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ABSTRACT

Recently, we have shown that neuropeptide Y (NPY) is produced and 

upregulated in visceral adipose tissue of an early-life programmed rat model of 

central obesity. Moreover, we have demonstrated that NPY contributes to the 

pathogenesis of obesity. However, the role of NPY in regulating adipocyte 

metabolism is poorly understood. The present study examined the effects of NPY 

on adipocyte metabolism using 3T3-L1 adipocytes. We found that NPY 

potentiated isoproterenol (P-adrenergic agonist) stimulated lipolysis. This 

potentiation occurred upstream of adenylyl cyclase, since NPY did not enhance 

forskolin (direct activator of adenylyl cyclase) stimulated lipolysis. The 

potentiation was mediated by increased phosphorylation of hormone sensitive 

lipase. In contrast, NPY did not alter the expression of several key lipolytic and 

lipogenic enzymes/proteins or glucose uptake. Our results revealed a novel cross 

talk between the NPY and 3-adrenergic signaling pathways in regulating lipolysis 

and added a new dimension to the role NPY plays in regulating energy balance.

Keywords: neuropeptide y, adipocyte, lipolysis, lipogenesis, glucose uptake, 

potentiation, beta adrenergic receptor signalling, 3T3-L1, hormone sensitive 

lipase, isoproterenol
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Chapter 1

Introduction



2

1.1 Obesity Epidemic

Obesity is broadly defined as increased body weight caused by an excess 

accumulation of adipose tissue [Dixon, 2010]. Clinically, an individual with a body 

mass index of greater than 30 is considered obese. In recent years, the 

incidence and prevalence of obesity has increased at an alarming rate to 

epidemic levels in both developed and developing countries [James, 2008]. 

According to the 2004 Canadian Community Health Survey: Nutrition, 1 in 4 

Canadians is obese and 59% of adult Canadians are overweight [CIHI, 2004], 

Moreover, obesity rates are also rising among children [De Onis et al., 2010].

Obesity is a serious medical issue because it impairs quality of life and 

increases the risk for cardiovascular disease, metabolic syndrome, cancer and a 

host of other chronic illnesses [Dixon, 2010]. There are different types of obesity 

that have been defined based on the topography of fat deposition and studies 

have shown that visceral or central obesity represents the greatest risk factor for 

the subsequent development of disease [Montague and O'Rahilly, 2000]. 

Currently, there is a lack of effective therapeutic interventions and thus, the 

primary focus is on prevention [Lang and Froelicher, 2006]. Altogether, there is a 

pressing need for more effective preventative and treatment options. However, a 

better understanding of the processes that underlie the development and 

maintenance of obesity are first required.

1.1.1 Etiology of Obesity

Obesity can result from an increase in cell size (hypertrophy), cell number 

(hyperplasia) or both [Jo et al., 2009]. Fundamentally, obesity is the result of a



chronic imbalance between energy storage and energy expenditure. However, it 

is a complex and multi-factorial disease because the interaction between genetic 

and environmental factors in numerous systems impacts energy balance 

[Hofbauer, 2002]. It is estimated that approximately 50% of the variation in body 

fat can be accounted for by genetic factors [Campfield and Smith, 1999] and a 

number of genes have been identified that are associated with the development 

of obesity including the genes that code for leptin and the fat mass and obesity- 

associated protein [Walley et al., 2009]. However, it is environmental and lifestyle 

factors that are responsible for the rapid increase in obesity worldwide [James, 

2008].

1.2 Fetal Origins of Adult Disease

In recent years, one environmental influence that has gained increased 

interest is the in utero environment [Morley, 2006]. A number of studies have 

found a strong statistical association between poor fetal growth and the 

subsequent development of hypertension, insulin resistance, coronary heart 

disease and metabolic syndrome [Morley, 2006]. These observations were 

initially made by Barker and colleagues [Barker et al., 1993] . Since then, these 

finding has been replicated in a number of populations [Byrne and Phillips, 2000]. 

These studies have lead to the development of the fetal origins of adult disease 

hypothesis which postulates that a sub-optimal in utero environment leads to the 

programming of fetal tissues [Ozanne, 2001], This programming leads to 

permanent alterations in metabolism and predisposes the individual to



developing disease later in life. Currently, the molecular mechanisms 

underpinning this programming are an area of intensive investigation.

A number of animal models have been developed to investigate the fetal 

origins of adult disease [Bertram and Hanson, 2001]. In these models, the effects 

of a variety of insults are explored including maternal malnutrition, maternal 

diabetes, hypoxia, maternal anaemia and overexposure to glucocorticoids. The 

maternal protein restriction (MPR) rat model is one of the most widely utilized 

models [Ozanne, 2001]. In this model, pregnant rat dams are fed an isocaloric 

low-protein diet consisting of 8% protein rather than the 20% protein found in the 

control diet [Holemans et al., 2003]. Dams are fed this diet throughout pregnancy 

and lactation and the resultant offspring are growth restricted. These MPR 

offspring go on to develop visceral obesity, hypertension, insulin resistance and 

metabolic syndrome. Overall, animal models provide strong experimental 

evidence supporting the epidemiological studies done in humans and will be 

valuable in uncovering the mechanisms linking insults to fetal development and 

adult disease [Bertram and Hanson, 2001].

1.2.1 Fetal Programming of Adipose Tissue

To date, a number of tissues have been shown to be structurally and 

functionally affected by in utero programming in humans and animal models 

[Byrne and Phillips, 2000; Bertram and Hanson, 2001]. These include alterations 

in the cardiovascular system, pancreas, muscle and liver. Given that MPR 

offspring develop visceral adiposity, our lab sought to investigate the underlying



molecular mechanisms [Guan et al., 2005], To examine if adipose tissue plays a 

role in the fetal programming of obesity, our lab isolated visceral adipose tissue 

(VAT) from control and male MPR offspring and performed a microarray analysis. 

Analysis of the data revealed a distinct pattern of gene expression in the adipose 

tissue of MPR offspring [Guan et al., 2005]. The pattern of gene expression 

supported an increase in preadipocyte proliferation, adipocyte differentiation and 

lipogenesis. Furthermore, there was an upregulation in pro-angiogenic factors 

and angiogenesis is a prerequisite to adipose tissue expansion [Voros et al., 

2005]. Taken together, the profile of gene expression supports an increase in 

adipogenesis and angiogenesis which explains the visceral adiposity of MPR 

offspring [Guan et al., 2005],

Further evidence that maternal protein restriction results in programming 

of adipose tissue comes from preadipocytes isolated from VAT of male MPR 

offspring [Zhang et al., 2007], Our lab found that preadipocytes from MPR 

offspring displayed a two fold increase in the rate of proliferation. This increase 

seemed to be due to an inherent aberration because the increased proliferation 

persisted even in subculture. These findings along with our microarray data 

demonstrate that adipose tissue metabolism and development are permanently 

altered by maternal protein restriction [Guan et al., 2005; Zhang et al., 2007]. 

Therefore, programming of adipose tissue represents an important link between 

growth restriction and the development of obesity.
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1.2.1.1 Candidate Gene Approach

To expand upon our findings, we took advantage of our previously 

published microarray data and used a candidate gene approach to select targets 

for further investigation. In our MPR rat model, male rats develop visceral obesity 

that is characterized by hyperplasia but not hypertrophy [Guan et al., 2005]. 

Accordingly, candidate genes were selected based on the criteria that they 1) are 

known to stimulate cell proliferation of nonadipose cells and 2) their expression is 

upregulated in VAT from our animal model. A candidate gene that was identified 

was neuropeptide Y (NPY) which stimulates proliferation in different cell types 

[Hansel et al., 2001; Pons et al., 2003] and is upregulated by 6-fold in our early 

life rat model of visceral obesity [Guan et al., 2005].

1.3 Neuropeptide Y

NPY was first isolated from porcine brain [Tatemoto et al., 1982] and 

belongs to a family of structurally related peptides, which includes peptide YY 

and pancreatic polypeptide [Silva et al., 2002]. The common structural feature of 

these peptides is a tertiary three-dimensional pancreatic polypeptide fold. NPY is 

synthesized as a prepropeptide that undergoes posttranslational processing 

which results in the active 36 amino acid peptide. Functions of NPY are mediated 

by five distinct receptor subtypes (known as Yi, Y2, Y4, Y5, and Y6), which all 

belong to the G protein-coupled receptor superfamily [Yulyaningsih et al., 2011]. 

The NPY receptors are coupled to pertussis toxin sensitive G¡ or Go 

heterotrimeric G-proteins. When activated, they induce a decrease in the
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intracellular concentration of cAMP and/or an increase in intracellular calcium 

concentration depending on the cell type. There are a number of specific 

pharmacological agonists and antagonists that have been developed that have 

high affinities for the various receptor subtypes [Kamiji and Inui, 2007], 

Additionally, mice in which NPY and specific NPY receptors are knocked out 

have been generated [Thorsell and Heilig, 2002]. NPY and receptor knockouts 

are grossly normal which suggests a redundancy of the system or the presence 

of compensatory mechanisms. However, the combination of knockout models 

and specific pharmacological tools has been valuable to study NPY’s numerous 

physiological functions and elucidate the receptor subtypes involved 

[Yulyaningsih et al., 2011],

1.3.1 Central Effects of NPY

NPY is one of the most abundant neuropeptides in the brain and the 

highest levels are found in the hypothalamus, particularly in the arcuate nucleus 

(ARC) and paraventricular nucleus (PVN) [Higuchi et al., 1988], It is also highly 

expressed in the cerebral cortex and moderate levels are found in the amygdala, 

hippocampus and basal ganglia [Thorsell and Heilig, 2002]. Corresponding to its 

widespread distribution, NPY has been implicated in regulating a number of 

physiological functions in the central nervous system [Silva et al., 2002; 

Pedrazzini et al., 2003], Studies have found that NPY decreases anxiety in a 

number of animal models, reduces seizure activity, inhibits alcohol consumption 

and plays a role in memory retention.



One of the most well studied roles for NPY is in the central regulation of 

appetite [Kalra and Kalra, 2003]. NPY is the most potent appetite stimulating 

hormone in the brain and the drive to feed is mediated by the ARC and PVN. 

NPY expression in the PVN and ARC is increased during fasting and decreases 

after feeding [Kalra et al., 1991], Intracerebroventricular (ICV) administration of 

NPY to mice and rats produces hyperphagia [Raposinho et al., 2001], When 

administration is maintained, animals become obese and develop metabolic 

syndrome. Furthermore, hypothalamic NPY expression is increased in fatty 

Zucker rats and in the leptin-deficient ob/ob mouse model of obesity [Silva et al., 

2002], Knockout of NPY in ob/ob mice was found to attenuate the obese 

phenotype indicating that leptin’s physiological action is facilitated in part by 

suppression of NPY expression [Erickson et al., 1996], In addition to its direct 

orexigenic effects, NPY infused centrally was found to decrease the expression 

of anorexigenic signals that produce satiety [Raposinho et al., 2001]. Overall, 

hypothalamic NPY plays a critical role in the encoding of appetite and increased 

expression leads to the development of obesity and metabolic syndrome.

1.3.2 NPY and Adipose Tissue

1.3.2.1 Production of NPY by Adipose Tissue

Classically, NPY was thought to contribute to the pathogenesis of obesity 

mainly through its potent stimulation of appetite in the hypothalamus. Recently, 

this dogma has been challenged by the identification of adipose tissue as a novel



peripheral site of NPY biosynthesis by us [Yang et al., 2008] and others [Kos et 

al., 2007; Kuo et al., 2007]. In addition to being upregulated in VAT of our early- 

life model of visceral obesity, our lab found that NPY expression was upregulated 

in VAT of obese Zucker rats [Yang et al., 2008]. Furthermore, Kuo and 

colleagues reported a similar upregulation of NPY expression in adipose tissue of 

a diet and cold stress induced mouse model of obesity [Kuo et al., 2007], 

Collectively, the upregulation of NPY expression in adipose tissue of several 

distinct rodent models of obesity underscores an important peripheral role for 

NPY in the pathogenesis of obesity.

1.3.2.2 NPY and Adipose Tissue Expansion

In support of a peripheral role for NPY in the development of obesity, an 

NPY implant in adipose tissue was found to increase both its weight and volume 

[Kuo et al., 2007]. In the same study, Kuo et al. found that NPY stimulated 

angiogenesis in adipose tissue and the formation of new blood vessels is a 

requirement for adipose tissue expansion. Furthermore, our lab found that NPY 

strongly stimulated 3T3-L1 preadipocyte proliferation through the Yi receptor and 

subsequent activation of the extracellular related kinase 1/2 pathway [Yang et al., 

2008], Since mature adipocytes do not multiply, the proliferation of adipocyte 

precursor cells is another critical pre-requisite to adipose tissue expansion [Otto 

and Lane, 2005]. Finally, several studies using isolated adipocytes from mice, rat, 

dog and humans have shown that NPY inhibits lipolysis [Valet et al., 1990; 

Castan et al., 1994; Serradeil-Le Gal et al., 2000], However, the mechanisms of



action require further investigation and these systems commonly suffer from the 

drawback of effects due to cell breakage [Large et al., 2004], Overall, the effects 

of NPY in adipose tissue and its roles in regulating adipocyte metabolism are still 

poorly understood and need to be explored.

1.4 Metabolic Functions of Adipocytes

1.4.1 3T3-L1 Cell Line

A number of immortalized cell lines have been used to study adipocyte 

differentiation and physiology [Grégoire et al., 1998]. 3T3-L1 cells are mouse 

embryonic fibroblasts that were clonally isolated from 3T3 cells derived from 

disaggregated embryos [Green and Kehinde, 1974], These preadipocytes are 

committed to the adipocyte lineage and when stimulated appropriately undergo 

terminal differentiation into mature adipocytes. 3T3-L1 adipocytes have the 

biochemical and morphological properties of adipocytes [MacDougald and Lane, 

1995]. They have been found to faithfully recapitulate the properties of 

adipocytes isolated from adipose tissue and are a well established in vitro model 

system to study adipocyte physiology and metabolism.

1.4.2 Lipolysis

Adipose tissue is the largest store of reserve energy in the body [Zechner 

et al., 2009], During times of energy deficit, energy stored in adipocytes primarily 

in the form of triglycerides can be mobilized to meet energy requirements. 

Lipolysis is the process of energy mobilization and involves the hydrolysis of 

triglycerides releasing glycerol and free fatty acids for utilization by other tissues.



Adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL) and 

monoglyeride lipase (MGL) are responsible for the three hydrolytic reactions in 

the lipolysis reaction [Duncan et al., 2007], In addition, a number of other proteins 

such as perilipin and adipocyte lipid binding protein are required in facilitating 

lipolysis.

1.4.2.1 Components of the Lipolytic Pathway

1.4.2.1.1 Adipose Triglyceride Lipase

ATGL is a recently discovered triglyceride hydrolase that is associated 

with lipid droplets [Zimmermann et al., 2004], ATGL plays a crucial role in the 

lipolytic pathway since ATGL deficient mice become obese and have a 75% 

reduction in fat cell lipolysis [Haemmerle et al., 2006], It has high substrate 

specificity for triacylglycerol and is responsible for catalyzing the first hydrolysis 

reaction producing diacylglycerol and a free fatty acid. To perform its lipolytic 

function, ATGL requires a co-activator known as a/p hydrolase domain- 

containing protein 5 (ABHD5), also known as comparative gene identification-58 

(CGI-58) [Zechner et al., 2009]. The presence of ABHD5 increased mouse ATGL 

activity by approximately 20 fold and increased activation of human ATGL by 5 

fold. When ABHD5 expression is silenced in human fat cells, the lipolytic action 

of ATGL is abolished. Moreover, it has been shown that ATGL activity is 

associated with its expression and overexpression of ATGL in a mouse fat cell 

line increased lipolysis while its knockdown decreased lipolysis [Lafontan and 

Langin, 2009], Importantly, ATGL expression has been shown to be affected by



several hormones including insulin and tumor necrosis factor-alpha [Kralisch et 

al., 2005]. However, given its recent discovery, there is still much work to be 

done on investigating the regulation of ATGL activity.

1.4.2.1.2 Hormone Sensitive Lipase

HSL is expressed in a number of tissues including muscle, pancreatic (3- 

cells, macrophages and white adipose tissue [Lafontan and Langin, 2009]. In 

adipose tissue, it plays a crucial role in lipid metabolism and is an important 

regulatory step in the lipolytic pathway [Holm et al., 2000b]. HSL possesses 

broad substrate specificity and is able to hydrolyze triacylglycerol, diacylglycérol, 

monoacylglycerol, steroid fatty acid esters and retinyl esters. In terms of 

triglyceride lipolysis, it has a much higher hydrolase activity against diacylglycérol 

compared to triacylglycerol [Schweiger et al., 2006]. The structure of HSL is 

composed of at least two domains [Holm et al., 2000b]. The N-terminal domain 

has been proposed to play a role in binding to lipid droplets and interaction with 

other protein partners. The C-terminal catalytic domain contains the catalytic site 

and also includes a regulatory module that has four phosphorylation sites.

1.4.2.1.2.1 Regulation of HSL Activity

HSL contains a regulatory module that has a number of serine residues 

that can be phosphorylated by different kinases [Lafontan and Langin, 2009]. 

Ser-563, Ser-659, and Ser-660 are targets of protein kinase A (PKA) and 

phosphorylation of these residues leads to an increase in HSL activity. In



contrast, Ser-565 is phosphorylated by AMP-activated protein kinase which 

sterically inhibits phosphorylation of Ser-563 and therefore decreases HSL 

activity [Carmen and Victor, 2006]. To date, two phosphatases (PP) PP2A and 

PP1 are believed to play a role in the dephosphorylation of HSL [Lafontan and 

Langin, 2009]. Altogether, HSL enzyme activity can be controlled through its 

phosphorylation status.

In addition to phosphorylation, HSL function is also regulated by its cellular 

localization [Wang et al., 2009].Under basal conditions, HSL is primarily localized 

to the cytosol of adipocytes. However, upon beta-adrenergic stimulation and HSL 

phosphorylation, HSL translocates to the surface of lipid droplets. HSL 

subsequently binds to proteins at the surface of the lipid droplet which further 

activates HSL and facilitates its access to the lipids contained within the droplet. 

This translocation process is critical to the lipolytic function of HSL but is still 

poorly understood.

1.4.2.1.3 Monoglyceride Lipase

Monoglyceride lipase (MGL) is responsible for catalyzing the final 

hydrolysis reaction in the lipolytic process [Duncan et al., 2007], It has high 

substrate specificity and only has catalytic activity against monoacylglycerols. 

The catalytic site of MGL including the catalytic triad has been identified and 

mutation of Ser122, Asp239 or His269 abolishes lipase activity. However, MGL is 

expressed at high levels in adipocytes and is thought to not be rate limiting

because of its abundance.
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1.4.2.1.4 Perilipin

Perilipin is a protein that is abundantly expressed in adipocytes and coats 

the surface of lipid droplets [Martinez-Botas et al., 2000]. Perilipin has been 

found to be a critical regulator of lipolysis [Tansey et al., 2004], Under basal 

conditions, perilipin restricts access of lipases to the triglycerides contained within 

the droplet. In addition, perilipin is bound to ABHD5 which sequesters it and 

keeps it from activating ATGL. Upon stimulation, perilipin is phosphorylated at 

multiple sites by PKA. Once perilipin is phosphorylated, the lipid droplet 

undergoes a structural remodelling and the central lipid droplet becomes 

fragmented into smaller micro droplets allowing for greater access of the lipases 

to their substrates [Brasaemle, 2007]. In addition, upon perilipin phosphorylation, 

ABHD5 is released and activates ATGL activity. Finally, perilipin facilitates the 

interaction between lipases and the lipid droplet by acting as a docking site 

[Tansey et al., 2004]. The study found that HSL translocation did not occur when 

PKA phosphorylation sites of perilipin were mutated. Thus, under basal 

conditions perilipin acts to inhibit lipolysis but under stimulated conditions, 

perilipin is critical for mediating lipolysis and is required to achieve maximal 

lipolytic rates.

1.4.2.2 Beta-adrenergic Stimulated Lipolysis

In terms of regulation, there are a number of hormones and signalling 

molecules that form a complex network and allows for the precise control of the 

lipolytic rate [Lafontan and Langin, 2009]. Catecholamines are the most



important lipolytic stimulus in vivo and stimulate lipolysis through beta-adrenergic 

receptors [Coleman and Mashek, 2011]. Murine adipose tissue expresses (31, 32 

and 33 adrenergic receptors while human adipose tissue only possesses 31 and 

32 receptors [Langin, 2006]. 3-adrenergic receptors in adipose tissue are 

coupled to the Gs heterotrimeric G-protein. Figure 1.1 illustrates the stepwise 

hydrolysis of triglyceride and the signalling events that follow 3-adrenergic 

receptor activation.

White adipose tissue is innervated by the sympathetic nervous system and 

the primary postganglionic neurotransmitter is norepinephrine [Bartness and 

Bamshad, 1998]. In isolated fat pads from rats, stimulation of these nerves 

promotes lipid mobilization, and denervation of fat pads has been found to 

decrease lipolysis. Besides sympathetic stimulation, adipose tissue is highly 

vascularized [Lijnen, 2008]. During fasting, the levels of circulating 

catecholamines increases, and stimulates energy mobilization from adipocytes.
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Figure 1.1 Overview of beta-adrenergic stimulated lipolysis.
Catecholamine binding to (3-adrenergic receptors coupled to Gs heterotrimeric G- 
proteins activates adenylyl cyclase activity leading to an increase in intracellular 
cAMP and subsequent PKA activity. PKA phosphorylates a number of 
downstream targets including HSL. ATGL, HSL and MGL catalyze the complete 
hydrolysis of triglycerides leading to the release of free fatty acids and glycerol, 
(adapted from Langin, 2006)
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1.4.3 Lipogenesis

Lipogenesis is the process of energy storage and encompasses both the 

processes of fatty acid synthesis and triacylglycerol synthesis [Kersten, 2001]. 

Lipogenesis takes place in both adipose tissue and the liver. It is a highly 

regulated process that is affected by dietary and hormonal influences such as 

insulin and leptin [Coleman et al., 2000], Increases in lipogenesis can lead to an 

increase in fat accumulation and the upregulation of a number of lipogenic 

enzymes including fatty acid synthase (FAS) and glycerol acyltransferases has 

been found in animal models of obesity [Jamdar and Cao, 1995; Guan et al., 

2005].

1.4.3.1 Fatty Acid Synthesis

De novo fatty acid synthesis is used to store excess energy from 

carbohydrates in the form of fatty acids [Coleman et al., 2000]. Glucose is the 

primary substrate and is broken down and converted into two carbon substrates 

that undergo sequential condensation to produce fatty acids. These fatty acids 

can then be used in triacylglycerol synthesis. In humans, a high-carbohydrate 

diet can increase the expression of lipogenic enzymes and increase their activity 

[Kersten, 2001]. This is important because the Western “cafeteria diet” is rich in 

both carbohydrates and fat.

1.4.3.1.1 Fatty Acid Synthase

Fatty acid synthase is the central enzyme responsible for the de novo 

synthesis of fatty acids [Smith et al., 2003], It functions as a homodimer and is a



multifunctional enzyme that catalyzes all of the reactions necessary to produce 

fatty acids. The FAS gene encodes one long polypeptide chain that contains 

seven catalytic domains that are connected by linkers. The primary product of 

FAS is the 16-carbon fatty acid palmitate which is produced through the 

condensation of two carbon units provided by acetyl co-enzyme A (CoA) and 

malonyl-CoA, in the presence of NADPH. FAS expression is upregulated in 

genetically obese rats [Menendez et al., 2009] and one study found that 

lipogenesis and FAS activity were coordinately regulated [Wang et al., 2004], In 

human visceral adipose tissue, expression of FAS was positively correlated with 

visceral fat area and inversely correlated with insulin sensitivity [Berndt et al., 

2007]. Altogether, these findings suggest a possible role for FAS in the 

pathogenesis of obesity and its related metabolic abnormalities.

1.4.3.1.2 Stearoyl-CoA desaturase 1

Stearoyl-CoA desaturase (SCD1) is an endoplasmic reticulum enzyme 

that is highly expressed in adipose tissue [Dobrzyn and Ntambi, 2004], It 

introduces a single double bond into fatty acyl-CoA substrates which is the rate 

limiting step in the synthesis of monounsaturated fatty acids. Monounsaturated 

fatty acids comprise the majority of fatty acids found in triglycerides and 

phospholipids [Jiang et al., 2005]. Knockout of SCD1 results in mice that are lean 

and resistant to diet induced obesity [Dobrzyn and Ntambi, 2004], This resistance 

was attributed to an increase in metabolism and a decrease in lipogenesis. 

Overall, SCD1 plays an important role in regulating lipid metabolism and SCD1



inhibition is currently being explored as a treatment for obesity [Dobrzyn and 

Ntambi, 2005].
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1.4.3.2 Triacylglycerol Synthesis

Triacylglycerol synthesis requires glycerol and fatty acid chains which are 

first converted to glycerol-3-phosphate and fatty acyl-CoA respectively [Coleman 

and Mashek, 2011]. Glycerol-3-phosphate can be produced from glucose 

through glycolysis or produced from glyceroneogenesis [Large et al., 2004], Fatty 

acids are primarily derived from dietary sources but are also produced by de 

novo fatty acid synthesis. Triacylglycerol synthesis involves the sequential 

esterification of fatty acyl-CoA to glycerol-3-phosphate [Takeuchi and Reue, 

2009]. These reactions are catalyzed by a number of acyltransferases. Various 

knockout mice that are deficient in acyltransferase enzymes have been 

generated which results in reduced adipose tissue stores [Coleman and Mashek, 

2011],

1.4.4 Adipose Tissue and Glucose Uptake

Glucose uptake is an important function of adipose tissue and studies 

have shown that glucose is an important regulator of adipocyte metabolism 

[Rosen and Spiegelman, 2006]. Adipocytes express both glucose transporter 

(GLUT) 1 and GLUT4 glucose transporters [Pedersen et al., 1992]. GLUT1 is 

responsible for basal glucose uptake while GLUT4 is involved in insulin 

stimulated uptake. In adipocytes, glucose is utilized in the synthesis of the



glycerol-3-phosphate backbone which is required for triglyceride synthesis and 

fat deposition. In addition, glucose is also used in de novo fatty acid synthesis. 

Glucose transport is the rate limiting factor in glucose utilization and plays an 

important role in the development of obesity [Tozzo et al., 1995], In a transgenic 

mouse model where GLUT4 was overexpressed in adipocytes, there was a 

significant upregulation in the activity of several major metabolic pathways. In 

particular, de novo fatty acid synthesis was preferentially increased [Shepherd et 

al., 1993]. These mice become obese and the increased adipose tissue mass 

was characterized by adipocyte hyperplasia. During the early development of 

obesity, adipocytes from fatty Zucker rats have a significant upregulation of both 

GLUT1 and GLUT4 expression and concomitant increases in glucose uptake 

[Pedersen et al., 1992], Furthermore, there was also a significant increase in the 

conversion of glucose to total lipids. Altogether, an increase in glucose uptake 

can increase adipocyte metabolic activity and lipogenesis which leads to 

increased fat accumulation.

1.4.4.1 Adipose Tissue and Glucose Homeostasis

An increase in glucose uptake can contribute to the development of 

obesity. However, once an obese state is reached, insulin resistance can 

develop in part through the increased secretion of adipokines such as tumour 

necrosis factor alpha [Rosen and Spiegelman, 2006], Muscle, liver and adipose 

tissue are the major insulin sensitive tissues in the body and they all play an 

important role in whole body glucose homeostasis. Although, adipose tissue



accounts for only 10-15% of insulin-stimulated glucose uptake, there is 

accumulating evidence that it plays an important role in the development of 

insulin resistance. Insulin resistance is the earliest defect in the development of 

type 2 diabetes [Cline et al., 1999], In insulin-resistant states, there is often 

impairment in GLUT4 expression in adipose tissue but not muscle [Shepherd and 

Kahn, 1999], Furthermore, adipocyte specific knockout of GLUT4 gene 

expression was found to induce insulin resistance to a similar degree as a 

muscle specific ablation of GLUT4 [Abel et al., 2001]. From these findings, it has 

been hypothesized that insulin resistance first develops in adipose tissue which 

then spreads to muscle and liver.

1.5 Rationale and Hypothesis

Adipose tissue has recently been identified as a novel source of NPY 

biosynthesis [Kos et al., 2007; Kuo et al., 2007; Yang et al., 2008], Its expression 

was dramatically upregulated in our early life rat model of visceral obesity [Guan 

et al., 2005], in the obese Zucker rat [Yang et al., 2008] and in a diet and stress 

induced mouse model of obesity [Kuo et al., 2007], Moreover, NPY was shown to 

directly stimulate adipose tissue expansion [Kuo et al., 2007], It is evident that 

NPY plays an important peripheral role in the pathogenesis of obesity.

Obesity results from a chronic energy imbalance that can occur through a 

decrease in lipolysis and/or an increase in lipogenesis. Furthermore, an increase 

in adipocyte glucose uptake can also lead to obesity. Since the mechanisms 

underlying NPY’s contribution to obesity remain poorly understood, this study



2 2

investigated the hypothesis that NPY promotes the development of obesity by 

inhibiting lipolysis, increasing lipogenesis and increasing glucose uptake. The 

overall objective of this study was to determine the role of NPY in regulating 

major metabolic pathways in adipocytes.
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Chapter 2

Materials and Methods
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2.1 3T3-L1 Culture and Differentiation

The murine preadipocyte 3T3-L1 cell line was obtained from the American 

Type Culture Collection (Manassas, VA). 3T3-L1 cells were cultured and 

differentiated, as previously described [Yang et al., 2008], Briefly, they were 

cultured in growth medium, consisting of DMEM (Sigma) supplemented with 50 

U/ml penicillin, 50 pg/ml streptomycin (Invitrogen) and 10% fetal bovine serum 

(Sigma). Cultures were maintained in a humidified incubator at 5% CO2 and 37° 

C. Medium was replaced every other day. At 2 days after confluence (day 0), 

cells were induced to differentiate by the addition of a standard differentiation 

cocktail containing 500 pM 3-isobutyl-1-methylxanthine (Sigma), 0.25 pM 

dexamethasone (Alpharma, Boucherville, Quebec, Canada), and 1 pg/ml insulin 

(Eli Lilly Canada Inc., Toronto, Ontario, Canada). At day 2, the medium was 

replaced with growth medium supplemented with 1 pg/ml insulin and then 

replaced at days 4 and 6 with growth medium. At day 8, differentiation was 90% 

or higher, as determined by Oil red O staining (Fig. 2.1). All treatments were 

carried out on differentiated 3T3-L1 adipocytes and preceded by a 2 hour 

starving period during which cells were washed and incubated in serum-free 

medium. Each treatment was performed in triplicate under serum-free conditions, 

and a total of four to six independent experiments were carried out. For each 

treatment condition, controls were included and treated for the same time with an 

identical volume of the vehicle, as described in detail in figure legends.



25

Control Differentiation Cocktail

Figure 2.1 Oil red O staining of 3T3-L1 cells. 3T3-L1 preadipocytes were 
cultured in standard growth medium until confluent. At 2 days after confluence 
(day 0), cells were induced to differentiate by the addition of a standard 
differentiation cocktail containing 500 pM 3-isobutyl-1-methylxanthine , 0.25 pM 
dexamethasone, and 1 pg/ml insulin. At day 2, the medium was replaced with 
growth medium supplemented with 1 pg/ml insulin and then replaced at days 4 
and 6 with growth medium. At day 8, differentiation is determined by Oil red O 
staining. Microphotographs 10 X magnification.
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2.2 Assessment of Lipolysis

Differentiated 3T3-L1 adipocytes were pre-treated without or with 100 nM 

of NPY for 30 minutes. After 30 minutes, cells were treated without or with 10 nM 

of isoproterenol or with 50 nM of forskolin for 90 minutes. Medium was then 

collected and stored at -20°C. Glycerol released into the medium was assessed 

using a colorimetric assay (EnzyChrom™ Adipolysis Assay Kit, BioAssay 

Systems, Hayward, CA, USA) following the manufacturer’s instructions. The 

assay uses an enzymatic reaction to convert glycerol into a colored substrate and 

the color intensity of the reaction product is proportional to the glycerol 

concentration.

2.3 Measurement of HSL Phosphorylation: Western Blotting

3T3-L1 adipocytes were pre-treated without or with 100 nM of NPY for 30 

minutes. After 30 minutes, cells were treated without or with 10 nM of 

isoproterenol for 10 minutes. At the end of treatment, cells were lysed in SDS 

sample buffer (62.5 mM Tris-HCL, pH 6.8, 2% wt/vol SDS, 10% glycerol, 50mM 

dithiothreitol, and 0.01% wt/vol bromphenol blue) and stored at -80°C.

Western blotting was performed as described previously [Yang et al., 

2008]. Briefly, equal volumes of cell lysate were subjected to a standard 10% 

SDS-PAGE. After electrophoresis, proteins were then transferred to a PVDF 

transfer membrane (Amersham Hybond™-P, GE Healthcare Canada, Baie 

D’Urfe, QC, Canada) using a Bio-Rad Mini Transfer Apparatus. The PVDF 

membrane was blocked for 1 h at room temperature with 5% milk in TTBS 

(0.05% Tween-20 in TBS) and then incubated with primary antibody in TTBS



overnight at 4°C. Phosphorylated HSL protein was detected using the Phospho- 

HSL (Ser563) Antibody (Cell Signaling; #4139; 1:1000 dilution). After three 10 

min washes with TTBS, the membrane was incubated with Anti-Rabbit IgG-HRP 

(R&D Systems) secondary antibody (1:1000 dilution) and developed using 

chemiluminesence (Western Lightning™ Plus-ECL, PerkinElmer Life and 

Analytical Sciences). The membrane was then exposed to X-ray film (Eastman 

Kodak, Rochester, NY, USA). The membrane was stripped by incubation with 

stripping buffer (100 mM 2-mercaptoethanol, 2% SDS, and 62.5 mM Tris-HCI pH 

6.7) for 30 min at 55°C. After three 10 min washes in TTBS, the membrane was 

blocked as described above and re-probed to detect total HSL protein using the 

HSL Antibody (Cell signaling; #4107; 1:1000 dilution).

2.4 Measurement of Lipolytic and Lipogenic Proteins: Western Blotting

3T3-L1 adipocytes were treated with increasing concentrations of NPY for 

12, 24 and 48 hours. At the end of treatment, cells were lysed in SDS sample 

buffer and stored at -80°C. Cell lysates were subjected to standard western blot 

analysis as described above. The primary antibodies were SCD1 antibody (Cell 

Signaling, Danvers, MA, USA; #2794), FAS antibody (Cell Signaling; #3819), 

perilipin antibody (Cell Signaling; #3470), HSL antibody (Cell Signaling; #4107), 

ATGL antibody (Cell Signaling; #2138), GAPDH antibody (Cell Signaling; #2118) 

and (3-tubulin antibody (Imgenex Corp., San Diego, CA, USA; IMG-5810A). All 

primary antibodies were used at 1:1000 dilutions.
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2.5 [1,2-3H]2-Deoxy-D-Glucose (2-DOG) Uptake

Cells were washed twice with Krebs-Ringer-Hepes (KRH) buffer and 

incubated for 15 min without or with NPY (100 nM) and without or with Insulin 

(100 nM) in KRH buffer. Subsequently, 0.1 mM 2-DOG containing 0.5 pCi [1,2- 

3H] 2-DOG (PerkinElmer Life and Analytical Sciences, Woodbridge, ON, Can) 

was added for 10 min. The reaction was terminated by addition of ice-cold 

phosphate buffered saline. Cells were washed three times with ice-cold 

phosphate buffered saline and then solubilized by the addition of 0.5M NaOH. 

The solubilized cell lysate was added to 4 ml of scintillation fluid, and the uptake 

of [1,2-3H] 2-DOG was determined by liquid scintillation counting.
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Chapter 3

Results
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3.1 Effects of NPY on Lipolysis

Obesity results from a chronic imbalance between energy storage (i.e., 

lipogenesis) and energy expenditure (i.e., lipolysis) in adipose tissue. Since NPY 

expression is upregulated in visceral adipose tissue of our early-life programmed 

rat model of increased visceral adiposity [Yang et al., 2008], we hypothesized 

that NPY may act directly on adipocytes to inhibit lipolysis and/or stimulate 

lipogenesis thereby contributing to the pathogenesis of visceral obesity. As a first 

step in examining this hypothesis, we studied the effects of NPY on both basal 

and stimulated lipolysis. Since catecholamines are the major lipolytic stimuli in 

vivo and they signal through (3-adrenergic receptors [Turtzo et al., 2001; Lafontan 

and Langin, 2009], we used isoproterenol, a well-known p-adrenergic agonist, to 

stimulate lipolysis. We showed that NPY had no effect on lipolysis under basal 

conditions. However, NPY potentiated isoproterenol-stimulated lipolysis by 

approximately 30% (Fig. 3.1A; p<0.05).

The P-adrenergic receptors in adipocytes are coupled to the Gs 

heterotrimeric g-protein, which activates adenylyl cyclase resulting in an increase 

in intracellular levels of cAMP, leading to PKA activation, phosphorylation of 

downstream targets, and ultimately increased lipolysis [Duncan et al., 2007], As a 

first step in deciphering the molecular mechanisms by which NPY potentiates P- 

adrenergic stimulation of lipolysis, we treated cells with forskolin, a direct 

activator of adenylyl cyclase. As shown in Fig. 3.1B, NPY treatment had no effect 

on forskolin stimulated lipolysis.
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Figure 3.1 Effects of NPY on basal and stimulated lipolysis. Differentiated 
3T3-L1 adipocytes were pretreated with NPY (100 nM) for 30 min, and were then 
treated with (A) isoproterenol (ISO; 10nM) or (B) forskolin (FSK; 50 nM) for 90 
min. Controls were treated at the same time with an appropriate volume of 
vehicle. At the end of treatment, medium was collected, and lipolysis was 
determined by measuring glycerol released into the medium using a standard 
colorimetric assay. Data are presented as means ± SEM of four independent 
experiments, each performed in triplicate, a vs. b, P < 0.05; b vs. c, P < 0.05.
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3.2 Effects of NPY on HSL Phosphorylation

HSL is the rate-limiting enzyme in lipolysis, and its activity is controlled by 

the cAMP/PKA signaling pathway. Phosphorylation of HSL by PKA at Ser563, 

Ser659, Ser660 is associated with an increase in HSL activity and subsequent 

lipolysis [Anthonsen et al., 1998; Holm et al., 2000a]. To determine whether NPY 

potentiated isoproterenol-stimulated lipolysis was mediated in part through 

enhanced HSL phosphorylation, we studied the effect of NPY on HSL 

phosphorylation at Ser563. We found that although it had no effect on HSL 

phosphorylation under basal conditions, NPY increased isoproterenol stimulated 

HSL phosphorylation (Fig. 3.2).

3.3 Effects of NPY on the Expression of Key Lipolytic Proteins/enzymes

Besides acute regulation, the lipolytic capacity of adipocytes can be 

regulated through changes in the expression of critical lipolytic proteins, such as 

HSL, ATGL, and perilipin [Langin et al., 2005; Lafontan and Langin, 2009]. The 

expression of these proteins/enzymes is decreased in obese states and has 

been shown to be regulated by other hormones such as cortisol and insulin 

[Kralisch et al., 2005; Jocken et al., 2007]. To ascertain if NPY regulates the 

expression of these proteins, we treated 3T3-L1 adipocytes with increasing 

concentrations of NPY for 24 h. As shown in Fig. 3.3, NPY treatment did not 

change levels of HSL, perilipin, or ATGL protein. Similar results were obtained 

when adipocytes were treated with NPY for 12 and 48 h (data not shown). Cells 

appeared normal when checked after treatment periods just prior to protein

collection.
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NPY -  +  -  +
ISO -  -  +  +

Figure 3.2 Effects of NPY on hormone sensitive lipase (HSL) 
phosphorylation. Differentiated 3T3-L1 adipocytes were pretreated with NPY 
(100 nM) for 30 min, and were then treated with isoproterenol (ISO; 10 nM) for 10 
min. Controls were treated at the same time with an appropriate volume of 
vehicle. At the end of treatment, cell lysates were prepared, and HSL 
phosphorylation at serine 563 was determined by western blotting using 
antibodies specific for phosphorylated HSL and total HSL proteins. Results of a 
representative western blotting are shown. Data are presented as means ± SEM 
of four independent experiments, each performed in triplicate, a vs. b, P < 0.05; b 
vs. c, P < 0.05.
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Figure 3.3 Effects of NPY on the expression of selected key lipolytic 
proteins/enzymes. Differentiated 3T3-L1 adipocytes were treated with 
increasing concentrations of NPY for 24 h. At the end of treatment, cell lysates 
were prepared, and subjected to western blot analysis. Levels of three key 
proteins controlling lipolysis were determined using antibodies specific for 
hormone sensitive lipase (HSL), perilipin and adipose triglyceride lipase (ATGL). 
GAPDH was used as a loading control. Data are presented as means ± SEM of 
four independent experiments.
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3.4 Effects of NPY on the Expression of Key Lipogenic Enzymes

Energy balance in adipocytes is controlled by lipolysis and lipogenesis. 

FAS and SCD1 are important lipogenic enzymes that were found to be 

upregulated in the visceral adipose tissue of obese MPR offspring [Guan et al., 

2005]. In other studies, the expression of these enzymes was found to be 

upregulated in obese animals and correlated with fat accumulation in humans 

[Boizard et al., 1998; Berndt et al., 2007], Furthermore, chronic 

intracerebroventricular NPY administration led to increased adipose tissue 

lipogenesis in normal rats [Zarjevski et al., 1993], These findings led us to study 

the effect of NPY on the expression of FAS and SCD1. We treated 3T3-L1 

adipocytes with increasing concentrations of NPY for 24 h. As shown in Fig. 3.4, 

NPY treatment did not change levels of SCD1 and FAS protein. Similar results 

were obtained when adipocytes were treated with NPY for 12 and 48 h (data not 

shown). Cells appeared normal when checked after treatment periods just prior 

to protein collection.
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Figure 3.4 Effects of NPY on the expression of selected key lipogenic 
enzymes. Differentiated 3T3-L1 adipocytes were treated with increasing 
concentrations of NPY for 24 h. At the end of treatment, cell lysates were 
prepared, and subjected to western blot analysis. Levels of two critical lipogenic 
enzymes were determined using antibodies specific for fatty acid synthase (FAS) 
and stearoyl-CoA desaturase 1 (SCD1). (3-tubulin was used as a loading control. 
Data are presented as means ± SEM of four independent experiments.
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3.5 Effects of NPY on Glucose Uptake

Besides energy mobilization and energy storage, glucose uptake is 

another critical metabolic process in adipocytes [Rosen and Spiegelman, 2006], 

Glucose transport is a key regulatory step in glucose utilization in adipocytes. 

One study found that ICV administration of NPY increased glucose uptake by 

adipose tissue which could contribute to increased fat accumulation [Zarjevski et 

al., 1994], To determine if NPY affects adipocyte glucose uptake, we treated 3T3- 

L1 adipocytes with NPY in the absence and presence of insulin, the primary 

stimulator of glucose uptake. As expected, insulin increased glucose uptake by 

approximately 400%. However, NPY treatment had no effect on basal or insulin 

stimulated glucose uptake (Fig. 3.5).
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Figure 3.5 Effects of NPY on glucose uptake. Differentiated 3T3-L1 adipocytes 
were treated with NPY (100 nM), insulin (100 nM) or in combination (100 nM 
each) for 15 minutes, following which 0.1 mM of unlabeled 2-deoxy-D-glucose

3
containing 0.5 pCi [1,2- H] 2-deoxy-D-glucose was added to the medium. After a
10 min incubation, cells were washed, solubilized and uptake of [1,2- H] 2-deoxy- 
D-glucose was measured using a liquid scintillation counter. Data are presented 
as means ± SEM of three independent experiments, each performed in triplicate, 
a vs. b, P < 0.001.
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Chapter 4

Discussion
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4.1 General Discussion

Adipose tissue is a novel site of NPY biosynthesis, and NPY acts locally to 

promote adipogenesis thereby contributing to the pathogenesis of obesity [Kuo et 

al., 2007; Yang et al., 2008], Despite these important observations, the role of 

NPY in regulating adipocyte metabolism is poorly understood. The present 

findings reveal a novel role for NPY in potentiating (3-adrenergic stimulation of 

lipolysis. Furthermore, our data suggest that this potentiation likely occurs 

upstream of adenylyl cyclase activation, and is mediated at least in part through 

enhanced phosphorylation of HSL, a rate limiting enzyme in lipolysis.

Lipolysis is a critical metabolic function of adipocytes, which liberates 

glycerol and free fatty acids for use by other tissues. In this study, we examined 

the role of NPY in regulating basal and (3-adrenergic stimulated lipolysis. 

Although it did not affect lipolysis under basal conditions, NPY potentiated 

isoproterenol-stimulated lipolysis. This is an unexpected finding, and appears to 

contradict several previous reports in which NPY was found to inhibit both basal 

and stimulated lipolysis in isolated adipocytes from dogs, rats, and humans as 

well as 3T3-L1 adipocytes [Valet et al., 1990; Castan et al., 1994; Labelle et al., 

1997; Turtzo et al., 2001; Kos et al., 2007], These discrepancies may be 

explained by differences in experimental conditions between our present study 

and those published previously. In previous studies, lipolysis was stimulated by 

adenosine deaminase, which removes the inhibitory effect of adenosine (a potent 

inhibitor of lipolysis), and/or isoproterenol. Importantly, the magnitude of lipolytic 

stimulation in these studies was much greater than that in the present study (~4-



fold vs. ~2-fold) owing to the use of a different stimulus or higher concentrations 

of isoproterenol (100 nM vs. 10 nM). Thus, the effect of NPY on stimulated 

lipolysis likely depends on the strength of lipolytic stimulation. In support of this 

contention, we found that NPY lost its ability to potentiate isoproterenol- 

stimulated lipolysis at higher concentrations of isoproterenol (>20 nM).

Our present findings that NPY promotes lipolysis by potentiating |3- 

adrenergic receptor signaling are intriguing, and beg the question of the 

underlying molecular mechanisms. As a first step in deciphering the molecular 

mechanisms, we examined the effects of NPY on forskolin (a direct activator of 

adenylyl cyclase) stimulated lipolysis. We found that NPY did not potentiate 

forskolin stimulated lipolysis, which suggests that NPY acts upstream of adenylyl 

cyclase to potentiate (3-adrenergic stimulated lipolysis. This effect was not due to 

maximal stimulation of lipolysis by forskolin because lipolysis can be increased 

by at least several fold in adipocytes [Lafontan and Langin, 2009]. Our present 

findings are similar to those reported previously showing that NPY potentiated a- 

adrenergic receptor-mediated vasoconstriction [Edvinsson et al., 1984; Domoso 

et al., 1993; Fallgren et al., 1993]. Furthermore, NPY had no effect on 

vasoconstriction when applied alone, which is similar to our observations that 

NPY did not affect basal lipolysis. Our lab [Yang et al., 2008] and others [Gericke 

et al., 2009] have reported that the receptor subtype is expressed in 3T3-L1 

cells and the Yi receptor has been implicated in potentiating a-adrenergic 

mediated vasoconstriction. The crosstalk between NPY and (3-adrenergic 

signaling pathways is significant given the fact that norepinephrine and NPY are



co-stored in sympathetic neurons (Cannon et al., 1986). Thus, we propose that 

the interaction between these two signaling pathways may provide an additional 

layer in the precise control of lipolysis (Fig. 4.1).

HSL activity is tightly controlled by the phosphorylation pattern of HSL 

[Holm et al., 2000a].To determine if NPY potentiation of isoproterenol-stimulated 

lipolysis is mediated by increased HSL phosphorylation, we examined the effects 

of NPY on HSL phosphorylation under basal and stimulated conditions. Similar to 

its effect on lipolysis, NPY did not affect HSL phosphorylation under non- 

stimulated conditions but enhanced isoproterenol-induced HSL phosphorylation, 

suggesting that the effect of NPY on (3-adrenergic-stimulated lipolysis is mediated 

at least in part by increased HSL phosphorylation (Fig. 4.1).
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Î Lipolysis 
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Figure 4.1 Schematic of the molecular mechanisms underlying 
neuropeptide Y (NPY) potentiation of beta-adrenergic stimulated lipolysis.
NPY binds to the Yi receptor in 3T3-L1 adipocytes and potentiates (+) beta- 
adrenergic signaling induced by isoproterenol (ISO). This potentiation occurs 
through an unknown (?) mechanism that is upstream of adenylyl cyclase (AC) 
activation. Activation of the beta-adrenergic receptor stimulates AC activity 
leading to an increase in intracellular cAMP and subsequent PKA activity. PKA 
phosphorylâtes serine residues of hormone sensitive lipase (HSL) which 
increases its activity leading to an increase in lipolysis.



Besides acute regulation of lipolysis through the reversible 

phosphorylation of proteins, lipolysis is also regulated at the level of lipolytic gene 

expression [Lafontan and Langin, 2009]. When the genes encoding critical 

lipolytic proteins are knocked out in mice, lipolysis and adipocyte phenotype are 

significantly affected. Mice deficient in HSL have a 70% reduction in lipolysis in 

adipose tissue and adipocytes are enlarged two-fold when compared to wild type 

animals [Osuga et al., 2000; Schweiger et al., 2006]. When ATGL is knocked out, 

isoproterenol-stimulated lipolysis is reduced by 75% and adipocytes are enlarged 

by 40% [Haemmerle et al., 2006]. In contrast, basal lipolysis in perilipin knockout 

mice is increased by 3-fold and adipocytes are 62% smaller [Martinez-Botas et 

al., 2000]. Although NPY is known to regulate lipolysis, its role in regulating the 

expression of these important lipolytic proteins had not been previously explored. 

Therefore, in the present study we examined the effect of NPY on the expression 

of HSL, ATGL and perilipin. We found that NPY had no effect under a variety of 

treatment conditions. Taken together, our present findings suggest that NPY 

regulates lipolysis through mechanisms not involving changes in the expression 

of lipolytic enzyme/proteins.

The synthesis of lipids and triglycerides involves numerous steps and 

enzymes [Wolfgang and Lane, 2006]. Our previous DNA microarray data showed 

that the expression of two critical lipogenic enzymes, FAS and SCD1 , was 

upregulated in visceral adipose tissue of an early-life programmed rat model of 

increased visceral adiposity [Guan et al., 2005]. Furthermore, ICV administration 

of NPY to rats increased lipogenesis in adipose tissue [Zarjevski et al., 1993].



However, it remained unknown if NPY regulates the expression of lipogenic 

enzymes. Therefore, in the present study we investigated the effect of NPY on 

the expression of SCD1 and FAS. Under the conditions of the present study, 

NPY did not affect either SCD1 or FAS expression, suggesting that NPY may 

regulate lipogenesis through mechanisms that do not involve altered expression 

of SCD1 and FAS. Alternatively, NPY may affect the expression of other 

important lipogenic enzymes such as the acyltransferases that catalyze 

triacylglycerol synthesis.

Adipose tissue is a major insulin sensitive tissue and glucose uptake is 

another major function of adipocytes [Smith, 2002]. Glucose uptake and 

utilization is increased in the development of obesity and increased uptake in 

adipose tissue of our early life model of visceral adiposity could be one 

mechanism contributing to adipocyte hyperplasia [Shepherd et al., 1993; Guan et 

al., 2005]. Furthermore, ICV administration of NPY to normal rats increased 

glucose utilization by adipose tissue but it was not known if NPY has a direct 

effect on glucose uptake at the adipocyte level [Zarjevski et al., 1994]. We 

investigated whether NPY affected basal or insulin stimulated glucose uptake but 

did not find a role for NPY in regulating these processes. This suggests that the 

effects of NPY on adipose tissue glucose metabolism are mediated centrally and 

other mechanisms such as increases in preadipocyte proliferation underlie the 

hyperplastic obesity seen in the early-life rat model of visceral adiposity.
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4.2 Summary and Conclusions

In summary, we report here a novel cross talk between NPY and (3- 

adrenergic receptor signaling pathways by demonstrating that NPY potentiates 

isoproterenol stimulated lipolysis and HSL phosphorylation. This potentiation 

likely occurs upstream of adenylyl cyclase activation since NPY did not potentiate 

FSK stimulated lipolysis. We did not find an effect of NPY treatment on lipolytic 

enzyme/protein expression. Furthermore, we did not find a role for NPY in 

regulating lipogenic enzyme expression and glucose uptake in adipocytes. 

Altogether, these present findings add a new dimension to our understanding of 

the dynamic role NPY plays in regulating energy balance. Overall, this study lays 

the groundwork for future explorations of the effects of NPY in regulating 

adipocyte metabolism.

4.3 Future Directions

The novel cross talk between the NPY and (3-adrenergic signaling 

pathways opens up a number of interesting avenues and questions for future 

investigation. Importantly, the results of this study using the 3T3-L1 cell line will 

need to be confirmed in vivo. The physiological relevance and role of the 

interaction between these pathways in normal and pathological conditions will 

need to be assessed. Another logical extension of this study is further 

investigation into the mechanisms involved in this potentiation effect. Both the 

signaling events following NPY receptor activation and the molecular changes 

facilitating the enhancement of (3-adrenergic signaling need to be explored.



Furthermore, isoproterenol activates both (31 and (32 adrenergic receptors and it 

is unclear whether NPY is able to potentiate the signaling of both receptor 

subtypes.

NPY is co-stored and co-released along with norepinephrine in central 

neurons and peripheral sympathetic neurons. As such, the NPY potentiation of (3- 

adrenergic signaling could be physiologically relevant in other systems or tissues 

such as the gut and adrenal glands that are innervated by such neurons. 

Additionally, in different areas of the brain, NPY is co-stored with other 

neurotransmitters such as GABA and acetylcholine [Wan and Benjamin, 1995], 

To date, NPY signaling has been shown to potentiate the signaling of a- 

adrenoreceptors and (3-adrenoreceptors. The possible interaction of NPY 

receptor signaling with other neurotransmitter signaling pathways is another 

interesting future area of questioning.
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