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Abstract— Layered hybrid controllers typically include a
planner at the top level with reactive control at the lower
levels. The planner considers the state of the robot in a
global context. The low-level controllers consider only the local
environment of the robot and are able to operate at a high
frequency to ensure the safety of the robot. Also, it is often
the case that the low-level controllers consider more aspects of
the robot’s state (e.g. kinematic constraints) than the planner.
The consideration of such constraints at the planning level
would prohibitively increase the state space the planner must
consider and, accordingly, its running time and complexity. In
this paper, we investigate how we can take advantage at the
planning level of domain knowledge encapsulated in the lower
level controllers, and we introduce a feedback mechanism that
enables low-level controllers to influence the high-level planner.

I. INTRODUCTION

Over the past decades, a canonical, two-layer control
architecture has emerged for solving a number of mobile
robot navigation tasks [2], [6], [8], as is illustrated in Fig. 1.
In contrast to this canonical architecture, we, in this paper,
introduce a novel approach for allowing feedback informa-
tion to flow “backwards”, i.e. from the controllers to the
map. In fact, we will let a veto mechanism (which blocks
unsafe directions for the robot) trigger feedback signals to
the deliberative layer.

This feedback, depicted in Fig. 1, represents a new path-
way for information flow in the layered architecture. In the
standard architecture, information passes from the repository
of map-based data to the controllers. Our architecture, how-
ever, is bidirectional, adding the ability of the controllers to
pass information back into the global map. Hence, this paper
describes a framework that simultaneously controls the robot
and maps the environment.

The standard two-level architecture is employed in
robotics applications for two reasons. First, the controllers
must operate on a short time scale in order to guarantee
that the robot is kept in a safe and allowable state. By
decoupling the controllers from the mapping and planning
processes, the deliberative layer is afforded more flexibility
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Fig. 1. Depicted is the Standard Hybrid Control System Block Diagram
(without the thick arrow) and the new, Proposed Block Diagram (with the
thick arrow) allowing for information to flow backwards between the two
layers.

in terms of cycle regularity and frame rate. Second, from a
complexity management point-of-view, the map is typically
planar, i.e. contains a 2DOF description of the environment,
while the controllers (which operate on a smaller spatial
scale) can take the full kinematics and dynamics of the
robot into consideration. For example, yaw, pitch and roll
can be considered together with position, resulting in a
higher dimensional configuration space. However, the plan-
ning process can barely keep up with real-time constraints
in a planar world, and any attempt to plan paths through
the full configuration space would be infeasible. As such we
propose to project high-dimensional “obstacles” detected at
the controller-level into the planar map.

Our overall approach is devised as follows. A global
path planner continually re-plans based on updated sensory
input incorporated into a global map and passes the path
to the low-level controllers. We suggest the use of an
“optimistic” planner, where the configuration space of the
robot is reduced slightly, making the planner’s conception
of the robot holonomic. The controllers, on the other hand,
are able to operate on a precise and accurate model of the
robot, and with the corresponding configuration space make
better informed decisions about what local regions are better
to travel over.
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II. RELATED WORK: DYNAMIC WINDOWS AND
CONFIGURATION SPACES

The dynamic window approach (DWA) is a method for
accounting for the robot’s velocity and acceleration capa-
bility in a reactive-layer framework [4], [5]. This approach
considers a short time window and, using knowledge of
the robot’s current translational and rotational speed and
maximum translational and rotational accelerations, a kind
of velocity configuration space is computed. During this
brief time period, the robot considers short arcs of constant
curvature. Essentially, the DWA is a low-level controller
that, as such, could be incorporated into the reactive layer
described in this paper.

In [3], the authors describe a method of using the DWA
in combination with a local objective function and partial
global path planning. This approach is attractive because it
directly addresses the need for global path (re)planning in
an unknown environment, but path planning is only done
on a limited portion of the entire global space. The major
difference described in this paper is that we provide a
mechanism for bidirectional communication between any
global path planner (A∗, D∗, etc) and any suite of low-level
controllers (possibly including DWA).

Central to the work in this paper is that different layers in
a hybrid control architecture can use different configuration
spaces. In fact, the configuration space is a geometric encod-
ing of of all achievable poses, defined at a certain level of
abstraction, with respect to the robot’s kinematic constraints
and, possibly, with respect to external constraints (i.e. obsta-
cles). Changing the footprint of the robot necessarily changes
the configuration space of the robot, as such a change forces
the robot into a different set of configurations.

In order to reduce the computational burden associated
with the navigation problem, the map-based planning layer
uses a two-dimensional representation of the robot, which
idealizes the robot’s footprint as a circle with a diameter
equal to the width of the robot at the drive wheels (Fig. 2(b)).
This simplification of the configuration space is valid as long
as the robot is driving straight ahead, but underestimates the
size of the robot as it turns, especially as it turns in place.
In fact, because of the choice of a circle as the idealized
footprint, rotational kinematics are not taken into account at
all. The effect is that the planning layer is “optimistic” about
the robot’s capabilities

Because the low-level control layer is working over a
smaller spatial and temporal window, this can afford to use
the full configuration space (Fig. 2(c)). (In other words,
in evaluating the robot’s kinematic constraints, one needs
the robot’s x and y Euclidean coordinates, as well as its
orientation, θ.) This representation reflects the robot’s actual
kinematics and provides an accurate or even “pessimistic”
(as a margin of safety is commonly added to the model of
the robot) evaluation of the robot’s capabilities.

An argument could be made that the planning layer
could simply use a pessimistic over-estimate of the robot’s
footprint (perhaps a circle circumscribing the robot’s actual
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Fig. 2. Footprints used for the LAGR robot. (a) A diagram of the robot
(pointed up) and its center of rotation. (b) The “optimistic” footprint used
by the planning process. (c) The “pessimistic”/accurate footprint used by
the low-level controllers.

footprint), always planning paths with wide safety margins.
We find two problems with this strategy: First, it is possible
that no solution exists for the pessimistic planner, when
an accurate representation of the robot’s kinematics would
find a path. Second, especially when working with visual
sensors, sensory data is less accurate far away from the robot.
Using an optimistic planner effectively allows the sensory
data a margin of error before closing off any path. While
a pessimistic planner would plan around these borderline
cases, an optimistic planner would bring the robot closer,
allowing for better sensory input. It is this later problem –
of reconciling an optimistic planner with the robot’s true
capabilities – that this work aims to address.

III. MAPPING, PLANNING, AND CONTROL

In this section, we briefly describe our robot platform,
system integration, and planning and control tools. A more
complete description of this system is provided in [12]
and [14].

A. The LAGR Setup

The test bed for this paper’s experiments is the LAGR
robot. Learning Applied to Ground Robots (LAGR) is a
DARPA-funded project with the goal “to develop a new
generation of learned perception and control algorithms for
autonomous ground vehicles, and to integrate these learned
algorithms with a highly capable robotic ground vehicle” [1].

Fig. 3. The LAGR Robot.
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The LAGR robot, depicted in Fig. 3, possesses four color
cameras, a front bump switch, a Garmin GPS receiver, and an
inertial measurement unit. The cameras are paired together so
that each pair can provide stereo depth maps with a range of
6-10 meters. The robot’s turning axis is centered just behind
the front axle, with the rear unpowered wheels turning on
casters. Its physical dimensions are 90 cm in length, 60 cm
in width, and 60 cm in height, with a weight of about 90 kg.

Mapping, control and planning processes are run on a
single Linux machine (1.4 GHz Pentium-M, 1 GB RAM,
RedHat 9), the planning computer. There are three similar
computers connected via Ethernet: 1 each for camera/stereo
processing (called eye computers), and 1 for lower-level
functions (e.g. radio-controller interfacing, GPS/IMU inte-
gration).

B. Map Processing
The two eye computers collect camera images, compute

stereo depth maps, and using the robot’s global position,
transform a local terrain map onto a global coordinate frame.
Then, this information is passed over Ethernet to the planning
computer. On the same machines, the camera images are used
to compute estimates of traversability of points in the global
frame, as described in [7]. Both processes run steadily at
4Hz.

The planning computer receives the two streams of stereo
and traversability information from both eye computers and
incorporates it into global maps of terrain and traversability.
This data is stored in grid cells of fixed size, with a resolution
of 0.1 m. Under the assumption that the newest information
is the most likely to be correct, previous information in a
grid cell is overwritten with the new.

A separate map also stores the locations where the robot
has encountered hits on its bumper, spikes in its motor
amperes, and detections of wheel slippage.

C. Motion Planning
Incremental motion planning is executed over the global

maps described above. The planning algorithm we use is
either an A∗-type planner, or the combinatorial planner
we described in [15]. However, for the purposes of this
discussion, the particular planner to be used is of no real
consequence. The mapper passes on points which have been
modified by the stereo/traversability/etc processes to the
planner, which incrementally updates its planned path.

D. Motion Control
Reactive control is implemented in a manner inspired

by the DAMN [9] architecture. In this implementation,
individual controllers, representing specific interests related
to the robot’s overall objective, are given an allotment of
“votes” which they may cast for or against actions that will
work to achieve their goals. An arbitrator sums the votes,
choosing the action with highest tally. Similar implemen-
tations have been successfully deployed in several robotic
navigation tasks [13], [10].

In our implementation, the actions evaluated are straight-
line paths, at a resolution of 5 degrees around the robot. The

controllers take the kinematic constraints of the robot into
account by evaluating the effect of first turning to the desired
direction (effecting the rotational component of the motor
command) and then traveling in that direction (effecting the
translational component of the motor command). This turns
out to be a reasonable approximation of the robot’s low-
level controller, which implements a relatively aggressive
rotational gain. The following voting controllers are used:

• follow-plan – casts positive votes in the direction of
the next point on a list of waypoints provided by the
planner. Votes are distributed according to a Gaussian
function centered on the direction of next waypoint.

• avoid-stereo-obstacles – casts negative votes in the
direction of any obstacles sensed by the stereo vision
system. Votes are distributed according to a sum of
Gaussian functions, each centered on a sensed obstacle.

• avoid-color-obstacles – casts negative votes in the
direction of any obstacles sensed by the traversability
(i.e. color-based) vision system. Votes are distributed
according to a sum of Gaussian functions, each centered
on a sensed obstacle.

One potential pitfall of arbitration over votes is misallo-
cation of each controller’s allotment of votes. If controllers’
voting weights are not properly balanced, one controller may
dominate the arbitration, either preventing the robot from
making progress to higher-level goals or allowing the robot
into undesirable states. Because this weighting is typically
an empirical process and dependent on implementation and
environment, we have added robustness in a manner similar
to [11] by supplementing the voting scheme with “vetoes”.
Each controller, in addition to its allotment of votes is given
the option to veto each of the available actions. The arbitrator
respects the vetoes by ignoring actions that have been vetoed
by at least one controller, regardless of how many votes those
actions have received.

The strategy is that actions which are deemed to put the
robot in imminent danger should be vetoed. What qualifies
as “imminent danger” must be decided on a controller-
by-controller basis. Because the burden is only to identify
dangerous paths over a short distance, the full dynamics of
the robot can be considered, including collision checking
of rotations necessary to achieve the desired orientation and
the feasibility of various maneuvers given the slope of the
terrain.

Like the voting controllers, these vetoing controllers use a
set of straight-line paths at 5-degree resolution as the action
set:

• veto-stereo-obstacles – casts vetoes against any direc-
tion which will bring the robot into a collision with a
stereo vision-sensed obstacle within one meter of the
robot’s current position, taking into account the robot’s
configuration space.

• veto-color-obstacles – casts vetoes against any direc-
tion which will bring the robot into a collision with
a color vision-sensed obstacle within one meter of the
robot’s current position, taking into account the robot’s
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configuration space.
While the specific control mechanism is certainly an issue

open for debate and research, it is not a central component
to this work. In fact, the point should be made that any
reactive controller (e.g. probabilistic voting, motor schemas)
could be adapted to work in this architecture. The specific
implementation presented here is given only as an example of
how a system could be integrated into the larger architecture.

(a) (b)

(c) (d)

(e)

Fig. 4. A graphical representation of the voting scheme employed to
navigate the robot. The x axis of each plot represents an ego-centric angular
distribution of possible paths around the robot in the range (−Π, +Π ], with
0 being in front of the robot. The y-axis represents the relative preference of
each path, according to the respective controller. Vetoes are drawn as large
negative values. The last plot represents the sum of the votes provided by
all the controllers. The largest non-vetoed value is chosen for action by the
robot. In this example, the first behavior resists a stereo-perceived obstacles
to the front and left of the robot. A color-based obstacle is perceived to the
left. The plan tells the robot to go backwards, and the left is vetoed as a
result of stereo obstacles. The tallied votes tell the robot to go to the right.

IV. FEEDBACK FROM CONTROLLER TO MAPPER

The main contribution of this paper is an architecture
where controllers drive the robot based on maps, and the
maps are informed (in part) by the controllers. The resulting
bidirectional information flow between operational layers

thus consists of the standard map-to-controller flow as well as
the novel controller-to-map flow (see Fig. 1). Conceptually,
this latter feedback mechanism from the controllers to the
map, is executed by feeding back points to the map which
correspond to conflict between the deliberative and reactive
controllers.

Refer to Fig. 5; two obstacles leave a small opening, allow-
ing a feasible path to pass between, given that the planner
assumes some relatively optimistic configuration space for
the robot. However, the controllers, which consider higher-
dimensional kinematic/dynamical constraints do not allow
this action. In the the proposed architecture, the controllers
then detect this conflict and inform the map that the point
(highlighted in the figure) should be marked as intraversable.

The points placed into the map can be set conservatively
small, blocking only a small region in the map. This may then
not block the passage through the offending region in a single
step, but multiple planning/controller cycles through this
region will place several points in the map, and eventually
cover the kinematic obstruction.

Planned Path

Obstacles

Vetos

Kinematic
Obstruction

Robot

Fig. 5. Illustration of basic operation of the proposed framework.

V. EXPERIMENTAL RESULTS

Robot Width
Opening Width

Fig. 7. Opening in Cul-de-sac.

In order to highlight the benefit associated with the pro-
posed method and to illustrate its practical usefulness, we
ran a series of controlled experiments in an outdoor terrain
populated by small pine trees, fallen logs and other vegetative
obstacles, as seen in Fig. 6. In the following subsections, we
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LAGR robot Small openingCul-de-sac exit

Fig. 6. Overview of Experiment Site.

summarize the outcomes of these experiments and highlight
the differences in performance.

The particular experimental setup that we considered was
the following: The robot was started up in the interior of a
cul-de-sac with one small opening along one of its walls.
This opening was wide enough to tell the aggressive planner
that a feasible path exists through the opening. However, the
reactive controllers will find the opening to be too narrow for
safe passage, and as a result, they will veto any attempt to
drive through it. For each experiment, the robot was started
with no a priori information about the environment except
its relative position to the global goal.

A. Planner Only

In the first run, only the planner was affecting the motion
of the robot, and the only active low-level controller was a
path-following controller. As was to be expected, the planner
found the opening and tried to push through (Fig. 7), with
the result that the robot crashed into one of the logs defining
the boundary of the opening (Fig. 8). It should be noted that
this problem can be remedied by making the planner less
aggressive and allowing for a larger, explicit safety-footprint.
However, one of the basic ideas behind the system framework
is to let the planner be aggressive and optimistic, and let the
reactive low-level controllers ensure safety and robustness if
the planned path is deemed unsafe.

B. Reactive Controllers Only

In the second run, only the reactive, local controllers were
active, and no global plan was provided from the planner.
This control strategy exhibited the well-known and expected
behavior of getting stuck in the cul-de-sac without any global
information (aside from the heading to the goal) to guide
the robot (Fig. 9). It should be noted though that the safety
controller did in fact veto the opening that the planner-only
controller tried to push through.

C. Planner Affecting the Reactive Controllers

In this scenario, there exists the potential for planning
out of the cul-de-sac as well as proper maintenance of safe
operation, but since the planner had no way of knowing
that the opening was too narrow, it insisted on the robot

Fig. 8. The map, trajectory and plan resulting from an experiment using
only a planner. Because the planner is too optimistic for the configuration
space of the physical robot, the robot collides with obstacles while trying
to navigate through the narrow opening.

Free Space

Obstacles

Unexplored Space

Robot
Trajectory

Opening

Fig. 9. The map and trajectory resulting from an experiment using only
reactive controllers. The safety-minded controllers kept the robot a safe
distance from all obstacles, but did not allow progress to the goal location.

driving through the opening. Meanwhile the safety-controller
vetoed that action. As a result, the robot did not exhibit any
improved behavior over the reactive-controller-only situation
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(see Fig. 10). However, if the robot would have started
outside the cul-de-sac, it is possible (but by no means
guaranteed) that it would have eventually planned its way
of the area based on the stored map information.

Planned pathFree Space

Obstacles

Unexplored Space
Robot

Trajectory

Opening

Fig. 10. The map, trajectory and plan resulting from an experiment using a
planner which influences reactive controllers. The optimistic planner guides
the robot toward the narrow opening, while the safety-minded controllers
prevent the robot from entering. The result is that the robot loiters around
the mouth of the opening.

D. Feedback From the Controllers to the Planner

Here, the planner once again tried to force the robot
through the opening in the cul-de-sac wall. However, the
safety-controller vetoed this action as well as encoded this
veto through the feedback mechanism as an obstacle in the
map, and the planner then re-planned its course of action.
As seen in Fig. 11, after a bit of exploring of the cul-de-sac,
the robot decided that there was no way forward through the
cul-de-sac, and a path was planned out from the area, which
enabled the robot to continue its mission.

Planned path

Free Space

Obstacles

Unexplored Space

Robot
Trajectory

Kinematic
Obstruction

Fig. 11. The map, trajectory and plan resulting from an experiment
using a planner which influences reactive controllers with feedback back
to the global map. The planner initially guides the robot toward the narrow
opening, but the reactive controllers veto this action, noting that action in
the global map. Using this information, the planner finds a path through the
only safe opening in the cul-de-sac.

VI. CONCLUSIONS

In this paper, we argue that it is beneficial to introduce a
feedback mechanism from the low-level controllers to the

high-level mapping and planning processes. In particular,
based on the performance of the low-level controllers (and
their interaction with the environment), kinematic obstruc-
tions are encoded in the global map even though they may
not be perceived as obstacles by the planner. We argue that
this is beneficial for the following reasons:
• The low-level controllers typically operate at a shorter

time scale than the planner. This implies that the ob-
structions can be detected sooner by the controllers and,
as such, they can notify the planner directly by short-
cutting the time-consuming perception processing step.

• Due to the computational burden of global path plan-
ning, maps are typically planar (or at least low-
dimensional), which means that high DOF kinematics,
dynamic constraints, or complex configuration spaces
cannot be handled directly. Through the feedback from
the controller to the mapper/planner they can, however,
be incorporated in the lower-dimensional descriptions
of the environment.

We illustrate this view through an experiment in which
a robot is trying to negotiate a cul-de-sac. This experiment
shows that the introduction of feedback between layers has
a beneficial impact on the robot performance.
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