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Abstract 17 

 18 

Drosophila suzukii is a cosmopolitan polyphagous pest on unripe soft-skinned fruits. We sought 19 

to determine 1) temperature treatments that could be used to kill immature D. suzukii in fruit or 20 

packaging, and 2) whether development on different fruits led to differences in cold tolerance of 21 

immature D. suzukii.  We reared animals from egg on a banana-based laboratory diet and diets 22 

made of apple, blueberry, cherry, grape, orange, raspberry, or strawberry homogenate in agar, 23 

and measured development time, adult body size, and cold tolerance.  Diet type had complex 24 

effects on development time; in particular, flies reared on apple- or blueberry-based diets 25 

developed more slowly to a smaller adult body size than those on other diets. Cold exposure 26 

killed eggs and both first- and second-instar larvae. Survival of 24h at +4°C by feeding third-27 

instar larvae was lowest in blueberry and cherry. Five days at +0.6°C killed all feeding third-28 

instar larvae; this treatment is likely sufficient for targeting D. suzukii in fruit. Two hours at -5 or 29 

-6°C killed all wandering third-instar larvae and pupae; this exposure could be sufficient for 30 

sanitation of packaging. 31 

  32 



3 

 

Introduction 33 

 Drosophila suzukii is a global economic pest of soft fruits (Asplen et al. 2015; Rota-34 

Stabelli et al. 2013). Female D. suzukii lay eggs in healthy fruits and berries which are then 35 

damaged by larval feeding and associated necrosis (Rota-Stabelli et al. 2013). Both larvae and 36 

adults of D. suzukii are chill-susceptible, and are thus killed by low temperatures prior to any 37 

internal ice formation (Jakobs et al. 2017; Jakobs et al. 2015). Short exposures to sub-freezing 38 

temperatures (e.g. 1 h at -7.5 °C) are lethal to adults and larvae, as are prolonged exposures (i.e. 39 

one- to two-weeks) at 0 °C (Jakobs et al. 2017; Jakobs et al. 2015; Toxopeus et al. 2016). Eggs 40 

appear susceptible to cold, and are killed after 72 h at 1-2 °C (Aly et al. 2016; Kim et al. 2018).  41 

Most soft-skinned fruits, such as raspberries and strawberries, are refrigerated above 4 °C for 42 

transport, but can be stored at temperatures between 0 and 2 °C for days to weeks (Lidster et al. 43 

1988). This post-harvest chilling may provide an opportunity to use cold exposure to control D. 44 

suzukii  (also discussed by Aly et al. 2016; Kim et al. 2018).  Such an approach is used for 45 

phytosanitation of apples that might contain Rhagoletis pomonella (Canadian Food Inspection 46 

Agency 2017), although the timing of this treatment (42 days at 0.6 °C or 90 days at 3.3 °C) 47 

would likely be inappropriate for the soft-skinned fruit and berries that D. suzukii infests. In 48 

addition, wandering larvae leave the fruit and pupate in packaging (a possible means of spread 49 

among fields; Asplen et al. 2015), thus, these life stages may be targeted by cold treatment of 50 

packaging.  51 

Diet can modify insect thermal biology. For example, increased dietary cholesterol 52 

enhances cold tolerance of Drosophila melanogaster, probably by increasing cell membrane 53 

fluidity (Shreve et al. 2007), whereas increased dietary sugars create metabolic imbalances and 54 
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impair cold survival (Colinet et al. 2013). Insects reared on laboratory diets may have different 55 

cold tolerance compared to those feeding on natural diets (Coudron et al. 2007), and the effects 56 

of diet may hinge on differences in the microbial composition of the food (Colinet and Renault 57 

2014). In D. suzukii, 72 h at 1.1 °C kills 97 % of third instar larvae and all eggs, and first and 58 

second instar larvae in artificial cornmeal diet but only 61-98 % in raspberries and 76-100 % in 59 

blueberries depending on the developmental stage tested (Aly et al. 2016). Although the physical 60 

properties of fruits will differ, these differences among larvae reared on different fruits could be 61 

because fruit-specific macro- or micro-nutrient profiles affect some aspect of metabolism, or 62 

because they yield different gut microbiomes (Vacchini et al. 2017) that may affect cold 63 

tolerance (Colinet and Renault 2014; Henry and Colinet 2018; Jiménez Padilla 2016). However, 64 

if a D. suzukii larva or pupa is in a fruit shipment, we know (by definition) the fruit in which it 65 

developed. Thus, any phytosanitary cold treatment can be adjusted for fruit-specific impacts on 66 

cold tolerance once those have been isolated. 67 

We had two objectives. First, to identify combinations of time and temperature that 68 

reduce survival of immature stages of D. suzukii. Second, to determine whether cold tolerance of 69 

these stages is affected by the composition of the larval diet. For larvae inside food (i.e. feeding 70 

larvae), we chose temperatures above the freezing point of most fruits which would be suitable 71 

for fruit storage and shipping. For life stages outside of food (i.e. wandering larvae and pupae), 72 

we extended this to temperatures suitable for rapid treatment of pallets and storage containers. 73 

We measured development time on the different diets to quantify the sublethal impacts of cold 74 

exposure. To control for the physical effects of different fruits and potential microbiota, we 75 

developed artificial diets based on soft-skinned fruits of economic importance (blueberries, 76 
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cherries, grapes, raspberries and strawberries), and compared these with the standard banana-77 

based laboratory diet we have used previously (Jakobs et al. 2017; Jakobs et al. 2015) and diets 78 

based on apples and oranges, which are not within the normal host range of D. suzukii.  79 

 80 

Methods 81 

Animal rearing and collection 82 

We established a population of D. suzukii from flies collected in the Halton Hills region, 83 

Ontario, Canada (43º00´N, 81º15´W) in 2012 (Jakobs et al. 2015). We reared the flies on generic 84 

banana-based lab food (Markow and O'Grady 2005), at 25 ± 1 °C, 60 ± 5 % relative humidity, 85 

and 14 h:10 h L:D cycle. We transferred 5-day old adult flies to small acrylic egg collection 86 

cages (⌀ = 3.5 cm, 5.8 cm high) and maintained them on the banana medium supplemented with 87 

inactive yeast for 3 d to stimulate oviposition. On the fourth day, the standard food was removed 88 

and replaced with fruit-based media (100 mL deionized water, 25 g agar, 4 mL propionic acid, 89 

and 500 g mashed organic frozen fruit – raspberry, blueberry, cherry, strawberry or apple, or 500 90 

mL organic grape, or orange juice). The flies laid eggs overnight in the fruit-based media and we 91 

transferred the eggs in the media to rearing cages (30 cm × 15 cm × 15 cm plastic boxes) until 92 

the larvae reached the desired developmental stage.  93 

To determine the effects of diet type on cold tolerance, we collected eggs, first- and 94 

second-instar larvae, feeding third-instar larvae (the stage with the longest duration within the 95 

food), wandering third-instar larvae (which have left the food), and early- and late-stage pupae. 96 

We determined the age of larvae by observing the mandible structures and anterior spiracles of a 97 
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subset of larvae under a light microscope (Demerec 1965). Since the fruit-based food is darker 98 

than standard lab food, the wandering larvae were easily identified by the lack of visible food in 99 

their gut (Jakobs et al. 2017). We differentiated pharate from early pupae by the presence of eyes 100 

and black wings visible through the puparium. We flooded the media plates with water – the 101 

larvae crawl to the surface of the food and the pupae float. We collected the larvae and pupae 102 

with a soft paintbrush, removed any food residue with tap water, and blotted them dry (cf. Jakobs 103 

et al. 2017).  104 

 105 

Effects of low temperature exposure on D. suzukii third instar larvae and pupae. 106 

To determine the survival of third-instar feeding larvae, we placed ten larvae on top of 1 107 

mL of media in a 2 mL microcentrifuge tube (five tubes/diet/temperature or time, three cohorts) 108 

and allowed them 15-20 min to burrow into the food before cold exposure.  We exposed the 109 

remaining stages to cold in empty microcentrifuge tubes (five tubes/diet/temperature or time, 110 

three cohorts), because wandering larvae and pupae are outside food. We placed the tubes into 111 

aluminium blocks cooled by circulating methanol or ethylene glycol from a refrigerated bath 112 

(Lauda Proline 3530, Lauda, Würzburg, Germany). We recorded the temperature via a 36-AWG 113 

type-T thermocouple (Omega, Laval, Quebec, Canada) inserted into the food or touching the 114 

larvae or pupae in the tubes without food. The thermocouples were connected to a computer by a 115 

TC-08 interface running Picolog software (v5.24.2, Pico Technology, Cambridge, UK). After 116 

exposure, all stages were transferred to 35 mL narrow Drosophila vials with 10 mL of the 117 

appropriate food and returned to their rearing conditions. We monitored vials every 24 h until 118 
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eclosion ceased. We calculated development time as the time elapsed time from egg collection to 119 

eclosion and survival as the number of adults eclosed per vial. We determined the average fresh 120 

mass of all eclosed adults per sex for each treatment in the first cohort using a microbalance 121 

(MX5, Mettler Toledo, Columbus, OH, USA). 122 

We exposed feeding larvae to 4 °C for one day to simulate the storage of fruits in a 123 

standard fridge or cooler for a day.  We also exposed the larvae to 0.6 °C for two, four, or seven 124 

days based on Canadian government recommendations for optimal storage conditions of berries 125 

(Lidster et al. 1988; OMAFRA 2019). Additionally, we recorded larval survival after exposure to 126 

-1 °C for two or four days, which approximates the highest freezing points for strawberries and 127 

blackberries (-0.8 °C), raspberries (-1.1 °C), and blueberries (-1.3 °C) (Lidster et al. 1988; 128 

OMAFRA 2019). We exposed stages out of food (wandering larvae and pupae) to 4 °C for one 129 

or ten days, -4 °C and -5 °C for one or two hours, and -6 °C for 2 h.  130 

We controlled for the effect of diet and handling on survival, development time, and mass 131 

by collecting feeding third instar and wandering larvae, as well as early and pharate pupae using 132 

the same technique as for the cold-treated individuals.  We collected the larvae or pupae from 133 

flooded media plates with a soft brush, transferred them to fruit-media vials (five 134 

vials/cohort/stage, ten larvae or pupae per vial) and reared them under standard conditions and 135 

measured survival, development time and mass in the same manner as for the cold-exposed flies. 136 

 137 

Statistical analysis 138 

All analyses were performed in R v3.1.2 (R Development Core Team 2017) and 139 

preliminary data exploration was conducted according to Zuur et al. (2010). We used ANOVA to 140 
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compare the development time and mass of control flies, followed by Tukey’s HSD post-hoc 141 

test. We compared survival of controls and cold-exposed flies, as well as development time 142 

following cold exposures using generalized linear models with a binomial distribution. We used 143 

analysis of deviance to determine the significance of the main effects in these models.  144 

 145 

Results 146 

Survival and development in different diets without cold exposure 147 

Fruit type had significant, but complex, effects on survival and development of immature 148 

D. suzukii. Fruit type significantly affected survival of D. suzukii removed from food without 149 

exposure to low temperatures (Table S1, Figure S1). Generally, development on food derived 150 

from blueberries, grapes, and raspberries decreased overall survival of D. suzukii compared to 151 

other fruit types (Figure S1). Diet also affected development time (F7, 604 = 451.8, p < 0.001; 152 

Figure 1): flies reached adulthood faster on standard (banana-based) laboratory food, but more 153 

slowly on blueberries and apples compared to other fruit types (Figure 1).  Fresh mass of both 154 

males (F7, 32 = 36.71, p < 0.001; Figure 2A) and females (ANOVA; F7, 32 = 52.72, p < 0.001; 155 

Figure 2B) was dependent on food type – in general, flies reared in apple- and blueberry-based 156 

diets were smaller than the flies reared in other fruit types.  157 

 158 

Cold tolerance 159 

Cold exposure killed all eggs and first- and second-instar larvae. We exposed feeding third-instar 160 

larvae to above-zero temperatures simulating fruit storage conditions. More than half of larvae 161 

from all foods survived exposure to +4 °C for 24h; survival varied by diet (Table 1) and was 162 
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highest in larvae from the banana-based diet, and lowest in blueberry- and cherry-based diets 163 

(Figure 3A). However, when exposed to 0.6 °C, some feeding larvae from all diets survived after 164 

three days, 1-2 larvae from the banana, strawberry, orange, and cherry diets survived four days, 165 

and all larvae, irrespective of diet, were killed after five days (Figure 3B). A four-day exposure 166 

was sufficient to kill more than 90 % of feeding third-instar larvae at 0 °C, regardless of fruit 167 

(Figure S2), while 4 d at -1 °C killed all feeding third-instar larvae (see supplementary data 168 

sheet). Some feeding third-instar larvae developed dark melanised spots after exposure (Figure 169 

S3); none of the larvae that developed these dark spots successfully eclosed.  170 

 171 

More than 50% of wandering larvae, early pupae, and pharate pupae survived a 24 h exposure to 172 

+4 °C (Figure 4), but none survived a ten-day exposure at this temperature (see supplementary 173 

data sheet. Survival did not vary among diets in wandering larvae, but was lower in blueberry-174 

based diets than other diets (Figure 4). None of these life stages survived a five-day exposure to 175 

+0.6 °C (see supplementary data sheet).  176 

 177 

Brief exposure to acute low temperatures caused significant mortality in post-feeding life stages 178 

but survival varied depending on diet prior to cold exposure (Table 1). We observed significant, 179 

but not complete, mortality in post-feeding life stages exposed to -4 and -5 °C for one hour 180 

(Figure S4). The effects of diet were variable among life stage and temperature, but post-feeding 181 

life stages raised on blueberry had consistently poorer survival of acute cold than other foods 182 

(Figures 5, S4). Longer exposures to subzero temperatures led to more significant mortality. 183 

Some individuals of all post-feeding life stages survived a 2 h exposure to -4 °C, and a few 184 
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pupae survived 2 h exposure to -5 °C (Figure 5); all post-feeding life stage individuals were 185 

killed by a 2 h exposure to -6 °C (see supplementary data sheet). Many third-instar wandering 186 

larvae that survived cold exposure accrued developmental abnormalities due to either incomplete 187 

pupation or malformation upon eclosion as adults (Figure S5); however, we did not quantify 188 

these effects. 189 

 190 

Development time following cold exposure  191 

Cold exposures that were less effective in reducing survival (i.e. +4 °C for 24 h, -4 °C for 192 

1 h) did increase the development time of flies that survived long enough to eclose as adults 193 

(Figures 6 and 7; Table 2), in a diet-dependent manner. As for other treatments, rearing on apple- 194 

or blueberry-based diet had the greatest effect, slowing development more than the other foods 195 

(Figures 6 and 7). Flies reared on a banana-based diet developed fastest after a 24 h exposure to 196 

+4 °C, and if exposed to acute cold for 1 h as Wandering larvae (Figure 7), but pupae reared on 197 

apple- or cherry-based media performed best after an acute exposure of 1 h at -4 °C (Figure 7).  198 

 199 

Discussion  200 

 Drosophila suzukii is a polyphagous pest, and here we show that the cold-susceptibility 201 

of the immature stages depends on the fruit in which the animals are reared. Furthermore, flies 202 

reared on fruit-based diets often had slower development, smaller adult size, and reduced cold 203 

tolerance compared to those reared on our standard (banana-based) laboratory diet. From a 204 

control perspective, this is (partly) a positive finding: we found that performance was worse on 205 

some commercial fruits than on laboratory food, which implies that conclusions based on flies 206 
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reared on high-quality laboratory diet may be conservative. In particular, flies reared on 207 

blueberry-and cherry-based foods were particularly cold-susceptible; however, flies reared on 208 

strawberry and raspberry were comparably more cold-tolerant. By contrast, Aly et al. (2016) 209 

found that berry-reared immature stages had slightly higher cold tolerance than their counterparts 210 

reared on a cornmeal-based laboratory diet. The banana-based diet is particularly nutrient-rich, 211 

whereas cornmeal-based diets are less-so (Markow and O'Grady 2005).  We expect that flies 212 

reared on cornmeal-based diets likely experience more (and different) nutrient stress compared to 213 

our fruit diets. We have observed poor performance of D. suzukii when reared in cornmeal-based 214 

diet (YJ-P, unpublished observations), and nutrient balance is important in overwintering of adult 215 

D. suzukii (Rendon et al. 2019). This among-diet variation in laboratory phenotype is 216 

increasingly acknowledged in Drosophila research (e.g. Ormerod et al. 2017; Rendon et al. 217 

2019), and is important when extrapolating pest management decisions to new crops. We also 218 

included two non-host fruit diets, apples and oranges. While this is the archetypal inappropriate 219 

comparison, the effects of both of these (very different) fruits fell within the range of other fruits, 220 

suggesting that we are probably seeing close to the full range of expression of diet-related 221 

variation in phenotype in our experiments. 222 

 223 

Our data indicate that although there is only limited mortality after a day at a typical refrigeration 224 

temperature (+4 °C), at +0.6 °C there is high mortality after three days, and complete mortality 225 

of immature life stages after four days. Thus, +0.6 °C, a temperature used for storage and 226 

transport of soft fruits (Lidster et al. 1988), appears to be an appropriate temperature to kill D. 227 

suzukii in fruit. While this is not useful for control (infested fruit are generally not marketable; 228 
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Rota-Stabelli et al. 2013), chilling for more than four days at +0.6 °C could be an appropriate 229 

treatment to maintain market access for shipments from known infested areas. Post-feeding life 230 

stages are more cold-tolerant, but brief (2 h) exposures led to complete mortality at -5 or -6 °C. 231 

We expect that such temperatures are readily and quickly attainable in commercial freezers, even 232 

with the buffering effect of packaging. Thus, cold treatment of packaging and pallets is a viable 233 

approach for preventing spread of D. suzukii among fields (Asplen et al. 2015). 234 

 235 

We did not explore the physiological mechanisms underlying the effects of diet on D. suzukii 236 

performance. However, we speculate that there are likely nutritional sources of the variation we 237 

observed. The different fruit diets likely have very different nutritional properties. Bananas, 238 

oranges, and raspberries are relatively high in protein (Hulme 1972), which might enhance the 239 

melanisation response (Lee et al. 2008), and therefore repair and protection of tissues after cold 240 

exposure (see Sinclair et al. 2013 for discussion). Protein is also a source of proline and arginine, 241 

which have significant cryoprotective effects in D. melanogaster (Koštál et al. 2016; Koštál et al. 242 

2012). However, high protein diets reduce lifespan and fecundity of winter morph D. suzukii 243 

(Rendon et al. 2019). Interactions with microbes may also mediate the effects of diet on cold 244 

tolerance. Fruit type can alter the gut microbiome (Martinez-Sañudo et al. 2018) and hence 245 

nutrient absorption and development (Bing et al. 2018).  Because we used homogenised fruit and 246 

included propionic acid, it is possible that our fruit-based diets lacked beneficial fruit-specific 247 

microbes that might enhance performance in nature, or had microbe × fruit interactions that 248 

reduced performance. However, other work in our laboratory shows that flies reared on 249 
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propionic acid-containing diets (to reduce mould growth) still have a substantial gut microbiota, 250 

including yeasts (Jiménez-Padilla, Esan, Floate, and Sinclair, submitted). 251 

 252 

We identify several possible caveats to our results. We prepared our diets using essentially 253 

homogenised fruit, which although nutritionally similar to fruit, lacks the physical structure of 254 

living fruit (Reeve 1956), or the interactions between the larva and the (living) host tissue 255 

(Corrado et al. 2012). The laboratory fruit diets probably also lack some components of the 256 

natural microbiota (discussed above). The flies that oviposited onto our fruit diets were raised on 257 

banana-based food, so there is a possibility that the larvae missed any maternal effects that would 258 

be present if their mothers were reared on the same fruit (cf. Matzkin et al. 2013). Finally, 259 

Drosophila larvae generally have considerable plasticity in cold tolerance (e.g. Jakobs et al. 260 

2017; Rajamohan and Sinclair 2008; 2009), so it is quite likely that D. suzukii larvae reared in 261 

our fruit diets may have the capacity to improve their cold tolerance. However, we assume that 262 

larvae in commercial crops would not have been exposed to cold prior to harvest. We also reared 263 

our larvae under constant temperatures, and fluctuating temperatures can sometimes improve low 264 

temperature performance, even if they do not include significant cold spells. While it is 265 

important to consider these caveats when interpreting our results, most of the effects we describe 266 

yield effect sizes similar to those we observed, which suggests to us that the diet effects will 267 

remain a key determinant of cold tolerance in D. suzukii larvae.  268 

 269 

Conclusions 270 
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Drosophila suzukii development rate, final body size, and cold tolerance are dependent on their 271 

diet. Nevertheless, immature D. suzukii are susceptible to cold. Feeding stages are all killed by 272 

more than four days’ exposure to +0.6 °C, and post-feeding stages by a brief (c. 2 h) exposure to 273 

-5 or -6 °C. We suggest that the former would be an appropriate temperature regime for 274 

sanitising fruit from infested areas, and the latter is an achievable set of conditions for killing 275 

post-feeding stages in packaging. 276 
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Table 1.  Statistics for the main effect of diet type on survival of immature Drosophila suzukii 377 

exposed to a range of low temperatures for various durations. Results are from an analysis of 378 

deviance for a generalised linear model with binomial error distribution.  379 

Life stage Temperature Time (h) df χ2 P 

Feeding 3rd-instar 4 ℃ 24 7 36.8 <0.001 

0 ℃ 24 7 65.1 <0.001 

0.6 ℃ 24 7 26.4 <0.001 

-1 ℃ 24 7 8.7 0.27 

Wandering 3rd-

instar 

4 ℃ 24 7 18.9 <0.001 

-4 ℃ 1 7 39.4 <0.001 

 2 7 12.4 0.09 

-5 ℃ 1 7 19.7 <0.01 

 2 7 0 1 

Early pupae 4 ℃ 24 7 42.9 <0.001 

-4 ℃ 1 7 198.4 <0.001 

 2 7 82.1 <0.001 

-5 ℃ 1 7 26.8 <0.001 

 2 7 4.1 0.77 

Pharate pupae 4 ℃ 24 7 36.8 <0.001 

-4 ℃ 1 7 135.62 <0.001 

 2 7 54.6 <0.001 

-5 ℃ 1 7 46.1 <0.001 

 2 7 9.42 0.22 

 380 

  381 
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Table 2. Statistics for main effects of duration, temperature, and diet type on survival of 382 

immature Drosophila suzukii. Results are from an analysis of deviance for a generalised linear 383 

model with binomial error distribution. 384 

Life stage Coefficient df χ2 P 

Feeding larvae Days 1 488.9 <0.001 

 Fruit 8 1090.7 <0.001 

 Cold treatment 5 431.7 <0.001 

Wandering larvae Days 1 410.9 <0.001 

Fruit 8 359.1 <0.001 

Cold treatment 2 667.8 <0.001 

Early pupae Days 1 398.7 <0.001 

Fruit 8 385.7 <0.001 

Cold treatment 2 463.1 <0.001 

Pharate pupae Days 1 429.87 <0.001 

Fruit 8 445.81 <0.001 

Cold treatment 2 509.23 <0.001 
 385 

 386 

 387 

  388 
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Figure Legends  389 

Figure 1.  Egg-adult development time of Drosophila suzukii reared on diets derived from 390 

different fruits. Note that the banana-based food was a standard laboratory food that included a 391 

range of additional ingredients. Boxes indicate the interquartile range, the error bars denote the 392 

minimum and maximum values, and we plot individual points that fell outside this range (n = 10 393 

vials/diet and each vial contained 7-10 flies). Different letters signify statistically significant 394 

differences in development time among fruit types (p < 0.05, Tukey’s post-hoc test; see Table S1 395 

for statistics).  396 

 397 

Figure 2.  Fresh mass of (A) male and (B) female adult Drosophila suzukii reared on diets 398 

derived from different fruits. Note that the banana-based food was a standard laboratory food 399 

that included a range of other ingredients. Mean ± SEM shown (n = 5 vials/diet, vials contained 400 

10-21 females and 12-29 males); different letters signify statistically significant differences in 401 

mass among fruit types (p < 0.05, Tukey’s post-hoc test; see text for statistics).  402 

 403 

Figure 3. Survival of exposure to +4 °C (A) and +0.6 °C (B) by feeding third-instar Drosophila 404 

suzukii larvae reared on diets derived from different fruits. Mean ± SEM shown (n = 15 vials/diet 405 

and each vial contained 10 flies).; different letters signify statistically significant differences in 406 

survival among fruit types (p<0.05, GLM with binomial error distribution test; see Table 1 for 407 

statistics). Data points on Day 3 are slightly offset to improve visibility of data.  408 

 409 
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 410 

Figure 4. Survival of 24 h at +4 °C by immature Drosophila suzukii reared on diets various fruit 411 

media. We measured survival as eclosion as adults. Mean ± SEM shown (n = 15 vials/diet and 412 

each vial contained 10 flies).; different letters signify statistically significant differences in 413 

survival among fruit types (p<0.05, GLM with binomial error distribution; see Table 1 for 414 

statistics).  415 

 416 

Figure 5 – Survival of immature stages of Drosophila suzukii following acute cold exposure to -417 

4 ℃ and -5 ℃ for 1 h. We measured survival as eclosion as adults. There was no survival of 418 

wandering larvae at -5 °C. Mean ± SEM shown (n = 15 vials/diet and each vial contained 10 419 

flies).; different letters signify statistically significant differences in survival among fruit types (p 420 

< 0.05, GLM with binomial error distribution; see Table 1 for statistics).  421 

 422 

Figure 6. Cumulative development of Drosophila suzukii third-instar larvae following cold 423 

exposure. We reared flies from egg to feeding larvae on one of eight diets derived from different 424 

fruits (apples, blueberries, cherries, grapes, oranges, raspberries, strawberries), or a banana-based 425 

control laboratory diet. We exposed feeding 3rd-instar larvae to 4 °C for 24 hours or 0 °C for 48 426 

hours and measured the number of days from egg to adult eclosion in surviving flies. Mean ± 427 

SEM shown (n = 5 vials/diet and each vial contained 10 flies); see Table S2 for statistics.  428 

 429 
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Figure 7. Cumulative development of post-feeding immature Drosophila suzukii following cold 430 

exposure. We reared flies from egg to wandering 3rd instar larvae, early pupae, and pharate pupae 431 

on one of eight diets derived from different fruits (apples, blueberries, cherries, grapes, oranges, 432 

raspberries, strawberries), or a banana-based control laboratory diet. We exposed flies to 4 °C for 433 

24 hours 0 °C for 48 hours cold exposure and measured the number of days from egg to adult 434 

eclosion in surviving flies. Mean ± SEM shown (n = 5 vials/diet and each vial contained 10 435 

flies); see Table S2 for statistics.   436 
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