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Abstract— Social insects have long served as inspiration to
the multi-agent community. In this paper, we take the opposite
approach and see if tools from decentralized, networked control
can be used to predict observed, biological behaviors. In
particular, we study the silkworm moth, the Bombyx Mori, and
we model these moths as first-order networks in which the male-
male interactions are defined through a proximity graph. The
male-female interactions are given by a broadcast protocol in
which the females that are releasing pheromones are visible to
all the males. Using barrier certificates, the resulting, switched
network is analyzed and it is shown that the males are attracted
to and trapped in a region defined by the female moths, as is
the case in actual silkworm moths as well.

I. INTRODUCTION

The research on multi-agent robotics and decentralized,

networked control has drawn significant inspiration from

interaction-rules in social animals and insects [2], [5], [6]. In

particular, the widely used nearest-neighbor-based interaction

rules, used for example for formation control [4], [9], [12],

consensus [8], [16], and coverage control [1], [11], has a

direct biological counterpart, as pointed out in [2]. In this

paper, we reverse this direction, i.e. we draw inspiration

from recent results on common Lyapunov functions for

switched systems, barrier certificates, and networked control

to understand particular swarming phenomena observed in

the silkworm moth Bombyx Mori.

Silkworm moths are known to swarm in tight geometrical

configurations, such as vertical cylindrical structures. This is

caused by the females’ intermittent releasing of a pheromone

- bombykol - to attract male moths. This pheromone in

essence makes the females act as attractors to the males, but

the intermittent nature of the release produces an inherently

switched system. Moreover, the spatial distribution of the

females imply that the males are attracted to a general area

rather than to a particular point, which is what is believed

to cause their characteristic swarming.

In this paper we try and produce a model that is as simple

as possible yet expressive enough to capture the relevant

biological phenomena under consideration. In particular, we

need to be able to model the intermittent nature of the

pheromone release and their effect on the male moths with

sufficient fidelity that as a result, the males are provably
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attracted to the general area in which the females reside.

At the same time, we want the model to be simple, and,

as such, amenable to analysis. What we will propose is

a first order model of the of the male moths’ dynamics,

in combination with a immediate broadcast protocol for

pheromone propagation. As a result, we will arrive at a

model that can predict the attraction to the domain around the

females, without providing any clues as to what the males’

behaviors might be once inside that region. These claims

are supported both by the theoretical developments and by

extensive simulations.

The outline of this paper is as follows: In Section II, we

review some basic facts from the study of social insects,

with particular focus on their communication strategies.

We discuss the manner in which the silkworm moths use

such strategies and, in Section III, we define the network

characteristics that correspond to these interaction and com-

munication strategies. In Section IV, the derivations are

carried out and we show that the males are attracted to

an area defined by the intermittently pheromone releasing

female moths. Some simulation results are given in Section

V, and the conclusions in Section VI.

II. SOCIAL INSECTS

Large-scale biological systems, i.e. systems that consist

of a large number of interacting individuals, have provided

guidance to the multi-agent community. This in particular

true when studying networked, decentralized control systems

in which one typically wants to model and infer global prop-

erties from the specifications of the individual components

and their inter-connectivity [13]. One particular area where

this guidance has proven useful is when trying to characterize

the role of communications between agents. In fact, it has

long been established that communications are vital for social

insects, where tasks such as division of labor, foraging for

food, and population control are crucial to their existence.

(For a representative sample, see [2], [18].)

One instance in which communications are crucial for the

survival of the social insects is during mating. Many species

form swarm clouds to increase their chances of locating

partners during their reproductive phase. These swarm clouds

may contain up to thousands of insects at a time, and the

three major methods of long-range communication to attract

mates and initiate a swarm are acoustic, visual, and olfactory

signaling, as discussed in [17].

Grasshoppers and crickets use acoustic signaling through

chirps and songs while orchid bees and some butterflies use

visual signaling by moving their bodies and performing a
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dance. These communication strategies have their disadvan-

tages. For example, visual signals have ”physical barriers”

and along with acoustic signals, they expose the signaling

insect to predators. Thus, initiating a swarm in such manners

presents a risk.

In contrast to this, insects that use olfactory signaling

through pheromones to attract partners avoid these problems

since most predators do not have the specialized receptors

required to identify the scents. Moreover, in the rare case

that such predators do appear, the pheromones are usually

exuded in such small quantities that predators cannot track

down the origin of the scents. The particular social, swarming

insect that we focus on in this paper is the silk moth Bombyx

Mori, that uses an intermittent pheromone release strategy

for long-range communications [7]. The particulars of this

strategy, together with a mathematical model of the swarming

silkwork moth, is the topic of the next section.

III. NETWORK CHARACTERISTICS

A. Network Topology

From the preceding paragraphs, it is clear that the net-

work model has to be heterogeneous in the sense that the

agents (network nodes) will be divided up into two classes,

corresponding to male and female moths, respectively. For

this, we assume that the swarm contains Nm male moths

and N f female moths, with the corresponding index sets

Nm = {1, . . . ,Nm}, N f = {1, . . . ,N f }. (Here we have used

the convention that the superscripts m and f refer to ”male”

and ”female” respectively, which we will continue to do

throughout this paper). We moreover assume that the moths’

states take on values in a d-dimensional space (in a kinematic

moth model, d would typically be 3), i.e. that xm
i ∈R

d , ∀ i ∈

Nm and x
f
i ∈ R

d , ∀ i ∈ N f .

In order to produce a simple yet sufficiently expressive

model of the inter-moth interactions, we first need to discuss

some known facts about how communications occur in real

silkworm moths. In general, a moth can determine the gender

of another moth by looking at its abdomen, i.e. if the moths

are close enough, they can determine if a neighboring moth

is male or female. This visual communication strategy is,

however, negligible at long ranges, especially during the

mating process. In fact, when male moths detect pheromones

in the air, they start following the pheromone trail and when

they see other moths, they can immediately identify males

without looking at their abdomen, since they will not ”smell”

right [17].

In the silkworm moths, only the females release

pheromones as opposed to other insects that employ

attractant-pheromones. For example, the male lovebugs re-

lease pheromones to create a swarm but once the swarm is

initiated, they stop releasing pheromones and the males dart

across the swarm in hopes of flying into females and carrying

them to mate in vegetation below the swarm. In the process,

males often fly into other males and this is avoided in moths

since female moths keep releasing pheromones throughout

the swarming process until they locate a mate.

Fig. 1. Males, small circles, within the critical distance ∆ of each other
form an edge in the interaction graph. Moreover, all males form edges
with females releasing pheromones (large, black), whereas the females not
releasing pheromones (large, gray) are disconnected from the network.

Due to the limited interaction ranges over which the

moths can detect each other in the pheromone-free case,

we can define the instantaneous, male proximity graph

Gm(t) = Nm ×Em(t), where, for two distinct moths (i, j) ∈
Em(t) ⇔ ‖xm

i (t)− xm
j (t)‖ ≤ ∆, for some critical interaction

distance ∆. This construction ensures that the interaction

graph is simple (no self-loops) and undirected. In fact, it is

a so-called ∆-disk proximity graph, as defined for example

in [1], [9].

Since it is costly for the females to be releasing

pheromones, the females typically only release pheromones

in small bursts. In our model, we let the females that

are releasing pheromones at a given time t be denoted by

N f (t) ⊆ N f (with cardinality N f (t)) as a subset of the total

female moths in the swarm. This also brings us to our first

assumption:

Assumption 1: N f (t) 6= /0, ∀ t.

Thus at any given time t, there is at least one female moth

releasing pheromones.

Since the olfactory communication strategy acts at much

greater ranges and at fairly high-speeds, we assume that

the pheromones act as a broadcast strategy that enables

each male to immediately detect the relative displacement

of a female moth in N f (t). As a result, we define the total

interaction graph as G(t) = N(t)×E(t), where the node set

is given by N(t) = Nm ∪ (Nm + N f (t)), and the edge set

is defined through (i, j) ∈ E(t) if and only if one of the

following three conditions hold

(i, j) ∈ Em(t)
i ∈ Nm, j ∈ Nm + N f (t)
j ∈ Nm, i ∈ Nm + N f (t).

The interpretation behind this somewhat dense formulation

is that an edge exists between nodes in the total interaction

graph if and only if the nodes are both corresponding to

male moths within a distance ∆ of each other or exactly one

of the nodes corresponds to a female moth that is releasing

pheromones.

The main idea now is to apply a decentralized control

strategy over the set of male moths. This should moreover be

done in such a way that the individual moths are governed by

a control law that is only allowed to contain references to the

relative displacements between the moth and its neighboring

moths in the interaction graph, as seen in Figure 1.
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B. Moth Dynamics

One explicit aim with this paper is to tap in to the

large multi-agent literature on decentralized coordination in

order to understand biological phenomena. Even though there

are scant biological evidence that the moths execute linear

control strategies, we, for the sake of analytical simplicity,

assume that this is the case. And, we leave the biological

reasonableness of this model to a further endeavor and take

the point-of-view that the model should be judged based on

the results it generates. We have already established that the

male moths will only detect other male moths when they are

within a certain critical distance of each other while female

moths releasing pheromones are always visible to them.

Thus, we will assume that the nowadays highly widespread

linear consensus equation is used for defining the motion of

the male moths as

Assumption 2:

ẋi = − ∑
j | (i, j)∈E(t)

(xi − x j), ∀i ∈ Nm,

where we use the convention that xi = xm
i , ∀ i ∈ Nm and

xi = x
f
i−Nm , ∀ i∈Nm +N f (t). Under this allocation of indices,

we have that the first Nm xi’s correspond to male moths, and

the remaining N f to female moths. And, to make matters

a little bit less complicated, we will also assume that the

female moths are stationary during the swarming process.

Assumption 3:

ẋi = 0, ∀ i ∈ Nm + N f (t).
As a result of this assumption, it is expected that the male

moths will end up close to the stationary, female moths by

following their (intermittent) pheromone trails. This is the

topic of the next section.

IV. ANALYSIS OF SILKWORM MOTH SWARMS

A. Barrier Certificates and Attraction Functions

Since the aim of this paper is, in part, to show that the

simple, first-order network model of the silkworm moths is

in fact rich enough to predict the known behavior that the

moths exhibits, we must show that they do in fact converge

to an appropriate, geometric shape. For this we first need

to establish convergence to a specific region, and then show

that this region in fact acts as a trapping region, i.e. once

inside, they never leave. For this, we first recall some results

involving barrier certificates.

Barrier certificates are typically used to show that a certain

region is a trapping region [14], but we also need to establish

attraction. For this, we need to slightly modify the results in

[14] and we do this for a general system whose state evolves

in R
n. In fact, if there exists a continuously differentiable,

radially unbounded function V : R
n →R and c ∈R such that

V (0) = 0 and V > 0 ∀ x ∈ R
n\{0} and V̇ < 0, ∀x ∈ C(c),

where C(c) = {x ∈ R
n | V (x) ≥ c} then

(i) x(0) ∈C(c) ⇒ x(T ) /∈C(c) for some T > 0

(ii) x(0) /∈C(c) ⇒ x(t) /∈C(c), ∀t > 0.

To see that state trajectories, starting in set C(c), enter

C(c)’s complement (denoted by C′(c)) after some finite time,

one just have to follow Lyapunov’s stability theorem, e.g.

[10]. Let us choose a level set ∂C(c1), with c1 ≥ c, as

∂C(c1) = {x ∈ R
n|V (x) = c1}. Hence, ∂C(c1) ⊂ C(c) and

consequently, V̇ < 0 in the entire set ∂C(c1). As a result,

a state trajectory that crosses the level surface V (x) = c1

advances to a set ∂C(c2) for some c2 < c1.

As long as V̇ < 0 the trajectory moves from one level set to

another. Therefore, if a state x(t) ∈C(c), there exists a T > 0

such that x(t + T ) /∈C(c), thus establishing the attraction.

In [14], [15] the existence of a so-called barrier certificate

guarantees that when the state space is separated into ”safe”

and ”unsafe” regions, then trajectories originating in the set

of safe states never enter the unsafe regions. We can now

apply exactly the same thinking, separating the state space

into the disjoint regions C(c) and C′(c), and defining the

barrier certificate B(x) as

B(x) = V (x)− c

The fact that B(x) is indeed a barrier certificate since it

satisfies the following conditions:

B(x) ≥ 0 ∀ x ∈C(c)
B(x) < 0 ∀ x ∈C′(c)
∂B
∂x

(x) f (x) < 0, ∀x ∈ ∂C(c),

where ẋ = f (x). And, according to Theorem(1) in [14], C′(c)
will thus act as a trapping region, thus establishing the

two properties needed to characterize the behavior of the

silkworm moths.

However, what remains to be done is of course to find

such a function V (x) together with the corresponding c for

the actual moth dynamics. And, as the network topology is

changing, we need to find V and c that are common to all

possible network topologies [3].

B. 1D-Swarms

For the sake of notational clarity, we first start with the

situation in which the moths are all evolving in R, i.e. they

are one-dimensional. We then proceed to the general case in

which they evolve in R
d .

The first problem is to find a suitable candidate function

for V in the previous section. And, since there is no reason

to believe that the male moths will end up close to the

origin, we instead focus our attention on the centroid of all

the female moths. We let ρ f denote this (one-dimensional)

centroid, i.e.

ρ f =
1

N f

N f

∑
i=1

x
f
i .

It should be noted that the system dynamics will undergo

discrete transitions when male moths enter or leave each

others proximity disks, or when female moths initiate or

terminate a pheromone release phase. As such, we obtain a

switched dynamical system. And, one technique for proving

the stability of such systems is to try and find a common

Lyapunov function. In fact, as shown in [3], a switched

system is asymptotically stable for any possible switching

sequence if and only if there exists a common Lyapunov
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function. In our case, asymptotic stability is not what we

are after, but nonetheless, we need to find the appropriate

V that acts as an attraction-barrier certificate for all network

topologies.

For this, we define the continuously differentiable function

W : R
Nm

→ R as

W (xm(t)) =
1

2
‖xm(t)−1ρ f‖2,

then a promising candidate attraction-barrier certificate is

V (x) =
1

2
‖W (x)−

1

2
Nm(ρ f )2 ‖2 .

where xm = (xm
1 , . . . ,xm

Nm)T ∈ R
Nm

, and where 1 = (1, . . . ,1)T

is the vector with ones along each components.

We now get that

Ẇ (xm(t)) = 〈ẋm(t),xm(t)−1ρ f 〉,

but before we can tackle this expression, some comments

about the dynamics must be made. In fact, in the one-

dimensional case, the dynamics in Assumption 2 can be

rewritten as

ẋm(t) = −Lm(t)xm(t)+ N f (t)1ρ f (t),

where ρ f (t) is the centroid associated with the female moths

currently releasing pheromones. Moreover, this expression

comes from the graph Laplacian L(t) associated with the

total interaction graph G(t) as

L(t) =

[

Lm(t) −11T

−11T NmI

]

.

The reason that the graph Laplacian takes on this specific

form is that each male moth is assumed to be able to interact

with all female moths currently releasing pheromones. We

have furthermore made the assumption that the females do

not interact with each other (hence the NmI in the Laplacian)

but this assumption does not matter for the developments in

this paper. Moreover, under Assumption 1, we get that L(t)
is positive semidefinite, and, as shown in [9], Lm(t) (which

is not a graph Laplacian) is positive definite for all t.

This leads us to a formulation of the derivative of W as

Ẇ = 〈xm(t)−1ρ f ,−Lm(t)xm(t)+ N f (t)1ρ f (t)〉.

A further observation to make is that under the assumption

that each male moth can interact with every female moth

releasing pheromones, we observe that

Lm(t)1 = N f (t)1,

and hence

Ẇ = −〈xm(t)−1ρ f ,xm(t)−1ρ f (t)〉Lm(t),

where we have used the fact that Lm(t) is positive definite

to let it induce a norm. Now

Ẇ = −〈xm(t)−1ρ f +(1ρ f −1ρ f (t)),xm(t)−1ρ f 〉Lm(t)

= −‖xm(t)−1ρ f‖2
Lm(t) −〈xm(t)−1ρ f ,

1ρ f −1ρ f (t)〉Lm(t)

≤−‖xm(t)−1ρ f‖2
Lm(t) +‖xm(t)−1ρ f‖Lm(t)

‖1ρ f −1ρ f (t)‖Lm(t)

= −‖xm(t)−1ρ f‖Lm(t)(‖xm(t)−1ρ f‖Lm(t)

−‖1ρ f −1ρ f (t)‖Lm(t)).

In other words, Ẇ < 0 if

‖xm(t)−1ρ f‖Lm(t) > ‖1ρ f −1ρ f (t)‖Lm(t)

As a final step, we note that

‖1ρ f −1ρ f (t)‖2
Lm(t) = (ρ f 2

+ ρ f (t)
2
−2ρ f ρ f (t))1T Lm(t)1.

which in turn is equal to

NmN f (t)(ρ f 2
+ρ f (t)

2
−2ρ f ρ f (t))= NmN f (t)(ρ f −ρ f (t))2.

Notice that N f (t) ≤ N f , and that the distance from the

centroid to any centroid associated with a subset of female

moth positions is maximized by a single moth position,

denoted by f ⋆, where

f ⋆ = argmax
x

f
i

{(ρ f − x
f
i )2}.

Summarizing these observations, we get that Ẇ is decreas-

ing as long as

‖xm(t)−1ρ f‖2
Lm(t) > NmN f (ρ f − f ⋆)2.

This result involves the Lm(t) norm and to obtain a result

that holds for all topologies, we need to expand ‖xm(t)−
1ρ f‖2

Lm(t). It is in fact straightforward to show that

‖xm(t)−1ρ f‖2
Lm(t) ≥ NmN f (t)((xm

1 −ρ f )2 +(xm
2 −ρ f )2

+ . . .+(xm
Nm −ρ f )2).

If we now let xm
max maximize (xm

i −ρ f )2, ∀i ∈ Nm, i.e. if

xm
max is the male moth furthest away from the centroid of the

females, then,

NmN f (t)((xm
1 −ρ f )2 + (xm

2 −ρ f )2 + . . .+(xm
Nm −ρ f )2)

≥ NmN f (t)(xm
max −ρ f )2

≥ Nm(xm
max −ρ f )2.

Therefore, Ẇ < 0 and subsequently V̇ < 0 when (xm
max −

ρ f )2 > N f (ρ f − f ⋆)2.

Now, let us define the set S such that

S = {x ∈ R
Nm|(xm

max −ρ f )2 > N f (ρ f − f ⋆)2},

where we recall that xm
max is the male moth furthest away

from the centroid of the females, while f ⋆ is defined as f ⋆ =
argmax

x
f
i

{(ρ f − x
f
i )2}. It is clear that V̇ < 0 if x ∈ S, i.e. S

obeys the property:

S′ ⊆C′(d)
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for some choices of d. We can thus find the c required in

the previous section as

c = min{d ∈ R|S′ ⊆C′(d)}.

In other words, with this choice of V and c, we have

exactly the required properties from the previous section

needed to establish attraction as well as trapping. (For a

special case of these results, see [19],[20]).

C. In Higher Dimensions

For higher dimensions, we assume that the motion of the

male moths is still governed by the linear consensus equation

in each dimension, i.e.

ẋi,k = − ∑
j | (i, j)∈E(t)

(xi,k − x j,k), ∀ i ∈ Nm, k ∈ {1, . . . ,d}.

If we define the state z ∈ R
Nmd as zi =

(x1,i, . . . ,xNm,i)
T , ∀i ∈ {1, . . . ,d}, i.e. zi is a column

vector that contains all moth locations in the i − th

dimension, then the consensus equation can be rewritten as

żi = −L(t)zi, ∀ i ∈ {1, . . . ,d}.

Moreover, if we define the state x = (z1, . . . ,zd)
T then the

consensus equation can be expressed as

ẋm(t) = −Id ⊗Lm(t)xm(t)+ N f (t)ρ f (t)⊗1Nm

= (Id ⊗Lm(t))(−xm(t)+ (Id ⊗1Nm)ρ f (t)).

The centroid is given by

ρ f =
1

N f

N f

∑
i=1

x
f
i ,

and we now proceed in the same way as for the 1D case in

the previous section by letting W be given by

W =
1

2
‖xm(t)−ρ f ⊗1Nm‖2,

with the corresponding candidate attraction-barrier certificate

V being V (x) = 1
2
‖W (x)− 1

2
Nm(ρ f )2 ‖2 .

Now, Ẇ in the higher dimensions can be expressed as

Ẇ (xm(t)) = 〈ẋm(t),xm(t)−ρ f ⊗1Nm〉,

or, equivalently

Ẇ = 〈(Id ⊗Lm(t))(−xm(t)+ (Id ⊗1Nm)ρ f (t)),

xm(t)−ρ f ⊗1Nm〉.

As per the previous section, we again let a positive definite

matrix, in this case Id ⊗Lm(t), induce a norm

Ẇ = 〈−xm(t)+ (Id ⊗1Nm)ρ f (t),xm(t)−ρ f ⊗1Nm〉Id⊗Lm(t)

= −‖xm(t)− (Id ⊗1Nm)ρ f ‖Id⊗Lm(t)(‖xm(t)

−(Id ⊗1Nm)ρ f ‖Id⊗Lm(t) −‖(Id ⊗1Nm)ρ f

−Id ⊗1Nmρ f (t)‖Id⊗Lm(t).

We thus note that Ẇ < 0 if ‖xm(t) − (Id ⊗
1Nm)ρ f ‖Id⊗Lm(t) > ‖(Id ⊗ 1Nm)ρ f − Id ⊗ 1Nm ρ f (t)‖Id⊗Lm(t).

Furthermore, Ẇ is still decreasing as long as ‖xm(t)− (Id ⊗
1Nm)ρ f ‖2

Id⊗Lm(t) > ‖(Id ⊗1Nm)ρ f − Id ⊗1Nmρ f (t)‖2
Id⊗Lm(t).

Notice now that the term ‖(Id ⊗ 1Nm)ρ f − Id ⊗
1Nmρ f (t)‖2

Id⊗Lm(t) can be written as NmN f (t)‖ρ f −

ρ f (t)‖2 and that NmN f (t)‖ρ f − ρ f (t)‖2 is bounded

above by NmN f ‖ρ f − ρ f (t)‖2. Hence, if we let f ⋆ =
argmax

x
f
i

‖ρ f −ρ f (t)‖2, we have

NmN f (t)‖ρ f −ρ f (t)‖2 ≤ NmN f ‖ρ f − f ⋆‖2.

We note that ‖xm(t) − (Id ⊗ 1Nm)ρ f ‖2 is equal to

N f (t)‖xm−1ρ f‖2, and since NmN f (t)‖xm−1ρ f‖ is bounded

below by Nm‖xm
max − 1ρ f‖2, we can guarantee attraction

and trapping in arbitrary dimensions since Ẇ < 0 (and

consequently V̇ < 0) if

‖xm
max −1ρ f‖2 > N f ‖ρ f − f ⋆‖2,

where xmax is the male position that maximizes ‖xi −ρ f‖2.

V. SIMULATIONS

In Figure 3, a simulation is shown that illustrates how the

males moths eventually get trapped in a region defined by the

female moths. There are 30 males (small dot) and 4 females,

where the females that are currently releasing pheromones

have a ring around the dot. Moreover, the centroid of visible

females is denoted by an ’x’.

To illustrate the fact that we do not have asymptotic

stability to a point, we plot W as a function of time in

in Figure 2. From that figure, it is clear that W serves as

an attraction-barrier certificate in that it has a negative time

derivative only initially. In fact, from the figure we observe

that Ẇ > 0 around t = 200.

0 100 200 300 400 500 600
0.5

1

1.5

2

2.5

3

3.5

Time(s)

W Vs Time

Fig. 2. Plot of the function W(x) against time.

VI. CONCLUSIONS

In this paper, we model the silkworm moth, the Bombyx

Mori, as a first-order network in which the male-male

interactions are defined through a proximity graph. The male-

female interactions are given by a broadcast protocol in

which the females that are currently releasing pheromones
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(a) All four females are releasing pheromones.
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(b) Two females are releasing pheromones.
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(c) A single female is releasing pheromones.
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(d) Two females are releasing pheromones.

Fig. 3. A simulation is shown, where male moths are shown in as small dots, while females releasing pheromones are denoted with a circle around them,
and their centroid is denoted by a cross.

instantaneously are visible to the males. The resulting,

switched network is then analyzed using barrier certificate

tools. In fact, our aim was to show that with such a simple

model, the observed swarming phenomenon in which the

male moths end up around the females moths can in fact be

predicted. Simulation results illustrate these results further.
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