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Abstract— In this paper we study the problem of controlling
a number of Unmanned Aerial Vehicles (UAVs) to provide
convoy protection to a group of ground vehicles. The UAVs
are modeled as Dubins vehicles flying at a constant altitude
with bounded turning radius. This paper first presents time-
optimal paths for providing convoy protection to static ground
vehicles. Then this paper addresses paths and control strategies
to provide convoy protection to ground vehicles moving on a
straight line. Minimum numbers of UAVs required to provide
perpetual convoy protection for both cases are derived.

I. INTRODUCTION

Coordination of heterogeneous unmanned vehicles is one
of the canonical problems and the key to success of a number
of proposed unmanned missions. We explore this coordina-
tion in the framework of providing ground convoy protection
for a group of UGVs (Unmanned Ground Vehicles), using
a group of dynamically more capable UAVs (Unmanned
Aerial Vehicles). From the early days airplanes have been
used to provide close air support or simply large-scale area
surveillance to the ground convoys moving in unknown and
potentially dangerous environment. Wide spread use of the
unmanned vehicles to conduct tasks in inherently dangerous
environments arises the need for efficient UAV and UGV
coordination algorithms ([9], [12]). Our goal is to provide
an optimal control strategy for a single UAV, as well as
optimal path planning for multiple UAVs in order to provide
successful convoy protection.

In this paper the UAVs are modeled as Dubins vehicles [4]
flying at a constant altitude. Due to kinematic constraints of
the UAVs and limited ranges of sensors on-board the UAVs,
it may be impossible to provide coverage to the ground
vehicles with a single UAV. In this case, the problem of
interest becomes that of providing an optimal path for a
single UAV so that it can monitor the ground vehicle for
the longest time, and coordinating multiple UAVs so that the
ground vehicles are visible to at least one UAV at any given
time. Figure 1 visualizes this concept.

A Dubins vehicle is a planar vehicle with bounded turning
radius and constant forward speed. L.E. Dubins was the
first to give a characterization of time-optimal trajectories
for such a vehicle using geometric methods [4]. Shortest-
path problems for Dubins vehicles have been since studied
extensively (see [5], [10] for example). Walsh et al. [13]
found optimal paths for an airplane on SE(2). Dubins
vehicle has been used as a simplified model to describe
planar motion of UAVs in [10], [2]. Chitsaz et al. [2] extend
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Fig. 1. UAVs providing convoy protection to UGVs. The UAV is assumed
to be kinematically restricted by its minimum turning radius R. The sensors
on-board the UAV also have limited range and assumed to be able to observe
a disk of radius r on the ground.

the Dubins’ model from SE(2) to SE(2) × R to account
for altitude changes and gave a characterization of the time-
optimal trajectories for this model based on the final altitude.

Motion primitives are often used to produce optimal
trajectories for Dubins vehicle (see [1], [6] for example).
In point to point minimum time transfer, it has been shown
that the optimal solutions are curves consisting of only three
motion primitives: line-segment and circular arcs turning
maximumly to the left and to the right (see [4], [8], [11]). The
optimal paths for the point-to-point minimum-time transfer
problem are characterized by sequences of these three motion
primitives. This paper shows that in the case of stationary
convoy protection, optimal paths are characterized by se-
quence of only two motion primitives (maximumly turning
left or right) and do not include a line-segment.

In this paper we address the problem of coordinated
convoy protection for both stationary UGVs and UGVs
moving on a straight line. We first consider the convoy as
stationary and find the optimal path for a single UAV to
maximize the coverage time, we then show how to coordinate
a group of UAVs to provide continuous coverage of the
convoy. Next, we focus on moving convoy and introduce a
control strategy that guarantees periodical meet-up with the
convoy. We introduce a bound on the speed of the convoy that
enables one UAV to provide continuous convoy protection.
In the case when speed of the convoy is outside of this bound
we find the minimum number of UAVs to provide continuous
protection to the convoy.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III address the problem in
the case of stationary convoy. Section IV address the problem
when the convoy is moving on a straight line. Section V
concludes the paper.
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II. PROBLEM FORMULATION

In this paper the UAVs are modeled as Dubins vehicles
flying at constant altitude with unit speed and minimum turn
radius of R. 1 Therefore, we can write the kinematics of the
UAV as 




ẋ = cos(θ)
ẏ = sin(θ)
θ̇ = ω

(1)

where x and y are the position of the UAV in the x-y
plane at the altitude the UAV is flying, and ω is the angular
velocity of the vehicle. The angular velocity is bounded by
the inverse of the minimum turn radius R of the vehicle,
i.e., ω ∈ [− 1

R , 1
R ]. Let the state of the system be defined as

q(t) = [x(t), y(t), θ(t)]T .

Definition 2.1: Successful convoy protection is achieved
when the centroid of the UGVs is visible to at least one
of the UAVs at any time, assuming UGVs travel relatively
close to each other.

We assume the cameras on-board the UAVs can monitor
a disk of radius r on the ground (see Figure 1 for an
illustration of this problem). The disk of observation certainly
depends on the altitude of the UAV, but to ensure quality of
observation and successful protection, cameras or sensors on-
board the UAV has narrower field of view than the UAV’s
turning radius in many cases, especially for cameras and
sensors that carry out a specific objective such as executing
computer vision algorithms (higher resolution in the expense
of narrower field of view). We further assume the camera is
gimbaled and the area viewed by the UAV remains a disk of
radius r centered at projection of the position of the UAV
on the ground regardless of the UAV’s bank angle.

If R > r and the UGVs are stationary, then a single
UAV is not capable of providing convoy protection to the
ground vehicles indefinitely and a control strategy is needed
to optimize the time in which convoy protection is achieved.
Note that in case of static convoy if R ≤ r, then the convoy
protection problem is solved by using a single UAV flying on
a circular path of radius R with the center being the ground
vehicles.

In this paper we consider the problem of controlling and
coordinating the UAVs to provide convoy protection for both
stationary UGVs and UGVs moving on a straight line. In
both cases we assume that R > r. We denote the convoy
circle as a disk of radius r around the centroid of the
UGVs. Convoy protection is achieved if at least one UAV
is present inside the convoy circle at any time. Because of
the kinematic constraint (turning radius of the UAVs), the
UAVs are required to be coordinated so that they collectively
provide constant convoy protection despite flying in and out
of the convoy circle.

1The unit speed assumption is justified by defining the unit length as the
speed of the UAVs.

III. OPTIMAL PROTECTION OF STATIONARY CONVOYS

In this section we find optimal paths for a single UAV
to provide maximum protection for some stationary convoy.
We determine both the time-optimal path for a single UAV
starting at a fixed initial condition and optimal paths if the
UAV is allowed to pick the position and heading when
entering the convoy circle. We also provide optimal paths
for multiple UAVs to provide convoy protection for all time.
The minimum number of UAVs required to achieve this task
is also obtained.

A. Optimal path for a single UAV

First consider the problem of using one UAV to provide
convoy protection to some stationary UGVs for maximum
amount of time. Fix the origin of the x-y plane at the
centroid of the UGVs. This problem can be considered
as a maximum-time optimal control problem with state
constraint x2 + y2 − r2 ≤ 0 and input constraint |w| ≤ 1

R .
Furthermore, it can be assumed that the UAV starts at a
point on the state constraint boundary (convoy circle). This
assumption do not limit generality of the result since if the
UAV starts inside the convoy circle, we can use Bellman’s
principle to obtain the remaining optimal path for the UAV by
integrating backwards in time. Finally, it is useful to impose
a terminal manifold constraint since the optimal solution
always involves the terminal state being on the boundary
of the state constraint set (exiting the circle).

The optimal control problem can be defined as:

Problem 3.1:

min
ω(t)

J =
∫ T

0

−1dt, (2)

subject to the dynamics of (1), and the input constraint

− 1
R
≤ ω(t) ≤ 1

R
, (3)

the state constraint

x(t)2 + y(t)2 − r2 ≤ 0
x(0)2 + y(0)2 − r2 = 0 (4)

and the terminal manifold constraint

M(q(T )) = x(T )2 + y(T )2 − r2 = 0. (5)

For simplicity of notation, we assume that all angles are
taken modulus 2π.

To address the state constraint we use an auxiliary state τ

τ̇(t) = (x2 + y2 − r2)2 ξ(x2 + y2 − r2), (6)

where ξ(.) is a Heaviside function

ξ(x2 + y2 − r2) =
{

0 : x2 + y2 − r2 ≤ 0
1 : otherwise. (7)

The state can be augmented as q̄(t) = [q(t), τ(t)]T . Let us
require that τ(0) = 0 and τ(T ) = 0. This enforces the
constraint since being outside of the constraint produces a
positive derivative of τ(t) and thus the terminal condition is
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violated. When there is no ambiguity, we assume that the
state constraint is satisfied and we still call q(t) the state
trajectory.

The Hamiltonian for this optimal control problem can be
written as:

H = −1 + λ1 cos θ + λ2 sin θ + λ3ω +
λ4(x2 + y2 − r2)2ξ(x2 + y2 − r2), (8)

where λ = [λ1, · · · , λ4]T are the trajectories of the costates.
The necessary optimality condition from the Pontryagin’s
minimum principle states that

H(q̄∗(t), λ∗(t), ω∗(t), t) ≤ H(q̄∗(t), λ∗(t), ω(t), t),

∀ω ∈ [− 1
R

,
1
R

], t ∈ [0, T ]. (9)

Using the necessary optimality condition, and substituting
the Hamiltonian from (8), one can see that the optimal
controller is a function of the costate λ3(t) as:

ω∗(t) =




− 1

R : λ∗3(t) > 0
1
R : λ∗3(t) < 0
undetermined : λ∗3(t) = 0

(10)

Thus it can be seen that when λ∗3(t) > 0, the optimal control
is maximum turning right, and when λ∗3(t) < 0, the optimal
control is maximum turning left. Hence, the optimal control
trajectory is in the form of bang-bang control. It should be
noted that when λ∗3(t) = 0 for a finite time interval, then
any control ω(t) ∈ [− 1

R , 1
R ] satisfies (9) and this case is

referred to as a singular condition (see [7]). For a singular
condition to occur, it is necessary that there exist a time t
such that λ3(t) = 0 and λ̇3(t) = 0. For Dubins vehicles with
dynamics specified in equation (1), singular intervals result
in line segments as part of the optimal path. Line segments
are usually part of the optimal paths for shortest-path (or
minimum-time) Dubins vehicle problems. However, later in
this section, we will show that line segments can not be
part of the optimal path for Problem 3.1, and as a result the
optimal control always switches between ω∗(t) = − 1

R and
ω∗(t) = 1

R .

Definition 3.1: For a state trajectory q(t), t ∈ [0, T ]
satisfying the state constraint (4), if the costate trajectory
and corresponding input satisfies the control strategy (10),
then q(t) is referred to as a Candidate Optimal Trajectory
(COT).

Pontryagin’s minimum principle states that being a COT
is a necessary condition for being the optimal solution.

Assuming a trajectory q(t) is a COT, it can be shown
that the the costate λ(t) satisfying the necessary optimality
condition (9) can be uniquely determined. Given a termi-
nal state q(T ), denote θT = θ(T ) and define the angle
ψT = atan2(y(T ), x(T )). Using the terminal manifold and
transversality condition we can solve the costate equations
backwards, and obtain the following lemma (for detailed
analysis see our technical report [3]):

Lemma 3.1: For any terminal state q(T ), a unique COT
q(t) and its corresponding input and costate history can
be reconstructed. Furthermore, if θT 6= ψT , then q(t) is
composed of maximumly turning right or left curves, or
combination of both at some switching times. If θT = ψT ,
then q(t) is a line that goes through the origin.

A direct consequence of the Lemma 3.1 is that, an optimal
trajectory can not contain both a circular arc and a line
segment. Hence, the optimal control law can not exhibit
switching from turning to going straight or vice versa. We
denote the state when the controller switches from maximum
turning left to right or from maximum turning right to left
as a switching point.

A COT may contain uncountably many switching points,
and obtaining their location can be a difficult task. However,
the structure of this problem (state and input constraint
as well as the terminal manifold) allows a very powerful
theorem that characterizes the optimal trajectory (the proof
of this theorem is contained in [3]).

Theorem 3.2: For the optimal control problem (3.1), the
optimal trajectory of the UAV can not contain more than
one switching point.

Since the optimal trajectory can only switch at most once, the
number of COT that can be optimal is drastically reduced.
It is then possible to construct optimal curves for any initial
condition. Similar to many other Dubins car path planning
approaches (see [4], [11], [8], [2] for example), we can
define 2 motion primitives {L, R}, where L and R motion
primitives turn the car maximumly to the left and right,
respectively. For this problem, there is only one case where
a straight line is a COT (initial condition q(0) = [−r, 0, 0]T

and rotation of this point by any angle). However, in this
case, there are 2 other COTs that are both longer in length
and involve one-switching. Therefore unlike the Dubins
vehicle shortest-path problem ([8]), there is no straight line
motion primitive since it can not be optimal. Furthermore,
since the optimal trajectory only switch once, there are only 4
possible sequences of the {L, R} motion primitives, namely
{L, R, LR, RL}, where LR stands for turning left then right
and RL for turning right then left.

The problem of finding the optimal path is then reduced to
one of finding whether or not the optimal trajectory contains
a switching point and location of the optimal switching point.
By studying the state and costate trajectory corresponding to
a COT, one can obtain the following property for the optimal
switching point (for detailed proof see [3]).

Theorem 3.3: For any initial condition q(0), the optimal
switching point of the optimal trajectory lies on the line
passing through the origin and the exit point.

The above theorem is useful because it completely de-
termines the optimal control law. A set of optimal paths
for initial conditions with heading θ(0) = π

2 are shown
in Figure 2. The optimal control law is determined as
follows. Assuming θ(0) = π

2 , the optimal motion sequence
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depends on the initial position. If x(0) ∈ (−r,− r2

R ], then
R is optimal. If x(0) ∈ (− r2

R , 0], then LR is optimal. If
x(0) ∈ [0, r2

R ), then RL is optimal. If x(0) ∈ [ r2

R , r), then
L is optimal. Figure 2 also shows the optimal switching
surface on which switchings are optimal. The switching point
is determined by theorem 3.3 since the exit point (obtained
by projecting the state forward), the center of the convoy
circle and the switching point must be on the same line. If
the initial heading of the UAV is not π

2 , then one can always
rotate the state of the system around the convoy circle until
this is true.

Fig. 2. A number of optimal state trajectories with initial heading π
2

. The
optimal switching points are plotted together to form the optimal switching
surface. In this case, R = 1.5r. The dashed paths corresponds to optimal
paths. The solid path corresponds to one initial position and this path is
longer than all other optimal paths with the same initial heading.

It can be shown that the optimal entry states q(0) =
[−r, 0, arcsin( r

R )]T and q(0) = [−r, 0,− arcsin( r
R )]T (and

their rotations around the origin) produce the longest optimal
paths (length of all these paths are equal and maximal). These
points are then the optimal entry points and the optimal paths
with these initial conditions are referred to as the globally
optimal paths. A globally optimal path characterizes the
maximum possible time a UAV can stay inside the convoy
circle. The set of all optimal entry points is denoted as E∗
and it can be described as:
E∗ = {q = [−r cos(θ),−r sin(θ),± arcsin(

r

R
) + θ]T ,

θ ∈ [−π, π]}. (11)

An easy way to recognize a globally optimal path is to
observe the fact that the entry point of a globally optimal
path is always on the same line as the origin and the exit
point (as result of theorem 3.2).

B. Multi-UAV convoy protection
Now we consider the problem of coordinating multiple

UAVs to achieve convoy protection for a set of UGVs. Due
to kinematic constraint of the UAVs (r < R), it is impossible
for one UAV to provide complete convoy protection for all
time. In this situation, multi-UAV coordination is required
in order to successful carry out convoy protection. It should
be noted that a globally optimal path not only specifies an
optimal path inside the convoy circle, but also a path for a
single UAV to come back to the convoy circle without chang-
ing direction. As shown in Figure 3, the path constitutes a

circle of radius R and part of the path is the globally optimal
path inside the convoy circle. There are many similar optimal
paths, and they are referred to as optimal convoy protection
paths. These paths maximize the ratio of time inside the
convoy circle over outside of the convoy circle, since it is
the quickest path to come back to the circle, always reenter
optimally and repeat as a limit-cycle. All of the globally

Fig. 3. Three optimal convoy protection paths are shown. They maximize
the time spent inside the convoy circle over the time outside of the convoy
circle. The smaller dashed circle is the convoy circle, and the larger dotted
circles are optimal convoy protection paths. The solid circle is the past
trajectories of the UAV.

optimal paths have the same length as function of r and R.
Given this length, we can compute the minimum number
of UAVs required to sustain convoy protection for ground
convoy for all time. This results in the following corollary:

Corollary 3.4: Given the convoy circle of radius r for
the UGVs and maximum turning radius R for the UAVs,
the minimum number of UAVs needed to provide convoy
protection for all time is:

N =
⌈

π

arcsin( r
R )

⌉
, (12)

where d·e denotes the ceiling function.

Assume that there is N UAVs and they can start at an
optimal initial condition q∗(0) ∈ E∗, the UAVs need to space
themselves evenly in terms of the time entering the convoy
circle. This can be achieved by slowing down and speeding
up with respect to the other UAVs so that the i-th UAV enters
the convoy circle at time 2πR

N i. This strategy is possible since
the optimal paths derived for this problem remain the same
for UAVs of any speed (instead of unit speed).

IV. MOVING CONVOY PROTECTION STRATEGIES

In this section we focus on convoy protection strategy
for moving UGVs. Again, we assume that the location of
the UGVs are represented by their centroid as a point.
Instead of being static, here we consider that this point is
moving in a constant direction with a constant and bounded
speed. Denote the speed of the UGVs as VG. The UGVs are
assumed to be moving in a constant heading of angle φ.

For the UAVs, we again normalize their speed to 1. Hence
the UAVs follow the dynamics in equation (1) and their
states are denoted by [x, y, θ]T . The UAVs are assumed to
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be capable of flying with faster speed than the UGVs (this
agrees with current state of technologies in terms of speed of
ground robots versus UAVs). Hence, we assume that VG ≤ 1.

Now, we propose a control strategy with a corresponding
lower bound V ?

G so that if the speed of the UGVs is in this
bound (VG ∈ [V ?

G, 1]), then one UAV is guaranteed to provide
convoy protection for all time.

Inspired by the motion primitives defined in the static
convoy protection problem, we fix the motion of the UAV
to a sequence of maximally left and right turns, i.e., M =
{L, R, L, R, · · · } or M = {R, L, R, L, · · · }. We assume
that the UAV and UGVs are initially on top of each other;
i.e., the initial x-y coordinates of the UGVs is [x(0), y(0)]T .
Now, we define the angle between the heading of the UGVs
and initial heading of the UAV as β. Hence, β = φ− θ(0).
Again, to simplify notations, we assume that all angles are
taken modulus 2π.

We switch the motion primitive between L and R every
time the paths of UAV and UGVs intersect. With this control
strategy, the path of the UAV and the UGVs intersect every
time the UAV flies for a circular arc of angle 2β. An example
of the trajectory of the UAV and the UGVs are shown in
Figure 4. The initial motion primitive of the motion sequence
M depends on β. If β ∈ [0, π), then the path of the UGVs
is to the left of the initial heading of the UAV and the first
motion primitive is L, otherwise, the first motion primitive
is R.

Fig. 4. Example trajectory of a UAV providing convoy protection for the
UGVs with the proposed control strategy. The solid curve is the path of the
UAV. The dashed line is the path of the UGVs. The dashed circle is the
convoy circle. The angle of the circular arc for each motion primitive is 2β.
In this case, β ∈ [0, π

2
].

In the following discussion, we focus on the case that β ∈
[0, π) and the motion sequence is M = {L, R, L, R, · · · },
because if β ∈ (−π, 0], then the path of the UAV is
symmetric to the path corresponding to the angle of −β.

It is desirable to control the UAV to meet the UGVs
periodically. This goal can be achieved by carefully choosing
the initial heading of the UAV based on the speed of the
UGVs. The following lemma relates the speed of the UGVs
with the desired initial heading of the UAV.

Lemma 4.1: Assume that the UGVs move with constant
speed VG and heading φ, and the UAV starts at the
same position as the UGVs with the initial heading θ(0).
β = φ − θ(0). Assume that β ∈ [0, π) and hence
M = {L, R, L, R, · · · }. Then if the UAV executes the
proposed control strategy, and VG = sin(β)

β , then the UAV
and the UGVs meet at the end of each motion primitive.

Proof: If the UAV executes the proposed control strategy,
then it flies for a circular arc of angle 2β for each motion
primitive inM. Assume that the UAV meet with the UGVs at
the end of each motion primitive. For each motion primitive,
the UAV travels for a distance of 2Rβ and the UGVs travel
for a distance of 2R sin(β). Since the UAV is unit speed, we
have VG2Rβ = 2R sin(β), and therefore VG = sin(β)

β .
Note that, if the UGVs travel with the same speed as the

UAV, i.e. VG = 1, then from Lemma 4.1, we have β = 0. In
this case, the UAV will fly exactly on top of the UGVs.

Using Lemma 4.1, we can obtain the lower bound for the
speed of UGVs to achieve perpetual convoy protection.

Theorem 4.2: Using the proposed control strategy, one
UAV is sufficient to provide continuous convoy protection
for all time, if VG is bounded below by V ?

G, where

V ?
G =

√
2rR− r2

R arccos(1− r
R )

. (13)

Proof: Without loss of generality, we assume that the UAV
and UGVs start at the origin and the heading of the UGVs is
φ = 0. If φ 6= 0, We can always rotate the path of the UGVs
so that φ = 0. We first focus on the first motion primitive.
Let us look at the positions of the UGVs and UAV after
flying a circular arc of angle 2γ where γ ∈ [0, β]. Denote
the x-y coordinates of the UGVs and the UAV as pc and pa,
respectively. Note that pc and pa are both functions of γ, and
they can be obtained after some algebra and trigonometry as

pa(γ) =
[

2R sin(γ) cos(β − γ)
−2R sin(γ) sin(β − γ)

]
, (14)

and
pc(γ) =

[
2R γ

β sin(β)
0

]
. (15)

We denote the distance between the UAV and the UGVs
as d(γ), hence

d(γ) = ‖pa(γ)− pc(γ)‖2. (16)

Note that d(0) = d(β) = 0, and d(γ) is strictly concave
in the interval [0, β]. Furthermore, d(γ) is at the maximum
exactly when γ = β

2 . Thus, the distance between the UAV
and the UGVs is at the maximum at the midpoint of the
motion primitive.

The maximum distance between UAV and the UGVs can
be computed as d(β

2 ) = R(1 − cos(β)). If the UAV is
sufficient to provide continuous convoy protection for the
entire motion primitive, then we require that d(γ) ≤ r,∀γ ∈
[0, β]. This is true if R(1 − cos(β)) ≤ r. Since β ∈ [0, π),
we can obtain a bound on β as β ≤ arccos(1 − r

R ). Note
that VG = sin(β)

β is strictly decreasing in [0, π). Therefore,
we have that VG ≥ V ?

G, where

V ?
G =

sin(arccos(1− r
R ))

arccos(1− r
R )

=
√

2rR− r2

R arccos(1− r
R )

. (17)

This analysis can be applied to every motion primitive in
the motion sequence M. Thus, if VG ≥ V ?

G, then one UAV
is sufficient to provide continuous convoy protection for all
time.
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When VG < V ?
G, convoy protection cannot be provided

with a single UAV and we need to coordinate multiple
UAVs to provide perpetual convoy protection. We use a
similar approach as the static convoys case to determine the
minimum number of UAVs required. In this case, on the path
of each execution of one motion primitive, there are two
segments of the path when the distance between the UAV
and the UGVs is less than or equal to r. Hence, convoy
protection is provided by one UAV for two circular arcs of
angle γ? for each execution of one motion primitive, where
d(γ?

2 ) = r and d is defined in equation (16). Refer to Figure
5 for an example.

Fig. 5. For each execution of one motion primitive, there are two segments
of the path corresponding to two circular arcs of angle γ?, so that the
distance between the UAV and the UGVs is less or equal to r when the
UAV is on these segments. In this figure, the dashed curve is the path of
the UAV, the solid curves are the segments of the path in which convoy
protection is provided. The UAV and the convoys are drawn at the times
when the UAV enters and exits these segments.

Similar to the multi-UAV coordination approach in the
previous section, we can use a timing strategy to schedule
the UAVs such that, at any time, one of the UAVs is inside
the convoy circle. First, note that the minimum number of
UAVs required to provide continuous convoy protection can
be obtained by the following corollary:

Corollary 4.3: Using the proposed control strategy, if
VG < V ?

G, then the minimum number of UAVs needed
to provide continuous convoy protection for all time is
N = d β

γ? e, where d·e denotes the ceiling function. γ? can
be obtained by solving a non-linear equation d(γ?

2 ) = r,
using β obtained from VG (VG = sin(β)

β ).

Proof: Directly follows from the fact that, for each motion
primitive, the length of the path in which one UAV stays
inside the convoy circle is 2Rγ?, while the length of the
entire path for the motion primitive is 2Rβ.

Figure 6 shows how one can schedule the UAVs to provide
continuous convoy protection for all time. The key is to
synchronize the position of the UGVs with individual UAVs
at different times, so that when one UAV exits the convoy
circle, there is at least one UAV inside the convoy circle and
it is on the segment of its path in which the distance to the
UGVs is less or equal to r.

V. CONCLUDING REMARKS

This paper studies the problem of providing convoy pro-
tection to a group of UGVs using UAVs. The UAVs are
kinematically restricted by their minimum turning radii and
the limited field of view of the sensors onboard. We identify

Fig. 6. Example of using two UAVs to provide continuous convoy
protection using the proposed strategy. In this figure, the dashed curves
are the paths of the UAVs, the solid curves are the segments of the paths
in which convoy protection is provided. In this case, every time one UAV
exits the convoy circle, the other UAV is inside the convoy circle. This is
always true if N = d β

γ? e = 2 and the times when the UAVs synchronize
with the UGVs are spaced out.

optimal paths for one UAV to provide convoy protection for
maximum amount of time when UGVs are stationary. We
also propose a coordination strategy as well as optimal paths
for multiple UAVs to provide continuous convoy protection
for all time. The minimum number of UAVs required to
achieve this task is derived. For the case of UGVs moving
on straight lines with constant speed, we provide a control
strategy that guarantees periodical meet-up with the UGVs,
as well as a corresponding bound on the speed of the UGVs,
so that if this bound is satisfied, then one UAV is capable
of providing convoy protection for all time. If the speed of
the UGVs is outside this bound, we propose a coordination
strategy and obtain the minimum number of UAVs required
to achieve continuous convoy protection.
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