
Automatic Formation Deployment of Decentralized Heterogeneous

Multi-Robot Networks with Limited Sensing Capabilities

Brian Stephen Smith, Jiuguang Wang, Magnus Egerstedt, and Ayanna Howard

Abstract— Heterogeneous multi-robot networks require novel
tools for applications that require achieving and maintaining
formations. This is the case for distributing sensing devices
with heterogeneous mobile sensor networks. Here, we consider
a heterogeneous multi-robot network of mobile robots. The
robots have a limited range in which they can estimate the
relative position of other network members. The network
is also heterogeneous in that only a subset of robots have
localization ability. We develop a method for automatically
configuring the heterogeneous network to deploy a desired
formation at a desired location. This method guarantees that

network members without localization are deployed to the
correct location in the environment for the sensor placement.

I. INTRODUCTION

This work is part of a National Aeronautics and Space

Administration (NASA) project to implement a multi-robot

system for research in Antarctica. A team of NASA scientists

will use a network of mobile robots to take sensor readings

across ice shelves to better understand the impacts of global

climate change. The environment is extremely hazardous and

expensive for humans to operate in. Hence, the use of robots

is a viable alternative.

The multi-robot network should be able to automatically

implement sensing tasks defined by the NASA scientists.

To this end, automatic methods are needed to configure the

network. The complication of configuring the network is

further compounded by the sensing and communication lim-

itations of the network. We consider a decentralized multi-

robot network whose members’ sensing and communication

abilities are limited by a maximum proximity range. Here,

robots can only estimate the relative position and share

information with other robots within proximity range. Fur-

thermore, the network under consideration is heterogeneous

in that only a subset of agents have localization ability.

Such heterogeneous networks can arise due to design, for we

show that localization ability for each robot is not required

for the goals we consider. However, such heterogeneous

networks can also arise due to network failures, such as the

failure of the localization sensors on some of the network

members. Decentralized networks with limited perception

and/or localization ability have seen much recent attention,

as in [1], [2], [3], [4], [5].

This paper presents methods for automatically deploying

formations (e.g., [6], [7], [8]) with a decentralized hetero-

geneous multi-robot network. Having a prototype multi-

Brian Stephen Smith, Jiuguang Wang, Magnus Egerstedt, and Ayanna
Howard are with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA. Email: {brian,
magnus, ayanna}@ece.gatech.edu, j.w@gatech.edu

Fig. 1. Graphical User Interface (GUI) for configuring the network.

robot network composed of mobile agents, a user graphically

enters a desired network deployment for the network with

a Graphical User Interface (GUI), shown in Fig. 1. These

coordinates define a set of deployment positions which model

the desired locations of the robots in the environment and

the specific relative geometry that must be satisfied between

pairs of robots. We present a method for automatically

configuring the multi-robot network to deploy at the desired

coordinates despite the limited localization ability of the

robots.

In Section II, we introduce our multi-robot network and

describe the problem of deploying the network to user-

specified locations. Section III presents control laws that

allow a pair of robots to navigate such that they are never out

of proximity range of each other. In Section IV, we present

an automatic system utilizing the control laws in Section

III to “link” robots in a manner that allows robots without

localization ability to navigate to the desired location of the

network. As the network members arrive at the deployment

positions, the robots uniquely assign themselves positions

and navigate to them, as discussed in Section V. Section VI

presents experimental results implementing these methods

with a prototype multi-robot network. Finally, Section VII

concludes.

II. PRELIMINARIES

In this section, we describe how we model the multi-

robot network and its desired deployment. We describe how

this deployment corresponds to assembling a formation at a

specific location in the environment.

A. Multi-Robot Network and Deployment Modeling

We model our multi-robot network as a multi-agent net-

work with n ≥ 2 agents, n ∈ N. Here, n defines a set

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 730

of indices for each agent as N = {1, . . . , n}. We consider

the system over an interval of time T = [0,∞). Since

these are ground robots, the planar position of each agent

is represented by a state such that, ∀i ∈ N , xi : T 7→ R
2 is

the state of agent i and xi(t) is the position of agent i at time

t ∈ T . For all i ∈ N , we define the control for agent i as a

single integrator such that ui : T 7→ R
2 and ẋi(t) = ui(t).

In order to define a desired network deployment, a user

graphically inputs the desired deployment positions pi ∈
R

2, i = 1, . . . , N . Each position corresponds to a location

in the environment where we desire a robot to be located.

The goal of the network is to deploy the agents such that

each agent navigates to a unique deployment position. For

this problem, we assume there is no preference for specific

agents to be located at specific positions.

B. Sensor Limitations

All agents in the network have sensors for estimating the

relative positions of agents within their proximity range ∆ ∈
R

+. The proximity range is chosen to model the sensing

limitations of the robots in the network. Hence, a pair of

agents (i, j) can sense and communicate with each other at

time t if and only if ‖xi(t) − xj(t)‖ ≤ ∆. Therefore, this

allows us to define ui(t) as a function of xi(t) − xj(t) if

and only if ‖xi(t) − xj(t)‖ ≤ ∆.

This network is heterogeneous in that not all agents

have localization ability. We call an agent with localization

ability a network leader. This localization ability implies

that the leaders can estimate the relative position of the

deployment positions. We define Nl ⊆ N as the index set

of the leaders. Given a specific location in the environment

pi ∈ R
2, the localization ability of the leaders implies that,

∀i ∈ Nl, we can define ui as a function of xi − pi. The

remaining agents in the network are followers who do not

have localization ability. The followers cannot determine

their relative positions to any defined goal location in the

environment.

C. Formations

Since all agents do not have localization ability, we cannot

simply assign agents to positions and have them navigate to

each. In [2], [9], we show how the deployment positions de-

fine a formation, i.e. specific, desired geometric relationships

for the agents. We also present methods for determining if the

defined formation is persistently feasible. If it is persistently

feasible, this implies that the network can be automatically

configured to assemble the formation, as shown in [3].

While the methods in [3] respect the proximity range of

the network, they are based purely on the relative positions

of the agents. As a result, the formations are assembled at

the initial location of the network. However, the persistent

feasibility of the desired formation implies that the location

and orientation of the formation is determined by the location

of a specific pair of agents [3] [5]. Therefore, our strategy is

to assign leader agents to these positions in the formation.

Then, once the followers have been led to the deployment

positions, they can assemble the formation as presented in

[3] using only the relative positions of other agents.

III. NETWORK DEPLOYMENT CONTROL LAWS

In this section, we show how to navigate a pair of agents

so they always stay within proximity range of each other.

We describe this as preserving connectivity between a pair

of agents. Utilizing these control laws, a follower agent

can follow a leader agent and navigate towards a common

position in the environment. These control laws rely only

on bounding the maximum velocities of the agents. This

is a very reasonable assumption, since most systems have

an inherent limit on their maximum velocities due to their

design. These control laws are the foundation for our method

of automatic network deployment, which we present in the

following section.

A. Preserving Connectivity Between Pairs of Agents

The following theorem describes two agents in which one

follows the other. By bounding the velocity of the agent being

followed to a chosen maximum velocity, we guarantee that

the pair of agents never lose connectivity.

Theorem 3.1: Consider a pair of agents l and f as defined

in Section II. For a given proximity range ∆ ∈ R
+ and

maximum velocity umax ∈ R
+, agent f ’s control laws are

defined by

K =
umax

∆
, uf = −K (xf − xl) . (1)

We assume the following about agent l:

• The control of agent l is continuous and, ∀t ∈ T ,

‖ul (t) ‖ ≤ umax.

• pl is a globally asymptotically stable equilibrium point

of xl.

Then, for every initialization of the pair such that ‖xf (0)−
xl (0) ‖ ≤ ∆,

• ‖xf (t) − xl (t) ‖ ≤ ∆ ∀t ∈ T , and

• pl is a globally asymptotically stable equilibrium point

of xf .

Proof: By our assumptions, xl is continuously differ-

entiable and Lipschitz continuous, since its first derivative is

defined and bounded over the entire domain. From (1), xf

is continuously differentiable.

First, we show that connectivity is preserved. If ‖xf (t)−
xl (t) ‖ ≥ ∆, then this implies that

d

dt

(

1

2
‖xf (t) − xl (t) ‖2

)

= −
umax

∆
‖xf (t) − xl (t) ‖2 − ẋl (t)

T
(xf (t) − xl (t))

≤ −umax‖xf (t) − xl (t) ‖ + umax‖xf (t) − xl (t) ‖

≤ 0.

(2)

In other words, (2) implies that the distance between xl and

xf never increases while their distance is greater than or

equal to ∆. Therefore, if we assume for some t ∈ T that

‖xf (t) − xl (t) ‖ > ∆, we always have a contradiction.

731

If t = 0, then the initialization assumption is violated. If

t > 0, then the continuous differentiability of xf implies

that, for some t1 < t, that ‖xf (t1) − xl(t1)‖ ≥ ∆
and d

dt

(

1

2
‖xf (t1) − xl(t1)‖

2
)

> 0. In other words, this

assumption implies that, for some time before t, the distance

between xl and xf is greater than or equal to ∆ and

their distance is increasing. This violates (2). Therefore,

‖xf (t) − xl (t) ‖ ≤ ∆ ∀t ∈ T .

To show that pl is a globally asymptotically stable equi-

librium point of xf , we first define the translated system

x̃f = xf −pl. The control laws in (1) imply that ˙̃xf = ẋf =
−K(xf − xl). Similarly, we define the translated system

x̃l = xl − pl. Substitution implies that

˙̃xf = −K (xf − (x̃l + pl)) = −K(x̃f − x̃l).

Taken together, x̃f and x̃l are a cascade system [10]. This

implies that, since x̃l has a globally asymptotically stable

origin, then x̃f does as well. This implies that pl is a globally

asymptotically stable equilibrium point of xf .

The following corollary shows that, when following an-

other agent with a constant, bounded velocity, the relative

position of the leading and following agents stabilizes to a

position ∆ apart from each other, with the follower directly

“behind” the leader.

Corollary 3.1: Consider again the pair of agents described

in Theorem 3.1. Assume that û ∈ R
2 is a constant unit

vector. Assume that agent l has a constant velocity in the

direction of û with a magnitude of umax ∈ R
+ such that

ẋl(t) = umaxû ∀t ∈ T . This implies that −∆û is a globally

asymptotically stable equilibrium point of x̃f = xf − xl.

Proof: We define x̂f = xf −xl +∆û. This implies that

˙̂xf = ẋf − ẋl = −K(xf − xl) − umaxû

= −K(xf − xl + ∆û) = −Kx̂f

The system ˙̂xf = −Kx̂f has a globally exponentially stable

origin. This implies that −∆û is a globally exponentially

stable equilibrium point of x̃f .

Corollary 3.1 implies that we should choose a “safe” prox-

imity range for the network. Ideally, the chosen proximity

range should be well enough within the actual limits of the

robot sensors to allow for the noise and potential error of

the system.

Theorem 3.1 shows us that, as long as the velocity of the

leader agent is defined and bounded by our chosen maximum

velocity, the distance between the pair of agents cannot

exceed the proximity range. A corollary of Theorem 3.1 is

that the state and dynamics of agent f also satisfy the same

assumptions made about agent l.

Corollary 3.2: Consider the pair of agents described in

Theorem 3.1. Given the same assumptions and initialization

as in Theorem 3.1, then the velocity of the follower agent is

bounded by umax such that ‖uf(t)‖ ≤ umax ∀t ∈ T .

Proof: The control law for agent f in (1) implies that,

∀t ∈ T ,

‖uf(t)‖ = | − K|‖xf(t) − xl(t)‖ =
umax

∆
‖xf (t) − xl(t)‖.

Since ‖xf (t) − xl(t)‖ ≤ ∆ ∀t ∈ T , then, ∀t ∈ T ,

‖uf(t)‖ ≤
umax∆

∆
= umax.

Corollary 3.2 implies that, while agent f is following

agent l, another agent within proximity range of agent f

could follow agent f in the same manner and never loose

connectivity with agent f . This suggests that we can connect

agents together to follower a single leader using the control

laws in Theorems 3.1. We present an automatic system for

accomplishing this in the next section.

IV. AN EMBEDDED GRAPH GRAMMAR SYSTEM FOR

DEPLOYMENT

Here, a network graph is defined to represent the system.

We describe how to connect agents using an Embedded

Graph Grammar (EGG) system [11] such that their connec-

tivity is preserved as they follow the leader agents.

A. Network Graph

We define a network graph to represent the modes of the

agents and the topology of the control laws of the network.

We denote this vertex-labeled graph by G(t) = (V, E(t)),
where V = {v1, . . . , vn} is the vertex set, E(t) is the edge

set (at time t), and l assigns a label to each vertex. Each

vertex is associated with its corresponding agent such that

vi is the vertex of agent i. The label function l assigns labels

to each vertex that correspond to the control laws of each

agent. Thus, l(vi) indicates the control laws of agent i. The

edges in this graph represents constraints between robots.

Each edge is an ordered pair, where the order defines the

direction of the edge. Thus, (vi, vj) ∈ E(t) is an edge from

vi to vj , indicating that agent i’s control laws are dependent

on the position of agent j. If a path from vi to vj exists, we

say that agent i is a predecessor of agent j. If (vi, vj) ∈ E(t)
we say that agent i is an immediate predecessor of agent

j. This graph represents what the network is doing at any

given instant in time. Hence, the graph is dynamic, and the

membership in E changes as the system evolves.

B. Embedded Graph Grammar System for Deployment

Here, we present a method to automatically generate

Embedded Graph Grammar (EGG) systems for deploying

agents using the control laws from Section III. An EGG is

a formalism that encodes dynamic, geometric, and network

properties of a multi-agent system in a unified manner. It

extends the notion of a graph grammar that takes as inputs

vertex-labeled graphs, and produces other vertex labeled

graphs according to a given rule set. Through the application

of the rules in the rule set, edges may be removed or added

to the graph, and the vertex labels may change.

In order to characterize how robots should navigate and

establish and maintain constraints with other robots, as well

as the corresponding change in network topology, we define

graph-transition rules. Each rule consists of a vertex-labeled

left graph L (the input to the rule), a vertex-labeled right

graph R (the output to the rule), and a guard that defines

732

specific conditions under which the rule is applicable. These

rules define the desired interactions between robots and are

given to each robot, along with the corresponding control

laws for each position, in order to execute the formation.

Assume that VL is the vertex set of the left graph L of

a rule r. As in [11], rule r is applicable only if there exists

a label-preserving isomorphism between the vertices VL of

the left graph L and the vertices of G(t). The guard function

g determines whether or not the rule can be applied and

evaluates to true or false.

If a rule is applicable, the subgraph of G(t) isomorphic to

VL can be replaced in G(t) by the right graph R in the rule.

A guarded rule is represented by the triple r = (L ⇀ R, g).
In [3], we describe how to implement these EGG systems

with a multi-robot network.

For the EGG we present here, we define the label set of

each vertex such that each label has two parts: the mode and

the go flag. The mode indicates what control law the agent

is implementing, while the go flag is a boolean indicating

whether or not the agent can implement the control law. If

the go flag is false, the agent must sets its control to zero and

stay at the same location. We use the notation that l(vi).mode

is the mode of agent i, and l(vi).go is the go flag of agent

i.

Since this is a heterogeneous network, the leaders and the

followers each have different modes. We define mode L as

leader mode. When in leader mode, the agent’s control law

is designed to stabilize the agent to a given goal position for

deployment. Thus, l(vi).mode = L and l(vi).go = true if

and only if i ∈ Nl and agent i is moving towards its assigned

deployment location.

The follower agents initially are assigned mode U , which

is unassigned mode. This mode corresponds to a follower that

has no one to follow, and does not move. Once it has been

assigned someone to follow, it changes its mode to F , which

is assigned follower mode. Agents in assigned follower mode

have a single edge in the network graph directed towards

the agent they are following. Thus, l(vi).mode = F and

l(vi).go = true indicates that agent i is following the agent

at the head of its directed edge. If l(vi).go = false, the

agent does not move.

C. Initialization

To describe the required initial conditions of this EGG

system, we define a proximity graph G(t) = (V, E(t)).
Here, V = V , the vertices in our network graph, and

∃(vi, vj) ∈ E(t) if and only if ‖xi(t) − xj(t)‖ ≤ ∆, and

we say that agents i and j are connected. Hence, edges in

our proximity graph indicate which pairs of agents can sense

and communicate with each other.

We initialize the leader agents in mode L, the follower

agents in mode U , and the go flags of all agents are set to

false. Thus, at t = 0, the network graph G(0) has no edges.

We initially require that a path exists in the proximity graph

G(0) between each follower and at least one leader. As long

as this condition is satisfied, the initial proximity graph can

(U, false)

(L or F, false)

⇀

(F, false)

(L or F, false)

Fig. 2. Linking rules.

(L or F, false)

(F, true) (F, true). . .

⇀

(L or F, true)

(F, true) (F, true). . .

Fig. 3. Go rules.

be disconnected. The following describes the EGG rules for

“linking” pairs of agents.

D. Linking Agents with Linking Rules

To establish edges, we first use linking rules shown in

Fig. 2. There are two linking rules. In the first linking rule,

the left graph consists of two agents. One is a leader agent,

and one is an unassigned follower. The left graph has no

edges. If they are within proximity range, the follower can

switch to follow mode and add an edge to the network graph

directed towards the leader. The follower then implements

the control law described in (1). The other linking rule is

identical except that, instead of a leader agent, the left graph

includes an assigned follower. By repeatedly applying this

rule, all unassigned followers are assigned to follow either a

leader or a predecessor of a leader.

E. Moving Agents with Go Rules

The go rules specify when the leaders and assigned

followers can begin implementing their assigned control

laws, as shown in Fig. 3. For either a leader or an assigned

follower, if all its immediate predecessors have true go flags

and if no agents within proximity range to it are unassigned

followers, the agent switches its go flag to true and begins

implementing its control laws. These rules guarantee that

all unassigned followers are linked to follow a leader or

a predecessor of a leader before the agents within their

proximity range move.

F. Break Rules

While the previous rules ensure that agents become pre-

decessors of leaders, and that agents do not leave unassigned

followers behind, it is possible for multiple followers to

follow the same agent. If that agent has a constant velocity,

then Corollary 3.1 implies that the followers will stabilize to

the same location, directly behind the leading agent. For an

actual mobile robot system, this is not desirable, since the

robots must avoid colliding. Therefore, we define break rules

that reduce the immediate predecessors of a single agent.

733

(L or F, true)

(F, true) (F, true)

⇀

(L or F, true)

(F, true) (F, true)

Fig. 4. Break rules.

p1

p2W

⇀

p1

p2p3

Fig. 5. Vertex addition rules.

The left graph has a agent being followed by two follower

agents. If all of these agents are within proximity range of

each other, one of the following agents is switched to follow

the other follower. For any agent with multiple immediate

predecessors, the repeated application of this rule ensures

that, eventually, it will only have one immediate predecessor.

Fig. 4 represents these break rules.

When implemented with our multi-robot network, this

EGG results in “chains” of robots, as shown in Fig. 7. In

general, this EGG system for deployment can be used with

only one network leader to allow any number of followers

to navigate to a desired location.

V. FORMATION ASSEMBLY

In this section, we discuss how to assemble formations

as the network arrives at the deployment coordinates in

the environment. We show how to automatically generate

an EGG system for assembling persistent formations in

[3]. In this previous work, the network graph is initially

unassembled, and each agent begins in a wander mode. An

initial edge is added between a leader and first-follower

pair of agents. The positions of these agents specify the

location and orientation of the formation in the environment.

Then, vertex addition rules attach wanderers to the leader

and first-follower, as shown in Fig. 5. These vertex addition

rules assign the agents their unique positions. These agents

then navigate to the correct locations using only the relative

positions of other agents. When all vertex addition rules have

been applied, the formation is assembled.

The initial conditions of the EGG presented in [3] are

that all wander mode agents must be within proximity range

of either the leader or first follower agent in the formation.

While our EGG for linking agents allows us to navigate the

network with only one leader, we utilize two leader agents

in our current implementation. In this implementation, we

order the deployment positions such that p1 is the leader

position and p2 is the first-follower position. Both leaders

are initially assigned to navigate to p1. When a leader has

successfully navigated to this position, it assigns its mode to

(p1, true)

(F, true)

(F, true)

⇀

(p1, true)

(W, true)

(F, true)

Fig. 6. Wander rules.

p1 such that l(vi).mode = p1. The remaining leader, when

encountering the agent assigned to p1 will then switch and

begin converging to the first-follower position p2. Therefore,

the network deploys as two chains, one which converges

to the leader position in the formation graph, and one that

converges to the first-follower position.

In order to switch followers from follow mode to wander

mode, we employ wander rules that assign followers to wan-

der mode once they have reached the deployment location. If

a follower is following a leader agent, and all its immediate

predecessors are within proximity range of that leader, it

switches to wander mode, and all its predecessors begin

following the leader or first-follower. Fig. 6 depicts wander

rules. The application of this rule implies that all wanderers

are within proximity range of either the leader or the first-

follower, which are sufficient conditions for successfully

assembling the formation [3].

VI. IMPLEMENTATION

This section discusses implementation results of the auto-

matic EGG generated for formation deployment, which can

be seen in the video submission that accompanies this paper.

In order to approximate the Antarctic robots in the pre-

Antarctic stages of this project, we use the prototype net-

work. For mobility, each robot has a wheeled platform base

and is dynamically similar to the tracked platform for the

Antarctic. Each has an onboard computer, and communica-

tion between robots is achieved by wireless communication

modules on each robot. GPS receivers on each robot estimate

the location and heading of each robot.

By sharing GPS values, the robots can obtain relative

position information of other robots (i.e., the range and

bearings of other robots relative to their own heading). Since

we have global communication ability, and, thus, global

information, we can arbitrarily limit the information each

robot is allowed to use. This allows us to verify our methods

with a variety of sensing limitations.

We implement the deployment depicted in Fig. 1, where

a user has chosen n = 5 deployment positions using the

GUI with satellite imagery of our test field. The GUI is

able to compare the positions with the known coordinates

of reference positions in the satellite image to estimate the

desired deployment coordinates for the network. Using the

methods in [2] and the defined proximity range ∆ = 6 m,

the software determines that the deployment positions can be

assembled as a persistent formation. The network members

are automatically configured to assemble the formation using

734

the methods in [3]. All network members are configured

to implement the EGG system for linking agents discussed

in Section IV. Then the network members are given the

command to deploy.

Fig. 7(a) shows the initial state of the network. The leaders

are in leader mode, labeled L, and the followers are initially

in unassigned mode, labeled U . The robots begin applying

the EGG rules described in Section IV and in [3]. By apply-

ing linking rules, two followers begin following the leader

on the left, and one follower begins following the leader on

the right. Since two follower are following the left leader,

the breaking rule is applicable, and is applied, allowing the

followers to follow as a “chain”, seen in Fig. 7(b). The leader

on the right arrives at deployment position p1 first, the leader

position for the formation. It changes to the appropriate

mode, allowing its follower to switch to wander mode, as

seen in Fig. 7(c). Since the first-follower position has not

been filled, this wander cannot perform a vertex addition yet.

In Fig. 7(d), the remaining leader sees that a robot is already

assigned the leader position. It switches and navigates to the

first-follower position p2. This allows one of its followers

to switch to wander mode W , while also allowing a vertex

addition to take place. Here, the first wanderer is assigned to

position p3. In Fig. 7(e), another vertex addition is applied,

assigning position p4 to the wanderer. There is one more

wanderer, since the last follower has also switched to wander

mode. However, there is no vertex addition rule possible for

where this last wanderer is located. As described in [3], the

remaining wanderer begins moving through the formation

towards a position that remains to be assigned. Eventually,

it is in range of both robots assigned to p2 and p3, allowing

a vertex addition rule to assign it to p4, as shown in Fig.

7(g). Fig. 7(h) shows the final formation. Here, the error of

each robot is within the limitations of our platform, which

estimates the relative positions between robots with an error

of approximately 2 m.

VII. CONCLUSIONS

We have presented automatic tools for deploying hetero-

geneous multi-robot networks as a mobile sensor network.

While only a subset of robots have localization ability, the

robots with localization can lead the robots without localiza-

tion such that all robots arrive at the user-defined deployment

locations. As the robots arrive, they begin executing an

automatically generated system for assembling a persistent

formation at the deployment location. The result is that all

robots are assigned a unique deployment position, and robots

without localization ability still converge to their assigned

positions. This has been demonstrated with an actual multi-

robot network.

VIII. ACKNOWLEDGEMENTS

This was supported under a contract with NASA.

REFERENCES

[1] M. Ji and M. B. Egerstedt, “Distributed coordination control of multi-
agent systems while preserving connectedness,” IEEE Trans. Robot.,
vol. 23, no. 4, pp. 693–703, Aug. 2007.

LL UUU

(a)

L
L

F

F

F

(b)

p1L
W

F

F

(c)

p1p2

p3
W

F

(d)

p1p2 p3

p4W

(e)

p1
p2

p3

p4

W

(f)

p1p2

p3

p4

p5

(g)

p1p2

p3

p4

p5

(h)

Fig. 7. Formation deployment and assembly with the multi-robot network.
This corresponds to the desired deployment shown in Fig. 1.

[2] B. S. Smith, M. Egerstedt, and A. Howard, “Automatic generation
of persistent formations for multi-agent networks under range con-
straints,” in Proc. of the First Int. Conf. on Robot Commun. and

Coordination, 2007.
[3] ——, “Automatic deployment and formation control of decentralized

multi-agent networks,” in Proc. of the IEEE Int. Conf. Robot. Autom.,
Pasadena, CA, USA, May 2008, pp. 134–139.

[4] F. Zhang and S. Haq, “Boundary following by robot formations
without gps,” Proceedings of the IEEE Int. Conf. Robot. Autom., pp.
152–157, May 2008.

[5] B. S. Smith, J. Wang, and M. B. Egerstedt, “Persistent formation
control of multi-robot networks,” in Proc. of the IEEE Conf. on
Decision and Control, Cancun, Mexico, Dec. 2008, pp. 471–476.

[6] J. Desai, J. Ostrowski, and V. Kumar, “Control of formations for
multiple robots,” in Proc. of the IEEE Int. Conf. Robot. Autom., May
1998, pp. 2864–2869.

[7] G. A. Kaminka and R. Glick, “Towards robust multi-robot formations,”
Proc. of the IEEE Int. Conf. Robot. Autom., pp. 582–8, May 2006.

[8] L. Vig and J. A. Adams, “Multi-robot coalition formation,” IEEE

Trans. Robot., vol. 22, no. 4, pp. 637–49, August 2006.
[9] B. S. Smith, M. Egerstedt, and A. Howard, “Automatic generation

of persistent formations for multi-agent networks under range con-
straints,” Mobile Networks and Applications, 2009, to appear.

[10] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ
07458, USA: Prentice Hall, 2002, ch. 4, pp. 179–180.

[11] J.-M. McNew and E. Klavins, “Locally interacting hybrid systems with
embedded graph grammars,” Proc. of the IEEE Conf. on Decision and
Control, pp. 6080–6087, 2006.

735

