Θn|n, Tn) are application specific and will be specified in Section 5. Choosing
the complexity prior P (n) to be uniform over a range of valid values allows us
to find an unbiased distribution over the number of control points. Similarly,
we use an uninformative tagging prior P (Tn|n), but a binomial distribution
P (Tn|n) ∝ pc(1− p)n−c over the number of active tags c could also be used.

4.1 Trans-Dimensional MCMC

Since the number of possible tag configurations is 2n and hence exponential
in n, we propose to use reversible jump Markov chain Monte Carlo (MCMC)
sampling [18,17] to perform approximate inference. MCMC methods produce an
approximate sample from a target distribution π(X), by simulating a Markov
chain whose equilibrium distribution is π(X). The algorithm starts from a ran-
dom initial state X(0) and proposes probabilistically generated moves in the
state space, which is equivalent to running a Markov chain. The specific MCMC
algorithm we use is the trans-dimensional MCMC algorithm from [18]:

1. Start with a random initial state X(0).
2. Propose a move type m ∈M with probability j(m).
3. Generate a random sample u from the move-specific proposal density gm.

The move type m and random sample u determine how to move from the
current state X(r) to the proposed state X ′.

4. Calculate the corresponding reverse move (m′, u′).
5. Compute the acceptance ratio

a =
π(X ′)

π(X(r))
j(m′)
j(m)

gm′(u′)
gm(u)

∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣ (4)

where the Jacobian factor corrects for the change in variables (see below).
6. Accept X(r+1) ← X ′ with probability min(a, 1), otherwise X(r+1) ← X(r).

The generated sequence of states {X(r)} will be a sample from π(X) if the
sampler is run sufficiently long, and one discards the samples in the initial “burn-
in” period of the sampler to avoid dependence on the chosen start state.

For fitting tagged subdivision curves, one possible set of move types consists
of “Up” and “Down” for inserting and deleting control points and “Modify”
for flipping one or more of the tags. Care has to be taken to ensure that the
move from (x, u) to (x′, u′) is reversible and therefore a diffeomorphism. One
requirement is that the dimensions on both sides have to match. Note that in
our case the Jacobian of the diffeomorphism

∣∣∣∂(x′,u′)
∂(x,u)

∣∣∣ is always 1 because we
integrate out the continuous part of the space (see below).

4.2 Rao-Blackwellization

Sampling over the joint discrete-continuous space is expensive. A crucial element
of our approach is to not sample from the joint posterior (3) but rather from the
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marginal distribution P (n, Tn|Z) over the number of points n and the tags T :

π(X) ∆= P (n, Tn|Z) =
∫

P (n, Θn, Tn|Z)dΘn (5)

while performing the integration (5) above analytically.
From a sample over n and T of size N we can obtain a high quality approx-

imation to the joint posterior as follows

P (n, Θn, Tn|Z) ≈
N∑

r=1

P (Θn|Z, (n, Tn)(r))δ((n, Tn) , (n, Tn)(r)) (6)

with δ(., .) being the Kronecker delta. Thus, (6) approximates the joint posterior
P (n, Θn, Tn|Z) as a combination of discrete samples and continuous conditional
densities P (Θn|Z, (n, Tn)(r)).

Integrating out the continuous part of the state space reduces the number
of samples needed. The superiority of (6) over a density estimate based on joint
samples is rooted in an application of the Rao-Blackwell theorem, which is why
this technique is often referred to as Rao-Blackwellization [19,20,21]. Intuitively,
the variance of (6) is lower because it uses exact conditional densities to approx-
imate the continuous part of the state. As such, far fewer samples are needed to
obtain a density estimate of similar quality.

Substituting the factorization of the posterior (3) in (5) we obtain

P (n, Tn|Z) = kP (n)P (Tn|n)
∫

P (Z|n, Θn, Tn)P (Θn|n, Tn)dΘn

Assuming the conditional posterior P (Z|n, Θn, Tn)P (Θn|n, Tn) is approximately
normally distributed around the MAP estimate of the control points Θ∗

n

P (Θn|Z, n, Tn) ≈ 1√
|2πΣ|

e−
1
2‖Θn−Θ∗

n‖
2
Σ

the integral can be approximated via Laplace’s method, and we obtain the fol-
lowing target distribution over the number of control points n and the tags Tn:

P (n, Tn|Z) = kP (n)P (Tn|n)
√
|2πΣ|P (Z|n, Θ∗

n, Tn)P (Θ∗
n|n, Tn)

The MAP estimate Θ∗
n can be found by non-linear optimization (see below).

5 Multiple View Fitting

In this section we specialize the general methodology of Section 4 to reconstruct-
ing tagged 3D subdivision curves from multiple 2D views of a “jagged” object.
We assume here that (a) the images are calibrated, and (b) the measurements Z
are the object boundaries in the 2D images, i.e. the object has been segmented
out from the background. For the results presented below, the object boundaries
are segmented automatically using a Markov random field approach.
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To calculate an objective function, the 3D curve given by Θn and Tn is
subdivided m times to the desired resolution, evaluated, and the resulting points
{pi}n2m

1 are projected into each view. We then use the following form for the
likelihood:

P (Z|n, Θn, Tn) ∝ e−
1

2σ2 E(Z,n,Θn,Tn)

where σ2 is a variance of the noise in the measurements. The error function E
above is obtained as a sum of squared errors

E(Z, n, Θn, Tn) =
C∑

c=1

n2m∑
i=1

∆(Πc(pi), Zc)2 (7)

with one term for each of the n2m final subdivision curve points in each of
the C images, explained in more detail below. The prior P (n) on the number
of control points, the prior P (T ) on the tag configuration and the conditional
control polygon prior are taken to be uniform in all the results reported below.

Each error term ∆(Πc(pi), Zc) in (7) determines the distance from the pro-
jection Πc(pi) of a point pi into view c, to the nearest point on the object
boundary Zc. In order to speed up this common calculation, we pre-calculate a
lookup table for ∆ by means of the well known distance transform to obtain a
Chamfer image [22]. Each pixel in a Chamfer image contains the distance from
this pixel to the nearest point on the segmented curve Zc in view c. Calculating
the Chamfer images has to be done only once and runs in linear time. In this
way, we trade memory usage for computational speed.

The outlines of the shards were automatically segmented as foreground and
background classes using a Markov random field (MRF) approach. To offset the
analytical intractability associated with MRFs, we employed Gibbs sampling to
approximate the posterior probability P (Z|I) of the outlines Z given the input
images I. The sampling is initialized by selecting the class with highest likelihood
for each pixel. Consequently, Gibbs sampling requires only a few samples to
achieve accurate segmentations.

The reprojection of the 3D curve in the images is done in the standard way [3].
We assume the cameras are described using a single radial distortion parameter
κ, focal lengths fx and fy, principal point (px, py), and skew s. The pose of a
camera is given by a rotation R and translation t. The projection of a 3D point
X into an image is then given by

Π(X) = D(K[R|t], κ,X)

where K is the 3× 3 calibration matrix

K =

fx s px

fy py

1


and D is a function that models the radial distortion.

To minimize (7) given a specific tag configuration T , we use Levenberg-
Marquardt non-linear optimization. To obtain the derivative ∂E

∂Θ0
of the error
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function E with respect to the original control points Θ0, we apply the chain
rule to combine the derivatives of the camera projections and the derivative S
from equation 2 on page 4 of the subdivision curve with respect to the original
control points. Implementing the chain rule involves a pointwise multiplication
of the projected curve derivatives with the Chamfer image gradients, which are
estimated by convolution with a Gaussian derivative mask.

6 Results
We illustrate our approach on two sets of pot-shard images, shown in Figure
4. The shards were placed on a calibration pattern, which allowed us to easily
optimize for the camera calibration parameters. Six images for the first pot shard
and four images for the second were used for curve fitting, all of which are taken
from about the same angle from different sides of the shard. Two of those views
are shown in columns (a) and (b) of Figure 4. The images in column (c) were
not used for fitting and serve as verification views. They are informative, since
they are taken at a much lower angle than all other images. The shard images
were automatically segmented by an MRF approach, as described in Section 5.
Figure 1 shows two such segmentations overlayed on the corresponding shard
images.

The fitting process starts with a circular configuration of a small number of
control points in a plane parallel to the ground plane, as shown in the first row
of Figure 4. Each proposal for the Markov Chain consists of a random move as
described in Section 4.1, followed by non-linear optimization of the control point
locations. The move can either introduce a new control point, delete an existing
one, or change the tag configuration by inverting each tag with probability 1

n .
For evaluation of the error function, the curve is subdivided four times before
the limit positions of the points are calculated using the evaluation mask.

After only five iterations, as shown in the second row of Figure 4, the subdivi-
sion curve adapted pretty well to the boundary, but the number of control points
is still too small and the tagging is wrong. After 250 iterations the number of con-
trol points and the tagging configuration both adapted to fit the shard boundary
well. Note that we sample from the posterior distribution, and the number of
control points and the tagging configuration never converge to a single value.

The algorithm finds a suitable number of control points independent of the
initial number, as can be seen in Figure 5(a), where this number is plotted
over time. Independent of the initial number of control points, the algorithm
converges quickly to a “optimal” number that is influenced by the curve itself
and the variance of the measurements.

The diagram in Figure 5(a) shows nicely the burn-in phase of the Markov
chain. In what follows, the posterior distribution is determined by throwing
away the first 500 of the 1500 samples to make the result independent of the
initialization. 1500 samples seem sufficient, an evaluation of 9000 samples did
not show a significant change in results.

One example of a marginal distribution that can be approximated from these
samples is the number of control points that are needed to fit the curve well, as
shown in Figure 5(b).
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(a) (b) (c)

Fig. 4. Results are shown for two pot shards. Projections of the control points are
drawn as yellow ’+’ for untagged and yellow ’×’ for tagged ones, and the corresponding
subdivision curve is drawn in white. Six views are used for the fitting process of the
first shard, while only four are used for the second shard. In both cases, two of those
are shown in columns (a) and (b). The third column (c) shows a view that is not used
for fitting and is taken from a lower angle than all other images.
The first row shows the projections of the initial control points and the corresponding
3D subdivision curve on images of the first shard. The second row shows results after
five iterations (error: 9.8 · 102). The third row is sample number 250 (error: 4.3 · 102).
The last row is the result for the second shard after 250 samples.
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Fig. 5. (a) Number of control points during the burn-in phase. The lower curve starts
with six control points, the upper one with 14. (b) Probability over different numbers
of control points after burn-in phase.

7 Conclusion

We investigated modeling piecewise smooth curves with tagged subdivision curves
that provide a simple and flexible representation. The parameters of these curves
were determined by a Rao-Blackwellized sampler, in which the optimal locations
of the control points were integrated out and determined by non-linear optimiza-
tion, and only the distribution over the number of control points and the tag
configurations was sampled over.

This method was successfully applied to 3D curve reconstruction from mul-
tiple images, as illustrated in the results section. These results were obtained in
automated fashion, using an MRF-based segmentation approach to automati-
cally segment the images with a known calibration background. Then, starting
from an initial circular distribution of the control points, the algorithm approx-
imated the object boundary well within a small number of sampling steps.

It would be of interest to more closely examine the quality of the Gaussian
assumption made in the Rao-Blackwellization step. One way to validate this
assumption is by MCMC sampling over the control point locations for a given
tag configuration. Also, on the image processing side, there are some problems
with double shard boundaries and occluding contours that need to be resolved
in order to create a robust, automated system.

We would like to connect our 3D curve reconstruction methods with a com-
plete “broken-pot” reconstruction such as described in [2]. Comparing features of
boundaries from different shards could be used for reconstruction of archaeolog-
ical artifacts, possibly in connection with other features, like texture and surface
curvature, as suggested in [1]. Finally, it is our hope that the general method-
ology described here can be successfully applied in other discrete-continuous
reconstruction settings.
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