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Abstract— In this paper we study bipartite, first order-
networks where the nodes take on leader or follower roles. In
particular, we let the leaders’ positions be static and assume that
they are only intermittently visible to the followers. This is an
assumption that is inspired by the way female silkworm moths
only intermittently release pheromones to be detected by the
males. The main result in this paper states that if the followers
execute the linear agreement protocol, they will converge to the
convex hull spanned by the leaders (may they be visible or not).

I. INTRODUCTION

The research on multi-agent robotics and decentralized,

networked control has drawn significant inspiration from

interaction-rules in social animals and insects [1], [2], [3]. In

particular, the widely used nearest-neighbor-based interaction

rules, used for example for formation control (e.g. [5], [6]),

consensus (e.g. [7], [8]), and coverage control [9], [10], has

a direct biological counterpart, as pointed out in [1]. In this

paper, we follow this line of inquiry by seeing if we can

understand how leader-follower systems behave if the leaders

are only intermittently visible to the followers. This model

comes from a particular swarming phenomena observed in

the silkworm moth Bombyx Mori.

In fact, silkworm moths are known to swarm in tight

geometrical configurations, such as vertical cylindrical struc-

tures. This is caused by the females’ intermittent releasing

of a pheromone - bombykol - to attract male moths. This

pheromone in essence makes the females act as attractors to

the males, but the intermittent nature of the release produces

an inherently switched system. Moreover, the spatial distri-

bution of the females imply that the males are attracted to a

general area rather than to a particular point, which is what

is believed to cause their characteristic swarming geometry.

(See for example [11], [12], [13], [14])

Based on this discussion, what we will do in this paper is

to investigate a first-order network model in which stationary

leaders (the female moths) are only intermittently visible

to the followers (the males). This corresponds to applying
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a switched control input of varying dimension (since the

number of visible females may be changing) to the system.

And, our main result is that, asymptotically, the males will

end up in the convex hull spanned by all the females. For the

case in which the females are always visible and no edges

appear or disappear between males, this is already known,

and what is thus new is that we produce a hybrid version of

this result, using tools from hybrid stability theory. It should

be noted that a similar question was pursued in [16] but

there it was shown that the followers end up in a larger

set (ellipsoid) that contained the convex hull of the leaders.

In this paper, we thus make this result much more tight by

showing that this set can in fact be shrunk down to the convex

hull itself.

The outline of this paper is as follows: We next establish

some of the basic notation that will be used in the paper. We

then, in Section II, recall the switched version of LaSalle’s

invariance principle, followed by a discussion of the under-

lying network model in Section III and the static case, in

Section IV. The main result for switched systems is given in

Section V, followed by a simulation study in Section VI.

Notation: We let N, N0, and R+ denote the natural

numbers, the non-negative integer numbers, and the positive

real numbers, respectively. Given the sets M, M1 and M2 such

that M ⊂M1×M2, we denote π1(M) (respectively π2(M)) the

projection of M on M1 (respectively M2), i.e. π1((m1,m2)) =
m1 and π2((m1,m2)) = m2. We denote by 1d , d ∈ N, the

vector of dimension d with all entries equal to 1 (e.g. 12 =
[1 1]T ).

II. A LASALLE’S INVARIANCE PRINCIPLE FOR

SWITCHED SYSTEMS

In this section, we recall a LaSalle’s invariance principle

for switched systems proved in [15] that will be useful to

prove our main result. For the sake of clarity, we will not

use the most general assumptions used in the paper, but we

will impose stronger assumptions that are verified by our

problem formulation.

Given a parametrized family of locally Lipschitz vector

fields { fγ : R
n → R

n | γ ∈ Γ}, where Γ is a finite index set,

we consider the switched system

ẋ = f (x,σ), (1)

where σ : R+ → Γ is a piecewise constant (continuous from

the right) switching signal, and where we somtimes use the

notation f (x,γ) = fγ(x).
Let S be the set of all switching signals. A pair

(x(·),σ(·)) is a trajectory of (1) if and only if σ(·) ∈ S

and x : [0,T ) → R
n, 0 < T ≤ +∞, is a piecewise differential
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solution to ẋ = fσ(t)(x), t ∈ [0,T ). Note that T is, in gen-

eral, a function of x(0) and σ(·) (so that we should write

T (x(0),σ(·)).
In the following we will consider switching signals that

have positive average dwell time, i.e. signals for which the

number of discontinuities in any open interval is bounded

above by the length of the interval normalized by an “average

dwell-time” plus a “chatter bound”.

More formally, we say that a switching signal σ has

an average dwell-time τD > 0 and a chatter bound N0 ∈ N

if the number of its switching times in any open interval

(τ1,τ2) ⊂ R+ is bounded by N0 +(τ2 − τ1)/τD. We denote

by Sa[τD,N0] the set of all switching signals with average

dwell-time τD and chatter bound N0, and by Ta[τD,N0] the

subclass of all trajectories of (1) corresponding to some

σ ∈ Sa[τD,N0]. Also, we let

Sa = ∪τD>0,N0∈NSa[τD,N0],

and consequently, we let Ta br the corresponding subclass

of trajectories.

In order to deal with a LaSalle’s Invariance Principle it is

useful, following [15], to introduce the following subclasses

of trajectories.

Definition 2.1 (Class of trajectories TV ): Let V : Ω ⊂
R

n → R be a continuous function. TV is the class of

trajectories (x(·),σ(·)) ∈ T which verify the conditions:

i) x(t) ∈ Ω for all t ∈ [0,T );
ii) for any pair of times t, t ′ ∈ [0,T ) such that t ≤ t ′ and

σ(t) = σ(t ′), then V (x(t),σ(t)) ≥V (x(t ′),σ(t ′)).

T ∗
V is the subfamily of (x(·),σ(·)) ∈ TV verifying

V (x(t),σ(t)) = V (x(t ′),σ(t ′)) for σ(t) = σ(t ′). ¤

Then, we introduce a suitable notion of a weakly-invariant

set:

Definition 2.2 (Weakly invariant set): Given a family T ′

of trajectories of (1), a non-empty subset M ⊂ R
n × Γ is

said to be weakly-invariant with respect to T ′ if, for each

(ξ ,γ) ∈ M, there is a trajectory (x(·),σ(·)) ∈ T ′ such that

x(0) = ξ , σ(0) = γ and (x(t),σ(t)) ∈ M for all t ∈ [0,T ). ¤
We are now ready to state (a slightly modified version

of) the LaSalle’s Invariance Principle proved in [15] (Theo-

rem 2.4).

Theorem 2.1 (LaSalle’s IP for switched systems, [15]):

Let V : Ω × Γ → R, with Ω an open subset of R
n,

be continuous. Suppose that (x(·),σ(·)) is a trajectory

belonging to TV ∩Ta[τD,N0] for some τD > 0 and N0 ∈ N,

such that for some compact subset B ⊂ Ω, x(t) ∈ B for all

t ≥ 0. Let M ⊂ R
n ×Γ be the largest weakly invariant set

with respect to T ∗
V ∩Ta[τD,N0] contained in Ω×Γ. Then

x(t) converges to π1(M) as t → ∞. ¤

III. NETWORK MODEL

In this section, we introduce a mathematical model that

is based on the model in [16], and that describes the

swarming behavior encountered among the silkworm moths.

Informally, we consider a network with agents of two

sorts: leaders (representing the female moths) and followers

(representing the males). Leaders and followers are both

described as first order integrators, but they apply different

control laws. In this paper we assume the leaders to be

stationary, that is, their control input is identically zero.

Also, we assume they may be active or inactive, equivalently

visible or invisible to the followers. The followers apply a

Laplacian based averaging control law. They communicate

among themselves and with active leaders according to a

fixed, undirected communication graph. In other words, the

follower subgraph graph is a fixed graph whereas, at each

time instant, the edge with a leader is present if and only if

that leader is active at that time instant.

More formally, we consider a network of agents labeled

by a set of identifiers I = {1, . . . ,n}, n ∈ N, such that the

labels {1, . . . ,n f }, n f ∈ N, correspond to the followers and

the remaining ones to the leaders. The agents leave in the

state space R
d , d ∈ N, and obey a first order, continuous

time dynamics. We assume that the dynamics along each

dimension can be decoupled so that along each direction, it

is given by ẋi = ui, for all i ∈ {1, . . . ,n}, where xi ∈ R and

ui ∈R are respectively the state and the input of agent i. The

agents communicate according to a communication edge map

t 7→E(t), t ∈R+, defined as follows: an edge (i, j) belongs to

E(t) if and only if agents i and j can communicate at time t.

We assume E to be piecewise constant and defined according

to the following set up. We let Ga = (I,Ea) be a time invariant

undirected connected graph describing the communication

among leaders and followers when all the leaders are active

(hence the subscript a). The communication edge set E(t) at

instant t is a subset of Ea obtained by dropping the edges

(i, j)∈Ea such that i is a follower and j is a nonactive leader.

We denote by G(t) = (I,E(t)) ⊂ Ga the graph at instant t.

The followers subgraph is assumed to be fixed and con-

nected, and is denoted by G f = ({1, . . . ,n f },E f ). Also,

we let N
f

i be the static set of followers communicating

with follower i and Nl
i the total set of leaders that (may)

communicate with follower i.

In order to model the fact that a leader j is visible or

invisible, we define the switching signal T : R+ →{0,1} as

Tj(t) =

{

1 if leader j is active

0 otherwise.
(2)

Before introducing the network dynamics, we state the

standing assumptions that we will use in the paper.

Standing Assumptions (SA)

i) Each follower communicates with all active leaders.

That is, for any t ∈R+ and any active leader ja ∈{n f +
1, . . . ,n}, then (i, ja) ∈ E(t) for all i ∈ {1, . . . ,n f }.

ii) For any t ∈ R+, there exists at least one active leader.

iii) For each leader j ∈ {n f +1, . . . ,n} the switching signal

Tj(·) has positive average dwell time, that is, Tj(·) ∈
Sa.

Due to Standing Assumption i), we have that Nl
i does not

depend on agent i, therefore we will denote it by Nl .

We are now ready to introduce the network dynamics, and

ThA17.3

3734



we let the dynamics of the followers is given by

ẋ
f
i (t) = − ∑

j∈N
f

i

(x f
i (t)− x

f
j (t))− ∑

j∈Nl

Tj(t)(x
f
i (t)− xl

j(t))

i ∈ {1, . . . ,n f }.
(3)

The leaders are stationary, i.e. their dynamics is simply

ẋl
i(t) = 0, i ∈ {n f +1, . . . ,n}. (4)

And, although leaders do not apply a Laplacian based control

law (as the follower do), it is useful to consider the dynamics

obtained if all the agents (both leaders and followers) applied

such control law. Indeed, the dynamics would be

ẋ(t) = −L(t)x(t), (5)

where x = [x1, . . . ,xn]
T and L(t) is the Laplacian of the graph

G(t) at instant t. If we partition the Laplacian with respect

to leaders and followers as

L(t) =

[

L f (t) l f l(t)
ll f (t) Ll(t)

]

(6)

the followers dynamics becomes

ẋ f (t) = −L f (t)x f (t)− l f lxl(t). (7)

In particular, due to Standing Assumption i), we may

rewrite this

ẋ f (t) = −L f (t)x f (t)+1n f 1T
nl x

l(t). (8)

It is worth noting that L f (t) is not the follower’s Lapla-

cian, but depends on active leaders (this is why it is time

dependent). It can be written in terms of the Laplacian of

the follower’s subgraph, L
f
0 , as

L f (t) = L
f
0 +nl

a(t)In f (9)

where nl
a(t) ∈ N is the number of active leaders at time t,

and In f is the identity matrix of dimension n f .

In order to emphasize the switched nature of the followers

dynamics, we will rewrite it as

ẋ f (t) = −L
f

σ(t)
x f (t)+1n f 1T

nl x
l
σ(t), (10)

where σ : [0,T ) → Γ = {0,1}nl
is a suitable (piecewise

constant) switching signal such that

L
f

σ(t)
= L

f
0 + ∑

j∈Nl

Tj(t)In f

and xl
σ(t) = [xl

1T1(t) . . .x
l
nl Tnl (t)]T . Consistently with Standing

Assumption iii), σ(·) belongs to Sa (the set of switching

signals with positive average dwell-time and chatter bound).

IV. PROBLEM STATEMENT AND STATIC CASE

Before we can state and prove the main result, i.e. that

the followers end up in the convex hull spanned by the

static and only intermittently visible leaders, we first need

to investigate and recall what happens when the leaders are

all visible all the time. This is the topic under consideration

in this section, i.e. we investigate what happens under static

network topologies.

One standard way in which the graph Laplacian can be

obtained is from the product of incidence matrices,

L = I
σ
I

σ T ,

where we have assumed that the network is static (L does

not depend on t), and where σ : E →{−1,1} is any arbitrary

orientation assignment to the edges of the graph (essentially

turning it from an undirected to a directed graph), I ∈R
n×m

is the incidence matrix, where m is the number of edges in

the graph.

By writing the incidence matrix as I T = [I f T
,I lT

]T ,

where I f ∈ R
n f ×m and I l ∈ R

(n−n f )×m (note here we have

dropped the explicit dependence on σ since it does not matter

what σ is1), we get

L f = I
f
I

f T
, Ll = I

l
I

lT
and l f l = I

f
I

lT
. (11)

We know that Lº 0. In addition, if the graph is connected,

we have that null(L) = span{1n}. And, since

x f T
L f x f = [x f T

0]L

[

x f

0

]

and [x f T
0]T /∈ null(L), we have that

[x f T
0]L

[

x f

0

]

> 0 ∀ x f 6= 0.

As such, we have the following result (see for example [5]

for another version of this proof)

Lemma 4.1: If the graph is connected, then L f is positive

definite,

This lemma allows us to state the following lemma (also

avialable in [5])

Lemma 4.2: Given fixed leader positions xl , the quasi-

static equilibrium point2 is

x f = −L f −1
L f lxl , (12)

which is globally asymptotically stable.

As a result of this, we have that if the leaders are stationary

(located at xl), the followers will asymptotically approach the

equilibrium point

x f e
= −L f −1

L f lxl .

1Even though I σ depends on σ , L does not.
2A process is called quasi-static when it follows a succession of

equilibrium states. In such a process, a sufficiently slow transition of a
thermodynamic system from one equilibrium state to another occurs such
that at every moment in time the state of the system is close to an equilibrium
state.
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Now, since xe
f is an equilibrium, we must have that

ẋi
e = 0 = − ∑

j∈N(i)

(xe
i − xe

j)

for all follower agents. (Here we have used the notation that

if agent j is a leader, xe
j is the static position of that leader,

even though it strictly speaking is not an equilibrium point

but a static input.) What this means is that

xe
i =

1

|N(i)| ∑
j∈N(i)

xe
j.

In other words, the equilibrium point xe
i for follower agent i

lies in the convex hull spanned by agent i’s neighbors - may

they be leaders of followers.

Now, if every follower ends up in the convex hull spanned

by its neighbors, and the only agents who do not need to

satisfy this are the leaders, every follower will end up in the

convex hull spanned by the leaders. We denote this convex

hull by ΩL and we recall the following key lemma from [4]

(formulated in a slightly different way)

Lemma 4.3: Given a connected, static network topology

with multiple static leaders, the followers will asymptotically

end up in the convex hull spanned by the leaders, i.e.

xe
i ∈ ΩL, i = 1, . . . ,n f .

So far, in this section, the results are previously known.

What we would like to do in this paper is to extend Lemma

?? to hold also for intermittently visible leaders. In other

words, we would like to show that even though only a non-

empty subset of the leaders is visible at any given time, the

followers will still converge asymptotically to the convex

hull spanned by all leaders. It should be noted that a similar

question was pursued in [16] but there it was shown that

the followers end up in a larger set (ellipsoid) that contains

ΩL. In this paper, we thus make this result much more tight

by showing that this set can in fact be shrunk down to ΩL

itself. And for that, we need to combine the tools from the

switched LaSalle’s invariance principle, with the geometrical

arguments presented in this section.

V. AN INVARIANT SET FOR NETWORKS WITH

INTERMITTENT LEADERS

In this section, we prove the main result of the paper, i.e.

that the followers (running the Laplacian based averaging

law), driven by the intermittently visible, stationary leaders,

asymptotically converge to the convex hull of the all leaders.

Lemma 5.1: Let N be a leader-follower network as in

Section III, with stationary, intermittently visible leaders, and

followers dynamics as in (10). Suppose that the Standing

Assumptions (SA) hold. Then, for any x f (0) ∈ R
n, and any

σ ∈ Sa[τD,N0], τD > 0 and N0 ∈ N, there exists a compact

set B ⊂ R
n such that x(t) ∈ B for all t ≥ 0.

Proof: Let xl be the state of all the leaders. Consider

the change of variable δ = x f −1n f 1T
nl x

l/nl . Informally, δ is

the distance of the follower states from the centroid of all

leaders. The followers’ dynamics, written with respect to δ ,

is

δ̇ = −L
f

σ(t)
δ −L

f

σ(t)
1n f 1T

nl x
l/nl +1n f 1T

nl x
l
σ(t) (13)

Using the fact that L
f

σ(t)
= L

f
0 +nl

a(t)In f and L
f
01n f = 0, we

may rewrite the δ dynamics as

δ̇ = −L
f

σ(t)
δ −nl

a(t)/nl1n f 1T
nl x

l +1n f 1T
nl x

l
σ(t)

= −L
f

σ(t)
δ +1n f (x̄l

σ(t) − x̄l))nl
a(t),

(14)

where x̄l
σ(t) is the centroid of the active leaders, and x̄l is the

centroid of all leaders (active and inactive). Since the set of

leaders is finite and they are stationary, the distance |x̄l
σ(t)−

x̄l | is bounded (e.g. by the maximum distance between each

leader and the centroid of all the leaders). Also, nl
a(t) is

bounded by nl .

Remembering that −L
f

σ(t)
is a uniformly negative definite,

exponentially stable matrix, we have a uniformly exponen-

tially stable, linear, time-varying system driven by a bounded

input. This implies that δ (t), and therefore x f (t), t ∈ R+, is

bounded. 3

We are now ready to state the main result:

Theorem 5.1: Let N be a leader-follower network as in

Section III, with stationary, intermittently visble leaders, and

follower dynamics as in (10). Let ΩL be the convex hull of all

the leaders and suppose that the Standing Assumptions (SA)

hold. Then the set ΩL ×Γ is (weakly) invariant with respect

to the followers’ trajectories, and the followers asymptoti-

cally converge to ΩL. In other words, for any ε > 0, there

exists t̄ > 0 such that dist
(

x
f
j (t),ΩL

)

< ε

for all t ≥ t̄.

Proof: We prove the result in two steps. In the first

step, we show that (along each dimension) the set ΩF ×Γ,

with ΩF = {(x f
1 , . . . ,x f

n f ) ∈ R
n f

| x
f
1 = . . . = x

f

n f }, is (weakly)

invariant with respect to the followers’ trajectories, and that

the followers asymptotically converge to ΩF . In the second

step, we prove that the average of the positions (in R
d) of

the followers converges to the convex hull of all the leaders.

In order to prove the first part, consider the continuous

function V1(x
f ,γ) = 1/2(x f )T L

f
0x f . The derivative along the

followers trajectories is, for all (x f ,γ) ∈ R
n f
×Γ,

∂V1

∂x f
(x f ,γ) f (x f ,γ) = −(x f )T L

f
0L

f
γ (x f )+(x f )T L

f
01n f 1T

nl x
l
γ

= −(x f )T L
f
0L

f
γ (x f ).

(15)

For any γ such that at least one leader is active (Standing

Assumption ii)), L
f
γ is a positive definite matrix. Also, L

f
0 is

a positive semidefinite matrix such that L
f
01n f = 0.

Let T
f

a [τD,N0], for given τD > 0 and N0 ∈ N, be the

class of followers trajectories (x f (·),σ(·)) such that σ(·) ∈
Sa[τD,N0]. We denote T

f
V1

the subclass of followers trajec-

tories (x f (·),σ(·)) ∈ Ta[τD,N0] such that for any t ≤ t ′ such

that σ(t) = σ(t ′), then V1(x
f (t),σ(t)) ≥ V1(x

f (t ′),σ(t ′)).
From equation (15) it follows that TV1

= Ta[τD,N0].

3To explicitly show it one could choose, for example, the Lyapunov
function V (δ ) = 1/2δ T δ .
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If we denote T ∗
V1

= {(x f (·),σ(·)) ∈ Ta[τD,N0] | x
f
1(t) =

. . . = xn f
(t) for all t ∈ R+}, using Theorem 2.1, we have

that the set ΩF ×Γ is the largest (weakly) invariant set for

the followers trajectories T ∗
V1

and that x f (t) converges to ΩF

as t → ∞ for all (x f (·),σ(·)) ∈ Ta[τD,N0], and the first part

of the proof follows.

In the second step, we prove that the average of the

followers converges to the convex-hull. Let x̄ f ∈R
d , x̄l ∈R

d ,

and x̄l
γ ∈R

d denote, respectively, the average of the followers,

of all the leaders and of the active (for a given γ) leaders.

Consider the function V2(x̄
f ,γ) = dist(x̄ f ,Ωl), i.e. the dis-

tance between the average position of the followers and the

convex hull of the leaders. Clearly, V is a continuous func-

tion. In order to invoke (again) Theorem 2.1, we need to show

that for any t ≤ t ′ such that σ(t) = σ(t ′), V2(x̄
f (t),σ(t)) ≥

V2(x̄
f (t ′),σ(t ′)). In other words, we need to show that

for any t ≤ t ′ such that σ(t) = σ(t ′), dist(x̄ f (t),ΩL) ≤
dist(x̄ f (t ′),ΩL). The dynamics of x̄ f between two switching

intervals is

˙̄x f (t) = −nl
σ (t)(x̄ f (t)− x̄l

σ(t))

= −nl
γ(x̄

f (t)− x̄l
γ),

(16)

where nl
γ is the number of active leaders between two

switching intervals and x̄l
γ ∈ R

d their average position. This

means that x̄ f (t) converges monotonically to x̄l
γ and therefore

for any t ≤ t ′ such that σ(t) = σ(t ′) = γ , x̄ f (t ′) may be

written as a linear combination of x̄ f (t) and x̄l
γ . That is, we

may write

x̄ f (t ′) = λ x̄ f (t)+(1−λ )x̄l
γ .

Now, using the fact that dist(x̄l
γ ,ΩL) = 0 and that

dist(·,ΩL) is a convex function we have

dist(x̄ f (t ′),ΩL) ≤ λdist(x̄ f (t),ΩL)+(1−λ )dist(x̄l
γ ,ΩL)

≤ dist(x̄ f (t),ΩL).

Therefore we may apply Theorem 2.1 to the switching

system describing the dynamics of x̄ f . The set ΩL × Γ
is the largest (weakly) invariant set for the class of tra-

jectories T̄ ∗
V2

= {(x f (·),σ(·)) ∈ T̄a[τD,N0] | x
f
1(t) = . . . =

xn f
(t) for all t ∈ R+}, and the theorem follows.

VI. SIMULATIONS

In this section we provide a simulation illustrating the

analysis performed in the paper. We simulate a leader-

follower network scenario with 30 followers (dots) and 4

leaders (squares), as shown in Figure 1. Leaders in the

network that are visible to (all) the followers are selected

at random and are shown with a ring around them. The sim-

ulation illustrates the fact that the followers in the network

converge to locations inside the convex hull spanned by all

the leaders.

VII. CONCLUSIONS

In this paper we showed that it is possible to characterize

the set to which a collection of follower agents converge to

as the convex hull spanned by the leader agents. This is the

case even if only a non-empty subset of the leader agents are

visible to the followers at each instant of time. As a result, a

tighter result is obtained as compared to that in [16], where

the region of attraction was found to be a subset of the convex

hull of the leaders. The main result in this paper relies on

recent advances in the switched LaSalle invariance principle,

and it can help explain the swarming behaviors observed in

the silkworm moth, where the male moths are attracted to

the female moths that only intermittently release pheromones

that can be detected by the males.
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t = 0sec

(a) Followers are influenced by three leaders.

t = 0.076sec

(b) Followers are influenced by three leaders.

t = 0.114sec

(c) Followers are influenced by one leader.

t = 0.19sec

(d) Followers are influenced by one leader.

t = 0.228sec

(e) Followers are influenced by four leaders.

t = 0.304sec

(f) Followers are influenced by two leaders.

Fig. 1. Simulation of followers (dots) converging to the convex hull spanned by all leaders (squares). The convex hull is shown by the
line segments connecting the leaders, while lines between followers denote edges. A leader with a ring around indicates that it is visible
by all followers.
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