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ABSTRACT

Phosphatidylinositol 3-kinases (PI3K) are key intracellular signaling molecules. Our 

objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. 

The following inhibitors were investigated (targets in parentheses): wortmannin and 

LY294002 (pan-pllO), PIK75 (a), GDC0941 (a, 5), TGX221 (p), AS252424 (y), 

IC87114 (5) and CAL-120 (5). Wortmannin, GDC0941, IC87114 and CAL-120 induced 

dramatic retraction of rat osteoclasts. In contrast, there was no significant retraction in 

response to vehicle, PIK75, TGX221 or AS252424. Moreover, wortmannin and CAL- 

120, but not PIK75 or TGX221, disrupted filamentous F-actin belts; and CAL-120 

inhibited the formation of sealing zones. In contrast to their selective actions on 

cytoskeletal organization, PIK75, TGX221 and CAL-120 blocked RANKL-stimulated 

osteoclast survival. Thus, PI3K8 appears to play a specific role in regulating osteoclast 

cytoskeleton. In contrast, multiple PI3K isoforms control osteoclast survival. The PI3K5 

isoform, which has more limited tissue distribution than PI3Ka and PI3KP, is an 

attractive target for anti-resorptive therapeutics.

Keywords — actin ring, antiresorptive therapeutics, apoptosis, cell survival, 

cytoskeleton, F-actin belt, filamentous actin, osteoclasts, osteoporosis,

phosphatidylinositol-3 kinase, PI3K, podosome, RANKL, retraction, sealing zone.
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Introduction
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1.1 Chapter Summary

Osteoblasts (bone forming cells) and osteoclasts (bone resorbing cells) play 

essential roles in skeletal development, skeletal remodeling and mineral homeostasis. 

The actions of these two cell types are tightly regulated. Perturbations in the balance 

between osteoblasts and osteoclasts result in disease states, such as tumor osteolysis 

(bone loss due to cancer), osteoporosis (excess bone resorption) or periodontitis (chronic 

inflammation associated with loss of alveolar bone). Class I phosphatidylinositol-3 

kinases (PI3K) have critical roles in a variety of cellular processes such as metabolism, 

differentiation, survival and migration. Recently developed isoform-selective PI3K 

inhibitors show considerable promise for the treatment of inflammatory disease and 

cancer, and are making their way into the early phases of clinical trials (Okkenhaug et al., 

2002; Durand et al., 2009; Liu et al., 2009; Cleary & Shapiro, 2010; Lannutti et al., 

2011). This chapter summarizes background information on osteoclastogenesis and bone 

remodeling. Furthermore, the findings from previous studies on PI3K isoform 

expression, signaling pathways and functional roles of will be discussed.



1.2 Bone Physiology

1.2.1 Composition, Structure and Function of Bone

Bone is a specialized connective tissue that functions to protect vital organs, to 

serve as a reservoir for ions such as calcium and phosphate, and to serve as a site for 

muscle attachment to support locomotion (Marks & Popoff, 1988). Mechanical stimuli 

along with local and systemic factors, such as parathyroid hormone (PTH) and calcitonin, 

act in concert to maintain bone homeostasis (Harada & Rodan, 2003). Bone is one of the 

only tissues in the body that is composed of both organic and inorganic phases. The 

inorganic phase of bone is predominantly hydroxyl-apatite [Caio(P0 4 )6(OH)2], however 

bone mineral also contains carbonate, fluoride and magnesium referred to, collectively, as 

crystalline carbonate-substituted apatite (Rey et al., 1991). The inorganic phase of bone 

provides load bearing strength and rigidity to the bone composite. The organic phase is 

composed primarily of type I collagen (-90%), and trace amounts of type III and V 

collagen and other proteins, which provide elasticity and flexibility to bone (Ashhurst et 

al., 1990). Fiber organization allows the highest density of collagen per unit volume of 

tissue in preferentially orientated structures called lamellae. The lamellae can be parallel 

or deposited concentrically surrounding a channel containing blood vessels called a 

Haversian system. When there is no preferential organization of collagen fibers, this type 

of bone is called woven bone and occurs during development and fracture healing.

The non-collagenous proteins o f the bone extracellular matrix belong to the 

proteoglycan and glycoprotein classes. The proteoglycans include versican, decorin, 

biglycan, hyaluronan; whereas, the glycoproteins include osteonectin, osteopontin, bone 

sialoprotein, and osteocalcin (Robey, 1996). These proteins are highly anionic that have

3
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a high ion-binding capacity and play a role in the fixation of hydroxyl-apatite crystals to 

collagen (Rees et al., 2001).

The external part of bones is formed by a thick and dense layer of calcified tissue, 

called the cortex, which encloses the medullary cavity where hematopoietic bone marrow 

is housed. Toward the ends of long bones, the cortex becomes progressively thinner, and 

the internal space is filled with a calcified network of trabeculae, called trabecular bone, 

where the bone marrow within the medullary cavity is continuous. The bone surface at 

the ends of bones which take part in a joint are covered in a layer of articular cartilage, 

which acts to separate, lubricate and absorb shock between bones.

Anatomically, there are two types of bone: flat bones and long bones. Flat bones 

are found in the skull, scapula, and mandible; whereas, the tibia, femur, radius, and 

humerus are examples of long bones. These two types arise by intramembranous or 

endochrondral, bone formation, respectively.

During intramembranous ossification, mesenchymal cells proliferate and 

concentrate within a highly vascularized area of embryonic connective tissue and 

differentiate into preosteoblasts and osteoblasts (Hall et al., 1995). These cells synthesize 

the osteoid, a non-mineralized bone matrix composed primarily of type I collagen, and 

begin to calcify the osteoid in a delayed and irregularly distributed fashion, forming 

woven bone. During this process, osteoblasts become entrapped within the matrix and 

are then termed osteocytes (Franz-Odendaal et al., 2006). Later this bone is remodeled 

and replaced by mature lamellar bone.

During the development of long bones, the process of endochondral ossification is 

initiated by the differentiation of mesenchymal stem cells into prechondroblasts and
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chondroblasts, which secrete a collagenous matrix to form cartilage (Mackie et al., 2008). 

The chondroblasts that become entrapped within the matrix are then termed chondrocytes 

and continue to proliferate. These chondrocytes are arranged into four morphologically 

distinct zones adjacent to one another along the growing bone: 1) resting, 2) flattened 

proliferating chondrocytes, 3) prehypertrophic chondrocytes and 4) hypertrophic 

chondrocytes (Mackie et al., 2008). Hypertrophic chondrocytes secrete alkaline 

phosphatase, which promotes mineralization of the extracellular matrix (Ismail et al., 

2004), and angiogenic factors such as vascular endothelial growth factor (VEGF) to 

promote vascular invasion (Miyamoto & Suda, 2003). Osteoblasts form bone on the 

remnants of the calcified cartilage. In parallel, hypertrophic chondrocytes begin to 

undergo apoptosis, and the newly established vessels provide access for osteoclasts, 

which resorb the mineralized cartilage, creating a medullary cavity for the bone marrow 

(Miyamoto & Suda, 2003).

All bones within the body are continuously being remodeled by osteoblasts and 

osteoclasts throughout our lives. It has been proposed that the entire skeleton is replaced 

every 10 years. The process of resorption is relatively faster than the process of bone 

formation, and therefore these processes must be kept in balance or skeletal diseases will 

result (Harada & Rodan, 2003). Many signaling networks have been identified that serve 

to ensure balanced activity, however some are not well defined.

1.2.2 Regulation of bone formation

There is an established coupling between resorption and formation of bone. 

Although, the signaling pathway for recruitment of mesenchymal cells and osteoblast 

precursors is unclear, it may be due to factors released during resorption that lead to
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proliferation and migration of osteoblast precursors to the bone surface (Manolagas, 

2000). It is known that mesenchymal cells concentrate at areas of bone resorption and 

differentiate into cells of the osteoblast lineage under the control of cytokines and growth 

factors such as bone morphogenetic proteins (BMPs) and Wnt ligands (Manolagas, 

2000). Osteoblasts at these sites lay down osteoid that subsequently becomes 

mineralized. Following, the majority o f osteoblasts undergo apoptosis, however some 

remain on the surface, called lining cells, and some further differentiate into osteocytes 

(Manolagas, 2000).

1.2.3 Osteoclastogenesis

Osteoclasts are derived from hematopoietic stem cells in the bone marrow, which 

further differentiate into multipotent progenitors (Yin & Li, 2006). Multipotent 

progenitors are capable of undergoing further differentiation to produce cells of two 

different lineages - the common lymphoid progenitor (CLP) or common myeloid 

progenitor (CMP). CLP cells produce T cells, B cells and natural killer cells; whereas 

CMP cells can differentiate into two further lineages: either the 

erythrocyte/megakaryocyte lineage or into the granulocyte/macrophage progenitor 

(GMP) (Yin & Li, 2006). The transcription factor PU.l is the earliest known marker of 

osteoclast differentiation and is essential for the commitment of these initial GMP cells 

into the monocyte/macrophage cells, which are precursors to osteoclasts (Tondravi et al.,

1997). Deletion of PU.l results in severe osteopetrosis in mice due to the absence 

macrophages and osteoclasts (Tondravi et al., 1997). PU.l is important because it 

regulates the expression of the macrophage colony stimulating factor (M-CSF) receptor, 

c-fms, on early osteoclast precursors and monocytes, which is critical for their survival.
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Monocytic cells and osteoclast precursors exit the bone marrow and enter the 

circulation until they are recruited to the bone surface. Under normal conditions, or at 

sites of damage and tissue injury, stromal and immune cells release chemoattractant 

agents that recruit osteoclast precursors to the bone surface. M-CSF, receptor activator of 

nuclear factor kB ligand (RANKL), sphingosine-1 phosphate (SIP) and VEGF are all 

known chemoattractants of osteoclast precursor cells (Henriksen et al., 2003; Ishii et al., 

2009). The process of osteoclast differentiation is summarized Fig. 1.1.

Osteoclast precursor proliferation and resistance to apoptosis are induced by M- 

CSF binding to its receptor c-fms (Arai et al., 1999). c-fms is a tyrosine kinase that 

autophosphorylates itself upon ligand binding, which activates ERK1/2 and 

phosphatidylinositol-3 kinase (PI3K) pathways that drive the transcription of c-Fos and 

RANK to promote osteoclastogenesis, and Bcl-2 and Bcl-xl to promote survival 

(Teitelbaum, 2007).

The primary driver of osteoclastogenesis is receptor activator of nuclear factor kB 

ligand (RANKL) (Roodman, 1996; Suda et al., 2001). RANKL is a membrane-bound or 

soluble protein produced by bone marrow stromal cells, osteoblasts and T-cells. As a 

response to RANKL binding to its receptor, activator of nuclear factor kB (RANK), post

mitotic, committed osteoclast precursors fuse to yield large multinucleated cells. Bone 

resorption is completely abolished in RANKA mice due to lack of osteoclasts (Lacey et 

al., 1998). RANK is related to the tumor necrosis factor (TNF) receptor and has a long 

cytoplasmic tail that complexes with signaling molecules, such as TNF receptor- 

associated factor 6 (TRAF6) and activates NF-kB, Jun N-terminal kinase (JNK), 

mitogen-activated protein kinases (MAPK) p38 and Ca /calmodulin pathways that
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1

Figure 1.1 Schematic diagram illustrating osteoclastogenesis from hematopoietic stem 
cells. Abbreviations: CLP, common lymphoid progenitor; CMP, common myeloid 
progenitor; GMP, granulocyte/macrophage progenitor; M-CSF, macrophage colony 
stimulating factor; OCP, osteoclast precursor; RANKL, receptor activator of nuclear factor 
k B ligand; NF-kB, nuclear factor kappa B; NFAT, nuclear factor of activated T cells; DC- 
STAMP, dendritic cell-specific transmembrane protein; MCP-1, monocyte chemotactic 
protein 1; MKEP, megakaryocyte erythroid progenitor.
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leads to activation of the transcription factor NFATcl (Asagiri & Takayanagi, 2007). 

NFATcl is the primary driver of expression of many genes required for osteoclast 

function and regulation, including cathepsin K, P3 integrin, TRAF6 and the calcitonin 

receptor (Ikeda et al., 2004). The transcription factor c-Fos drives transcription of 

NFATcl. Notably, c-Fos'~ mice lack osteoclasts, but not macrophages, and exhibit severe 

osteopetrosis (Grigoriadis et al., 1994). NFATcl deletion is embryonic lethal, however 

cultured embryonic stem cells from N F A T c l mice do not undergo differentiation into 

osteoclasts, indicating NFATcl is required for osteoclastogenesis (Asagiri et al., 2005).

The last and unique step of osteoclastogenesis is the fusion of osteoclast 

precursors to become large mature multinucleated osteoclasts. The seven transmembrane 

spanning receptor, dendritic cell-specific transmembrane protein (DC-STAMP) (Yagi et 

al., 2006) and the monocyte chemotactic protein-1 (MCP-1) have been shown to promote 

the fusion of osteoclast precursors into multinucleated osteoclasts (Kim et al., 2005). The 

exact process and ligand for DC-STAMP has yet to be elucidated.

Other factors that stimulate osteoclast formation include interleukin-11 (IL-11), 

parathyroid hormone-related protein (PTHrP) and prostaglandin E2, which appear to act 

primarily by inducing RANKL expression by osteoblasts (Roodman, 1996).

1.2.4 Osteoclast Attachment

Osteoclast precursors are recruited to the bone surface from blood vessels or 

marrow where they attach and fuse together to form multinucleated cells that develop 

machinery to resorb bone. Osteoclasts attach to bone via integrins including collagen 

integrin receptors called a2pi and avpi, and a vitronectin receptor called avp3 (Duong et 

al., 2000). p3 knockout mice have dysfunctional osteoclasts and decreased bone
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resorption suggesting that avp3 is the most essential integrin for osteoclast attachment 

(McHugh et al., 2000). The avP3 integrins interact with proteins expressing a sequence 

of arginine, glycine and aspartic acid residues (RGD), such as vitronectin, fibronectin, 

bone sialoprotein and osteopontin, thereby activating a signaling cascade to prepare the 

osteoclast for bone resorption (Teitelbaum, 2007).

Osteoclasts can adhere to several substrates on which they form distinct 

filamentous actin (F-actin) containing structures, called podosomes. Podosomes are 

small punctate adhesion structures, each consisting of a core of F-actin and actin- 

associated proteins surrounded by integrins and integrin-associated proteins (Saltel et al., 

2008). Actin is one of the most abundant intracellular proteins that comprise the 

microfilament system for cell movement. Actin exists as an individual subunit monomer 

known as globular actin (G-actin) and as long filamentous chains of monomers, called F- 

actin. F-actin and G-actin are dynamically remodelled to allow cell movement and 

morphological changes. Osteoclasts exhibit two different actin cytoskeletal organizations 

according to the substrate they attach. In vitro, on non-mineralized substrates, such as 

glass or plastic, they form clusters o f podosomes, or a band of podosomes at the 

periphery of the cell, called F-actin belts. On mineralized substrates, such as bone or 

calcium phosphate matrices, podosomal units condense, forming a ring in the interior of 

the cell, called F-actin rings or sealing zone (Saltel et al., 2008). In osteoclasts, the 

formation of podosome clusters and rings is microtubule independent; whereas the 

podosome belts depend on stabilized acetylated microtubules (Destaing et al., 2003). It 

has been observed that osteoclasts degrade bone only within the area defined by F-actin 

super structures (Badowski et al., 2008) and that podosomes are essential for extracellular
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matrix degradation and osteoclast migration (Mizutani et al., 2002; Linder & 

Aepfelbacher, 2003; Calle et al., 2006).

1.2.5 Bone Resorption

Once osteoclasts adhere to the bone, they form a sealing zone. The sealing zone 

has been shown to be associated with actin-related protein (Arp) 2/3 complex, Wiskott- 

Aldrich Syndrome protein (WASp) and WASp interacting protein (WIP), cortactin, 

formin, paxillin, c-src, Pyk2 (proline-rich tyrosine kinase 2), c-cbl, myosin II and 

colocalised avp3 integrins (Chabadel et al., 2007; Saltel et al., 2008). Osteoclasts unable 

to form this seal are unable to resorb bone (Duong & Rodan, 1998; Mulari et al., 2003a). 

The sealing zone gives rise to an enclosed microenvironment between the osteoclast and 

bone surface called the resorption lacuna. The plasma membrane within the 

compartment is extensively folded, creating a characteristic feature of the osteoclast, 

termed the ruffled border. Within it, the ruffled border of the osteoclast increases surface 

area for the transport of products for the degradation of inorganic and organic phases. 

Systematically, H+ ions (generated by cytosolic carbonic anhydrase II) via vacuolar 

ATPases and passive movement of Cl' ions via chloride channels are released into the 

resorption lacuna to dissolve the inorganic phase, thereby releasing calcium and 

phosphate (Zaidi et al., 2003). Normal function of both the C1C7 chloride channels and 

vacuolar ATPases are absolutely critical for the breakdown of the mineral (Zaidi et al., 

2003). The pH within the resorption lacuna is approximately 4.5-5 (Teitelbaum & Ross, 

2003). To degrade the organic phase (type I collagen), osteoclasts release 

metalloproteinases and lysosomal enzymes, such as cathepsin K, which require an acidic 

pH to be functional (Zaidi et al., 2003). Mutation in the cathepsin K gene results in



12

dysfunctional osteoclasts and osteopetrosis (Zaidi et a l, 2003). Digested fragments of 

matrix proteins are transcytosed from apical to basolateral membranes which is proposed 

to occur at the center of the sealing zone (Salo et a l ,  1997; Mulari et al., 2003). The 

process of osteoclast resorption is summarized in Fig. 1.2. After a cycle of resorption, the 

osteoclast either undergoes apoptosis or moves to a new resorption site.

1.2.5 Regulation of Osteoclasts

Hormones, growth factors and cytokines regulate bone mass directly or indirectly, 

through their actions on osteoclasts or osteoblasts. These factors can influence 

differentiation o f precursors, life span of mature cells, among many others effects. This 

section will review some of the important factors that affect osteoclasts and bone mass.

Estrogen -  estrogen is a sex steroid produced primarily by a developing follicle in 

the ovaries and plays important role in female reproduction. Estrogen is carried in the 

blood by albumin, and easily passes through the cell membrane of target cells where it 

binds to a nuclear receptor (estrogen receptor a  or P) to promote secondary sex 

characteristics (Mauvais-Jarvis, 2010; Heldring et a l, 2007). Estrogen and its analogs 

exert a protective effect on the skeleton, which is most apparent by the decrease in bone 

density in woman following menopause (Heldring et a l, 2007). Estrogen inhibits the 

production of RANKL, and increases the production of osteoprotegerin (OPG - a decoy 

receptor which prevents RANKL from binding RANK and stimulating osteoclasts) by 

osteoblasts, which express both receptors, a and P (Bord et a l ,  2003). Also, estrogen 

also can bind directly to osteoclasts through estrogen receptor a to induce apoptosis

(Nakamura et a l ,  2007).
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Figure 1.2 Schematic representation of osteoclast resorption on bone. Osteoclasts adhere to 
bone via avP3 integrins and form a sealing zone consisting of F-actin and other integrin 
binding proteins. Protons (H+) are generated by the activity of carbonic anhydrase II (CAII) 
and are transported to the resorption lacuna through V-type Ff ATPases residing in the ruffled 
border close to sealing zone. Electrical neutrality is maintained by passively exchanging 
chloride ions (Cl ) for bicarbonate (H C03) at the basolateral membrane. Cl moving into the 
cell is transported into the resorption lacuna passively through the anion channel C1C7. 
Lysosomal enzymes, such as cathepsin K, are secreted into the resorption lacuna via vesicles 
to digest type I collagen and other organic tissue. Organic fragments are then removed by 
transcytosis.
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Vitamin D -  1, 25 (0 H)2 vitamin D3 synthesis requires ultraviolet light to convert 

precursor 7-dehydrocholesterol to previtamin D3 in the epidermis (Bouillon et al., 1995). 

Vitamin D3 is then transported and converted in to its biologically active form 

l,25(OH)2D3 in the liver and kidney. The major role of vitamin D in the body is to 

regulate Ca2+ and PO43' metabolism through bone, the kidney and intestine. Vitamin D 

maintains blood Ca2+ concentrations by absorption in the gastrointestinal tract, release of 

calcium stored in bone, and by enhancing reuptake in renal tubules. Vitamin D binds to 

its nuclear receptor, vitamin D receptor (VDR) and up regulates alkaline phosphatase 

(mineralization) and RANKL expression in osteoblasts (Holick, 2006). Vitamin D 

promotes healthy mineralization, growth and remodeling of bone, and prevents 

hypocalcaemia and osteoporosis (Holick, 2007). Vitamin D deficiency can lead to 

rickets in children and osteomalacia in adults (Holick, 2007).

Parathyroid hormone (PTH) -  PTH is secreted by the parathyroid gland in 

response to low blood concentrations o f calcium. Interestingly, PTH stimulates bone 

formation when administrated intermittently but causes severe bone loss with continuous 

administration. Intermittent dosing promotes healthy mineralization, growth and 

remodeling of bone; whereas continuous dosing increases bone resorption by enhancing 

RANKL production by osteoblasts (Malluche et al., 2006).

Calcitonin -  Calcitonin is released by parafollicular cells in the thyroid gland in 

response to elevated blood concentrations of calcium. Mature osteoclasts express 

calcitonin receptors which are G protein coupled-receptors that bind the 32-amino acid 

peptide hormone, calcitonin, leading to inhibition of resorption by osteoclasts 

(Warshafsky et al., 1985; Zaidi et al., 2002; Karsdal et al., 2006).
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Transforming Growth Factor-f (TGF-fi) -  TGF-P has a fundamental role in the 

control of bone resorption. TGF-P binds to its serine/threonine kinase receptor on 

osteoclast precursors and enhances osteoclastogenesis and bone resorption liberating 

more TGF-P from the bone matrix (Zaidi et al., 2003; Fox & Lovibond, 2005; Casimiro 

et al., 2009). TGF-P also acts on osteoblasts, reducing the availability of the osteoclast 

differentiation factor, RANKL and thereby indirectly limits further osteoclast formation 

(Fox & Lovibond, 2005).

1,3 The Vicious Cycle Hypothesis

Interaction between tumor cells and osteoclasts cause not only osteoclast 

activation and subsequent bone loss, but also induce aggressive tumor cell proliferation. 

Bone metastases are classified as osteolytic when a decrease in bone density occurs via 

increased bone resorption (Mundy, 2002). Osteolysis results in increases in extracellular 

Ca2+ and release of bone-derived growth factors including TGF-P and insulin-like growth 

factor 1 (IGF-1) (Casimiro et al., 2009). These growth factors bind to receptors on tumor 

cells to promote proliferation and production of PTHrP, IL-8 and IL-11 (Mundy, 2002; 

Casimiro et al., 2009). Production of PTHrP and IL-11 by tumor cells activates 

osteoblasts to produce RANKL and downregulate OPG. There is evidence that an 

independent RANKL-mediated pathway is activated by IL-8 to stimulate osteoclast 

development (Bendre et al., 2005). In this way a ‘vicious cycle’ is set up between the 

tumor cells and bone (Fig. 1.3). In support of this mechanism, preventing osteoclast
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Metastatic bone cancer cells

Figure 1.3 Schematic representation of the ‘vicious cycle’ between bone cells and tumour 
cells in osteolytic métastasés. Tumour cells invade bone and release parathyroid hormone- 
related protein (PTHrP) and interleukin-11 (IL-11) which stimulate osteoblast receptor 
activator of nuclear kB ligand (RANKL) expression which increases differentiation of 
osteoclast precursors (OCP) and increases activity of mature osteoclasts. Resorbed bone 
releases transforming growth factor 13 (TGF-13) and insulin-like growth factor 1 (IGF-1), 
thereby stimulating tumour-cell proliferation and further PTHrP and IL-11 release, which, in 
turn, causes more bone resorption (reviewed in Mundy, 2002).
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activation with current therapies such as bisphosphonates or blockade of RANKL 

decreases both the osteolytic effects of bone metastases and tumor growth (Mundy, 

2002). Blockade of tumor cell growth and osteoclast resorption by isoform-selective 

PI3K inhibitors could be a useful therapeutic for bone metastasis.

1.4 Phosphatidylinositol-3 Kinase (PI3K)

1.4.1 PI3K Signaling Pathways

PI3K is an evolutionarily conserved signaling pathway. PI3K was first noted as a 

key player in cancer research in the 1980s with the discovery of transforming activity of 

viral oncogenes being functionally associated with PI3K activity (Whitman et al., 1985). 

Further study went on to show PI3Ks phosphorylate the D3 hydroxyl position of the 

inositol ring of phosphatidylinositides when stimulated by activated platelet-derived 

growth factor receptors and certain oncogenes in the protein-tyrosine kinase family 

(Kaplan et al., 1987; Auger et al., 1989; Varticovski et al., 1989). Through further study, 

it was discovered that PI3Ks are heterodimers with separate regulatory and catalytic 

subunits, and isoforms which can be grouped into three classes based on domain 

organization, primary structure and substrate specificity (Vivanco & Sawyers, 2002; 

Kong & Yamori, 2007; Bemdt et al., 2010).

Class I PI3Ks are the most studied and are clearly implicated in human cancers, 

and will therefore be the focus of our study. Class I PI3Ks are heterodimeric enzymes 

consisting of a regulatory subunit in complex with a 110-kDa catalytic subunit which 

phosphorylate phosphatidylinositols (Ptdlns) in the 3’ hydroxyl position. Receptor 

tyrosine kinases and G protein-coupled receptor signaling pathways activate PI3K, which
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Figure 1.4 Schematic representation of the Class IA and IB PI3K-Akt axis. Receptor tyrosine 
kinases (RTK) and G protein-coupled receptor (GPCR) signaling pathways activate PI3K 
(orange - catalytic subunit, red - regulatory subunit) which phosphorylâtes the primary 
substrate phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5- 
trisphosphate (PIP3). RTKs and GPCRs can also activate small GTPases such as Ras, which 
then activate Class I PI3Ks (middle). Class IA PI3Ks include p 110 subunits a , P and 5 and are 
activated by RTKs and associated binding proteins. Class IB PI3Ks include pi 10 subunit y 
and P are activated by GPy proteins by GPCRs. Availability of P1P3 recruits 
phosphatidylinositol-dependent kinase 1 (PDK1) and Akt to the membrane, where PDK1 
phosphorylâtes Akt, which in turn activates many downstream effectors. Formation of PIP3 
also activates downstream effectors through other associated proteins. Schematic modified 
from Vanhaesebroeck, et al. 2010.
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phosphorylates the primary substrate Ptdlns 4,5-bisphosphate (also called PIP2) to Ptdlns 

3,4,5-trisphosphate (also called PIP3). PIP3 is mainly found on the plasma membrane, 

although these lipids might also be present in endosomal compartments and even in the 

nucleus (Vanhaesebroeck et al., 2010). PIP3 induces downstream effects through adapter 

proteins such as protein kinases with pleckstrin homology (PH) domains 

(phosphoinositide-dependent kinase-1 (PDK1), Akt, and Bruton’s tyrosine kinase 

(BTK)), GTPase-activating proteins (GAP) for GTPases of the Rho, Ras and Arf families 

(Vanhaesebroeck et al., 2005). Notably, Akt is generally linked with PI3K activation 

and phosphorylation of both Thr308 and Ser473 are required for its full activation 

(Vanhaesebroeck et al., 2005). Cellular responses to PI3K stimulation are diverse and 

include, proliferation, cell cycle progression, migration and survival (Vivanco & 

Sawyers, 2002; Kong & Yamori, 2007; Papakonstanti et al., 2008; Liao & Hung). Class 

I PI3K includes the following catalytic p i 10 isoforms: a, P, y and 5. Class I PI3Ks are 

further divided into class LA. and IB, due to differences in regulatory subunits and 

activation (Vanhaesebroeck et al., 2005). Class IA includes isoforms pi 10 a, P and 8 and 

regulatory subunits p85a, p85p, p55y (encoded by the same gene) and p55a, p55p, p50a 

(alternative splice units of p85a) and signals downstream of receptor-tyrosine kinases 

(Vivanco & Sawyers, 2002; Ward et al., 2003). In contrast, class IB includes catalytic 

subunit pi lOy and regulatory subunit p i01, and is activated by Py subunits downstream 

of G protein-coupled receptors (Vivanco & Sawyers, 2002). Also, recently pllO p has 

been shown to be activated by GPy proteins by GPCRs (Guillermet-Guibert et al., 2008). 

The class LA and IB PI3K-Akt pathway is summarized in Fig. 1.4.
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Attenuation of Class I PI3K signaling pathways is achieved by dephosphorylation 

of the PI3K lipid products by a phosphatase known as phosphatase and tensin homolog 

deleted on chromosome ten (PTEN) and Src homology 2-containing inositol-5- 

phosphatase (SHIP). PTEN has both protein and lipid phosphatase activity. As a lipid 

phosphatase, PTEN removes the 3’ phosphate of Ptdlns 3,4,5-trisphosphate to make 

Ptdlns 4,5-bisphosphate. PTEN is considered a tumor suppressor. On the other hand, 

SHIP phosphatases also act as negative regulators of PI3K activity, converting Ptdlns 

3,4,5-trisphosphate to Ptdlns 3,5-bisphosphate. There are two SHIP genes encoding 

SHIP-1 and SHIP-2. SHIP-2 is widely expressed; conversely, SHIP-1 is exclusive to 

hematopoietic cells including osteoclasts (Takeshita et a l ,  2002; Rauh et a l, 2004; Zhou 

et a l ,  2006).

1.4.2 P13K pi 10 Isoform Function

The availability of two pharmacological pan-pllO PI3K inhibitors, wortmannin 

(discovered and isolated from the fungi Pénicillium wortmanni) and LY294002 

(reversible, morpholino derivative of the quercetin flavonoid; structurally unrelated to 

wortmannin) have contributed greatly to our understanding of the biological roles of 

PI3K and their effector proteins (Ward et a l, 2003; Maira et a l ,  2009). Although, 

wortmannin and LY294002 have been shown to have therapeutic potential, such as 

decreased cancer growth in vitro and in vivo, both compounds are toxic and show severe 

side effects (Cheng et a l ,  2005; Liu et a l ,  2009; Maira et a l ,  2009; Teranishi et a l, 

2009). Neither wortmannin nor LY294002 exhibits any degree of selectivity for 

individual p i 10 isoforms (Engelman, 2009). PI3K inhibitors work by binding to the 

ATP-binding site on class I PI3Ks (Liu et a l ,  2009). Massive efforts have been put forth
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by academic and private laboratories to develop isoform-selective PI3K inhibitors as 

therapeutics. Huge advances have been made by crystallography of PI3Ks and their 

chemical scaffolds. Three dimensional structures of isoforms have been crucial in 

structure-based drug design approaches to identify new molecular entities to improve 

specificity and potency (Maira et al., 2009) and therefore, decrease potential side effects.

There is growing evidence for distinct biological roles of specific PI3K isoforms. 

Research using gene knockouts in mice, as well as new pharmacological inhibitors have 

started to address the issues on PI3K isoform overlap and non-redundant functions, and 

have revealed important roles for specific PI3K isoforms in immunity, metabolism and 

cardiac function. Distinct roles of PI3K isoforms in different cell types could be 

explained by their relative expression levels. For example, MDA-MB-231 breast cancer 

cells express low levels of p i 10a  and high levels of p i 105 which influence stimulus- 

induced cytoskeleton changes (Sawyer et al., 2003). Consistent with this hypothesis, 

endothelial cells express low levels of p i 105 and moderate levels of p i 10a to regulate 

cell migration (Graupera et al., 2008; Papakonstanti et al., 2008). Generally, p i 10a and 

p i 1 Op are found to be ubiquitously expressed, whereas pi 105 expression is low in most 

cells, but highly enriched in hematopoietic stem cells (Papakonstanti et al., 2008). In 

knock out studies of p 110 a, it was determined that homozygous mutations led to 

embryonic lethality; whereas mice bearing heterozygous mutations were viable, but 

displayed defective responsiveness to hormones such as, insulin and leptin that led to 

reduced somatic growth, hyperinsulinaemia, glucose intolerance, hyperphagia and 

increased adiposity (Knight et al., 2006; Papakonstanti et al., 2008; Kim et al., 2009). 

Further, important links have been made between p l i op  and cell survival in thrombosis
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and prostate tumor growth (Bradley et al., 2008; Jia et al., 2008); pi 108 and the 

inflammatory response (proliferation and function of B cells and T cells); and pi lOy and 

fibroblast and B cell differentiation and proliferation (Graupera et al., 2008; Beer- 

Hammer et al., 2010). However, at present, there is little evidence about the functions of 

PI3K isoforms in osteoclasts (summarized below).

1.4.3 The Role of PI3K in Cancer

The PI3K pathway is one of the most commonly activated signaling pathways in 

human cancer and it has been estimated that at least 50% of all cancer types are related to 

deregulation of this signaling pathway (Jia et al., 2008; Falasca, 2011). Activation of this 

pathway can be brought about in various ways that include, a) activating point mutations 

in the pi 10a isoform or over expression of non-mutated p i 10 a, P, y and 5 isoforms 

(Knight et al., 2006; Jia et al., 2008), b) activated Ras oncogenes that allosterically 

stimulate PI3K pi 10 isoforms (Kang et al., 2006), c) loss of expression of PTEN, a 

phosphatase responsible for negative regulation of PIP3 formation (Vivanco & Sawyers, 

2002; Knight et al., 2006), or d) overexpression or constitutive activation of oncogenic 

receptor tyrosine kinases (Lurje & Lenz, 2009).

1.4.4 The Role of PI3K in Bone

PI3K has been shown to be a critical downstream player in osteoclasts, mediating 

its effects through at least three cell-surface receptors: M-CSF-activated c-fms, RANKL- 

activated RANK, and the extracellular matrix receptor avP3. Wortmannin in osteoclasts, 

disrupts actin ring formation, ruffled border formation, chemotaxis and reduces pit 

formation during resorption (Hall et al., 1995; Nakamura et al., 1995; Pilkington et al.,

1998). The effector actions of PI3K in osteoclasts are diverse, influencing survival and
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activity, mediating cytoskeletal remodeling and motility, and regulating attachment 

structures. Less is known about the roles of PI3K in osteoblasts, however evidence 

suggests a role for PI3K in osteoblast differentiation and survival (Golden & Insogna, 

2004).

1.4.5 PI3K pi 10 Isoforms in Osteoclasts

A recent study by Kang and colleagues reports that the PI3K catalytic isoform 

pllOy plays an important role in bone homeostasis (Kang et al., 2010). They report that 

genetic inactivation of the pllO y  gene leads to an increase in bone mass, likely due to 

impairment in osteoclastogenesis. Decreased osteoclast formation was accompanied by 

downregulated osteoclast gene expression, including such genes as osteoclast-associated 

immunoglobulin-like receptor (OSCAR), DC-STAMP, and NFATcl. PI3K pllOy is 

activated by Py subunits downstream of GPCRs (Vivanco & Sawyers, 2002). For 

example, lysophosphatidic acid (LPA) activates GPCRs in osteoclasts to increase 

survival (Lapierre et al., 2010). Interestingly, pllOy deficiency impaired M-CSF-induced 

Akt phosphorylation and therefore, the authors concluded that p i lOy is likely to mediate 

its effects on osteoclastogenesis through chemokine receptor signaling which cooperates 

with M-CSF-induced signaling pathway. They suggest that GPCR-mediated PI3K 

activation (likely through chemokine receptors) provides a biologically significant 

supplementation to the M-CSF-mediated protection from apoptosis (Kang et al., 2010).

There is also evidence for a role of p i 10a in bone provided by Grey and 

colleagues. In their study, they assessed the effects of pharmacological inhibitors on pi 10 

a , P and 5 in the RAW 264.7 monocyte-macrophage-like cell line. They determined that 

the isoform-selective inhibitor PIK75 (pi 10a inhibitor) decreased resorptive activity by
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osteoclast-like cells and concentration-dependently decreased osteoclastogenesis from 

undifferentiated RAW 264.7 cells, with no effect of pi 1 Op and 8 inhibitors (Grey et al., 

2010). Thus further investigation into the roles of PI3K isoforms is required.

1.4.5.1 PI3K Activation by M-CSF

M-CSF is a growth factor that binds to its tyrosine kinase receptor, c-fms which 

activates PI3K to promote proliferation, motility and survival (Varticovski et al., 1989). 

PI3K is a known partner with cytoplasmic tyrosine kinase c-src and Ras in mediating the 

effects of activated c-fms (Grey et al., 2000; Fukuda et al., 2005; Sakai et al., 2006). 

Notably, osteoclasts express the highest concentration of c-fms receptor of any cell type 

in the hematopoietic cell linage (Varticovski et al., 1989). A growing body of evidence 

shows that PI3K plays an integral role in mediation of M-SCF-induced pseudopod 

ruffling and motility in osteoclasts (Pilkington et al., 1998; Palacio & Felix, 2001; 

Fukuda et al., 2005). Antibody blockade o f PI3K pi 10 subunit isoforms in macrophages 

has revealed distinct downstream responses to M-CSF that are mediated by specific PI3K 

isoforms (Vanhaesebroeck et al., 1999). In particular, p i 1 Op and pi 108 isoforms are 

required for c-fms-mediated cell migration and cytoskeletal reorganization, while the 

p i 10a isoform has a role in c-fms-mediated DNA synthesis (Vanhaesebroeck et al.,

1999).

1.4.5.2 PI3K Activation by RANKL

Evidence indicates an important role for PI3K downstream from activated RANK, 

in which c-src acts as a mediator connecting RANK to PI3K/Akt signaling in osteoclasts 

(Wada et al., 2006). When the expression of c-src is suppressed, the number of 

multinucleated cells formed is significantly reduced in vitro (Kumagai et al., 2004).
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Also, Sugatani and colleagues have shown that PTEN overexpression in RAW 264.7 

osteoclast precursors blocks RANKL-induced osteoclast differentiation, as well as Akt 

activation (Sugatani et al., 2003). This suggests that PI3K is an important participant in 

RANK-mediated differentiation. In parallel, the importance of SHIP1 in 

osteoclastogenesis has been shown in vitro and in vivo. In vitro cultures showed 

increased osteoclastogenesis and increased numbers of hyper-resorptive osteoclasts in 

SHIP 1-deficient cells as a result of hypersensitivity to stimulation with RANKL and M- 

CSF (Takeshita et al., 2002). Particularly, SHIP1 deficient mice have osteoporosis 

(Takeshita et al., 2 0 0 2 ).

The activation and fusion o f osteoclasts require the adaptor molecule DNAX- 

activating protein of 12 kDa (DAP 12), which contains immunoreceptor tyrosine-based 

activation motifs (ITAM). The receptor, known as triggering receptor expressed on 

myeloid cells-2 (TREM2), is the main DAP12-associated receptor in osteoclasts. In vitro 

experiments have shown that deficiency in DAP 12 or TREM2 leads to impaired 

osteoclast development and the formation of mononuclear osteoclasts. It has been shown 

that this complex is downstream of RANK, converging on PI3K (Peng et al., 2010).

1.4.5.3 PI3K Activation by integrins

Osteoclasts adhere to the bone surface via av(33 integrins, which engage the 

organization of dynamic attachment structures. These multi-molecular structures are 

called podosomes, comprised of actin, vinculin, gelsolin, a-actinin, talin, and other 

scaffolding molecules (Golden & Insogna, 2004; Teitelbaum, 2007; Novack & 

Teitelbaum, 2008). PI3K has been shown to be coimmunoprecipitated with avP3 integrin 

from osteoclasts (Lakkakorpi et al., 1997). Interaction of gelsolin and c-src with PI3K
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occurs directly through the SH2 domains on the p85 subunit of PI3K (Chellaiah & 

Hruska, 1996; Chellaiah et al., 1998; Grey et al., 2000). Association of the actin-binding 

protein gelsolin with PI3K is essential for actin filament formation in osteoclasts. 

Gelsolin-deficient osteoclasts are hypomotile and fail to produce podosomes (Chellaiah et 

al., 1998). c-src and PI3K function at the point where adhesion signals converge, 

transmitting the signals for proper actin cytoskeletal organization that is required for 

resorption activity.

1.5 Rationale, Objectives and Hypothesis of Research

1.5.1 Rationale

Currently, investigators have begun to elucidate effects of isoform-selective PI3K 

inhibitors on varying cell types. Some inhibitors have shown considerable promise for 

the treatment of cancer and are making their way into the early phases of clinical trials 

(Lannutti et al., 2011). There is evidence that the PI3K pathway affects a number of 

osteoclast functions, including differentiation (Mandal et al., 2009), survival 

(Munugalavadla et al., 2008), chemotaxis (Pilkington et al., 1998, 2001), cytoskeletal 

organization (Lakkakorpi et al., 1997) and bone resorption (Nakamura et al., 1995; 

Nakamura et al., 1997; Palacio & Felix, 2001; Fukuda et al., 2005). Generally, PI3K 

p i 10a and pllOp are ubiquitously expressed, whereas pi 105 expression is low in most 

cells, but highly enriched in cells of the hematopoietic lineage (Papakonstanti et al., 

2008). In macrophages, DNA synthesis is inhibited by antibodies to p i 10a specifically, 

whereas actin reorganization and migration are inhibited by antibodies against pl lOp and 

pi  105, specifically (Vanhaesebroeck et al., 1999). These findings support the hypothesis
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that specific PI3K isoforms have distinct signaling roles. In osteoclasts, it is unknown 

whether the isoforms are functionally redundant or have distinct roles. There is 

possibility that isoform-selective PI3K inhibitors can serve not only as therapeutics for 

bone diseases, but also as a tool for identifying roles of different PI3K isoforms in 

osteoclasts. Currently, little is known about the effects of isoform-selective PI3K 

inhibitors on osteoclasts.

1.5.2 Objectives

We are focusing on the PI3K Class I p i 10 isoforms a , p, y and 6 , with the goal of 

identifying inhibitors useful for suppressing osteoclast function.

1. To characterize the effects of isoform-selective PI3K inhibitors on the viability 

of monocyte-macrophage-like cells.

2. To investigate the effects of isoform-selective PI3K inhibitors on osteoclast 

morphology and motility.

3. To determine the effect of isoform-selective PI3K inhibitors on cytoskeletal 

organization in osteoclasts plated on varying substrata.

4. To evaluate the effect of isoform-selective PI3K inhibitors on osteoclast 

survival.

1.5.3 Hypothesis

It is hypothesized that a PI3K isoform will be identified that selectively alters 

osteoclast cytoskeletal function and survival.
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CHAPTER TWO

Effects of isoform-selective phosphatidylinositol-3 kinase inhibitors on 

osteoclasts: Actions on cytoskeletal organization and survival
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2.1 Chapter Summary

Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling 

pathways, and control a number of distinct biological functions. Studies using pan-PI3K 

inhibitors suggest roles for PI3K in osteoclasts, but little is known about the function of 

specific PI3K p i 10 isoforms in these cells. Our objective was to determine effects of 

isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were 

investigated (targets in parentheses): wortmannin and LY294002 (pan-pllO), PIK75 (a), 

GDC0941 (a, 8), TGX221 (p), AS252424 (y) and IC87114 (6 ). In addition, we 

characterized the novel PI3K inhibitor CAL-120 and found it was highly selective for 

PI3K8. Only high concentrations of PIK75 and LY294002 reduced the viability of 

monocyte-macrophage-like cells. Osteoclasts were isolated from the long bones of 

neonatal rats and rabbits. Wortmannin, GDC0941, IC87114 and CAL-120 induced 

dramatic retraction of osteoclasts within 15-20 min to 65-75% of initial area. In contrast, 

there was no significant retraction in response to vehicle, PIK75, TGX221 or AS252424. 

Moreover, wortmannin and CAL-120, but not PIK75 or TGX221, disrupted filamentous 

F-actin belts; and CAL-120 inhibited the formation of sealing zones in osteoclasts on 

resorbable substrates. In contrast to their selective actions on cytoskeletal organization, 

PIK75, TGX221 and CAL-120 blocked the stimulatory effects of RANKL on osteoclast 

survival. These data are consistent with a specific role for PI3K8 in regulating the 

osteoclast cytoskeleton. In contrast, multiple PI3K isoforms contribute to the control of 

osteoclast survival. Thus, the PI3K5 isoform, which has more limited tissue distribution 

than PI3Ka and PI3K(3, is an attractive target for novel anti-resorptive therapeutics.
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2.2 Introduction

Bone is remodeled by the coupled process of breakdown of old bone by 

osteoclasts and formation of new bone by osteoblasts (Novack & Teitelbaum, 2008). 

Maintenance o f bone integrity is dependent on the coordinated activity of osteoclasts and 

osteoblasts, with perturbations to this balance causing skeletal disease (Manolagas,

2000). Osteoclasts and osteoclast precursors receive signals from adjacent cells, soluble 

mediators and the extracellular matrix to regulate changes in differentiation, survival, 

resorptive activity and recruitment to bone (Teitelbaum, 2007).

Class I phosphatidylinositol-3 kinases (PI3K) have critical roles in a variety of 

cellular processes such as metabolism, differentiation, survival and migration (Vivanco & 

Sawyers, 2002). PI3Ks are further divided into class IA and IB, all of which are 

heterodimeric enzymes consisting of a regulatory subunit in complex with a HOkDa 

catalytic subunit that phosphorylâtes the primary substrate phosphatidylinositol 4,5- 

bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3) (Vanhaesebroeck 

et a l ,  2005). PIP3 is the active form, and mediates downstream effects through adapter 

proteins such as protein kinases with pleckstrin homology domains and GTPase- 

activating proteins (Vivanco & Sawyers, 2002; Liu et a l, 2009). Class IA includes 

catalytic isoforms pi 10 a (PI3Ka), P (PI3KP), and ô (PI3K6) and regulatory subunits 

p85a or p, p55a or y, p50a and signals downstream of tyrosine-receptor kinases (TRK). 

In contrast, Class IB includes catalytic subunit pllOy (PI3Ky) and regulatory subunits 

p i 01 and p84, and signals downstream of G protein-coupled receptors (GPCR) (Vivanco 

& Sawyers, 2002; Vanhaesebroeck et a l ,  2005). Recent data indicate that most class I
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PI3K subunits might be activated directly (e.g. G[3y protein activating PI3Ky and PI3KJ3 

(Guillermet-Guibert et al., 2008)) or indirectly (e.g. Ras) (Vanhaesebroeck et al., 2010).

Genetic manipulation experiments, as well as utilizing new pharmacological 

inhibitors have allowed researchers to address issues on PI3K isoform overlap and non- 

redundant functions, and have revealed important roles for specific PI3K isoforms in 

immunity, metabolism and cardiac function. Some examples include, PI3Ka in insulin 

signaling and oncogenesis, PI3KP in thrombosis, and PI3K5 and PI3Ky in immune 

function and inflammation (Vanhaesebroeck et al., 2005; Engelman, 2009; Liu et al., 

2009). Generally, PI3Ka and PI3KP are thought to be ubiquitously expressed, whereas 

PI3K5 and PI3Ky expression is low in most cells, but high in cells of hematopoietic 

origin (Chantry et al., 1997; Kok et al., 2009). Recently developed isoform-selective 

PI3K inhibitors show promise for the treatment of inflammatory disease (Marone et al., 

2008; Durand et al., 2009) and cancer (Cleary & Shapiro, 2010), and are making their 

way into the early phases of clinical trials (Liu et al., 2009; Lannutti et al., 2011).

In osteoclasts PI3K affects survival, resorptive activity, cytoskeletal organization 

and motility (Hall et al., 1995; Pilkington et al., 1998, Nakamura, 1995; Golden & 

Insogna, 2004; Chellaiah, 2006). Investigations on PI3K isoforms in macrophages 

demonstrate that PI3K8 is important in cell migration and vesicle trafficking 

(Papakonstanti et al., 2008; Low et al., 2010). In addition, investigations in osteoclasts 

demonstrate that PI3Ky modulates osteoclastogenesis (Kang et al., 2010). Despite our 

current understanding, relatively little evidence is available on the functions of PI3K 

isoforms in osteoclasts, thereby providing a rationale for ongoing evaluation and possible 

therapeutic development.
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2.3 Materials and Methods

2.3.1 Materials

Medium 199 (M l99, Earles, 12340) buffered with 25 mM HEPES and 26 mM 

HCO3', HCO3" -free M l 99 (Hanks, 12350) buffered with 25mM HEPES, heat-inactivated 

fetal bovine serum (FBS, 12483), and antibiotic solution (penicillin 10,000 units/ml; 

streptomycin 10,000 pg/ml; and amphotericin B 25 pg/ml, 15240) were purchased from 

Invitrogen (Burlington, Canada). Dulbecco’s modified Eagles medium (DMEM, D7777) 

with 4500 mg/L glucose, L-glutamine, and sodium pyruvate, without sodium bicarbonate 

were purchased from Sigma-Aldrich (St. Louis, MO). Bovine serum albumin (BSA) 

(crystallized) was from ICN Biomedicals. Mounting medium (Vecta-Shield) was from 

Vector Laboratories (Burlingame, CA,). Recombinant Mouse RANKL was purchased 

from R&D systems (Minneapolis, MN). GDC0941 bismesylate (1377), TGX221 (1417), 

AS252424 (1424) and PIK75 (1334) were purchased from Axon Med Chem (Groningen, 

Holland). IC87114 and CAL-120 were kind gifts from Gilead Sciences (Forest City, CA). 

Wortmannin (681675) and LY292004 (440202) were purchased from Calbiochem 

(Darmstadt, Germany). Stock solutions o f PI3K inhibitors were prepared in dimethyl 

sulfoxide (DMSO) from Sigma-Aldrich. Vehicle controls were DMSO in all cases.

2.3.2 Osteoclast Isolation

Osteoclasts were isolated from the long bones of newborn Wistar rats or New 

Zealand White rabbits, as described in previous publications (Naemsch et al., 2001; 

Pereverzev et al., 2008). All procedures were approved by Council on Animal Care of 

The University o f Western Ontario and were in accordance with the guidelines of the 

Canadian Council on Animal Care. Briefly, long bones are dissected free of soft tissue
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and minced with a scalpel in HCO3' buffered M l 99 supplemented with 15% FBS and 1% 

antibiotic solution. The resulting cells are suspended by repeated passage through a glass 

pipette and plated on FBS-coated 12-mm glass cover slips, MatTek glass bottom culture 

dishes (MatTek Corporation, Ashland, MA), or calcium phosphate-coated discs (BD 

BioCoat™ Osteologic™ Discs, BD Biosciences, Bedford, MA). Freshly isolated 

osteoclasts were incubated at 37°C in 5% CO2 for 1 h, washed gently with PBS to 

remove non-adherent cells and incubated in medium. Osteoclasts are identified as having 

three or more nuclei, positive staining for tartrate-resistant phosphatase (TRAP), 

retracting in response to calcitonin, and the ability to resorb mineralized substrates.

2.3.3 In  v itro  Kinase Profiling

Biochemical in vitro lipid kinase assays were analyzed using the SelectScreen® 

biochemical kinase assay service (Invitrogen Ltd.). A stock solution of CAL-120 was 

prepared in DMSO at a concentration of 10 mM. Ten-point kinase inhibitory activities 

were measured over a concentration range (5 nM to 104 nM) with ATP at a concentration 

consistent with each enzyme’s Km.

2.3.4 PI3K Isoform-Selective Cell-Based Assays

Murine embryonic fibroblast (MEFs, American Type Culture Collection (ATCC), 

Manassas, VA) were used for the analysis of PI3Ka and PI3K0 signaling. Cells were 

transferred to serum-free medium for two hours and then stimulated with platelet-derived 

growth factor (PDGF) (10 ng/mL; Cell Signaling, Danvers, MA) or LPA (10 pM; 

Echelon, Salt Lake City, UT) for 10 min at 37°C to activate PI3Ka and PI3KJ3, 

respectively. After washing once in cold phosphate-buffered saline (PBS), the cell pellet 

was resuspended in lysis buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 10% glycerol,
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1% Triton X-100, 1.5 mM MgC^, 1 mM ethylene glycol tetraacetic acid (EGTA), 100 

mM NaF, 1 mM phenylmethylsulfonyl fluoride, 1 mM NaV0 4 , 1 pg/mL leupeptin, and 1 

pg/mL aprotinin) for 15 minutes on ice. Whole-cell lysates were obtained by 

centrifugation at 14000g for 15 minutes at 4°C, and the soluble protein was analyzed by 

Western blotting for Akt and pAkt levels.

For the analysis of PI3K5 and PI3Ky signaling, basophil activation was measured 

in isolated peripheral blood mononuclear cells (PBMC) or whole blood. Blood samples 

were obtained after written informed consent obtained in accordance with the Declaration 

of Helsinki and with local institutionally approved protocols. Basophil activation was 

measured using the Flow2 CAST kit according to the manufacturer's standardized 

methods (Buhlman Laboratories AG, Switzerland). Briefly, PI3K5 was activated with 

anti-FceRI and PI3Ky was activated with formyl-methionyl-leucyl-phenylalanine (fMLP) 

in the absence or presence of increasing concentrations of CAL-120. To monitor the 

basophil cell population and cellular activation, anti-CD63-FITC and anti-CCR3-PE 

antibodies were added to each sample. Cells were fixed and analyzed on a FC500MPL 

flow cytometer.

2.3.5 Assessment of Cell Viability

The virally transformed murine monocyte-macrophage-like cell line RAW 264.7 

was obtained from the ATCC (Manassas, VA). The effect of inhibitors on RAW 264.7 

cell survival was evaluated using the methylthiazoltetrazolium (MTT) assay. RAW 264.7 

cells were seeded in Falcon flat bottom 96-well plates (353072) at a density of 2.5 -  3 x 

104 cells/cm2 in 100 pL DMEM medium with 10% FBS and 1% anitbiotic. After seeding, 

the cells were allowed to attach for 24 h then exposed to control or treatment for 24 h at



46

varying concentrations. After incubation at 37°C in 5% CO2, MTT substrate (Roche 

Applied Science, Mississauga, ON) was added at a final concentration of 0.5 mg/mL for 

4 h. Following 4 h incubation, 100 pL solubilization solution was added to each well to 

dissolve the formazan crystals and samples were analyzed after 24 h overnight. 

Spectrophotometrical absorbance of the samples were taken using an ELISA reader by 

Tecan (Mannedorf, Switzerland) using a wavelength of 550 nm and a reference wave 

length of 700 nm.

2.3.6 Assessment of Osteoclast Morphology

To perform time-lapse recordings culture medium was removed and replaced with 

a HEPES-buffered M l 99 medium (HCOs'-free) supplemented with 15% FBS and 1% 

antibiotic solution. Dishes were placed in a heated stage and maintained at ~35°C. 

Osteoclasts were observed using a Nikon Eclipse TE300 phase contrast microscope and 

images were captured using Image Master 5 Software (Photon Technology International). 

For data analysis, the periphery of each osteoclast was traced periodically to quantify the 

planar area using Image Master Software. Planar area is expressed as a percentage of the 

average initial area before time 0. Initial planar area was 5440 ± 3200 pm (mean ± S.D., 

n -  90 osteoclasts).

2.3.7 Assessment of Osteoclast F-actin Organization

Osteoclasts were plated on FBS-coated glass cover slips or BD BioCoat™ 

Osteologic1M cover slips and fixed with 4% paraformaldehyde with 2% sucrose in PBS 

for 10 min at room temperature, washed three times with PBS, and permeabilized with 

0.1% Triton X-100 in PBS for 10 min at room temperature. Following three washes with 

PBS, cells were incubated in 1% - 3% bovine serum albumin for 1 h at room temperature,
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stained for filamentous actin (F-actin) using 66  nM Alexa Fluor 488 phalloidin for 20 

min at room temperature in the dark, and washed three times with PBS. Following the 

wash, osteoclasts were visualized for fluorescence. The number of osteoclasts portraying 

a complete F-actin belt or sealing zone present under each condition were counted along 

with to the total number of osteoclasts (per 12 mm coverslip). Osteoclasts observed to 

have a F-actin belt or sealing zone to encompass 75% or more of the cell perimeter were 

counted as ‘complete,’ and anything below 75% was counted as ‘incomplete’. Images 

under each condition were captured with Zeiss AxioVision 4.8 imaging software using a 

Zeiss Observer Z1 microscope (Chester, VA) or Zeiss LSM 5.0 software using a Zeiss 

LSM 510 META confocal microscope.

2.3.8 Assessment of Osteoclast Survival

Rat osteoclasts were isolated and plated on FBS coated coverslips and incubated 

at 37°C in 5% CO2 for 1 h. Coverslips were then washed gently with PBS to remove non

adherent cells and incubated for an additional 0.5-1 h in HCCV-buffered M l 99 

supplemented with 15% FBS and 1% antibiotic solution. Osteoclasts were then counted 

using phase-contrast microscopy as described previously (Korcok et al., 2005). Cultures 

were incubated for an additional 15-18 h at 37°C in 5% CO2. Following incubation, the 

number of osteoclasts per coverslips was counted, and survival was expressed as the 

percentage of the initial osteoclast number on the same coverslip. Number of osteoclasts 

per coverslip was 75 ± 25 (mean ± S.D., n — 90 coverslips).

2.3.9 Statistical Analysis

Results are presented as means ± S.E.M. Differences between two groups were 

evaluated using a Student’s t-test and differences among two or more groups were
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evaluated by one-way analysis o f variance (ANOVA) followed by Tukey’s multiple 

comparisons test or two-way ANOVA followed by Bonferroni’s multiple comparisons 

test, respectively. Differences were accepted as statistically significant at p <  0.05.

2.4 Results

2.4.1 CAL-120 is a Potent and Selective Inhibitor of PI3K8

CAL-120 ((S)-2-( 1 -(9H-purin-6-ylamino)ethyl)-6-fluoro-3 -phenylquinazolin-

4(3H)-one) was characterized using in vitro and cell-based kinase assays. Other 

compounds used in the study were characterized in previous studies (i.e. PIK75 (Knight 

et al., 2006), TGX221 (Jackson et al., 2005), AS252424 (Pomel et al., 2006), IC87114 

(Sadhu et al., 2003), GDC0941 (Folkes et al., 2008), Wortmannin and LY294002 

(Marone et al., 2008)). We demonstrate that CAL-120 was 25- to 300-fold more selective 

for PI3K5 relative to other PI3K class I enzymes (IC50: PI3Ka 357 nM; PI3K0 153 nM; 

and PI3Ky 47 nM; PI3K5 0.8 nM). CAL-120 was also 103-fold more selective against 

PI3K8 than against related kinases, such as Clip, hVPS34, DNAPK, and mTOR. No 

other activity was observed against a panel of >340 diverse kinases (Table 2.1 A).

EC50 values were determined using in vitro cell-based assays as described 

previously (Lannutti et al., 2011). In fibroblasts, the PDGF receptor signals through 

PI3Ka and the G protein-coupled receptor for LPA signals through PI3KP (Jia et al., 

2008). CAL-120 reduced PDGF-induced pAkt by only 25% at 10 pM, whereas CAL-120 

reduced LPA-induced pAkt by 50% at 1.2 pM (Table 2 .IB). Expression of PI3Ky and 

PI3K8 is largely restricted to cells of hematopoietic origin, including basophils. In 

basophils, FcsRI signals through PI3K8, whereas fMLP signals through PI3Ky via G 

protein-
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A

Class 1 PI3KS Class II 
PI3K

Class III 
PI3K

Related kinases

p110a p110p p110y p1105 Clip hVPS34 PIP5Ka PIP5KP DNAPK mTOR

357 153 47 0.8 >103 >103 >103 >103 >103 >103

*AII values shown are IC50 values (nM). 
B

PI3K
Isoforms PI3Ka PI3Kp PI3Ky PI3KÔ

Cell
Type

Primary
Fibroblast

Primary
Fibroblast

Primary
Basophil

Primary
Basophil

Stimulus PDGF-induced
pAkt

LPA-induced
pAkt

fMLP receptor 
CD63 

expression
Anti-FcsRI- 

induced CD63 
expression

EC50(nM) >20,000 1,200 2,345 4.9
*ln serum-containing medium, values show 2-fold increase

Table 2.1. CAL-120 is a potent and selective inhibitor of PI3K8. A, CAL-120 in vitro 
activity profiles (ICS0 values) against recombinant enzymes of PI3K Class I, II, and III and 
other related kinases. CAL-120 was dissolved in dimethyl sulfoxide at a stock concentration 
of 10 mM and 10-point kinase inhibitory activities were measured with ATP at a 
concentration consistent with the Km o f each enzyme. B, Potency of CAL-120 in cell-based 
assays evaluating the activity of specific PI3K Class I isoforms (ECS0 values). For the 
analysis of PI3Ka and PI3KP signaling, murine embryonic fibroblasts were incubated for 1 
h with several concentrations of CAL-120 followed by stimulation with PDGF or LPA. 
Soluble protein was analyzed by Western blotting for Akt and pAkt473 levels. For the analysis 
of PI3Ky and PI3K5 signaling, basophil activation was measured in isolated peripheral 
blood mononuclear cell or whole blood. PI3Ky was activated with formyl-methionyl- 
Ieucyl-phenylalanine and PI3K8 was activated with anti-FCsRI. To determine the basophil 
cell population and to monitor cellular activation, anti-CCR3-PE and anti-CD63-FITC 
antibodies were added and each sample was analyzed on a FC500MPL flow cytometer, 
respectively. In vitro kinase studies n = 4 independent experiments and for isoform- 
selective cell-based assays n = 8 independent experiments. Experiments were carried out at 
Calistoga Pharmaceutical in Seattle, Washington by Dr. B. Lannutti and A. Kashishian.
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coupled receptors with either stimulus leading to expression of CD63 (Laffargue et al., 

2002; Ali et al., 2004). CAL-120 suppressed FcsRI PI3K5-mediated CD63 expression 

with an EC50 of 4.9 nM, and fMLP PBKy-mediated CD63 expression with an EC50 of 

2345 pM (Figure IB). Thus, CAL-120 had 240- to 4000-fold selectivity for PI3K6 over 

the other class I PI3K isoforms and virtually no effect on other kinases.

2.4.2 Effect of Isoform-Selective PI3K Inhibitors on the Viability of Monocyte-

Macrophage-like Cells

RAW 264.7 cells are a leukemic murine monocyte/macrophage cell line that, 

when treated with RANKL (100 ng/ml) for 4 days, produce multinucleated, TRAP- 

positive osteoclast-like cells (Armstrong et al., 2009). To assess possible toxicity, we 

incubated RAW 264.7 cells with inhibitors at varying concentrations for 24 h, after which 

viability was assessed using an MTT assay. We compared control cultures to those in the 

presence of isoform-selective PI3K inhibitors. The inhibitors were: wortmannin (pan- 

p i 10), LY294002 (pan-pl 10), GDC0941 (a, p and 6 inhibitor), PIK75 (a), TGX221 (P), 

AS252424 (y), IC87114 (8) and CAL-120 (8). Toxic effects were only observed for 

PIK75, at concentrations of 1 and 10 pM, and LY294002, at concentration of 100 pM (p 

< 0.05) (Fig. 2.1). Since toxic effects were observed only for PIK75 and LY294002 at 

high concentrations it was concluded that lower concentrations with all PI3K inhibitors 

were not effecting the cell viability.

2.4.3 Inhibition of PI3K8 Induces Osteoclast Retraction

Conventional PI3K inhibitors such wortmannin and LY294002 have been shown 

to induce osteoclast retraction and inhibit motility (Pilkington et al., 1998). However, 

these conventional inhibitors are not selective for particular PI3K pi 10 isoforms,
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Fig. 2.1. Effects of PI3K isoform-selective inhibitors on viability of RAW 264.7 monocyte- 
macrophage-like cells. RAW-264.7 cells were treated with inhibitors (100 pM to 10 pM, or 
1 nM to 100 pM for LY294002) or vehicle for 24 h, after which viability was assessed using 
an MTT assay. Data are expressed as a percentage of values for vehicle-treated control 
samples. Dashed lines indicate 100%. Viability was diminished only by PIK75 at 
concentrations of 1 and 10 pM and LY294002 at 100 pM. Data are means ± S.E.M., n = 4 
independent experiments, except for IC87114 and LY294002 where n = 3. Differences were 
assessed using one-way ANOVA and Tukey's multiple comparisons test. * indicatesp  < 0.05 
compared to vehicle.
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Fig. 2.2. Wortmannin and CAL-120 induce osteoclast retraction. Rat osteoclasts were 
bathed in HEPES-buffered M l 19 medium with 15% FBS and antibiotics and imaged using 
time-lapse phase-contrast microscopy. A-E illustrates 5 different osteoclasts, each 
illustrated at 3 times. Images labeled time 0 min illustrate the cells immediately prior to 
addition of vehicle, wortmannin (1 pM), PIK75 (1 pM), TGX221 (1 pM), or CAL-120 (1 
pM) to the bath. Prior to treatment, osteoclast lamellipodia were well spread and motile. 
Wortmannin and CAL-120 induced prompt retraction of lamellipodia, which was sustained 
for at least 30 min. Images are representative of the responses of 9-15 osteoclasts from 4-8 
independent preparations. Scale bar represents 30 pm for all panels. Images displayed were 
gamma adjusted for clarity of the periphery. Supplemental Videos 1 and 2 illustrate the 
responses of cells in panels A and E, respectively.
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Fig. 2.3. PI3K8 is important in osteoclast lamellipodia spreading. Rat osteoclasts were 
imaged by time-lapse phase-contrast microscopy and treated with the indicated test 
substance at time 0, as described in the legend to Fig. 3. Image analysis software was used to 
calculate the planar area of osteoclasts at 4-min intervals. Data are expressed as a percentage 
of the mean initial area before time 0 (from -24 to 0 min) and are means ± S.E.M. A, There 
was no marked change in osteoclast area in vehicle-treated cells (n -  4 independent 
preparations, a total of 9 osteoclasts). B-D, The following inhibitors had no net effect on 
osteoclast area: TGX221 (1 pM, n -  8 independent preparations, a total of 10 osteoclasts), 
PIK75 (1 pM, n = 5 independent preparations, a total of 10 osteoclasts), and As252424 (1 
pM, n = 5 independent preparations, a total o f 9 osteoclasts). E-I, In contrast, the following 
inhibitors caused significant, sustained decreases in osteoclast planar area: CAL-120(1 pM, 
n -  5 independent preparations, a total of 15 osteoclasts), wortmannin (1 pM, n -  4 
independent preparations, a total of 8 osteoclasts), GDC0941 (1 pM, n = 5 independent 
preparations, a total o f 8 osteoclasts), LY294002 (50 pM, n = 3 independent preparations, a 
total of 7 osteoclasts) and IC87114 (5 pM, n = 4 independent preparations, a total of 12 
osteoclasts). Differences were assessed using a two-way ANOVA and Bonferroni's multiple 
comparisons test. * indicatesp  < 0.05 compared to vehicle at the corresponding times.
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Fig. 2.4. Reversibility of the effects o f the PI3K5-selective inhibitor CAL-120 on osteoclast 
retraction. Rat osteoclasts were imaged by time-lapse phase-contrast microscopy and 
exposed to vehicle or CAL 120 (1 pM) from 0 to 30 min, as indicated by the horizontal bar 
above the data in B. A illustrates 2 different osteoclasts, each shown at 3 times. Ai, 
lamellipodia remain well spread in vehicle-treated osteoclast. Aii, CAL-120 induces 
retraction of lamellipodia (evident at 15 min). Following wash out of CAL-120 at 30 min, 
lamellipodia respread (evident at 40 min). B, Planar area of osteoclasts was calculated 
periodically and expressed as a percentage o f the mean initial area before time 0 (from -10 to 
0 min). Data are means ± S.E.M. There was no marked change in osteoclast area in vehicle- 
treated cells (n = 3 independent preparations, a total of 8 osteoclasts). In contrast, planar area 
exhibited a significant decrease in the presence of CAL 120 and returned promptly to control 
values following its wash out (n = 3 independent preparations, a total of 5 osteoclasts). 
Differences were assessed using a two-way ANOVA and Bonferroni's multiple comparisons 
test. * indicatesp  < 0.05 compared to vehicle at the corresponding times.
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prompting us to characterize effects o f selective inhibitors. Live osteoclasts were 

monitored using time lapse phase-contrast microscopy. Freshly isolated rat osteoclasts 

were bathed in HEPES-buffered M l99 supplemented with 15% FBS and 1% antibiotic 

solution at 35°C and under control conditions, osteoclast lamellipodia were well spread 

(0 min). Basal morphology and motility were recorded for 25 min before addition of 

vehicle, wortmannin (1 pM), LY294002 (50 pM), GDC0941 (1 pM), PIK75 (1 pM), 

TGX221 (1 pM), AS252424 (1 pM), IC87114 (1 pM) or CAL-120 (1 pM). Wortmannin 

and CAL-120 (1 pM), but not vehicle, PIK75 or TGX221, caused prompt retraction of 

lamellipodia at 10 min and 30 min (Fig. 2.2). See also Supplemental Videos 1 and 2, 

showing representative appearance of cells treated with vehicle (Suppl Video 1) or CAL- 

120 (Suppl. Video 2) (see AVI files on accompanying CD, captions are in Appendix B). 

Despite marked and sustained retraction, osteoclasts treated with GDC0941, IC87114 or 

CAL-120 still remained motile, indicating that the cells were not quiescent as when 

retraction is induced by wortmannin. Osteoclasts that were considered motile exhibited 

pseudopod ruffling, while osteoclasts considered being quiescent had no pseudopod 

ruffling.

To quantify the change in morphology, planar area of osteoclasts were measured 

periodically over 60 min, with area expressed as a percentage of the mean area for each 

cell before treatment. Within 10-15 min, GDC0941, LY294002, wortmannin, IC87114 

and CAL-120 (Fig. 2.3E-I) induced significant retraction to 65-75% of initial area. In 

contrast, there was no significant response to TGX221, PIK75, AS252424 at 1 pM or 

vehicle (Fig. 2.3A-E), consistent with the involvement of a specific PI3K isoform in 

regulating the osteoclast cytoskeleton.
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Some PI3K inhibitors are irreversible such as wortmannin (Wymann et al., 1996), 

so we examined the reversibility of the PI3K6 selective inhibitor, CAL-120 (Fig. 2.4A). 

Planar area of rat osteoclasts was measured periodically over 60 min, with area expressed 

as a percentage of the mean area for each cell before treatment. Following a control 

period of 10 min, vehicle, or CAL-120 (1 pM) was applied to the bath at 0 min and 

washed out at 30 min (Fig. 2.4B). Vehicle caused no change in osteoclast planar area 

before or after wash (Fig. 2.4Ai). In contrast, lamellipodia retracted in the presence of 

CAL-120 with apparent re-spreading following wash (Fig. 2.4Aii). CAL-120 caused 

significant retraction of osteoclasts at 10 min and 15 min, followed by a return to baseline 

after wash out. This demonstrates that the retraction is reversible and reveals a distinct 

feature o f CAL-120. It should be noted that these studies involved lengthy time-lapse 

recordings of single osteoclasts precluding us from carrying out full concentration- 

dependence studies.

2.4.4 Inhibition of PI3K5 Disrupts Actin Organization

We next investigated whether retraction of lamellipodia was associated with 

changes in the organization of the actin cytoskeleton. In vitro, on non-mineralized 

substrates, such as glass or plastic, osteoclasts form clusters podosomes, or a band of 

podosomes at the periphery of the cell, called F-actin belts. On mineralized substrates, 

such as bone or calcium phosphate matrices, podosomal units condense, forming a ring in 

the interior of the cell, called a sealing zone (Saltel et al., 2008). To examine the 

disruption of F-actin belts and sealing zones, we quantified the proportion of cells with 

complete or disrupted F-actin structures. The effects of selected class IA PI3K isoform 

inhibitors were examined. PIK75, TGX221, CAL-120 or wortmannin were applied to
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Fig. 2.5. Effects of PI3K inhibitors on actin belt organization in osteoclasts. Rat osteoclasts 
were plated on FBS-coated glass coverslips in H C 03-buffered M l99 with FBS and 
antibiotics. Samples were treated with vehicle or inhibitor for 10 min and then fixed. F-actin 
was labeled using Alexa Fluor 488-conjugated phalloidin (green), nuclei were stained with 
4',6-diamidino-2-phenylindole (DAPI, blue), and cells were examined by fluorescence 
microscopy (40x objective, Zeiss Axio Observer Z l). Inhibitors were wortmannin 
(wortmn), PIK75, TGX221 and CAL-120 (all 1 pM). Ai, Image shows a single untreated rat 
osteoclast exhibiting a prominent F-actin belt at the cell periphery. Aiii and iv, F-actin belts 
were also observed in osteoclasts treated with PIK75, TGX221. Aii and v, in contrast, 
osteoclasts treated with wortmannin or CAL-120 for 10 min displayed a disorganized 
pattern of F-actin staining with clusters of punctate structures. B, We quantified the number 
of osteoclasts exhibiting actin belts (encompassing at least 75% of the cell periphery). 
Osteoclasts treated with wortmannin or CAL-120 displayed significantly fewer actin 
beltsthan vehicle-treated cells, whereas PIK75 and TGX221 had no significant effect. Data 
are the percentage of osteoclasts exhibiting actin belts and are means ± S.E.M., n = 3 
independent experiments with a total of 1537 osteoclasts. Data were analyzed by one-way 
ANOVA followed by Tukey's multiple comparisons test. * indicates p  < 0.05 compared to 
vehicle.
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Fig. 2.6. Time course of PI3K5-selective inhibitor CAL-120 disruption of F-actin belt. Rat 
osteoclasts were plated on FBS-coated glass coverslips in FIC03 -buffered M l 99 with FBS 
and antibiotics. Samples treated with vehicle (for 40 min) or CAL-120 (1 pM, for the times 
indicated) and then fixed. F-actin was labeled using Alexa Fluor 488-conjugated phalloidin 
(green). A, Representative images of actin belt organization were obtained using a Zeiss 
LSM 510 META confocal microscope (63x objective). Osteoclast treated with vehicle only 
for 40 min shows prominent F-actin belt at the cell periphery. In contrast, osteoclast treated 
with CAL-120 for 20 min shows disorganized clusters of punctate F-actin containing 
structures. B, The percentage of osteoclasts exhibiting actin belts under each condition was 
quantified using a Zeiss Axio Observer Z1 microscope (40x objective). Osteoclasts treated 
with CAL-120 for up to 40 min displayed significantly fewer actin belts than vehicle-treated 
cells. Data are the percentage of osteoclasts exhibiting actin belts and are means ± S.E.M., n 
= 4 independent experiments with a total of 1546 osteoclasts. Data were analyzed by one
way ANOVA followed by Tukey's multiple comparisons test. * indicatesp  < 0.05 compared 
to vehicle.
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Fig. 2.7. Live cell imaging of the effects of CAL-120 on F-actin belt dynamics in rabbit 
osteoclast expressing actin-EGFP. To directly observe the effects of the PI3K8-selective 
inhibitor CAL-120 on F-actin belts rabbit osteoclasts were plated on FBS-coated MatTek 
glass-bottom culture dishes and transduced with adenoviruses expressing actin-EGFP 
fusion or EGFP proteins. Cells were then bathed in HEPES-buffered Ml 19 medium with 
15% FBS at ~26°C and imaged using confocal microscopy (40x objective, Zeiss LSM 510 
META confocal microscope). Images labeled 0 min illustrate the appearance of osteoclasts 
immediately prior to addition of vehicle or CAL-120 (1 pM) to the bath. Ai, F-actin belt 
remained intact in vehicle-treated osteoclast. Aii, CAL-120 induced gradual disappearance 
of the peripheral actin structures and an increase in actin fluorescence in the central region of 
the osteoclast. Images are representative of a total of 4 osteoclasts from 2 independent 
preparations. B, Control samples transduced with EGFP protein alone showed uniform 
distribution of fluorescence. See Supplemental Videos 4 & 5 of the responses illustrated in 
panels Ai and Aii.
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Fig. 2.8. Effect of PI3K8-selective inhibitor CAL-120 on sealing zone formation in 
osteoclasts. Rat osteoclasts were plated on resorbable calcium phosphate-coated discs in 
HCOj-buffered Ml 99 with FBS and antibiotics. Samples were treated with vehicle or 
CAL-120 (1 pM) for 10 min and then fixed. F-actin was labeled using Alexa Fluor 488- 
conjugated phalloidin (green), nuclei were stained with DAPI (blue), and cells were 
examined by fluorescence microscopy (40x objective, Zeiss Axio Observer.Zl). Ai, 
Untreated osteoclast exhibits a prominent F-actin-rich sealing zone, characteristic of active 
osteoclasts on resorbable substrates. Note that sealing zones are more centrally located than 
the peripheral actin belts illustrated in Figs. 6 & 7. Aii, osteoclasts treated with CAL-120 
exhibited fewer sealing zones and displayed clusters of F-actin containing structures. B, We 
quantified the number of osteoclasts exhibiting sealing zones. Osteoclasts treated CAL 120 
displayed significantly fewer actin belts than vehicle-treated cells. Data are the percentage 
of osteoclasts exhibiting sealing zones and are means ± S.E.M., n = 3 independent 
experiments with a total o f 592 osteoclasts. Data were analyzed by unpaired Student's t-test. 
* indicatesp < 0 .05 compared to vehicle.
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osteoclasts for 10 min then cells were analyzed using fluorescence microscopy by an 

individual blinded to the treatments (Fig. 2.5A). Wortmannin and CAL-120 caused a 

significant reduction in the incidence o f F-actin belts in comparison to vehicle (Fig. 

2.5B), whereas TGX221 and PIK75 had no significant effect (Fig. 2.5B). To determine 

whether disruption of F-actin belts is sustained in the continued presence of CAL-120, 

osteoclasts were treated with vehicle or CAL-120. CAL-120 treatment resulted in 

disruption of the cytoskeletal organization compared to vehicle treated (Fig. 2.6A). In the 

continued presence of CAL-120, osteoclast F-actin cytoskeletal disruption was 

maintained (Fig. 2.6B). To complement these studies we examined the effect of CAL-120 

on F-actin belts in live cells using rabbit osteoclasts virally transduced with EGFP-actin. 

When viewed using confocal microscopy, vehicle treatment caused no change in F-actin 

belt organization (Fig. 2.7Ai). In contrast, CAL-120 gradually induced disruption of F- 

actin belt organization starting within 10 min (Fig. 2.7Aii). See also Supplemental Videos 

3 and 4, showing representative appearance of cells treated with vehicle (Suppl. Video 3) 

or CAL-120 (Suppl. Video 4) (see AVI files on accompanying CD, captions are in 

Appendix B).

To examine sealing zones, rat osteoclasts were plated on coverslips coated with

T'K/f TIV/f

resorbable calcium phosphate (BD BioCoat Osteologic ), treated with vehicle, or 

CAL-120 (1 pM) for 10 min, fixed, permeabilized and incubated with fluorescently 

tagged phalloidin (Fig. 2.8A). Notably, sealing zones generally had a smaller diameter 

than F-actin belts. Vehicle treatment yielded 40% of cells with sealing zones, where as 

CAL-120 treatment reduced the incidence of intact sealing zones to 10% of cells. To 

examine the disruption of sealing zones, we used the same protocol as quantifying F-actin
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belts. CAL-120 caused a significant reduction in the number of actin rings in comparison 

to vehicle (Fig. 2.8B). It was determined that the PI3K8 inhibitor, CAL-120 decreases the 

incidence of osteoclasts with sealing zones, consistent with the involvement of a specific 

PI3K isoform in regulating cytoskeletal remodeling in osteoclasts.

2.4.5 Inhibition of PI3K Suppresses the Effects of RANKL on Osteoclast Survival 

Bone resorption is proportional to the number of osteoclasts present during any 

given time, and therefore, survival is a key factor that regulates bone loss in vivo 

(Manolagas, 2000). Therefore, we examined the effect of isoform-selective PI3K 

inhibitors on osteoclast survival. Rat osteoclasts were placed on FBS-coated coverslips 

and incubated the absence (control) or presence of RANKL (100 ng/ml), along with 

vehicle, 1 pM CAL-120, 1 pM TGX221 or 100 nM PIK75. Survival was quantified by 

counting the number of osteoclasts before and after an 18 h incubation period and the 

proportion of surviving cells was calculated. Osteoclasts were identified by phase- 

contrast microscopy as multinucleated cells (> 3 nuclei). There were no significant 

effects of inhibitors on survival under control conditions (Fig. 2.9). However, RANKL 

significantly enhanced osteoclast survival, and CAL-120, TGX221 and PIK75 suppressed 

the stimulatory effect of RANKL on survival. These data illustrate a key functional role 

for PI3K in mediating the effects of RANKL on osteoclast survival.
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Fig. 2.9. The effects of isoform-selective PI3K inhibitors on osteoclast survival. Rat 
osteoclasts were plated on coverslips in H C 03 -buffered M 199 with 15% FBS and antibiotics. 
As indicated, samples were treated with RANKL (100 ng/ml) or its vehicle (Control). In 
addition, samples were treated with vehicle, PIK75 (100 nM), TGX221 (1 pM) or CAL-120 
(1 pM). Survival was assessed by counting (using phase-contrast microscopy) the number of 
osteoclasts before and after 18 h of culture. As expected, RANKL increased osteoclast 
survival compared to vehicle. In contrast to their selective effects on cytoskeletal 
organization, all inhibitors tested (PIK75, TGX221 and CAL-120) suppressed RANKL- 
induced survival. Data are the number of surviving osteoclasts on each coverslip at 18 h 
expressed as a percentage of the initial number of osteoclasts on the same coverslip (means ± 
S.E.M., n = 3 independent experiments with a total o f2529 osteoclasts). Data were analyzed 
by a two-way ANOVA followed by a Bonferroni's multiple comparisons test. * indicates p  < 
0.05 for the effect of RANKL.
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2.5 Discussion

In the present study, we characterized a new potent and selective PI3K8 inhibitor 

as well as determined new insights into the roles of PI3K isoforms in regulating 

osteoclast function. New findings reported include the potency and specificity of a novel 

PI3K8 inhibitor, CAL-120, as well as the effects of isoform-selective PI3K inhibitors on 

1) the viability of RAW 264.7 cells, 2) osteoclast cytoskeletal organization, and 3) 

osteoclast survival. A summary of these findings can be found in Table 1. For the first 

time, we demonstrate that PI3K8 plays a central role in osteoclast morphology and 

cytoskeletal reorganization, and that PI3Ka, PI3K(3 and PI3K8 all contribute to osteoclast 

RANKL-induced survival. Finally, we reported the IC50 and EC50 values of CAL-120, a 

potent, reversible and selective cell permeable inhibitor of PI3K8. The other PI3K 

inhibitors used in the present study have been characterized previously (Marone et al., 

2008).

The expression of mRNA encoding PI3K isoforms has been documented in 

monocyte-macrophage-like RAW 264.7 cells with levels from highest to lowest being 

PI3Ka, PI3K8 and then PI3KP (PI3Ky not examined) (Grey et al., 2010). Since 

osteoclasts are isolated with a number of other cell types, it is difficult to accurately 

determine the expression levels of PI3K in authentic osteoclasts. The finding that PI3K8 

expression is high in cells of hematopoietic lineage (Chantry et al., 1997) suggests that 

the 8 isoform may serve important function in osteoclasts.

Genetically modified mice, generated either by deletion of PI3K pi 108 or by 

mutation of the kinase domain, exhibit severely altered immune and inflammatory 

responses compared to their wild-type controls (Vanhaesebroeck et al., 2005). For
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PI3K Inhibitor Target Promote
Retraction

Disrupt 
F-actin Belts

Suppress
Survival

PIK75 a - - 4-
TGX221 p - - +

AS252424 y - n/t n/t
CAL-120 8 + + +

Wortmannin Pan-PI3K 4* + n/t

Table 2.2. Summary of findings. + symbol represents positive, -  symbol represents a 
negative and n/t represents not tested. Wortmannin, LY294002, CAL-120, GDC0941 and 
IC87114 induced osteoclast retraction, whereas TGX221, PIK75 and AS242525 did not, 
consistent with involvement of the PI3K8 isoform in regulating cytoskeletal remodeling 
in osteoclasts. CAL-120 and wortmannin, but not TGX221 and PIK75, disrupted F-actin 
belts which are important for osteoclast function. Further, CAL-120 decreased sealing 
zone number in osteoclasts on calcium phosphate surfaces. CAL-120, TGX221 and 
PIK75 all suppressed RANKL-induced osteoclast survival. In conclusion, these data are 
consistent with a key role for the PI3K8 in regulating osteoclast morphology and 
cytoskeletal function. In contrast, a non-redundant role of Class LA PI3K isoforms was 
observed in osteoclast survival.
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instance, studies of mice with a loss of function genetic alteration in the PI3K5 subunit 

exhibit defects in B- and T-cell signaling, including improper maturation, defective 

antigen receptor signaling, and impaired humoral immune responses (Ramadani et al., 

2010; Uno et al., 2010). Recent data in macrophages demonstrate that PI3K5 is localized 

around the Golgi membrane and seems to be important in vesicle trafficking (Low et a l, 

2010). Moreover, inhibition of PI3K8 in neutrophils leads to defects in chemotaxis 

(Afonso & Parent, 2010). Our study is the first to establish roles for PI3K8 in osteoclast 

survival and function.

PI3K has been shown to participate in lamellipodia spreading of osteoclasts 

(Palacio & Felix, 2001) and other cell types (Di Marzio et al., 2005; Bagorda et al., 2006; 

Weiger et al., 2009). The results of our study show that blocking PI3K.5 

pharmacologically causes retraction of osteoclast lamellipodia; at the same time, 

peripheral pseudopod ruffling is maintained. PI3K signaling might initiate osteoclast 

spreading through interactions with other signaling pathways, including Rho, Rac and 

Cdc42. It has been shown by others that activation of Rho and inhibition of Rac induces 

retraction of macrophage-derived multinucleated cells (Ory et al., 2000). In keeping with 

this idea, RhoA and Rac have been shown to be regulated negatively and positively by 

PI3K8, respectively (Eickholt et al., 2007; Papakonstanti et al., 2008). Consistent with 

our findings, others have shown acute morphological contraction in macrophages upon 

PI3K8 inactivation observed in parallel with decreased Rac activity and increased Rho 

activity (Papakonstanti et al., 2007). Therefore, it would be of interest in future studies to 

examine the possible role of Rho and Rac in mediating the lamellipod retraction elicited 

by blocking PI3K5 in osteoclasts.
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Osteoclast retraction is also caused by the hormone calcitonin, and by the 

bioactive lipid mediators lysophosphatidic acid (LPA) and platelet-activating factor 

(PAF) which signal through GPCRs (Wood et al., 1991; Gravel et al., 1994; Lapierre et 

al., 2010). Specifically, calcitonin-induced retraction of lamellipodia is sustained while 

osteoclasts remain quiescent (Komarova et al., 2003), whereas LPA-induced retraction of 

lamellipodia is sustained and peripheral pseudopod ruffling is sustained (Lapierre et al., 

2010). Furthermore, PAF-induced retraction of osteoclast lamellipodia is not sustained 

over time resulting in re-spreading of lamellipodia (Wood et al., 1991). Interestingly, the 

morphological responses observed during inactivation of PI3K8 are similar to LPA- 

induced retraction and distinct from the responses elicited by calcitonin and PAF. Further 

studies are required to determine if  there is possible cross-talk between LPA signaling 

and PI3K8 signaling. In the present study, we found that TGX221 induced partial 

retraction of osteoclasts. TGX221 is a potent and selective cell permeable inhibitor of 

PI3K pllOp relative to all other PI3K isoforms except PI3K8 (IC50 values: pi 10a 1000 

nM; pllOp 9 nM; pi  108 210 nM) (Jackson et al., 2005). Likely, the concentration used 

in our study (1 pM) fully inhibits PI3KP and partially blocks PI3K8 accounting for its 

effect on retraction.

Activation of the avP3 integrin in osteoclasts initiates a signaling cascade which 

is known to involve a c-Src, Pyk2 and c-Cbl complex, and PI3K, resulting in actin 

polymerization and cytoskeletal reorganization (Chellaiah & Hruska, 1996; Faccio et al., 

2002; Novack & Faccio, 2009). Since osteoclasts lacking P3 have an abnormal 

cytoskeleton, fail to spread and do not have sealing zones in vitro (McHugh et al., 2000), 

it is possible that avp3 integrins are required to activate PI3K8 to mediate its effects on
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the cytoskeleton. Further study is needed in order to elucidate the possible association of 

PI3K isoforms and avp3 integrins.

Mature osteoclasts exhibit two types of specialized actin structures, F-actin belts 

and sealing zones, when adherent to non-mineralized or mineralized substrata, 

respectively. It is suggested that osteoclasts only degrade substrate within the area 

defined by specialized actin structures (Badowski et a l, 2008) and, therefore, bone 

resorption by osteoclasts is dependent on the integrity of the actin cytoskeleton (Jurdic et 

al., 2006; Ory et al., 2008). The results from our study show that the incidence of F-actin 

belts and sealing zones in osteoclasts is markedly lower when PI3K8 is inhibited. Live 

cell imaging on osteoclasts shows gradual disruption of F-actin belts into puncta along 

with break down of actin structures. This finding is in accordance with the observation 

that inhibition of PI3K disrupts ring-like F-actin structures in murine osteoclast-like cells 

(Nakamura et al., 1995; Lakkakorpi et al., 1997). Our results indicate that PI3K pi 108 

inhibition causes both retraction and disruption of F-actin belts and sealing zones, 

suggesting that the two events are correlated. However, as discussed previously, the exact 

mechanisms by which PI3K affects the actin cytoskeleton are currently unknown. Rho 

and Rac have an antagonistic relationship affecting cell spreading, and both have been 

implicated in regulating the formation of F-actin belts and sealing zones (Razzouk et al., 

1999; Chellaiah et al., 2000; Ory et al., 2008). Specifically, a constitutively activated 

form of Rho stimulates gelsolin-associated PI3K activity resulting in podosome assembly 

in osteoclasts (Chellaiah et al., 2000). F-actin belts and sealing zones have been shown to 

regulate contractility of osteoclasts adherent to non-mineralized or mineralized 

substratum in part through myosin II (Chabadel et al., 2007). Furthermore, compounds
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that affect osteoclast retraction also disrupt sealing zones and the ability of osteoclasts to 

form pits on dentine slices, such as the hormone calcitonin (Suzuki et al., 1996; 

Yamamoto et al., 2006).

The lifespan of osteoclast precursors and mature osteoclasts, in conjunction with 

their differentiation and activation, contribute to the control of bone resorption 

(Manolagas, 2000). Several ligands may activate PI3K and regulate osteoclast survival. 

For example, in previous studies, RANKL has been shown to activate PI3K/Akt/mTOR 

signaling pathway, thereby enhancing osteoclast survival (Glantschnig et al., 2003; 

Aeschlimann & Evans, 2004). RANKL also activates NF-kB signaling and activation of 

calcineurin and NFATcl, promoting osteoclastogenesis and enhancing cell survival 

(Aeschlimann & Evans, 2004; Novack & Teitelbaum, 2008). According to our results, all 

Class IA PI3K isoforms play a role in regulating RANKL-induced cell survival, but do 

not affect basal levels of survival. In support of our findings, others have shown that the 

activity of any Class IA PI3K isoform can sustain survival of other cell types (Foukas et 

al., 2010). Specifically, leukocytes and fibroblasts continue to proliferate and survive 

during PI3K0a or PI3K8 inactivation by increasing pi 1 Op signaling and enhancing input 

from the ERK pathway (Foukas et al., 2010). Similar results in embryonic fibroblasts 

show that PI3Ka or PI3K(3 alone can sustain cell proliferation and survival (Foukas et al., 

2010; Matheny & Adamo, 2010). These data demonstrate functional redundancy of PI3K 

isoforms and that only a small subset of Class IA PI3K activity is necessary for osteoclast 

survival. In contrast, it has been suggested that PI3Ka is most important for the survival 

of other cell types (Niedermeier et al., 2009).
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Overall, our findings provide evidence for redundant and non-redundant functions 

of different PI3K isoforms and show for the first time an important role for PI3K5 in 

regulating osteoclast morphology and cytoskeletal function. Knowledge of the important 

roles of each Class I PI3K family member in various physiological and 

pathophysiological processes may allow isoform-selective PI3K inhibitors to be used 

therapeutically. In particular, the PI3K5 isoform, which has more limited tissue 

distribution than PI3Ka and PI3K0 is an attractive target for novel anti-resorptive

therapeutics.
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3.1 Summary and Conclusions

Objective #1: To characterize the effects o f  isoform-selective PI3K inhibitors on the 

viability o f  monocyte-macrophage-like cells.

Effects of isoform-selective PI3K inhibitors on the viability of RAW 264.7 cells 

were investigated using an MTT assay. High concentrations of PIK75 and LY294002 

decreased viability, whereas GDC0941, TGX221, CAL-120, IC87114, AS252424 and 

wortmannin had no significant effects.

Objective #2: To investigate the effects o f  isoform-selective PI3K inhibitors on osteoclast 

morphology and motility.

Live cell microscopy revealed that inhibition of the PI3K8 isoform induces 

retraction of lamellipodia in primary rat osteoclasts under basal conditions. Although 

lamellipodia retracted, peripheral pseudopods still remained motile.

Objective #3: To determine the effect o f  isoform-selective PI3K inhibitors on cytoskeletal 

organization in osteoclasts on varying substrata.

Fluorescence microscopy revealed that the PI3K8 isoform is important in F-actin 

organization in rat primary osteoclasts plated on glass and on calcium phosphate surfaces.

Objective #4: To evaluate the effect o f  isoform-selective PI3K inhibitors on osteoclast 

survival.

All isoform-selective Class LA PI3K inhibitors suppressed RANKL-induced

survival.
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3.2 Contributions of the Research to the Current State of Knowledge

General significance—Prior to the work reported in this thesis, knowledge of the 

effects of isoform-selective PI3K inhibitors on osteoclasts was limited. The overall 

objective of this research was to investigate the effect of isoform-selective PI3K 

inhibitors in osteoclasts. The key implication of this study is that PI3K5 plays an 

important role in regulating osteoclast morphology and cytoskeletal organization; 

whereas, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, 

the PI3K5 isoform, which has more limited tissue distribution than PI3Ka and PI3KP, is 

an attractive target for reducing bone loss in diseases, such as metastatic bone cancer and 

inflammatory bone diseases.

Cancer metastasis and osteolytic lesions— Common human cancers, including 

lung, prostate and breast often metastasize to bone due to its blood vessel density and 

abundance of growth factors, which support the invasion and proliferation of cancer cells 

(Mundy, 2002). Tumours in bone frequently promote the formation and activation of 

osteoclasts, leading to bone resorption and subsequent tumour growth. Cancer cell 

proliferation in bone mainly occurs because osteoclastic resorption releases growth 

factors from the matrix, such as IGF-1, TGFp, fibroblast growth factor and platelet- 

derived growth factor (Mohan & Baylink, 1991; Mundy, 2002, Kingsley, 2007 #97). 

Interestingly, all of the above growth factors signal through receptor tyrosine kinases, 

which directly or indirectly activate the PBK/Akt pathway (Brader & Eccles, 2004; Stitt 

et al., 2004; Assinder et al., 2009). Furthermore, tumor progression is often associated 

with excessive activation of the PI3K pathway, whether it is due to activating mutations
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of the PI3K catalytic p i 10 subunit, regulatory p85 subunit, or deletion of the PTEN 

inhibitory protein (Liu et a l ,  2009; Vanhaesebroeck et a l ,  2010).

There is extensive evidence that the PI3K pathway affects osteoclast survival, in 

particular through RANKL signaling (Yang et a l ,  2008; Yi et a l, 2008). Tumour cells 

release factors which act on neighbouring cells (such as T cells or osteoblasts) to release 

RANKL. In turn, RANKL binds RANK receptors expressed on tumour cells which 

promote migration and proliferation (Huang et a l, 2002; Jones et a l ,  2006). As 

mentioned above, RANKL also binds to RANK on osteoclasts to promote bone 

resorption and the release of bone-derived growth factors.

Recently developed isoform-selective PI3K inhibitors show considerable promise 

for the treatment of cancer and are making their way into the early phases of clinical trials 

(Lannutti et a l, 2011). The findings in Chapter Two suggest a novel therapy for skeletal 

métastasés -  it may be possible to identify isoform-selective PI3K inhibitors that suppress 

metastatic tumour cell growth, as well as inhibit bone resorption. Thus, pharmacological 

inhibition of the PI3K signaling axis may reduce tumor proliferation in bone, and limit 

the progression of osteolytic lesions.

PI3K and inflammatory bone diseases— Patients suffering from arthritis have a 

marked decrease in quality of life. For example, rheumatoid arthritis (RA) is a chronic, 

progressive, debilitating inflammatory disease that affects approximately 1% of the 

world’s population (Rommel et a l ,  2007). Matrix-degrading enzymes such as 

metalloproteinases were initially thought to be the sole cause of bone and cartilage 

destruction in arthritis. However, cell-mediated mechanisms, involving osteoclast 

activation, are now thought to be important contributors (Takayanagi, 2009).
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Identification o f osteoclast-like giant cells at the interface between the synovium and 

bone in rheumatoid joints dates back to the early 1980’s (Takayanagi, 2009). It has been 

determined that osteoclasts are responsible for the resorption of mineralized extracellular 

tissue, which contributes to the damage, pain and deformity associated with RA (Schett, 

2008). In the pathogenesis of bone destruction associated with RA, the synovium is a site 

of active interplay between immune and bone cells. Furthermore, RA synovial fluid 

contains osteoclast precursors as well as cells that support osteoclastogenesis 

(Takayanagi, 2009). It is important that osteoclast activity be tightly regulated for skeletal 

and joint homeostasis. Osteoclast activation and apoptosis represents a critical point at 

which bone resorption can be minimized during RA. In osteoclasts, PI3K is activated by 

RANKL and MCSF, two cytokines that are critical in osteoclast development (Novack & 

Teitelbaum, 2008; Mandal etal., 2009).

Interestingly, selective PI3K8 and PI3Ky inhibitors suppress joint inflammation 

and bone erosion in mouse and rat RA models (Rommel et al., 2007). Evidence so far 

suggests that PI3K5 and PI3Ky operate as partners in distinct, yet co-dependent signaling 

pathways in many immune cells, such as B cells, T cells, macrophages and mast cells 

(Rommel et al., 2007). This strongly indicates that, in addition to RA, these enzymes are 

potential therapeutic targets for inflammatory disease. Therefore, it is possible that 

isoform-selective PI3K inhibitors may be useful for the treatment of inflammatory bone 

diseases such as RA by suppressing the inflammatory response and inhibiting osteoclast 

activity.
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3.3 Limitations of the Research and Suggestions for Future Studies

In vitro experiments -  In vitro studies are important for understanding the 

mechanisms of cell physiology. The main advantages of in vitro experiments are that they 

allow for the precise control of concentrations of studied compounds and that results are 

usually swift. In vitro studies do have their limitations, such as culture artifacts. However, 

it is difficult to monitor the activity of PI3Ks in cells in situ (Vanhaesebroeck et al., 

2005).

Pharmacological inhibitors were used in determining the roles of PI3K isoforms 

in osteoclasts and it is possible that inhibitors had non-specific effects. It would have 

been ideal to perform full concentration-response studies for the effects of inhibitors on 

the morphology of primary osteoclasts. However, it should be noted that these studies 

involve lengthy time-lapse recordings of single osteoclasts, precluding us from carrying 

out full concentration-dependence studies. It would be desirable to validate the findings 

in Chapter Two using knockdown techniques such as shRNA targeting PI3K8, or by 

obtaining osteoclasts from PI3K8 ‘knockout’ or ‘kinase-deficient knock in’ mice. 

Moreover, studies o f such genetically modified mice would allow for determination of a 

bone phenotype, which has not yet been documented. Further study is needed to elucidate 

the possible effects of genetic modification of PI3K isoforms on the skeleton in vivo.

Another limitation of the present studies is the possibility that contaminating cell 

types may release signaling factors that act on osteoclasts and, thus, produce indirect 

effects in response to PI3K inhibitors.

A number of questions remain. These include: whether certain PI3K isoforms 

produce specific pools of PIP3 located on the plasma membrane, endosomes (Sato et al.,
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2003) or nucleus (Lindsay et al., 2006); and whether PI3K isoforms interact with other 

proteins. The roles of many phosphatases that regulate and diversify PI3K signaling are 

undetermined and further complicate the situation. Future investigations should include 

lipid analysis, for instance by mass spectrometry, to study the phospholipid profile in 

primary cells (Vanhaesebroeck et al., 2005).

RAW 264.7 cells (rather than primary osteoclasts) were selected for Objective #1 

because they are an osteoclast precursor cell model and because primary cultures of 

osteoclasts always include other cell types.

PI3K signaling in osteoclasts -  The data presented in Chapter Two do not fully 

explain the PI3K signaling pathway and the ligands which activate it. Further studies are 

required to determine the mechanisms leading to retraction of osteoclast lamellipodia and 

the influence of PI3K5, as well as the signaling pathways in which multiple PI3K 

isoforms decrease osteoclast survival.

Suggestions for future work include determining the relative expression levels of 

the different PI3K isoforms in osteoclasts but, as mentioned above, it is difficult to obtain 

pure preparations of osteoclasts. The purest system presently available is probably 

osteoclasts differentiated from bone marrow cell cultures. Using pharmacological 

approaches, we have identified important roles for specific PI3K isoforms in osteoclasts. 

However, we have not yet determined whether this is due to differences in i) the 

expression of these isoforms, ii) their intrinsic biochemical activity, or iii) their 

localization within the osteoclast. Further studies are clearly needed.

PI3K signaling in osteoclastogenesis -  RANKL-RANK-mediated interaction 

activates tumour necrosis factor receptor-associated factor 6 (TRAF6 ), c-src and PI3K
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and later c-fos, NF-kB and NFATcl to drive osteoclastogenesis (Aeschlimann & Evans, 

2004). The importance of c-fos, NF-kB and NFATcl in osteoclastogenesis is 

demonstrated in knockout mice of each signaling molecule -  all of which exhibit 

osteopetrosis (Grigoriadis et al., 1994; Asagiri & Takayanagi, 2007). A recent study by 

Kang and colleagues report that genetic inactivation of the pllO y  gene leads to an 

increase in bone mass, likely due to impairment in osteoclastogenesis (Kang et al., 2010). 

PI3K pllOy and p i 105 have been shown to activate NF-kB in other cell types so it is 

plausible that they could be having an effect on osteoclast precursors (Wang et al., 2011). 

It would be interesting to know the bone phenotype produced by a p i  108 knock out and 

the effects p i 105 have on c-fos, NF-kB and NFATcl expression. The mice have been 

generated but the effect on the skeleton has not yet been documented. It is possible that 

PI3K pi 10 plays a role in osteoclastogenesis, and further studies are required to 

investigate this process.

PI3K signaling in osteoclast survival and apoptosis -  It will be of interest to 

extend our studies of osteoclast survival by looking at the effects of isoform-selective 

PI3K inhibitors on apoptosis. Apoptosis normally controls and regulates excessive 

proliferation and damage to cells by eliminating them (Chang et al., 2003). When 

apoptosis is compromised, cell survival is prolonged and problems such as cancer can 

arise. The Bcl-2 family of proteins plays a critical role in the regulation of apoptosis. 

These proteins include both pro-apoptotic proteins such as, BAD and BAX as well as 

anti-apoptotic proteins such as Bcl-2 and Bcl-xi (Chang et al., 2003). The balance of anti- 

apoptotic and pro-apoptotic proteins is thought to dictate whether or not a cell will 

survive or undergo apoptosis. Stimulation of PI3K leads to activation of Akt, which has
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been shown to increase cell survival in response to IGF-1 (Vivanco & Sawyers, 2002). 

Also, constitutively active Akt rescues cells during PTEN-mediated apoptosis (Li et al., 

1998). There are several possible mechanisms by which Akt may protect cells from 

apoptosis: i) phosphorylation of the pro-apoptotic protein BAD, which causes its 

dissociation from anti-apoptotic protein BCL-xi (normally, BAD forms a non-functional 

heterodimer with the BCL-xj (Vivanco & Sawyers, 2002)); ii) phosphorylation of the pro- 

apoptotic protease, caspase-9, inhibiting catalytic activity (Cardone et a l, 1998); and iii) 

phosphorylation of the Forkhead family of transcription factors, which inhibits 

translocation into the nucleus (Forkhead transcription factors normally cause up- 

regulation of several pro-apoptotic proteins such as FAS ligand (Vivanco & Sawyers, 

2002)). Future studies should include apoptosis assays to determine the effect of PI3K 

inhibitors on osteoclast apoptosis. To elucidate the mechanism, it would be interesting to 

look at expression levels of anti-apoptotic proteins such as Bcl-2 or Bcl-xi, or pro- 

apoptotic proteins such as caspase-9 during blockade or inactivation of specific PI3K 

isoforms.

In summary, for the first time, we have described the potency and specificity of a 

novel PI3K8 inhibitor, CAL-120. We also demonstrate the effects of isoform-selective 

PI3K inhibitors on the viability of RAW 264.7 cells and on the cytoskeletal organization 

and survival of primary osteoclasts. For the first time, we demonstrate that PI3K5 plays a 

central role in regulating osteoclast morphology and cytoskeletal organization, and that 

PI3Ka, P and 5 all contribute to RANKL-induced survival. PI3Ks are promising targets 

for therapeutic intervention in metabolic, immunological and oncological diseases 

(Vanhaesebroeck et al., 2010). Interference with PI3K signaling should be targeted at a
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specific PI3K isoform to reduce side-effects. The potential exists for identifying isoform- 

selective PI3K inhibitors that target both osteoclasts and tumor cells for the treatment of 

metastatic bone disease, or osteoclasts and immune cells for the treatment of 

inflammatory diseases such as RA. In particular, PI3K8, which has more limited tissue 

distribution than PI3Ka and PI3KP is an attractive target for the future development of 

anti-resorptive therapeutics.
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Suppl. Video 1. No Effect of Vehicle on Osteoclast Morphology or Motility. Rat 
osteoclasts were bathed in HEPES-buffered M l99 medium with 15% FBS medium at 
35°C and imaged using time-lapse phase-contrast microscopy. Video begins at 0 min, 
vehicle was added at 24 min and video ends at 60 min. Image intervals are 1 min and 
frames are shown at 10 frames/s. Vehicle was added ~ 2 s into the video. Width of field is 
320 pm. Selected frames from this video are shown in Fig. 2.2A.

Suppl. Video 2. PI3K8 Isoform-Selective Inhibitor, CAL-120. Induces Osteoclast 
Retraction Without Inhibiting Pseudopod Motility. Rat osteoclasts were bathed in 
HEPES-buffered M l99 medium with 15% FBS medium at 35°C and imaged using time- 
lapse phase-contrast microscopy. Video begins at 0 min, CAL-120 (1 pM) was added at 
24 min and video ends at 60 min. Image intervals are 1 min and frames are shown at 10 
frames/s. CAL-120 was added 2 s into the video. Width of field is 320 pm. Selected 
frames from this video are shown in Fig. 2.2E.

Suppl. Video 3. No Effect of Vehicle on Actin Organization in Osteoclasts. Rabbit 
osteoclasts were plated on FBS-coated MatTek glass-bottom culture dishes and 
transduced with adenoviruses expressing actin-EGFP fusion. Cells were then bathed in 
HEPES-buffered M l99 medium with 15% FBS at ~26°C and imaged using confocal 
microscopy. Video begins at 0 min, vehicle was added at 7.5 min and video ends at 90 
min. Image intervals are 1.5 min and frames are shown at 12 frames/s. CAL-120 was 
added at immediately into the video. Width of the field is 225 pm. Data obtained from 
this video are included in Fig. 2.7Ai.

Suppl. Video 4. PI3K8 Isoform-Selective Inhibitor, CAL-120 Disrupts Actin 
Organization in Osteoclasts. Rabbit osteoclasts were plated on FBS-coated MatTek glass- 
bottom culture dishes and transduced with adenoviruses expressing actin-EGFP fusion. 
Cells were then bathed in HEPES-buffered M l99 medium with 15% FBS at ~26°C and 
imaged using confocal microscopy. Video begins at 0 min, CAL 120 (1 pM) was added at
7.5 min and video ends at 90 min. Image intervals are 1.5 min and frames are shown at 
12 frames/s. CAL120 was added at immediately into the video. Width of the field is 225 
pm. Data obtained from this video are included in Fig. 2.7Aii.
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