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Abstract 

Human motor control is highly adaptive to new tasks and changing environments. Motor 

adaptation relies on multiple dissociable processes that function to increase attainment of 

reward and to reduce sensory error and physical effort as costs. This thesis tests the 

hypothesis that fronto-striatal and dopaminergic neural systems contribute to specific 

aspects of motor adaptation that occur through reinforcement of rewarding actions.    

Behavioral tasks were designed to isolate learning in response to feedback conveying 

information about reward, error, and physical effort. We also measured behavioral effects 

of savings and anterograde interference, by which memories from previous motor 

learning can facilitate or impair subsequent learning. Electroencephalography (EEG) was 

used to record neural event-related potentials (ERPs) elicited by task-related feedback. 

We measured the feedback-related negativity/ reward positivity (FRN/RP), a midfrontal 

component of ERP responses to feedback stimuli that correlates with neural activity 

throughout fronto-striatal circuits. Levodopa, a dopamine precursor, was used to 

manipulate dopamine release in healthy volunteers, as it has been shown to impair 

reward-based learning in various cognitive tasks.  

We first determined that medial frontal feedback processing indexed by the FRN/RP is a 

specific neural correlate of reward prediction error during motor adaptation, and that the 

FRN/RP is not elicited by sensory error. Next, we found that levodopa did not affect 

either the FRN/RP, reward-based motor adaptation, savings, or anterograde interference. 

Finally, we determined that medial frontal activity indexed by the FRN/RP does not 

respond to physical effort as a cost that discounts the value of reward. However, effort 

increased neural sensitivity to reinforcement outcomes in activity measured by a 

midfrontal ERP component that was spatially and temporally distinct from the FRN/RP.  

These findings suggest that mid-frontal feedback processing measured by the FRN/RP 

may play a specific role in reward-based motor learning that is distinct from error- and 

effort-based learning processes. Our findings also indicate that reinforcement learning 
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mechanisms that contribute to motor adaptation do not depend on the same 

dopaminergic processes that are impaired by levodopa in cognitive learning tasks.  

Keywords 

Human; reaching; motor learning; motor adaptation; reward; reinforcement; effort; EEG; 

feedback-related negativity; reward positivity; P300; dopamine; levodopa; savings; 

anterograde interference; visuomotor rotation; force field 
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Summary for Lay Audience 

People have a remarkable ability to adapt their movements to changing conditions. Most 

research about motor adaptation has studied how people adjust movements according to 

spatial errors. For example, when the wind begins to push a tennis player’s serve in an 

unexpected direction, the player sees the placement of each serve and adapts to 

compensate for the errors they experience visually. Movements can also be adapted and 

refined through reinforcement learning. In reinforcement-based motor learning, variable 

movements are produced during repeated practice, and we learn to repeat the movements 

that result in successful or rewarding outcomes. For example, a tennis player might learn 

to adjust their stance in a way that provides more power and wins more points. People 

also adapt their movements to be more efficient and require less effort. One hypothesis is 

that the brain treats effort as a cost that discounts the value of rewards. 

When decisions result in rewarding outcomes, a chemical called dopamine is released in 

the brain. Dopamine is thought to cause changes in reward-processing brain areas that 

reinforce successful decisions. We tested whether similar mechanisms also contribute to 

reinforcement-based motor learning. We performed experiments in which people learned 

to adapt reaching arm movements based on rewards and errors. Some people took a drug 

called levodopa that impairs reinforcement-based learning in cognitive decision making 

tasks by overstimulating dopamine release. We placed electrodes on participants’ heads to 

measure electrical activity from the brain in response to reward and error during 

learning. We also performed an experiment to test whether physical effort affects brain 

responses to reward as a cost.  

We identified electrical signals from frontal areas in the brain that may reflect a specific 

mechanism for reinforcement-based motor learning. This brain mechanism was sensitive 

only to reward or success, while signals from different brain areas reflected effort and 

error. Levodopa did not affect these specific brain responses to reward, nor did it affect 

motor learning across a variety of tasks. These results indicate that motor learning does 
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not depend on the same dopamine learning mechanism that is impaired by levodopa in 

cognitive decision-making tasks. 
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1.1 Overview 

Human motor behavior is highly adaptable. People learn to select actions and produce 

movements in ways that reduce error, reduce effort, and increase reward attainment. 

Behavioral adaptation occurs largely through feedback mechanisms by which the 

observed consequences of actions drive changes in subsequent motor output. Multiple 

processes contribute to motor adaptation with distinct neural substrates, timescales, and 

behavioral signatures.  

Cortico-cerebellar circuits are heavily implicated in sensory-error based adaptation, 

which functions to rapidly reduce errors when the direct sensory consequences of motor 

output are perturbed (Shadmehr et al., 2010). Recent work has characterized an 

additional distinct process of reward-based motor adaptation, by which the parameters of 

movements are flexibly adapted in order to increase task success or the obtainment of 

extrinsic rewards (Izawa & Shadmehr, 2011). Plasticity in fronto-striatal circuits mediated 

by midbrain dopamine signaling is broadly thought to underlie reward-based learning for 

the selection of discrete actions (Schultz, 2016). However, it is not yet known whether the 

same processes also shape the kinematics and dynamics of movement according to 

reward outcomes.  

Movements are selected and adapted not only to increase reward attainment but also to 

reduce physical effort as a cost (Selinger et al., 2015; Summerside et al., 2018). Reward 

circuits involving frontal cortical areas, the striatum, and the dopaminergic midbrain 

have also been implicated in motivation and decision making related to physical effort 

(Hauser et al., 2017; Klein-Flügge et al., 2016; Kurniawan et al., 2011; Suzuki et al., 2020). 

However, little is known regarding the neural learning mechanisms by which behavior is 

adapted and refined to reduce effort. This thesis presents a series of experiments testing 

the hypothesis that fronto-striatal and dopaminergic circuits underlie specific forms of 

motor adaptation that are characterized by the reinforcement of actions according to 

reward value and effort cost. 
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In the experiment presented in chapter 2, we designed behavioral paradigms to dissociate 

the neural correlates of feedback processing in sensory-error based motor adaptation and 

reward-based motor adaptation of reaching movements. Sensory-error based adaptation 

was isolated by perturbing visual feedback of hand position without disrupting the 

attainment of task goals or reward. Reward-based learning was isolated by manipulating 

binary reinforcement feedback indicating whether or not reward was attained while 

withholding visual feedback of the arm. We used electroencephalography (EEG) to 

measure event-related potentials (ERPs) elicited by sensory error and reward feedback. 

We found that a medial-frontal ERP component called the feedback-related negativity, or 

alternatively the reward positivity (FRN/RP) was elicited specifically by reinforcement 

feedback, while sensory error modulated a distinct posterior ERP component called the 

P300. The FRN/RP is a well characterized neural correlate of reward processing and a 

prominent theory states that it reflects a reinforcement learning process in the medial-

frontal cortex (Walsh & Anderson, 2012). This result suggests that reinforcement 

signaling in the medial frontal cortex may play a role in motor adaptation that is specific 

to reward-based learning processes.  

A role of phasic dopamine signaling in learning from reward outcomes has been 

characterized extensively by decades of research. A prominent theory of the FRN/RP 

suggests that it reflects a reinforcement learning process driven by phasic dopaminergic 

reward signaling (Holroyd & Coles, 2002). In the experiment presented in chapter 3, we 

tested the hypothesis that dopamine signaling mediates the neural processing of reward 

outcomes measured by the FRN/RP, and that this process underlies reward-based motor 

adaptation. We manipulated dopamine transmission by administering levodopa, a 

dopamine precursor, to healthy participants in a randomized, placebo controlled design. 

We recorded EEG while participants performed sensory error- and reward-based motor 

adaptation tasks similar to those described in chapter 1. We replicated our previous 

finding that the FRN/RP occurs specifically during reward-based motor adaptation. 

However, we did not detect any effects of levodopa on the FRN/RP or motor adaptation. 

Numerous studies have shown that levodopa impairs reward-based learning in tasks that 
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involve the selection of discrete actions, and there is evidence to suggest that levodopa 

impairs learning by disrupting neural activity in the ventral striatum (Cools et al., 2007; 

Hiebert et al., 2019; Vo et al., 2016). Our results suggest that reward-based motor 

adaptation and the FRN/RP likely do not depend on the same mechanisms shown to be 

impaired by levodopa in cognitive reward-based learning tasks. These results also add to a 

small number of recent studies that did not detect associations between dopamine 

function and reward-based motor adaptation (Holland et al., 2019; Quattrocchi et al., 

2018).  

Adaptation in sensory-error based learning tasks occurs more quickly when a particular 

perturbation is encountered a second time after washout of initial learning, a 

phenomenon known as savings (Coltman et al., 2019). Previous adaptation to a particular 

perturbation also causes anterograde interference during subsequent adaptation to an 

opposite perturbation (Miall et al., 2004). Some findings suggests that savings and 

anterograde interference may result from reinforcement of motor commands upon 

successful error reduction due to sensory error-based learning (Huang et al., 2011). In the 

experiment described in chapter 4, we tested the hypothesis that dopamine signaling 

mediates savings and anterograde interference. Participants adapted their movements to 

compensate for velocity-dependent forces applied to their hands during reaching 

movements. We measured adaptation, savings and anterograde interference and 

manipulated dopamine release by administering levodopa or placebo in a randomized, 

double-blinded design. Contrary to our hypothesis, we observed no effects of levodopa on 

adaptation, savings, or anterograde interference. These results suggests that savings and 

interference do not depend on reinforcement learning processes previously shown to be 

impaired by levodopa.  

Humans not only adapt decision making and movement parameters to increase reward 

attainment, but also to reduce motor effort and energetic requirements. Economic 

models suggest that movement parameters are not necessarily determined to maximize 

reward but rather subjective utility, a function of reward discounted by effort (Shadmehr 

et al., 2016a). Neural structures implicated in reward learning including the striatum, 
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medial frontal cortex, and dopaminergic midbrain have also been shown to play a role in 

motivating effortful behavior and integrating effort with reward during decision making. 

In the experiment described in chapter 5, we tested the hypothesis that medial-frontal 

learning signals are sensitive to subjective utility characterized by effort-discounted 

reward. Participants performed a task in which they were required to accurately produce 

target levels of muscle activation to receive reward. Physical effort requirements varied 

probabilistically according to choices such that participants could adapt their behavior to 

reduce effort requirements. We found that the FRN/RP did not respond to feedback that 

indicated the effort requirements resulting from participants’ choices. Reward feedback 

elicited an FRN/RP component that was sensitive only to reward, followed by a distinct 

medial-frontal signal that was modulated by an interaction between effort and reward. 

This result provides evidence that while FRN/RP reflects reward processing irrespective 

of effort, later responses to reward outcomes integrate information about preceding 

effort. 

In summary, this thesis presents scientific findings characterizing neural and behavioral 

responses to task-relevant feedback in the context of adaptive motor behavior. We found 

that a medial-frontal ERP component called the FRN/RP measures neural responses that 

are specific to reinforcement outcomes while distinct ERP components are modulated by 

motor effort and sensory error. Contrary to our predictions, we found no evidence for a 

dopaminergic basis of the FRN/RP, reward-based motor adaptation, savings, or 

anterograde interference.  

1.2 Literature review 

The following review surveys scientific literature necessary to motivate the work 

presented in this thesis. Section 1.2.1 reviews sensory error-based motor adaptation, and 

section 1.2.2 reviews reward-based motor adaptation. These topics are relevant to 

chapters 2 and 3 of this thesis, which present work that aims to identify neural substrates 

of reward-based learning and to dissociate them from mechanisms of sensory error-based 

learning. Section 1.2.3 reviews the phenomena of savings and anterograde interference in 
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motor adaptation. This section is relevant to chapter 4, which details an experiment 

testing whether savings and interference are affected by levodopa. Section 1.2.4 reviews 

effort-based learning. This topic motivates chapter 5, which presents an experiment 

testing whether reinforcement signals in the medial frontal cortex are also sensitive to 

effort as a cost. Finally, section 1.2.5 reviews electrophysiological correlates of feedback 

processing related to behavioral adaptation, as measured by EEG. Chapters 2 and 3 use 

EEG to measure neural responses to sensory error and reward feedback. Chapter 5 

reports EEG responses to effort feedback as well as effects of effort on EEG responses to 

reward feedback. 

1.2.1 Sensory error-based motor adaptation 

Sensory feedback plays an essential role in the control of movement. A loss of 

proprioceptive input from the limbs due to peripheral deafferentation has devastating 

effects on motor function (Marsden et al., 1984; Rothwell et al., 1982). Despite the critical 

importance of sensory feedback for movement, the noisy and delayed nature of afferent 

signals poses significant problems that the sensorimotor system must overcome. There is 

substantial evidence to suggest that the nervous system achieves accurate control by 

predicting the sensory consequences of actions and adapting these predictions in 

response to errors. This section first discusses purported functions of sensory prediction 

in motor control. Second, it reviews how predictions regarding the sensory consequences 

of motor commands are thought to improve perception. The third part of this sections 

reviews how errors in sensory prediction are thought to drive sensory-error based motor 

adaptation, a topic important to the work presented in chapters 2, 3, and 4. The final part 

of this section reviews the neural basis of sensory prediction and sensory-error based 

learning.  

Sensory prediction aids control: 

Saccadic eye movements are generally too brief for sensory feedback to be used effectively 

in control. The delay at which visual information can be transmitted to the extraocular 

muscles is around 70ms, longer than the duration of many saccades (B. Fischer & Boch, 
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1983). However, if the brain can quickly and accurately predict the sensory consequences 

of motor commands sent to the muscles, these predictions can be used in place of afferent 

feedback. Guthrie et al., (1983) electrically stimulated the superior colliculus of monkeys 

to induce eye movements immediately before the onset of a voluntary saccade to a visual 

target. Although the stimulation-induced movements perturbed the position of the eyes, 

the subsequent voluntary saccades still accurately reached their targets despite removal of 

any visual or proprioceptive input. Thus, motor output signals from the colliculus can be 

used to accurately predict changes in eye position in the absence of sensory feedback. 

This mechanism may also be used to predict errors caused by inaccurate motor 

commands and issue corrections during the course of a movement. For example, 

repetition of a visual target or transcranial magnetic stimulation can affect motor 

commands and result in a reduction of saccade velocity (Xu-Wilson et al., 2009, Xu-

Wilson et al., 2011). However, compensatory motor commands arriving later in the 

movement allow the eye to accurately reach the target. These findings suggest that errors 

due to variability in motor commands can be anticipated and corrected through internal 

feedback.  

Unlike saccades, the durations of limb movements are often long enough for sensory 

feedback to influence control. However, the feedback loop between sensory input and 

motor output can contain total delays upwards of 100ms. Delays in feedback control 

systems result in instabilities with high feedback gains, and larger delays necessitate lower 

gains to maintain stable control (Miall & Wolpert, 1996). Feedback delays can be 

overcome by using an internal “forward model” to predict the sensory consequences of 

actions. These predictions can be used for control in an internal feedback loop without 

delay (Bhushan & Shadmehr, 1999; Mehta & Schaal, 2002; Miall et al., 1993; Todorov, 

2004). Delayed external feedback can be used to update the forward model and to 

respond to unpredictable errors. Humans often respond to self-generated forces without 

delay (Diedrichsen et al., 2003; Flanagan & Wing, 1993; Gribble & Ostry, 1999; Kawato et 

al., 2003; Kurtzer et al., 2008) and estimate the state of the body in real time despite 

sensory delays (Miall et al., 2007; Vercher et al., 1996; Wagner & Smith, 2008). These 
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findings suggest that humans may predict the sensory consequences of motor commands 

to achieve stable and accurate control. 

Sensory prediction improves perception: 

In addition to improving control, sensory prediction can also aid perception. Sensory 

input often provides noisy and limited information. If the brain can predict the sensory 

consequences of motor commands, these predictions can be combined with noisy sensory 

information to estimate the state of the body with improved reliability. It has been shown 

that motor output improves perception and state-estimation across a variety of tasks and 

sensory modalities (Fuentes & Bastian, 2010; Izawa & Shadmehr, 2008; Körding & 

Wolpert, 2004; Sommer & Wurtz, 2006; Spering et al., 2011; Vaziri et al., 2006; Wolpert et 

al., 1995).  

Predicting the sensory consequences of motor commands may also be important to 

distinguish self-generated sensory input from externally generated input (J. X. Brooks & 

Cullen, 2019). Predictable self-generated sensory signals are often cancelled or suppressed 

in the brain. For example, we maintain a stable and continuous perception of the visual 

world despite frequent rapid movements of the eyes (Wurtz, 2008, 2018). Suppression of 

self-generated sensation in the somatosensory system is evident by the fact that we are 

unable to tickle ourselves and that self-generated forces are perceived as being 

considerably smaller than externally-generated forces (Blakemore et al., 1998; Shergill et 

al., 2003). This somatosensory attenuation occurs across levels of sensory processing from 

the spinal cord to the somatosensory cortex (Chapman, 1994; Fetz et al., 2002; Seki et al., 

2003; Seki & Fetz, 2012).  

Filtering of predicted self-generated inputs may also be useful to enhance inputs caused 

by external perturbations (J. X. Brooks & Cullen, 2019). However, cancellation of self-

generated input is not always observed and can be complex. Active movement can 

enhance proprioceptive inputs at the level of the spinal cord (Confais et al., 2017). 

Vestibular reafference may only be cancelled if proprioceptive sensory signals match the 
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predicted input, indicating a more complex mechanism than simple cancellation of self-

generated input (J. X. Brooks & Cullen, 2019). 

Sensory error drives adaptive changes in control and perception: 

Predictions regarding the sensory consequences of actions contribute to accurate motor 

control and perception. To remain accurate, these predictions must be adaptable to 

changing dynamics that dictate the sensory consequences of motor commands. The 

mechanical properties of the body change throughout development, and the response 

properties of muscles may change with fatigue on a much shorter timescale. We must 

adapt to new dynamics every time we use a new tool. Perception and motor output tend 

to drift in the absence of sensory feedback, indicating that frequent recalibration may be 

required even in the absence of perturbations (L. E. Brown et al., 2003; Patterson et al., 

2017; Wann & Ibrahim, 1992). 

Two prominent experimental models of motor learning have been used in recent work in 

this area: force field adaptation and visuomotor rotation (VMR) tasks. In studies of force 

field adaptation, a robot applies velocity-dependent forces to the hand during reaches to 

targets (Shadmehr & Mussa-Ivaldi, 1994). In VMR tasks, a cursor on a digital display 

represents the position of the hand, and the mapping between the actual reach angle and 

the position of the cursor is rotated to induce errors (Krakauer et al., 2000). Optical prism 

goggles can also be used to impose visuomotor rotation by shifting the entire visual field. 

In both kinds of tasks participants quickly adapt their movements to compensate for the 

experimentally induced perturbations (i.e., external forces or visual feedback rotation, 

respectively). 

Simple state-space models provide a good descriptive account of behavioral learning in 

these motor adaptation tasks. In typical state-space models, adaptation proceeds by 

compensating for a fixed proportion of errors experienced on each trial, resulting in 

exponential learning curves (Diedrichsen et al., 2005; O. Donchin et al., 2003; 

Thoroughman & Shadmehr, 2000). Bayesian models of adaptation suggest that the 

learning rate is not necessarily fixed but is affected by the uncertainty, consistency, and 
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relevance of errors (Berniker & Kording, 2011; Gonzalez Castro et al., 2014; Tan et al., 

2014; Wei & Koerding, 2010). It has also been shown that multiple processes may 

contribute to adaptation in parallel at different timescales. This notion has been 

formalized with a two-state model of adaptation, in which learning is the sum of slow and 

a fast adaptation processes (M. A. Smith et al., 2006). The slow process is characterized by 

a lower learning rate and a lower rate of forgetting, while the fast process is characterized 

by a high learning rate but also a high rate of forgetting (J.-Y. Lee & Schweighofer, 2009; 

M. A. Smith et al., 2006; H. Tanaka et al., 2012).  

Two processes that have been functionally differentiated in common motor adaptation 

tasks are explicit and implicit learning (McDougle et al., 2016; Schween et al., 2020; 

Taylor et al., 2014). Explicit learning constitutes the use of a strategy that is under 

conscious awareness and control. In VMR tasks, explicit learning occurs when the 

participant notices the perturbation and strategically aims their reaches to counteract the 

rotation. Implicit learning occurs without conscious awareness or control. If 

perturbations are introduced gradually, implicit learning can produce large adaptive 

changes in motor output without awareness (Rand & Heuer, 2019).   

A prominent theory of motor adaptation states that learning is driven by sensory 

prediction errors that occur when sensory feedback differs from the predictions of an 

internal forward model. VMR and force field perturbations are thought to cause sensory 

prediction errors that are used to update the forward model. Accurate control is restored 

as the sensorimotor system learns to predict the effects of visual or mechanical 

perturbations. Mazzoni & Krakauer (2006) provide compelling evidence that sensory 

prediction errors drive adaptation. Participants were instructed to counteract a 45 deg 

counterclockwise VMR by strategically aiming 45 deg clockwise away from the target. 

The aiming strategy initially eliminated errors caused by the perturbation relative to the 

target, but a discrepancy between the motor command and sensory feedback still 

occurred, resulting in sensory-prediction error. Implicit adaptation caused the reach 

angle to gradually shift further in the clockwise direction despite increasing errors relative 

to the target. This finding suggests that the nervous system implicitly predicts the direct 
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sensory consequences of actions, and that violations of these predictions causes 

adaptation irrespective of task goals or conscious strategy.  

Consistent with adaptation of a forward model, motor adaptation is accompanied by 

perceptual changes in participants’ estimates of the sensory consequences of actions 

(Izawa et al., 2012; Izawa & Shadmehr, 2011; Rand & Heuer, 2019). However, perceptual 

changes in response to adaptation have also been observed using passive learning tasks 

and passive sensory measures that do not involve motor output (Mostafa et al., 2019; 

Ohashi et al., 2019; Ostry et al., 2010; Ostry & Gribble, 2016). This indicates a role for 

sensory plasticity that does not involve forward prediction based on motor commands. 

For example, in VMR there is a process of realignment between visual and proprioceptive 

inputs that does not depend on motor output (Block & Bastian, 2012; Henriques et al., 

2014). 

Neural basis of sensory prediction and learning: 

It is thought that the cerebellum is an integral component of a forward model that 

predicts the sensory consequences of motor commands for control and perception 

(Bhanpuri et al., 2014; Kawato, 1999; Miall et al., 1993, 2007; Shadmehr & Krakauer, 

2008; Streng et al., 2018; Weeks et al., 2017; Wolpert et al., 1998; Xu-Wilson et al., 2009). 

Cerebellar damage and disruption has been shown to cause behavioral deficits in state-

estimation and predictive motor control  (Bastian et al., 1996; Bhanpuri et al., 2011, 2013, 

2014; Haggard et al., 1995; Kakei et al., 2019; Miall et al., 2007; Müller & Dichgans, 1994; 

Therrien & Bastian, 2015; van Donkelaar & Lee, 1994; Vercher & Gauthier, 1988; Weeks 

et al., 2017; Xu-Wilson et al., 2009). Cerebellar damage has also been shown to impair 

learning in VMR and force field adaptation tasks (Izawa et al., 2012; Maschke et al., 2004; 

Morton & Bastian, 2006; Schlerf et al., 2012; M. A. Smith & Shadmehr, 2005; Synofzik et 

al., 2008; Tseng et al., 2007; Weiner et al., 1983). In healthy participants cerebellar 

activation is increased during VMR and force field adaptation (Diedrichsen et al., 

2005).These findings are consistent with the notion that the cerebellum contributes to the 
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control of movement by predicting the sensory consequences of action and by updating 

these predictions in response to environmental perturbations.  

An influential model of the cerebellar circuit provides a potential mechanism for an 

adaptable forward model. Motor areas of the cerebellar cortex receive input from the 

motor cortex via the pons and project back to the motor cortex via the thalamus (Sokolov 

et al., 2017). Largely feedforward circuitry within the cerebellar cortex may transform 

efferent copies of motor commands to sensory predictions. These sensory predictions 

may be projected back to motor cortex to produce internal feedback control loops (M. 

Ito, 2006; Requarth & Sawtell, 2014). Sensory predictions may also be transmitted to the 

inferior olive where they converge with afferent sensory feedback to compute sensory 

prediction error signals (M. Ito, 2006). Sensory prediction error signals in the inferior 

olive may be used to update the forward model by inducing long-term depression in the 

cerebellar cortex through climbing fiber projections. During reaching movements, simple 

spike firing rate in purkinje neurons within the cerebellar cortex contain signals that 

predict the future sensory state and encode delayed sensory feedback (Ebner & Pasalar, 

2008; Hewitt et al., 2015; Pasalar et al., 2006; Popa et al., 2012, 2013; Popa & Ebner, 2019; 

Streng et al., 2018; H. Tanaka et al., 2019). Sensory prediction error signals are observed 

in the rostral fastigial nucleus, a major output of the primate cerebellar cortex, in 

response to externally generated head movement while predictable self-generated sensory 

inputs are cancelled (J. X. Brooks et al., 2015; J. X. Brooks & Cullen, 2013). These findings 

support the notion that the cerebellum acts as an adaptable predictor of the sensory 

consequences of motor commands. 

Cortical sensorimotor areas are also implicated in motor adaptation. The cerebellum is 

densely interconnected to motor, frontal and parietal cortices through a series of parallel 

loops (Sokolov et al., 2017). Lesions of the parietal cortex impair VMR adaptation (Mutha 

et al., 2011). Neuroimaging during VMR tasks reveals changes in activation of primary 

motor, premotor, posterior parietal, and supplementary motor cortex (Clower et al., 

1996; Diedrichsen et al., 2005; Inoue et al., 2000; Krakauer et al., 2004). Stimulation 

studies suggest that the primary motor cortex may be particularly involved in retention of 
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motor memory related to VMR (Galea et al., 2011; Hadipour-Niktarash et al., 2007). 

These results are corroborated by learning-induced structural changes in primary motor 

cortex associated with long-term memory for VMR (Landi et al., 2011). Recordings from 

single neurons in primary motor cortex, premotor cortex, and supplementary motor 

cortex reveal changes in neural encoding of movements due to VMR adaptation (S. M. 

Chase et al., 2012; Paz et al., 2003, 2005; Paz & Vaadia, 2004; Vyas et al., 2018; S. P. Wise 

et al., 1998). Force field adaptation is also associated with changes in activation and 

neural population coding in the primary motor, supplementary motor, and premotor 

cortex (Diedrichsen et al., 2005; C.-S. R. Li et al., 2001; Padoa-Schioppa et al., 2004; Perich 

et al., 2018; Xiao et al., 2006).  

A number of studies have also highlighted a role of primary sensory cortex in motor 

adaptation that may correspond to perceptual changes associated with learning (Ostry & 

Gribble, 2016). Force field adaptation is associated with changes in neural responses to 

somatosensory stimuli (Nasir et al., 2013). Disruption of primary somatosensory cortex 

interferes with acquisition and consolidation of force field adaptation (Kumar et al., 2019; 

Mathis et al., 2017). 

1.2.2 Reward-based motor adaptation 

Reward-based learning mechanisms have been studied extensively in the context of 

adaptive behavior involving decisions between discrete stimuli and actions. Although 

studies of motor adaptation have largely focused on sensory-error based learning, 

influences of reward-based learning processes are increasingly reported in recent 

research. The first part of this section reviews behavioral findings characterizing the role 

of reward outcomes in motor adaptation. Second, literature regarding the neural 

mechanisms of reward-based motor adaptation is reviewed. Third, the function of 

exploration in motor learning and reward-based learning generally is discussed. These 

topics are relevant to the work presented in chapters 2 and 3, which examines the 

neurophysiological basis of reward-based motor adaptation. The final part of this section 

reviews computational and neurophysiological theories of reinforcement learning. This 
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section motivates the overarching hypothesis of this thesis that fronto-striatal and 

dopaminergic reinforcement learning mechanisms contribute to adaptive motor control.  

Reward and success can influence adaptive motor behavior: 

In typical models of sensory-error based adaptation, the learning process functions to 

improve prediction and control of the perceptual consequences of motor output. 

Improving control in this way is generally expected to improve task performance, 

however factors such as task success and reward are typically not considered in models of 

sensory-error based learning. However, there is empirical evidence to suggest that 

instrumental and reward-related outcomes can modulate sensory-error based learning in 

humans. The retention of learning in visuomotor rotation tasks is improved with the 

addition of monetary reward or stimuli that indicate success (Galea et al., 2015; Shmuelof 

et al., 2012). The addition of reward or punishment contingent on error can increase the 

rate of adaptation (Galea et al., 2015; Nikooyan & Ahmed, 2014). Errors related to the 

goals of a given task can affect sensory-error based learning similarly to explicit reward or 

punishment feedback. It has been shown that equivalent sensory prediction errors cause 

greater adaptation when they result in a failure to reach a visual target, even without 

extrinsic reward contingent on reaching the target (Kim et al., 2019; Leow et al., 2020).  

The findings outlined above indicate that reinforcement of successful or rewarding 

actions can influence sensory-error based learning. It has also been demonstrated that 

reward-based learning and sensory-error based learning can occur as largely separable 

processes. Adaptation to sensory error has been shown to occur automatically even when 

it interferes with task performance, supporting a distinction between reinforcement of 

successful actions and sensory error-based learning (Mazzoni & Krakauer, 2006). 

Reward-based learning can be isolated in paradigms analogous to typical visuomotor 

rotation tasks by withholding cursor feedback of hand position and instead providing 

only binary reinforcement feedback indicating the success or failure of each movement 

(Izawa & Shadmehr, 2011). If reinforcement is contingent on producing reach angles that 

are rotated relative to the visual target, reward-based learning can result in adaptation of 
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reach angle comparable to sensory-error based learning. However, reward-based learning 

does not produce the same pattern of spatial generalization nor does it alter the predicted 

sensory consequences of actions (Izawa & Shadmehr, 2011). In typical motor adaptation 

tasks, sensory-error based learning processes tend to play a dominant role in adaptation, 

while reinforcement learning can compensate for degraded or absent sensory feedback 

(Cashaback et al., 2017; Izawa & Shadmehr, 2011). Reinforcement learning can also 

compensate for deficits in sensory error-based learning caused by injury to the 

cerebellum (Therrien et al., 2016).  

While sensory-error based learning in gradual visuomotor rotation tasks can produce 

large changes in reach angle without awareness, reward-based learning for reach angle 

rotations beyond 5-10 degrees occurs largely through strategic and conscious responses to 

the experimental manipulation (Codol et al., 2018; Holland et al., 2018, 2019). Explicit 

strategy may be necessary for learning in reward-based rotation paradigms due to the 

discrepancy between rewarded movements and the visually instructed targets. Reward-

based motor adaptation may occur without awareness during a paradigm in which 

participants always reach towards a veridical target, but success depends on adapting 

movements to produce particular joint angle configurations (Mehler et al., 2017). Such 

adaptation is possible because reaching movements are often highly redundant. For 

example, a given target hand position can be achieved through an infinite number of 

different combinations of joint angles in the arm. Although sensory error-based learning 

can correct biases that affect average motor error, a reinforcement learning process may 

be necessary to discover solutions in a redundant movement space that minimize the 

variance of motor error, a hallmark of motor skill acquisition (Mehler et al., 2017). 

Neural mechanisms of reward-based motor learning: 

Sidarta et al., (2016) used fMRI to measure changes in resting-state functional 

connectivity associated with reward-based motor learning. The amount of reward 

obtained during the task correlated with increases in connectivity between the putamen 

and ventromedial prefrontal cortex, regions implicated in reward processing generally. 
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The degree of learning was correlated with increases in connectivity throughout 

somatosensory and motor cortical areas. The involvement of somatosensory regions is 

corroborated by behavioral findings that reward-based motor learning produces increases 

in task-relevant somatosensory acuity (Bernardi et al., 2015). Furthermore, passive 

somatosensory training with reinforcement can produce learning equivalent to active 

learning (Bernardi et al., 2015). Both somatosensory and visuo-spatial working memory 

capacity have been shown to correlate with performance in reward-based motor learning 

tasks (Holland et al., 2019; Sidarta et al., 2016). These findings are consistent with 

contributions of a strategy in which participants aim towards the location of previously 

rewarded movements maintained in working memory, likely involving the prefrontal 

cortex. 

Uehara et al. (2018) found that reward-based motor learning caused changes in 

physiological responses to non-invasive brain stimulation that indicate long-term 

potentiation in the primary motor cortex. Dopaminergic projections to primary motor 

cortex are essential for some forms of motor skill learning in rodents (Beeler et al., 2010; 

Hosp et al., 2011; Luft & Schwarz, 2009; Molina-Luna et al., 2009). Recently reports 

have revealed reward signals in premotor and primary cortices of non-human primates, 

including reward prediction error (An et al., 2019; Moore et al., 2020; Ramakrishnan et 

al., 2017; Ramkumar et al., 2016). These findings suggest a possibility that plasticity in 

motor cortex, possibly mediated by dopamine, could contribute to reward-based motor 

learning.   

The role of exploration in reward-based learning: 

In sensory-error based learning, errors experienced in one movement are reliably reduced 

in the subsequent movement, or even within the same movement (Crevecoeur et al., 

2020). This is consistent with the idea that an internal sensorimotor mapping allows for 

corrections to be informed by the error itself. However, reinforcement learning essentially 

relies on a process of “trial and error”. A successful action can only be reinforced after it 

has already been produced and rewarded. If an action is unsuccessful or leads to 

punishment, then it will be deterred in the future. However, errors do not necessarily 
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inform the correct response if there are more than one possible alternative. Thus, 

variability in behavior is essential for reinforcement learning to discover and select 

rewarding actions. In a reward-based motor learning task, participants with greater 

baseline variability in task-relevant dimensions of movement learned more than those 

with lower baseline variability (H. G. Wu et al., 2014). 

In some reinforcement learning algorithms, variability of actions is actively generated and 

regulated to improve learning through efficient exploration (Sutton & Barto, 2011). Even 

if a particular action produces reward, there is still a tradeoff between continuing to 

exploit the known reward or exploring other actions that may potentially be more 

rewarding. During reward-based motor adaptation, trial-by-trial variability in movement 

kinematics is larger following non-reward outcomes than reward outcomes (Cashaback et 

al., 2019; Kooij & Smeets, 2019; Mastrigt et al., 2020; Pekny et al., 2015). An increase in 

motor variability following non-reward may reflect exploration in search of more 

valuable actions. High throughput experiments in rats have shown that movement 

variability is regulated according to the recent history of reward outcomes extending at 

least 10 trials in the past (Dhawale et al., 2019). On a much longer timescale, variability 

was found to be modulated by uncertainty induced by non-stationary reward 

contingencies.  

The role of regulated motor variability in learning has been studied extensively in 

songbirds’ vocal learning. A basal ganglia-forebrain circuit has been shown to actively 

generate motor variability required for learning (Kao et al., 2005; Ölveczky et al., 2011). 

This circuit is essential for song learning during development but not for producing songs 

that have already been learned (Bottjer et al., 1984). Natural variability in motor output 

also allows for adaptation of fully learned songs in adult songbirds through a process 

consistent with reinforcement learning (Andalman & Fee, 2009; Tumer & Brainard, 

2007). Dopamine signaling in this circuit has been demonstrated to mediate context-

dependent regulation of song variability and also to act as a learning signal that reinforces 

motor commands that are successful in producing vocal targets (Hoffmann et al., 2016; 

Kao et al., 2008; Woolley, 2019; Woolley et al., 2014). Pekny et al. (2015) demonstrated 
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that people with Parkinson’s Disease fail to upregulate variability of arm movements 

following unrewarded outcomes. This suggests that dopaminergic signals in the human 

basal ganglia may also be important for adaptive regulation of motor variability during 

reward-based reach adaptation. 

Theories of biological reinforcement learning: 

The neural substrates of reward-based motor adaptation remain largely unexplored. 

However, extensive work has characterized the physiological and computational 

processes supporting reward-based learning in more cognitive paradigms involving 

discrete choices and stimuli. A natural starting point is to test for the involvement of well 

characterized reinforcement learning processes in reward-based motor adaptation. 

In formal models of reinforcement learning, agents make choices according to a value 

function that represents an estimate of the expected values of reward outcomes to be 

gained from being in a particular state or executing a particular action (Sutton & Barto, 

2011). The differences between observed reward outcomes and those predicted by the 

value function are known as reward prediction errors. Typically, the value estimate 

corresponding to an action or state is updated by a proportion of the reward prediction 

error that is determined by a learning rate parameter. If the actual outcome is better than 

predicted, a positive reward prediction error occurs and the value estimate is increased 

accordingly, resulting in an increased probability of selecting that action in the future. If 

the actual outcome is worse than expected, a negative reward prediction error serves to 

diminish the value estimate and deter that action. Phasic changes in the firing rate of 

many midbrain dopamine neurons match reward prediction error signals predicted by 

computational models of reinforcement learning (Bayer & Glimcher, 2005; García-García 

et al., 2017; Jocham & Ullsperger, 2009; Schultz et al., 1997; Waelti et al., 2001; Watabe-

Uchida et al., 2017). These dopaminergic signals are thought to mediate synaptic 

plasticity in the striatum and frontal cortex that may underlie reward-based learning 

(Mohebi et al., 2019; Otani et al., 2003; Reynolds & Wickens, 2002; Shindou et al., 2019; 

Steinberg et al., 2013; J. X. Wang et al., 2018; R. A. Wise, 2004).  
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Highly influential models of biological reinforcement learning state that dopaminergic 

reward prediction error signals shape future behavior by biasing action selection 

processes in the basal ganglia. Prefrontal and motor cortices provide major inputs to the 

basal ganglia through synapses onto the striatum. The internal segment of the globus 

pallidus (GPi), the primary output of the basal ganglia, projects back to the cortex via the 

thalamus to form a cortico-basal ganglia-thalamic loop circuit (G. E. Alexander et al., 

1986; Parent & Hazrati, 1995). Basal ganglia output through the GPi provides widespread 

tonic inhibition that is thought to prevent motor output in a default state. Inputs to the 

striatum can facilitate movements through a direct inhibitory pathway between the 

striatum and the GPi that serves to release the tonic inhibitory output from the basal 

ganglia. An indirect pathway from the striatum to the GPi passes through the external 

segment of the globus pallidus and the subthalamic nucleus. The indirect pathway 

prevents movement by bolstering the inhibitory output of the GPi. Longstanding theories 

of action selection in this circuit propose that its organization maintains action specific 

representation of movement, with parallel channels throughout the loop supporting 

individual actions. Early models proposed that the direct pathway serves to release 

actions specified by the motor cortex while the indirect pathway broadly inhibits 

competing actions (G. E. Alexander & Crutcher, 1990; Mink, 1996). However, this 

account is largely incompatible with recent reports that both the direct and indirect 

pathways show action specific activation during action selection (Cui et al., 2013; Klaus et 

al., 2017; J. G. Parker et al., 2018). Newer computation models of the cortico-basal 

ganglia-thalamic circuit propose that the direct and indirect pathways compete within 

individual action channels to facilitate and suppress specific movements, respectively 

(Bariselli et al., 2019; Dunovan et al., 2019; Dunovan & Verstynen, 2016). 

Synapses of cortical inputs onto striatal medium spiny neurons exhibit bidirectional 

Hebbian spike timing dependent plasticity, being strengthened or weakened through LTP 

or LTD, respectively. This plasticity is strongly dependent on dopamine, suggesting a 

mechanism for dopaminergic reward prediction error signals to mediate reinforcement 

learning (Calabresi et al., 2007; Lerner & Kreitzer, 2011; Pawlak & Kerr, 2008; Perrin & 
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Venance, 2019; Reynolds et al., 2001; Reynolds & Wickens, 2002; Shen et al., 2008). 

Although the specific conditions required for LTP and LTD in cortico-striatal synapses 

are still not well established, current evidence is largely consistent with models of 

reinforcement learning in the basal ganglia circuit for action selection. Increased 

dopamine release signaling reward outcomes may facilitate LTP in synapses targeting 

direct pathway MSNs, while decreased dopamine release caused by unrewarding or 

punishing outcomes instead may elicit LTD. This would strengthen or weaken cortical 

inputs to the striatum that promote a particular action in accordance with the outcome. 

Interestingly, dopamine seems to have opposite effects on plasticity in indirect pathway 

MSNs due to different prevalence of specific dopamine receptor types (Lerner & Kreitzer, 

2011; Shen et al., 2008). These findings are consistent with the oppositional role of the 

direct and indirect pathways in models of action selection (Rubin et al., 2020).  

Reward prediction error signals are widely observed in not only in the striatum but also 

various subregions of the prefrontal cortex (Delgado et al., 2004; Diederen et al., 2017; 

Knutson & Cooper, 2005; O’Doherty et al., 2004; Oya et al., 2005; Pessiglione et al., 2006; 

Ramnani et al., 2004; Rogers et al., 2004; Rutledge et al., 2010; Schultz, 2016; S. C. Tanaka 

et al., 2004). Dopamine may drive reward prediction error signals in the frontal cortex 

through dense projections from the dopaminergic midbrain throughout the frontal lobes 

(Tzschentke, 2001). However, the prefrontal cortex seems to contain all of the 

information necessary to compute reward prediction error and implement a 

reinforcement learning process without dopaminergic inputs. Neural activity in the 

prefrontal cortex encodes a transformation from predicted value to choice, and an 

updating of value estimates according to outcomes (Barraclough et al., 2004; Hunt et al., 

2015, 2018; Kennerley et al., 2008; Padoa-Schioppa & Assad, 2006; H. Seo & Lee, 2008; 

Tsutsui et al., 2016). These findings are recapitulated by a computational theory of the 

prefrontal cortex as a meta-learning system that implements a distinct reinforcement 

learning process entirely through recurrent dynamics (J. X. Wang et al., 2018). In this 

model, learning can occur through changes in the dynamical state of neural activity 

without synaptic plasticity mediated by dopamine. The prefrontal cortex may play a 
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particularly important role in model-based reinforcement learning, which allows for 

flexible planning according to a mental representation of the task, and can be limited by 

working memory processes (Babayan et al., 2018; Collins & Frank, 2012; Daw et al., 2011; 

Deserno et al., 2015; Dolan & Dayan, 2013; Doll et al., 2016; Gläscher et al., 2010; Russek 

et al., 2017; Sambrook et al., 2018; Shahar et al., 2019; Sharp et al., 2016; Wunderlich et al., 

2012). This is in contrast to model-free learning, characterized by reinforcement of 

simple stimulus-response associations that facilitate habitual, reflexive responding. It 

remains to be seen how these different forms of learning relate to reward-based motor 

adaptation. 

1.2.3 Savings and anterograde interference 

In visuomotor rotation (VMR) and force field (FF) learning tasks, adaptation to a 

perturbation quickly washes out when the perturbation is removed. However, adaptation 

occurs more quickly during re-exposure to a previously encountered perturbation after 

loss of initial learning (Kojima et al., 2004). This phenomenon, known as savings, 

indicates some persistent memory for motor adaptation. A memory of adaptation to a 

perturbation can also cause anterograde interference during subsequent adaptation to an 

opposite perturbation, resulting in decreased learning rate (Miall et al., 2004). The first 

part of this section characterizes accounts of savings and interference in terms of sensory 

error-based learning mechanisms. The second part of this section discusses findings 

supporting the hypothesis that a reinforcement learning process can contribute to savings 

and interference. This section is relevant to the work presented in chapter 4, which tests 

whether dopamine release mediates savings and interference.  

Motor memories for sensory-error based learning: 

Some models account for savings and interference in motor adaptation through dynamics 

occurring due to multiple adaptive processes that learn at different timescales. The 

influential 2-state model of motor adaptation can account for savings through 

interactions between a slow learning mechanism that adapts and decays at a low rate and 

a fast learning mechanism that adapts and decays at a high rate (M. A. Smith et al., 2006). 
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When a perturbation is suddenly removed following adaptation, errors initially occur in 

the direction opposite of the removed perturbation. These aftereffects quickly wash out 

which seems to indicate that adaptation is lost. However, the slow process may retain 

some adaptation while the fast process quickly compensates to cancel the aftereffects. 

Residual adaptation in the slow process can then be uncovered upon re-exposure to the 

initial perturbation, resulting is savings. The 2-state model can also explain anterograde 

interference, as adapting to a perturbation in one direction biases the slow state against 

subsequent adaptation to an opposite perturbation. However, the 2-state model fails to 

account for the fact that savings can occur after extended periods of washout that should 

be sufficient to de-adapt the slow process (Zarahn et al., 2008). Results from dual 

adaptation paradigms have been used to support another model with a single fast learning 

process and multiple slow learning processes (J.-Y. Lee & Schweighofer, 2009). In this 

model, each slow learning process corresponds to a distinct motor memory, with 

contextual cues mediating switching between memory states. Savings can occur in this 

model through retrieval of latent motor memories, even following extended washout.  

In the models described previously, savings occurs through retention of adaptation itself 

while the rate of learning in response to errors remains constant. Other have suggested 

that savings occurs through meta-learning that upregulates the adaptive responses to 

errors caused by familiar perturbations (Coltman et al., 2019; Zarahn et al., 2008). 

Herzfeld et al. (2014) provided compelling evidence that the brain stores memories of 

sensory prediction errors and that savings occurs through increased rate of learning in 

response to errors that are already present in memory.  

Savings through reinforcement learning: 

Savings has also been well documented in the literature related to operant conditioning 

through reinforcement (Kehoe & Macrae, 1997). Huang et al. (2011) suggested that 

although adaptation to visuomotor rotations relies primarily on sensory-error based 

learning, savings occurs due to additional influences of a reinforcement learning 

mechanism. They hypothesized that when error-based learning counteracts the errors 
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induced by a perturbation, the resulting motor commands are reinforced due to 

successful performance in the task. When the same perturbation is encountered in the 

future, those previously reinforced actions could be expressed, resulting in savings. They 

showed that savings occurred between adaptation to opposite rotations when the targets 

were arranged such that successful adaptation to both perturbations resulted in the same 

arm movements. This suggests that savings can occur through simply recalling a 

movement that was previously reinforced. Retention of sensory error-based learning 

would not be expected to cause savings between rotations of opposite direction, and 

instead would likely cause interference. In typical experiments, opposite perturbations do 

not result in the same adapted movements, and instead require conflicting motor 

solutions. In this case, reinforcement of successful actions predicts the effects of 

anterograde interference that are normally observed. Savings between opposite rotations 

with the same movement solution is only observed when the first perturbation is 

introduced abruptly, not gradually (Orban de Xivry & Lefèvre, 2015). Because abrupt 

perturbations initially produce large errors, adaptation may cause reward prediction 

errors by restoring success in the task, resulting in reinforcement. Gradual perturbations 

do not disrupt performance and thus adaptation is not associated with a significant 

increase in task success.  

The idea that savings occurs through reinforcement of successful actions also depends on 

the fact that exposure to perturbations triggers the expression of previously reinforced 

actions. Indeed, it has been shown that experiencing random perturbations or simply the 

withholding of visual stimuli that indicate task success can cause re-expression of 

previous force-field adaptation following wash out of learning (Pekny et al., 2011). 

Furthermore, decades of research in the field of operant conditioning have demonstrated 

similar “resurgence” of previously reinforced actions in response to withholding of 

reward (Epstein & Skinner, 1980). Reinforcement learning is thought to depend heavily 

on dopamine signaling in the basal ganglia. Loss of dopamine neurons in the basal 

ganglia due to Parkinson’s Disease causes severe impairment in savings and anterograde 
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interference despite initial adaptation being intact (Bédard & Sanes, 2011; Leow et al., 

2012, 2013; Marinelli et al., 2009).  

The conditions that result in savings are still rather unclear. In some experiments, a 

memory for errors can explain the occurrence of savings without the repetition of 

reinforced actions (Herzfeld et al., 2014; Leow et al., 2016). However, in other cases 

repetition of successful actions can explain savings while a memory of errors is neither 

necessary nor sufficient to produce savings (Orban de Xivry & Lefèvre, 2015). It is 

possible that both mechanisms can contribute to savings under particular conditions. 

1.2.4 Effort-based motor adaptation 

The literature reviewed in this section is relevant to the work presented in chapter 5, 

which tests whether neural signals implicated in reward-based learning respond to 

physical effort as a cost that devalues reward. Effects of physical effort are first reviewed in 

the context of value-based decision making, and second in the context of motor control. 

The third part of this section discusses the neurophysiology of physical effort. The fourth 

part of this section discusses findings that effort does not always function as a cost, rather 

it can sometimes increase the value of reward. Finally, effort-based learning is reviewed.   

Effort influences decision making: 

Humans and other animals tend to make decisions that result in more rewarding and less 

physically effortful outcomes. When deciding between offers consisting of varying reward 

values and effort requirements, people weigh the benefits and effort costs associated with 

potential choices (Hartmann et al., 2013; Kennerley et al., 2008; Körding et al., 2004; 

Prévost et al., 2010). If the likelihood of obtaining reward is determined by effort 

expenditure, people tend to expend more effort when the reward stakes are higher 

(Hauser et al., 2017; Pessiglione et al., 2007). Choices involving effort and reward are 

often well described by simple mathematical models in which subjective utility is a 

function of reward discounted by effort, and the probability of choosing an offer is a 

function of its utility relative to other choices.  
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Effort influences motor control: 

Typical studies of effort-based decision making consist of choices between actions 

involving isometric force production, such as squeezing a hand-grip with varying 

amounts of force. Factors related to effort are also considered during the planning and 

selection of potential movements. During tasks in which people decide between different 

reaching movements, people strongly prefer actions that involve lower effective mass of 

the arm (Cos et al., 2011, 2014; Shadmehr et al., 2016a). These findings indicate that 

choices are sensitive to biomechanical properties of the body such that people prefer to 

select movements that are stable and energetically efficient. Biomechanical determinants 

of effort not only influence discrete choices between actions but also how movements are 

executed and controlled. People tend to walk at speeds and step frequencies that are 

energetically efficient (Bertram & Ruina, 2001; Donelan et al., 2001; Holt et al., 1991; 

Molen et al., 1972; Ralston, 1958; Selinger et al., 2015; Umberger & Martin, 2007; Zarrugh 

et al., 1974). Modelling work has attempted to identify whether the nervous system plans 

and executes reaching movements to minimize various effort-related cost functions. 

Some proposed cost functions are related muscle effort, such as the mechanical work 

performed by muscle torques or metabolic energy expenditure by muscles (R. M. 

Alexander, 1997; Berret et al., 2011; Taniai & Nishii, 2015). Other cost functions have 

been proposed that are related to control effort, such as the integral of squared motor 

neuron activation or the amount of information that must be processed by the nervous 

system to implement a particular control policy (Dounskaia & Shimansky, 2016; Guigon 

et al., 2007; Rigoux & Guigon, 2012; Todorov, 2004; Wochner et al., 2020). Although an 

effort cost related to control signals may correlate with energetic effort for similar types of 

movement, control effort can better account for some movement decisions (Morel et al., 

2017). 

Selecting the speed of goal-directed movement may in itself constitute an economic 

decision. Shadmehr et al. (2016) propose that movements incur an effort cost directly 

related to metabolic energy expenditure. Energy costs increase as a function of speed for 

both walking and reaching, suggesting that people should prefer to move more slowly 
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(Ralston, 1958; Shadmehr et al., 2016b). However, moving more slowly delays reward 

attainment for goal directed action, and it is well established in decision making research 

that the subjective utility of reward is discounted hyperbolically by temporal delay 

(Jimura et al., 2009; Kobayashi & Schultz, 2008; Prévost et al., 2010). According to the 

formulation of utility proposed by Shadmehr et al. (2016), a particular movement speed 

optimizes utility depending on the reward value of the outcome and the mechanics of the 

movement. The optimal speed increases for larger rewards, which accounts for findings 

that reward increases movement vigor (Opris et al., 2011; Summerside et al., 2018). This 

model can also account for decreased speed when movements must transport additional 

mass or when a delay between movements is imposed (Gordon et al., 1994; Haith et al., 

2012). However, reward also reliably increases the vigor of movements with negligible 

energetic cost such as saccades. This effect that may be better accounted for by control 

effort than energetic effort (Kawagoe et al., 1998; Reppert et al., 2015; Sedaghat-Nejad et 

al., 2019; Yoon et al., 2020).  

Neurophysiology of effort: 

Fronto-striatal circuits implicated in reward-based learning and decision making are also 

involved in processing information about physical effort. Dopamine signaling plays an 

important role in motivating decisions to expend effort in order to obtain rewards (Denk 

et al., 2005; Hosking et al., 2015; Phillips et al., 2007; Salamone et al., 1994). It has been 

proposed that tonic dopamine release encodes the recent history of reward and 

invigorates action when the reward rate is high (Kurniawan et al., 2011; Niv et al., 2007). 

Invigoration of movement by tonic dopamine release may occur through excitatory 

effects on the basal ganglia direct pathway mediated by D1 receptors and inhibitory 

effects on the indirect pathway mediated by D2 receptors. It can be adaptive to expend 

more effort to move quickly in response to an increase in the rate of reward attainment 

because the opportunity cost of moving slowly is related to the abundance of reward in an 

environment. 
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Neural activity in the striatum has been shown to encode information about effort and to 

integrate effort and reward during decision making (Croxson et al., 2009; Kurniawan et 

al., 2010; Suzuki et al., 2020). In the prefrontal cortex, the anterior cingulate region has 

been consistently shown to represent effort, reward, and utility (Croxson et al., 2009; 

Hauser et al., 2017; Kennerley et al., 2008; Klein-Flügge et al., 2016; Porter et al., 2019; 

Prévost et al., 2010; Skvortsova et al., 2014; Walton et al., 2003). Localized disruptions of 

dopamine signaling in both the striatum and the anterior cingulate impair the motivation 

to produce effortful behavior (Filla et al., 2018; Salamone et al., 2007; Schweimer et al., 

2005; Schweimer & Hauber, 2006). 

Effort can increase the value of reward: 

Economic theories assert that effort is a cost that devalues reward. Paradoxically, it has 

been found in humans and animals that effort can enhance the reinforcing quality of 

rewards (Clement et al., 2000; Inzlicht et al., 2018; Lydall et al., 2010; Zentall, 2010). It 

may be that prospective effort devalues reward, while retrospective effort amplifies 

reinforcement. For example, when given a choice between responses requiring high and 

low effort, participants choose to produce less effort in the immediate future. However, 

when given a choice between conditioned reinforcers that previously followed either low 

or high effort, humans and other animals tend to prefer the reinforcer that required 

greater effort in the past (Alessandri et al., 2008; Clement et al., 2000; Hernandez 

Lallement et al., 2014). Reward prediction error signals recorded from dopamine neurons 

have been shown to be amplified for rewards that require more effort to obtain (S. Tanaka 

et al., 2019). These findings may be explained by contrast effects, whereby rewards are 

valued relative to the immediate context. In the context of a difficult effort, a reward may 

be considered more valuable.  

Learning to reduce effort: 

Although many studies have characterized preferences and choices related to effort, 

relatively few have examined behavioral adaptation to changing and uncertain effort 

contingencies. A few experiments have been reported in which participants must learn 
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arbitrary and changing stimulus-response associations involving both reward and effort 

(Hauser et al., 2017; Skvortsova et al., 2014). These studies found that behavioral learning 

for effort and reward contingencies are both consistent with prediction-error mediated 

learning mechanisms, but that the striatum and ventromedial prefrontal cortex are 

involved in reward-based learning while the anterior cingulate cortex is involved in 

effort-based learning. Some findings also suggest that motor control is adaptive to reduce 

effort expenditure in response to perturbations. When a robotic exoskeleton is used to 

change the energetically optimal gait pattern, participants can adapt their step frequency 

to become more efficient (Selinger et al., 2015, 2019). Typically, movements of the elbow 

joint create torques at the shoulder due to intersegmental dynamics, and shoulder muscle 

activity predictively compensates for these interaction torques. When the shoulder joint is 

locked in place, this shoulder muscle activity gradually attenuates (Maeda et al., 2018, 

2020). Because the shoulder joint is locked, shoulder muscle activity does not contribute 

to error, and instead this adaptation may reflect an optimization of effort cost.  

1.2.5 Event related potentials elicited by feedback 

In the work presented in chapters 2, 3, and 5, Electroencephalography (EEG) was used to 

measure neural event-related potentials (ERPs) elicited by feedback conveying 

information about sensory error, reward, and effort. This section reviews the topic of ERP 

correlates of feedback processing related to behavioral adaptation. The first part of this 

section characterizes an ERP component called the feedback related negativity/ reward 

positivity (FRN/RP), a medial-frontal signal implicated in error monitoring and reward-

based learning. Second, the neurophysiological basis of the FRN/RP is discussed in detail. 

The final part of this section reviews the P300, a centro-parietal ERP component elicited 

by nearly all forms of task-relevant feedback that is also implicated in behavioral 

adaptation.  

Feedback related negativity / reward positivity: 

Upon commission of errors such as unwarranted responses in speeded reaction time 

tasks, a negative voltage deflection occurs at the medial-frontal scalp in event-related 
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potentials (ERPs) measured by EEG (Falkenstein et al., 1991; Gehring et al., 1993). This 

deflection, called the error related negativity (ERN), peaks 50-100ms after erroneous 

responses and is thought to reflect a process in the anterior cingulate involved in 

detecting errors and adapting behaviors (Holroyd & Coles, 2002; Ullsperger et al., 2014). 

When success or reward is uncertain, extrinsic feedback that signals an unfavorable 

outcome also elicits a negative ERP deflection compared to feedback signaling a 

rewarding outcome (Holroyd & Coles, 2002; Miltner et al., 1997). Deemed the feedback-

related negativity (FRN), this ERP component occurs 200-350ms after feedback stimuli 

with a medial-frontal scalp distribution nearly identical to the ERN. The FRN was 

originally interpreted as an ERP negativity reflecting error processing in response to 

unfavorable external feedback. However, converging lines of evidence have demonstrated 

that a large portion of the variance attributed to the FRN is actually due to a positive ERP 

deflection in response to rewards (Becker et al., 2014; Carlson et al., 2011; Foti et al., 2011; 

Krigolson, 2018; Proudfit, 2015; Sambrook & Goslin, 2016; Walsh & Anderson, 2012). 

The negativity observed following unfavorable outcomes may be a feature of the ERP 

waveform elicited by any task-relevant feedback that is cancelled by an overlapping 

positivity in response to reward (Baker & Holroyd, 2011; Holroyd et al., 2006, 2008). In 

light of these findings, the FRN is often referred to as the reward positivity (RP) in recent 

literature (Proudfit, 2015).  

According to highly influential theories of the feedback related negativity/ reward 

positivity (FRN/RP), it reflects reward prediction error signals in the medial frontal 

cortex that affect behavioral adaptation according to the principles of reinforcement 

learning (Holroyd & Coles, 2002; Holroyd & Umemoto, 2016; Walsh & Anderson, 2012). 

Multiple studies, including a recent meta-analysis of 55 datasets, have demonstrated that 

the FRN/RP satisfies formal requirements of a signal encoding reward prediction error 

(Luque et al., 2012; Sambrook & Goslin, 2015, 2016; Talmi et al., 2012). Like reward-

prediction error signals observed in midbrain dopamine neurons, the FRN/RP initially 

responds to reinforcement outcomes themselves but shifts to stimuli that predict those 

outcomes through associative learning (Eppinger et al., 2008; Holroyd et al., 2011; Liao et 
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al., 2011; Nieuwenhuis et al., 2002; Schultz, 2007; Walsh & Anderson, 2011). While some 

studies have observed trial-by-trial relationships between the FRN and learning behavior 

(Arbel et al., 2013; Cohen & Ranganath, 2007; Frank et al., 2005; Hewig et al., 2011; 

Holroyd & Krigolson, 2007; Lohse et al., 2020; Philiastides et al., 2010; Santesso et al., 

2008, 2008; van der Helden et al., 2010; Yasuda et al., 2004), others studies have found 

that the FRN/RP does not predict behavioral adaptation (H. W. Chase et al., 2011; Martín 

et al., 2013; Yeung & Sanfey, 2004). The relationship between the FRN/RP and behavior 

may depend on the degree to which different neural control systems affect behavior in a 

particular task. For example, the FRN/RP may express “model-free” reward prediction 

errors that incrementally update habitual response tendencies even while deliberative 

planning or rule-based decision making processes control behavior (H. W. Chase et al., 

2011; Sambrook et al., 2018). 

Neurophysiological significance of the FRN/RP: 

Convergent evidence from studies using source localization, fMRI, invasive recordings, 

and lesion studies suggest that the ERN is primarily generated in the anterior cingulate 

cortex (ACC; Emeric et al., 2008; Godlove et al., 2011; Keil et al., 2010; Stemmer et al., 

2004; Swick & Turken, 2002; M. Ullsperger & von Cramon, 2001). The FRN/RP is 

generally thought to be functionally equivalent to the ERN, and has also been consistently 

localized to the ACC through various methods (Becker et al., 2014; Gehring & 

Willoughby, 2002; Hauser, Iannaccone, Ball, et al., 2014; Hauser, Iannaccone, Stämpfli, et 

al., 2014; Santesso et al., 2008; E. H. Smith et al., 2015; Warren et al., 2015). Recordings 

from single neurons in the ACC of non-human primates have revealed rich information 

about actions, reward prediction error, and behavioral changes in response to feedback 

(Amiez et al., 2005; Gemba et al., 1986; S. Ito et al., 2003; Kennerley et al., 2011; 

Matsumoto et al., 2007; Niki & Watanabe, 1979; Quilodran et al., 2008; Sallet et al., 2007; 

Schall et al., 2002; Shima & Tanji, 1998; Ullsperger et al., 2014; Williams et al., 2004). A 

highly influential theory states that the FRN/RP reflects reward prediction error signals in 

the ACC driven by dopaminergic inputs to affect adaptive behavior (Holroyd & Coles, 

2002; Holroyd & Umemoto, 2016; Walsh & Anderson, 2012). Midbrain dopamine 
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neurons could influence the ACC directly through dense innervation of the frontal 

cortex. Alternatively, dopaminergic reward prediction error signals could drive the 

FRN/RP through projections to the striatum which is interconnected with the ACC 

through cortico-basal ganglia-thalamic loop circuits. Single-trial measures of the FRN/RP 

correlate with positive BOLD responses to reward in the ventral striatum and ACC, 

suggesting a function role of concerted frontostriatal circuits in generating the FRN/RP 

(Becker et al., 2014). Although phasic dopamine signals have not been conclusively 

shown to cause the generation of the FRN/RP, numerous findings suggest a role of 

dopamine. The magnitude of the FRN/RP is diminished in Parkinson’s disease (D. R. 

Brown et al., 2020; Martínez-Horta et al., 2014), correlated with gray matter volume of 

dopaminergic midbrain structures (Carlson et al., 2015), and related to dopaminergic 

genetic polymorphisms (Enge et al., 2017; Marco-Pallarés et al., 2009). Some effects of 

pharmacological dopamine manipulations on the FRN/RP have been reported, but results 

have been mixed (Forster et al., 2017; Mueller et al., 2014; Santesso et al., 2009; Schutte et 

al., 2020). 

P300: 

Extrinsic feedback related to reward, error, or task performance also elicits a centro-

parietal ERP component with a positive voltage peak at latencies of 300-600ms called the 

P300 (Glazer et al., 2018; San Martín, 2012). For both wins and losses, the amplitude of 

the P300 is positively related to outcome magnitude and inversely related to outcome 

probability (Bellebaum et al., 2010; Gu, Lei, et al., 2011; Hajcak et al., 2007; Pfabigan et al., 

2011; Sato et al., 2005; Watts et al., 2017; Xu et al., 2011; Yeung & Sanfey, 2004). Effects of 

outcome valence on P300 magnitude are mixed and may depend on the experimental 

context (Bellebaum et al., 2010; Campbell et al., 1979; Frank et al., 2005; Gu, Lei, et al., 

2011; Gu, Wu, et al., 2011; Kreussel et al., 2012; Polezzi et al., 2010; Sato et al., 2005; 

Yeung et al., 2005; Yeung & Sanfey, 2004; Zhou et al., 2010). P300 components elicited by 

feedback are also often modulated by high-level factors such as motivational salience, 

temporal waiting cost and cognitive effort (Glazer et al., 2018; Ma et al., 2014; J. Wang et 

al., 2014). 
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A longstanding and highly influential hypothesis suggests that the P300 is a measure of 

neural activity that functions to revise internal models of behavioral tasks in response to 

relevant stimuli (E. Donchin & Coles, 1988). This is consistent with findings that 

magnitude, surprise, and salience increase the P300 response to task feedback. 

Furthermore, P300 amplitude has been linked to behavioral adjustment in response to 

feedback (H. W. Chase et al., 2011; A. G. Fischer & Ullsperger, 2013; Sun & Wang, 2020; 

Yeung & Sanfey, 2004). 

Widespread cortical association networks have been implicated in producing the P300, 

including parietal, temporal, and prefrontal areas (Polich, 2007; Soltani & Knight, 2000). 

The P300 is thought to reflect phasic norepinephrine release to diffuse cortical targets in 

response to salient stimuli to facilitate sensory encoding and adaptive behavioral 

adjustments (Dayan & Yu, 2006; Nieuwenhuis et al., 2005; San Martín, 2012; Vazey et al., 

2018). 
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2.1 Introduction 

It is thought that at least two distinct learning processes can simultaneously contribute to 

sensorimotor adaptation, sensory error-based learning and reward-based learning (Galea 

et al., 2015; Huang et al., 2011; Izawa & Shadmehr, 2011; Nikooyan & Ahmed, 2014; 

Shmuelof et al., 2012). Electroencephalography (EEG) has been used to identify neural 

signatures of error and feedback processing in various motor learning and movement 

execution tasks (Krigolson et al., 2008; MacLean et al., 2015; Savoie et al., 2018; 

Torrecillos et al., 2014). However, it remains unclear how these neural responses relate to 

distinct reward- and sensory error-based motor learning mechanisms, as these processes 

are potentially confounded in typical experimental paradigms. Here we identified neural 

responses to feedback in separate motor adaptation paradigms designed to isolate 

reward-based learning and sensory error-based learning.  

Visuomotor rotation (VMR) paradigms are a common experimental model for sensory-

error based learning (Inoue et al., 2000; Krakauer, 2009; Krakauer et al., 2005; Rand & 

Heuer, 2019; H. Tanaka et al., 2009). In VMR tasks, participants typically reach to one or 

more targets arranged around a central start position. Visual feedback of hand position is 

rotated about the start position relative to the actual angle of reach. These perturbations 

are thought to produce sensory prediction errors caused by sensory feedback that 

indicates a state of the motor system that differs from the intended or predicted 

consequence of a motor command. Sensory prediction error is thought to elicit plasticity 

in cortico-cerebellar circuits that mediates motor adaptation to compensate for 

visuomotor perturbations (Block & Bastian, 2012; Diedrichsen et al., 2005; Izawa & 

Shadmehr, 2011; Mazzoni & Krakauer, 2006; M. A. Smith & Shadmehr, 2005; Synofzik et 

al., 2008; H. Tanaka et al., 2009).  

Recent research suggests that a reward-based learning process can also contribute to 

motor adaptation in parallel to sensory error-based learning (Cashaback et al., 2017; 

Codol et al., 2018; Holland et al., 2018; Izawa & Shadmehr, 2011; Kooij & Smeets, 2019; 

Therrien et al., 2016). Reward-based learning has been isolated experimentally by 
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providing participants with only binary reinforcement feedback that indicates success or 

failure, without visual feedback of hand position. Reward-based motor learning has been 

modeled using computational reinforcement learning algorithms, which map actions to 

abstract representations of reward or success rather than to the sensory consequences of 

action (Dhawale et al., 2019; Izawa & Shadmehr, 2011).  

The overarching hypothesis of this thesis is that fronto-striatal circuits contribute to 

reward-based motor adaptation by implementing a computational reinforcement 

learning process. We first sought to identify neural correlates of reward-prediction error, 

a canonical neural reinforcement learning signal, during reward-based motor adaptation. 

We were particularly interested in a medial-frontal event-related potential (ERP) 

component known as the feedback-related negativity/reward positivity (FRN/RP). The 

FRN/RP is characterized by a relatively positive voltage deflection in the midfrontal EEG 

in response to rewarding outcomes compared to a negativity observed in response to 

unfavorable outcomes (Falkenstein et al., 1991; Gehring et al., 1993; Proudfit, 2015). The 

reinforcement learning theory of the FRN/RP states that the component is a measure of 

reward prediction error signals generated by the medial frontal cortex that serve to 

reinforce successful actions and/or deter unrewarding actions (Holroyd & Coles, 2002; 

Sambrook & Goslin, 2015; Walsh & Anderson, 2012). Alternative accounts of the 

FRN/RP state that it is not specifically tied to the rewarding quality of outcomes but that 

it is a general prediction error or salience signal elicited by any unexpected outcome (W. 

H. Alexander & Brown, 2011; Hauser, Iannaccone, Stämpfli, et al., 2014; Hird et al., 2018; 

Soder & Potts, 2018; Talmi et al., 2013).  

Our goal was to test the reinforcement learning theory of the FRN/RP in the context of 

motor adaptation by determining whether the FRN/RP is elicited specifically by 

reinforcement outcomes but not sensory error. Counterfactually, if the FRN/RP reflects a 

general error monitoring or prediction error signal, then sensory error should also elicit 

an FRN/RP. Previous studies have reported FRN/RP-like neural responses to sensory 

error feedback (Krigolson et al., 2008; MacLean et al., 2015; Savoie et al., 2018; Torrecillos 

et al., 2014). However, perturbation of sensory outcomes typically coincides with a failure 
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to meet the goals of the task, making it difficult to differentiate reinforcement-related 

error processing from sensory error processing. Furthermore, previous research has 

introduced perturbations during ongoing movements. In this case it is difficult to 

distinguish adaptation-related error processing from the recruitment of neural resources 

for ongoing control, which can elicit N200 ERP components with similar scalp 

distributions and timing as the FRN/RP (Folstein & Petten, 2008). We designed motor 

adaptation tasks to isolate reward-based and sensory error-based learning processes. We 

predicted that the FRN/RP would be elicited specifically by reinforcement outcomes but 

not sensory error. We provided feedback only at movement end point to avoid confounds 

due to movements themselves or error processing related to ongoing control. We further 

tested the hypothesis that the FRN/RP reflects a reward prediction error signal by 

manipulating the likelihood of reward feedback across conditions. Specifically, we 

predicted that the differential ERP response to reward vs. non reward feedback would be 

larger for infrequent outcomes compared to frequent outcomes. 

The FRN/RP potential is superimposed on the P300, a well-characterized positive ERP 

component that peaks later than the FRN/RP and with a more posterior scalp 

distribution. It has been proposed that the P300 reflects the updating of internal models 

of stimulus context upon processing of unexpected stimuli to facilitate adaptive 

responding (E. Donchin & Coles, 1988; Krigolson et al., 2008; MacLean et al., 2015; 

Polich, 2007; San Martín, 2012). The P300 is observed ubiquitously in processing task-

related feedback, and therefore we expected to detect a P300 in response to both sensory 

error and reward feedback. In accordance with the hypothesis that the P300 reflects a 

general processing of task-relevant feedback for behavioral adaptation, we predicted that 

P300 amplitude would be increased by sensory error and by infrequent reinforcement 

outcomes regardless of valence. 
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2.2 Materials and Methods 

2.2.1 Experimental Design and Statistical Analysis 

Participants made reaching movements toward a visual target and received visual 

feedback pertaining to reach angle only at movement end point. Neural responses to 

feedback were recorded by EEG. Participants were instructed that each reach terminating 

within the target would be rewarded with a small monetary bonus. Participants first 

performed a block of 50 practice trials. The subsequent behavioral procedure consisted of 

four blocks of a reward learning task and four blocks of a VMR task. The order of the 

blocks alternated between the two task types but was otherwise randomized. Participants 

took self-paced rests between blocks. 

In the VMR task, a cursor appeared at movement end point to represent the position of 

the hand. In randomly selected trials, cursor feedback indicated a reach angle that was 

rotated relative to the unperturbed feedback. We tested for behavioral adaptation and 

modulation of ERPs in response to VMR. The perturbations were small relative to the 

size of the target, such that participants nearly always landed in the target, fulfilling the 

goal of the task and earning a monetary reward. Thus reward and task error were 

constant between perturbed and nonperturbed feedback, and by comparing the two 

conditions we could isolate the neural correlates of sensory error processing. 

In the reward learning task, no cursor appeared to indicate the position of the hand. 

Instead, binary feedback represented whether or not participants succeeded in hitting the 

target. This allowed us to assess reward-based learning in isolation from sensory error 

processing, as visual information revealing the position of the hand was not provided. 

Reward was delivered probabilistically, with a higher probability of reward for reaches in 

one direction than the other, relative to participants’ recent history of reach direction. We 

compared the neural responses to reward and non-reward feedback to assess the neural 

correlates of reward processing during adaptation. 
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Student’s t-tests were performed with MATLAB R2016b, and the Lilliefors test was used 

to test the assumption of normality. In the case of nonnormal data, the Wilcoxon signed-

rank test was used to test pairwise differences. Repeated-measures analyses of variance 

(ANOVAs) were conducted with IBM SPSS Statistics version 25. For all ANOVAs, 

Mauchly’s test was used to validate the assumption of sphericity. 

2.2.2 Participants 

Data from n = 20 healthy, right-handed participants were analyzed and reported (23.21 ± 

3.09 yr old; 12 women, 8 men). Three additional participants underwent the experimental 

procedure but were excluded because malfunction of the EEG recording equipment made 

the data unusable. One additional participant who reported performing movements 

based on a complex strategy that was unrelated to the experimental task was excluded. 

Participants provided written informed consent to experimental procedures approved by 

the Research Ethics Board at Western University. 

2.2.3 Apparatus/Behavioral Task 

Participants produced reaching movements with their right arm while holding the handle 

of a robotic arm (InMotion2; Interactive Motion Technologies; Fig. 2-1). Position of the 

robot handle was sampled at 600 Hz. A semisilvered mirror obscured vision of the arm 

and displayed visual information related to the task. An air sled supported each 

participant’s right arm. 

Participants reached to a white circular target 14 cm away from a circular start position 

(1-cm diameter) in front of their chest (Fig. 2-1A). The start position turned from red to 

green to cue the onset of each reach once the handle had remained inside it continuously 

for 750 ms. Participants were instructed that they must wait for the cue to begin each 

reach but that it was not necessary to react quickly upon seeing the cue. 

Participants were instructed to make forward reaches and to stop their hand within the 

target. An arc-shaped cursor indicated reach extent throughout each movement without 

revealing reach angle. In only the first five baseline trials of each block, an additional  
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Figure 2-1: Experimental setup. A, Participants (n = 20) reached to visual targets while holding the 

handle of a robotic arm. Vision of the arm was obscured by a screen that displayed visual information 

related to the task. B, During reaches, hand position was hidden but an arc-shaped cursor indicated 

the extent of the reach without revealing reach angle. Feedback was provided at reach end point. C, In 

the reward learning condition, binary feedback represented whether reaches were successful or 

unsuccessful in hitting the target by turning green or red, respectively. Reach adaptation was induced 

by providing reward for movements that did not necessarily correspond to the visual target. D, In the 

visuomotor rotation condition, feedback represented the end-point position of the hand. Adaptation 

was induced by rotating the angle of the feedback relative to the actual reach angle. 
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circular cursor continuously indicated the position of the hand throughout the reach. A 

viscous force field assisted participants in braking their hand when the reach extent was 

>14 cm. 

The robot ended each movement by fixing the handle position when the hand velocity 

decreased below 0.03 m/s. The hand was fixed in place for 700 ms, during which time 

visual feedback of reach angle was provided. Feedback indicated either reach end point 

position, a binary reward outcome, or feedback of movement speed (see below). Visual 

feedback was then removed, and the robot guided the hand back to the start position. 

Reach end point was defined as the position at which the reach path intersected the 

perimeter of a circle (14-cm radius) centered at the start position. Reach angle was 

calculated as the angle between vectors defined by reach end point and the center of the 

target, each relative to the start position, such that reaching straight ahead corresponds to 

0° and counterclockwise reach angles are positive. Feedback about reach angle was 

provided either in the form of end-point position feedback or binary reward feedback. 

The type of feedback, as well as various feedback manipulations, varied according to the 

assigned experimental block type (see Reward Learning Task and Visuomotor Rotation 

Task). Participants were told that they would earn additional monetary compensation for 

reaches that ended within the target, up to a maximum of CAD$10. 

Movement duration was defined as the time elapsed between the hand leaving the start 

position and the moment hand velocity dropped below 0.03 m/s. If movement duration 

was >700 ms or <450 ms, no feedback pertaining to movement angle was provided. 

Instead, the gray arc behind the target turned blue or yellow to indicate that the reach was 

too slow or too fast, respectively. Participants were informed that movements with an 

incorrect speed would be repeated but would not otherwise affect the experiment. 

To minimize the impact of eyeblink-related EEG artifacts, participants were asked to 

fixate their gaze on a black circular target in the center of the reach target and to refrain 

from blinking throughout each arm movement and subsequent presentation of feedback. 
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Practice Block: Each participant first completed a block of practice trials that continued 

until they achieved 50 movements within the desired range of movement duration. 

Continuous position feedback was provided during the first 5 trials, and only end-point 

position feedback was provided for the following 10 trials. Subsequently, no position 

feedback was provided outside the start position. 

Reward Learning Task: Binary reward feedback was provided to induce adaptation of 

reach angle. Each participant completed four blocks in the reward learning condition. We 

manipulated feedback with direction of intended learning and reward frequency as 

factors, using a 2 × 2 design (direction of learning × reward frequency) across blocks. For 

each direction of intended learning (clockwise and counterclockwise), each participant 

experienced a block with high reward frequency and a block with low reward frequency. 

Reward frequency was manipulated to assess effects related to expectation, under the 

assumption that outcomes that occurred less frequently would violate expectations more 

strongly. Each block continued until the participant completed 115 reaches with 

acceptable movement duration. Participants reached toward a circular target 1.2 cm (4.9°) 

in diameter. The first 15 reaches were baseline trials during which continuous position 

feedback was provided during the first 5 trials, followed by 10 trials with only end-point 

position feedback. After these baseline trials no position feedback was provided, and 

binary reward feedback was instead provided at the end of the movement. Target hits and 

misses were indicated by the target turning green and red, respectively. 

Unbeknownst to participants, reward feedback was delivered probabilistically. The 

likelihood of reward depended on the difference between the current reach angle and the 

median reach angle of the previous 10 reaches. In the high-reward frequency condition, 

reward was delivered at a probability of 100% if the difference between the current reach 

angle and the running median was in the direction of intended learning and at a 

probability of 30% otherwise (Eq. 2.1). When the running median was at least 6° away 

from zero in the direction of intended learning, reward was delivered at a fixed 

probability of 65%. This was intended to minimize conscious awareness of the 

manipulation by limiting adaptation to ±6°. In the low-reward frequency condition, 



Chapter 2: Neural signatures of reward and sensory error feedback processing in motor learning  

 

80 

reward was similarly delivered at a probability of either 70% or 0% (Eq. 2.2). When the 

running median was at least 6° away from zero in the direction of intended learning, 

reward was delivered at a fixed probability of 35%. Reach angle and feedback throughout 

a representative experimental block are shown in Fig. 2-2.  

We employed this adaptive, closed-loop reward schedule so that the overall frequency of 

reward was controlled, as reinforcement-related neural signals are highly sensitive to 

expectancy effects. The probability of reward on a given is described below: 

𝑝"#$" = &
1, 𝑧 ⋅ (𝜃# − median(𝜃#456, … , 𝜃#85)) > 0
. 3, 𝑧 ⋅ (𝜃# − median(𝜃#456, … , 𝜃#85)) < 0
. 65, 𝑧 ⋅ median(𝜃#4A, … , 𝜃#) > 6

  (2.1) 

𝑝DEF = &
. 7, 𝑧 ⋅ (𝜃# − median(𝜃#456, … , 𝜃#85)) > 0
0, 𝑧 ⋅ (𝜃# − median(𝜃#456, … , 𝜃#85)) < 0
. 35, 𝑧 ⋅ median(𝜃#4A, … , 𝜃#) > 6

  (2.2) 

where p is probability of reward described separately for the high- and low-reward 

frequency conditions, θ is the reach angle on trial i, z = 1 for counterclockwise learning 

blocks, and z = −1 for clockwise learning blocks. 

Visuomotor rotation task: End-point feedback was rotated relative to the actual reach 

angle to induce sensory error-based adaptation. Each participant completed four blocks 

in the VMR condition. We manipulated feedback with initial rotation direction and 

perturbation size as factors using a 2 × 2 design across blocks. For each direction of initial 

rotation (clockwise and counterclockwise) each participant experienced a block with large 

rotation (1.5°) and a block with small rotation (0.75°). Each block continued until 

participants completed 125 reaches within acceptable movement duration limits. 

Participants reached toward a circular target 2.5 cm (10.2°) in diameter. Participants first 

performed baseline reaches during which cursor feedback reflected veridical reach angle 

continuously for the first 10 trials and only at movement end point for the subsequent 15 

trials. After the baseline reaches the adaptation portion of each block began, 

unannounced to participants. 
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Figure 2-2: Reach angles of a representative participant (n = 1). Top: the reward learning block 

assigned to the clockwise (CW) adaptation with the high reward frequency condition. Reaches were 

rewarded with 100.0% probability for reach angles less than the median of the previous 10 reaches and 

with 30.0% probability for reach angles greater than this running median. Reward was delivered at a 

fixed probability of 65.0% when the running median was less than −6°, indicated by the “Non-

Adaptation” portion of the block. Bottom: the visuomotor rotation block assigned to the 1.5° rotation 

condition. The rotation is imposed randomly in 50% of trials. The rotation is initially 

counterclockwise (CCW) but reverses when the mean of the previous 5 reach angles becomes less than 

−6.0°. 
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During the adaptation trials, end-point position feedback was provided that did not 

necessarily correspond to the true hand position. Participants were instructed that end-

point feedback within the target would earn them bonus compensation, but no explicit 

reward feedback was provided. To determine the feedback angle in the small- and large-

perturbation conditions, we added a rotation of 0.75° or 1.5°, respectively, to the true 

reach angle in a randomly selected 50% of trials. In addition, on every trial we subtracted 

an estimate of the current state of reach adaptation. Equation 2.3 describes the angle of 

endpoint cursor feedback provided on each trial. 

𝑋# = 𝜃# + 𝑞 − mean(𝜃#4K, … , 𝜃#45) + L (
#45

M8#4N

. 25 ⋅ 𝑋M)

𝑞 = 𝑧 ⋅ 𝑠 ⋅ 𝑢

𝑝(𝑢) = Q. 5, if	𝑢 = 1
. 5, if	𝑢 = 0

  (2.3) 

X denotes feedback angle, θ denotes reach angle, and q denotes the 

perturbation. z denotes the direction of the perturbation (z = 1 for counterclockwise 

perturbations and z = −1 for clockwise perturbations). s denotes the size of the 

perturbation (0.75° or 1.5° in the small- and large-error conditions, respectively). u is a 

discrete random variable that is realized as either 1 or 0 with equal probability (50%). 

If the state of adaptation is accurately estimated and subtracted from the true reach angle, 

then a reach that reflects the state of adaptation without movement error will result in 

either unperturbed feedback at 0° or rotated feedback at the angle of the perturbation. 

The online estimate of adaptation consisted of a running average of the previous five 

reach angles and a model of reach adaptation that assumed that participants would adapt 

to a fixed proportion of the reach errors experienced during the previous three trials. A 

windowed average centered around the current reach angle could estimate the current 

state of reach adaptation, but the online running average was necessarily centered behind 

the current reach angle. Thus an online model was necessary to predict the state of 

adaptation. An adaptation rate of 0.25 was chosen for the online model on the basis of 

pilot data. 
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This design allowed us to compare perturbed and unperturbed feedback in randomly 

intermixed trials. Previous studies have imposed a fixed perturbation throughout a block 

of trials and compared early trials to late trials in which the error has been reduced 

through adaptation (MacLean et al., 2015; Tan et al., 2014). In such designs, differences in 

neural response might be attributed to changes in the state of adaptation or simply 

habituation to feedback, as opposed to sensory error per se. Alternatively, rotations can 

be imposed randomly in either direction, but previous work has demonstrated that neural 

and behavioral responses are larger for consistent perturbations, presumably because the 

sensorimotor system attributes variability in feedback to noise processes (Tan et al., 

2014). 

We sought to limit the magnitude of adaptation to 6° in an attempt to minimize 

awareness of the manipulation. The direction of the perturbation was reversed whenever 

the average reach angle in the previous five movements differed from zero by at least 6° in 

the direction of intended reach adaptation. Reach angle and feedback angle throughout a 

representative experimental block are shown in Fig. 2-2. 

2.2.4 EEG Data Acquisition 

EEG data were acquired from 16 cap-mounted electrodes with an active electrode system 

(g.GAMMA; g.tec Medical Engineering) and amplifier (g.USBamp; g.tec Medical 

Engineering). We recorded from electrodes placed according to the 10-20 System at sites 

Fz, FCz, Cz, CPz, Pz, POz, FP1, FP2, FT9, FT10, FC1, FC2, F3, F4, F7, and F8, referenced 

to an electrode placed on participants’ left earlobe. Impedances were maintained below 5 

kΩ. Data were sampled at 4,800 Hz and filtered online with band-pass (0.1–1,000 Hz) and 

notch (60 Hz) filters. A photodiode attached to the display monitor was used to 

synchronize recordings to stimulus onset. 
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2.2.5 Behavioral Data Analysis 

Reward learning task: Motor learning scores were calculated for each participant as the 

difference between the average reach angle in the counterclockwise learning blocks and 

the average reach angle in the clockwise learning blocks. We assessed reach angle 

throughout the entire block primarily because reach direction was often unstable and a 

smaller window was susceptible to noise. Furthermore, this metric of learning reflected 

the rate of adaptation throughout the block without assuming a particular function for 

the time course of learning. Finally, this metric was not dependent on the choice of a 

particular subset of trials. We excluded baseline trials and trials that did not meet the 

movement duration criteria, as no feedback related to reach angle was provided on these 

trials (6.5% of trials in the VMR task, 7.4% of trials in the reward learning task). 

Visuomotor rotation task: To quantify trial-by-trial learning we first calculated the change 

in reach angle between successive trials, as in Eq. 2.4: 

𝛥𝜃# = 𝜃#U5 − 𝜃#  (2.4) 

We then performed a linear regression on Δθi with the rotation imposed on trial i as the 

predictor variable. The rotation was 0°, ±0.75°, or ±1.5°. This regression was performed 

on an individual participant basis, separately for each of the four VMR conditions 

(corresponding to feedback rotations of −1.5°, −0.75°, 0.75°, and 1.5°). For these 

regressions, we excluded trials that did not meet the duration criteria or that resulted in 

an absolute visual error of >10° (mean = 2.65 trials per participant, SD= 4.3), as these 

large errors were thought to reflect execution errors or otherwise atypical movements. 

We took the average of the resulting slope estimates across blocks, multiplied by −1, as a 

metric of learning rate for each participant, as it reflects the portion of visual errors that 

participants corrected with a trial-by-trial adaptive process. Based on simulations of our 

experimental design using a standard memory updating model (Thoroughman & 

Shadmehr, 2000; not described here), we found that it was necessary to perform the 

regression separately for each rotation condition, as collapsing across the different 

rotation sizes and directions could introduce bias to the estimate of learning rate. 
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2.2.6 EEG Data Denoising 

EEG data were resampled to 480 Hz and filtered off-line between 0.1 and 35 Hz with a 

second-order Butterworth filter. Continuous data were segmented into 2-s epochs time-

locked to feedback stimulus onset at 0 ms (time range: −500 to +1,500 ms). Epochs 

flagged for containing artifacts as well as any channels with bad recordings were removed 

after visual inspection. Subsequently, extended infomax independent component analysis 

was performed on each participant’s data (Delorme & Makeig, 2004). Components 

reflecting eye movements and blink artifacts were identified by visual inspection and 

subtracted by projection of the remaining components back to the voltage time series. 

2.2.7 Event Related Potential Averaging 

After artifact removal, we computed ERPs by trial averaging EEG time series epochs for 

various feedback conditions described in the sections below. ERPs were computed on an 

individual participant basis separately for recordings from channels FCz and Pz. All ERPs 

were baseline corrected by subtracting the average voltage in the 75-ms period 

immediately following stimulus onset. We used a baseline period following stimulus 

onset because stimuli were presented immediately upon movement termination and the 

period before stimulus presentation was more likely to be affected by movement-related 

artifacts. Trials in which reaches did not meet the movement duration criteria were 

excluded, as feedback relevant to reach adaptation was not provided on these trials (6.5% 

of trials in the VMR task, 7.4% of trials in the reward learning task). 

Reward learning task: We computed ERPs separately for feedback conditions 

corresponding to “frequent reward,” “infrequent reward,” ,“frequent nonreward,” and 

“infrequent nonreward.” Reward in the high-reward frequency condition and nonreward 

in the low-reward frequency condition were deemed frequent, whereas reward in the low-

reward frequency condition and nonreward in the high-reward frequency condition were 

deemed infrequent (Holroyd & Krigolson, 2007). 

Visuomotor rotation task: We created trial-averaged ERP responses for trials with rotated 

feedback and trials with nonrotated feedback, separately for the 0.75° and 1.5° rotation 
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conditions. The resulting ERPs are identified by the conditions “rotated 0.75°,” 

“nonrotated 0.75,” “rotated 1.5°,” and “nonrotated 1.5°.” 

To test for effects of absolute end-point error, which is determined not only by VMR but 

also by movement execution errors, we sorted trials in the adaptation portion of the VMR 

blocks by the absolute value of the angle of visual feedback relative to the center of the 

target. We created “most accurate” and “least accurate” ERPs for each participant by 

selecting the 75 trials with the smallest and largest absolute feedback angle, respectively. 

2.2.8 Feedback-Related Negativity/ Reward Positivity Analysis 

The FRN/RP was analyzed with a difference wave approach with ERPs recorded from 

FCz, where it is typically largest (Holroyd & Krigolson, 2007; Miltner et al., 1997; 

Pfabigan et al., 2011). Although the FRN/RP is classically characterized by a negative 

voltage peak following nonreward feedback, multiple lines of evidence suggest that a 

reward-related positivity also contributes to the variance captured by the difference wave 

approach, despite not producing a distinct peak (Baker & Holroyd, 2011; Becker et al., 

2014; Carlson et al., 2011; Proudfit, 2015; Walsh & Anderson, 2012). Furthermore, 

difference waves can be computed separately for frequent and infrequent outcomes, 

which subtracts effects of pure surprise while preserving any interaction between 

feedback valence and reward frequency (Holroyd & Krigolson, 2007). Difference waves 

were computed for each participant by subtracting ERPs corresponding to unsuccessful 

outcomes from those corresponding to successful outcomes. FRN/RP amplitude was 

determined as the mean value of the difference wave between 200 and 350 ms after 

feedback presentation. This time window was chosen a priori on the basis of previous 

reports (see Walsh & Anderson, 2012, for meta-analysis). To test for the presence of the 

FRN/RP for each difference wave, we submitted FRN/RP amplitude to a t-test against 

zero. 

Visuomotor rotation task: First, we created difference waves to test whether the rotations 

imposed on randomly selected trials elicited FRN/RP components. The rotated 0.75° 

ERPs were subtracted from the nonrotated 0.75° ERPs to create a “small VMR” difference 
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wave. The rotated 1.5° ERPs were subtracted from the nonrotated 1.5° ERPs to create a 

“large VMR” difference wave. 

Next, we created a difference wave to test whether a FRN/RP was observable by 

comparing trials where the end-point feedback was furthest from the center of the target 

to those where feedback was closest to the center of the target. The “least accurate” ERPs 

were subtracted from the “most accurate” ERPs to create an “end-point error” difference 

wave. 

Reward learning task: The frequent-nonreward ERP was subtracted from the frequent-

reward ERP to create a “frequent” difference wave, and the infrequent-nonreward ERP 

was subtracted from the infrequent-reward EPR to create an “infrequent” difference 

wave. 

2.2.9 P300 Analysis 

To analyze the P300 we used ERPs recorded from channel Pz, where it is typically largest 

(Fabiani et al., 1987; Hajcak et al., 2005; MacLean et al., 2015; Polich, 2007). We 

calculated P300 amplitude using base-to-peak voltage difference. The temporal regions of 

interest (ROIs) for the peak and base were determined with grand averages computed 

across participants and conditions for each task (see Visuomotor rotation task and Reward 

learning task below). P300 peak was defined as the maximum peak occurring 250–500 ms 

after stimulus onset, which always corresponded to the largest peak in the analyzed 

epoch. P300 base was defined as the minimum preceding peak that occurred at least 100 

ms after stimulus onset. For each subject, peak and base voltages were calculated 

separately for each condition ERP as the average voltage within 50-ms windows centered 

around the temporal ROIs defined at the group level. P300 amplitude was then 

determined as the difference between peak and base voltage. 

Visuomotor rotation task: P300 amplitude was calculated in four conditions using the 

rotated 0.75°, nonrotated 0.75°, rotated 1.5°, and nonrotated 1.5° ERPs. Temporal ROIs 

were determined, as described above, by aggregating all trials across participants and the 
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four conditions into a single set and averaging to produce an “aggregate grand average 

from trials” waveform. This approach allows for data-driven ROI selection without 

inflated type I error rate and has been shown to be insensitive to trial number asymmetry 

across conditions (J. L. Brooks et al., 2017). We tested for differences in P300 amplitude 

related to VMR with two-way repeated-measures ANOVA with factors rotation (levels: 

nonrotated, rotated) and rotation magnitude (levels: 0.75°, 1.5°). 

Reward learning task: P300 amplitude was calculated in four conditions using the 

infrequent reward, frequent reward, infrequent nonreward, and frequent nonreward 

feedback condition ERPs described above. Because the waveform morphology was 

considerably different for the ERPs elicited by reward feedback and those elicited by 

nonreward feedback, we defined temporal ROIs separately for the reward conditions 

(infrequent reward, frequent reward) and the nonreward conditions (infrequent 

nonreward and frequent nonreward). In both cases, temporal ROIs were determined by 

aggregating all trials across participants and the corresponding two conditions into a 

single set and averaging to produce an “aggregate grand average from trials” waveform. 

We tested for differences in P300 amplitude between feedback conditions with two-way 

repeated-measures ANOVA with factors reward (levels: rewarded, nonrewarded) and 

expectancy (levels: infrequent, frequent). 

2.3 Results 

2.3.1 Behavioral Results 

Reward learning task: In the reward learning task participants adapted their reach angle 

on the basis of binary reward feedback (Fig. 2-3). We calculated a reward learning score 

for each subject by subtracting the average reach angle in the clockwise learning 

condition from that in the counterclockwise learning condition, excluding the baseline 

trials, such that the average reward learning score would be approximately zero if 

participants did not respond to the reward feedback in any way. We observed a mean 

reward learning score of 5.47 (SD 4.66), which is reliably greater than zero [1-sample t-
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test; t(19) = 5.25, P < 0.001]. Participants received reward on 67.0% (SD 4.9) of trials in 

the high-frequency condition and 38.6% (SD 4.3) of trials in the low-frequency condition. 

 

 

 

 

Figure 2-3: Behavior during the reward-based learning task. Participants (n = 20) adapted their 

reach angle in the reward learning condition. Group average reach angles in the reward learning 

conditions are plotted. Each participant completed 4 blocks. For each direction of intended learning 

[clockwise (CW) and counterclockwise (CCW)], each participant completed a block in the high-

reward frequency (65%) condition and a block in the low-reward frequency (35%) condition. Shaded 

regions: ±1 SE. 
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Visuomotor rotation task: In the VMR task participants received end-point cursor 

feedback and adapted their reach angles in response to the rotated cursor feedback 

imposed on randomly selected trials. To estimate trial-by-trial learning rates for 

individual participants, we quantified the linear relationship between the change in reach 

angle after each trial with the rotation imposed on the preceding trial as the predictor 

variable, separately for each rotation condition (−1.5°, −0.75°, 0.75°, and 1.5°). We took 

the average of the resulting slope estimates and multiplied it by −1 to obtain a measure of 

learning rate. This metric reflects the proportion of VMR that each participant corrected 

with a trial-by-trial adaptive process. The mean learning rate was 0.49 (SD 0.46), which 

was significantly different from zero [1-sample t-test; t(19) = 4.8, P < 0.001]. This 

indicates that participants corrected for visual errors on a trial-by-trial basis. Figure 2-

4 shows the average change in reach angle for each size and direction of the imposed 

cursor rotation.  

 

 

Figure 2-4: Behavior during the visuomotor rotation task. Participants (n = 20) adapted their reach 

angle on a trial-by-trial basis in the visuomotor rotation condition. The average change (Δ) in reach 

angle between subsequent pairs of trials is plotted for each size and direction of rotation imposed on 

the preceding trial. The average change in reach angle is in all cases opposite to the rotation, indicating 

that participants adapted their reaches to counteract the perturbations. 
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2.3.2 Feedback-Related Negativity/ Reward Positivity Results 

Reward learning task: Figure 2-5A shows the ERPs recorded from electrode FCz during 

the reward learning condition, averaged across participants. The mean value of the 

“frequent” difference wave recorded from FCz between 200 and 350 ms was significantly 

different from zero [mean = 5.34 μV (SD 4.11), t(19) = 5.81, P < 0.001, 1-sample t-test], 

indicating that frequent feedback elicited a FRN/RP in our reward learning task. The 

mean value of the “infrequent” difference wave was also significantly larger than zero 

[mean = 7.09 μV (SD 2.76), t(19) = 11.47, P < 0.001, 1-sample t-test], indicating that 

infrequent feedback also elicited a FRN/RP. 

The mean amplitude of the “infrequent” difference wave was larger than the mean 

amplitude of the “frequent” difference wave, although the difference was only marginally 

significant [t(19) = 1.66, P = 0.056, paired t-test, 1-tailed; Fig. 2-5C].  

Visuomotor rotation task: Figure 2-6A shows the ERPs recorded from electrode FCz 

during the VMR condition, averaged across participants. The mean value of the “small 

VMR” difference wave recorded from FCz between 200 and 350 ms was not significantly 

different from zero (mean =−0.21 μV (SD 1.29), Z = −0.67, W = 87, P = 0.50, Wilcoxon 

signed-rank test; Fig. 2-6C). Similarly, the mean value of the “large VMR” difference wave 

recorded from FCz between 200 and 350 ms was not significantly different from zero 

[mean = −0.26 μV (SD 1.22), t(19) = −0.97, P = 0.34, 1-sample t-test; Fig. 2-6C). These 

findings indicate that the VMRs imposed in the VMR task did not reliably elicit a 

FRN/RP. 

The mean value of the “end-point error” difference wave recorded from FCz between 200 

and 350 ms was not significantly different from zero [mean = 0.61 μV (SD 

3.28), t(19) = 0.82, P = 0.42, 1-sample t-test], indicating that a FRN/RP did not reliably 

occur on the basis of end-point error feedback. The fact that we were able to detect a 

FRN/RP in the reward learning task but not in the VMR task is consistent with the notion  
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Figure 2-5: Fronto-central event related potential responses to reinforcement feedback. A, Trial-

averaged event-related potentials (ERPs) recorded from electrode FCz aligned to feedback 

presentation (0 ms, vertical blue line). Frequent and infrequent reward refer to reward feedback in the 

high- and low-reward frequency conditions, respectively. Frequent and infrequent nonreward refer to 

nonreward feedback in the low- and high-reward frequency conditions, respectively. Shaded regions: 

±SE (n = 20). The gray shaded box indicates the temporal window of the feedback-related negativity/ 

reward positivity. B, The difference waves (reward ERP − nonreward ERP) for frequent and infrequent 

feedback aligned to feedback presentation. C: The mean amplitude of the difference wave (reward ERP 

− nonreward ERP) between 200 and 350 ms for infrequent and frequent feedback.  
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Figure 2-6: Fronto-central event related potential responses to sensory-error feedback. A, Trial-

averaged event-related potentials (ERPs) recorded from electrode FCz aligned to feedback 

presentation (0 ms, vertical line). Shaded regions: ±SE (n = 20). The gray shaded box indicates the 

temporal window of the FRN/RP. B, The difference waves (nonrotated ERP − rotated ERP) for the 

0.75° and 1.5° rotation conditions aligned to feedback presentation. C, The mean amplitude of the 

difference wave (nonrotated ERP − rotated ERP) between 200 and 350 ms for the 0.75° and 1.5° 

rotation conditions. Error bars show ±SE. 
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that the FRN/RP reflects reward processing but not sensory error processing and that our 

experimental design successfully dissociated the two. 

2.3.3 P300 Results 

Reward learning task: Figure 2-7A shows ERPs recorded from electrode Pz during the 

reward learning condition, averaged across participants. We performed a 2 × 2 repeated-

measures ANOVA on P300 amplitude with factors expectancy and reward. Figure 2-

7B shows P300 amplitude for each condition, averaged across participants. We found a 

significant main effect of feedback expectancy [F(1,19) =97.16, P < 0.001], indicating that 

P300 amplitude was significantly larger in the infrequent feedback conditions. 

We also found a significant main effect of reward [F(1,19) = 13.18, P = 0.002], indicating 

that P300 amplitude was larger after rewarded trials compared with unrewarded trials. 

We found no reliable interaction between reward and expectancy [F(1,19) = 0.992, P = 

0.332).  

Visuomotor rotation task: Figure 2-8A shows ERPs recorded from electrode Pz during the 

VMR task, averaged across participants. We first tested for an effect of the VMR on P300 

amplitude by comparing nonrotated feedback trials and rotated feedback trials. We 

performed a two-way repeated-measures ANOVA with factors presence of rotation and 

size of rotation (Fig. 2-8B). We did not find significant main effects of presence of 

rotation [F(1,19) = 2.917, P = 0.104]. We also did not find a main effect of size of rotation 

[F(1,19) = 3.087, P = 0.095]. We did find a significant interaction effect between presence 

of rotation and rotation magnitude [F(1,19) = 8.728, P = 0.008]. We performed planned 

pairwise comparisons using Bonferroni corrected t-tests between nonrotated and rotated 

conditions separately for the small- and large-error conditions. We found that P300 

amplitude was significantly greater for rotated compared with nonrotated feedback in the 

1.5° rotation condition [t(19) = 2.83, P = 0.021, Bonferroni corrected] but not the 0.75° 

rotation condition [t(19) = 0.09, P = 0.93]. 
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Figure 2-7: Centro-parietal event related potential responses to reinforcement feedback. A, trial-

averaged event-related potentials (ERPs) recorded from electrode Pz aligned to feedback presentation 

(0 ms, vertical line). Shaded regions: ±SE (n = 20). Arrowheads indicate the time points for the base 

and peak of the P300. B, P300 amplitude in each feedback condition (error bars: ±SE). P300 amplitude 

is larger for rewarded feedback relative to unrewarded feedback and for infrequent feedback relative to 

frequent feedback. 
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Figure 2-8: Centro-parietal event related potential responses to sensory error feedback. A, trial-

averaged event related potentials (ERPs) recorded from electrode Pz aligned to feedback presentation 

(0 ms, vertical line). Shaded regions: ±SE (n = 20). Arrowheads indicate the time points for the base 

and peak of the P300. B, the peak-to-peak amplitude of the P300 during the visuomotor rotation task 

(error bars: ±SE). C, P300 amplitude was larger for rotated than nonrotated trials in the 1.5° rotation 

condition but not the 0.75° rotation condition.  
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2.4 Discussion 

We observed neural correlates of reward and sensory error feedback processing during 

motor adaptation. We used reaching tasks that were designed to isolate reward- and 

sensory error-based learning while producing comparable changes in reach angle. By 

examining ERPs elicited by feedback delivered at the end of movements we avoided 

potential confounds caused by neural activity or artifacts related to movement execution, 

motion of the limb, and online error correction. We observed that the FRN/RP was 

elicited by binary reward feedback but not by sensory error feedback. Our results support 

the hypothesis that the processes generating the FRN/RP signal reward prediction error 

to support reward-based motor learning, and that they are not necessary for sensory 

error-based learning. The P300 occurred in response to both reward and sensory error 

feedback, and P300 amplitude was modulated by VMR, reward, and surprise. These 

findings are consistent with the hypothesis that the P300 reflects a general processing of 

task-relevant feedback to support behavioral adaptation.  

The FRN/RP reflects processing of reward feedback but not sensory error feedback:  

Although motor adaptation has traditionally focused on sensory error-based learning, 

recent work suggests that reward-based learning processes can also contribute to motor 

adaptation. In the present study, we isolated reward-based learning from sensory error-

based learning by providing only binary reward feedback in the absence of visual 

information indicating the position of the hand relative to the target. This feedback 

elicited a medial-frontal ERP component known as the FRN/RP. 

The FRN/RP was observed in the reward learning task as a difference in voltage between 

ERPs elicited by nonreward feedback and those elicited by reward feedback. A large body 

of literature has shown that the FRN/RP is larger for infrequent outcomes than frequent 

outcomes (see Sambrook & Goslin, 2015, and Walsh & Anderson, 2012, for meta-

analyses). Because less frequent outcomes should violate reward predictions more 

strongly, this finding is taken as support for the theory that the FRN/RP encodes a signed 

reward prediction error (Cohen & Ranganath, 2007; Eppinger et al., 2008; Holroyd & 
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Krigolson, 2007; Kreussel et al., 2012). In the present study, the FRN/RP was larger for 

improbable feedback than for probable feedback, which supports the hypothesis that the 

FRN/RP encodes a reward prediction error for reward-based learning. However, the 

statistical reliability of the difference was marginal (P = 0.056). This result is potentially 

due to the relatively small difference in reward frequency experienced between the low- 

and high-reward frequency conditions (38.6% and 67.0%, respectively) compared with 

other studies. We decided to avoid using very low or very high reward frequency as we 

found it to produce highly variable and strategic behavior in the task.  

Although a prominent theory of the FRN/RP states that it reflects reward prediction 

error, other accounts suggest that it reflects error detection more generally or that it 

encodes salience responses to any unexpected outcomes (W. H. Alexander & Brown, 

2011; Hauser, Iannaccone, Stämpfli, et al., 2014; Hird et al., 2018; Soder & Potts, 2018; 

Talmi et al., 2013; Ullsperger et al., 2014). In line with these ideas, recent work has 

identified the FRN/RP or the closely related error-related negativity in various motor 

learning and execution tasks involving sensory error signals. These studies either 

concluded that reinforcement- and sensory error-based learning processes share common 

neural resources or they simply did not distinguish between these two processes 

(Krigolson et al., 2008; MacLean et al., 2015; Savoie et al., 2018; Torrecillos et al., 2014). 

However, meeting the goals of a task may be rewarding and perturbations that cause 

sensory-prediction error may disrupt task performance. Thus, sensory prediction error is 

likely confounded with reward prediction error in most tasks. We designed tasks to 

dissociate sensory prediction error and reward prediction error, and we found that the 

FRN/RP was not elicited by sensory error when it did not disrupt task performance. 

These results support the hypothesis that the FNR/RP specifically reflects reward 

prediction error during motor adaptation. 

The P300 is modulated by sensory error, surprise, and reward: 

During the VMR task in the present study, we observed a P300 ERP component in 

response to reach end-point position feedback, and we found that P300 amplitude was 
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sensitive to the magnitude of sensory error. P300 amplitude was increased by the larger 

but not the smaller VMR. These findings suggest that the P300 observed in this task 

might reflect neural activity that is related to processing of sensory error underlying 

motor adaptation. It has previously been demonstrated that P300 amplitude decreases 

along with the magnitude of reach errors during the course of prism adaptation 

(MacLean et al., 2015). The P300 has also been shown to occur in response to target 

errors caused by random shifts in target location during reaching (Krigolson et al., 2008).  

In the reward learning task, P300 amplitude was larger for reward feedback than 

nonreward feedback and for infrequent outcomes regardless of valence. Previous findings 

from cognitive reward-based learning tasks have reported similar effects of outcome 

valence and frequency (Hajcak et al., 2005, 2007; Leng & Zhou, 2010; Pfabigan et al., 

2011; Y. Wu & Zhou, 2009; Zhou et al., 2010). The combined effects of sensory error, 

outcome valence, and outcome frequency suggest that the P300 amplitude is increased by 

any feature of feedback that promotes behavioral adaptation. This is consistent with the 

hypothesis that the P300 reflects activity in diffuse cortical areas that facilitates adaptive 

behavioral adjustments in response to salient stimuli, likely mediated by norepinephrine 

release (Dayan & Yu, 2006; Nieuwenhuis et al., 2005; San Martín, 2012; Vazey et al., 

2018).  
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3.1 Introduction 

Human motor control is adaptive to changes of the environment and the body through 

multiple mechanisms. Two important processes for adaptation are reward-based learning 

through reinforcement of successful actions and error-based learning through 

recalibration of internal mappings between motor commands and sensory outcomes 

(Huang et al., 2011; Izawa & Shadmehr, 2011; Taylor et al., 2014; Wolpert et al., 1995). 

Chapter 2 describes experimental findings supporting the hypothesis that an event related 

potential (ERP) component called the feedback-related negativity/ reward positivity 

(FRN/RP) encodes reward-prediction error signals during reward-based motor 

adaptation. These findings also demonstrated that the process generating the FRN/RP is 

specific to reward-based learning, as these signals were not elicited by feedback conveying 

sensory error information. In theories of biological reinforcement learning, phasic 

dopamine release within fronto-striatal circuits is thought modulate synaptic plasticity 

underlying reward-based learning through signaling of reward prediction error (Izawa & 

Shadmehr, 2011; Sutton & Barto, 2011; Watabe-Uchida et al., 2017). The role of 

dopamine in reward-based learning has mostly been studied in tasks involving the 

selection of discrete stimuli or actions, and it is not yet known whether motor adaptation 

is also mediated by dopaminergic learning mechanisms. Here, we test the hypothesis that 

dopamine release contributes to reward-based motor adaptation through signaling of 

reward-prediction error.  

Most research into motor adaptation to date has focused on sensory-error based learning, 

for which visuomotor rotation (VMR) tasks are a common experimental model (Inoue et 

al., 2000; Krakauer, 2009; Krakauer et al., 2005; Rand & Heuer, 2019; H. Tanaka et al., 

2009). In VMR tasks, a cursor on a digital display represents the position of the hand, and 

the mapping between the actual reach angle and the position of the cursor is rotated 

about the movement start position. Participants reliably compensate for a proportion of 

VMR perturbations following even single movements. Learning involves the cerebellum 

as well as parietal, sensory, and motor cortical areas (Diedrichsen et al., 2005; M. Ito, 

2000; Krakauer et al., 2004; M. A. Smith & Shadmehr, 2005; H. Tanaka et al., 2009; Taylor 
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et al., 2010; Wong et al., 2019). It is thought that these neural circuits predict the sensory 

consequences of motor commands, and that adaptation occurs in response to sensory 

prediction error when sensory afference violates these predictions (Adams et al., 2013; 

Bhanpuri et al., 2013; Izawa & Shadmehr, 2011; Miall et al., 2007; Shadmehr et al., 2010; 

Synofzik et al., 2008; Therrien & Bastian, 2015; Tseng et al., 2007; Wolpert et al., 1995). 

While sensory error-based learning mechanisms are dominant in typical motor 

adaptation paradigms, reward-based learning processes can also contribute to motor 

adaptation (Bernardi et al., 2015; Cashaback et al., 2019; Izawa & Shadmehr, 2011; Kim et 

al., 2019; Kooij et al., 2018; Kooij & Smeets, 2019; McDougle et al., 2016; Mehler et al., 

2017; Nikooyan & Ahmed, 2014; Palidis et al., 2019; Sidarta et al., 2016, 2018). When 

sensory error-based learning cannot occur due to limited sensory feedback or cerebellar 

damage, reward-based learning can produce comparable behavioral adaptation 

(Cashaback et al., 2017; Izawa & Shadmehr, 2011; Therrien et al., 2016). Reward-based 

adaptation can be isolated experimentally in tasks analogous to VMR paradigms in which 

cursor feedback indicating the position of the hand is not provided, and instead only 

binary reinforcement feedback signals whether a target movement is successfully 

produced (Izawa & Shadmehr, 2011; Shmuelof et al., 2012).  

Levodopa is a dopamine precursor commonly used to treat motor symptoms in patients 

with Parkinson’s disease. In cognitive tasks, levodopa has been shown to impair reward-

based learning in both patients and healthy participants (Cools et al., 2001, 2007; Feigin et 

al., 2003; Frank et al., 2004; Graef et al., 2010; Hiebert et al., 2014; Jahanshahi et al., 2010; 

Kwak et al., 2010; MacDonald et al., 2011; Swainson et al., 2000; Torta et al., 2009; Vo et 

al., 2016, 2018). According to the “dopamine overdose” hypothesis, dopamine levels 

affect performance in tasks that depend on the ventral striatum according to an inverted-

u function (Cools et al., 2001). In early-stage Parkinson's disease, the dorsal striatum is 

significantly depleted of dopamine whereas the ventral striatum is comparatively spared. 

Dopaminergic therapy is thus predicted to ameliorate deficits caused by dopamine-

depletion in the dorsal striatum but to worsen functions ascribed to the ventral striatum 

by overstimulating dopamine release in this region. In line with this view, reward-based 
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learning is thought to rely on dopamine signaling in ventral striatum and is impaired by 

levodopa (Hiebert et al., 2019).  

Although dopamine is widely implicated in cognitive forms of reward-based learning, it is 

not clear whether this role of dopamine extends to reward-based motor adaptation. We 

administered levodopa to healthy young participants to test for effects on motor 

adaptation. Participants received levodopa and placebo in separate sessions using a 

repeated measures design. Both sessions included a reward-based learning task and a 

sensory error-based VMR task. In the reward-based learning task, adaptation was 

induced through binary reinforcement feedback at the end of each movement. We 

measured changes in the mean reach angle due to reinforcement as well as modulations 

in trial-by-trial variability of reach angle as a response to reward outcomes. Previous 

research has shown that motor variability increases following unrewarded outcomes 

compared to rewarded outcomes (Dhawale et al., 2019; Holland et al., 2018; Kooij & 

Smeets, 2019; Mastrigt et al., 2020; Pekny et al., 2015). This could indicate reinforcement 

of rewarded actions as well as exploration in response to unrewarded outcomes 

(Cashaback et al., 2019; Dhawale et al., 2019). This variance modulation is impaired in 

individuals with Parkinson’s disease who are medicated, but it remains unclear whether 

this deficit is caused by the disease process itself or by side-effects of dopaminergic 

medication (Pekny et al., 2015).  

It is thought that reward prediction error drives biological reinforcement learning when 

an action results in an outcome that is better or worse than expected (Daw & Tobler, 

2014; Sambrook & Goslin, 2015; Schultz, 2016; Sutton & Barto, 2011; Walsh & Anderson, 

2012). Phasic changes in the firing rate of midbrain dopamine neurons match reward 

prediction error signals predicted by computational models of reinforcement learning 

(Bayer & Glimcher, 2005; García-García et al., 2017; Jocham & Ullsperger, 2009; Schultz 

et al., 1997; Watabe-Uchida et al., 2017). Dopaminergic projections to the striatum and 

frontal cortex are thought to mediate synaptic plasticity in these regions underlying 

reward-based learning (Otani et al., 2003; Reynolds & Wickens, 2002; J. X. Wang et al., 

2018). Reward-prediction error signals are consistently observed throughout the medial 
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frontal cortex and striatum (Diederen et al., 2017; Oyama et al., 2010; Pagnoni et al., 2002; 

Rutledge et al., 2010; Schultz et al., 1998; Silvetti et al., 2014; Watabe-Uchida et al., 2017).  

We recorded EEG to measure the FRN/RP ERP component in response to reinforcement 

feedback. A prominent theory of the FRN/RP states that it reflects reward prediction 

error signals in the medial frontal cortex driven by dopamine release (Becker et al., 2014; 

Carlson et al., 2011; Emeric et al., 2008; Foti et al., 2011; Gehring & Willoughby, 2002; 

Hauser, Iannaccone, Stämpfli, et al., 2014; Holroyd et al., 2008; Holroyd & Coles, 2002; 

Mathewson et al., 2008; Miltner et al., 1997; Sambrook & Goslin, 2015, 2016; Vezoli & 

Procyk, 2009; Walsh & Anderson, 2012; Warren et al., 2015). However, direct evidence 

for a link between dopamine and the FRN/RP is fairly limited, and no studies have 

investigated this link in the context of motor adaptation (Enge et al., 2017; Forster et al., 

2017; Marco-Pallarés et al., 2009; Mueller et al., 2014; Santesso et al., 2009; Schutte et al., 

2020). 

We tested the hypothesis that dopaminergic signaling of reward-prediction error 

mediates reward-based motor adaptation. In accordance with the “dopamine overdose 

hypothesis”, we predicted that levodopa would diminish the magnitude of the FRN/RP, a 

measure of neural reward prediction error signaling. We predicted that levodopa-induced 

reductions in FRN/RP magnitude would correspond with impairments in both reward-

based motor adaptation and modulation of trial-by-trial variability in response to reward 

feedback. We included a sensory error-based learning task to test the specificity of the 

role of dopamine in reward-based motor adaptation. We predicted that levodopa would 

not affect the neural or behavioral responses to sensory error. 

3.2 Materials and methods 

3.2.1 Participants 

Data from a total of n=21 [12 female, Age: 20.99 years (SD 3.26)] healthy, right-handed 

participants were analyzed and reported. Two additional participants were excluded from 

analysis due to malfunction of the robot that prevented the experiment from being 
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completed, and two participants were excluded who did not return for the second testing 

session. All participants were screened for neurological and psychiatric illness, history of 

drug or alcohol abuse, and contraindications for levodopa. Participants provided written 

informed consent to experimental procedures approved by the Research Ethics Board at 

Western University. 

3.2.2 Experimental design 

Drug administration: All participants underwent two experimental sessions, with 

levodopa and placebo being administered in separate sessions using a randomized, 

double-blind, crossover design. The two sessions were separated by a washout period of 

at least one week. In one session, a capsule was ingested that contained 100 mg of 

levodopa (L-3,4-dihydroxyphenylalanine) and 25 mg of carbidopa. Levodopa is a 

dopamine precursor, and carbidopa is a decarboxylase inhibitor given to reduce 

conversion of levodopa to dopamine in the periphery. This dose has been shown to 

produce various behavioral effects in healthy young adults (Flöel et al., 2005; Knecht et 

al., 2004; Onur et al., 2011; Vo et al., 2016, 2017, 2018). In the other session, an equal 

volume of placebo was administered in an identical capsule. The order of administration 

was counterbalanced. After administration of the capsule, the robot was calibrated, the 

EEG cap was placed on the participant’s head, and participants performed a practice 

block of the behavioral task. Subsequently, the experimental tasks began 45 minutes after 

ingestion of the capsule to coincide with peak plasma levels of levodopa (Olanow et al., 

2000). We measured heart rate, blood pressure, and subjective alertness immediately 

prior to ingestion of placebo or levodopa and again at the end of each session. Alertness 

was assessed using the Bond-Lader visual analog scale (Bond & Lader, 1974). 

Overview of behavioral tasks: Each participant underwent the same experimental tasks in 

both sessions. Participants made reaching movements toward a visual target and received 

visual feedback pertaining to reach angle only at movement end point (figure 3-1). Neural 

responses to feedback were recorded using EEG. Participants were instructed that each 

reach terminating within the target would be rewarded with a small monetary bonus. 
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Participants first performed a block of 50 practice trials. The subsequent behavioral 

procedure consisted of two blocks of a reward learning task and two blocks of a 

visuomotor rotation (VMR) task. The order of the blocks alternated between the two task 

types but was otherwise randomized. Participants took self-paced rests between blocks.   

In the VMR task, a cursor appeared at movement end point to represent the position of 

the hand (Figure 3-1D). In unperturbed trials, the cursor was displayed directly over the 

occluded robot handle. In randomly selected trials, the cursor’s position was decoupled 

from the robot handle position such that the cursor indicated a reach endpoint position 

that was rotated about the start position relative to the actual reach endpoint position. 

This was intended to produce sensory prediction error and trial-by-trial compensatory 

changes in reach angle opposite the direction of the rotations. The rotations were small 

relative to the size of the target, such that participants nearly always landed in the target, 

fulfilling the goal of the task and earning a monetary reward (the cursor feedback was 

within the target on 95.5% of trials, SD: 2%). Thus, reward and task error were constant 

between perturbed and unperturbed feedback, and by comparing the two conditions we 

could isolate the neural correlates of sensory error processing. 

In the reward learning task, no cursor appeared to indicate the position of the hand. 

Instead, binary feedback represented whether or not participants succeeded in hitting the 

target (Figure 3-1C). This allowed us to assess reward-based learning in isolation from 

sensory error processing, as visual information revealing the position of the hand was not 

provided. In separate blocks, reward feedback was tailored to produce adaptation towards 

increasingly clockwise and counterclockwise reach angles. Reward was delivered when 

the difference between the current reach angle and the median of the previous 10 reach 

angles was in the direction of intended learning. We compared the neural responses to 

reward and non-reward feedback to assess the neural correlates of reward processing. 

3.2.3 Apparatus/Behavioral Task 

Participants produced reaching movements with their right arm while holding the handle 

of a robotic arm (InMotion2; Interactive Motion Technologies; figure 3-1). Position of  
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Figure 3-1: Experimental setup. Top: The experimental apparatus. Participants reached to visual 

targets while holding the handle of a robotic arm. Vision of the arm was obscured by a screen that 

displayed visual information related to the task. Bottom: Illustrations of the visual display. A, 

Participants made outward reaching movements from a start position at body midline to a visual 

target. B, During reaches, hand position was hidden but an arc-shaped cursor indicated the extent of 

the reach without revealing reach angle. Feedback was provided at reach end point. C, In the reward 

learning task, binary feedback represented whether reaches were successful or unsuccessful in hitting 

the target by turning green or red, respectively. Reach adaptation was induced by providing reward for 

movements that did not necessarily correspond to the visual target. D, In the visuomotor rotation task, 

cursor feedback represented the end-point position of the hand. Adaptation was induced by rotating 

the angle of the feedback relative to the actual reach angle.  
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the robot handle was sampled at 600 Hz. A semi-silvered mirror obscured vision of the 

arm and displayed visual information related to the task. An air sled supported each 

participant’s right arm. Participants reached towards a white circular target 14 cm away 

from a circular start position in front of their chest. The start position turned from red to 

green to cue the onset of each reach once the handle had remained inside it continuously 

for 750 ms. Participants were instructed that they must wait for the cue to begin each 

reach but that it was not necessary to react quickly upon seeing the cue. Participants were 

instructed to make forward reaches and to stop their hand within the target. An arc-

shaped cursor indicated reach extent throughout each movement without revealing reach 

angle. In only the first five baseline trials of each block, an additional circular cursor 

continuously indicated the position of the hand throughout the reach. A viscous force 

field assisted participants in braking their hand when the reach extent was 14 cm. The 

robot ended each movement by fixing the handle position when the hand velocity 

decreased below 0.03 m/s. The hand was fixed in place for 700 ms, during which time 

visual feedback of reach angle was provided. Feedback indicated either reach end point 

position, a binary reward outcome, or feedback of movement speed (see below). Visual 

feedback was then removed, and the robot guided the hand back to the start position. 

Reach end point was defined as the position at which the reach path intersected the 

perimeter of a circle (14-cm radius) centered at the start position. Reach angle was 

calculated as the angle between vectors defined by reach end point and the center of the 

target, each relative to the start position, such that reaching straight ahead corresponds to 

0° and counterclockwise reach angles are positive. 

Feedback about reach angle was provided either in the form of end-point position 

feedback or binary reward feedback. The type of feedback, as well as various feedback 

manipulations, varied according to the assigned experimental block type (see Reward 

Learning Task and Visuomotor Rotation Task). Participants were told that they would 

earn additional monetary compensation for reaches that ended within the target, up to a 

maximum of $10 CAD. Movement duration was defined as the time elapsed between the 

hand leaving the start position and the moment hand velocity dropped below 0.03 m/s. If 
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movement duration was >700 ms or <450 ms, no feedback pertaining to movement angle 

was provided. Instead, a gray arc behind the target turned blue or yellow to indicate that 

the reach was too slow or too fast, respectively. Participants were informed that 

movements with an incorrect speed would be repeated but would not otherwise affect the 

experiment. To minimize the impact of eyeblink-related EEG artifacts, participants were 

asked to fixate their gaze on a black circular target in the center of the reach target and to 

refrain from blinking throughout each arm movement and subsequent presentation of 

feedback. 

Practice block: Each participant first completed a block of practice trials that continued 

until they achieved 50 movements within the desired range of movement duration. 

Continuous position feedback was provided during the first 5 trials, and only end-point 

position feedback was provided for the following 10 trials. Subsequently, no position 

feedback was provided outside the start position.  

Reward Learning task: Binary reward feedback was provided to induce adaptation of 

reach angle (figure 3-1C). Each session included two blocks in the reward learning 

condition. The direction of intended learning was clockwise in one block and 

counterclockwise in the other. Each block continued until the participant completed 125 

reaches with acceptable movement duration. Participants reached toward a circular target 

1.2 cm in diameter. The first 11 reaches were baseline trials during which continuous 

position feedback was provided during the first 5 trials, followed by 6 trials with only end-

point cursor feedback. After these baseline trials no cursor feedback was provided, and 

binary reward feedback was instead provided at the end of the movement. Target hits and 

misses were indicated by the target turning green and red, respectively. Unbeknownst to 

participants, reward feedback did not necessarily correspond to the visual target. Instead, 

reward was delivered if the difference between the current reach angle and the median 

angle of the previous 10 reaches was in the direction of intended learning. When the 

running median was at least 6° away from zero in the direction of intended learning, 

reward was delivered at a fixed probability of 50%. This was intended to minimize 

conscious awareness of the manipulation by limiting adaptation to 6°. Reward was never 
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delivered when the absolute value of the reach angle was greater than 10°, for the same 

reason. We employed this adaptive, closed-loop reward schedule so that the overall 

frequency of reward was controlled.  

Visuomotor rotation task: End-point feedback was rotated relative to the actual reach 

angle to induce sensory error-based adaptation (figure 3-1D). Each session included two 

blocks in the VMR condition. Each block continued until participants completed 124 

reaches within acceptable movement duration limits. Participants reached toward a 

circular target 3.5 cm in diameter. Participants first performed baseline reaches during 

which cursor feedback reflected veridical reach angle continuously for the first 5 trials 

and only at movement end point for the subsequent 5 trials. After the baseline reaches the 

adaptation portion of each block began, unannounced to participants. During the 

adaptation trials, end-point position feedback was provided indicating a reach angle that 

was rotated relative to the true reach angle. There were 114 total adaptation trials (38 with 

0° rotation, and 19 each with ±2° and ±4° rotations). Participants were instructed that 

end-point feedback within the target would earn them bonus compensation, but no 

explicit reward feedback was provided.  

3.2.4 EEG data acquisition 

EEG data were acquired from 16 cap-mounted electrodes with an active electrode system 

(g.GAMMA; g.tec Medical Engineering) and amplifier (g.USBamp; g.tec Medical 

Engineering). We recorded from electrodes placed according to the 10-20 System at sites 

Fp1, Fp2, F3, F4, F7, F8, FT9, FT10, FCz, Cz, C3, C4, CPz, CP3, CP4, and Pz referenced to 

an electrode placed on participants’ left earlobe. Impedances were maintained below 5 

kΩ. Data were sampled at 4,800 Hz and filtered online with band-pass (0.1–1,000 Hz) and 

notch (60 Hz) filters. A photodiode attached to the display monitor was used to 

synchronize recordings to stimulus onset. 
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3.2.5 Behavioral data analysis 

Reward learning task. We computed learning scores in each drug condition by 

subtracting the average reach angle in the clockwise condition from the average reach 

angle in the counterclockwise condition. As such, positive scores indicate learning. We 

excluded baseline trials and trials that did not meet the movement duration criteria, as no 

feedback related to reach angle was provided on these trials. Each block continued until 

114 trials after the baseline period met the movement duration criteria, so equal numbers 

of trials were analyzed for each participant. We tested for the presence of learning by 

submitting learning scores to 1-sample T-Tests against zero, and we compared learning 

scores in the placebo and levodopa conditions using paired T-Tests.  

We also analyzed trial-by-trial variability in reach angle in response to reinforcement 

feedback using an approach similar to Pekny et al. (2015). First, we calculated trial-by-

trial changes in reach angle as in Eq. 3.1: 

𝛥𝜃# = 𝜃#U5 − 𝜃#				(3.1)  

We then multiplied 𝛥𝜃#  by -1 for trials in the clockwise learning condition, so that 

positive values for 𝛥𝜃#  corresponded to changes in reach angle in the direction of 

intended learning, and any biases in 𝛥𝜃 related to the direction of intended learning 

would have the same sign in the CW and CCW learning conditions. Next, we 

conditioned 𝛥𝜃#  on the reinforcement outcome of trial 𝑖 and the drug condition to obtain 

trial-by-trial changes in reach angle following reward and non-reward after both placebo 

and levodopa administration. Next, we quantified trial by trial variability in each 

condition as the natural logarithm of the sample variance of 𝛥𝜃# . Our dependent variable 

is an estimate of variance. This estimate of variance itself has variance due to sampling. 

For a normal distribution, the variance of a sample variance is proportional to the square 

of the true population variance. A log transformation is appropriate for linear modeling 

when the variance of the dependent measure is proportional to the square of its 

expectation (Montgomery et al., 2021). We then performed 2x2 repeated measures 
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ANOVA on Log(var(𝛥𝜃#)). The factors were drug (levels: placebo, levodopa), and reward 

outcome on trial 𝑖 (levels: non-reward, reward). 

Visuomotor rotation task. To quantify trial-by-trial learning we first calculated the change 

in reach angle between successive trials, as in Eq. 3.1. We then performed a linear 

regression on 𝛥𝜃# with the rotation imposed on trial 𝑖 as the predictor variable. The 

rotation was 0°, ±2°, or ±4°. This regression was performed on an individual participant 

basis, separately for placebo and levodopa conditions. We excluded trials that did not 

meet the duration criteria as no visual feedback was provided on these trials. We took the 

resulting slope estimates multiplied by -1 as a metric of learning rate for each participant, 

as it reflects the portion of visual errors that participants corrected with a trial-by-trial 

adaptive process. We tested for the presence of adaptation in each condition by 

submitting learning rates to 1-sample t-tests against zero. We tested for an effect of 

levodopa vs placebo on learning rates using a paired t-test. 

3.2.6 EEG preprocessing 

EEG data were resampled to 480 Hz and filtered off-line between 0.1 and 35 Hz with a 

second-order Butterworth filter. Continuous data were segmented into 2-s epochs time-

locked to feedback stimulus onset at 0 ms (time range: -500 to +1,500 ms). Epochs flagged 

for containing artifacts as well as any channels with bad recordings were removed after 

visual inspection. One participant was excluded entirely from the EEG analysis due to 

excessive muscle artifacts. Subsequently, extended infomax independent component 

analysis was performed on each participant’s data (Delorme & Makeig, 2004). 

Components reflecting eye movements and blink artifacts were identified by visual 

inspection and subtracted by projection of the remaining components back to the voltage 

time series. 

3.2.7 EEG data analysis 

After artifact removal, we computed ERPs by trial averaging EEG time series epochs for 

various feedback conditions described in the sections below. ERPs were computed on an 
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individual participant basis separately for recordings from channels FCz and Pz. We 

selected FCz and Pz a priori because these electrodes typically correspond to the peaks of 

the scalp distributions for the feedback related negativity/reward positivity and the P300 

ERP components, respectively. We found this to be true in the data presented in chapter 

2, which were collected using very similar experimental paradigms. All ERPs were 

baseline corrected by subtracting the average voltage in the 75-ms period immediately 

following stimulus onset. We used a baseline period following stimulus onset because 

stimuli were presented immediately upon movement termination and the period before 

stimulus presentation was more likely to be affected by movement related artifacts. Trials 

in which reaches did not meet the movement duration criteria were excluded, as feedback 

relevant to reach adaptation was not provided on these trials. Finally, ERPs were low-pass 

filtered with a cutoff frequency of 30 Hz. 

We computed ERPs separately following administration of placebo and levodopa. In the 

reward learning task, we computed ERPs separately for feedback indicating non-reward 

(placebo: 107.2 ±9.7 trials, levodopa: 104.0 ±8.3 trials) and feedback indicating reward 

(placebo: 118.4 ±9.6 trials, levodopa: 118.0 ±8.1 trials). In the visuomotor rotation task, 

we computed ERPs separately for veridical endpoint feedback (placebo: 72.6 ± 3.5 trials, 

levodopa: 72.9 ± 3.1 trials), ±2° rotated feedback (placebo: 70.8 ± 5.2 trials, levodopa: 72.1 

± 3.8 trials), and ±4° rotated feedback (placebo: 64.5 ± 4.7 trials, levodopa: 66.3 ± 4.1 

trials). We excluded trials in which the cursor did not land within the target.  

We selected time windows of interest for ERP analysis using independent data from a 

previous experiment with very similar procedures, which were reported in chapter 2. We 

analyzed the amplitudes of FRN/RP and P300 components within 50 ms time windows 

centered around the latencies of the FRN/RP and P300 peaks observed in the previous 

study. The FNR/RP peak was taken as the maximum value of the difference between 

ERPs elicited by reward and non-reward feedback recorded from electrode FCz (latency: 

292ms). For completeness, we used the same time window to test for FRN/RP effects in 

the visuomotor rotation task of the current study although we did not observe an 

FRN/RP component in our previous visuomotor rotation task. The P300 peak latencies 
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were determined separately for reward and non-reward feedback as the times of maximal 

amplitude of ERPs recorded from electrode Pz (reward: 319ms, non-reward: 371ms). The 

peak latencies selected for the FRN/RP and P300 components in the reward learning task 

corresponded very closely to the peaks observed in the current data. However, the P300 

peak in the visuomotor rotation task of the current study was earlier than that in our 

previous experiment. This difference in latency may be due to changes in the nature of 

the feedback. Thus, we determined the latency of the P300 peak in the visuomotor 

rotation task of the current study using a data-driven method that does not bias 

comparisons between conditions (J. L. Brooks et al., 2017). We aggregated all trials across 

conditions and participants and computed a trial averaged ERP using recordings from 

electrode Pz. The P300 peak was determined as the maximal amplitude of this averaged 

waveform (latency: 317ms).  

We tested for effects of feedback manipulations on FRN/RP components using the 

average amplitudes of ERPs recorded from electrode FCz within the FRN/RP time 

window. We tested for effects on P300 ERP components using the average amplitudes of 

ERPs recorded from electrode Pz within the P300 time window corresponding to a given 

condition. For the reward learning task, we used 2x2 repeated measures ANOVA with 

factors drug (levels: placebo, levodopa) and reinforcement outcome (levels: reward, non-

reward). For the visuomotor rotation task, we used 2x3 repeated measures ANOVA with 

factors drug (levels: placebo, Levodopa), and rotation (levels: 0°, ±2°, ±4°). 

3.2.8 Statistics 

Statistical tests were implemented using JASP v0.14.1. We performed comparisons on 

sample means using 1 sample T-Tests, paired sample T-Tests, or independent sample T-

Tests. These comparisons allowed us to compute one-tailed Bayes factors representing 

𝑝(𝑑𝑎𝑡𝑎|𝐻U)	/	𝑝(𝑑𝑎𝑡𝑎|𝐻6), where 𝐻6 represents the null hypothesis corresponding to the 

standard t-distribution for an effect size of 0, and 𝐻U represents the alternative hypothesis 

corresponding to a t-distribution constructed using a one-tailed prior distribution of 

effect sizes. The use of 1-tailed priors is recommended in the case of directional 
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hypotheses to provide “a fairer balance between the ability to provide evidence for 𝐻6 and 

𝐻U” (Keysers et al., 2020). We used the default effect size priors implemented in JASP 

(Cauchy scale 0.707). These priors are generally appropriate for effect sizes typical of 

neuroscience research, and the use of default priors is recommended for standardized and 

objective analysis (Keysers et al., 2020; Rouder et al., 2012; Wetzels et al., 2011). Bayesian 

estimates of effect size are reported as median posterior Cohen’s δ with 95% credibility 

interval using 2-tailed priors for H1 to avoid biasing the estimate in the expected 

direction. We also report T-statistics, p-values, and 95% confidence intervals generated 

using 2-tailed frequentist T-Tests. For factorial analyses, we conducted frequentist and 

Bayesian repeated measures ANOVAs using JASP with default priors. Bayes factors were 

computed for the inclusion of each effect as the ratio of the data likelihood under the 

model containing that effect vs equivalent models stripped of that effect. Bayes factors >3 

and >10 were taken as moderate and strong evidence in favor of the alternative 

hypothesis, respectively. Bayes factors <1/3 and <1/10 were taken as moderate and strong 

evidence in favor of the null hypothesis, respectively. Bayes factors between 1/3 and 3 

were taken as inconclusive evidence (Keysers et al., 2020).  

Directional priors used for alternative hypotheses specified our predictions that learning 

metrics would be greater than zero (Reward learning score, VMR learning rate). In 

comparing placebo and levodopa conditions, our alternative hypotheses specified that 

learning metrics would be lower in levodopa conditions than placebo conditions, in 

accordance with the “dopamine overdose” hypothesis. All other Bayes factors are 

computed with 2-tailed priors, as they were conducted without directional a priori 

hypotheses (control measures, etc.). 

3.3 Results 

3.3.1 Control measures 

Control measures: Participants’ judgments at the end of the second session as to whether 

they received placebo or drug were correct at near chance level (47.62%). Table 3-1 shows 

the values for heart rate, blood pressure, and alertness recorded at the beginning and end 
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of each experimental session for both the placebo and levodopa conditions. We computed 

the percent change in heart rate and blood pressure recorded at the beginning and end of 

each session. There were no reliable differences between the levodopa and placebo 

conditions in the percent change of heart rate (t(18) = 0.70, p=0.49, 95%CI for difference 

= [-0.03 0.07], BF = 0.30, posterior δ: median = 0.139, 95%CI = [-0.278 0.565]), systolic 

blood pressure (t(18) = -0.39, p=0.70, 95%CI for difference = [-0.06 0.04], BF = 0.25, 

posterior δ: median = -0.077, 95%CI = [-0.498 0.338]), or diastolic blood pressure (t(18) = 

-0.88, p=0.39, 95%CI for difference = [-0.07 0.03], BF = 0.33, posterior δ: median = -

0.173, 95%CI = [-0.603 0.245]). We did observe a significant difference between levodopa 

and placebo in the percent change of alertness (t(20) = 2.46, p=0.023, 95%CI for 

difference = [0.02 0.19], BF = 2.53, posterior δ: median = 0.477, 95%CI = [0.044 0.930]). 

However, this effect was likely due to chance as alertness was only different between the 

two drug conditions at the time point pre-administration of the capsule (t(20) = 2.18, 

p=0.042), but not post-administration (t(20) = -0.068, p=0.95). We also tested for effects 

of levodopa on the median response time (the latency between the go cue and the robot 

handle leaving the home position), and the median movement time. We observed no 

reliable differences in response time between the placebo and levodopa conditions in 

either the reward learning task (t(20)=0.72, p=0.48, 95%CI for difference = [-37.49 77.34], 

BF = 0.29, posterior δ: median = 0.137, 95%CI = [-0.261 0.545]), or the VMR task 

(t(20)=0.62, p=0.54, 95%CI for difference = [-33.91 62.56], BF = 0.27, posterior δ: median 

= 0.118, 95%CI = [-0.280 0.523]). We also observed no reliable difference in movement 

time between the placebo and levodopa conditions in either the reward learning task 

(t(20)=-0.11, p=0.91, 95%CI for difference = [-20.75 18.69], BF = 0.23, posterior δ: 

median = -0.021, 95%CI = [-0.420 0.377]), or the VMR task (t(20)=-0.21, p=0.84, 95%CI 

for difference = [-16.21 13.27], BF = 0.23, posterior δ: median = -0.039, 95%CI = [-0.44 

0.358]). 

 

 



Chapter 3: Effects of levodopa on neural and behavioral responses to feedback during motor adaptation 

 

123 

 

Measure Placebo Levodopa 

Heart Rate Pre: 76.24 (SD: 11.29) 

Post: 69.60 (SD: 7.27) 

Pre: 77.55 (SD: 8.41) 

Post: 71.53 (SD: 6.92) 

Systolic  Pre: 104.43 (SD: 9.01) 

Post: 104.20 (SD: 6.47) 

Pre: 103.95 (SD: 8.34) 

Post: 102.79 (SD: 8.70) 

Diastolic Pre: 72.14 (SD: 5.14) 

Post: 73.20 (SD: 4.55) 

Pre: 70.55 (SD: 6.81) 

Post: 69.74 (SD: 6.04) 

Alertness Pre: 64.58 (SD: 8.38) 

Post: 47.99 (SD: 15.43) 

Pre: 58.20 (SD: 11.79) 

Post: 48.16 (SD: 15.33) 

Response Time RL: 464.09 (SD: 140.05) 

VMR: 445.91 (SD: 120.96) 

RL: 484.01 (SD: 149.00) 

VMR: 460.24 (SD: 133.04) 

Movement Time RL: 548.17 (SD: 37.04) 

VMR: 547.90 (SD:34.92) 

RL: 547.14 (SD: 35.28) 

VMR: 546.43 (SD: 40.52) 

Table 3-1: Control measurements. Heart rate (bpm). Systolic blood pressure (mm Hg). Diastolic 

blood pressure (mm Hg). Alertness, Bond-Lader visual analog scale alertness measure. Response 

Time, latency between go cue and hand exiting the start position (ms). Movement Time, duration of 

movement (ms). RL, reward learning task. VMR, visuomotor rotation task. 
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3.3.2 Behavioral results 

Reward learning task. Behavioral data from the reward learning task are shown in Figure 

3-2. Learning scores were reliably greater than zero in both the placebo condition (mean 

= 6.03, SD = 3.58, t(20) = 7.72, p = 2.02e-7, 95%CI = [4.40 7.66], BF = 1.56e5, posterior δ: 

median = 1.58 95%CI = [0.92 2.28]), and the levodopa condition (mean = 6.93, SD = 3.86, 

t(20) = 8.23, p = 7.49e-8, 95%CI = [5.17 8.69], BF = 3.9e5, posterior δ: median = 1.69,  

95%CI = [1.00 2.41]) conditions. Learning scores were slightly higher in the levodopa 

condition, though this difference was not statistically reliable. This result provided strong 

evidence against our hypothesis of reduced learning in the levodopa group (t(20) = -1.58, 

p = 0.13, 95%CI for difference = [-2.09 0.29], BF = 0.10, posterior δ: median = -0.30, 

95%CI = [-0.73 0.11]). We observed similar evidence against the hypothesized effect of 

levodopa when learning scores were computed using only the final 20 trials in each block 

(t(20) = -1.60, p = 0.13, 95%CI for difference = [-3.05 0.40], BF = 0.10, posterior δ: 

median = -0.31, 95%CI = [-0.73 0.10]).   

The variability of trial-by-trial changes in reach angle following reward and non-reward 

outcomes is shown in Figure 3-3. We found a reliable main effect of reinforcement 

outcome on the log transformed variance of trial-by-trial changes in reach angle (F(1,20) 

= 74.84 , p = 3.41e-8, 𝜂_`= 0.79, BF = 3.02e14). This indicates an increase in trial-by-trial 

variance of reach angle following non-reward outcomes relative to reward. We found 

moderate evidence against effects of drug condition (F(1,20) = 0.0072 , p = 0.93, 𝜂_`= 

3.86e-4, BF = 0.22) and reward by drug interaction (F(1,20) = 0.0478 , p = 

0.829,𝜂_`=2.38e-3, BF = 0.30). 

Visuomotor rotation task. Mean trial-by-trial changes in reach angle after the different 

feedback rotations are shown in Figure 3-4. Learning rates were reliably greater than zero 

following administration of both placebo (mean: 0.313, SD: 0.133, t(20) = 10.77, p = 

8.93e-10, 95%CI = [0.25 0.37], BF = 2.4e7, posterior δ: median = 2.22, 95%CI = [1.40 

3.10])) and levodopa (mean: 0.294, SD: 0.102, t(20) = 13.18, p = 2.54e-11, 95%CI = [0.25 

0.34], BF = 6.75e8 ). Learning rates were not reliably different in the two conditions (t(20) 



Chapter 3: Effects of levodopa on neural and behavioral responses to feedback during motor adaptation 

 

125 

= 0.703, p=0.491, 95%CI for difference = [-0.04 0.07], BF = 0.42, posterior δ: median = 

0.134, 95%CI = [-0.265 0.540]) ).  

 

 

Figure 3-2: Behavior during the reward-based motor learning task (n=21). The time series show 

group average reach angles in the reward learning task across trials (Shaded region: ± SEM). After 

both placebo and levodopa administration, participants completed a block in each direction of 

intended learning condition [clockwise (CW) and counterclockwise (CCW)]. Trials 1-11 were baseline 

trials without reinforcement feedback, and are not shown. Individual data points on the right show the 

average reach angles across trials in each condition for each participant (CCW: solid markers, CW: 

open markers, black: placebo, red: L-Dopa). Box plots summarize the distributions of individual data 

using circular markers to indicate the medians, thick lines to indicate interquartile ranges, and thin 

lines to indicate full ranges. 
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Figure 3-3: Reward induced modulation of trial-by-trial variability of reach angle (n=21). The log 

transformed variance of trial-by-trial changes in reach angle (deg) following reward and non-reward 

are plotted for each participant following administration of levodopa (A) and placebo (B). 
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Figure 3-4:  Behavior during the visuomotor rotation task (n=21). The average change in reach 

angle between subsequent pairs of trials is plotted for each size and direction of rotation imposed on 

the preceding trial. The average change in reach angle is in all cases opposite to the rotation, indicating 

that participants adapted their reaches to counteract the perturbations. Individual data points show 

average changes in reach angle across trials for each participant. Lines show average change in reach 

angle across participants (Error bars: ± SEM). 
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3.3.3 Event-related potential results 

3.3.3.1  Reward learning task 

Feedback-related negativity/Reward positivity: Event-related potentials (ERPs) elicited by 

reinforcement feedback at electrode FCz are shown in Figure 3-5A. We analyzed the 

FRN/RP by submitting the average ERP amplitude at electrode FCz between 267-317ms 

to frequentist and Bayesian repeated measures ANOVAs (figure 3-5B). We found a 

reliable main effect of reward outcome on FRN/RP amplitude (F(1,19) = 42.25 , p = 

3.16e-6, 𝜂_`=0.69, BF = 8.89e8). We observed moderate evidence both against effects of 

drug (F(1,19) = 0.13 , p = 0.73, 𝜂_`=6.56e-3, BF = 0.24) and against a reward by drug 

interaction (F(1,19) = 0.2 , p = 0.66, 𝜂_`=0.01, BF = 0.30) on FRN/RP amplitude.  

P300: ERPs elicited by reinforcement feedback at electrode Pz are shown in Figure 3-5C. 

We analyzed the P300 by submitting the average ERP amplitudes at electrode Pz during 

the P300 time windows (Reward: 294-344ms, Non-reward: 346-396ms) to frequentist and 

Bayesian repeated measures ANOVAs (figure 3-5D). We found a reliable main effect of 

reward outcome on P300 amplitude (F(1,19) = 35.83 , p = 9.26e-6, 𝜂_`=0.65, BF = 3.5e5). 

We observed moderate evidence both against an effect of drug (F(1,19) = 0.20 , p = 0.66, 

𝜂_`=0.01, BF = 0.26) and against a reward by drug interaction (F(1,19) = 0.13 , p = 0.73, 

𝜂_`= 6.56e-3, BF = 0.29) on P300 amplitudes. 

3.3.3.2  Visuomotor rotation task 

Feedback-related negativity/Reward positivity: ERPs elicited by endpoint cursor feedback 

at electrode FCz are shown in Figure 3-6A. We analyzed the FRN/RP by submitting the 

average ERP amplitude at electrode FCz between 267-317ms to repeated measures 

ANOVAs (figure 3-6B). We did not find reliable main effects of drug (F(1,19) = 1.37, p = 

0.26, 𝜂_`=0.07), or feedback rotation (F(2,38) = 0.1, p = 0.86 (Greenhouse-Geisser 

corrected), 𝜂_`= 5.12e-3). We did observe a reliable drug by rotation interaction effect 

(F(2,38) = 4.75, p = 0.02 (Greenhouse-Geisser corrected), 𝜂_`= 0.2). Simple main effects  
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Figure 3-5: Event-related potentials elicited by reinforcement feedback (n=20). A, Grand averaged 

ERPs recorded from electrode FCz. ERPs are aligned to reinforcement feedback presentation (0 ms: 

vertical grey line). Horizontal grey bar indicates time window for FRN/RP analysis (267-317ms). Trials 

were selected by reinforcement outcome (reward or non-reward) and drug condition (levodopa or 

placebo) for ERP averaging. B, ERP amplitude during the FRN/RP time window. Individual 

participants’ data show amplitude following reward, non-reward, and the difference [(reward) - (non-

reward)]. Boxplots indicate the median (circular markers), the interquartile range (thick bars) and the 

range (thin lines). C, Trial averaged ERPs recorded from electrode Pz. Horizontal grey bars indicate 

time windows for P300 analysis (Reward: 294-344ms, Non-reward: 346-396ms). D, ERP amplitudes 

during the P300 time windows, as in B. 

 

 

 



Chapter 3: Effects of levodopa on neural and behavioral responses to feedback during motor adaptation 

 

130 

 

 

Figure 3-6: Event-related potentials elicited by sensory error feedback (n=20). A, Grand averaged 

ERPs recorded from electrode FCz. ERPs are aligned to endpoint cursor feedback presentation (0 ms: 

vertical gray line). Horizontal grey bar indicates time window for FRN/RP analysis (267-317ms). Trials 

were selected by feedback rotation (0°, ±2°, or ±4°) and drug condition (levodopa or placebo) for 

averaging. B, ERP amplitude during the FRN/RP time window. Individual participants’ data show 

amplitude following unrotated feedback as well as feedback rotated by ±2°, and ±4°. Differences in 

ERP amplitude between rotated and unrotated feedback are also shown for each participant. Boxplots 

indicate the median (circular markers), the interquartile range (thick bars) and the range (thin lines). 

C, Trial averaged ERPs recorded from electrode Pz. Horizontal grey bars indicate time window for 

P300 analysis (292-342 ms). D, ERP amplitudes during the P300 time windows, as in B. 
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did not show reliable main effects of rotation in either the placebo (F(2,38) = 2.17, 

p=0.13) or levodopa (F(2,38) = 2.06, p=0.14) conditions on FRN/RP amplitudes. 

P300: ERPs elicited by endpoint cursor feedback at electrode Pz are shown in Figure 3-

6C. We analyzed the P300 by submitting the average ERP amplitude at electrode Pz 

between 292-342 ms to repeated measures ANOVAs (figure 3-6D). We did not find 

reliable main effects of drug (F(1,19) = 0.43, p = 0.52, 𝜂_`=0.02), or feedback rotation 

(F(2,38) = 1.31, p = 0.28 (Greenhouse-Geisser corrected), 𝜂_`= 0.06). We did observe a 

reliable drug by rotation interaction effect (F(2,38) = 7.46, p = 2.24e-3 (Greenhouse-

Geisser corrected), 𝜂_`= 0.28). Simple main effects revealed a reliable main effect of 

rotation in the placebo (F(2,38) = 5.72, p=6.72e-3) but not the levodopa (F(2,38) = 0.51, 

p=0.60) condition on P300 amplitude. 

3.4 Discussion 

We tested for effects of levodopa, a dopamine precursor, on motor adaptation and event-

related potential (ERP) responses to feedback in reward- and sensory-error based motor 

adaptation tasks. We hypothesized that levodopa would selectively impair neural and 

behavioral responses to reinforcement feedback in the reward-based learning task, while 

neural and behavioral responses to sensory error would be not be affected by levodopa. 

However, the only reliable influence of levodopa was in modulating the effect of 

visuomotor rotation on the P300 event-related potential component.  

Visuomotor rotation task: During the VMR task, a cursor appeared at the endpoint of 

each reach to represent the position of the hand, and this feedback was perturbed through 

random rotations. We observed robust trial-by-trial adaptation to these perturbations. 

We did not find evidence that adaptation was affected by levodopa. This was expected, as 

trial-by-trial error correction induced by relatively small visuomotor rotations is thought 

to be driven primarily by sensory error-based learning mechanisms as opposed to 

dopaminergic reinforcement learning circuits (Diedrichsen et al., 2005; M. Ito, 2000; 

Krakauer et al., 2004; H. Tanaka et al., 2009; Taylor et al., 2010; Wong et al., 2019). 
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In the experiment described in chapter 2, we found that visuomotor rotation increases the 

amplitude of the P300 ERP component, a centro-parietal ERP deflection peaking 

approximately 300-400ms following feedback presentation (Aziz et al., 2020; MacLean et 

al., 2015; Palidis et al., 2019). In the present study, we observed an interaction effect 

between feedback rotation and drug condition on the P300 amplitude. P300 amplitude 

increased in response to visuomotor rotations in the placebo condition but not in the 

levodopa condition. This result replicated our previous finding that visuomotor rotations 

increase the amplitude of P300 responses to feedback, and additionally suggests that this 

effect is dependent on dopaminergic signaling. The modulation of P300 amplitude by 

sensory error is clearly not essential for adaptation, as disruption of this effect by 

levodopa did not correspond with any behavioral changes. Previous findings have also 

suggested a possible relationship between dopamine function and the P300 response, 

however the neural mechanisms and functional significance of the P300 in relation to 

motor adaptation remain unclear (Chu et al., 2018; Hansenne et al., 1995; Mulert et al., 

2006; Noble et al., 1994; Sohn et al., 1998; Stanzione et al., 1990, 1991; Takeshita & Ogura, 

1994). Variants of the P300 are elicited by many types of task-relevant stimuli, and have 

been localized to diffuse cortical areas including parietal, frontal, and motor regions, 

which have been implicated in processing prediction error (Bledowski et al., 2004; 

Calhoun et al., 2006; Johnson et al., 2019; Y. Li et al., 2009; Mantini et al., 2009; Polich, 

2007; Ragazzoni et al., 2019; Sabeti et al., 2016; Soltani & Knight, 2000). We observed a 

similar interaction effect between rotation and drug condition in recordings from 

electrode FCz during the FRN/RP time window. This appeared to be largely attributable 

to the P300 effect described above, as the time windows were largely overlapping and the 

P300 was clearly measured at FCz as well. 

Reward learning task: Participants adapted reliably to manipulations of binary 

reinforcement feedback intended to produce either progressively clockwise or 

counterclockwise reach angles. However, we found no effects of levodopa on adaptation. 

One explanation of our findings is that the behavioral and neural processes measured in 

the current study do not depend on dopaminergic reward learning mechanisms. Another 
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possibility is that the drug manipulation was not sufficiently powerful to disrupt these 

processes. The former interpretation depends on previous findings that levodopa impairs 

cognitive forms of reward learning using the same drug administration protocols in 

similar populations. However, the current study is limited by the lack of a positive control 

task demonstrating known behavioral effects of levodopa. Quattrocchi et al. (2018) found 

no effect of levodopa or a dopamine antagonist haloperidol on modulation of sensory 

error-based learning by additional reinforcement feedback. Holland et al. (2019) found 

no association between dopamine-related gene polymorphisms on adaptation through 

binary reinforcement feedback in a task similar to that used in the current study. 

Together, these findings suggest that reward-based motor adaptation may not rely on 

dopamine function, or at least that additional mechanisms may compensate for 

differences in dopamine function. 

The “dopamine overdose” hypothesis states that dopaminergic medications such as 

levodopa might disrupt learning processes mediated by the ventral striatum by 

overstimulating dopamine signaling in this brain region. The ventral striatum may 

specifically mediate stimulus-based reinforcement learning, while action-based 

reinforcement learning in the current study may be subserved by the dorsal striatum  

(Rothenhoefer et al., 2017). Furthermore, levodopa may specifically impair learning from 

unfavorable outcomes as opposed to rewarding outcomes (Cools et al., 2006, 2007; Frank 

et al., 2004; Vo et al., 2018). Non-reward outcomes in the current task may not contribute 

significantly to learning as they do not instruct the correct response, unlike in binary 

response tasks.  

Another important distinction is between model-free and model-based reinforcement 

learning processes (Babayan et al., 2018; Daw et al., 2011; Deserno et al., 2015; Dolan & 

Dayan, 2013; Doll et al., 2016; Gardner et al., 2018; Gläscher et al., 2010; Russek et al., 

2017; Sambrook et al., 2018; Shahar et al., 2019; Sharp et al., 2016). Model-free 

reinforcement learning is characterized by reinforcement of simple stimulus-response 

associations that facilitate habitual, reflexive responding. Model-based learning allows for 

flexible planning according to a mental representation of the task, and can be limited by 
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working memory processes. Levodopa has been shown to impair reward-based learning 

in healthy controls and people with Parkinson’s disease, but to improve model-based 

learning and related cognitive functions such as working memory, cognitive flexibility, 

and attention (Beato et al., 2008; Cools et al., 2001, 2003; Cooper et al., 1992; Costa et al., 

2003; Kulisevsky, 2000; Lange et al., 1992; Lewis et al., 2005; Marini et al., 2003; Moustafa 

et al., 2008; Sharp et al., 2016; Torta et al., 2009; Wunderlich et al., 2012). It is possible 

that “dopamine overdose” by levodopa selectively impairs model-free learning. It may be 

that reward-based motor adaptation in the current study relies on processes other than 

model-free learning that are not affected by levodopa. Reward-based motor adaptation 

tasks similar to that in the current study have been shown to primarily involve strategic 

aiming that can be influenced by explicit instructions and cognitive load, characteristics 

that are inconsistent with model-free learning (Codol et al., 2018; Holland et al., 2018). 

We also analyzed the variability of trial-by-trial changes in reach angle as a function of 

reward outcomes. Reward related modulation of motor variability has been shown to be 

impaired in medicated Parkinson’s disease in a very similar task (Pekny et al., 2015). We 

hypothesized that this effect may be due to side-effects of dopaminergic medication, and 

that we would observe similar impairments in healthy participants after levodopa 

administration. However, we observed no effect of levodopa on reward-related 

modulation of motor variability. Reward-based modulation of exploratory variance may 

therefore not depend on the ventral striatum, which is relatively spared in early stage 

Parkinson’s disease and therefore vulnerable to “dopamine overdose” in patients and 

healthy controls alike. Instead, it may depend on the dorsal striatum, which is more 

closely related to movement planning and is primarily impacted by early stage 

Parkinson’s disease. 

Reinforcement feedback elicited a very reliable FRN/RP ERP component. Meta-analyses 

have shown that the FRN/RP encodes a quantitative reward prediction error across 

multiple different tasks (Sambrook & Goslin, 2015; Walsh & Anderson, 2012). Reports 

have linked the FRN/RP signal to behavioral adjustments in response to feedback (Arbel 

et al., 2013; Frank et al., 2005; Holroyd & Krigolson, 2007; van der Helden et al., 2010). 
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These findings support a prominent theory purporting that the FRN/RP is a reflection of 

reinforcement learning processes in the anterior cingulate cortex driven by phasic 

dopamine reward prediction error signals (Holroyd & Coles, 2002; Walsh & Anderson, 

2012). Contrary to our hypothesis, we observed no effects of levodopa on the FRN/RP in 

response to reinforcement feedback. Previous studies have supported a link between 

dopamine and the FRN/RP, although results have been mixed. FRN/RP amplitude has 

been shown to be impaired in Parkinson’s disease patients with apathy (Martínez-Horta 

et al., 2014). Brown et al. (2020) found that the reward positivity was impaired in 

Parkinson’s disease patients relative to controls ON levodopa but not OFF levodopa, 

consistent with the dopamine overdose hypothesis. In healthy participants, the dopamine 

antagonist haloperidol has shown mixed results in reducing the amplitude of the reward 

positivity (Forster et al., 2017; Schutte et al., 2020). Mueller et al. (2014) found that the D2 

receptor dopamine antagonist sulpiride had opposite effects on FRN/RP amplitude 

depending on a genotype variant that regulates prefrontal dopamine levels. They 

suggested a u-shaped relationship between dopamine release in the prefrontal cortex and 

FRN/RP amplitude mediated by the balance between D1 and D2 receptor activation. 

Because the effect of dopamine manipulation on the FRN/RP seems to depend on genetic 

differences in baseline dopamine release, one possibility is that levodopa in the current 

study had inconsistent effects on different subgroups of participants that cancelled each 

other in the group average.  

Conclusions: We tested the hypothesis that reward-based motor adaptation is mediated 

by dopaminergic signaling of reward prediction error. Contrary to our hypotheses, we did 

not observe effects of levodopa on reward-based motor learning or the FRN/RP ERP 

component, which have both been theorized to depend on dopaminergic signaling of 

reward prediction error. The dopamine overdose hypothesis suggests that levodopa 

impairs stimulus-response reinforcement learning processes in the ventral striatum. 

Reward-based motor adaptation may instead depend on distinct reinforcement learning 

circuits that are not disrupted by levodopa such as cortical reward learning mechanisms 

or dopaminergic projections to the dorsal striatum.   
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4.1 Introduction 

Human motor control reliably adapts to changes of the body or the environment. For 

example, neural motor commands must be altered when an athlete uses a new piece of 

equipment or when the responses of their muscles change due to fatigue. Force field 

learning is a common experimental model used to study motor adaptation in response to 

alterations to the dynamics of reaching movements (Shadmehr & Mussa-Ivaldi, 1994). In 

typical studies of force field adaptation, a robot applies velocity-dependent forces to the 

hand during reaches to targets. Motor output reliably adapts to reduce the errors caused 

by these mechanical perturbations, even following a single movement (Diedrichsen et al., 

2005; O. Donchin et al., 2003; M. A. Smith et al., 2006; Thoroughman & Shadmehr, 

2000). Adaptation quickly washes out when force-field perturbations are removed. 

However, savings causes adaptation to occur more quickly during re-exposure to a 

previously encountered perturbation after loss of initial learning (Coltman et al., 2019; 

Herzfeld et al., 2014; M. A. Smith et al., 2006; Zarahn et al., 2008). Previous adaptation 

can also cause anterograde interference which slows learning during subsequent exposure 

to an opposite direction perturbation (Krakauer, 2009; Miall et al., 2004; Shadmehr & 

Brashers-Krug, 1997; M. A. Smith et al., 2006). Here, we used levodopa to manipulate 

dopamine release in healthy participants to test the hypothesis that savings and 

interference depend on dopamine signaling.  

Initial adaptation to force field perturbations is thought occur through error-based 

updating of a neural model of limb dynamics (O. Donchin et al., 2003; Kawato, 1999; 

McNamee & Wolpert, 2019; Shadmehr et al., 2010). Adaptation depends heavily on the 

cerebellum (Block & Bastian, 2012; Izawa et al., 2012; Maschke et al., 2004; M. A. Smith & 

Shadmehr, 2005; Tseng et al., 2007). Activity in both the cerebellum and sensory-motor 

cortical regions reflects errors induced by force field perturbations and adaptive changes 

corresponding with behavioral learning (Diedrichsen et al., 2005; C.-S. R. Li et al., 2001; 

Padoa-Schioppa et al., 2004; Perich et al., 2018; Xiao et al., 2006). One account of savings 

and interference suggests that these effects are not produced by updating of internal 

sensory-motor models, but rather by additional influences of a reinforcement learning 
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process (Huang et al., 2011; Orban de Xivry & Lefèvre, 2015). This hypothesis states that 

when error-based adaptation counteracts the errors induced by a perturbation, the 

adapted motor commands are reinforced due to successful performance in the task. 

When the same perturbation is encountered in the future, those previously reinforced 

actions may be recalled, resulting in savings. According to this hypothesis, recall of 

previously successful actions also occurs when an opposite perturbation is introduced. In 

this case the previous motor solution is incompatible with the novel perturbation, 

resulting in interference. Unlike the error-based learning process that produces initial 

adaptation, this hypothesized reinforcement learning process is thought to be “model-

free” in the sense that adaptive responses are not planned according to informational 

content of the error such as direction. Instead, actions that were previously associated 

with success are simply recalled in response to any perturbation.  

In cognitive reward-based learning tasks, model-free reinforcement learning is thought to 

occur though plasticity at cortico-striatal synapses caused by dopaminergic reward 

signaling (Daw et al., 2005; Dolan & Dayan, 2013; Doll et al., 2016; Gläscher et al., 2010; 

Glimcher, 2011; Steinberg et al., 2013). Parkinson’s disease (PD) is primarily 

characterized by loss of dopaminergic projections to the striatum, and people with PD 

show reduced savings and anterograde interference for motor adaptation despite intact 

initial learning (Bédard & Sanes, 2011; Leow et al., 2012, 2013; Marinelli et al., 2009). 

Although these findings suggest that savings and interference may be mediated by 

dopaminergic reinforcement learning, numerous features of PD could potentially explain 

the observed deficits. PD is accompanied by significant structural and functional changes 

in primary motor cortex (Burciu & Vaillancourt, 2018). Learning impairments may also 

be a side-effect of medication.  

Levodopa, a dopamine precursor used to treat PD, has been shown to impair cognitive 

reward-based learning in both patients and healthy participants (Cools et al., 2001, 2007; 

Feigin et al., 2003; Frank et al., 2004; Graef et al., 2010; Hiebert et al., 2014; Jahanshahi et 

al., 2010; Kwak et al., 2010; MacDonald et al., 2011; Swainson et al., 2000; Torta et al., 

2009; Vo et al., 2016, 2018). In early-stage Parkinson's disease, the dorsal striatum is 
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significantly depleted of dopamine whereas the ventral striatum is comparatively spared. 

According to the “dopamine overdose” hypothesis, levodopa overstimulates dopamine 

release in the ventral striatum of both healthy controls and people with early stage PD, 

resulting in learning deficits (Cools et al., 2007). Although levodopa ameliorates deficits 

caused by dopamine-depletion in the dorsal striatum, the ventral striatum is less 

dopamine-depleted in early-stage PD and thus may be susceptible to impairment by 

excessive dopamine release due to levodopa. In line with this view, cognitive reward-

based learning is thought to rely on dopamine signaling in the ventral striatum and is 

impaired by levodopa (Hiebert et al., 2019). Here, we administered levodopa to healthy 

participants to provide a more specific and controlled test for a role of dopamine in 

savings and interference. According to the “dopamine overdose” hypothesis, we predicted 

that levodopa would reduce savings and interference while leaving initial adaptation 

unaffected. 

In chapter 3, we describe findings that levodopa did not affect motor adaptation induced 

by explicit binary reinforcement feedback. One possible explanation is that levodopa 

impairs model-free reinforcement learning while reward-based motor learning depends 

on different processes. Reward-based motor adaptation is abolished by cognitive load and 

depends on executive functions such as explicit strategy, planning, and working memory 

(Holland et al., 2018, 2019; Sidarta et al., 2018). These features of reward-based motor 

adaptation are generally inconsistent with model-free learning which is thought to 

produce automatic, habitual response tendencies that do not depend on executive 

function. Because savings and anterograde interference are hypothesized to depend on 

model-free reinforcement learning, we predicted that they might be impaired by levodopa 

despite the fact that reward-based motor adaptation is not.   

Participants ingested either levodopa or placebo prior to performing a force field 

adaptation task. Participants made reaching movements towards visual targets while 

holding a handle attached to a robotic manipulandum. During reaches when a force-field 

was active, the robot applied forces perpendicular to the direction of movement and 

proportional to the velocity of the hand. Participants first performed a block of baseline 
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reaches during which the robot applied no forces. A clockwise force field was applied in 

the second block of reaches, followed by a third block of reaches with no force field to 

allow for washout of initial adaptation. A clockwise force field was applied again during 

the fourth block to test for savings. We expected that adaptation to compensate for the 

forces produced by the robot would be facilitated during the second exposure to the 

clockwise force field due to savings. We hypothesized that levodopa would reduce savings 

by disrupting dopaminergic learning mechanisms. In the final block, participants adapted 

to a counterclockwise force field. We expected that adaptation would be impaired in this 

block by anterograde interference due to the previous exposure to an opposite force field. 

We hypothesized that levodopa would disrupt anterograde interference and thus improve 

adaptation in this final block. 

4.2 Materials and Methods 

4.2.1 Participants 

A total of 38 participants were tested (Table 4-1). All participants were screened for 

neurological and psychiatric illness, history of drug or alcohol abuse, and 

contraindications for levodopa. Participants provided written informed consent to 

experimental procedures approved by the Research Ethics Board at Western University. 

4.2.2 Procedure 

Drug administration: Participants were administered either levodopa or placebo in a 

randomized double-blind design. A capsule was ingested that contained 100 mg of 

levodopa (L-3,4-dihydroxyphenylalanine) and 25 mg of carbidopa or an equal volume of 

placebo. The experimental tasks began 45 minutes after ingestion of the capsule to 

coincide with peak plasma levels of levodopa. We measured subjective alertness using the 

Bond-Lader visual analog scale (Bond & Lader, 1974) as well as heart rate and blood 

pressure immediately prior to ingesting the capsule and again at the end of each session.  
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Measure Placebo Levodopa 

n 19 19 

n female 9 10 

Age 21.2 (SD: 2.5) 22.2 (SD: 3.4 years) 

Heart Rate Pre: 75.1 (SD: 9.5) 

Post: 66.2 (SD: 10.2) 

Pre: 71.6842 (SD: 12.8) 

Post: 65.7 (SD: 11.3) 

Systolic Pre: 109.2 (SD: 15.4) 

Post: 104.8 (SD: 14.5) 

Pre: 108.4 (SD: 11.4) 

Post: 99.7 (SD: 10.1) 

Diastolic Pre: 72.0 (SD: 10.2) 

Post: 70.1 (SD: 10.2) 

Pre: 73.2 (SD: 15.5) 

Post: 67.0 (SD: 8.2) 

Alertness Pre: 31.3 (SD: 15.3) 

Post: 39.4 (SD: 17.0) 

Pre: 27.1 (SD: 11.0) 

Post: 43.4 (SD: 12.7) 

Peak Velocity 0.43 (SD = 0.01) 0.43 (SD = 0.02) 

Table 4-1: Control measurements. Heart rate (bpm). Systolic blood pressure (mm Hg). Diastolic 

blood pressure (mm Hg). Alertness, Bond-Lader visual analog scale alertness measure. Peak Velocity, 

maximum tangential velocity of the hand averaged across trials (m/s). 
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Force field adaptation task: Participants produced reaching movements with their right 

arm while holding the handle of a robotic arm (InMotion2; Interactive Motion 

Technologies). The position of the robot handle was sampled at 600 Hz. A semi-silvered 

mirror obscured vision of the arm and displayed visual information related to the task. 

An air sled supported each participant’s right arm.  

On each trial, participants reached from a central home position (blue circle 20 mm in 

diameter) to one of 8 circular targets (24 mm in diameter) arranged around the home 

position at a distance of 10 cm. The target angles were 0°, 45°, 90°, 135°, 180°, 225°, 270°, 

and 315°. A 5-mm pink circular cursor represented the position of the robot handle. 

When the cursor reached the target on each trial, the target either turned blue to indicate 

that the movement duration was satisfactory (375 ± 100 ms), green to indicate that the 

movement was too slow, or red to indicate that the movement was too fast. The subject 

moved the robot handle back to the home position at the end of each reach. 

In null field blocks, the robot motors did not apply any external forces to the hand. In 

force field blocks, the robot applied forces to the hand that were perpendicular to the 

direction of movement and proportional to the velocity of the hand (eq. 4.1). The 

direction of the force field was either clockwise or counterclockwise, in separate blocks.  

a
𝐹c
𝐹d
e = 𝑏 g 0 𝑑

−𝑑 0h g
𝑣c
𝑣dh	(4.1) 

𝑥 and 𝑦 correspond to the lateral and sagittal directions. 𝐹c and 𝐹d describe the forces 

applied to the hand, 𝑣c and 𝑣d  describe the velocity of the hand, 𝑏 is the field constant, 

and 𝑑 corresponds to the direction (𝑑 = 1 for a clockwise force field (CWFF), -1 for a 

counterclockwise force field (CCWFF) or 0 for a null field (NF)). 

All participants completed five blocks of 96 trials. Each block consisted of 12 reaches to 

each of the 8 targets presented in random order. The five blocks occurred in the following 

order: NFa (null field), FF1a (CWFF), NFb (null field), FF1b (CWFF), FF2 (CCWFF). 

Trials 6, 24, 35, 50, 71, and 91 of each block were “catch trials”, during which reaches 



Chapter 4: Effects of levodopa on force field adaptation, savings, and interference  

 

159 

occurred in a null field. When a force field is suddenly removed in catch trials, adaptation 

causes errors to occur in the opposite direction of the force field. A reduction in reach 

error during force field trials may reflect either adaptation to the force field, stiffening of 

the arm, or changes in feedback corrections. The magnitude of errors opposite the force 

field in catch trials is thought to better capture adaptation of feedforward control. Similar 

to catch trials, we expected after-effects at the beginning of NFa in the form of 

counterclockwise reach errors after the sudden removal of the clockwise force field in 

FF1a.  

4.2.3 Data analysis  

Robot handle positional data were low-pass filtered with a 40 Hz cutoff frequency and 

differentiated to yield instantaneous velocity and acceleration. On each trial, movement 

onset and end of movement were defined according to a velocity threshold set at 5% of 

the maximum tangential velocity of the robot endpoint. Our behavioral measure of 

interest was the lateral deviation of the hand at the time of peak tangential velocity. 

Perpendicular deviation (PD) was calculated relative to a line drawn from the position of 

movement onset in the direction of the target angle (either 0°, 45°, 90°, 135°, 180°, 225°, 

270°, or 315°). PD was calculated for each trial as the perpendicular distance between the 

position of the hand at peak velocity and this line, with positive PD corresponding to 

clockwise deviations. For non-catch trials, PD was averaged across trials within 12 bins of 

8 trials each. We analyzed effects related to adaptation separately for an early and late 

period of each block. The early period consisted of the first 5 bins (trials 1-40, catch trials: 

6,24,35) and the late period consisted of the remaining 7 bins (trials 41-96, catch trials: 

50,71,91). Baseline PD was computed as the average PD in the late period of NFa. We 

computed metrics for adaptation, savings, after-effects, and learning with interference 

separately for the early and late periods, and separately for catch trials and non-catch 

trials. All metrics were computed so that positive values corresponded to the effects of 

interest, and values of zero correspond to no effect. We tested for adaptation, savings, 

after-effects, and learning with interference using 1-sample t-tests against zero. We tested 

for differences between the placebo and levodopa groups using paired t-tests.   
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Non-catch trials: Adaptation metrics were computed to capture reductions in error 

during FF1a relative to the initial errors caused by the onset of the force field. Our 

measure of early adaptation was the average PD in the first bin of FF1a minus the average 

PD across subsequent bins within the early period of FF1a (bins 2-5). Our measure of late 

adaptation was the average PD in the first bin of FF1a minus the average PD across bins 

in the late period of FF1a (bins 6-12). Savings metrics were computed to measure 

reductions in errors during the second exposure to FF1 compared to the first. Savings was 

measured as the difference in PD between FF1a and FF1b (FF1a – FF1b), separately for 

PD averaged across bins within the early and late periods. Adaptation to FF1a caused 

after-effects in the form of errors upon its sudden removal at the onset of NFb. After-

effects were measured as the difference between baseline PD and the PD in NFb (baseline 

– NFb), separately for PD averaged across bins in the early and late periods of NFb. We 

expected large initial errors at the onset of FF2 due to a combination of after-effects from 

the removal of FF1b and the introduction of a novel force field. Previous adaptation to 

FF1b was also expected to cause anterograde interference during adaptation to FF2 as the 

force fields were opposite. Metrics for adaptation with interference were computed to 

capture reductions in errors during FF2 relative to the initial errors caused by the onset of 

the force field. Early adaptation with interference was measured by subtracting the 

average PD from the first bin of FF2 from the average PD across subsequent bins within 

the early period of FF2 (bins 2-5). Late adaptation with interference was measured by 

subtracting the average PD in the first bin of FF2 from the average PD across subsequent 

bins in the late period of FF2 (bins 6-12).  

Catch trials: When a force field is suddenly removed during catch trials, adaptation to the 

force field is reflected in errors opposite the direction of the force field. Adaptation effects 

were computed as the baseline PD minus the PD in FF1a averaged across catch trials, 

separately for catch trials in the early and late period. Improved adaptation due to savings 

was expected to cause larger errors in catch trial during FF1b compared to FF1a. Savings 

was computed as the PD in FF1a minus the PD in FF1b, averaged across catch trials 

separately for the early and late periods. Learning effects with interference were 
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computed using data from FF2. There was no suitable baseline PD to analyze learning in 

this block. Instead, the PD of the first catch trial was subtracted from the PD of each of 

the later catch trials, separately for catch trials in the early and late periods. This captures 

changes in catch trial PD opposite the direction of FF2 due to adaptation. 

4.2.4 Statistics 

Statistical tests were implemented using JASP v0.14.1. We compared sample means using 

1 sample T-Tests and independent sample T-Tests. These comparisons allowed us to 

compute one-tailed Bayes factors representing 𝑝(𝑑𝑎𝑡𝑎|𝐻U)	/	𝑝(𝑑𝑎𝑡𝑎|𝐻6), where 𝐻6 

represents the null hypothesis corresponding to the standard t-distribution for an effect 

size of 0, and 𝐻U represents the alternative hypothesis corresponding to a t-distribution 

constructed using a one-tailed prior distribution of effect sizes. The use of 1-tailed priors 

is recommended in the case of directional hypotheses to provide “a fairer balance between 

the ability to provide evidence for H0 and 𝐻U” (Keysers et al., 2020). We used the default 

effect size priors implemented in JASP (Cauchy scale 0.707). These priors are generally 

appropriate for effect sizes typical of neuroscience research, and the use of default priors 

is recommended for standardized and objective analysis (Keysers et al., 2020; Rouder et 

al., 2012; Wetzels et al., 2011). Bayesian estimates of effect size are reported as median 

posterior Cohen’s δ with 95% credibility interval using 2-tailed priors for 𝐻U to avoid 

biasing the estimate in the expected direction. We also report T-statistics, p-values, and 

95% confidence intervals generated using 2-tailed frequentist T-Tests. Bayes factors >3 

and >10 were taken as moderate and strong evidence in favor of the alternative 

hypothesis, respectively. Bayes factors <1/3 and <1/10 were taken as moderate and strong 

evidence in favor of the null hypothesis, respectively. Bayes factors between 1/3 and 3 

were taken as inconclusive evidence (Keysers et al., 2020).  

Directional priors used for alternative hypotheses specified our predictions that learning 

metrics would be greater than zero (Force field adaptation, savings, after-effects, and 

adaptation with interference). In comparing placebo and levodopa conditions, our 

alternative hypotheses specified that learning metrics would be lower in levodopa 
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conditions than placebo conditions, in accordance with the “dopamine overdose” 

hypothesis. The only exception was that we predicted adaptation with interference would 

be increased by levodopa. If anterograde interference is caused by dopaminergic 

reinforcement learning, then the “dopamine overdose” effect should reduce interference 

and facilitate adaptation. All other Bayes factors are computed with 2-tailed priors, as 

they were conducted without directional a priori hypotheses (control measures, etc.). 

4.3 Results 

4.3.1 Control measures 

Control measures: Participants’ judgments as to whether they received placebo or drug 

was near chance level (52.63%) and only 13.16% of participants responded that they 

thought they had received the drug. The values for heart rate, blood pressure, and 

alertness are reported in Table 4-1 for both the placebo and levodopa groups at the 

beginning and end of each experimental session. There were no reliable differences 

between the levodopa and placebo conditions in the percent change of heart rate (t(36) = 

-1.09, p=0.282, 95%CI for difference = [-0.10 0.03], BF = 0.5, posterior δ: median = -

0.273, 95%CI = [-0.875 0.284]), diastolic blood pressure (t(36) = 1.37, p=0.18, 95%CI for 

difference = [-0.02 0.11], BF = 0.65, posterior δ: median = 0.346, 95%CI = [-0.218 0.960]), 

systolic blood pressure (t(36) = 1.37, p=0.18, 95%CI for difference = [-.02 0.09], BF = 

0.65, posterior δ: median = 0.346, 95%CI = [-0.218 0.960]), or alertness (t(36) = -0.88, 

p=0.39, 95%CI for difference = [-0.95 0.38], BF = 0.43, posterior δ: median = -0.218, 

95%CI = [-0.810 0.337]). There was also no reliable difference between peak movement 

velocity between the levodopa and placebo groups (t(36) = -0.09, p=0.93, 95%CI for 

difference = [-0.01 9.94e-3], BF = 0.32, posterior δ: median = -0.021, 95%CI = [-0.585 

0.539]). 

4.3.2 Force field adaptation results 

In each trial, we measured the perpendicular deviation (PD) of the reach trajectory at 

peak tangential velocity. PD data from throughout each force field and null field block, 

excluding catch trials, are shown in Figure 4-1. PD data from catch trials are shown in 
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Figure 4-2. We computed contrasts to test for adaptation, savings, after-effects, and 

learning with interference in both the early (bins 1-5) and late (bins 6-12) periods 

following perturbation onset (Figure 4-3). We tested whether these effects are different 

from zero using 1-sample T-Tests for both the levodopa and placebo groups. We tested 

for differences between the levodopa and placebo groups using independent sample T-

Tests. Detailed statistical results are shown in Table 4-2. 

 

 

 

Figure 4-1: Perpendicular deviation of reach trajectory during non-catch trials. Average 

perpendicular deviation of the hand trajectory within bins consisting of 8 trials each is shown in cm 

(Shaded region: ± SEM). The placebo condition is shown in black (n=19), and the levodopa condition 

is shown in red (n=19). Perpendicular deviation was measured on each trial at peak tangential velocity. 

Trials 6, 24, 35, 50, 71, and 91 of each block were catch trials, and were excluded from the 

corresponding bins. In null field A and null field B, the robot did not apply external forces to the hand 

during reaches. In force field 1A and force field 1B, participants made reaches in a clockwise force field. 

In force field 2 participants made reaches in a counterclockwise force field.  
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Figure 4-2: Perpendicular deviation of reach trajectory during catch trials. Perpendicular deviation 

of the hand trajectory, measured at peak tangential velocity, is shown in cm (Error bars: ± SEM). The 

placebo condition is shown in black (n=19), and the levodopa condition is shown in red (n=19). Catch 

trials occurred on trials 6, 24, 35, 50, 71, and 91 of each block. In null field A and null field B, the robot 

did not apply external forces to the hand during reaches. In force field 1A and force field 1B, 

participants made reaches in a clockwise force field. In force field 2 participants made reaches in a 

counterclockwise force field. 
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Figure 4-3: Adaptation effects in non-catch trials A, and catch trials B. Data points show effects for 

individual participants, box plots show the median, interquartile range, and full range. Effects are 

contrasts computed using perpendicular deviation (PD) of reach trajectory (cm), such that zero 

corresponds to no effect.  Adaptation: change in PD during FF1a. Savings: difference in PD between 

FF1a and FF1b. After-effects: difference in PD between NFb and baseline from NFa. Adaptation w/ 

interference: change in PD during FF2. 
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One Sample T-Tests     
                              95% CI for Sample Mean  
Placebo Non-Catch Trials  t  df   p  BF    Sample Mean   Lower  Upper  
early adaptation   10.60   18   3.62e  -9   6.36e +6   0.47   0.38   0.56   

late adaptation   12.54   18   2.48e -10   7.72e +7   0.62   0.52   0.73   

early savings   1.56   18   0.14   1.23   0.05   -0.02   0.13   

late savings   0.70   18   0.50   0.44   0.02   -0.04   0.08   

early after-effects   9.06   18   4.00e  -8   688519.55   0.31   0.24   0.38   

late after-effects   3.78   18   1.37e  -3   56.24   0.09   0.04   0.14   

early adaptation (interference)   11.46   18   1.06e  -9   2.00e +7   0.76   0.62   0.89   

late adaptation (interference)   15.70   18   5.98e -12   2.51e +9   1.18   1.02   1.34   

Levodopa Non-Catch Trials  t  df   p  BF  Sample Mean   Lower  Upper  
early adaptation   8.76   18   6.61e -8   432847.50   0.46   0.35   0.57   
late adaptation   10.42   18   4.71e -9   4.99e +6   0.67   0.53   0.80   
early savings   1.67   18   0.11   1.43   0.06   -0.02   0.14   
late savings   -0.40   18   0.70   0.18   -0.01   -0.07   0.05   
early after-effects   10.84   18   2.56e -9   8.79e +6   0.31   0.25   0.37   
late after-effects   3.94   18   9.66e -4   76.15   0.08   0.04   0.12   
early adaptation (interference)   6.59   18   3.42e -6   11657.42   0.61   0.42   0.81   
late adaptation (interference)   11.12   18   1.70e -9   1.28e +7   1.02   0.83   1.21   

Placebo Catch Trials  t  df   p  BF  Sample Mean   Lower  Upper  
early adaptation   9.25   17   4.82e -8   574167.17   0.73   0.57   0.90   
late adaptation   7.90   18   2.92e -7   110521.90   0.94   0.69   1.19   
early savings   0.36   17   0.72   0.33   0.04   -0.20   0.28   
late savings   1.54   18   0.14   1.20   0.27   -0.10   0.63   
early adaptation (interference)   5.17   18   6.37e -5   837.09   0.82   0.49   1.15   
late adaptation (interference)   7.68   18   4.33e -7   77010.30   1.36   0.99   1.74   

Levodopa Catch Trials  t  df   p  BF  Sample Mean   Lower  Upper  
early adaptation   9.12   18   3.62e  -8   755029.63   0.68   0.52   0.83   
late adaptation   14.40   18   2.54e -11   6.48e +8   0.96   0.82   1.10   
early savings   -0.33   18   0.75   0.19   -0.03   -0.21   0.15   
late savings   0.99   18   0.33   0.60   0.09   -0.11   0.29   
early adaptation (interference)   6.42   18   4.84e  -6   8524.02   0.92   0.62   1.22   
late adaptation (interference)   9.03   18   4.20e  -8   657919.38   1.30   1.00   1.60   

Independent Samples T-Tests   
                             95% CI for Mean 

Difference  
Placebo vs Levodopa Non-Catch Trials  t  df   p  BF  Mean Diff.  Lower  Upper  
early adaptation   0.22   36   0.83   0.37   0.01   -0.12   0.15   
late adaptation   -0.57   36   0.57   0.22   -0.05   -0.21   0.12   
early savings   -0.16   36   0.87   0.28   -7.98e -3   -0.11   0.09   
late savings   0.77   36   0.45   0.59   0.03   -0.05   0.11   
early after-effects   0.02   36   0.99   0.32   8.12e -4   -0.09   0.09   
late after-effects   0.28   36   0.78   0.39   8.67e -3   -0.05   0.07   
early adaptation (interference)   1.23   36   0.23   0.16   0.14   -0.09   0.37   
late adaptation (interference)   1.38   36   0.18   0.15   0.16   -0.08   0.40   
Placebo vs Levodopa Catch Trials  t  df   p  BF  Mean Diff.  Lower  Upper  
early adaptation   0.51   35   0.61   0.47   0.06   -0.16   0.28   
late adaptation   -0.12   36   0.90   0.29   -0.02   -0.29   0.26   
early savings   0.49   35   0.63   0.47   0.07   -0.22   0.36   
late savings   0.87   36   0.39    0.66   0.17   -0.23   0.57   
early adaptation (interference)   -0.46   36   0.65   0.45  -0.10   -0.53   0.33   
late adaptation (interference)   0.29   36   0.77   0.26  0.07   -0.40   0.53   

 1 
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Table 4-2: Statistical results. In one-sample T-Tests, the null hypothesis was that the mean was equal 

to zero. T, T-statistic. DF, degrees of freedom. P, P-value. BF, Bayes factor in favor of the alternative 

hypothesis. 95% CI, frequentist confidence interval. Mean differences are computed as placebo-

levodopa. Bayes factors were computed using one-tailed default priors for the alternative hypothesis. 

In all one-sample T-Tests, the alternative hypothesis was that the population mean is greater than 

zero. For independent T-Tests, the alternative hypothesis stated that adaptation with interference 

would be greater in the levodopa group than the placebo group. For all other independent T-tests, the 

alternative hypothesis stated that the measure of interest would be smaller in the levodopa group than 

the placebo group.  

4.3.2.1  Adaptation. 

Non-catch trials: Early adaptation was greater than zero in both the placebo (p=3.62e-9, 

BF=6.36e+6) and levodopa conditions (p=6.61e-8, BF=432848). We also observed reliable 

late adaptation for both the placebo (p=2.48e-10, BF=7.72e+7) and levodopa (p=4.71e-9, 

BF=4.99e+6) conditions. We did not observe a reliable difference between drug 

conditions for either early (p=0.83, BF=0.37) or late (p=0.57, BF=0.22) adaptation. 

Catch trials: Early adaptation was greater than zero in both the placebo (p=4.82e-8, 

BF=574167) and levodopa (p=3.62e-8, BF=755029) conditions. We observed reliable late 

adaptation in both the placebo (p=2.92e-7, BF=110522) and levodopa (p=2.54e-11, 

BF=6.48e +8) conditions. There was no reliable difference between drug conditions for 

either early (p=0.61, BF=0.47), or late (p=0.90, BF=0.29) adaptation. 

4.3.2.2  Savings 

Non-catch trials: Our analyses yielded inconclusive evidence in favor of the hypothesized 

effect of savings for early adaptation for both the placebo (p=0.14, BF=1.23) and levodopa 

(p=0.11, BF=1.43) conditions. There was reliable evidence of savings for early adaptation 

when both groups were combined (p=0.03, BF=3.63). In the late period of adaptation, 

Non-catch trials provided inconclusive evidence against the hypothesized effect of savings 

following placebo (p=0.50, BF=0.44), and moderate evidence against the hypothesized 
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effect of savings following levodopa (p=0.70, BF=0.18). There was moderate evidence 

against the hypothesis that savings would be reduced by levodopa in early adaptation 

(p=0.87, BF=0.28), and inconclusive evidence that savings would be reduced in late 

adaptation (p=0.45, BF=0.59). 

Catch trials: There was moderate evidence against the hypothesized effects of savings for 

early adaptation following both placebo (p=0.72, BF=0.33) and levodopa (p=0.75, 

BF=0.19). Evidence for savings in late adaptation was inconclusive following both placebo 

(p=0.14, BF=1.20) and levodopa (p=0.33, BF=0.60). There was inconclusive evidence 

against the hypothesis that levodopa would reduce savings for both early (p=0.63, 

BF=0.47) and late (p=0.39, BF=0.66) adaptation. 

4.3.2.3  After-Effects 

Non-catch trials: We observed reliable after-effects in the early portion of NFb following 

adaptation in both the placebo (p=4.00e-8, BF=688519.55) and levodopa (p=2.56e-9, 

BF=8.79e+6) conditions. We also observed reliable after-effects extending to the later 

period of NFb after both placebo (p=1.37e-3, BF=56.24) and levodopa (p=9.66e -4, 

BF=76.15). We observed no reliable evidence that levodopa impaired after-effects in 

either the early (p=0.99, BF=0.32) or late (p=0.78, BF=0.39) periods. 

4.3.2.4  Adaptation with interference 

Non-catch trials: Early adaptation following exposure to an opposing force field was 

reliably greater than zero in both the placebo (p=1.06e-9, BF=2.00e+7) and levodopa 

(p=3.42e -6, BF=11657.42) conditions. We also observed reliable late adaptation in both 

the placebo (p=5.98e -12, BF=2.51e +9) and levodopa (p=1.70e -9, BF=1.28e +7) 

conditions. We observed moderate evidence against the hypothesized effect that levodopa 

would result in improved adaptation with interference in both the early (p=0.23, 

BF=0.16) and late (p=0.18, BF=0.15) periods. 

Catch trials: Early adaptation following exposure to an opposing force field was reliably 

greater than zero in both the placebo (p=6.37e-5, BF=837.09) and levodopa (p=4.84e-6, 
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BF=8524.02) conditions. We also observed reliable late adaptation in both the placebo 

(p=4.33e-7, BF=77010.30) and levodopa (p=4.20e-8, BF=657919.38) conditions. We 

observed inconclusive evidence against the hypothesis that levodopa would result in 

improved adaptation with interference in the early period (p=0.65, BF = 0.45), and 

moderate evidence in the late period (p = 0.77, BF = 0.26). 

4.4 Discussion 

Previous work suggests that savings and anterograde interference for motor adaptation 

may result from model-free reinforcement learning processes mediated by dopaminergic 

inputs to the striatum (Huang et al., 2011; Leow et al., 2012, 2013; Orban de Xivry & 

Lefèvre, 2015). Here, we tested the hypothesis that savings and anterograde interference 

for motor adaptation depend on dopamine release. A sample of healthy young volunteers 

performed a force field adaptation task designed to produce effects of initial adaptation, 

savings, and interference. Prior to performing the task, participants either ingested 

placebo or levodopa, a dopamine precursor. Levodopa is thought to impair reinforcement 

learning processes that depend on the ventral striatum (Cools et al., 2001, 2007; Feigin et 

al., 2003; Frank et al., 2004; Graef et al., 2010; Hiebert et al., 2014, 2019; Jahanshahi et al., 

2010; Kwak et al., 2010; MacDonald et al., 2011; Swainson et al., 2000; Torta et al., 2009; 

Vo et al., 2016, 2018). We hypothesized that levodopa would diminish savings and 

interference while initial adaptation would be unaffected.  

Participants reliably adapted to the clockwise force field imposed in blocks FF1a and 

FF1b, and we found no evidence that adaptation was affected by levodopa. This was 

expected as force field adaptation is thought to rely primarily on sensory error-based 

learning mechanisms involving the cerebellum (Block & Bastian, 2012; Izawa et al., 2012; 

Maschke et al., 2004; M. A. Smith & Shadmehr, 2005; Tseng et al., 2007). Previous studies 

have found that people with Parkinson’s disease (PD) show deficient savings and 

interference despite relatively normal adaptation (Bédard & Sanes, 2011; Leow et al., 

2012, 2013; Marinelli et al., 2009). Because many deficits in reinforcement-based learning 

in PD can be attributed to side effects of dopaminergic medication, we predicted that 
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levodopa would impair savings and interference in healthy volunteers. However, 

levodopa did not impact our measures of either savings or adaptation with interference. 

Impaired savings may therefore be a specific effect of Parkinson’s disease as opposed to a 

side-effect of levodopa. This is consistent with the findings of Marinelli et al. (2009), who 

observed a lack of savings effects in drug-naive and off-medication PD patients. Early-

stage PD is thought to result in dopamine depletion primarily in the dorsal striatum, 

while levodopa likely impairs dopaminergic learning mechanisms mediated by the ventral 

striatum (Hiebert et al., 2019). Thus, savings and interference may occur due to plasticity 

in the dorsal striatum. There is also evidence that savings occurs through plasticity in 

primary motor cortex (Orban de Xivry et al., 2011, 2012; Orban de Xivry & Lefèvre, 2015; 

Richardson et al., 2006). PD is associated with structural and functional alterations of 

primary motor cortex, including abnormalities in plasticity induced by transcranial 

magnetic stimulation (Bagnato et al., 2006; Burciu & Vaillancourt, 2018; Ueki et al., 

2006). Importantly, levodopa ameliorates altered motor cortical plasticity in PD, 

suggesting that these deficits are not caused by the medication. Future work might test 

whether deficits in savings and interference due to PD are linked to altered plasticity in 

primary motor cortex, and whether they are improved by dopaminergic medication.  

An important limitation is that our experimental protocol may have been insufficient to 

produce reliable savings or interference effects even in the control group, as we observed 

weak evidence of savings overall. Savings and interference have been shown to depend on 

sufficient repetition of the adapted movements to produce reinforcement of the adapted 

movements (Huang et al., 2011; Orban de Xivry & Lefèvre, 2015). Because the current 

study involved a limited number of reaches to 8 different targets, adaptation may not 

have resulted in sufficient repetition required to elicit model-free reinforcement of the 

adapted motor outputs. 
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5.1 Introduction 

Humans and other animals tend to make decisions that lead to more rewarding and less 

physically effortful outcomes (Hartmann et al., 2013; Kennerley et al., 2009; Morel et al., 

2017; Rangel & Hare, 2010; Walton et al., 2006). Movement parameters may be planned 

and adapted not only to increase reward, but also to reduce effort as a cost (Cos et al., 

2011, 2014; Selinger et al., 2015, 2019). For example, an increase of movement velocity 

may allow reward to be attained at a higher rate, but may also require more physical 

effort. A recent theory suggests that movement parameters such as speed are determined 

to maximize subjective utility, a function of reward value discounted by effort cost 

(Shadmehr et al., 2016a, 2016b; Summerside et al., 2018; Yoon et al., 2020). Chapters 2 

and 3 describe findings suggesting that an EEG signal called the feedback-related 

negativity/reward positivity (FRN/RP) reflects neural reward processing during reward-

based motor adaptation. Here, we test the hypothesis that the FRN/RP reflects subjective 

utility for which physical effort functions as a cost.  

During decision making, dopaminergic, prefrontal, and striatal structures are implicated 

in motivating effortful behavior to obtain reward and in integrating reward and effort 

costs to make value-based choices (Denk et al., 2005; Hosking et al., 2015; Kurniawan et 

al., 2010, 2011; Rudebeck et al., 2008; Salamone et al., 2003, 2007; Schweimer et al., 2005; 

Walton et al., 2003). After decisions are made and actions are produced, midbrain 

dopaminergic neurons signal the difference between expected and obtained reward to the 

ventral striatum and prefrontal regions (Bayer & Glimcher, 2005; Gläscher et al., 2010; 

Graybiel, 2008; Holroyd & Coles, 2002; Pessiglione et al., 2006; Puig & Miller, 2012; 

Schultz, 2006). This reward prediction error signal is thought to drive reinforcement 

learning by updating reward expectations, allowing for adaptive behavior in uncertain or 

changing environments. Although many reward-processing areas have been shown to 

also process effort costs during decision making before action selection, we know 

relatively little about whether motor costs associated with effort also modulate reward 

processing after an action is completed, in response to feedback about success or failure.  
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During decision making, the anterior cingulate cortex (ACC) is known to encode 

prospective reward and effort cost and to integrate both into a unitary subjective utility 

signal characterized by effort-discounted reward (Croxson et al., 2009; Kennerley et al., 

2011; Klein-Flügge et al., 2016; Porter et al., 2019; Prévost et al., 2010; Rudebeck et al., 

2006). During outcome evaluation the ACC encodes reward prediction error and 

supports reinforcement learning (Amiez et al., 2005; S. Ito et al., 2003; Kennerley et al., 

2011; H. Seo & Lee, 2007; Walsh & Anderson, 2012; Williams et al., 2004), but it remains 

to be shown whether reward learning signals in the ACC also integrate motor effort costs. 

Contrary to this idea, fMRI studies have argued that separate neural systems underlie 

reward and effort learning, with ACC activity reflecting prediction errors for effort but 

not reward (Hauser et al., 2017; Skvortsova et al., 2014). However, an event-related 

potential (ERP) measured by EEG called the feedback-related negativity, or alternatively 

the reward positivity (FRN/RP), is a reliable neural correlate of reward prediction error 

and is consistently localized to the ACC (Becker et al., 2014; Cohen & Ranganath, 2007; 

Emeric et al., 2008; Gehring & Willoughby, 2002; Hauser, Iannaccone, Stämpfli, et al., 

2014; Holroyd & Coles, 2002; Mathewson et al., 2008; Miltner et al., 1997; Vezoli & 

Procyk, 2009; Walsh & Anderson, 2012; Warren et al., 2015). We sought to test whether 

the FRN/RP not only acts as a learning signal for reward outcomes but also physical effort 

requirements. 

Economic theories assert that effort is a cost that devalues reward and thus predict 

diminished neural responses to reinforcement for more costly rewards (Botvinick et al., 

2009; Hartmann et al., 2013; Hauser et al., 2017; Shadmehr et al., 2016a). If the FRN/RP 

encodes reward value discounted by effort cost, then it could reflect a neural mechanism 

for adapting behavior not only to increase reward but to increase the overall economy of 

actions. Because other ERP components have also been implicated in outcome 

processing, we tested for effects in a broad temporal range (Glazer et al., 2018). In 

particular, the P300 is affected by various properties of motivationally relevant feedback 

including valence, magnitude, likelihood, and other high-level variables (Ma et al., 2014; 
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San Martín, 2012; Sato et al., 2005; J. Wang et al., 2014; Y. Wu & Zhou, 2009; Yeung & 

Sanfey, 2004).  

Paradoxically, it has been found in humans and animals that effort can enhance the 

reinforcing quality of rewards (Clement et al., 2000; Inzlicht et al., 2018; Lydall et al., 

2010; Zentall, 2010). It may be that prospective effort devalues reward, while retrospective 

effort amplifies reinforcement. For example, when given a choice between responses 

requiring high and low effort, participants choose to produce less effort in the immediate 

future. However, when given a choice between conditioned reinforcers that follow either 

low or high effort, humans and other animals tend to prefer the reinforcer that followed 

greater effort in the past (Alessandri et al., 2008; Clement et al., 2000; Hernandez 

Lallement et al., 2014; Zentall, 2010). Like many real-world situations, uncertain reward 

was obtained only after effort expenditure in the present study. 

Previous EEG experiments have investigated interactions between effort and reward 

processing (Gheza et al., 2018). In tasks that provide reinforcement feedback after 

performance of cognitive tasks with varying attentional or mental demands, increased 

effort has been shown to enhance the FRN/RP (Ma et al., 2014; Schevernels et al., 2014; L. 

Wang et al., 2017). This is consistent with the notion that preceding effort enhances 

reward signals. However, increased effort in cognitive tasks is almost invariably 

associated with higher difficulty and thus lower probability of success. In this case, it is 

difficult to determine whether enhanced reward signals are due to increased effort or 

lower reward expectations, which would result in larger reward prediction error. 

In the present study, physical effort is manipulated by changing the magnitude of muscle 

contractions required to complete the task, but the probabilities of reward and success are 

equated across the different effort conditions. This allows us to assess the effects of effort 

in terms of motor cost without confounds related to reward expectation. Furthermore, 

unlike previous EEG experiments that varied cognitive effort randomly, physical effort 

requirements in the present study were affected by participants’ choice behavior. It has 

been shown that the FRN/RP and other neural correlates of outcome processing are 
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typically more sensitive when outcomes are attributable to agents’ actions (Hassall et al., 

2019; Martin & Potts, 2011; Sambrook & Goslin, 2015; Walsh & Anderson, 2012; Yeung 

et al., 2005; Zink et al., 2004). 

Participants first made binary choices, and then they received feedback about the 

resulting effort requirements, which were probabilistic and uncertain. Subsequently, they 

performed an effortful electromyographic (EMG) production task for which they received 

variable reward that was dependent on precisely producing a target level of EMG activity. 

This trial sequence allowed us to test the hypothesis that effort information is maintained 

during the course of an action and that this information is integrated retrospectively with 

reward feedback. According to this hypothesis, feedback indicating effort requirements in 

the present study would not elicit neural reinforcement signals such as the FRN/RP, 

whereas the neural response to reward feedback at the end of each trial would be 

modulated by both reinforcement outcome and the preceding effort. Alternatively, if 

effort is treated simply as an aversive stimulus or an economic loss by a standard 

temporal difference learning process, then feedback that predicts the upcoming effort but 

not the reward outcome should reflect effort as a cost (Mulligan & Hajcak, 2018). 

5.2 Materials and methods 

5.2.1 Participants 

Data from a total of n = 18 healthy participants were analyzed and reported (mean age: 

22.12 yr, SD: 3.66; 9 men, 9 women). Four additional participants underwent the 

experimental procedure but were excluded because of excessive EEG artifacts caused by 

sweat or movement associated with the task. Participants provided written informed 

consent to experimental procedures approved by the Research Ethics Board at The 

University of Western Ontario. 

5.2.2 Experimental setup 

To allow for isometric contractions of the quadriceps muscles, participants were 

restrained to a chair by straps on their shoulders and waists. Participants’ ankles were 
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strapped to a rack fixed at the base of the chair, with the knees bent at ~90°. Participants 

were seated in front of a CRT monitor with their hands resting on a table positioned to 

make button presses on a response box. 

5.2.3 EMG and EEG recording 

Unreferenced EEG activity was recorded at 512 Hz with a 64-channel Biosemi ActiveTwo 

system. Electrodes were mounted in an elastic cap and distributed according to the 

extended 10-20 system with electrode Cz placed over the vertex. Instead of the typical 

ground electrode, Biosemi forms a feedback loop between an active Common Mode 

Sense electrode and a passive Driven Right Leg electrode. The Common Mode Sense 

electrode was located in the center of the area between P1, Pz, PO3, and POz. The Driven 

Right Leg electrode was located in the center of the area between Pz, P2, PO3, and PO4. 

Electrooculogram (EOG) was recorded with electrodes placed above and below each eye 

and the outer canthus of each eye. Additional electrodes were placed on each mastoid. 

EMG activity was recorded at 2,400 Hz bilaterally from the vastus lateralis muscles of the 

quadriceps with an active electrode system and amplifier (g.USBamp; g.tec Medical 

Engineering). Two electrodes were placed on each muscle belly for bipolar recordings, 

and a ground electrode was placed on the left shin. EMG signals were filtered at the time 

of recording with a 5- to 500-Hz band-pass filter and a 60-Hz notch filter. 

5.2.4 Visual feedback of EMG 

The EMG signal used to provide online visual feedback of quadriceps muscle activity was 

first rectified, low-pass filtered with a 10-Hz cutoff frequency, and then downsampled to 

120 Hz. At the beginning of each block, participants performed isometric knee extensions 

with maximum effort continuously for 4 s. All samples greater than the median value 

recorded during maximum effort were averaged to determine the value of maximum 

voluntary contraction (MVC) used throughout the block. Subsequently, participants were 

cued to remain completely still and keep their legs relaxed for 4 s. The mean EMG signal 

during this period was used as a baseline value throughout the block. 
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During each trial, an animation of a thermometer was displayed to participants. The fluid 

level of the thermometer increased in real time (monitor refresh rate: 60 Hz) as a linear 

function of the processed EMG signal. In “hard” effort trials, the top of the thermometer 

corresponded to 85% of MVC and the bottom of the thermometer corresponded to the 

baseline measure. In “easy” effort trials, the top of the thermometer corresponded to 15% 

of MVC. Because easy trials required only a small amount of muscle activity to reach the 

target, the gain of the visual feedback relative to the EMG was high. To reduce the gain 

and provide smooth feedback, the baseline measure (resting EMG) was made to 

correspond to the point halfway up the thermometer for the easy condition, so that the 

temperature moved half the distance on the display. The fluid level was calculated 

separately for each leg based on their respective MVC and baseline measures, and the 

average was used to display feedback. A running average of fluid level for the previous 60 

samples was drawn to the screen to provide smooth feedback. During each trial, the 

maximum fluid level for that trial was continuously displayed such that the fluid level 

only increased, and if the participant relaxed their quadriceps muscles the feedback would 

remain at the same level. This allowed for smooth, ballistic isometric contractions. It also 

made it so that participants were not required to hold the fluid level constant without 

visual feedback, which often resulted in the fluid level fluctuating or drifting away from 

the target during pilot experiments. 

5.2.5 Experimental task 

Participants first performed a block of 28 practice trials (see below). Participants then 

performed four blocks of 74 trials with self-paced rest periods between blocks. Each block 

consisted of 12 control condition trials, followed by 50 experimental condition trials and 

finally 12 additional control condition trials.  

Experimental condition: During each trial, participants made a binary choice that 

probabilistically determined whether the trial would require easy or hard physical effort. 

The effort contingencies had to be learned through experience. Participants then 

performed isometric knee extensions to control visual EMG feedback on a screen. 
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Participants were instructed to exceed a minimum level of muscle activation indicated by 

a visual target while remaining as close as possible to the target. Binary reinforcement 

feedback was provided at the end of each trial to indicate success or failure, which 

corresponded to a small monetary reward. 

Visual stimuli are shown in figure 5-1. An animated thermometer was drawn on the 

screen throughout the task. A cross was drawn at the top of the thermometer to serve as a 

target for EMG feedback. Letters “A” and “B” drawn to the left and right of the 

thermometer represented the options for binary choices made in each trial. Participants 

initiated each trial by pressing either a left or right button on a response box with their 

left or right index finger, respectively. Immediately on each button press, the choice was 

indicated by a box appearing around the letter “A” or “B” for the left and right response 

buttons, respectively. The box remained throughout the trial. 

Effort feedback: One second after the button press participants received feedback 

indicating the effort that they would be required to exert on the present trial. The word 

“easy” or “hard” replaced the target cross for 700 ms to indicate upcoming required effort. 

The effort condition was determined probabilistically by the participants’ response, and 

the effort contingencies had to be learned through experience. One of the responses led to 

a hard effort trial with a probability of 0.8 and an easy effort trial with a probability of 0.2. 

The other response led to a hard effort trial with a probability of 0.2 and an easy effort 

trial with a probability of 0.8. Unannounced to participants, the effort contingencies 

periodically reversed. Reversals occurred after the response more likely to produce easy 

effort was chosen a cumulative number of times, which was randomly selected to be 

between 5 and 9 for each reversal. Participants were instructed that their responses would 

affect the effort requirements in some way but were not informed of the specific nature of 

the task. Participants were not instructed to respond in any particular way other than to 

sample both choices. 

After the effort feedback was removed from the display, the target cross reappeared for 

800 ms. Subsequently, the effort production phase of the trial began. During this phase,  
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Figure 5-1: Stimuli. Participants initiated each trial by indicating a binary decision through button 

press. A box immediately appeared around either the letter “A” or “B,” corresponding to the choice 

options. After 1,000 ms, feedback appeared to inform participants that their choice resulted in either 

easy or hard physical effort requirements for the upcoming electromyographic (EMG) production 

task. A purple circle appeared over the target cross to cue the onset of the EMG production phase, 

during which participants performed isometric knee extension and the fluid level of a thermometer 

indicated quadriceps muscle activation. The circle shrank continuously, disappearing in 2.5 s to cue 

the end of the EMG production phase. Participants attempted to bring the fluid level above the target, 

represented by a cross, while remaining as close as possible to the target. However, a mask drawn 

above the target prevented participants from seeing the extent of errors that they made in 

overshooting the target. Instead, binary reinforcement feedback was provided 1.5 s after the EMG 

production phase ended, indicating whether or not participants had successfully exceeded the target 

while remaining sufficiently close. 
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the fluid level of the thermometer was drawn continuously to provide EMG feedback 

(see Visual Feedback of EMG). The fluid level increased with increasing EMG signal but 

represented the maximum signal for the trial, and thus never decreased. A purple circle 

was drawn under the target to cue the beginning of the effort production phase, and 

participants were instructed to keep their legs relaxed until they saw this cue. The circle 

shrank continuously during the course of the trial, disappearing in 2,500 ms to signal the 

end of the effort production phase, at which point EMG feedback disappeared. 

Participants were instructed that to complete the task successfully the final fluid level 

must exceed the target represented by the center of the cross. The target corresponded to 

15% and 85% of MVC in the easy effort and hard effort conditions, respectively. 

Furthermore, participants were instructed to keep the fluid level as close as possible to the 

target; thus their goal was to always overshoot the target but to minimize the extent of 

overshoot. Participants were instructed to relax their legs as soon as possible after 

reaching the target, as the fluid level did not decrease during a trial. EMG feedback was 

withheld above the target by a mask drawn on the top of the thermometer. This 

prevented participants from seeing the extent of their overshoot errors. 

Reinforcement feedback: Feedback about performance was provided at the end of the trial 

with binary reinforcement. At the end of the effort production phase, the EMG feedback 

and the mask disappeared. After 1,500 ms of fixation, the target cross was replaced with 

either “$$$” or “XXX” to indicate a rewarded or failed trial, with a reward being indicated 

if the fluid level exceeded the target while remaining sufficiently close to it. Participants 

were instructed that they could earn up to an additional 10 CAD throughout the task 

according to the number of trials in which they received feedback indicating success. The 

error threshold for overshoot was adjusted with a 1-up-1-down adaptive staircase 

separately for the two effort conditions to ensure a 50% reinforcement rate overall for 

both conditions. 

Control condition: Each block began and ended with 12 control trials, during which the 

task was the same as the experimental condition except no reinforcement feedback was 

provided and the effort condition was deterministic and independent of participants’ 
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responses. Both runs of 12 control trials consisted of 6 easy effort trials and 6 hard effort 

trials, with the trials of each effort condition occurring consecutively. The text “easy 

effort” or “hard effort” was displayed at the top of the screen continuously to cue the 

effort condition for all control trials. Participants were instructed to make a button press 

to initiate each trial but were instructed that the choice was arbitrary and that the effort 

condition would always correspond to the cue at the top of the screen. In the first 12 

control trials of each block, there was no mask drawn on the top of the thermometer, so 

participants could see their overshoot errors in order to practice the task more effectively. 

In the final 12 control trials of each block, the mask was drawn for each trial as in the 

experimental condition. The orders of easy and hard condition runs during the control 

trials were randomized and balanced across the four blocks for each participant. 

Practice trials: Participants first performed a practice block to learn how to control the 

EMG feedback. As in the control trials, no reinforcement feedback was provided and the 

effort condition was cued to participants before each trial and independent of 

participants’ responses. The practice block began with seven easy effort trials followed by 

seven hard effort trials without the mask drawn at the top of the thermometer. 

Participants then performed seven easy effort trials followed by seven hard effort trials 

with the mask. 

5.2.6 Behavioral analysis 

The effect of effort and reinforcement outcomes on behavioral choice was analyzed with 

logistic regression performed with the Glmnet package in R. The dependent variable was 

whether the participants’ choice on trial n corresponded to staying or switching from the 

choice on trial n − 1, coded as 0 or 1. The independent variables were determined by the 

effort and reinforcement outcomes on trial n − 1: 

Effort: −1 for easy effort, 1 for hard effort 

Reward: −1 for nonreward, 1 for reward 

Effort/Reward interaction: Effort × Reward 

Switch: 1 for all trials 
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Logistic regression was calculated separately for each participant. Regularization was 

applied with an L2-norm penalty. The penalty constant, λ, was selected by leave-out 

cross-validation. A value of 0.04297 was chosen as it is the largest value that minimizes 

the cross-validated misclassification error, averaged across subjects. The coefficients for 

Effort, Reward, and the interaction term were each submitted to one-sample t tests 

against zero. 

5.2.7 EEG preprocessing and denoising 

EEG data were preprocessed with the EEGLAB toolbox (see Delorme & Makeig, 2004, for 

details), except for filtering, which was performed with the MATLAB filtfilt function. 

Data, initially referenced to linked mastoids, were band-pass filtered with a second-order 

Butterworth filter with a passband of 0.1–45 Hz. Channels with poor recording quality or 

excessive artifacts were identified with visual inspection and interpolated with spherical 

interpolation. EEG data were then rereferenced to the average scalp potential, and 

interpolated electrodes were subsequently removed from the data before independent 

component analysis (ICA). Two epochs were extracted for each trial corresponding to 

effort condition feedback following the button press response and reinforcement 

feedback following the effort production phase. Continuous data were segmented into 

2.5-s epochs time-locked to stimulus onset at 0 ms (time range: −1,000 to +1,500 ms). 

Data epochs containing artifacts other than blinks were removed by visual inspection. 

Subsequently, extended infomax ICA was performed on each participant’s data (Delorme 

& Makeig, 2004). Components reflecting eye movements and blink artifacts were 

identified by visual inspection and subtracted by projection of the remaining components 

back to the voltage time series. 

5.2.8 Event related potential analysis 

Trial averaging: We computed event-related potentials (ERPs) on an individual 

participant basis by trial-averaging EEG time series epochs recorded from electrode FCz 

after artifact removal. ERPs were analyzed after time-locking signals to two points in 

time: effort feedback and reinforcement (performance) feedback. The FRN/RP is typically 
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maximal at electrode FCz, and this selection is consistent with previous work including 

our own (Holroyd & Krigolson, 2007; Miltner et al., 1997; Palidis et al., 2019; Pfabigan et 

al., 2011). We selected trials corresponding to various feedback conditions in each task. 

For ERPs time locked to reinforcement feedback, we computed ERPs corresponding to 

“easy nonreward” (45.4 ± 6.9 trials), “easy reward” (46.3 ± 6.2 trials), “hard nonreward” 

(37.9 ± 8.4 trials), and “hard reward” (45.6 ± 7.7 trials) conditions. In the control 

condition, participants performed the effort production task but did not receive any 

reinforcement feedback. We computed ERPs for the “control easy” (41.5 ± 5.9 trials) and 

“control hard” (38.5 ± 5.5 trials) conditions time locked to the moment when 

reinforcement feedback would have been delivered in the experimental condition. For 

ERPs corresponding to reinforcement feedback and the control condition, we excluded 

all trials in which the visual EMG feedback did not reach the target, as in this case a 

nonreward outcome was evident before the reinforcement feedback was delivered. 

We also extracted ERPs time locked to the effort condition feedback, which indicated the 

upcoming effort requirements after each button press but before the participant 

performed the EMG production task (“easy feedback” 94.9 ± 10.2 trials and “hard 

feedback” 92.4 ± 13.5 trials). All ERPs were baseline corrected by subtracting the average 

voltage in the 100-ms period immediately before stimulus onset. Finally, ERPs were low-

pass filtered with a cutoff frequency of 30 Hz. 

Statistical analysis: We performed statistical tests on each sample between 100 and 600 ms 

after feedback onset. We selected this time window as it is wide enough to capture effects 

outside of the FRN/RP yet constrained to a range during which ERPs are likely to be 

affected by feedback processing (Glazer et al., 2018). We corrected significance values for 

multiple comparisons across time with the Benjamini–Hochberg procedure for 

estimating the false discovery rate (FDR), implemented by the MATLAB mafdr function. 

To analyze the neural response to reinforcement feedback, we performed 2 × 2 repeated-

measures ANOVA with the MATLAB ranova function. The factors were reward outcome 

(levels: nonreward, reward) and effort condition (levels: easy, hard). We used one-
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sample t-tests against zero on the difference waves computed between easy feedback and 

hard feedback ERPs, aligned to feedback indicating effort condition after each button 

press but before the EMG production phase. To test for artifacts related to the isometric 

leg extension, we used one-sample t-tests against zero on the difference waves computed 

between easy control and hard control ERPs. These ERPs were aligned to the moment 

when reinforcement feedback would have been delivered in the experimental condition, 

but instead the target cross simply disappeared briefly. Participants were told that they 

would not receive feedback in this condition and thus did not expect a possible reward. 

Scalp distributions: Scalp distributions were plotted with the EEGLAB topoplot function 

using the mean amplitude of difference waves within specified time windows, averaged 

across subjects. 

Source separation: Because of volume conduction, potential differences between any 

particular scalp electrodes contain mixed contributions from nearly all active neural 

sources and artifacts. Measurements of any event-related potential (ERP) component 

using scalp regions of interest, such as the measurements of the FRN/RP described above, 

are thus prone to contamination by other ERP components with distinct neural sources. 

Independent component analysis (ICA) can be used to produce spatial filters that isolate 

activity measured from separate cortical sources (Onton & Makeig, 2006). Each 

component returned by ICA is a linear weighting of all electrodes, computed to produce 

signals with maximal temporal independence (Delorme & Makeig, 2004). 

Because ICA decomposition of neural activity sources can be particularly sensitive to 

signal properties and noise, we preprocessed the data using a modified procedure to 

produce ICA weightings for source separation. Except for the differences described 

below, we followed the same preprocessing used for the ERP analysis, including rejection 

of the same channels and epochs for artifact removal, as described in EEG Preprocessing 

and Denoising. EEG data were downsampled to 256 Hz and high-pass filtered with a 

second-order Butterworth filter with a cutoff of 0.25 Hz instead of 0.1 Hz. Aggressive 

high-pass cutoff frequencies of 1–2 Hz have been shown to improve ICA decomposition 
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(Winkler et al. 2015). However, high-pass filtering at or above 0.3 Hz has been shown to 

attenuate and distort long-latency ERP components, and 0.1-Hz cutoff is generally 

recommended for ERP analysis (Acunzo et al., 2012; Holinger et al., 2000; Tanner et al., 

2015). We chose to compute ICA weights with data high-pass filtered with a 0.25-Hz 

cutoff as a suitable compromise. Sixty-hertz power line noise was removed with 

the CleanLine EEGLAB plugin. Data were selected with the time range −100 to +600 ms 

centered around effort feedback and reinforcement feedback, instead of −1,000 to +1500, 

so that the ICA would primarily account for variance in the time window of interest. The 

same epochs previously identified to contain artifacts, as described in EEG Preprocessing 

and Denoising, were rejected before extended infomax ICA was performed on each 

participant’s data. Subsequently, the time series of the independent components’ activities 

were visually inspected, and additional epochs containing artifacts were flagged and 

removed before recomputing the ICA weights. According to the tutorial wiki maintained 

by the developers of EEGLAB, ICA can “concentrate” artifacts for easier rejection, and 

recomputing ICA after such a rejection “may improve the quality of the ICA 

decomposition, revealing more independent components accounting for neural, as 

opposed to mixed artifactual activity” (see https://sccn-ucsd-

edu.proxy1.lib.uwo.ca/wiki/Chapter_01:_Rejecting_Artifacts). 

To analyze the contribution of individual independent components (ICs) to the ERPs 

(IC-ERPs), the ICA weights computed for each participants’ data were then applied to the 

data originally preprocessed for ERP analysis as described in EEG Preprocessing and 

Denoising. Thus, identical preprocessed data were used for traditional ERP analysis and 

the IC-ERP analysis, along with identical procedures described above in Trial 

averaging and Statistical analysis. The only difference was that the traditional ERP 

analysis used mixed data recorded from electrode FCz, whereas the IC-ERP analysis used 

activity from selected ICs back-projected onto electrode FCz. ICs corresponding to brain 

activity as opposed to artifacts were identified by stereotyped properties including scalp 

topographies resembling dipolar projections and spectral peaks at frequencies typical of 

EEG activity. The traditional ERP analysis revealed multiple ERP components peaking at 
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different latencies. ICs corresponding to particular ERP components were identified by 

the presence of maximal peaks in the IC-ERPs in corresponding time windows (see IC-

ERP Results). 

5.3 Results 

5.3.1 Behavioral results 

Participants made binary decisions that probabilistically determined the effort 

requirements for each trial. Participants underwent the hard effort condition in 49.6% 

(SD: 4.8%) of trials. Reward was delivered if EMG feedback exceeded a target level while 

staying sufficiently close to the target. Participants received reward in 49.4% (SD: 0.01%) 

of trials. We performed logistic regression for each subject to predict switching of 

responses between trials n − 1 and n, with the effort condition and reward outcome on 

trial n − 1 as the predictors. Figure 5-2B shows the coefficients estimated for each subject, 

and Figure 5-2A shows the proportion of trials after which participants switched 

responses for the different reward and effort outcomes. We found that the coefficients for 

the effect of effort on switching were significantly greater than zero [1-

sample t test; t(17) = 2.263, P = 0.037]. The coefficients for the effect of reward were not 

reliably different from zero [t(17) = −0.871, P = 0.3959], nor were the coefficients for the 

interaction term [t(17) = 0.252, P = 0.8043]. 

5.3.2 ERP results 

Figure 5-3A shows the ERPs elicited by reinforcement feedback. We analyzed the neural 

response to reinforcement feedback by performing 2 × 2 repeated-measures ANOVA for 

each individual time point 100–600 ms after feedback onset. P-values are corrected for 

multiple comparisons across time points with FDR. In response to reinforcement 

feedback, that ERP amplitude was larger in response to reward compared with nonreward 

between 184ms and 336ms after feedback onset (Figure 5-3B; reward main effect, ranges 

for significant time points: F = [7.99 52.99], P = [0.045 0.0001], uncorrected P = [0.012 

<0.0001]). We also found that voltage was lower in the hard effort condition than in the 

easy effort condition 238–254 ms after feedback onset (Figure 5-3C; main effect effort, 
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ranges for significant time points: F = [13.74 14.45], P = [0.050 0.050], uncorrected P = 

[0.0018 0.0011]). We found effort/reward interaction effects starting 250 ms after 

feedback onset and up to 600 ms, the end of our time window for statistical testing 

(Figure 5-3D; ranges for significant time points: F = [5.73 38.94], P = [0.048 0.0008], 

uncorrected P = [0.028 <0.0001]). 

 

 

 

Figure 5-2: Adaptive responses to effort and reward. Participants switch responses more frequently 

after hard physical effort than easy effort. A: the proportion of trials on which participants switched 

responses between trial n − 1 and trial n for the different reward outcomes and effort conditions on 

trial n − 1 (error bars: ±SE). B: coefficients estimated by using logistic regression to predict response 

switching for each participant (bars indicate mean ± 1 SE). Predictors were reward outcome, effort 

condition, and reward/effort interaction. The effort term was significantly greater than 0 (P = 0.037), 

indicating that participants were more likely to switch responses after hard effort than easy effort. 
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Figure 5-3: Event-related potential elicited by reinforcement feedback. A: trial-averaged ERPs 

recorded from electrode FCz aligned to reinforcement feedback presentation (0 ms: vertical blue line), 

selected for reinforcement outcome (reward or nonreward) and the physical effort requirement on 

that trial (easy or hard). B: mean difference waves computed as reward ERP − nonreward ERP 
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separately for the easy and hard effort conditions (shaded region: ±SE). Red markers indicate time 

points between 100 and 600 ms with significant main effect of reward outcome [P < 0.05, false 

discovery rate (FDR) corrected]. C: mean difference waves computed as hard effort ERP − easy effort 

ERP separately for the reward and nonreward effort conditions (shaded region: ±SE). Red marker 

indicates time points between 100 and 600 ms with significant main effect of effort condition (P < 

0.05, FDR corrected). D: mean interaction wave computed as (hard reward ERP − hard nonreward 

ERP) − (easy reward ERP − easy nonreward ERP). Shaded region: ±SE. Red markers indicate time 

points between 100 and 600 ms with significant interaction effect of reward outcome (P < 0.05, FDR 

corrected). E: scalp distribution of reward − nonreward ERPs, irrespective of effort condition, between 

184 and 281 ms (1st cluster of significant time points shown in B). F: scalp distribution of hard effort − 

easy effort ERPs, irrespective of reward outcome, between 238 and 254 ms (cluster of significant time 

points shown in C). G: scalp distribution of interaction wave between 250 and 357 ms (1st cluster of 

significant time points shown in D). 

 

In the control condition, participants performed the EMG production task, but the effort 

condition was predetermined and no reinforcement feedback was provided. We found no 

reliable differences between the control easy and control hard ERPs (ranges for all time 

points between 100 and 600 ms: t = [−1.56 1.42], uncorrected P = [1.00 0.139]). 

After participants produced binary decisions by button press, feedback was provided to 

indicate the resulting effort condition for the current trial. Figure 5-4A shows the ERPs 

elicited on each trial by feedback indicating the effort condition. We found significant 

differences between the easy feedback and hard feedback ERPs between 373 and 522 ms 

after effort feedback (Figure 5-4B; ranges for significant time points: t = [−4.31 

−2.81], P = [0.049 0.015], uncorrected P = [0.012 0.0005]). Although we only performed 

statistical testing up to 600 ms to avoid sacrificing statistical power, we observed that the 

easy feedback − hard feedback difference wave remains at least 1 standard error below 

zero until 1,018 ms after feedback. 
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Figure 5-4: Event-related potentials elicited by effort condition feedback. A: trial-averaged ERPs 

recorded from electrode FCz aligned to effort condition feedback presentation (0 ms: vertical blue 

line), selected for physical effort condition (easy or hard). B: mean difference waves computed as easy 

feedback ERP − hard feedback ERP (shaded region: ±SE). Red markers indicate time points between 

100 and 600 ms significantly different from 0 [P < 0.05, false discovery rate (FDR) corrected]. Inset: 

scalp distribution of difference wave between 426 and 521 ms. 
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5.3.3 IC-ERP results 

The ERP responses to reinforcement feedback at electrode FCz clearly contained multiple 

components (Figure 5-3), with the most obvious contributions being from a relatively 

early positive deflection peaking between 164 and 172 ms after feedback onset depending 

on the feedback condition and a later positive deflection peaking between 334 and 359 

ms. Independent component analysis applied to individual participants’ data consistently 

outputted ICs corresponding to these ERP components. We identified ICs that resembled 

neural EEG activity and computed the average ERPs of IC activity projected onto 

electrode FCz. For each participant, we identified the early ERP component by selecting 

the IC with the largest maximal positive peak occurring before 200 ms. We identified the 

later component by selecting the IC with the largest maximal positive peak after 200 ms. 

We identified neural ICs containing maximal peaks in the early time window for 16/18 

participants and in the late time window for 17/18 participants. 

Early ERP component: Figure 5-5A shows the IC-ERPs elicited by reinforcement feedback 

for the early ERP components. We performed 2 × 2 repeated-measures ANOVA on IC-

ERP amplitude at each individual time point 100–600 ms after feedback onset. P values 

are corrected for multiple comparisons across time points with FDR. We found reliable 

main effects of reward outcome between 164 and 342 ms after feedback, with larger IC-

ERP amplitude for reward compared with nonreward (Figure 5-5C; ranges for significant 

time points: F = [8.10 34.86], P = [0.047 0.0011], uncorrected P = [0.012 <0.0001]). We 

found no reliable main effects of effort on the response to reinforcement feedback (Figure 

5-5E; ranges for all time points 100–600 ms: F = [0.00 4.97], uncorrected P = [1.00 

0.0416]). We also found no reliable interaction effects between effort and reward (Figure 

5-5G; ranges for all time points 100–600 ms: F = [0.00 5.58], uncorrected P = [0.99 

0.032]). Figure 5-6A shows the IC-ERPs elicited by effort feedback for the early ERP 

components. We observed no difference between the response to easy effort and hard 

effort feedback (Figure 5-6C; ranges for all time points between 100 and 600 ms: t = 

[−0.94 1.67], uncorrected P = [1.00 0.12]). We observed no differences between the  
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Figure 5-5: Independent components of event-related potentials (IC-ERPs) elicited by 

reinforcement feedback. A and B: trial-averaged IC-ERPs for the early and late IC-ERP components 

back-projected to electrode FCz, aligned to reinforcement feedback presentation (0 ms: vertical blue 

line), selected for reinforcement outcome (reward or nonreward) and the physical effort requirement 

on that trial (easy or hard). C and D: mean difference waves computed as reward IC-ERP − nonreward 

IC-ERP separately for the easy and hard effort conditions (shaded region: ±SE). Red markers indicate 

time points between 100 and 600 ms with significant main effect of reward outcome [P < 0.05, false 

discovery rate (FDR) corrected]. E and F: mean difference waves computed as hard effort IC-ERP − 

easy effort IC-ERP separately for the reward and nonreward effort conditions (shaded region: 

±SE). G and H: mean interaction wave computed as (hard reward IC-ERP − hard nonreward IC-ERP) 

− (easy reward IC-ERP − easy nonreward IC-ERP). Shaded region: ±SE. Red markers indicate time 

points between 100 and 600 ms with significant interaction effect of reward outcome (P < 0.05, FDR 

corrected). 
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Figure 5-6: Independent components of event-related potentials (IC-ERPs) elicited by effort 

condition feedback. A and B: trial-averaged IC-ERPs for the early and late IC-ERP components back-

projected to electrode FCz, aligned to effort condition feedback presentation (0 ms: vertical blue line), 

selected for physical effort condition (easy or hard). C and D: mean difference waves computed as easy 

feedback IC-ERP − hard feedback IC-ERP (shaded region: ±SE). 

 

control easy and control hard IC-ERPs (ranges for all time points between 100 and 600 

ms: t = [−1.38 2.46], uncorrected P = [ 0.027 0.99]). 

Late ERP component: Figure 5-5B shows the IC-ERPs elicited by reinforcement feedback 

for the late ERP components. We found no reliable main effects of reward outcome on 

the response to reinforcement feedback (Figure 5-5D; ranges for all time points 100–600 

ms: F = [0.00 16.40], uncorrected P = [1.00 0.001]). We also found no reliable main effects 

of effort on the response to reinforcement feedback (Figure 5-5F; ranges for all time 

points 100–600 ms: F = [0.00 4.70], uncorrected P = [0.99 0.046]). We did observe an 
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interaction effect between effort and reward, with significant time points between 242 and 

549 ms (Figure 5-5H; ranges for significant time points: F = [5.78 24.06], P = [0.0492 

0.010], uncorrected P = [0.0287 0.0002]). Figure 5-6B shows the IC-ERPs elicited by effort 

feedback for the late ERP components. We observed no difference between the response 

to easy effort and hard effort feedback (Figure 5-6D; ranges for all time points between 

100 and 600 ms: t = [−2.89 1.29], uncorrected P = [1.00 0.011]). We observed no 

differences between the control easy and control hard IC-ERPs (ranges for all time points 

between 100 and 600 ms: t = [−0.27 2.01], uncorrected P = [0.97 0.06]). 

To directly compare the IC-ERP responses of the early and late components, we also 

analyzed both components with a single statistical model. We performed three-way 

repeated-measures ANOVA at each time point between 100 and 600 ms, with factors 

reward outcome, effort, and IC (early vs. late ERP component). We included the 15 

participants for whom both early and late components were identified. P values are 

corrected for multiple comparisons across time points with FDR. We found reliable main 

effects of reward outcome between 170 and 342 ms (ranges for significant time points: F = 

[7.39 29.87], P = [0.0451 0.0030], uncorrected P = [0.0167 0.0001]). We found reliable 

interaction effects between effort and reward between 238 and 535 ms (ranges for 

significant time points: F = [6.071 14.13], P = [0.0494 0.0425], uncorrected P = [0.0273 

0.0021]). We found reliable three-way interaction effects between reward, effort, and IC 

between 299 and 325 ms (ranges for significant time points: F = [13.75 22.24], P = [0.0429 

0.0192], uncorrected P = [0.0023 0.0003]). The three-way interaction reflects a larger 

interaction between reward and effort in the late component IC-ERP than the early 

component IC-ERP. Separate analyses revealed a reliable effect of reward in the early 

component but not the late component. This was reflected in a trend toward interaction 

effects between IC and reward outcome, although these effects were not reliable after 

correction for multiple comparisons across time (ranges for significant time points 

uncorrected: time = [172 221 ms], F = [4.65 10.65], uncorrected P = [0.0489 0.0057]). 
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5.4 Discussion 

Participants were more likely to switch responses after choices that led to hard effort than 

easy effort, suggesting that they adapted behavior to reduce physical effort in response to 

uncertain outcomes. At the end of each trial, binary reinforcement feedback indicated 

whether participants achieved a monetary reward, which depended on precisely 

producing a target level of EMG activity. Unsurprisingly, reinforcement feedback elicited 

a robust feedback related negativity/reward positivity (FRN/RP) response, measured as a 

relative positivity in the ERPs elicited by reward compared to those elicited by nonreward 

feedback over the medial frontal scalp. 

Samplewise analysis revealed interesting temporal dynamics of effort and reward 

processing in the midfrontal EEG during outcome evaluation. After reinforcement 

feedback was delivered, an effect of reward outcome first emerged with a latency of 184 

ms, which remained significant while an additional main effect of preceding effort 

emerged at 238 ms. Finally, a sustained interaction between reward and effort first 

occurred around 250 ms after feedback onset. These dynamics suggest a process whereby 

upon receiving reward feedback the brain first encodes the immediate reward outcome 

and subsequently integrates signals related to the preceding effort. This process 

culminates in an interaction whereby the effect of reward outcome depends on the 

preceding effort. 

The main effect of reward outcome, which is generally the definitive feature of the 

FRN/RP, occurred with a typical spatial and temporal distribution. The interaction effect 

showed similar medial frontal scalp topography and substantially overlapping temporal 

properties, suggesting that it may originate in the same neural generator. However, the 

interaction effect persisted upwards of 600 ms. Although the FRN/RP is not typically 

measured beyond 400 ms, meta-analysis has shown sensitivity in medial frontal ERPs to 

reward prediction error upwards of 500 ms (Sambrook & Goslin, 2015). These long-

latency effects may be attributed to the P300, which is modulated by various features of 

reinforcement processing and can overlap with the FRN/RP (Glazer et al., 2018). We used 
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independent component analysis to separate the contributions of various neural sources 

to the scalp ERP. We found that the main effect of reward and the interaction between 

effort and reward reliably load onto separate sets of independent components. We take 

this as evidence that these effects arise in distinct neural sources, as a single source cannot 

produce multiple effects with separable scalp projections. However, we do not claim that 

the early and late IC-ERPs necessarily represent purely isolated single ERP components, 

as our ICA procedure could fail to separate distinct sources. Although ICA should 

ameliorate issues due to component overlap, they cannot be verifiably ruled out. 

Nonetheless, the reward × effort interaction effect showed latencies and IC loadings 

consistent with P300 effects. 

Although the FRN/RP is reliably sensitive to outcome valence and likelihood aspects of 

reward prediction error, reward magnitude seems to be coded independently in the P300 

(Sambrook & Goslin, 2015; Sato et al., 2005; Walsh & Anderson, 2012; Y. Wu & Zhou, 

2009; Yeung & Sanfey, 2004). Thus, physical effort may modulate the subjective 

magnitude of reinforcement outcomes. The P300 elicited by outcome processing has also 

been shown to be affected by various high-level properties such as motivational salience, 

temporal waiting cost, and cognitive effort (Glazer et al., 2018; Ma et al., 2014; San 

Martín, 2012; J. Wang et al., 2014). Multiple variants of the P300 have been reported with 

medial frontal or posterior scalp distributions, and widespread cortical association 

networks are implicated including parietal, temporal, and prefrontal regions (Polich, 

2007; Soltani & Knight, 2000). 

Although these results show a clear effect of the physical effort associated with an action 

on the neural processing of subsequent reinforcement outcomes, specific interpretation 

of the effects depends on the theoretical understanding of the underlying components. 

The prominent interaction effect of effort and reward observed in the present study 

shows that effort increases the differential neural response to reinforcement outcomes. 

This could be explained either by effort increasing a positive ERP deflection to reward or 

a negative ERP deflection to nonreward. Due to the possibility of ERP component 

overlap, simple effects cannot necessarily be interpreted in the case of an interaction 
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effect on ERP amplitude (Sambrook & Goslin, 2015, 2016). An fMRI study by Hernandez 

Lallement et al., (2014) found that cognitive effort increased neural sensitivity to both 

reward and loss, with reward sensitivity being modulated in the anterior cingulate and 

nucleus accumbens and loss sensitivity being increased in the anterior insula. 

An increased neural response to nonreward due to effort is consistent with economic 

theories whereby a motor cost would further devalue a nonreward outcome. An increased 

neural response to reward may be consistent with other paradoxical findings reported in 

the literature. Although normative economic models of behavior predict that effort costs 

should devalue reward, it has often been reported in humans and other species that 

rewards produce stronger reinforcement when they require more effort to obtain 

(Clement et al., 2000; Inzlicht et al., 2018; Lydall et al., 2010; Zentall, 2010). 

Unfortunately, we were not able to assess such a behavioral interaction in the present 

study as there was no effect of reward outcome on the binary decisions that participants 

made on each trial. This was not surprising, as reward outcome was not determined by 

these decisions but rather by performance on the EMG production task. The binary 

decisions only determined the effort required, and the reinforcement threshold was 

controlled to produce approximately equal reward rate in both effort conditions. 

After participants produced binary responses, feedback indicated the resulting physical 

effort condition for the subsequent EMG production portion of the trial. In line with 

theoretical accounts of the FRN/RP as a temporal difference learning prediction error 

signal, stimuli that predict aversive outcomes or economic loss typically elicit FRN/RP 

responses (Mulligan & Hajcak, 2018). Thus, we predicted that effort feedback might elicit 

an FRN/RP component as a learning signal for effort minimization. However, we 

observed no FRN/RP modulation when comparing the ERP responses to feedback 

indicating easy or hard effort trials. Rather, effort modulated the response to 

reinforcement feedback at the end of the trial. This suggests that physical effort is not 

immediately treated by the reinforcement learning system as a loss or a punishing 

stimulus. Rather, effort information can be maintained during the course of an action and 

incorporated with reward information at the time of outcome evaluation. 
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We often undertake protracted tasks for which the effort requirements and ultimate 

payoffs are uncertain. It may not be efficient to punish the value representation of a task 

every time an unexpected effort is encountered, as the eventual payoff may be well worth 

the effort. Instead, it may be more efficient to integrate effort over the entire course of an 

undertaking and evaluate the cost and benefit simultaneously when the final outcome is 

observed. This process can also support interactions in which the effect of effort depends 

on reward that is only delivered later. Alternatively, some work suggests that we learn 

about effort requirements and reward separately and integrate them at the time of 

decision making (Hauser et al., 2017; Skvortsova et al., 2014). It is likely that economic 

decision making and learning involves distributed hierarchical computations and that it 

is possible to observe a distribution of signals with varying dependencies on effort, 

reward, and integrated utility throughout the brain (Hunt & Hayden, 2017). 

Some limitations of this study should be noted. Participants adapted their behavior to 

reduce physical effort, but the behavioral effect of effort was variable and relatively weak. 

Participants were more likely to switch responses after choices that led to hard effort than 

easy effort. However, participants often switched responses after easy trials or stayed with 

responses that produced hard effort: on average, participants switched responses after 

46.5% of easy trials and 60% of hard trials. Furthermore, negative coefficients for the 

effect of effort on switching were estimated for several participants. The relatively weak 

and highly variable effects of effort are consistent with the notion that although effort is 

generally treated as a cost that is minimized, in many cases people are undeterred by 

effort or even purposefully select more effortful options (Eisenberger, 1992; Inzlicht et al., 

2018). These effects are often attributed to state-dependent learning in which 

reinforcement outcomes are evaluated relative to the value of the current state. In the 

present study, variable reinforcement outcomes were only evaluated after effort 

production and thus may have been more valuable when received after a costly, high-

effort action. Other details of the task may have affected effort-related choice. Unlike 

some previous studies of effort minimization, participants were not instructed to avoid 

effort. Furthermore, success in the task was not dependent on exerting effort that 
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exceeded an unknown criterion. These features may enhance effort minimization, but 

they could also conflate effort prediction errors with errors relative to the goals of the task 

at hand, which are also strongly represented in the ACC (Fu et al., 2019; Holroyd & 

Krigolson, 2007; Swick & Turken, 2002; Ullsperger et al., 2014). 

Although the excellent temporal resolution offered by EEG proved instrumental in 

uncovering the dynamics of effort and reward processing in the brain, it invariably 

measures a mixture of signals from neurons with different response properties. Kennerley 

et al., (2011) identified diverse tuning to economic value across ACC, orbitofrontal 

cortex, and lateral prefrontal cortex, such that many neurons that are selective to value 

with opposite tunings will cancel out at the population level measured by EEG of fMRI. 

We report effects with midfrontal scalp topographies. However, EEG measured at the 

scalp is difficult to localize and can represent mixtures of activity from entirely separate 

brain regions. Although the FRN/RP is a well-characterized response and convergent 

lines of evidence suggest a source in the ACC, we did not attempt any source localization. 

The spatial localization of the measured signals remains speculative. 
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This thesis presents a series of experiments testing whether fronto-striatal and 

dopaminergic neural circuits contribute to motor adaptation according to principles of 

biological reinforcement learning. Experimental tasks were designed to isolate neural and 

behavioral adaptive responses to feedback conveying information about reward, physical 

effort, and sensory error. Neural event-related potentials (ERPs) elicited by feedback were 

measured using scalp electroencephalography (EEG). Of particular interest was the 

feedback-related negativity/ reward positivity (FRN/RP), a midfrontal component of the 

scalp ERP that occurs approximately 200-350ms following task-related feedback. The 

FRN/RP is theorized to index activity in fronto-striatal circuits in response to 

dopaminergic signaling of reward-prediction error, a canonical computation in biological 

reinforcement learning (Glimcher, 2011; Holroyd & Coles, 2002; Sambrook & Goslin, 

2015; Schultz, 2016; Walsh & Anderson, 2012). Indeed, measures of the FRN/RP correlate 

with neural responses to reward in the ventral striatum and medial frontal cortex, as well 

as with gray matter volume of the dopaminergic midbrain (Becker et al., 2014; Carlson et 

al., 2011, 2015).  

Levodopa, a dopamine precursor, was administered to healthy volunteers to test whether 

dopamine release mediates neural feedback processing and behavioral adaptation. 

Levodopa has been shown to disrupt reward-based learning in healthy volunteers, and it 

is thought to do so by overstimulating dopamine release in the striatum (Cools et al., 

2001, 2006; Frank et al., 2004; Hiebert et al., 2019; MacDonald et al., 2011; Vo et al., 

2016). The following discussion first summarizes the primary findings reported 

throughout this thesis. Second, limitations of the current results are acknowledged. Third, 

the findings are interpreted in the context of the literature. Important questions and 

avenues for future research are discussed.  

6.1 Summary of results 

In the experiment presented in chapter 2, we sought to identify neural correlates of 

reward-prediction error during reward-based motor adaptation, and to dissociate them 

from neural processes related to sensory-error based learning. In a reward-based learning 
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task, adaptation of reach angle was induced through binary reinforcement feedback that 

indicated whether movements were successful or not. Cursor feedback indicating the 

position of the hand was withheld to preclude sensory error-based learning (Izawa & 

Shadmehr, 2011). In a separate visuomotor rotation task, cursor feedback of hand 

position was perturbed to induce sensory-error based learning. To preclude reward 

prediction error, the task was designed such that the rotations did not disrupt task 

performance or reward attainment. Binary reinforcement feedback elicited an FRN/RP 

ERP component, a relatively positive ERP deflection at the mid-frontal scalp in response 

to reward relative to the response elicited by non-reward. The FRN/RP component was 

larger for infrequent reinforcement outcomes, which is consistent with the notion that it 

encodes reward prediction error (Krigolson, 2018; Sambrook & Goslin, 2015; Walsh & 

Anderson, 2012). Visuomotor rotations of cursor feedback did not elicit an FRN/RP 

component. These findings suggest that the FRN/RP is a specific index of reward 

prediction error during motor adaptation, and that the process generating the FRN/RP 

does not occur in response to sensory error.  

A centro-parietal ERP component called the P300 was elicited by both reinforcement 

feedback and sensory error feedback. In response to sensory error feedback, P300 

amplitude was increased by larger visuomotor perturbations but not smaller ones. In 

response to reinforcement feedback, P300 amplitude was larger for reward compared to 

non-reward, and for infrequent outcomes regardless of valence. These results suggest that 

the process generating the P300 is generally sensitive to any feature of feedback that 

signals a requirement for adaptive changes in motor control. 

In the experiment presents in chapter 3, we tested the hypothesis that reward-based 

motor adaptation is mediated by dopaminergic signaling of reinforcement outcomes. 

Participants ingested either levodopa or placebo in a repeated measures, double-blinded 

design before performing reward- and sensory error-based learning tasks similar to those 

described in chapter 2. We predicted that levodopa would impair learning in the reward-

based motor adaptation task, as it has been shown to do in various cognitive reward-
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based learning tasks (Cools et al., 2001, 2006; Frank et al., 2004; Hiebert et al., 2019; 

MacDonald et al., 2011; Vo et al., 2016). However, levodopa did not affect adaptation of 

reach angle in either the reward- or sensory error-based learning tasks used in the current 

study. Nor did levodopa affect neural processing of reinforcement outcomes in the 

medial-frontal cortex, as indexed by the FRN/RP. These findings suggest that reward-

based motor adaptation and neural reward processing measured by the FRN/RP are not 

mediated by the same dopaminergic mechanisms that have previously been shown to be 

impaired by levodopa. Previous work has shown that people with Parkinson’s disease 

have a reduced tendency to explore variable movements in response to decreased reward 

frequency (Pekny et al., 2015). We found no effect of levodopa on reward-dependent 

modulation of trial-by-trial movement variability, suggesting that deficits in motor 

exploration are a specific effect of PD, not a side effect of levodopa.  

In the experiment presented in chapter 4, we tested the hypothesis that levodopa would 

impair savings and anterograde interference for force-field adaptation. Previous 

behavioral findings suggest that savings and interference may depend on reinforcement 

learning processes (Huang et al., 2011). People with PD show reduced savings and 

interference despite intact initial adaptation, suggesting a potential role for dopaminergic 

input to fronto-striatal circuits (Bédard & Sanes, 2011; Leow et al., 2012, 2013; Marinelli 

et al., 2009). However, we found no effects of levodopa on either adaptation, savings, or 

anterograde interference. These findings suggest that savings and interference depend on 

different mechanisms than those shown to be impaired by levodopa in cognitive reward-

based learning tasks. The deficits observed in people with PD are therefore likely to be 

specific effects of the disease process as opposed to side effects of dopaminergic 

medication. 

In the experiment presented in chapter 5, we tested the hypothesis that reinforcement 

signaling in the medial frontal cortex, indexed by the FRN/RP, is sensitive not only to 

reward outcomes, but also to effort as a cost. The neural generator of the FRN/RP has 

been consistently localized to the anterior cingulate cortex (Becker et al., 2014; Gehring & 



 Chapter 6: General Discussion  

 

 

220 

Willoughby, 2002; Hauser, Iannaccone, Ball, et al., 2014; Hauser, Iannaccone, Stämpfli, et 

al., 2014; Santesso et al., 2008; E. H. Smith et al., 2015; Warren et al., 2015). During 

decision making, the anterior cingulate cortex encodes effort-discounted reward, with 

activity being positively related to reward and negatively related to effort (Croxson et al., 

2009; Hauser et al., 2017; Kennerley et al., 2009; Klein-Flügge et al., 2016; Porter et al., 

2019). However, we did not find evidence that the FRN/RP was modulated by effort as a 

cost or a loss during outcome evaluation. Participants were required to produce precise 

levels of muscle activity in order to receive rewards, and the level of physical effort 

required to obtain reward was determined probabilistically according to choices under 

uncertainty. After choices, feedback indicating the resulting physical effort requirement 

did not elicit an FRN/RP component, as would be expected if effort carried negative value 

or loss. Following completion of effort, binary reinforcement feedback indicated reward 

outcomes, and reward depended on accurate performance. The FRN/RP was not 

diminished by effort, as would be expected for a signal encoding the value of reward 

discounted by effort. Rather, the differential response to reward vs nonreward in 

midfrontal ERPs was increased by effort. Source decomposition suggests that the FRN/RP 

was only affected by reward, while a later sustained signal resembling the P300 was 

sensitive to reward only when effort was high.  

6.2 Limitations 

Chapter 2 limitations: 

We found that the FRN/RP was elicited specifically by reinforcement outcomes but not 

sensory error induced by visuomotor rotations (VMR). Small VMR perturbations were 

used to avoid disrupting task performance which could result in reward prediction error. 

One potential criticism is that 1.5 degree VMRs may simply not have been sufficiently 

large to elicit an FRN/RP. However, sensory error feedback did elicit a reliable P300 

component that was modulated in amplitude by VMR perturbations, demonstrating 

neural sensitivity to sensory error despite the small rotations. Both tasks resulted in 

highly reliable behavioral adaptation of comparable magnitude. Furthermore, we 
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replicated these findings in the results presented in chapter 4 using larger VMR 

perturbations, up to 4 degrees.  

The current study adds to a growing number of experiments characterizing the properties 

of the FRN/RP in response to various experimental manipulations. However, the 

physiological underpinnings of the FRN/RP are still not well understood, and we did not 

demonstrate a direct relationship between the FRN/RP and behavior. Some avenues for 

further work are discussed in the next section. (see “The role of midfrontal reinforcement 

signals in motor adaptation: future directions”) 

Chapter 3 limitations: 

Contrary to our hypothesis, we found no effect of levodopa on reward-based motor 

adaptation. Levodopa has been repeatedly shown to impair reward-based learning in 

cognitive tasks. Thus, we interpret this result as indicating a dissociation between the 

neural mechanisms for reward-based motor adaptation and reward-based learning 

involving choices between discrete stimuli. However these results would be more 

convincing if we had demonstrated behavioral effects of levodopa on a positive control 

task within the same sample.  

Another possibility is that some component of reward-based motor learning was 

impaired but that other adaptive processes compensated for this deficit. For example, 

when implicit sensory-error based learning is impaired by cerebellar damage, an explicit 

aiming strategy can produce compensatory adaptation to VMR perturbations (Taylor et 

al., 2010). Adaptation in the current task is likely also achievable through a simple and 

verbalizable strategy (Holland et al., 2018). The current reward-based learning task was 

designed to be comparable with standard VMR paradigms, but it may not be particularly 

relevant to real-world motor control or learning. An important challenge for future work 

will be to design more demanding and ecologically valid paradigms that depend on 

reward-based learning mechanisms. 
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Chapter 4 limitations: 

Contrary to our hypothesis, we found no effects of levodopa on savings or anterograde 

interference in force field adaptation. There was reliable evidence that levodopa did not 

affect measures of savings or learning with interference. However, even when combining 

the placebo and levodopa groups the evidence that savings occurred at all was fairly weak 

and the effect size was very small. Thus, the experimental paradigm may not have 

produced sufficient savings effects to detect effects of levodopa. However, we did observe 

robust adaptation effects and clear evidence against effects of levodopa on initial force 

field learning. 

Chapter 5 limitations: 

We found that effort increased the neural sensitivity to reward outcomes. However, 

reward outcomes did not affect choice behavior in the task. Thus, we were unable to 

determine whether the effect of effort on neural reward processing corresponded to any 

effects of effort on behavioral responses to reward. The task was designed primarily to 

elicit effort-based learning, as choices only affected the effort level, and reward probability 

was equated across the effort conditions. Future work may attempt to replicate these 

findings in a task where effort and reward outcomes both produce behavioral adaptation.  

These findings are also limited by the poor spatial resolution of EEG. Source 

decomposition through ICA suggests that effort did not affect the FRN/RP responses to 

reward, but rather effort affected a distinct later ERP component, most likely the P300. 

Numerous lines of evidence point to the dorsal anterior cingulate as a generator for the 

FRN/RP, however we can only speculate on the neural sources of the later component at 

this time. Furthermore, EEG is only sensitive to local field potentials caused by 

synchronous responses of large neuronal populations. It is possible that neurons in the 

ACC have mixed tuning to effort, with effort increasing the firing rate of some neurons 

and decreasing the firing rate of others (Kennerley et al., 2009). If the direction of tuning 
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is balanced across the entire neural population, then scalp ERPs would not detect effects 

of effort even if it was strongly encoded in the neural source of the FNR/RP. 

6.3 The role of midfrontal reinforcement signals in motor 
adaptation 

The FRN/RP is a specific index of reward-based learning processes 

Studies of motor adaptation have largely focused on sensory error-based learning. 

However, motor output can also be adapted and refined through a reward-based learning 

process (Cashaback et al., 2017, 2019; Izawa & Shadmehr, 2011; Therrien et al., 2016). In 

reward-based motor adaptation, variable movements are produced during repeated 

practice, and movements that result in success or reward are reinforced. In the results 

presented in chapters 2 and 3, we found that the FRN/RP was elicited specifically by 

reinforcement outcomes that produced reward-based motor adaptation, and not by 

sensory error. These findings seem to be at odds with some previous reports that the 

FRN/RP is elicited by perturbations in sensory error-based learning tasks including VMR 

and force field paradigms (Anguera et al., 2009; Reuter et al., 2018; Savoie et al., 2018; 

Torrecillos et al., 2014). To the extent that task success is desired and expected, VMR and 

force field perturbations may disrupt task performance and produce reward prediction 

error. We argue that our experiments dissociated sensory error and reward prediction 

error by using visuomotor rotations that did not displace the cursor outside of the reach 

target. Importantly, participants were explicitly instructed that reaches within the target 

would be considered successful and would result in reward attainment. Our results are 

consistent with findings that errors caused by sudden shifts in target location or by prism 

goggles only elicit an FRN/RP component when they result in failure to reach a visual 

target (Aziz et al., 2020; Krigolson et al., 2008; Krigolson & Holroyd, 2007). 

It is also important to consider that some discrepancies in the literature may be caused by 

entirely different ERP components being conflated as the FRN/RP. Motor adaptation 

studies have typically identified midfrontal ERP negativities as FRN/RP components, as 
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these responses resemble the classic FRN elicited by feedback indicating non-reward or 

error (Anguera et al., 2009; Reuter et al., 2018; Savoie et al., 2018; Torrecillos et al., 2014). 

However, almost any salient stimulus causes an N200 ERP component that is 

indistinguishable from the classic FRN (Holroyd et al., 2008; Sokhadze et al., 2017). 

Recent findings suggest that rewarding and unfavorable outcomes both elicit an N200 

component (Baker & Holroyd, 2011; Holroyd et al., 2008). There is compelling evidence 

to suggest that the variance measured by the FRN/RP is primarily attributable to a 

positive ERP deflection in response to rewarding outcomes that cancels the N200 by 

superposition (Baker & Holroyd, 2011; Becker et al., 2014; Carlson et al., 2011; Holroyd et 

al., 2008; Proudfit, 2015; Sambrook & Goslin, 2016). The N200 is typically larger in 

response to stimuli that elicit increased cognitive control or response conflict (Baker & 

Holroyd, 2011; Cavanagh & Frank, 2014; Folstein & Petten, 2008; Iannaccone et al., 2015; 

Ridderinkhof et al., 2004; Yeung et al., 2004). Perturbations during adaptation tasks likely 

result in an immediate allocation of neural resources to restore control. Furthermore, 

perturbations during ongoing movement may induce response conflict as the current 

motor plan may be suppressed to allow for a corrective movement. Thus, it is important 

to note that motor error processing may elicit an N200 response related to regulation of 

control but not motor adaptation per se, which may commonly be conflated with the 

FNR/RP.  

Functional significance of the FRN/RP in reward-based motor adaptation 

The vast majority of studies measuring the FRN/RP have used cognitive learning tasks 

such as time-estimation and gambling style tasks (Cohen et al., 2007; Cohen & 

Ranganath, 2007; Gehring & Willoughby, 2002; Holroyd & Krigolson, 2007; Sambrook & 

Goslin, 2015; Glazer et al., 2018). In these contexts, the FRN/RP is thought to measure 

neural activity in the dorsal anterior cingulate cortex (dACC) indexing reward-prediction 

error, a canonical teaching signal for reinforcement learning (Holroyd & Coles, 2002; 

Sambrook & Goslin, 2015; Walsh & Anderson, 2012). Reward-based motor adaptation 

has also been modeled using reinforcement learning algorithms that compute reward-
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prediction error (Dhawale et al., 2019; Izawa & Shadmehr, 2011). A natural question, 

which this thesis begins to address, is whether biological reinforcement learning 

mechanisms that produce learning for discrete choices also underlie the adaptation and 

refinement of motor control. It may be that analogous reinforcement learning processes 

occur in distinct, hierarchically organized circuits for decision making and motor control. 

For example, the selection and execution of actions may be adapted in parallel fronto-

striatal loop circuits involving prefrontal and motor cortices, respectively. It is also 

possible that the selection and execution of actions both emerge from the same neural 

representation of movement (Cisek, 2006; Cisek & Kalaska, 2005, 2010). Reinforcement 

learning for decision making and motor adaptation might both occur on a unified 

representation of movement without structural distinction. 

The notion that the FRN/RP measures reinforcement learning signals in the dACC for 

decision making is consistent with data from single-cell recordings. Neuronal firing rates 

in the dACC encode reward prediction errors for the outcomes of decision (Amiez et al., 

2005; Hill et al., 2016; Kennerley et al., 2009; Matsumoto et al., 2007; H. Seo & Lee, 2007; 

Warren et al., 2015), and lesions or inactivation of the ACC impair the ability to adapt 

choices according to reward outcomes (Camille et al., 2011; Kennerley et al., 2006; Shima 

& Tanji, 1998; Walton et al., 2007; Williams et al., 2004). The dACC may receive rich 

information about reinforcement outcomes through extensive connections to other 

prefrontal subregions, the striatum, and the dopaminergic midbrain (Kolling et al., 2016). 

The dACC also forms dense connections to motor cortex as well as direct corticospinal 

outputs (Paus, 2001; Strick et al., 1998). Stimulation of motor fields within the dACC can 

elicit movements of the upper limb (Luppino et al., 1991; Paus, 2001; Showers, 1959). 

Thus, this region seems well-positioned to coordinate reward-based motor learning 

through extensive connections to reward circuits and functional proximity to motor 

output. 
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The FRN/RP does not reflect physical effort 

During value-based decision making, neural activity in the ACC tends to encode effort in 

opposition to reward (Croxson et al., 2009; Hauser et al., 2017; Kennerley et al., 2009; 

Klein-Flügge et al., 2016; Porter et al., 2019; Walton et al., 2006). It is thought that this 

activity signals subjective value or utility, a common neural currency for choice that 

accounts for both the costs and benefits of actions. In almost all studies of decision 

making involving effort and reward, the result of each potential choice is cued explicitly 

before decisions. In the experiment presented in chapter 5, participants instead made 

choices under uncertainty that resulted in varying physical effort requirements and 

reward outcomes. We asked whether the FRN/RP was sensitive to physical effort as a cost 

during outcome processing. 

Contrary to our expectations, feedback indicating the effort requirements resulting from 

participants’ choices did not elicit FRN/RP signals. Nor did we find evidence that effort 

diminished the FRN/RP responses to reward feedback, as would be expected if effort 

acted as a cost that devalues reward. These results are inconsistent with two previous 

fMRI studies that reported effort-prediction error signals in the ACC while participants 

adapted their behavior to minimize effort (Hauser et al., 2017; Skvortsova et al., 2014). 

However, in Skvortsova et al., (2014) participants were specifically instructed to avoid 

unnecessary effort. This instruction confounds effort feedback with error or reward 

signals related to meeting the goals of the task, which are likely to be observed in the 

ACC. In Hauser et al., (2017), participants squeezed a handgrip and received varying 

rewards if their grip force met an unknown and changing threshold. Effort-prediction 

error was supposed to occur in response to binary feedback indicating whether or not the 

unknown force threshold was met on a given trial. In this case, effort-prediction error 

could also be interpreted as reward prediction error related to meeting the goals of the 

task, or as motor error. In the present study participants were not instructed to avoid 

effort, and effort was orthogonal to task success and reward attainment. Our results 

suggest that outcome processing in the ACC does not reflect effort under these 
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conditions. It is certainly plausible that these discrepancies are due to EEG and fMRI 

measuring different aspects of neural activity. However EEG measures of the FRN/RP 

have been shown to correlate with BOLD responses to reinforcement in the ACC (Becker 

et al., 2014; Carlson et al., 2011). 

Future directions: 

Overall, our results suggest that the FRN/RP is specific index of reinforcement processing 

during motor adaptation, and that it is dissociable from sensory error- and effort-based 

learning processes. However, it is still not clear whether the process generating the 

FRN/RP is a necessary component of reward-based motor learning. It would be useful for 

future work to identify causal manipulations of neurophysiology that result in specific 

effects on behavior and the FRN/RP. Chapter 3 describes our attempt to do so using 

levodopa, which however did not produce any effects on the FRN/RP or behavior. Other 

pharmacological techniques, studies of humans with focal lesions of the dACC, and the 

use of animal models might prove more successful. Furthermore, larger datasets may be 

able to identify correlational relationships between the FRN/RP and behavior, either 

through variation in single trial measures within participants, or through individual 

differences between participants.  

Although the FRN/RP was not directly sensitive to effort as a cost, it may be a measure of 

reward processing that influences the motivation to produce effort. Some theories posit 

that reward signals in the dACC do not guide the selection or implementation of 

individual actions, but rather the regulation of effortful control applied to the task at hand 

according to its expected utility (Botvinick & Braver, 2015; Holroyd & Umemoto, 2016; 

Shenhav et al., 2016). Reward contingencies can improve the control of movements 

through upregulation of feedback gains or limb stiffness (Carroll et al., 2019; Codol et al., 

2020; Manohar et al., 2019). Reward can also increase the speed and vigor of movements, 

which is thought to reflect a tradeoff between the effort and incentives associated with 

moving quickly (Shadmehr et al., 2016a; Summerside et al., 2018; Yoon et al., 2020). It 

would be interesting to test whether the FRN/RP reflects tracking of reward outcomes for 
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the purpose of allocating effortful control according to the demands and utility of the task 

at hand. For example, increased stiffness may improve feedforward control and stability 

in the face of external perturbations, while increased feedback gains may facilitate 

movements towards unpredictable moving targets. In foraging contexts, normative 

theories suggest that reward rate should modulate vigor (Yoon et al., 2018).  

Midfrontal theta oscillations generated by the dACC have been extensively implicated in 

cognitive control (Cavanagh & Frank, 2014; Holroyd & Umemoto, 2016). Recent work 

suggests midfrontal theta-band activity may also regulate visuomotor feedback control 

(Watanabe et al., 2021). Above, we speculated that midfrontal ERP negativities in 

response to motor perturbations may reflect the N200. The N200 is thought to measure 

phase-locked, event-related theta synchronization that facilitates neural control 

(Cavanagh & Frank, 2014), and indeed the midfrontal ERP response to visuomotor 

perturbation reflects theta-band activity (Savoie et al., 2018). Midfrontal regions may 

regulate control through long-range connections to other task-relevant brain regions 

including motor areas, evidenced by interregional phase synchronization in theta-band 

activity (Asanowicz et al., 2021). Beta-band desynchronization in sensory-motor regions 

is associated with improvements in motor performance due to reward cues and error 

feedback, and may be moderated by midfrontal theta-band activity (Savoie et al., 2019; 

Watanabe et al., 2021). Future work might test whether reward processing indexed by the 

FRN/RP is associated with the regulation of control effort mediated by midfrontal theta, 

particularly in response to motor errors.  

6.4 The P300 ERP component is modulated by error, 
reinforcement, and effort 

P300 effects during motor adaptation 

Both reinforcement feedback and sensory error feedback elicited P300 ERP component 

responses, centro-parietal positive ERP deflections that peaking between 300-500ms after 

feedback. The amplitude of P300 responses to sensory error feedback was increased by 
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visuomotor rotation, and this effect depended on the size of the perturbations. This 

finding is consistent with reports that visuomotor perturbations caused by prism goggles 

increase P300 amplitude (Aziz et al., 2020; MacLean et al., 2015). During reward-based 

motor adaptation, the amplitude of P300 responses to reinforcement feedback was larger 

for infrequent outcomes relative to frequent outcomes regardless of valence. Similar 

effects of outcome frequency on P300 amplitude in cognitive reward based learning tasks 

are common in the literature (Hajcak et al., 2005, 2007; Leng & Zhou, 2010; Pfabigan et 

al., 2011; Y. Wu & Zhou, 2009; Zhou et al., 2010). If participants learned to expect the 

frequent outcomes, infrequent feedback should elicit larger prediction errors and drive a 

larger adaptive response. We found that P300 amplitude was larger in response to reward 

outcomes than non-reward outcomes, however this effect may have been due to 

spatiotemporal overlap with the FRN/RP. The effects of error and surprise suggest that 

the P300 response is increased by features of feedback that elicit adaptation across both 

reward- and sensory error-based learning processes. 

The P300 is thought to arise from diffuse cortical sources including parietal, frontal, and 

motor areas (Polich, 2007; Soltani & Knight, 2000). A prominent theory states that the 

P300 is generated by cortical responses to phasic norepinephrine release from the locus 

coeruleus (Aston-Jones & Cohen, 2005; de Rover et al., 2015; De Taeye et al., 2014; 

Murphy et al., 2011; Nieuwenhuis et al., 2005; Polich, 2007; Swick et al., 1994; Vazey et al., 

2018). Phasic norepinephrine release in response to task-related outcomes is theorized to 

facilitate behavioral adaptation, possibly by interrupting the current neural activity state 

to allow rapid reorganization (Aston-Jones & Cohen, 2005; Bouret & Sara, 2005; Dayan & 

Yu, 2006). Norepinephrine release in response to salient or unexpected events may 

regulate the rate of learning according to uncertainty about the environment (Sales et al., 

2019). Norepinephrine has been shown to modulate synaptic long term potentiation and 

long term depression through actions on beta-adrenoreceptors (Gibbs & Summers, 2002; 

Hagena et al., 2016; Lemon et al., 2009; Pettigrew, 1982; Pettigrew & Kasamatsu, 1978; 

Salgado et al., 2012; Stanton & Sarvey, 1985). The locus coeruleus innervates nearly all 

cortical areas, and so it is possible that phasic norepinephrine release serves as a highly 
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general mechanism that facilitates behavioral adaptation across different tasks (Poe et al., 

2020). This is consistent with a role in both sensory error- and reward-based motor 

adaptation. Locus coeruleus neurons display highly plastic responses to reward and 

reward-predictive stimuli during learning (G. Aston-Jones et al., 1997; Bouret & Sara, 

2004; Sara & Segal, 1991). Recent evidence suggests that norepinephrine release in 

response to force field perturbations modulates the rate of motor adaptation according to 

surprise and uncertainty (Yokoi & Weiler, 2021).   

Effects of physical effort on P300 responses to reward feedback 

In the experiment presented in chapter 5, we found that P300 amplitude was larger in 

response to feedback indicating reward compared to non-reward only when the 

preceding effort was high. This finding suggests that physical effort may increase the 

salience of subsequent reward outcomes, possibly through increased norepinephrine 

release caused by effort-related arousal. We speculate that this effect may underlie 

paradoxical findings in which humans and other animals tend to overvalue rewards and 

conditioned reinforcers that are obtained under conditions of high effort (Clement et al., 

2000; Inzlicht et al., 2018; Lydall et al., 2010; Zentall, 2010). Norepinephrine is also 

implicated in motivating and energizing effortful behavior (Borderies et al., 2020; Bouret 

et al., 2012; Varazzani et al., 2015; Zénon et al., 2014). In a high-effort context, reward-

related norepinephrine release may be important to motivate continued performance of 

the effortful behavior.  

Future directions: 

Future work might test whether P300 responses to reward and sensory error feedback 

correlate with increases in pupil area, an index of norepinephrine release. Adrenoreceptor 

signaling could also be manipulated pharmacologically using propranolol or clonidine, 

and both of these drugs have been shown to affect P300 amplitude in some tasks (de 

Rover et al., 2015; Nieuwenhuis et al., 2005). It would be useful to test whether these 
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drugs cause effects on P300 responses to feedback during motor adaptation that 

correspond with changes of learning rate.  

We found that effort increased the sensitivity of P300 responses to reward feedback. 

Future work might test whether this effect corresponds to positive effects of effort on the 

rate of reward-based learning. This could be accomplished using a reward-based learning 

task in which physical effort is manipulated independent of reward outcomes. Future 

experiments might also test whether effort-related increases in reward responsivity relate 

to the motivation to persist in effortful behavior.    

6.5 The role of dopamine in motor adaptation 

Contrary to our expectations, we observed no effects of levodopa on reward-based motor 

adaptation, reward-dependent modulation of movement variability, savings, or 

anterograde interference. Levodopa has been shown repeatedly to impair learning in tasks 

that involve associating visual stimuli with discrete responses through reinforcement 

feedback (Cools et al., 2001, 2007; Feigin et al., 2003; Frank et al., 2004; Graef et al., 2010; 

Hiebert et al., 2014; Jahanshahi et al., 2010; Kwak et al., 2010; MacDonald et al., 2011; 

Swainson et al., 2000; Torta et al., 2009; Vo et al., 2016, 2018). Our findings suggest a 

dissociation between dopaminergic mechanisms for motor adaptation and stimulus-

response learning. This dissociation is not trivial as dopaminergic signaling of reward-

prediction error is thought to be a ubiquitous and canonical mechanism for reward-based 

learning (Bayer & Glimcher, 2005; Glimcher, 2011; Schultz, 2016; Schultz et al., 1997).  

In people with Parkinson’s disease (PD), neuroimaging studies suggest that levodopa 

impairs stimulus-response learning by disrupting neural responses to reward feedback in 

the ventral striatum (Cools et al., 2007; Hiebert et al., 2019; MacDonald et al., 2011). 

Early-stage PD primarily causes dopamine depletion in the dorsal striatum while the 

ventral striatum is relatively spared. According to the “dopamine overdose” hypothesis, 

the dosages of levodopa necessary to restore motor functions mediated by the dorsal 

striatum result in overstimulation of dopamine release in the ventral striatum. 
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“Dopamine overdose” in the ventral striatum is thought to also explain levodopa-induced 

learning impairments in healthy volunteers (Vo et al., 2016, 2017, 2018).  

Monkeys with ventral striatum lesions are impaired in learning to choose stimuli 

associated with reward outcomes, but are still able to learn action-reward associations 

(Rothenhoefer et al., 2017). Action-based reinforcement learning, such as in the current 

task, may instead rely on the dorsal striatum (E. Lee et al., 2015; N. F. Parker et al., 2016; 

M. Seo et al., 2012). Sidarta et al. (2016) found that reward-based motor learning was 

associated with increased functional connectivity between the putamen and ventromedial 

prefrontal cortex using a task similar to that of the current study. Currently, there is no 

evidence that levodopa causes “dopamine overdose” effects for behaviors mediated by the 

dorsal striatum. During tasks that measure response selection for stimulus-response 

associations that have already been learned, levodopa remediates behavioral performance 

and associated neural activity in the dorsal striatum in people with PD (Hiebert et al., 

2019). However, levodopa does not impair response selection in healthy young 

participants despite impairing learning, suggesting that the dorsal striatum may not be 

vulnerable to “dopamine overdose” (Vo et al., 2017). 

It is also possible that reward-based motor adaptation is mediated by dopaminergic 

projections directly to motor cortex, which may not be susceptible to “dopamine 

overdose”. It has been shown that dopaminergic innervation of the motor cortex is 

essential for some forms of motor learning in rodents (Beeler et al., 2010; Hosp et al., 

2011; Luft & Schwarz, 2009; Molina-Luna et al., 2009). Finally, reward-based motor 

learning may simply not depend on dopamine at all. Recent studies have found that 

effects of reward on motor adaptation are not influenced by either dopaminergic genetic 

polymorphisms or haloperidol, a dopamine receptor antagonist (Holland et al., 2019; 

Quattrocchi et al., 2018). However, early-stage PD has been shown to impair trial-by-trial 

responses to feedback in reward-based motor adaptation as well as savings and 

anterograde interference (Bédard & Sanes, 2011; Leow et al., 2012, 2013; Marinelli et al., 

2009; Pekny et al., 2015). Because our results rule out dopamine overdose effects caused 
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by levodopa, it is likely that the effects of PD on reward-based motor adaptation, savings, 

and interference are caused by dysfunction of learning mechanisms mediated by the 

dorsal striatum. 

Future directions: 

Future studies might image neural activity using fMRI during reward-based motor 

learning. The experimental paradigms reported in chapters 2 and 3 could be adapted to 

use a joystick in a scanner. One hypothesis is that reward-prediction errors elicit specific 

activations of the dorsal and ventral striatum during motor learning and stimulus-

response learning, respectively. A causal role of dopamine function in the dorsal striatum 

could be assessed by scanning people with PD on and off levodopa medication in a 

repeated measures design.  

Another hypothesis is that dopaminergic reward prediction errors drive motor learning 

by improving movement representations in the motor cortex. This hypothesis could be 

tested by having participants learn to produce a set of distinct movements through binary 

reinforcement feedback. Reward prediction error could be experimentally induced 

through probabilistic reinforcement outcomes. The fidelity of movement representations 

could be assessed through multivariate distances between the cortical activity patterns 

associated with different movements. This hypothesis predicts that reward prediction 

error signals in the dorsal striatum would be positively related to subsequent increases in 

pattern distance between cortical representations of distinct movements during motor 

preparation and execution.  

FMRI could also be used to test whether reinforcement learning processes underlie 

savings and anterograde interference. It is hypothesized that when sensory error-based 

learning processes restore accurate performance, the successful movements are reinforced 

(Huang et al., 2011). When a subsequent perturbation is encountered, the previously 

reinforced movements are thought to be recalled, resulting in either savings or 

interference. This hypothesis leads to the prediction that fronto-striatal reward circuits 
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would be activated upon attainment of successful performance in the task in the late 

stages of adaptation. Furthermore, this hypothesis implies that the expression of savings 

and interference should be associated with activity in fronto-striatal circuits. It predicts 

that previous adaptation would cause an increase in fronto-striatal activation immediately 

upon the onset of a second perturbation, and that this activity would be correlated to the 

expression of savings or interference. 
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