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Abstract

Finite-element (FE) models of the eardrum have been developed to understand its 

impedance-matching function. Modeling accuracy depends on the assumed elastic 

properties. Although the eardrum is an orthotropic elastic structure, for simplicity, most 

investigators have measured the eardrum’s elastic properties while assuming it is 

isotropic. No data are available in the literature on the eardrum’s orthotropic elastic 

properties. In this work, existing indentation-based and pressurization-based methods 

were extended for estimating the orthotropic elastic properties of the eardrum in situ. For 

the pressurization-based method, an accuracy in excess of 90% is achieved when the 

signal-to-noise ratio (SNR) is 2 or greater, while an SNR of 200 or greater is required for 

the indentation-based method. The indentation-based method was applied to the rat 

eardrum for which measurements were available, yielding average values of Ex 

=23.39 ±  1.55 MPa, Ey = 58.67 ± 4.16 MPa, and Gxy = 35.56 ± 3.29 MPa.

Keywords: eardrum, orthotropic elastic properties, optimization, finite element 

modeling, indentation-based method, pressurization-based method.
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Chapter 1

1.1. Introduction

1.1.1. Motivation

Computer models have become a standard tool across many aspects of hearing research, 

especially in understanding the acoustics and mechanics of the auditory system. In 

particular, the finite-element (FE) method has gained popularity because of its ability to 

handle complex shapes, material properties and loading and boundary conditions with 

relative ease. As the eardrum plays a major role in hearing, understanding its function is 

of great importance. FE models of the eardrum can potentially provide insight into the 

function of the eardrum and could be used to improve diagnostic and surgical procedures 

(Funnell and Laszlo, 1978). One potential application of an FE model of the eardrum is in 

tympanometry, a diagnostic procedure which is used to test the mobility of the eardrum 

and middle-ear bones by applying a sequence of large static pressures in the ear canal. An 

FE model could be used to extract more diagnostic information from tympanometry and 

could lead to improved pathology diagnosis (Daniel et al, 2001). For instance, it could 

help clinicians understand confounding factors such as the contributions of the pliable ear 

canal of newborns to tympanometric measurements.

Apart from improving diagnostic procedures, eardrum modeling could also be useful in 

optimizing surgical procedures. For instance, myringotomy is a procedure in which a 

small incision is made in the eardrum and a ventilation tube is inserted to alleviate 

middle-ear infection. Designing an optimal shape for a ventilation tube and determining



the best insertion location using an FE model can lead to improved post-surgical hearing 

outcomes (Ferris and Prendergast, 1999).

Another application of models is in myringoplasty which involves repairing holes in the 

eardrum using grafts. The mechanical properties of the graft material and its size are very 

important determinants of the mechanical function of the repaired eardrum (Zahnert et al, 

2000). An FE model can be employed to find suitable materials and shapes before 

fabricating actual grafts and undertaking costly clinical trials (Lee et al, 2006; Lee et al, 

2007).

In order to benefit from FE models of the eardrum in the above-mentioned applications, 

the mechanical properties of eardrum are required as input to these models. The accuracy 

of FE models is significantly dependent on the mechanical properties used as input 

(Funnell and Laszlo, 1978). As would be expected, the mechanical properties of the 

eardrum are dependent on its structure which is described in the next section. Section 1.3 

provides some theoretical background on the theory of elasticity, on the FE method and 

on inverse problems to put the literature review in Section 1.4 concerning the eardrum 

mechanical properties into context.

1.2. Structure and function of the ear

The auditory system is subdivided into three major parts: the external ear, the middle ear 

and the inner ear which are shown in Figure 1.1. This study is focused on the middle ear, 

especially the eardrum, hence only the anatomy and function of the middle ear and 

eardrum are covered in depth. The external ear consists of the auricle and ear canal. The 

auricle is the visible part of the ear that collects sound waves and directs them to the
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external auditory canal (ear canal). The middle ear includes several air-filled cavities

which are separated from the ear canal by the eardrum. The eardrum separates the middle 

ear from the ear canal, and vibrates in response to sound waves in the ear canal. 

Mechanical vibrations of the eardrum are transferred across the middle-ear cavities by the 

ossicles to the inner ear. As shown in Figure 1.2, the ossicles (i.e., bones) link the 

eardrum to the inner ear and consist of the malleus, the incus, and the stapes. The long 

process of the malleus is called the manubrium and is coupled to the medial side of the 

eardrum, and the head of the malleus is connected to the incus. The other end of the incus 

is connected to the stapes. The footplate of the stapes is located on the oval window of 

the cochlea, which is part of the inner ear. The ossicles are suspended in the cavities by 

ligaments and are acted upon by two muscles: the tensor tympani which is attached to the 

malleus and the stapedius muscle which connects to the stapes.

External
auditory
canal

Pinna -  
(auricle)

Figure 1.1 The human ear. Anatomy of the human ear. From Vander et al, (2004).
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The inner ear, which is shown in detail in Figure 1.3, is located medial to the middle 

ear, and consists of the cochlea, vestibule and semicircular canals. Only the cochlea is 

related to hearing, whereas the vestibule and semicircular canals are organs of balance. 

The oval window is a membrane underneath the footplate of the stapes. Through this 

window, vibrations of the stapes are transferred to the liquid inside the cochlea. Motion 

of the cochlear fluid causes movement of hair cells inside the cochlea. These hair cells 

are responsible for transduction of fluid motion to nerve impulses that are transferred to 

the brain for further processing.

Ea ixl rum
(Tympanic membrance)

'W  Footplate

Figure 1.2 The human eardrum. Schematic of the auditory ossicles attached to the tympanic

membrane.This image is a reproduction of 

http://www.psywww.com/intropsych/ch04_senses/structures_of_the_ear.html
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Figurel.3 Schematic of the interior of the right inner ear. This image is a reproduction of a 

lithograph plate from a 1918 version of Gray's Anatomy, and is in the public domain.

1.2.1. Gross anatomy and function of the human eardrum

The eardrum (also called tympanic membrane) is schematically illustrated in Figure 1.4. 

The eardrum is the major contributor to the impedance matching function of the middle 

ear in which the low acoustic impedance of air in the ear canal is matched to the high 

acoustic impedance of the cochlear fluids. Here, impedance is defined as pressure divided 

by volume velocity, and is an indicator of the resistance to the flow of acoustical energy. 

If sound is directly transferred from air (as in the ear canal) to sea water (an 

approximation of the composition of the cochlear fluid), approximately 99.9% of the 

acoustic energy reflects back to air without entering the fluid (Durrant and Lovrinic, 

1977). Thus in absence of the middle ear, most of the acoustic energy fails to be 

transferred from the ear canal to the cochlea.
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The eardrum is a thin membrane having a thickness that varies from 40 pm to 120 pm at 

its center (Kuypers et al, 2006). When viewed from the ear canal, the outline of the base, 

or tympanic ring, of the mammalian eardrum is roughly circular to elliptical. Figure 1.4 

shows outline of the human eardrum. The outline of the human eardrum is almost 

circular. From a 3-dimensional perspective, the eardrum is conical in shape with the apex 

of the cone pointing into the middle-ear cavities and the sides of the cone formed by the 

eardrum having varying curvature. The pars tensa and pars flaccida comprise the surface 

of the eardrum and are demarcated in Figure 1.4 (Dirckx and Decraemer, 1989). The 

pars tensa is the mechanically important part of the eardrum in terms of transmitting 

vibrations caused by sound in the ear canal to the middle-ear ossicles. The manubrium is 

a process of the malleus that is tighly coupled to the medial side of the pars tensa. The 

most inferior point of the manubrium is called the umbo which forms the apex of the 

cone formed by the eardrum. The pars flaccida is a smaller portion of eardrum located 

superior to the pars tensa. This part is more compliant compared to the pars tensa. The 

pars flaccida is separated from the pars tensa by an annular ligament.

S

I

Pars flaccida 

Manubrium

Pars tensa

Figure 1.4 Outline of the human eardrum as viewed from the ear canal. A: anterior, I: inferior, P: 

posterior, S: superior. This figure is reproduction of a figure in Funnell (1975).
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1.2.2. Ultrastructure of the eardrum

The eardrum can be described as a multi-layer structure that consists of three layers: 

(1) an outer epidermal layer on the lateral side, (2) the lamina propria which is the 

intermediate layer, and (3) an inner mucosal layer. Figure 1.5 shows a schematic view of 

the ultrastructure of the human pars tensa (Lim, 1995). The epidermal layer is continuous 

with the epidermal lining of the ear canal. It is epithelium with no glands or hair follicles. 

The inner mucosal layer is continuous with the mucosal lining of the middle ear. It 

consists of a very thin layer of cells. The lamina propria, as shown in Figure 1.5, consists 

of four layers: (1) a subepidermal connective tissue layer, (2) an inner circular fiber layer, 

(3) an outer radial fiber layer, and (4) a submucosal connective tissue layer. The 

subepidermal and submucosal layers are similar and consist of loose connective tissue. 

Both layers have vascular plexus and nerve network.

The radial and circular fiber layers are the mechanically important structures of the 

pars tensa and thus of the eardrum. As shown in Figure 1.6, they are highly organized 

fiber layers where each layer contains a parallel set of fibers held in small volume of 

ground substance. The radial fibers diverge away from the manubrium more or less 

straight to the tympanic ring. They are congested near the manubrium and spread out with 

lower density towards the periphery. The circular fibers start from the superior portion of 

the manubrium and loop around the umbo and insert back on the opposite side of the 

superior portion of the manubrium. The circular fibers are thicker near the periphery of 

the pars tensa and reduce towards the umbo.
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STRATUM CORNEUM 

STRATUM GRANULOSUM

EPIDERMAL LAYER

LAMINA PROPRIA

MUCOUS LAYER

STRATUM SPINOSUM - ,

STR MALPIGHII

STRATUM B A S A L E ------J

SUBER* DERMAL CONNECTIVE TISSUE LAYER

OUTER RADIATE COLLAGENOUS LAYER 

INNER CIRCULAR COLLAGENOUS LAYER 

SUBMUCOSAL CONNECTIVE TISSUE .AYER 

MUCOSAL EPITHELIUM

Figure 1.5 The ultrastructure of the eardrum. Cross-section through the pars tensa of the human 

eardrum with the epidermal layer, lamina propria , and the mucous layers. This figure is

reproduction of a figure in Lim (1995).

Circular fibers

Radial fibers

Figure 1.6 Fiber arrangement of the pars tensa. This figure is reproduction of a figure in Luo et

al, (2009).

The ultrastructure of the pars flaccida is similar to that of the pars tensa except that the 

lamina propria of the pars flaccida does not have the highly organized fibrous layers 

found in the lamina propria of the pars tensa, and the pars flaccida contains a higher
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proportion of elastin fibers compared to collagen fibers. Also, the pars flaccida is thicker 

than the pars tensa.

1.2.3. Rat middle ear

In this study, rat ears were used, hence a brief comparison of the human and rat eardrums 

is warranted. The rat is a popular choice of experimental animals for ear studies (Akache 

et al, 2007). The anatomical structures and function of the rat middle ear are very similar 

to the human middle ear but at a smaller scale (Hellstrom et al, 1982). The area of the 

human eardrum is approximately 66 mm (Donaldson et al, 1992), whereas the area of 

the rat eardrum is approximately 11 mm (Zimmer et al, 1994). Another difference 

between the human and rat eardrums is the relative size of the pars tensa to the pars 

flaccida. The human eardrum has a very small pars flaccida relative to the total size of the 

eardrum. However, the pars flaccida occupies between one-third to one-quarter of the 

total area of the rat eardrum. A visual comparison of the human and rat eardrums is 

shown in Figure 1.7.

The short process of malleus in rat points towards posterior wall while it points towards 

anterior wall in humans. Furthermore, rat malleus is slightly curved towards the lower 

wall; however, it leans towards the posterior wall in human (Castagno et al, 2006).

9



Pars flaccida

Short process 

Anterior 

Malleus

Anterior

Posterior
Posterior

0,5 mm Rat Human 2.5mm

Figure 1.7 Comparison between rat and human eardrum. This figure is reproduction of a figure in

Castagno et al, (2006).

1.3. Theory

1.3.1. Theory of elasticity

All materials consist of molecules which are their distinct building blocks. Thus, they are 

inherently discontinuous. However, we can assume that solid materials are a continuum 

as long as the problem of interest is being investigated at a length much larger than the 

material’s inter-atomic distance. With this condition, the continuum material idealization 

is highly accurate. Under continuum assumption, the substance of the body fills the entire 

space that the object occupies completely. Therefore, any point within the body is 

assumed to contain material. Continuum mechanics is a branch of science that tackles the 

mechanical behavior of continuum materials. This includes deformation and fracture of 

such material under loading. All materials deform when subjected to forces. The theory 

of elasticity is a branch of continuum mechanics that considers the continuum material as 

elastic. Elastic materials are materials that lose their deformation and regain their original 

shape after forces applied to them are removed. Elasticity is the property that describes

10



the mechanical behavior of such materials, and the materials are called elastic materials. 

All structural materials have some degree of elasticity, especially under small strains. 

Perfectly elastic materials have the ability to resume their original form completely after 

force removal. For simplicity, we assume that all materials we deal with in this research 

are perfectly elastic. In this section, the definition of stress, strain, and their relationship 

are presented.

1.3.1.1. Stress

Stress is a measure of force per unit area within an object as a result of applying external 

forces. Stress has the same unit as pressure and is measured in force per area units such as 

(Weston) pascai The stress can be decomposed into two components depending on the

force and its relative orientation of the plane under consideration. As shown in Figure 1.8, 

these two components are the normal stress (a), which arises from perpendicular force 

component to the cross-sectional area of the material, and shear stress (x), which arises 

from the force component lying within the plane of the cross-sectional area.

Figure 1.8 Two components of stress at a point within a deformable body
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Mathematically, the stress is defined as the limit of the force distributed over an area 

when the area tends to zero:

=  (1-1)

r  =  lim d M ^  (1-2)

where dFn and dFs are the normal and tangential components of the force dF acting on an 

infinitesimal area dA at point P.

The stress involves two vectors of force and surface. In 3D, at any given point P, 

depending on the orientation of the plane passing through it, in general there will be one 

normal and two shear stress components. Including that plane, one can imagine that a 

very small cubic element can be formed around point P. This cube has 6 faces where each 

face has one normal and two shear stress components as shown in Figure 1.9. As such, 

the stress is a tensor quantity, and according to Cauchy (A. Mohammed, 2005), the stress 

is assumed to be continuum at any point within the material, and is defined by second- 

order tensor, known as the Cauchy stress tensor, a:

■tfll a \ 2 al ï ' ° x x ° x y & x z '

0  - ° 2 1 °2 2 a 23 = a y x O y y G y Z

.°3 1 ct32 °3 3 - P z x GZy &ZZ.

where an , 022, and 033 are normal stress components, and the six other parameters are the 

shear stress components.

If a body is in static equilibrium, the Cauchy stress tensor at any point within the 

body satisfies the equilibrium equations:

12
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«/y + F i =  0 (1 -4 )

where the a indices follow Einstein’s convention and F, represents body forces. Also, 

equilibrium requires that the summation of moments with respect to an arbitrary point 

equals zero. This leads to the conclusion that the stress tensor is symmetric:

(Tij =  ff ji (1-5)

Therefore, 012= 021, 013= 031, 032= 023, and the Cauchy stress tensor has only six 

independent parameters.

Figure 1.9 Stress tensor in a loaded deformable continuum material body (Source:

www.wikipedia.com).

I.3.I.2. Strain

Strain is a normalized measure of deformation of a continuum body. Material 

deformation is characterized by a displacement field. This field is defined as a change in 

the configuration of a continuum body from an undeformed to a current deformed 

configuration. Like stress, strain has two types, normal and shear. Normal strain is 

defined as relative displacement of a point within a body per unit length along a particular

13
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direction. Shear strain is defined as relative rotation of each two perpendicular planes in 

the body. Again, similar to stress, strain is a tensor quantity and is represented by a matrix 

with 6 independent components as follows.

£11 £12 £13 £ x x £ X y £ x z

£  = £21 £22 E23 ~ £ y X £ y y £ y Z

-£31 £32 £ 33. £ z x £ Z y £ z z .

where £n, £ 22, and 833 are normal strain components, and the six other parameters are the 

shear strain components. The strain is dimensionless.

1.3.1.3. Linear elasticity

While in general, materials exhibit nonlinear and viscoelastic mechanical behavior, for 

many purposes they can be idealized as linear elastic materials. Linear elastic materials 

are a category of materials that deform under loading such that the stress increases 

proportional to the strain growth. Linear elasticity, a branch of continuum mechanics, is 

the mathematical study of how linear elastic materials deform and become internally 

stressed due to prescribed loading conditions. A more general form of this mathematical 

study is the nonlinear theory of elasticity where the stress grows in a nonlinear fashion 

with strain growth. In linear elasticity, there is a linear relationship between strain tensor 

components and derivatives of displacement components. Also, stress and strain tensors 

have a linear relationship. A typical stress-strain relationship for soft tissue material is 

depicted in Figure 1.10.

14
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Figure 1.10 A typical stress-strain relationship of soft tissues.

In this figure, a linear behavior is observed up to a certain point beyond which the 

mechanical behavior becomes nonlinear.

The fundamental linear elasticity assumptions are: small deformation which leads to 

small strains, and linear relationship between stress and strain components. Linear 

elasticity is commonly used in structural analysis because the abovementioned 

assumptions are reasonable for many engineering materials. In general, the stress-strain 

relationship of a material is referred to as the material’s constitutive equation. Hooke’s 

law is the general constitutive equation for linear elastic materials.

1.3.1.4. Hooke’s law

The relation which describes the stress developed in a deformed body was first identified 

by Robert Hooke. This relation is linear between stress and strain components, which is a 

reasonable approximation for many elastic materials. Hooke’s law in its general form is 

as follows:

<T = C.S (1-7)

15



Where a is the stress tensor, e is the strain tensor, and C is a fourth-order tensor called the 

stiffness tensor. The generalized form of Hooke’s law expressed in terms of components 

with respect to orthonormal basis is as follows:

&ij ^ijkl'^kl ( 1- 8)

The stiffness tensor as a fourth-order tensor contains 81 elastic constants. However, 

it can be demonstrated that the number of independent constants is reduced to only 21 

elastic constants due to the symmetry of stress, and strain tensors. In other words

[C«l =

£ l l C i z ^ 1 3 C l 4 ^ 1 5 C l 6

^ 1 2 C 2 2 ^ 2 3 C 2 4 ^ 2 5 ^ 2 6

^ 1 3 ^ 2 3 ^ 3 3 ^ 3 4 C 3 5 ^ 3 6

C 1 4 C 2 4 C 3 4 C 4 4 C 4 5 ^ 4 6

^ 1 5 ^ 2 5 C 3 5 £ 4 5 C 5 5 ^ 5 6

£ * 1 6 ^ 2 6 ^ 3 6 ^ 4 6 ^ 5 6 ^ 6 6

(1-9)

I.3.I.5. Young’s modulus

Material mechanical properties are usually measured using uniaxial test where a 

cylindrical material sample is loaded such that the stress and strain are one dimensional 

along the cylinder axis. In a solid material, the slope of the stress-strain curve obtained 

from a uniaxial test is called the tangent elastic modulus. In the linear portion of the 

curve, the relation between stress and strain is characterized by a constant linear tangent 

modulus called the Young’s modulus. The Young's modulus is a measure of stiffness of a 

linear elastic material. It is defined as the ratio of uniaxial stress over the uniaxial strain in 

the range of stress in which Hooke’s law holds. The Young’s modulus has units of 

pressure since it is the ratio of the stress, which has units of pressure, over the strain, 

which is dimensionless.
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I.3.I.6. Materials properties characterization

When studying materials, especially in order to select a material versus others for a 

structural design and engineering applications, a metric value to compare materials is 

needed. A material’s property is described by a parameter that is used as a metric to 

quantify the property. A material property could be a function of independent variables or 

a constant value. Material properties can be different in different directions. Such 

materials are called anisotropic materials. As mentioned above, the stiffness matrix for 

fully anisotropic materials consists of 21 independent constants. However, the number of 

constants can be considerably reduced depending on the internal directional symmetry 

displayed by the material.

I.3.I.7. Isotropic materials

Isotropic materials exhibit identical mechanical properties in all directions. These 

materials are characterized by material properties which are independent of directions. As 

such, constitutive equations that represent isotropic materials are independent of 

coordinate systems. For isotropic material, Hooke’s law can be expressed by only the two 

parameters of Young’s modulus and Poisson’s ratio:

£ = ~ | [tr(ff)7 -  a] (1- 10)

In this equation, the strain tensor is presented in terms of the stress tensor in matrix form. 

E is Young’s modulus, v is Poisson’s ratio, e is the strain tensor, and o is the stress 

tensor. Poisson’s ratio is the ratio of transverse strain measured in the direction 

perpendicular to the applied force, over axial strain measured in the direction of the
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applied force. This parameter characterizes the material’s compressibility and it ranges 

from 0 for foam materials to 0.5 for fully incompressible materials.

I.3.I.8. Orthotropic materials

Orthotropic materials are a type of anisotropic materials. Such materials have three 

orthogonal planes of symmetry where the material properties are different along their 

normal vectors. Wood is an example of orthotropic material where its properties are 

different in the wood’s axial, radial, and circumferential directions as illustrated in Figure 

1. 11.

Figure 1.11 Three basis vectors of orthotropic material. Three perpendicular basis vectors 

showing wood’s orthotropic axial, radial, and circumferential symmetry directions.

For orthotropic materials, Hooke’s law is expressed using the following equation:

r f f y C i i  C 1 2  C 1 3  0  0  0 " r e * i
a2 C 2 1  C 2 2  C 2 3 0  0  0 e 2

C 3 1  ^ 3 2  c 3 3  0  0  0 e 3
0  0  0  C 4 4  0  0 e 4

0  0  0  0  C 5 5  0 e 5
la6\ 0 0 0 0 0  c 6 6 L e J

As given in equation (1-11), for orthotropic materials the number of constants is reduced 

to 9 independents components. For thin orthotropic materials, the number of independent
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components is reduced to only four constants. With such materials, only the four 

independent in-plane elastic constants are required to be determined. These constants are 

called the longitudinal and transverse Young’s modulus (Ei and E2), in-plane shear 

modulus (G12), and the major Poisson’s ratio (v12).

1.3.2. Finite Element Method

Many physical phenomena can be described by Partial Differential Equations (PDEs). In 

general, solving PDEs by classical analytical methods is almost impossible. The Finite- 

Element Method (FEM) is a numerical technique for finding approximate solutions of 

PDEs. The main idea of FEM is to discretize the object of interest’s domain into a finite 

number of simple discrete subregions called finite elements. The resulting discretized 

domain is called a finite element mesh. Each element in the mesh has points, which are 

called finite element nodes, where the function of interest (e.g., displacement) is defined. 

Figure 1.12 illustrates a finite element mesh of a rectangular cuboid object. After domain 

discretization, the governing PDE is approximated into an algebraic equation which is 

valid for each finite element. Next, equations obtained for each element are assembled 

into a large system of equations that can be solved after applying the objects’ boundary 

conditions. In structural analysis, the FEM is commonly used to solve static and dynamic 

problems.
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Figure 1.12 3D FEM mesh. Three dimensional FEM mesh of a solid rectangular cuboid object. 

Various finite element types with different shapes can be used to discretize objects’ 

domains. The complexity of the algebraic element equations approximating the governing 

PDE depends strongly on the element type. Mesh density and element type are the main 

factors that determine the problem’s computational complexity and time required to 

obtain the solution.

Over the past decades FEM has been applied to simulate the mechanical behavior of the 

eardrum and to analyze its linear and nonlinear structural behavior as it has the capability 

of accurately dealing with complicated geometry and boundary conditions with relative 

ease. In this work, we have employed ABAQUS FE software package (Simulia Inc., RI, 

USA) to simulate the eardrum.

1.3.3. Inverse problem

There are two general formulation frameworks to deal with problems encountered in 

science and engineering. These frameworks are known as forward problems and inverse 

problems. In forward problems, model parameters of a system are known and input 

stimulus is used to predict the system’s output response. In other words, solution of a
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forward problem involves determining the resulting output of a system given known 

input that describes the cause. In inverse problems, measured system response data (e.g., 

tissue deformation) are used as input to find the model parameters (e.g., the tissue 

orthotropic constants).

Inverse problems can be solved directly or iteratively. Often, inverse problems are 

formulated as optimization problems that are solved iteratively. In this case the 

corresponding forward problem is usually solved in each iteration.

1.4. Literature review

FE modeling is a powerful numerical method to investigate the function of the middle 

ear, (Elkhouri et al, 2006; Eiber, 1999; Sun et al, 2002; Koike et al, 2002), the effects of 

middle ear pathologies, (Gan et al, 2006), and the behavior of middle-ear prosthesis 

(Eiber et al, 2006).

1.4.1. Previous eardrum mechanics works under the assumption of isotropy

Although the fibrous ultrastructure of the pars tensa suggests it is not mechanically 

isotropic (exhibiting the same mechanical properties in all directions), the eardrum has 

been modeled with some success as an isotropic structure (Elkhouri et al, 2006). 

However, as noted by Fay et al, (2006), such models can only match the mechanical 

behavior of the eardrum over a limited range of frequencies. As mentioned before, 

linearly elastic isotropic tissues that are homogeneous can be characterized by a single 

Young’s modulus value. The specific value of the Young’s modulus has significant effect 

on the resulting response of FE models (Funnell et al, 1987; Elkhouri et al, 2006). 

Funnell (1987) reported that maximal displacement of the cat eardrum was reduced by
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48% when Young’s modulus of pars tensa was doubled in an FE model. However, 

maximal displacement increased by 79% when the Young’s modulus was halved.

Uniaxial and beam-bending tests are the most common previous tests used to measure the 

Young’s modulus of the eardrum. In a uniaxial test, a strip is cut out of the tissue and is 

gripped from one end, while the other end is subjected to a known tensile force parallel to 

the longitudinal axis of the sample. Then, the Young’s modulus of the sample is defined 

as the ratio of stress over total strain. In a beam-bending test, again one end of a tissue 

strip is gripped and a force is applied to the other end perpendicular to the tissue strip’s 

surface. The strip’s deflection is measured instead of length change. The Young’s 

modulus can then be estimated using a beam-bending formula. Although these two 

methods are commonly used, they have some critical flaws which affect the accuracy of 

the estimates.

Beam-bending and uniaxial tests both involve cutting tissues to prepare strip shape 

samples. As mentioned before, mechanical properties of the eardrum are mainly because 

of collagen fibers. Thus, cutting eardrum into strips compromises the structural integrity 

of the eardrum. Furthermore, non-uniform distribution of stress and strain within strips 

caused by cutting the eardrum into strip samples with geometrical irregularity is another 

source of error. Non-uniformity has a significant effect in measuring the Young’s 

modulus of the eardrum since the tissue strips are short. The length of samples is dictated 

by the eardrum’s size.

In the following review, the basic methods for measuring Young’s modulus and their 

limitation are discussed. These shortcomings are the motivation for developing new
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techniques to measure the mechanical properties of the eardrum under more accurate 

material assumptions.

Von Bekesy (1960) estimated the Young’s modulus of the eardrum for the first time. He 

performed a beam-bending test and reported a value of 20 MPa. His technique involved 

cutting the eardrum into a beam shape which compromises the structural integrity of the 

eardrum. Von Bekesy’s assumed that the pars tensa is homogeneous, so the Young’s 

modulus value he reported is an “effective” one. Kirikae (1960) performed uniaxial 

tensile tests on small strips of the human eardrum, and he reported a value of 40 MPa. 

Unlike von Bekesy who applied a static force in his experiments, Kirikae used a dynamic 

stimulus that involved oscillating eardrum strips at 890 Hz. Decraemer et al, (1980) 

performed similar uniaxial tensile tests on human cadaver eardrums, and they reported a 

value of 23 MPa. They also used dynamic stimuli, but in contrast to Kirikae, their 

experiments were done at 300 Hz. Again, these two works were done under the 

assumption of homogeneity in eardrum mechanical properties. Recently, Cheng et al, 

(2007) performed tensile tests on strips cut from human eardrums. They assumed that the 

eardrum is isotropic and homogeneous. They acquired stress-strain curves from uniaxial 

tests which were in good agreement with that of Decraemer et al, (1980). They reported 

that the Young’s modulus value varies with stress from 0.4 MPa to 22 MPa as the stress 

varies from 0 to 1 MPa.

Huang et al, (2008) performed nanoindentation tests on the human eardrum after cutting 

the eardrum into small portions. They reported values of 19 MPa and 6 MPa for in-plane 

and through-thickness Young’s modulus, respectively. Dhaphalapurkar et al, (2009) 

extended Huang’s work by performing nanoindentation tests on small portions of fresh-
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frozen human cadaveric eardrums. They measured values for the in-plane and through

thickness Young’s modulus of relaxation. They noticed that the steady-state value of the 

Young’s modulus varies among different samples. The steady-state values were in the 

range of 25.7 MPa to 37.8 MPa. Note that the nanoindentation test compromised the 

structural integrity of the eardrum because of cutting and leads to an estimate of local 

Young’s modulus at the point subjected to indentation.

The eardrum is very fragile, has a complex geometry, and the human eardrum is small 

with major diameter of about 9 to 10 mm and minor diameter of 8 to 9 mm (Decraemer et 

al, 1991), and a minimum thickness on the order of 30 pm (Kupers et al, 2006). 

Conducting uniaxial tensile tests, beam bending tests, and nanoindentation tests as 

described above after cutting out strips can be difficult and problematic.

Some of these issues were addressed by Gaihede et al, (2007) using a hydraulic system in 

order to apply pressure to the intact eardrum (i.e., the eardrum was not cut into pieces). 

They acquired pressure-volume curves that they used to estimate the Young’s modulus 

value. The estimates acquired were based on adjusting the Young’s modulus of a 

simplified mathematical model proposed by them so that predicted pressure-volume 

curves matched their measurements. They simplified the model by assuming that the 

undeformed eardrum can be represented by a flat circular membrane and they omitted the 

manubrium and pars flaccida from their model. They determined the Young’s modulus to 

be 10.33 MPa and 6.88 MPa for old subjects and young subjects, respectively. Their 

values are lower than those measured by others, and Gaihede et al, (2007) argue that their 

values are based on in vivo measurements as opposed to measurements based on 

cadaveric samples as done by others. Because their measurements are made in vivo, they
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feel that a larger thickness value can be used in their model. Presumably, this increase in 

thickness results in a smaller estimated Young’s modulus. However, the accuracy of their 

reported values may be significantly affected by the rough approximation of eardrum 

geometry used in their work.

One method that can in principle be applied to intact eardrums is the indentation 

technique described by Samani et al, (2003). Very recently, Hesabgar et al, (2010) 

estimated the Young’s modulus value of rat eardrums using this indentation technique. 

The average “effective” Young’s modulus value reported by them for seven rats was 21.7 

MPa ± 1.2 MPa. Like Gaihede et al, (2007), Hesabgar et al, (2010) fit modeling results to 

experimentally measured load-displacement curves. Unlike Gaihede et al, (2007), 

Hesabgar et al, (2010) used a model that included the 3-dimensional shape of the eardrum 

and included the manubrium and the pars flaccida in addition to the pars tensa. Geometric 

nonlinearity was also taken into account. The main advantage of the technique presented 

by Hesagbar et al, (2010) is that strips do not have to be cut from the eardrum. Aernouts 

et al, (2010) also estimated the eardrum elasticity in situ. They performed indentation 

testing like Hesabgar et al, (2010) and measured the elasticity under the assumption that 

the pars tensa is linear, homogenous elastic material. Their estimates are higher than that 

of all other researchers, suggesting that their eardrums had dehydrated and become stiffer 

due to specimens’ surface exposure.

The indentation techniques used by Hesabgar et al, (2010) and Aernouts et al, (2010) 

require that the tip of the indenter be perpendicular to the point of contact on the eardrum 

to minimize slipping of the indenter. Jahromi (2010) presented a technique in which the 

eardrum was pressurized and the shape of the deformed eardrum was measured. The
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Young’s modulus in an FE model of the eardrum similar to that of Hesabgar et al, (2010) 

was then optimized so that simulated pressurized eardrum shapes matched the measured 

shapes. They reported an average “effective” Young’s modulus value of 22.8 MPa ± 1.5 

MPa for the six rat specimens used in their study.

1.4.2. Previous eardrum mechanics works under the assumption of orthotropy

The ultrastructure of the pars tensa suggests that it may be better modeled as an 

orthotropic material. Most previous work on quantifying orthotropy of the pars tensa 

involves estimating the Young’s modulus in the radial direction and in the 

circumferential direction.

Luo et al, (2009) estimated the Young’s modulus of the eardrum in the radial and 

circumferential directions over a range of strain rates. They found that value of the 

Young’s modulus increases with increasing the strain rate because of the viscoelastic 

properties of the eardrum. They investigated the mechanical properties of the human 

eardrum at high strain rates. They reported that the Young’s modulus of the normal 

human eardrum varies from 45.2 to 58.9 MPa in the radial direction, and it varies from 

34.1 to 56.8 MPa in the circumferential direction for strain rates between 300 to 2000 s'1. 

Furthermore, they reported that the Young’s modulus in the radial direction is larger than 

the Young’s modulus in the circumferential direction for the same strain rate. As noted in 

Section 1.4.1, cutting the eardrum presents challenges.

1.5. Objective

Because of the importance of the mechanical properties of the eardrum in FE 

modeling and the lack of estimates of the orthotropic properties of the eardrum on intact
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samples, the focus of this thesis is on estimating the orthotropic elastic properties of the 

eardrum based on methods that do not involve cutting the eardrum. In particular, the 

indentation method of Hesabgar et al, (2010) and the pressurization method of Jahromi 

(2010) were extended to estimate the orthotropic elastic parameters. These techniques 

were extended by modeling the eardrum as an orthotropic material and using the models 

in an optimization framework as done before but this time to estimate the orthotropic 

elastic parameters from measured indentation and pressurization data. The feasibility of 

both techniques was first tested on synthetic computer-generated data with known 

“ground truth” values. The extended optimization approach was then applied to 

indentation measurements on the rat eardrum made by Hesabgar et al, (2010) as these 

data were readily available. Chapter 2 is a complete manuscript that describes the 

methodology, testing and application to rat eardrums. Chapter 3 presents conclusions and 

future directions.

27



1.6. References

Aernouts, J., Soons, J.A., Dirckx, J.J., 2010. Quantification of tympanic membrane
elasticity parameters from in situ point indentation measurements: Validation and 
preliminary study. Hear. Res., 263(1-2), 177-182.

Akache, F., Funnell, W.R., Daniel, S.J., 2007. An experimental study of tympanic 
membrane and manubrium vibrations in rats, Audiol.Neurootol. 12 49-58.

Beer, H.-J., Bornitz, M., Hardtke, H.-J., Schmidt, R., Hofmann, G., Vogel, U., Zahnert, 
T., HUttenbrink, K.-B., 1999. Modelling of components of the human middle ear 
and simulation of their dynamic behavior. Audiol. Neuro-otol., 4 (3-4) 156-162.

Békésy, G.v., 1960. Experiments in Hearing, McGraw-Hill, Toronto, ON.

Castagno.L.A., Lavinksy.L., 2006. Tympanic membrane healing in myringotomies
performed with argon laser or microknife: an experimental study in rats, Rev Bras 
Otorrinolaringol., 72(6) 794-799.

Cheng, T., Dai, C., Gan, R.Z., 2007. Viscoelastic properties of human tympanic 
membrane. Ann. Biomed. Eng., 35 (2) 305-314.

Daniel, S.J., Funnell, W.R.J., Zeitouni, A.G., Schloss, M.D., Rappaport, J., 2001. Clinical 
applications of a finite-element model of the human middle ear. J. Otolaryngol. 30 
(6), 340-346.

Daphalapurkar, N.P., Dai, C., Gan, R.Z., Lu, H., 2009. Characterization of the linearly 
viscoelastic behavior of human tympanic membrane by nanoindentation. J. Mech. 
Behav. Biomed. Mater., 2(1) 82-92.

Decraemer, W.F., Dircks, J.J.J., Funnell, W.R.J., 1991. Shape and derived geometrical 
parameters of the adult, human tympanic membrane measured with a phase-shift 
moiré interferometer., Hear.Res. (51) 107-121.

Decraemer, W.F., Maes, M.A., Vanhuyse, V.J., 1980. An elastic stress-strain relation for 
soft biological tissues based on a structural model. J. Biomech., 13 (6) 463-468.

Dirckx, J., Decraemer, W., 1989. Phase-shift moiré apparatus for automatic 3D surface 
measurement. Review of Scientific Instruments 60, 3698-3701.

Donaldson J.A., Duckert L.G., Lampert P.M., Rubel E.W., 1992. Surgical Anatomy of 
the Temporal Bone, 4th ed. (Raven Press, New York)

Durrant, J.D., Lovrinic, J.H., cl 977. Bases of hearing science John D. Durrant and Jean 
H. Lovrinic. -, Baltimore : Williams & Wilkins,.

Eiber, A., 1999. Mechanical modeling and dynamical behavior of the human middle ear. 
Audiology and Neurotology 4, 170-177.

28



Eiber, A., Breuninger, C., Jorge, J., Zenner, H., Maassen, M., 2006. On the optimal
coupling of an implantable hearing aid -  measurements and simulations. In: Eiber, 
A., Huber, A. (Eds.), Proceedings of the 4th Int. Symposium: Middle Ear 
Mechanics in Research and Otology. World Scientific Publishing Co. Pte. Ltd., 
Singapore, 246-252.

Elkhouri, N., Liu, H., Funnell, W.R.J., 2006. Low-frequency finite-element modeling of 
the gerbil middle ear. JARO 7, 399-411.

Fay, J.P., Puria, S., Steele. C.R., 2006. The discordant eardrum, 
Proc.Natl.Acad.Sci.U.S.A. 103, 19743-19748.

Fay, J.P., Puria, S., Decraemer, W.F., Steele, C., 2005. Three approaches for estimating 
the elastic modulus of the tympanic membrane. J. Biomech., 38 (9) 1807-1815.

Ferris, P., Prendergast, P.J., 1999. Middle-ear dynamics before and after ossicular 
replacement. J. Biomech. 33 (5), 581-590.

Fung, Y.C., 1993. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., 
Springer-Verlag, New York City, NY.

Funnell, W.R.J., 1975. A Theoretical Study of Eardrum Vibrations Using the Finite- 
Element Method. Ph.D. thesis, McGill University, Montreal, x + 199 pp. Updated 
1976. Available from the author, or on microfilm from the National Library of 
Canada.

Funnell, W.R.J., and Laszlo, C.A., 1975. Modelling the eardrum as a doubly curved shell 
using the finite-element method. J. Acoust. Soc. Am. 57 Suppl: 72.

Funnell, W.R.J., Laszlo, C.A., 1978. Modeling of the cat eardrum as a thin shell using the 
finite- element method. J. Acoust. Soc. Am., 63 (5) 1461-1467.

Gaihede, M., Liao, D., Gregersen, H., 2007. In vivo areal modulus of elasticity estimation 
of the human tympanic membrane system: modelling of middle ear mechanical 
function in normal young and aged ears. Phys. Med. Biol., 52 (3) 803-814.

Gan, R., Sun, Q., Feng, B., Wood, M., 2006. Acoustic-structural coupled finite element 
analysis for sound transmission in human ear -  pressure distributions. Medical 
Engineering & Physics 28, 395^104.

Hellstrom, S., Salen, B., Stenfors, L., 1982. Anatomy of the rat middle ear. Acta Anat 
(Basel)., (112) 346-52.

Hesabgar, S.M., Marshall, H., Agrawal, S. K., Samani, A., Ladak, H.M., 2010.
Measuring the quasi-static Young’s modulus of the eardrum using an indentation 
technique. Hear. Res., 263(1-2), 168-176.

Huang, G., Daphalapurkar, N.P., Gan, R.Z., Lu, H., 2008. A Method for measuring 
linearly viscoelastic properties of human tympanic membrane using 
nanoindentation. J. Biomech. Eng., 130 (1) 014501.

29



Jahromi, S.N.G., Estimation of the quasi-static Young’s modulus of the rat eardrum using 
a pressurization method, School of Graduate and Postdoctoral Studies, University 
of Western Ontario, London, Ont., 2009.

Kirikae, I., 1960. The Structure and Function of the Middle Ear. University of Tokyo 
Press, Tokyo.

Koike, T., Wada, H., Kobayashi, T., 2002. Modeling of the human middle ear using the 
finite-element method. Journal of the Acoustical Society of America 111, 1306- 
1317.

Kuypers, L.C., Decraemer, W.F., Dirckx, J.J., 2006. Thickness distribution of fresh and 
preserved human eardrums measured with confocal microscopy. Otology & 
Neurotology 27, 256-264.

Ladak, H.M., Funnell, W.R.J., Decraemer, W.F., Dirckx, J.J.J., 2006. A geometrically 
nonlinear finite-element model of the cat eardrum. J. Acoust. Soc. Am., 119 (5) 
2859-2868.

Lee, C.F, Chen, J.H., Chou, Y.F., Hsu, L.P., Chen, P.R., Liu, T.C., 2007. Optimal graft 
thickness for different sizes of tympanic membrane perforation in cartilage 
myringoplasty: a finite element analysis, Laryngoscope. 117 725-730.

Lee, C.F., Hsu, L.P., Chen, P.R., Chou, Y.F., Chen, J.H, Liu, T.C., 2006. Biomechanical 
modeling and design optimization of cartilage myringoplasty using finite element 
analysis, Audiol.Neurootol. 11 380-388.

Lim, D. J., 1995. Structure and function of the tympanic membrane: a review.Acta Oto- 
Rhino Laryngologica Belgica 49 2 101-15.

Luo, H., Dai, C., Gan, R.Z., Lu, H., 2009. Measurement of young’s modulus of human 
tympanic membrane at high strain rates. Journal of Biomechanical Engineering 
131,064501-1.8.

Mohammed, A., 2005. Computational elasticity: theory of elasticity and finite and 
boundary element methods. Alpha Science Inf 1 Ltd., 33-66.

Samani, A, Bishop, J, Luginbuhl, C., Plewes, D. B., 2003. Measuring the elastic modulus 
of ex vivo small tissue samples Phys. Med. Biol. 48 14 2183-98.

Sun, Q., Gan, R., Chang, K., Dormer, K., 2002. Computer-integrated finite element
modeling of human middle ear. Biomechanics and Modeling in Mechanobiology 1, 
109-122.

Tuck-Lee, J.P., Pinsky, P.M., Steele, C.R., Puria, S., 2008. Finite element modeling of 
acousto-mechanical coupling in the cat middle ear. J. Acoust. Soc. Am., 124 (1) 
348-362.

30



Vander, A.J., Sherman, J.H., and Luciano, D.S., 2004. HUMAN PHYSIOLOGY: The 
Mechanisms of Body Function. Ninth Edition (McGraw Hill, Sydney).

Zahnert, T., Huttenbrink, K.B., Murbe, D., Bornitz, M., 2000. Experimental
investigations of the use of cartilage in tympanic membrane reconstruction, 
Am.J.Otol. 21 322-328.

Zimmer, W.M., Deborah, F.R., Saunders, J.C., 1994. Middle-ear development VI:
Structural maturation of the rat conducting apparatus. Anatomical Record 239: 475- 
484.

31



Chapter 2

Estimation of the Orthotropic Elastic Properties of the Rat Eardrum

(Prepared for Submission to: The Journal of Medical and Biological Engineering)

2.1. Introduction

Finite-element (FE) modeling of the eardrum is an active area of research with 

several groups publishing models even in the last three years (Daphalapurkar et al, 2009; 

Gan et al, 2009; Liu Hou-guang et al, 2009; Yao Wen-juan et al, 2009; Aernouts et al, 

2010; Hesabgar et al, 2010; Zhu et al, 2010; Gentil et al, 2011; Volandri et al, 2011; 

Wang et al, 2011). Well validated models could potentially be used for testing new 

surgical procedures and refining audiological tests of middle-ear function (Daniel et al, 

2001). However, the accuracy of these models depends critically on a number of input 

modeling parameters including the shape of the individual eardrum, its thickness and its 

mechanical properties (Funnell and Laszlo, 1978). Subject-specific shapes have been 

accurately measured using moiré profilometry (e.g., Decraemer et al, 1991), a non

contacting optical technique, and more recently using micro-computed tomography 

(Tuck-Lee et al, 2008). Thickness has also been measured in gerbils (Kuypers et al, 

2005b), cats (Kuypers et al, 2005a) and human (Kuypers et al, 2006).

A number of investigators have recently started refining measurements of the 

mechanical properties of the eardrum. Particular focus has been made to estimate the 

properties of the pars tensa of the eardrum because it is the main determinant of the 

impedance matching function of the middle ear. Several authors have modeled the pars
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tensa as a homogeneous linearly elastic isotropic thin shell. Such a material can be 

characterized by its Young’s modulus and its Poisson’s ratio. Typically, a Poisson’s ratio 

of 0.3 is assumed in modeling studies (Funnell and Laszlo, 1978), and effort has focused 

on estimating the Young’s modulus of the pars tensa (Aernouts et al, 2010; 

Daphalapurkar et al, 2009; Huang et al, 2008; Gaihede et al, 2007; Cheng et al, 2007; 

Decraemer et al, 1980; Kirikae, 1960; Bekesy 1960).

Fay et al, (2006) indicate that an isotropic model can only be used to model the 

mechanical behavior of the eardrum over a limited range of frequencies. For example, if a 

Young’s modulus of 30 MPa is used to model the pars tensa, simulated frequency 

responses only match measured responses up to about 1.5 kHz. Above that frequency, the 

mismatch between simulation and measurement is significant. If a Young’s modulus of 

100 MPa is used, simulations better match measurements at high frequencies (above 1.5 

kHz); however, a mismatch now occurs at low frequencies. A single Young’s modulus 

cannot be found for an isotropic model that allows modeling results to match 

experimental data at all frequencies. If the pars tensa is modeled as an orthotropic 

material, then simulation results match measurements at all frequencies using a single set 

of orthotropic elastic parameter values: There is no need to adjust the values based on 

frequency (Fay et al, 2006). An orthotropic material model is justified based on the 

fibrous ultrastructure of the eardrum.

Indeed, the same group has attempted to estimate the Young’s modulus of the 

eardrum in the radial and circumferential directions by using three methods: (1) 

constitutive modeling using experimental observations of radial and circumferential fiber 

densities, (2) re-examining previously published tensile testing and beam-bending
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experiments, and (3) performing their own dynamic measurements and adjusting the 

parameters of a fibrous composite shell model of the eardrum so simulations match 

measurements. Using these approaches, bounds were determined for the elastic moduli. 

The recent work of Luo et al (2009) refines these bounds through the use of tensile 

testing of strips cut along the radial and along the circumferential directions. However, 

tensile testing has a number of technical challenges. Apart from the issue of 

compromising the tissue’s structural integrity, to minimize the effects of boundary 

conditions on the measurement’s accuracy, tensile tests typically require a significant 

volume of homogeneous tissue (Samani et al 2003). However, both the fiber density (Lim 

et al 1968; Lim et al 1970) and thickness (Kuypers et al, 2006; Kuypers et al, 2005a; 

Kuypers et al, 2005b) of the eardrum can vary over a matter of millimeters. Furthermore, 

the eardrum is remarkably delicate, has a complex geometry, and is relatively difficult to 

extract. All of these factors contribute to the difficulty of conducting a uniaxial tension 

test, hence impacting its accuracy.

In situ methods have been developed that allow one to estimate the properties of the 

eardrum while it is intact and is attached to the ear canal, i.e., no strips need to be cut. 

Hesabgar et al (2010) present one such method in which the Young’s modulus of an FE 

model of the rat eardrum with subject-specific geometry is numerically optimized to 

produce a match between simulated force-displacement curves and those acquired 

experimentally through indentation testing. The optimal value is then taken to be the 

actual Young’s modulus of the pars tensa under test. A similar indentation-based method 

was developed by Aernouts et al (2010). Recognizing the challenges of indentation 

testing and modeling of indentation experiments, Jahromi (2010) developed a
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pressurization-based method in which the acquired data consisted of measurements of the 

deformed shape of the eardrum after applying a sequence of static pressures. As with 

Hesabgar et al (2010), the Young’s modulus was estimated by optimizing its value in the 

model until simulated responses matched experimental measurements.

Both the indentation-based method and the pressurization-based in situ methods 

assumed that the pars tensa can be modeled as a linear elastic homogeneous isotropic 

material and can thus be characterized by a single Young’s modulus (E) and a Poisson’s 

ratio (v). The objective of this work is to extend the indentation-based method of 

Hesabgar et al (2010) and the pressurization-based method of Jahromi (2010) by 

modeling the eardrum as a homogeneous linear elastic orthotropic material and 

estimating the orthotropic elastic properties of the eardrum by numerical optimization of 

an FE model of the eardrum. Four independent in-plane elastic parameters need to be 

determined for modeling thin orthotropic materials such as the pars tensa. These are the 

longitudinal (Ex) and transverse (Ey) Young’s moduli, the in-plane shear modulus (Gxy), 

and the Poisson’s ratio. By using the commonly accepted value of 0.3 for the Poisson’s 

ratio, the problem reduces to estimating Ex, Ey and Gxy for the pars tensa. The feasibility 

of both techniques was first tested on synthetic computer-generated data with known 

“ground truth” values and with various levels of added noise. One of the extended 

optimization approaches was then applied to indentation measurements of the rat eardrum 

made by Hesabgar et al (2010) as these data were readily available.
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2.2. Materials and Method

2.2.1. Overview

Figure 2.1 shows a flowchart that describes both the extended indentation-based 

algorithm and the extended pressurization-based algorithm. The input to both estimation 

algorithms consists of a subject-specific 3D FE mesh of the eardrum under test and its 

corresponding experimental response data. Response data are force-displacement curves 

for the indentation-based algorithm and pressurized shape measurements for the 

pressurization-based algorithm. The method for constructing the 3D FE mesh is the same 

for both algorithms and is described in Section 2.2.

Figure 2.1 The estimation flowchart. Flowchart describing both the indentation-based and 

pressurization-based methods for estimating the eardrum’s orthotropic elastic parameters
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The optimization framework described by Figure 2.1 requires experimental data to 

which simulation results are matched. To test the fidelity of the proposed optimization 

based data inversion algorithms, the two methods were first tested on synthetic computer

generated data. For the indentation-based algorithm, these consisted of force- 

displacement curves, whereas for the pressurization-based algorithm, these consisted of 

the deformed shape of the eardrum at specific pressures. The approach used for 

generating synthetic response data for both methods is described in Section 2.3.

In order to find the eardrum’s orthotropic parameters using either the indentation- 

based method or the pressurization-based method, a cost function is optimized such that 

the response simulated using these parameter values match the synthetic response data. 

The cost function for each data inversion algorithm is described in Section 2.4 as is the 

optimization algorithm.

Finally, the indentation-based method was applied to estimate the orthotropic elastic 

properties of the rat eardrum using existing indentation data from Hesabgar et al (2010). 

Although the acquisition of experimental force-displacement data is not part of this work, 

the methodology is briefly described in Section 2.5 for completeness.

2.2.2. FE model construction

FE models were constructed for the rat eardrum since this is an important 

experimental animal in hearing research (Akache et al, 2007) and because as noted 

above, experimental indentation data are available for the rat (Hesabgar et al, 2010). In 

order to construct an FE model of a rat eardrum, the 3D shape of the eardrum is required 

because the shape of the eardrum is important to its mechanical function (Funnell and
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Laszlo, 1978; Fay et al, 2006). Shape data were used from the study of Hesabgar et al 

(2010). In that study, healthy eardrums from adult Sprague Dawley rats were used. The 

rats were euthanized in accordance with the University of Western Ontario’s Animal Use 

Subcommittee. For each rat, the temporal bone was removed 30 min post mortem. The 

ear canal was resected to within 0.5 mm of the eardrum in order to obtain a good view of 

the eardrum for shape measurement. To measure the mechanical response of the eardrum 

without the confounding effects of the ossicular and cochlear loads, the malleus was 

immobilized by gluing the mallear head to the middle-ear wall as described elsewhere 

(Ladak et al., 2004). The eardrum was left intact, i.e., the eardrum was not dissected from 

its attachments to the ear canal or the manubrium of the malleus.

The 3D shape of each eardrum was measured using Fourier transform profilometry 

(FTP), which is a non-contact optical measurement method (Takeda and Mutoh, 1983). In 

FTP, a light pattern consisting of a set of parallel vertical lines is projected onto a 

diffusely reflecting surface. The surface modulates this pattern, resulting in a slightly 

deformed pattern of lines appearing on the surface. The deformed pattern is acquired 

using a CCD camera built into the FTP system, and this pattern is then processed by a 

computer to reconstruct the 3D shape of the surface. A commercially available Fourier 

transform profilometer was used in this work (model MM-25D from Opton Company 

Limited, Seto, Aichi, Japan). This profilometer has a spatial measurement accuracy of 10 

pm. Since FTP requires a diffusely reflecting surface with good contrast and the eardrum 

is transparent, a thin white coating was applied to the eardrum. Specifically, a spray-on 

coating was used (Spotcheck SKD-S2 Developer, Magnaflux, Glenview, IL). The effects 

of similar coatings on shape measurements have been shown to be negligible (Dirckx and

38



Decraemer, 1997). The output of the profilometer is a cloud of points representing the 

surface being measured.

In order to form an FE mesh from this cloud of points, the Trans-Finite Interpolation 

(TF1) technique (Knupp and Steinberg, 1993) was used. In its simplest form, TFI warps a 

unit square with a mesh of quadrilateral elements as shown in Figure 2.2 into an arbitrary 

shape, thus producing a quadrilateral mesh for the arbitrary shape. In terms of FE 

analysis, quadrilateral elements as used here have better performance compared to 

triangular elements used in other studies (e.g., Funnell and Laszlo, 1978).

Figure 2.2 Illustration of basic TFI meshing algorithm. A one-to-one transformation from a unit 

square with a quadrilateral mesh to an arbitrary shape is shown. This figure is a reproduction from

a figure in Courtis et al (2007) with some changes.

The eardrum has a complex shape with several sub-surfaces (pars tensa, pars 

flaccida, and manubrium), so the simple TFI method described by Figure 2.2 cannot be 

used directly to produce a mesh for the eardrum. Instead, the TFI method was applied to 

simpler zones defined on the eardrum as described here. When applying TFI to the 

eardrum, a 2D line drawing of the specific eardrum needs to be created in which the 

following boundaries are demarcated: the tympanic ring, the pars tensa, the pars flaccida, 

the ligament separating the pars tensa from the pars flaccida, and the manubrium. These
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boundaries were traced manually from a high resolution digital image of same eardrum 

under test. This step of mesh construction is shown in Figure 2.3(a).

A

Figure 2.3 Three basic steps for generating an FE mesh of the eardrum using the TF1 technique, 

(a) Boundaries of the tympanic ring, the pars tensa, the pars flaccida, the ligament separating the 

pars tensa from the pars flaccida, and the manubrium were traced manually in 2D from a high 

resolution digital image of the eardrum, (b) The 2D line sketch of the eardrum was decomposed 

into fourteen zones, (c) Each zone was meshed using the basic TFI algorithm. Only the mesh for

one of the fourteen zones is shown.
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Next, the 2D line drawing was decomposed into fourteen zones. This step is shown 

in Figure 2.3(b). Each zone can be described as a quadrilateral with possibly curved sides. 

On the pars tensa, two sides are directed along the radial direction and the remaining two 

sides are approximately in the circumferential direction. For each zone, a unit square that 

is decomposed into a quadrilateral mesh (see Figure 2.2) was mapped using the TFI 

method so that the quadrilateral mesh for the unit square was made to conform to the 

particular zone being considered on the eardrum. The implementation of the TFI method 

developed by O’Hagan and Samani (2008) was used. Figure 2.3(c) shows the mesh for 

one zone. Note that the zonal mesh is 2D because each node on the mesh has a zero z- 

coordinate. Once the TFI method was applied to all zones, the z-coordinates of each node 

of the mesh was assigned to reflect the measured z-coordinate in the 3D point cloud 

produced by the profilometer. This resulted in a 3D FE mesh of quadrilateral elements as 

shown in Figure 2.4. Note that the sides of the quadrilateral elements representing the 

pars tensa are approximately aligned with the radial and circumferential directions, which 

is necessary for specifying orthotropic material properties. The Abaqus FE software 

(Simulia Inc., RI, USA) was used to model the eardrum with four-noded S4 quadrilateral 

shell elements. Each node of this element has six degrees of freedom, i.e., three 

translations and three rotations.
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□  Manubrium
□  Pars Tensa
□  Ligament
■  Pars Flaccida

Figure 2.4 A typical FE mesh for a rat eardrum, (a) View of FE mesh as seen from the ear canal. 

Also, the position of the indenter is shown by a dot. (b) View normal to view a. The anterior (A), 

posterior (P), superior (S) and inferior (1) directions are indicated in view (a).

To enable simulation, all parameters of the FE model were set to values from the 

literature except for the orthotropic elastic parameters of the pars tensa (Ex, Ey, and Gxy) 

which needed to be optimized. The optimization algorithm sets Ex, Ey, and Gxy to some 

arbitrary initial values and then refines them. The thickness of the pars tensa was 

measured from a micro-CT image and an average value of 12 pm was assigned to the 

model (Hesabgar et al, 2010). The same thickness was taken for the pars flaccida. 

Furthermore, the pars flaccida was assumed to be isotropic and more compliant than the 

pars tensa. Its Young’s modulus was constrained to be equal to one-fortieth of the sum of 

the longitudinal and the transverse Young’s moduli of the pars tensa. This constraint on 

the Young’s modulus values of the pars flaccida was an arbitrary modeling choice to 

make the pars flaccida model more compliant than the pars tensa model. The ligament
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separating the pars tensa from the pars flaccida was modeled as having a thickness of 12 

pm. Its Young’s modulus was taken to be 100 MPa, which is the same as that of other 

ligaments (Ethier and Simmons, 2007). The manubrium was modeled as consisting of 

dense cortical bone as done by Funnell et al (1992). As they stated in their work, this 

provides an upper limit on the Young’s modulus value of the manubrium. Its Young’s 

modulus was assumed to be 15 GPa, which is the same as that of typical cortical bone 

(Mow and Huiskes, 2005). The manubrial thickness was set to 100 pm based on a micro- 

CT scan (Hesabgar et al, 2010). All tissues were assumed to have a Poisson’s ratio equal 

to 0.3. The tympanic ring was assumed to be fully clamped as was the superior boundary 

of the manubrium. However, the rest of the manubrium was tightly coupled to the 

eardrum and was free to move with it. This condition approximately simulates the 

experimental condition of immobilizing the mallear head as in indentation testing.

2.2.3. Generating Synthetic Data

The FE mesh described in Section 2.3 was used in generating synthetic data to test 

both the indentation-based and pressurization-based estimation methods. Specifically, 

“ground truth values” of Ex = 20 MPa, Ey = 34 MPa, and Gxy = 12 MPa were asumed. Ex 

and Ey were selected based on the circumferential and radial Young’s moduli reported by 

Gan et al, (2006). The value of Gxy was arbitrarily set at 12 MPa. Henceforth, this model 

with ground truth parameter values will be referred to as the “ground truth model”. 

Another model generated from the same shape data but with different arbitrary initial 

parameter values was then optimized using the techniques described in Section 2.4.
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The indentation experiment of Hesbgar et al (2010) was simulated using the ground 

truth model. In that experiment, a point on the anterior pars tensa (indicated by the dot in 

Figure 2.4) was indented with spherical-ended indenter with a diameter of 0.5 mm. To 

simulate the experiment of Hesabgar et al (2010), the indenter was modeled as a rigid 

body and using small-slipping contact modeling. The indenter was used to indent the 

eardrum up to 90 pm in steps of 9 pm. At each step, the reaction force was computed by 

using the Abaqus FE software. Furthermore, because the amount of displacement in the 

indentation experiment was significant compared to the eardrum’s thickness, the FE 

model incorporated geometric nonlinearity.

To generate synthetic data for the pressurization-based method of Jahromi (2010), 

pressures were applied to the model eardrum in steps of 0.5 KPa to a maximum of 4 KPa. 

At each pressurization step, the deformed shape of the eardrum was calculated using 

Abaqus with the inclusion of geometric nonlinearity to account for the large 

deformations.

Additionally, zero-mean Gaussian noise was added to each synthetic data set. 

Various levels of noise were used to achieve Signal-to-Noise Ratio (SNR) values of 2, 

10, 100 and 200.

2.2.4. Optimization

For each of the methods (indentation or pressurization), a specific cost function with 

Ex, Ey, and Gxy as the independent variables was formulated such that minimizing this 

cost function resulted in a match between simulation results and the response data. The 

optimal values of Ex, Ey, and Gxy were taken to estimate the actual parameter values for 

the eardrum under test. For validation, only synthetic data generated using the ground
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truth model were used. For the indentation-based method, the orthotropic elastic 

parameters were sought that produce the best match between the simulated force- 

displacement curve and corresponding synthetic response data. The cost function Cin for 

the indentation method is defined as the sum-of-squared reaction force differences 

between simulated and response data leading to the following constrained optimization 

problem:

Cln(.Ex,Ey.G „ )  = (2- 1)

Minimize Cin(Ex, Ey, Gxy)

(Exl — Ex — Exu 
Subject to < EyL < Ey < EyU

\ p x y L  — G Xy  — G Xy U

where f.data and /¿sim denote the ground truth reaction force and simulated reaction 

force, respectively, for point i along the force-displacement curve. Note that /¿slTn is a 

function of the variables to be optimized (Ex, Ey, and Gxy), and is calculated at each 

iteration of the optimization algorithm using the FE model and the current values of Ex, 

Ey, and Gxy. The number of points along the force-displacement curve is specified by n1. 

Exi and Exu are lower and upper bounds of the longitudinal Young’s modulus (Ex), 

respectively. EyL and Eyu are the lower and upper bounds of the transverse Young’s 

modulus (Ey), respectively. Gxyi  and Gxyu are the lower and upper bounds of the in-plane 

shear modulus (Gxy), respectively.

In the pressurization-based method, the cost function was designed so it was 

minimum when the values of Ex, Ey, and Gxy were such that the match between the
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simulated pressurized shape and the corresponding synthetic response data was best. The 

pressurization-based cost function Cp is defined at a particular pressure as the sum-of- 

squared nodal z-coordinate differences between simulated and response data leading to 

the following constrained optimization problem:

CP(EXI Ey, Gxy) = Z U 4 ata -  z Si irn{Ex> Ey, Gxy) ) 2 (2-3)

Minimize Cp {Ex, Ey, GXy)

f Exl —  Ex —  Ex u 
Subject to < EyL ^  Ey < EyU

\ E X y L  —  E x y  ^  G x y u

where z f ata and z f'm are the experimentally acquired and simulated surface shape z- 

coordinates, respectively. The number of the points on the surface is specified by n2.

For both the indentation-based cost function and the pressurization-based cost 

function, the upper and lower limits were set to: Exu = 72 MPa , Eyu = 88 MPa, Gxyu = 48 

MPa, ExL = 7 MPa, EyL 7 MPa and Gxyi, 4 MPa. 6ased on the available literature, the 

search space defined by these limits is very large.

Each cost function was minimized to find the optimal orthotropic elastic parameters 

using a variant of the Nelder-Mead simplex method (Lagarias et al, 1998). For the 

pressurization-based method, the minimization was done for each pressure, and the 

optimal values at each pressure were averaged to get the final result. The optimization 

process starts by using initial guesses for the orthotropic parameters and then 

systematically changes them until the minimum of the cost function is reached. To ensure
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uniqueness and accuracy of results obtained from the optimization process, four 

significantly different sets of orthotropic parameters initial guesses were used. Table 1 

shows these initial guess values sets.

Table 1 Initial guess sets of orthotropic parameters used in the optimization process.

Initializing orthotropic parameter values

£,(MPa) Ey (MPa) Gxy (MPa)

27.00 40.00 16.00

30.00 25.00 8.00

10.80 10.08 4.08

50.00 60.00 30.00

The optimization process was terminated when the tolerance for the cost function 

values and orthotropic parameter values were small enough. For the synthetic data, the 

tolerances were set to 10 Pa for Ex, Ey, and Gxy and 1016 for either cost function. For the 

experimental indentation data (see next section), the tolerances were set to 100 Pa for Ex, 

Ey, and Gxy and 1 O'8 for either cost function.

2.2.5. Experimental indentation data

As mentioned previously, the indentation data of Hesabgar et al (2010) were used to 

estimate Ex, Ey, and Gxy for actual rat eardrums. In their experiment, a spherical-ended 

indenter with a diameter of 0.5 mm was used. A spherical-ended indenter does not have 

sharp edges and does not result in tearing of the eardrum as does a plane-ended indenter. 

However, the contact area of a spherical-ended indenter grows gradually while the
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indenter moves further down on the eardrum. The contact area growth characteristics 

depend on the geometry of the eardrum and the indenter in addition to their stiffness. To 

obtain the contact area incrementally throughout the indentation process, which is 

necessary for indentation force calculation, contact problem modeling is necessary. The 

indenter was applied perpendicular to the local eardrum surface in order to minimize 

slipping of the indenter with respect to the eardrum. The indenter descended until it just 

touched the surface of the eardrum and was then stopped. The point of contact was in the 

anterior pars tensa as shown in Figure 2.5 for one eardrum. Furthermore, the orientation 

of the eardrum was chosen such that the indenter was normal to the surface at the point of 

contact in order to avoid slippage between the eardrum and indenter. This was consistent 

with the small-slipping contact condition used in modeling of the eardrum (see Section 

2.2). After applying several sinusoidal indentation cycles of loading and unloading for 

preconditioning, four similar cycles of sinusoidal indentation were applied to the 

specimen with a frequency of 0.5 Hz. Force-displacement data corresponding to the four 

cycles were recorded. The purpose of applying four cycles was to have enough cycles to 

choose the best one from them given that the quality of the force-displacement curve can 

be affected by random mechanical vibration or electrical noise.

For optimization, only the loading part of the best sinusoidal indentation cycle was 

used. The experimentally measured unloading part of the loading cycle was not used 

because of inaccuracy in the measured forces throughout the unloading phase of the 

cycle. As described by Samani et al (2003), this inaccuracy is due to discontinuity of 

contact between the indenter and the tissue during unloading.
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2.3. Results

2.3.1 Algorithm testing on synthetic data

The ground truth values were recovered with both estimation techniques without any 

error in the absence of noise. Values of the in-plane shear modulus (Gxy) recovered by the 

indentation-based and by the pressurization-based techniques are shown in Figure 2.5 and 

Figure 2.6, respectively, for various levels of zero-mean Gaussian noise. Initialization 

values, optimization algorithm parameters, and FE models are the same for both figures. 

As expected, these figures show that the recovered values are closer to the ground truth 

values with smaller levels of noise. The pressurization technique has an accuracy in 

excess of 90% when the SNR (signal-to-noise ratio) is 2 or greater. For the indentation 

technique, an SNR greater than 200 is required to achieve over 90% accuracy. The above 

estimation methods are valid over a wide range of initialization values used with the 

optimization algorithms from half the ground truth values to twice the ground truth 

values.

Figure 2.5 Ground truth and recovered values of in-plane shear modulus for the indentation- 

based method applied to synthetic response data with different levels of Gaussian noise.
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Figure 2.6 Ground truth and recovered values of in-plane shear modulus for the pressurization- 

based method applied to synthetic data with different levels of Gaussian noise.

2.3.2. Estimate from actual indentation data

Table 2 shows the estimated values of Ex, Ey, and Gxy for three of the rats used by 

Hesabgar et al (2010). The indentation-based algorithm was used because these authors 

provide indentation data. The average values orthotropic parameter values plus/minus 

standard deviation across all three rats were of Ex = 23.39 ± 1.55 MPa, Ey = 58.67 ± 4.16 

MPa, and Gxy = 35.56 ± 3.29 MPa.

Table 2 Estimated orthotropic parameters for each sample pars tensa.

Optimal orthotropic parameter values

Sample number £,(MPa) Ey (MPa) G ^ (MPa)

1 24.00 54.00 38.50

2 24.54 62.00 36.17

3 21.62 60.00 32.00

The quality of the fit between experimental indentation data and simulation results 

using the optimal orthotropic parameter is shown in Figure 2.8 for each of the three rats.
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Recall that only the loading phase of the experimental data were used. The fit is best for 

sample 3, but deviates more for samples 1 and 2.

indentation Displacement (fini)

Indentation Displacement (firn)

Simulated C ane

50
Indentation Displacement (firn)

Figure 2.7 Experimental and corresponding simulated force-displamenet curve. Experimentally 

acquired loading part of one indentation cycle (dashed curve) in rat eardrums and corresponding 

simulated indentation response obtained from FE simulation (solid curve) with the corresponding

optimal orthotropic elastic parameter values.
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2.3.3. Variation of model parameters

Although the shape of the eardrum was known exactly through measurement, several 

approximations had to be made in constructing the FE model of each eardrum. The 

thickness and Young’s modulus of the pars flaccida, of the ligament and of the 

manubrium were not based on subject-specific measurements but were taken from the 

literature. In addition, the thickness of the pars tensa was based on micro-CT 

measurements on one animal (Hesabgar et al, 2010), and represented the average 

thickness of the pars tensa since variations in thickness across the pars tensa could not be 

quantified because of the resolution of the micro-CT scanner. This same value was used 

for all animals. Thus, the above values were varied in the models to quantify their effects 

on the estimated optimal orthotropic parameters.

The effects of varying the thickness of the pars tensa from 6 pm (i.e., 50% of the 

nominal value of 12 pm) to 48 pm (i.e., four times the nominal value) are shown in 

Figure 2.8. This particular range was chosen as it encompasses the range of thickness 

values seen in similar animals such as gerbils (Kuypers et al, 2005). Increasing the 

thickness of the pars tensa causes a decrease in the estimated optimal values of Ex and Er  

By contrast, Gxy does not vary much.
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Figure 2.8 Variation in optimal orthotropic parameters of the pars tensa as a function of the pars

tensa thickness.

Varying the Young’s modulus or the thickness of the pars flaccida does not have any 

effect on the estimated optimal values to two decimal places as long as the pars flaccida 

is kept more compliant than the pars tensa. Changing the thickness or Young’s modulus 

of the ligament from half its value to twice its value does not affect the estimated optimal 

values of Ex, Ey, and Gxy to two decimal places. Similarly, changing the thickness or 

Young’s modulus of the manubrium from half its value to twice its value does not affect 

the estimated optimal values of Ex, Ey, and Gxy to two decimal places.

53



2.4. Discussion

2.4.1. Algorithm testing on synthetic data

Applying both the indentation-based approach and the pressurization-based 

approach to noiseless synthetic data demonstrates that under ideal conditions (i.e., all FE 

modeling assumptions are correct) both techniques are able to recover the ground truth 

values of Ex, Ey, and Gxy exactly. Even with the addition of noise, an accuracy of over 

90% for each parameter value can be obtained when SNR is greater than 200 for the 

indentation-based method and greater than 2 for the pressurization-based method. In 

practice, such SNR values are easy to achieve as the amount of force data averaging that 

occurs during data acquisition to obtain each force value can be easily adjusted to 

increase the SNR. In indentation testing, 1000 samples are averaged when acquiring a 

single point on the force-displacement curve (Hesabgar et al, 2010). In the FTP system 

used by Jahromi (2010), up to 10 point clouds can be averaged to produce a single 

acquisition.

Nevertheless, the pressurization-based method has some advantages over the 

indentation-based method. When acquiring experimental force-displacement curves in 

indentation testing, the indenter must remain perpendicular to the local eardrum surface 

in order to minimize slipping. If a spherical indenter is used during the experiments to 

prevent damage to the eardrum, FE modeling becomes more complicated since the 

indentation test must be simulated as a contact problem. Using contact problem modeling 

is necessary because the area of contact between the indenter and eardrum grows as the 

indenter is initially pushed into the eardrum. The contact area’s continuous growth
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implies that the loading of the eardrum also changes continuously, hence conventional 

prescribed force or displacement boundary conditions become inappropriate in the 

respective FE model. None of these complications arise with the pressurization-based 

method.

2.4.2. Application to actual indentation data

This work represents the first attempt at estimating the orthotropic elastic 

properties of the rat pars tensa. The longitudinal modulus (Ex) corresponds to the 

circumferential fiber direction, whereas the transverse modulus (Ey) corresponds to the 

radial fiber direction. As listed in Table 2, Ey is larger than Ex, which is consistent with 

the observation that the radial fibers are stiffer than the circumferential fibers (Funnell 

and Laszlo, 1982).

Luo et al (2009) have performed tensile testing on strips cut from the human 

eardrum, and they have investigated the effects of varying the strain rate. For strips cut in 

the radial direction, they modeled the strip as an isotropic material and estimated that the 

Young’s modulus varies from 45.2 MPa to 58.9 MPa for strain rates varying from 300 to 

2000 s'1. Note that the Young’s modulus increases with increasing strain rate. The 

comparable value in the present work is Ey which was estimated to be 58.67 ±4.16 MPa 

across the three rats. For strips cut in the circumferential, Luo et al (2009) estimated that 

the Young’s modulus varies from 34.1 MPa to 56.8 MPa for strain rates varying from 

300 to 2000 s'1. The comparable value in the present work is Ex which was estimated to 

be 23.39 ± 1.55 MPa across the three rats. Although the values presented here cannot 

directly be compared mainly because of differences in species (rat vs. human) and
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modeling assumptions (orthotropic vs. isotropic), it is interesting to note that the moduli 

were in similar ranges. Luo et al (2009) did not report an in-plane shear modulus (Gxy).

Despite this reassuring similarity in values reported here and by Luo et al (2009), 

the fit between the simulated indentation curves using the optimal orthotropic elastic 

parameters and measured curves is not exact as shown in Figure 2.8. This is most likely 

because only geometric nonlinearity was taken into account in the FE models. 

Improvements could result if material intrinsic nonlinearities are also considered. The 

measured response curves for the three animals differ from each other because of inter

specimen differences in local material properties, thickness and local surface geometry 

(Hesabgar et al, 2010).

Estimates of Ex, Ey, and Gxy made using the indentation-based and pressurization- 

based approaches do not vary with modeling assumptions made about the thickness and 

Young’s modulus of the pars flaccida, ligament or manubrium. The pars flaccida is much 

more compliant than the pars tensa and represents only a small fraction of the total 

eardrum surface area in comparison to the pars tensa. It is observed that its mechanical 

behavior is not tightly coupled to that of the pars tensa (Funnell and Laszlo, 1978). 

Hence, it is unlikely that changes in the properties of the model pars flaccida would affect 

estimates of Ex, Ey, and Gxy for the pars tensa as long as the pars flaccida is indeed 

constrained to be more compliant than the pars tensa in the FE models. The ligament and 

manubrium are essentially rigid in comparison to the pars tensa, and variations in their 

properties would not be expected to affect Ex, Ey, and Gxy as long as the model ligament 

and manubrium remain rigid despite these variations.
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Ex and Ey do vary significantly with the thickness of the model pars tensa; 

however, Gxy does not. As the thickness increases, estimates of Ex and Ey must decrease 

in order to maintain the same overall structural stiffness. Hesabgar et al (2010) also 

observed that their estimate of the Young’s modulus in their isotropic model of the pars 

tensa decreases as the thickness of the model pars tensa increases. Micro-CT as used here 

cannot resolve the variations in pars tensa thickness over its surface. Confocal 

microscopy is indeed suitable (Kuypers et al, 2005a, 2005b, 2006), but has not been 

applied to rats. This work highlights the need for measurement of thickness variations in 

this important species for hearing research.

2.5. Conclusion

Two techniques were developed to estimate the orthotropic elastic parameters of 

the rat eardrum, an indentation-based technique and a pressurization-based technique. 

Tests on synthetic data indicate that the pressurization-based technique is more robust to 

simulated noise than the indentation-based technique. The former attains an accuracy in 

excess of 90% for an SNR of 2 or greater in the measurements. The indentation-based 

technique requires an SNR of 200 or greater for the same level of accuracy. Although in 

general the simplex optimization method requires initialization values that are not very 

different from the correct moduli values, both the indentation and pressurization 

techniques as described here are robust to a wide range of initialization values. Estimates 

of Ex = 23.39 ± 1.55 MPa, Ey = 58.67 ± 4 .1 6  MPa, and Gxy = 35.56 ± 3.29 MPa were 

obtained for rat eardrums using the indentation-based technique for which prior data were 

available. These estimates are insensitive to all other modeling parameters except for pars 

tensa thickness.
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Chapter 3

3.1. Contributions

The main contribution of this work is to the development and evaluation of two in 

situ techniques for estimating the orthotropic elastic properties of the pars tensa of the 

eardrum. Specifically, the indentation-based technique developed by Hesabgar et al 

(2010) and the pressurization-based technique developed by Jahromi (2010) were 

extended by incorporating a linearly elastic orthotropic model of the pars tensa into the 

optimization framework. In the previous studies, the authors had used a linear elastic 

isotropic model of the pars tensa. This modification changed the estimation task from a 

univariate optimization problem (i.e., only the Young’s modulus, E, was required) to a 

multivariate problem requiring the estimation of Ex, Ey and Gxy. Therefore, the univariate 

optimization methods used by the previous authors could not be used here. Instead, a 

variant of the Nelder-Mead simplex method (Lagarias et al, 1998) was used.

Another contribution of this work is in the application of the indentation-based 

technique to estimating Ex, Ey and Gxy for the rat eardrum. These estimates provide 

important input parameters for future modeling efforts that are being undertaken by 

others for this important experimental animal. The effects on these estimates of varying 

modeling parameters that are not well known was also quantified, and revealed that Ex 

and Ey are particularly sensitive to the thickness of the pars tensa model.
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3.2. Future Considerations

Based on experience acquired during this work, several refinements are 

suggested. These include modifications to the cost functions used, comparison of 

numerical optimization algorithms used to minimize these cost functions and refining the 

quality of the FE models used for optimization. The cost function for the indentation- 

based method and that for the pressurization-based method both have a single global 

minimum within the upper and lower bounds set on the search space. However, this 

minimum is relatively broad and shallow, and the simplex method used crawls to the final 

optimum. It would be possible to speed up convergence by appropriately redesigning the 

cost functions to have a narrow, steep minimum by defining the cost function to be a 

weighted sum of the indentation cost function and the pressurization cost function. The 

disadvantage of this would be that both types of response data (force-displacement curves 

and pressurized eardrum shapes) would need to be acquired for a given estimation task. 

Currently, only one or the other type of data needs to be acquired.

A variant of the Nelder-Mead simplex algorithm (Lagarias et al, 1998) was used 

to find the global minimum. This algorithm does not require the computation of the 

derivatives of the cost function with respect to each independent variable. Although this 

makes the simplex algorithm less prone to noise in the cost function evaluation that may 

come about because of noisy experimental data, the algorithm is slow. Given that 

experimentally acquired indentation data and pressurized shape data have high SNR 

values, one might opt for faster gradient-based optimization methods.
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Since the publication of first journal paper describing the use of FE modeling to 

simulate the response of the eardrum (Funnell and Laszlo, 1978), significant effort has 

gone towards refining models of the eardrum. Based on the present study, the most 

important modeling parameter that affects estimates of Ex and Ey is the thickness of the 

pars tensa. Although confocal microscopy has been used to measure the thickness of the 

eardrum in other species (Kuypers et al, 2005a, 2005b, 2006), it has not been applied to 

the rat eardrum. Such measurements need to be made for the rat since it is an important 

animal in hearing biomechanics research. Confocal microscopy provides point 

measurements of eardrum thickness, and it is time consuming to apply it to measure 

variations in thickness across the surface of the eardrum. Micro-CT has also been applied 

to measure the thickness of the human eardrum (Puria et al, 2006). This results in a full- 

field thickness map. However, to obtain reasonable SNR values at the required 

resolutions, long scan times are required and special care needs to be taken to mitigate 

drying of the eardrum and subsequent shrinkage, especially for the rat eardrum which is 

thinner than the human eardrum.

Modeling the behavior of the eardrum to large loads as done in this work is 

important in understanding its response to barotrauma, surgery and diagnostics (Ladak et 

al, 2006). Although geometric nonlinearity accounts for some of the nonlinearity seen in 

force-displacement curves, intrinsic nonlinear material models are required to improve 

the fit between simulation results and experimental data.

Ultimately, FE models of the human eardrum are required, not just of the rat 

eardrum. Hence, once the techniques are refined on synthetic data and animal data, they 

need to be applied to fresh human tissue, which is generally difficult to acquire. In vivo
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testing may be possible in humans by developing an indenter that could be introduced 

through the ear canal. Moreover, in vivo shape measurements utilizing endoscopic moiré 

profilometers may become possible in the future based on the preliminary designs of nez- 

Celerio et al (2004).
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