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Abstract

In some applications objects are known to have non-
smooth or “jagged” edges, which are not well approx-
imated by smooth curves. We use subdivision curves as
a simple but flexible curve representation, which allows
tagging corners to model non-smooth features along oth-
erwise smooth curves. A Markov chain Monte Carlo ap-
proach yields an approximate posterior distribution over
tags, while Rao-Blackwellization allows us to integrate out
the control point locations by an approximation. We apply
this general methodology to multi-view reconstruction of
piecewise smooth curves from multiple calibrated views in
which the object has been segmented from the background.
Results are shown for multiple images of two pot shards as
would be encountered in archaeological applications.

1. Introduction

In this paper we investigate the 3D reconstruction of
shards and other artifacts that are known to have “jagged
edges”. We exploit this prior knowledge about the object
by formulating the problem as the reconstruction of piece-
wise smooth curves from multiple calibrated views. Exist-
ing 3D reconstruction methods rely on automatically ex-
tracted points and/or lines [11]. In the case of textured ob-
jects or in the presence of projected patterns, these methods
can be used successfully to sparsely sample the 3D surface
of an object. However, they fail to use or capture the fact
that an object like a shard is delineated by a closed bound-
ary curve. In this paper we compliment traditional 3D re-
construction methods by explicitly recovering these curves.

To model piecewise smooth curves we use tagged subdi-
vision curves as the representation, the details of which are
given in Section 2. This is inspired by the work of Hoppe
[12], who successfully used tagged subdivision surfaces
for fitting piecewise smooth surfaces to 3D point clouds.
The curve fitting literature includes use of algebraic curves
[13, 1], piecewise polynomials [6, 16, 17], point curves

[2], and B-splines [5, 4, 7]. To the best of our knowledge,
no prior work on fitting subdivision curves exists. Subdi-
vision curves are simple to implement and provide a flex-
ible way of representing curves of any type, including all
kinds of B-splines and extending to functions without ana-
lytic representation. A comprehensive introduction to sub-
division curves can be found in [19]. In [12], Hoppe in-
troduces piecewise smooth subdivisionsurfaces, allowing
to model sharp features such a creases and corners by tag-
ging the corresponding control points. We use the same idea
of tagging, and apply it to subdivisioncurvesto represent
piecewise smooth curves.

To infer the parameters of these curves from the data,
we propose Rao-Blackwellized sampling, discussed below
in Section 3. In our approach, MCMC sampling [9] is used
to obtain a posterior distribution over the tags, while the
control point locations are integrated out after a non-linear
optimization step. In related work, Denison and Mallick
[6, 16] propose fitting piecewise polynomials with an un-
known number of knots using reversible jump Markov
Chain Monte Carlo sampling [10]. Punskaya [17] extends
this work to unknown model orders within each segment
with applications in signal segmentation. DiMatteo [7] ex-
tends Denison’s work for the special case of natural cubic
B-splines, handling non-smooth curves by representing a
corner with multiple knots. However, the knots cannot be
at the same location, and therefore only approximate the
corner. With our method corners can be represented exactly
with a single control point. In addition, we are working with
a much reduced sample space, as we directly solve for opti-
mal control point locations and hence only sample over the
boolean product space of corner tags.

We apply this general methodology to 3D reconstruc-
tion of piecewise smooth curves from multiple calibrated
images, discussed below in Section 4. While much of the
curve fitting literature is concerned with 1D curves for sig-
nal processing [16, 6, 7, 17], in computer vision it is more
common to fit curves in 2D or 3D. For example, 2D curves
are often fit to scattered point data [1] and image contours
[5]. In multi-view fitting, for the special case of stereo cam-
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eras, [4] describes reconstruction and tracking of 3D curves
represented by 2D B-spline curves, that are either coupled
through epipolar geometry constraints, or are coupled to
a canonical frame model through affine transformations.
More general multiple view curve reconstruction methods
are described in [13] using algebraic curves, and in [2] for
point curves with uncalibrated cameras.

A possible application of our work is the automatic
reconstruction of archaeological artifacts. [14] describes
manual restoration of archaeological objects. Shards are
scanned with laser range finders, and the resulting 3D mod-
els can manually be manipulated in a VR environment. It is
suggested to automate this process by classifying shards by
their curvature and their texture.

2. Subdivision Curves

2.1. Subdivision Review

Below we briefly review subdivision curves. See [19] for
a more detailed introduction.

A subdivision curve is defined by repeatedly refining a
vector of control pointsΘt =

(
xt

0, x
t
1, ..., x

t
n2t−1

)
, where

n is the initial number of control points andt the num-
ber of subdivisions performed. This refinement process can
be separated into two steps as shown in Figure 1: asplit-
ting stepthat introduces midpoints and therefore doubles
the number of points:

xt+1
2i

∆= xt
i

xt+1
2i+1

∆=
1
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(
xt

i + xt
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)
,

and anaveraging stepthat computes weighted averages ac-
cording to theaveraging maskr = (..., r−1, r0, r1, ...):

xt+1
i

∆=
∑

k

rkxt
i+k

The type of the resulting curve depends on the maskr.
Subdivision can be used to create a surprisingly wide range
of functions [19], including linear interpolating curves, uni-
form and non-uniform B-splines, and even functions that
have no analytic representation like Daubechies wavelets.
For example, the averaging mask for a cubic B-spline is
1
4 (1, 2, 1). Note that some of these curves interpolate the
control points while others approximate them, e.g. all B-
splines of second order and higher. We useuniformsubdi-
vision schemes where the same averaging mask is used ev-
erywhere along the curve, and generally use approximating
rather than interpolating curves.

As explained in [19], the splitting and averaging steps
can be combined into multiplication of the local control

points with alocal subdivision matrixL, e.g.

L =
1
8

 4 4 0
1 6 1
0 4 4


for cubic B-splines. Repeated application of this matrix to
a control point and its immediate neighbors results in a se-
quence of more and more refined points, that converges to
the limit value of the center point. Eigenvector analysis on
the matrixL leads to anevaluation masku that can be ap-
plied to a control point and its neighbors, resulting in the
limit position for that control point. For example, the evalu-
ation mask for cubic B-splines is

u =
1
6

(1, 4, 1)

The curve can be refined to the desired resolution before the
evaluation mask is applied.

2.2. Matrix Notation and Derivatives

In what follows, it will be of use to view theentiresub-
division process as one large matrix multiplication

C = SΘ (1)

whereC is the final curve, then×1 vectorΘ represents the
control points/polygon, and thesubdivision matrixS com-
bines allm subdivision steps and the application of the eval-
uation mask into onen2m × n matrix. This can be done as
both subdivision and evaluation steps are linear operations
on the control points. The final curveC is an2m × 1 vec-
tor that can be obtained by multiplyingS with the control
point vectorΘ as in (1).

The derivative of the final curveC with respect to a
change in the control pointsΘ, needed below to optimize
over them, is simply a constant matrix:

∂C

∂Θ
=

∂(SΘ)
∂Θ

= S (2)

While the above holds for 1D functions only, ann-
dimensional subdivision curve can easily be defined by
using n-dimensional control points, effectively represent-
ing each coordinate by a 1D subdivision curve. Our im-
plementation is done in the functional language ML, and
uses functors to remain independent of the dimension-
ality of the underlying space. Note that in that case, the
derivative equation (2) holds for each dimension sepa-
rately.

2.3. Piecewise Smooth Curves

There are different approaches to representing sharp cor-
ners in otherwise smooth curves. One obvious solution is to



Figure 1. Different stages in the subdivision process are shown. The top left image shows the initial control points lin-
early interpolated. In the top right image, the original mesh is subdivided by introducing average points. The result af-
ter application of the averaging mask to the subdivided control points is shown in the bottom left. The last image shows
the converged curve.

place multiple control points at the location of a corner. Be-
sides unnecessary complexity of the subdivision curve by
doubling the number of points at that location with each
subdivision step, this places unwanted constraints on the ad-
jacent curve segments. A commonly used method in con-
nection with B-splines is the insertion of knots in a knot se-
quence, which defines the B-spline basis functions.

We employ a more general method here that works for
any subdivision curve, based on work of Hoppe [12] for
subdivision surfaces. It allows us to “tag” control points, al-
lowing different averaging masks to be used at these points.
In particular, using the mask(0, 1, 0) forces interpolation
of the control point and introduces a discontinuity in the
derivative there, while retaining the smooth curve proper-

ties for all other points of the curve. An example is shown
in Figure 2. The number of tagged control points does not
increase during the subdivision process, and so the non-
smoothness of the curve is restricted to exactly the tagged
control points. These will be interpolated, regardless of the
general averaging mask used.

Below we will use the following notation to describe
tagged 3D subdivision curves. The locations of the con-

trol points in 3D are given byΘ ∆= {x0
0, x

0
1, ..., x

0
n−1},

wheren is the number of control points. For each origi-
nal control pointx0

i , a booleantag bi indicates whether it
is non-smoothly interpolated, i.e. whether there is a “cor-
ner” at control pointi. The collection of tagsbi is written as

T
∆= {b0, b1, ..., bn−1}.



Figure 2. A tagged 2D subdivision curve is shown. Tagged control points are drawn as circles. The left image shows the
original control point configuration, the right image the final converged curve with two non-smoothly interpolated control
points.

3. Rao-Blackwellized Curve Fitting

In this section we describe how the parameters of a
tagged subdivision curve can be estimated from noisy mea-
surementsZ, irrespective of how those measurements were
obtained. In Section 4 this will be specialized to fitting from
multiple, calibrated segmentations of an object.

Because the measurements are noisy we take a proba-
bilistic approach. Of interest is the posterior distribution

P (Θ, T |Z) ∝ P (Z|Θ, T )P (Θ|T )P (T ) (3)

over the possible control point valuesΘ and tag variables
T , as defined in Section 2.3. Note that the control points
Θ ∈ R3n are continuous and the tagsT ∈ {0, 1}n are dis-
crete. ThelikelihoodP (Z|Θ, T ) andcontrol polygon prior
P (Θ|T ) are application specific, and will be further speci-
fied in Section 4. For thetagging prior P (T ), one can ei-
ther use a binomial distribution over the number of active
tagsc

P (T ) ∝ pc(1− p)n−c

or simply have an uninformative prior that does not favor
any tagging configuration over any other.

Since the number of possible tag configurations is2n

and hence exponential inn, we propose to use Markov
chain Monte Carlo (MCMC) sampling to perform approxi-
mate inference, using theMetropolis-Hastings(MH) algo-
rithm [9, 15]. This method produces an approximate sam-
ple from a target distributionπ(X), by simulating a Markov
chain whose equilibrium distribution isπ(X). The algo-
rithm starts from a random initial stateX(0) and proposes
probabilistically generated moves in the state space, which

is equivalent to running a Markov chain. However, the MH
algorithm modifies the chain to have the desired equilib-
rium distribution by rejecting some of the moves:

1. Start with a random initial stateX(0).

2. Propose a move to a new stateX ′ using an arbitrary
but fixedproposal density Q(X ′;X(r)).

3. Compute the acceptance ratio

a =
π(X ′)

π(X(r))
Q(X(r);X ′)
Q(X ′;X(r))

(4)

4. Accept the move toX ′ as X(r+1) with probability
min(a, 1), otherwiseX(r+1) = X(r).

The sequence of states{X(r)} thus generated will be a sam-
ple from π(X) if the sampler is run sufficiently long, and
one discards the samples in the initial “burn-in” period of
the sampler to avoid dependence on the chosen start state.

For fitting tagged subdivision curves, we propose to not
sample from the joint posterior (3), but rather from the
marginal distributionP (T |Z) over the tagsT , i.e.

π(X) ∆= P (T |Z) =
∫

P (Θ, T |Z)dΘ (5)

while performing the integration (5) above analytically.
This will reduce the number of samples needed, as ex-
plained below. From a sample overT of sizeN we can ob-
tain a high quality approximation to the joint posterior as
follows

P (Θ, T |Z) ≈
N∑

r=1

P (Θ|T (r), Z)δ(T, T (r)) (6)



with δ(., .) the Kronecker delta. Thus, (6) approximates the
joint posteriorP (Θ, T |Z) as a combination of discrete sam-
ples and continuous conditional densitiesP (Θ|T (r), Z).
The superiority of (6) over a density estimate based on joint
samples is based on an application of the Rao-Blackwell
theorem of mathematical probability, which is why inte-
grating out of part of the state is often referred to asRao-
Blackwellization[8, 3, 18]. Intuitively, the variance of (6) is
lower because it uses exact conditional densities to approxi-
mate the continuous part of the sate, conditioned on the dis-
crete samples. As such, many fewer samples are needed to
obtain a density estimate of similar quality. Any expecta-
tion calculated using (6) will have lower variance, as well,
for example the mean value of a certain control point or the
length of the curve.

Substituting (3) in (5) we obtain

P (T |Z) = kP (T )
∫

P (Z|Θ, T )P (Θ|T )dΘ

Under the assumption that the conditional posterior
P (Z|Θ, T )P (Θ|T ) is approximately normally dis-
tributed around the MAP estimate of the control points
Θ∗

P (Θ|Z, T ) ≈ 1√
|2πΣ|

e−
1
2 |Θ−Θ∗|Σ

the integral can be approximated via Laplace’s method and
we obtain the following target distribution over the tags T:

P (T |Z) = kP (T )
√
|2πΣ|P (Z|Θ∗, T )P (Θ∗|T )

The MAP estimateΘ∗can be found by non-linear optimiza-
tion, as explained in the section below.

4. Multiple View Fitting

In this section we specialize the general methodology of
Section 3 to reconstructing tagged subdivision curves from
multiple 2D views of a “jagged” object. We assume here
that (a) the images are calibrated, and (b) the measurements
Z are the object boundaries in the 2D images, i.e. the object
has been segmented out from the background. The curve
given byΘ andT is subdivided inm steps to the desired
resolution, evaluated, and the resulting points{pi}n2m

1 are
projected into each view. We then use the following form
for the likelihoodP (Z|Θ, T ):

P (Z|Θ∗, T ) ∝ e−βE(Z,Θ∗,T )

whereβ is a constant, and the error functionE is obtained
as a sum of squared errors∆ci(.)

E(Z,Θ, T ) =
C∑

c=1

n2m∑
i=1

∆ci(Πc(pi), Zc)2 (7)

with one term for each of then2m final subdivision curve
points in each of theC images, explained in more detail be-
low. Both the priorP (T ) on the tag configuration and the
conditional control polygon prior are taken to be uniform in
all the results reported below.

Each error term∆ci(Πc(p), Zc) in (7) determines the
distance from the projectionΠc(pi) of a pointpi into view
c, to the nearest point on the object boundaryZc. In or-
der to speed up this common calculation, we pre-calculate
a lookup table for∆ by means of the well known distance
transform, to obtain a Chamfer image [20]. Each pixel in a
Chamfer image contains the distance from this pixel to the
nearest point on the segmented curveZc in view c. Calculat-
ing the Chamfer images has to be done only once and runs
in linear time, by two passes over the image. In this way, we
trade memory usage for computational speed.

The reprojection of the 3D curve in the images is done
in the standard way [11]. We assume the cameras are de-
scribed using a single radial distortion parameterκ, focal
lengthsfx andfy, principal point(px, py), and skews. The
pose of a camera is given by a rotationR and translationt.
The projection of a 3D pointX into an image is then given
by

Π(X) = D(K[R|t], κ,X)

whereK is the3× 3 calibration matrix

K =

 fx s px

fy py

1


andD is a function that models the radial distortion.

To minimize (7) given a specific tag configurationT , we
use Levenberg-Marquardt non-linear optimization. To ob-
tain the derivative∂E

∂Θ0
of the error functionE with respect

to the original control pointsΘ0, we apply the chain rule to
combine the derivatives of the camera projections and the
derivativeS from equation 2 on page 2 of the subdivision
curve with respect to the original control points. Implement-
ing the chain rule involves a pointwise multiplication of the
projected curve derivatives with the Chamfer image gradi-
ents, which are estimated by convolution with a Gaussian
derivative mask.

5. Results

Pictures of two pot shards were taken (see Figures 3 and
4) and calibrated with standard computer vision methods,
using a calibration grid, that is partially visible in the im-
ages. For the first pot shard, six of the images were used for
curve fitting, two of which are displayed in columns a and
b of Figure 3. The image shown in the third column is not
used for fitting and serves as a verification view. It is es-
pecially suited for that purpose, since it is taken at a much
lower angle than the other six images.



(a) (b) (c)

Figure 3. Results are shown for the first pot shard. Projections of the control points are drawn as yellow ’+’ for untagged
and yellow ’×’ for tagged ones, and the corresponding subdivision curve is drawn in white. Six views are used for the fit-
ting process, two of which are shown in columns (a) and (b). The third column (c) shows a view that is not used for fit-
ting, and is taken from a lower angle than the other six images.
The first row shows the projections of the initial configuration of the control points, and the corresponding 3D subdivi-
sion curve (error: 3.7 · 105). The second row shows results after two iterations (error: 1.9 · 103). In the bottom row, the
subdivision curve after 16 iterations fits the boundary of the shard pretty well (error: 7.7 · 102).



(a) (b) (c)

Figure 4. Results are shown for the second pot shard. Again, projections of the control points are drawn as yellow ’+’
for untagged and yellow ’×’ for tagged ones, and the corresponding subdivision curve is drawn in white. This time four
views are used for the fitting process, two of which are shown in columns (a) and (b). The third column (c) shows a view
that is not used for fitting, and is taken from a lower angle than the other four images.
The first row shows the projections of the initial configuration of the control points, and the corresponding 3D subdivi-
sion curve (error: 2.4 · 105). The second row shows results after two iterations (error: 3.7 · 103). In the bottom row, the
subdivision curve after 30 iterations fits the boundary of the shard pretty well (error: 1.1 · 103).



Figure 5. One of the hand-marked object boundaries
in 2D.

The outlines of the shards were marked by hand as
shown in Figure 5. Fitting starts with a circular distribu-
tion of a fixed number of control points in a plane parallel
to the ground plane as initial guess, as shown in the first row
of Figures 3 and 4. Each proposition for the Markov Chain
consists of a random change in the tag configuration, by in-
verting each tag with some probability, followed by non-
linear optimization of the control point locations. For eval-
uation of the error function, the curve is subdivided four
times. Starting with nine control points for the first shard,
this results in144 points, for which the final function val-
ues are calculated with the evaluation mask.

After only two iterations, as shown in the second row of
Figures 3 and 4, the subdivision curve adapted pretty well
to the boundary, but the tagging process is only at the be-
ginning, and some corners are not represented well. After
16 iterations for the first, and30 for the second, the tag-
ging configuration also adapted to fit the shard boundary.
Note that wesamplefrom the posterior distribution, and the
tags never converge to a single combination.

In what follows, the posterior distribution is determined
by throwing away the first500 of 1500 samples to make
the result independent of the initialization. Evaluation of
5000 samples did not show a significant difference in the
values. One example of an interesting marginal distribution
that can be approximated from these samples is the prob-
ability for each control point of being tagged, as shown in
Figure 6. Four control points are clearly above random, sug-
gesting sharp corners. Looking at the real pot shard, there
are four obvious corners, and at least one more could be
represented non-smoothly. Figure 7 shows the distribution
over the number of tagged control points as another exam-
ple for a marginal distribution. The average number of non-
smoothly interpolated features of the boundary is just above
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Figure 6. The probability of being tagged in the pos-
terior distribution of the second pot shard is shown
for each control point, as an example of an inter-
esting marginal distribution that can be approximated
from the samples. Clearly, control points 0, 5, 8 and
9 should be tagged, while all others, with the possi-
ble exception of control point 4 should not be tagged.
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Figure 7. The distribution over the number of tagged
control points in the posterior is shown for both pot
shards, suggesting that the optimal number is near
three for the first, and near five for the second shard.



three for the first shard and below five for the second.

6. Conclusion

We investigated modeling piecewise smooth curves with
tagged subdivision curves, that provide a simple and flexi-
ble representation. The parameters of these curves were de-
termined by a Rao-Blackwellized sampler, in which the op-
timal locations of the control points were integrated out and
determined by non-linear optimization, and only the distri-
bution over the tag configurations was sampled over.

This method was successfully applied to 3D reconstruc-
tion from multiple images, and results were obtained for
boundary reconstruction of two pot shards from multi-
ple images. Starting from an initial circular distribution of
the control points, the algorithm approximated the object
boundary well within a few sampling steps.

As a next step, automatic segmentation of the object
boundary in the images needs to be added. Especially since
a suitable background can be chosen in the archaeological
application, this should not be too hard of a problem. More
critical are partially occluded boundaries, and the fact that
a shard has two such boundaries, one around each of the in-
ner and outer surface.

Furthermore, the quality of the Gaussian assumption for
Rao-Blackwellization warrants some examination. A possi-
ble approach currently under investigation is MCMC sam-
pling over the control point locations for a given tag config-
uration.

A future extension of this work is to allow the algorithm
to add or delete control points, to find the optimal number
automatically, as is done in [6] for fitting splines to curves
with reversible jump MCMC. As mentioned before, com-
paring features of boundaries from different shards could
be used for reconstruction of archaeological artifacts, pos-
sibly in connection with other features, like texture and sur-
face curvature, as suggested in [14].
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