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Abstract

The Townsite Formation is a felsic unit separating the Crestaurum and 

Yellowknife Bay Formations of the mafic dominated Kam Group. Previous workers 

have divided the Townsite Formation into the Niven Lake, Brock, and Vee Lake 

lenticles, separated by Proterozoic faults. While substantiating the general similarity of 

the lithologies present in these lenticles, the mapping carried out in the present study 

identifies felsic porphyry phases contemporaneous with gabbro sills. This is indicated 

by “back veining” of the gabbro by porphyry and the absence of chill margins. In 

both the Niven Lake and Brock lenticles, injection of quartz feldspar porphyry has 

produced marginal hydrothermal breccias. These breccias give way northward into 

vented pyroclastic rocks in the Brock and Vee Lake lenticles. Vent proximal 

pyroclastic facies of the Vee Lake Lenticle grade laterally into more distal facies.

The pillowed dacites identified by previous workers have basaltic to andesitic 

composition. The intrusive quartz feldspar porphyry bodies are dacitic in composition, 

while associated feldspar porphyries have more intermediate composition. Breccias, 

formed by quartz feldspar porphyry injecting older volcanic flows have andesitic to 

dacitic bulk composition. Trace element patterns of the feldspar porphyry and quartz 

feldspar porphyry intrusive phases indicate they were formed by melting of hydrated 

Kam Group volcanic flows. Partial melting is consistent with experimental results on 

the melting of hydrous greenstones and amphibolites. Similar patterns are shown by 

rocks formed by wet melting of juvenile crust both in modem and ancient rifting 

environments. Combining detailed mapping and analytical results of this study with

in
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previous geochronological data the Townsite Formation is reinterpreted as having 

formed an aborted rift some twenty million years after cessation of Kam volcanism.

Since the Townsite Formation is spatially related to mineralized segments of 

both the Campbell and Giant shear systems, it is likely that the intrusion of quartz 

feldspar porphyries played a role in the genesis of these deposits: there is a “quartz- 

feldspar porphyry /Au” association in the Yellowknife camp.
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Chapter 1 

Introduction

1.1 General Statement and Purpose of Study

Gold mining began in the Yellowknife Camp in the early 1930’s when Johnny 

Baker and partner Hugh Muir found a gold rich quartz vein in the Burwash sedimentary 

rocks on the east shore of Yellowknife Bay. This vein yielded 16 tons of ore grading at 

13.6 ounces per ton. A shaft was sunk in order to excavate the gold but less than a year 

later the reserves diminished. In these early days, prospecting in the volcanic belt 

across the bay was minimal as these rocks were thought to be barren of gold. In June 

of 1935, A.W. Joliffe was sent by the Geological Survey of Canada to do both 

geological and topographic mapping on the northwest shores of Great Slave Lake. 

Joliffe and fourteen undergraduate students from prairie universities crossed Great 

Slave Lake with an assignment to map 26 000 km2 of land. Starting in the south of the 

Yellowknife Volcanic Belt they mapped northward. By the end of the summer, it was 

still generally believed that the volcanic rocks across the bay from the Burwash 

sediments were barren of gold. However, on his last traverse of the summer, Joliffe’s 

field assistant, Neil Campbell, discovered a gold bearing quartz vein in what is now the 

Con Mine area. Within two years the entire Yellowknife Greenstone Belt was staked, 

the Con Mine was in production and the nearby Giant Mine was brought into 

production shortly thereafter (Padgham, 1987).

Since then, more than 14 million ounces of gold have been mined from a 2 x 8 

km section of what is now called the Yellowknife Bay Formation. The city of

1



Yellowknife has developed a vibrant economy largely based on the mineral wealth of 

the Con and Giant mines. However, the current state of exploration in the area reveals 

that only 2-5 years of gold reserves remain in the ground. This prompted the 

Government of the Northwest Territories, the Geological Survey of Canada, the 

Department of Indian and Northern Affairs and both the Royal Oak (Giant) and 

Miramar (Con) mining companies to collaborate on re-examination of previous theories 

on the origin of these gold deposits. This collective group of researchers was organized 

in 1999 as Extech III: an intensive localized “exploration technology” project headed 

by the Geological Survey of Canada. The mandate of the Extech III project is to 

develop a model for the petrogenesis of the Yellowknife Camp and to apply key aspects 

of this model to a defined area in and around the region. The goal of this research is to 

extend the life of the Con and Giant mines and to aid in the discovery of new deposits.

This thesis is a contribution to this objective. It is based on a detailed mapping 

project re-examining the Townsite Formation, lying directly adjacent to gold 

mineralization in Yellowknife. This formation comprises a unique package of felsic 

units separating the Crestaurum and Yellowknife Bay Formations of the mafic 

dominated Kam Group. Due to offsets across Proterozoic faults, the Townsite 

Formation has been subdivided into the Niven, Brock and Vee Lake lenticles. 

Although an outstanding marker unit in the belt, to date detailed reconstruction of the 

complex history of these rocks has been unsuccessful. The present work primarily 

attempts to resolve the origin of the felsic Townsite lithologies and to shed light on any 

role these rocks may have played in gold mineralization.
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3
1.2 Location Access and Physiography

Access to the study area can be gained via Yellowknife which is located on the 

West side of Yellowknife Bay on the North shore of Great Slave Lake (114° 25’ W 

longitude, 62° 25’ N latitude (Fig. 1.1). The north and northwestern portions of

Figure 1.1 Location of the City of Yellowknife.

the city of Yellowknife are built on the Niven Lake Lenticle, hence its name the 

Townsite Formation. Access to rocks of the Brock Lenticle may only be gained 

through permission from Miramar Mining and Exploration as it is entirely on Giant 

Mine property. An all weather gravel road offers access to the Vee Lake Lenticle. 

Southern portions may be reached by foot but boat transport is ideal as the majority of 

outcrop exposure is best accessed from Walsh Lake. Walsh Lake is much larger and

connected via a small channel to Vee Lake.



The exposure of rocks in the Yellowknife Greenstone Belt is exceptional, the 

Townsite Formation itself offers 80-90% exposure. The polished, lichen free outcrops 

are a result of repeated glacier advance and subsequent scouring and erosion. Glacial 

grooving left long narrow linear depressions in areas where shear deformation has 

weakened the rocks. This has resulted in an overall rugged terrain with 10-50 m high 

rocky knobs separated by drift covered swamps and lakes.

1.3 Previous Geological Investigations

Because of location in the southern Slave, its relatively small size and excellent 

exposure, the Yellowknife Greenstone Belt is undoubtedly one of the most well 

mapped Archean volcanic belts in the world. Of particular significance, its apparent 

layer cake stratigraphy has been tested by U-Pb zircon geochronology (Isachsen, 1992), 

establishing rock ages with a margin of error in most cases of less than one percent. 

Age dating in the Yellowknife volcanic belt has generally confirmed the deposition of 

some 10 km of mafic lava in a very short period 2712 -  2707 Ma. This dating has 

created an enigma for the Townsite Formation with respect to previously established 

stratigraphic relationships in the belt. Dating of the Brock and Vee Lake lenticles 

reveal ages of 2703+/-2 and 2705 +/- 3 Ma respectively, while zircons from the Niven 

Lake Lenticle, reveal ages between 2683 +/- 5 and 2726 +1-2 Ma (Pb/Pb date) 

(Isachsen, 1992). In an attempt to resolve this relative discordance, Isachsen did in all, 

thirty one analyses at three separate locations in the Niven Lake Lenticle. Although 

this discordant age may be explained by complex lead loss from zircons in both the 

correlative Brock and Vee Lake members, Isachsen (1992) suggests it is likely better
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explained by a mixing array between older and younger components, the older of which 

represents inherited zircons.

These anomalous age dates combined with the proximity of the Brock Lenticle 

to the Giant mine led exploration geologists at Giant to initiate detailed re-mapping of 

these rocks in an attempt to recognize lithologies of differing age. Grant, (1997) began 

this mapping project and recognized intrusive felsic and intermediate bodies in the 

Brock. This work was partially completed when the author began working on this 

thesis and over the course of the 1998/99 summer field seasons completed detailed 

maps (1:600, 1:1200) of all three lenticles ( maps 1,2, 3 in rear folder).

The most recent study of Townsite Formation rocks is by Cousens (2000), 

within the context of a regional geochemical and radiogenic isotope investigation of the 

entire Kam Group. Mafic to intermediate flows of the Townsite Formation revealed 

eTNd ranging from 1.8 to 2.7 and correspond closely to the estimate of depleted mantle 

at 2.7 Ga (Depaolo, 1988). It was also discovered that felsic units across all three 

lenticles are isotopically homogeneous with sTNd of -0.2 to -0.9. Of all of the units 

sampled in the Kam Group, the felsic rocks of the Townsite Formation, and the 

volcanic flows of the underlying Crestaurum Formation and overlying Yellowknife Bay 

Formation are closest in their isotopic signature.

1.4 Field Work and Methodology

Field work consisted of approximately four months of mapping in the 

Yellowknife Greenstone Belt. In order to attain a better understanding of the Townsite 

Formation, approximately one day a week was spent on geologic field trips with other
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geologists, both veteran and new to the belt. Mapping of the Brock Lenticle was 

carried out first and at the largest scale (1:600, map 2). The reasoning here was to start 

in the center and work laterally in order to recognize key lithological relationships 

linking the Brock to the Niven and Vee Lake members. Further, as a result of roasting 

at the Giant Mine, the Brock rocks are free of lichen and thus offer 100% exposure. 

Such exceptional exposure proved invaluable in establishing specific contact 

relationships between the different lithologies. Vee Lake, the largest of the three 

lenticles was mapped second followed by the Niven Lake Lenticle, both at 1:1200 

(maps 1 and 3). One area in the southeastern portion of the Niven Lake Lenticle, 

behind the Oldtown baseball diamond, offering superb exposure of the Niven Lake 

lithologies was mapped at a scale of 1:20 (map lb).

Samples were collected of all units identified in all three lenticles. The goal 

was to compare rock types in terms of mineralogy and texture. Representative 

examples of each lithology were selected for bulk chemical analysis in order to 

compare the rock types chemically. Key samples were also chosen for microprobe 

analysis in order to better understand the effects of metamorphism and retrograde 

alteration. Both polished rock slabs and polished thin sections were studied in order to 

characterize key textural features. This was especially useful for dividing pyroclastic

6
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Chapter 2 

Geology

7

2.1 Introduction

The Slave Structural Province is an Archean granite-greenstone terrane
■y

comprising 190 000 km of the northwestern Canadian Shield (Fig 2.1). The Slave is 

composed of 35 -  40 % supracrustal rocks and 60 % granitic gneiss and granite. 

Distinguishing the Slave from other Archean cratons is the rarety of ultramafic 

volcanics and its sediment dominated nature. The Supracrustal rocks of the Slave, 

comprised of 80 % tubidic metasediments and 20 % volcanic rocks, are collectively 

known as the Yellowknife Supergroup (McGlynn and Henderson, 1970). Volcanic 

rocks of the Yellowknife Supergroup have been divided into two types known as 

Hacket River type and Yellowknife type (Padgham, 1985). The Hacket River type 

volcanic belts are found in the eastern Slave and are dominated by felsic volcaniclastic 

rocks. The Yellowknife type volcanic belts occur in the central and western portion of 

the Slave and are dominated by mafic volcanic flows. Pre-Yellowknife Supergroup 

rocks consist of sialic basement rocks exposed largely in the western Slave. U/Pb 

zircon geochronology reveals basement ages between 2.83 and 3.96 Ga, including the 

oldest known rocks in the world (Krough and Gibbins 1978, Nikic et al., 1980, 

Bowring et al., 1989).

Several geotectonic models have been invoked for the evolution of the Slave. 

Henderson (1970) and McGlynn and Henderson (1970), suggest the Slave evolved 

from a series of ensialic basins which, upon developing fractures along their margins 

due to rifting, focused volcanic activity, and that the volcanics were buried by



siliciclastics. Fyson and Helmstaedt, (1988), Kusky (1990, 1991), Davis and Hegner 

(1992) and Davis and King, (1994) have favoured accretionary models for the 

evolution of the Slave whereby island arcs and associated basins forming accretionary 

prisms in the eastern Slave were subsequently intruded by granites related to terminal 

collision with the western Slave. Recently, Bleeker et al,. (1998) have developed a 

hybrid model involving components of both the ensialic and accretionary models. This 

model essentially consists of the formation of ensialic rift related volcanic belts in the 

western Slave Province followed by the docking of accretionary arcs to the eastern 

margin of this craton.

2.2 Geology of the Yellowknife Greenstone Belt

The Yellowknife Greenstone Belt, located in the southwestern comer of the 

Slave Province, is the southwestemmost of approximately 26 volcanic belts (Fig.2.1). 

Situated between the Western Plutonic complex to the west and metaturbidites of the 

Burwash Basin to the east, the Yellowknife Greenstone Belt is approximately 50 km 

long and 5-8 km wide (Fig 2.2). Structurally, the belt comprises a steeply-dipping, 

northeast-striking monoclinical successsion which youngs in a southeast direction. The 

southern portion of the belt has been segmented along northwesterly-trending sinistral 

strike-slip faults of Proterozoic age that partition the belt into a series of fault bounded 

blocks. The lithostratigraphic subdivisions for the belt were initially introduced by a 

synthesis of mapping projects carried out by Joliffe (1966), Boyle (1961) and 

Henderson and Brown (1966). A revised regional stratigraphic framework was 

proposed by Helmstaedt and Padgham (1986) and is shown in Figure 2.3.
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Figure 2.1 Map Showing Location of the Yellowknife Greenstone Belt and 
Characteristics of the Slave Structual Province, Modified from Padgham, 1985.

The Yellowknife Greenstone belt is dominated by mafic metavolcanic rocks of the 

Kam Group. As defined by Helmstaedt and Padgham (1986), the Kam Group consists 

of a 10 km thick sequence of tholeiitic basaltic flows. The Kam Group has been 

divided into four formations - the Chan, Crestaurum, Townsite, and Yellowknife Bay. 

The Kam flows are unconformably overlain by felsic metavolcanic rocks of the Banting 

Group. Pre-Kam rocks have been identified at the northern end of the belt and consist 

of a succession of quartzite-rhyolite-banded iron formation, known as the Dwyer 

Formation. U/Pb zircon geochronology has constrained the age of these rocks
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Figure 2.3 Layer Cake Stratigraphic Model for the Yellowknife Greenstone Belt. 
Modified after McDonald et al., 1993.

in excess of 2.9 to greater than 3.7 Ga (Isachsen, 1992). At the southwestern end of 

the belt, Helmstaedt et al. (1979) and Helmsteadt and Padgham (1986) identified a 

sequence of amphibolite-greywacke-siltstone-conglomerate and felsic pyroclastic rocks 

lying structurally below Yellowknife volcanic rocks. This sequence of rocks termed 

the Octopus Formation lies below and is in unconformable contact with the Kam



Group. Recent U/Pb zircon geochronology (Ketchum et al., 1999) tentatively suggest 

these rocks may be younger than previously thought and may correlate with the 

overlying Kam Group.

The Chan Formation is approximately 6 km thick and consists of massive and 

pillow basalt flows intruded by gabbroic dykes and sills. Sheeted dyke complexes in 

the Chan exhibiting one-way chilling resemble modem ophiolites (Helmstaedt et al 

1986). The upper boundary of the Chan Formation is in conformable contact with the 

overlying Crestaurum Formation. This contact is marked by the Ranny Chert, a thin 

felsic marker unit capping Chan flows. The Ranny Chert has yielded Pb/Pb dates of 

between 2722 and 2818 Ma (Isachsen, 1992), suggesting a basement detrital 

component

The overlying Crestaurum Formation is approximately 2 km thick and is 

comprised of pillowed to massive mafic flows and mafic intrusive bodies. Upper 

Crestaurum variolitic pillowed units are capped by “cherty tuff’, known as the Stock 

and Fox marker horizons. Henderson and Brown (1966) correlated these units with the 

Cemetary tuffs and used them for correlation across major Proterozoic faults within the 

belt. U/Pb zircon geochronology dates the Cemetary tuff at 2707 to 2713 Ma 

(Isachsen, 1992)

As defined, the Townsite Formation is stratigraphically above the Crestaurum 

Formation and stratigraphically below the Yellowknife Bay Formation. Historically 

the Townsite Formation has been recognized as a felsic volcanic unit, but it is redefined

12
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The Yellowknife Bay Formation overlies the Townsite Formation and consists 

of massive and pillowed variolitic flows and interflow tuffaceous sediments. Where 

exposed, the upper contact of the Yellowknife Bay Formation is truncated by the 

overlying Jackson Lake Formation but this boundary primarily occurs beneath the 

waters of Yellowknife Bay. The thickness of this unit is therefore unknown but is at 

least 5 km (Helmstaedt and Padgham, 1986). The Yellowknife Bay Formation is 

exceptionally well exposed along the shores of Yellowknife Bay; it is perhaps the best 

known example of a succession of Archean pillowed flows. Two variolitic markers 

known as the Negus and Yellorex flows occur within the formation. Variolitic flow - 

cherty tuff cycles become more prolific near the top of the formation. One of the 

distinctive interflow units is the Bode Tuff; a graded unit containing large, round to sub 

angular boulders of quartz feldspar porphyry up to 0.5 m in diameter (Henderson and 

Brown, 1966). This unit directly overlies the Yellorex flows and has yielded a Pb/Pb 

zircon date of 2704+/- IMa (Isachsen, 1992).

The Kam Group is unconformably overlain by the calc- alkaline rocks of the 

Banting Group. These rocks are composed of intermediate to felsic pyroclastic rocks, 

massive flows, tuffs, and tuffaceous sediments (Helmstaedt and Padgham, 1986). The 

Banting Group is approximately 2 km thick and is divided into two belts termed the 

Ingraham Formation to the west, and the Prosperous Formation to the east. These two 

belts have been dated (U/Pb) at 2663 +/- 1.2 Ma and 2678 +/- 12 Ma, respectively, and 

are separated and conformably overlain by the Walsh Formation (Isachsen, 1992). 

Isachsen (1992) suggests the anomalous date for the Prosperous Formation may be a 

result of inheritence and further work is needed therefore in order to resolve this age.
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The intervening Walsh Formation is a highly deformed unit of metasediments 

consisting of argillite and greywacke turbidite. The Walsh is assigned to the overlying 

Duncan Lake Group (Helmstaedt and Padgham, 1986).

Both the Kam and Banting Groups are intruded by several generations of dykes 

and sills. The basalts of the Chan Formation are intruded by anorthosite sills and 

crosscut by sheeted gabbro dykes possibly recording an early spreading event 

(Helmstaedt and Padgham, 1986). The Townsite and Yellowknife Bay Formations are 

also intruded by various ages of gabbro sills, irregular shaped bodies and dykes. These 

sills are massive up to 100 m in width and extend kilometers in strike length. A swarm 

of quartz feldspar porphyry dykes transect the belt in the north but are absent in the 

south. These dykes have a 2660 Ma age (Isachsen, 1992) and may feed the Banting 

felsic volcanic succession.

The Jackson Lake Formation consists of a succession of crossbedded sandstones 

and polymictic conglomerates. It is the youngest supracrustal unit in the belt. It 

unconformably overlies and/or is fault bounded between the Kam and Banting Groups 

(Helmstaedt and Padgham, 1986). Clasts within the conglomerate include granitic to 

trondjhemite boulders, sub-angular to rounded quartz feldspar porphyry, angular mafic 

volcanic clasts, and abundant quartz sandstone boulders. Other lithologies in the 

Jackson Lake Formation include vein quartz, Fe-carbonate, argillite, green mica schist, 

and jasper (Henderson and Brown, 1966). Mueller et al. (1993) interpret the Jackson 

Lake Formation as being deposited as terriginous alluvial fans and/or fan deltas into 

fault controlled basins. They further suggest a provenance of cobbles within the 

conglomerates as being dominated by basalt with lesser intermediate and felsic tuff and
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subordinate plutonic sources. Dating of granitic cobbles at the base of the Jackson 

Lake Formation has yielded dates of 2605 +/- 7 Ma (Isachsen, 1992), consistent with 

derivation from the Western Granodiorite.

The Yellowknife Greenstone Belt is intruded in the west and southeast by large 

composite batholiths. The Kam Group is intruded by the Defeat Granodiorite of the 

Western Plutonic Complex (Atkinson, 1987). Atkinson et al. (1990), divided this 

complex into four main phases which from oldest to youngest consist of: (1) the Anton 

Complex, dated at 2642 Ma (Henderson et al., 1987); (2) the Main Defeat Suite dated at 

2620 Ma; (3) the Duckfish Granite dated at 2589 + 11/-9 Ma; and (4) the Stagg Granite 

dated at 2585 +/- 4 Ma.

The youngest rocks in the belt are two sets of Proterozoic diabase dykes. These 

dykes are generally no larger than 2-4 m in width. The older Dogrib dykes trend 

northeast and have been dated using Rb-Sr isotopes at 2635 +/- 80 Ma (Gates and 

Hurley, 1973). The younger Indin dykes trend northwest and are dated (Rb-Sr) at 

2049 +/- 80 Ma (Gates and Hurley, 1973).

2.3 Lithological Make-up of the Townsite Formation

The following sections describe in detail the field relationships of the various 

lithologies of the Townsite Formation. Descriptions start with the Niven Lake Lenticle 

and work north through the Brock and Vee Lake lenticles. It is also noted here that 

terms adopted in the field are used in order to describe certain lithologies. Detailed 

maps (maps 1, lb, 2, 3) and plates of outcrops and textures aid descriptions. Detailed
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maps use UTM (NAD 83) coordinates. Sample location maps (Appendix C) use 

latitude and longitude.

2.3.1 The Niven Lake Lenticle

Volcanic flows in the Niven Lake Lenticle make up approximately 10 % of the 

lithologies. These flow units are discontinuous due to the dominance of intrusive 

phases. Those flows which have experienced hydrothermal alteration and brecciation 

are treated as a separate facies described in the section on hydrothermal breccias.

In outcrop the flows vary from buff green to black in colour and are generally 

aphanitic. Pillow selvages are rarely intact and occur as disrupted structures in what is 

otherwise massive greenstone. Selvages themselves are feldspar phyric with up to 

centimeter sized porphyroblasts occurring throughout and concentrating in pillow triple 

points. Variolitic textures are not preserved but pillow cores are characteristically 

bleached and may represent relict coalesced variolitic material. Occasionally the 

pillows display pipe vessicles and eyebrow structures.

Cherty tuffs are very distinct units in the Niven Lake Lenticle. These units are 

known as the “Trapper Tuffs” (Henderson and Brown, 1966) and have been 

recognized as key marker horizons in the upper Crestaurum Formation. They occur as 

discontinuous, poorly preserved homfelsed lenses along the margins of gabbro sills. 

One well exposed outcrop can be readily viewed on the west side of the highway 

approximately 150 m north of the Explorer Hotel. These units are bright pink in 

colour, are two to three meters in width and display thin banding on freshly exposed 

outcrop surfaces (plate 2.1 A).
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(A) Cherty tuff on the margin of a gabbro sill (left), in the Niven Lake Lentile. Note 
banding.

(B) , (C) Quartz feldspar porphyry (pink) “back-veining” gabbro sill.

Plate 2.1





Intrusive feldspar porphyry makes up only a small portion of the lithologies 

(1%). A wedge of feldspar porphyry occurs behind the Yellowknife Racquet Club 

(map lb). It is approximately 20 m long and 5 to 10 m wide, pinching out between a 

gabbro dyke and bordering hydrothermal breccia. Another exposure of feldspar 

porphyry occurring approximately 30 m to the north, is approximately 50 m long and 

20 m in width. The feldspar porphyry is black in outcrop, consisting of (20%) 0.5 to

1.5 cm phenocrysts of subhedral plagioclase in an aphanitic groundmass.

Quartz feldspar porphyries make up approximately one fifth of the Niven Lake 

Lenticle. These outcrops are buff pink in colour, mapping out as irregular shaped 

bodies along the margins of gabbro sills. In terms of size, these bodies are 10 to 50 m 

in length by 10 to 30 m wide. The large body in the central Niven Lake Lenticle area 

between Frame and Niven lakes is approximately 100 m long and 40 m wide. These 

bodies display undulose, nonchilled contacts and locally physically interfinger with 

gabbro, suggesting co-existing magmas. Such a relationship is further suggested by 

quartz feldspar porphyry “back veining” cooling fractures along the margins of gabbro 

sills, (plates 2.1 B, 2.1 C).

Hydrothermal Breccias (plates 2.2 A - 2.2 D, maps 1 and lb) are well exposed 

behind the baseball diamond and immediately west of Frame Lake. The breccias are 

distributed as blocks bordered by gabbro sills, quartz feldspar porphyry and feldspar 

porphyry. As shown in detail in map lb and plate 2.2c, a pipe like breccia body is 

found between feldspar porphyry and brecciated pillow material.

The matrix of the breccias consists of hydrothermally milled rock flour. Pillow 

selvages are disrupted, discontinuous, and rarely intact. The inner cores of partial
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Plate 2.2

(A) Hydrothermal Breccia behind the Oldtown baseball diamond. Light pink 
material represents siliceous flooding and quartz feldspar porphyry material 
invading volcanic flows.

(B) Hydrothermal breccia behind Oldtown baseball diamond. Shows a mixture of 
quartz feldspar porphyry fragments and pillow core material in a rock flour 
matrix.

(C) Hydrothermal breccia pipe behind Oldtown baseball diamond. Shows a mixture 
of quartz feldspar porphyry fragments and pillow core material in a rock flour 
matrix.

(D) Hydrothermally brecciated pillows behind Oldtown baseball diamond. Note 
partial selvage just above pencil. Fragmental material consists of pillow material 
in a rock flour matrix.
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pillows exhibit angular fragments creating “jigsaw fit texture” in a rock flour matrix. 

Pillow selvages are randomly oriented and relict pillow cores may be variolitic. 

Angular fragments of quartz feldspar porphyry and relict pillow core material are 

occasionally found as clasts within the rock flour. These clasts are 2 to 50 cm in size 

and felsic fragments exhibit reaction rims.

Gabbro sills and dykes account for approximately 50 % of the lithology in the 

Niven Lake Lenticle. Sills are massive and display “spotted” amphibolite textures, 

leading to such field terms as “leopard” or “frog rock”. Sills are up to 100 m in 

thickness and run up to 1 km along strike. They often exhibit centimeter sized feldspar 

phenocrysts where they intrude cherty tuff. Gabbro dykes generally exhibit finer 

grained metagabbroic textures. These dykes are up to 8 m in width and transect all 

lithologies. They also may exhibit centimeter sized phenocrysts of plagioclase and 

occasionally have chilled margins.

The Proterozoic diabase dykes are easily discerned by their characteristic rusty 

brown colour. These rarely exceed a meter in thickness. They are magnetic and 

contain minor amounts of sulphides.

2.3.2 Brock Lenticle

In the Brock Lenticle (map 2) remnants of variolitic pillowed flows (plates 2.3 

A, B) host later feldspar porphyry, quartz feldspar porphyry and gabbro sills. Flows 

constitute approximately 1/5 of the total exposure. In outcrop they have a buff pink 

colour on weathered surfaces but are olive green colour on fresh surfaces. The buff 

pink colour is a result of bleaching due to the effects of the roaster at the Giant Mine.
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(A) Relic pillow selvages in the Brock Lenticle volcanic flows. Note partial selvages 
just below compass.

(B) Relic pillow selvages in the Brock Lenticle volcanic flows. Note coalesced 
varioles just below hammer.

(C) Intact pillows in the Brock Lenticle.

(D) Recrystallized pillows in the northen Brock Lenticle . Fine lines are baked, intact 
selvages.

Plate 2.3
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This bleaching led Henderson and Brown (1966) to interpret these outcrops as dacites. 

Their colouration is quite similar to the intrusive quartz feldspar porphyry. Detailed 

mapping reveals remnants of partial pillow selvages and variolitic textures. One 

outcrop in the central Brock and adjacent to the West Bay Fault reveals “ghostly” 

glomerophyric patches of varioles with relict pillow selvages that appear twisted and 

contorted. Just to the north and in fault contact with this outcrop, perfect pillows are 

preserved (plate 2.3 C). At the northern end of the Brock, pillowed flows are strongly 

recrystallized due to their proximity to gabbro sills (plate 2.3 D). These recrystallized 

pillowed flows were originally mapped as gabbro sills by Henderson and Brown, 

(1966) and Grant (1997). In the southern end of the Brock, domains of pillows have 

suffered shear deformation and have been flattened by a factor of fifty to one.

Cherty tuff occurs as discontinuous homfelsed lenses along the margins of 

gabbro sills (plate 2.4 A). These units are one to two meters in thickness and although 

recrystallized, thin banding is still visible. Lapilli tuff makes up a minor component 

(<5%) of the lithologies in the Brock Lenticle. These rocks are observed in two 

outcrops: one at the northern end of the Brock Lenticle near the Vee Lake road, and the 

other at the base of Baker Creek where it flows into the tailings waterworks. The lapilli 

tuff at the north end of the Brock is an unbedded, moderately well sorted matrix 

supported rock with lapilli ranging in size from 5 to 15 mm (plate 2.4 B). The matrix is 

intermediate in composition and composed of quartz, carbonate, sericite, and chlorite. 

The lapilli themselves are composed mainly of carbonate followed by quartz, and 

sericite and are subrounded, flattened clasts. These clasts do not have reaction rims. 

The lapilli tuff at the mouth of Baker Creek strikes northwest, and is 10 m thick
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(A) Cherty tuff (center) between gabbro sill (right) and quartz feldspar 
porphyry (left) at the northern end of the Brock Lenticle.

(B) Lapilli tuff at the north end of the Brock Lenticle. Note lithic fragments.

(C) Layed lapilli tuff at the mouth of Baker Creek (Brock). Dark and light 
bands represent intermediate and felsic units respectively.

(D) Contact between feldspar porphyry (dark unit on left) and quartz feldspar 
porphyry (pink material on right). Note the undulose nature of the 
contact. Photo taken across from UBC pit (Brock).

Plate 2.4
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stratigraphically. This outcrop displays two distinct units: a more intermediate unit 

containing felsic lapilli, and a more felsic overlying unit containing intermediate clasts 

(plate 2.4 C). Both are of equal thickness and in sharp contact. Neither of these units 

have bedding and both intermediate and felsic lapilli range in size from 5-7 mm. The 

intermediate clasts are aphanitic and often vesicular, while the felsic clasts are quartz 

feldspar porphyritic. Clasts are rounded, and exhibit reaction rims.

Feldspar porphyries comprise approximately 1/5 of the rocks in the Brock 

Lenticle. These outcrops are greenish-grey in colour and map out as irregular sill-like 

bodies. They occur between quartz feldspar porphyry intrusions and mafic- 

intermediate flows (plate 2.4 D). Crosscutting relationships indicate feldspar porphyry 

predates quartz feldspar porphyry. The lack of chills combined with conformable 

contacts suggests a temporal association.

Quartz feldspar porphyries also comprise approximately one fifth of the Brock 

Lenticle. In outcrop, these rocks are a buff pink colour and occur as irregular dykes 

and sills ranging between ten to fifty meters in length and ten to twenty meters in 

width. These units are massive, lack chill margins with adjacent rocks, and display 

undulose contacts with gabbros. As observed in the Niven Lake Lenticle, contacts 

between quartz feldspar porphyry and gabbro sills appear to represent coeval melts, as 

fingers of quartz feldpar porphyry protrude into gabbro margins (plate 2.5 A, B).

Intrusive breccias are most prominent marginal to feldspar porphyry and quartz 

feldspar porphyry. Where quartz feldspar porphyry intrudes feldspar porphyry, meter 

sized xenolithic, stoped blocks of feldspar porphyry create “jigsaw fit texture” (plate

2.6 A, B). Excellent exposures of breccia bodies can be found approximately 40 m
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(A) Quartz feldspar porphyry back veining gabbro sill in the southern Brock Lenticle.

(B) (C) Undulose contact between gabbro sill and quartz feldspar porphyry. Note the 
undulose and interfingering nature of the contact (southern Brock).

(C) Close-up of plate 2.5 A revealing the lack of chill margins between intrusives.

Plate 2.5
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P la te  2 .6

(A) Intrusive breccia, southern Brock Lenticle. Quartz feldspar porphyry (pink) is 
forcefully injecting feldspar porphyry material. Note gabbro sill on right is not 
invaded by the quartz feldspar porphyry.

(B) Close up of quartz feldspar porphyry injecting and brecciating feldspar porphyry 
material (northern Brock).





west of the Baker Creek reservoir. Locally, where quartz feldspar porphyry stringers 

invade feldspar porphyry, forceful injection produces a brecciated texture. These 

bodies are found at the southern end of the Brock approximately 30 m from the lower 

contact of the Yellowknife Bay Formation. Isolated angular blocks of quartz feldspar 

porphyry are also found within brecciated domains of mafic volcanics directly across 

from the UBC pit.

Thick (up to 30 m) gabbro sills map out along the entire length of the Brock 

Lenticle and comprise approximately 1/3 of the lithologies. These gabbro sills have 

been divided into two phases on the basis of texture. This subdivision was originally 

developed by mine geologists at Giant to distinguish rocks in drill core. Those sills 

having coarser “frog skin” textures are referred to as “old metagabbro”. This phase is 

texturally identical to sills found at Niven, displaying similar feldspar phenocrysts 

where they intrude along cherty tuff horizons. Sills consisting of finer grained textures 

are referred to as “intermediate metagabbro”. These sills are stratigraphically below 

old metagabbro sills and are distinguished by their dark brown appearance and epidote 

veining. As at Niven Lake, gabbro dykes transect the Brock gabbro sills. These dykes 

are two to three meters in width and cut across stratigraphy at a high angle. 

Occasionally, the dykes also display phenocrysts of plagioclase but are generally much 

finer grained than gabbro sills.

One Proterozoic diabase was identified at the northern end of the Brock 

Lenticle. This dyke is fine grained four to five meters in width, exhibits a rusty brown 

weathered surface, and is also strongly magnetic. A lamprophyric dyke occurs at the 

northeastern end of the Brock and cuts across lapilli tuff.
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2.3.3 The Vee Lake Lenticle
29

A shear bounded block of pillowed flows, approximately 100 m long and 20 m 

wide, occurs centrally within the Vee Lake Lenticle. These flows show penetrative 

foliation but are not flattened. Selvages are intact, two to three centimeters in width 

and pillow cores often exhibit eyebrow structures. These pillows border on lapilli tuff 

of intermediate composition which grades upwards into tuff breccia.

Feldspar porphyries comprise only a small (5%) portion of the total exposure of 

outcrop in the Vee Lake Lenticle. They occur as sill-like bodies in the northwestern 

extension. Geometrically, they are 20 by 30 meters in dimension and have been 

intruded by gabbro sills. In outcrop, they appear dark grey in colour with 2-3 mm sized 

phenocrysts of plagioclase in an aphanatic groundmass. Pervasive deformation and 

penetrative foliation cause great difficulty in assessing their temporal relationship with 

adjacent rocks, namely gabbro and quartz carbonate sericite schist. They are, however, 

unconformably overlain by fanglomerates of the Jackson Lake Formation.

Vee Lake Lenticle quartz-feldspar porphyries are much more difficult to 

characterize than those of the Brock and Niven Lake lenticles. Since felsic rocks at 

Vee Lake consist of both an intrusive phase and a volcaniclastic phase, differentiating 

these rocks based on their contact relationships and textures is difficult due to a strong 

schistosity. Rocks of intrusive origin were distinguished on the basis of contact 

relationships at the northeast arm of Vee Lake itself. Here, a package of volcaniclastic 

rocks form a xenolithic “raft” within texturally massive quartz feldspar porphyry 

(plates 2.7A, B). In terms of their geometry, quartz-feldspar porphyry bodies occur as 

irregular sills and dykes up to sixty meters in length and approximately twenty to fifty



(A) Injection of quartz feldspar porphyry into pyroclastics, central Vee Lake Lenticle. 
White line defines the quartz feldspar porphyry boundary.

(B) Intrusive quartz feldspar porphyry bordering on pyroclastic unit in the central Vee 
Lake Lenticle. Black line defines contact.

Plate 2.7





meters in width. Unlike their equivalents in the Brock and Niven Lake lenticles, quartz 

feldspar porphyries at Vee Lake are pale green in colour as a result of sericitic 

alteration. Their occurrence is essentially limited to the south although much, if not all 

of those rocks identified as quartz carbonate sericite schist may have had an intrusive 

origin. Contact relationships between these rocks and gabbro sills are sharp and lack 

textural contrasts as a result of penetrative rock fabric.

Coarse felsic volcaniclastics at Vee Lake consist of agglomerate, pyroclastic 

breccia and lapilli tuff breccia. Agglomerate occurs in the central portion of the Vee 

Lake Lenticle as an approximately 200 m long discontinuous unit (plate 2.8 A). This 

unit is up to 20 m in thickness and grades both vertically and laterally into pyroclastic 

breccia and lapilli tuff breccia. These agglomerates are unbedded, poorly sorted and 

clast supported. The composition of both matrix and clasts is felsic with felsic clasts 

made up of quartz feldspar porphyry. Clasts are subrounded to angular, range in size 

from 3 cm to 50 cm, and have dark reaction rims indicating deposition while still hot.

Pyroclastic breccia (plate 2.8 B) occurs stratigraphically above the agglomerate 

and extends northerly along strike for approximately 500 m. This unit is up to 10 m 

thick and discontinuous due to offsets by faulting. This unit is poorly sorted, meter 

sized blocks of quartz feldspar porphyry are found sitting in a very finely bedded lapilli 

tuff. Clasts are stratabound suggesting that the unit is a debris flow. Blocks do not 

exhibit reaction rims, indicating deposition while relatively cool. The matrix is lapilli 

tuff breccia (plate 2.8 C) consisting of subangular clasts of felsic material. Dominant 

clasts include well preserved pumice, fiammi and lapilli. Lapilli are composed of

31



(A) Agglomerate, central Vee Lake Lenticle. Consists of volcanic bombs of quartz 
feldspar porphyry in a matrix of quartz feldspar porphyry. Central Vee Lake 
Lenticle.

(B) Pyroclastic breccia, central Vee Lake Lenticle. Consists of angular bombs of 
quartz feldspar porphyry in an intermediate lapilli tuff breccia matrix.

(C) Lapilli tuff breccia, central Vee Lake Lenticle. Note flattened quartz feldspar 
porphyry clasts hosted in intermediate matrix.

(D) Lapilli tuff, central Vee Lake Lenticle. Note bedding contact running through 
lens cap.

Plate 2.8





clusters of plagioclase, sericite, quartz and carbonate. Minor clasts include of quartz 

feldspar porphyry and isolated phenocrysts of quartz and feldspar.

Lapilli tuff (plate 2.8 D) overlies this pyroclastic tuff breccia. This unit is 

subdivided based on the absence of large quartz feldspar porphyry blocks and bombs 

yet it is interbedded with and gradational to lapilli tuff breccia. Gradation into straight 

lapilli tuff is accompanied by a greater population of plagioclase phenocryts. These 

crystals are tabular in habit and subhedral in form and are on average 4 mm in size. 

Lapilli range in size upwards to 4 mm and are composed of quartz and plagioclase 

phenocryst aggregates with interstitial quartz, carbonate, and sericite. Stratigraphically 

above and interbedded with lapilli tuff are quartz-phyric crystal tuffs (plate 2.9 A). 

This facies is laterally extensive and discontinuously spans the entire Vee Lake 

Lenticle. These tuffs are matrix supported and often well bedded. Quartz eyes are up 

to 2 mm in size and accessory clasts in these rocks include preserved pumice and fiami 

as well as the occasional lithic fragment. Plagioclase pheocrysts may or may not be 

present and when they occur exist as tabular equant grains 1-2 mm in size.

A volcanic sandstone occurs stratigraphically higher in the section on the 

western shore of Walsh Lake (plate 2.9 B, C, D). This sandstone exhibits crossbedding 

and appears to be the result of redeposition of lower units. Above, and in sharp contact 

with this unit is vitric ash tuff (plate 2.9 B, C). This outcrop is only about 4-5 mm thick 

and 10 m long where it dissappears into the lake. This rock consists of spindle shaped 

fiami in a fine grained light green/yellow matrix.

Penetrative deformation accompanied by pervasive alteration results in quartz 

carbonate sericite schist being the primary Vee Lake lithology type (plates 2.10A -
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(A) Quartz crystal tuff, central Vee Lake Lenticle. Note laminated layering.

(B) Rock hammer spans the contact between lapilli tuff (left), volcanic 
sandstone (center) and vitric ash tuff (right). Taken on the shore of Walsh 
Lake.

(C) Close-up of contact between volcanic sandstone (left) and vitric ash tuff 
(right). Taken on the shore of Walsh lake.

(D) Close-up of bedded volcanic sandstone (above).

Plate 2.9
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2.IOC). Considering the degree of strain and alteration, it is impossible to determine 

an intrusive or extrusive origin for these schists. This schist is dominant in the north 

and northwest. It has a pinkish/yellowish colour, and has suffered grain reduction 

during deformation, two mm sized anhedral plagioclase and quartz phenocrysts occur 

in a sericitic groundmass flooded with ankerite veinlets.

Gabbro sills in the Vee Lake Lenticle are similar to those found in the Niven 

Lake and Brock lenticles. They are massive and occur along the entire length of this 

portion of the Townsite Formation. In spite of large areas in the northern portion being 

pervasively deformed, in much of the outcrop in the south, they exhibit spotted 

amphibolitic texture equivalent to those in the Brock and Niven Lake lenticles.

The north end of the Vee Lake Lenticle is pervasively transected by a suite of 

felsic dykes and irregular shaped bodies (plate 2.10 D). These dykes are bright green in 

colour and are quartz and feldspar phyric. They definitely predate the late stages of 

deformation as they are “pulled” into the penetrative fabric.
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(A), (B), (C) Photos showing the degree of penetrative foliation in the Vee 
Lake Lenticle. The light green units are quartz carbonate sericite schist and 
may be of intrusive or extrusive origin. The dark rocks are mafic and may be 
flows or gabbro sills.

(D) Felsic dyke cutting gabbro sill. Jackson Lake in the background.

Plate 2.10
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Descriptive Petrography of Townsite Formation Lithologies

3.1 Introduction

Thin sections were examined using a polarizing microscope equipped with reflective 

light optics. Petrographic descriptions are organized from oldest to youngest 

lithologies, including: volcanic flows, cherty tuff, volcaniclastics, feldspar porphyry, 

quartz feldspar porphyry, hydrothermal breccias and gabbro sills. Each begins with 

lithologies in the Niven Lake Lenticle and progresses northward through the Brock to 

the Vee Lake lenticles respectively. Photomicrographs supplement thin section 

descriptions.

3.2 Volcanic Flows

Descriptions of flows are based on a study of seven thin sections. Niven Lake 

specimens reveal a fine grained seriate texture with amphibole (50%) as the main mafic 

phase. Amphibole occurs as acicular laths displaying well defined cleavage and 

dendridic to spherulitic porphyroblasts up to lA  mm in size. Epidote is the second most 

abundant mafic phase, occurring as clear tabular grains up to lA  mm in size. Anomolous 

birefringence and zoning are observed under crossed niçois. Chlorite, comprising 

approximately 10 %, is present as microlites interstitial to amphibole. A much finer 

grained groundmass consists of interstitial plagioclase, quartz, and sericite.

In the Brock Lenticle, amphibole is again the major mafic phase. These grains are 

anhedral in form but occur in a variety of habits which include skeletal, dendritic and
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spherulitic. The majority of the crystals are acicular and these are commonly 

disoriented. These grains partially include groundmass and show some chlorite 

alteration. Chlorite is the second most abundant mafic phase, occurring as patches 

where it replaces amphibole. Plagioclase is not abundant, occurring as tabular 

subhedral grains partially enclosing groundmass. Most plagioclase grains exhibit 

incipient alteration to sericite, carbonate and quartz.

Spherulitic masses represent varioles (plate 3.1 A). The mineralogy of these 

masses is too fine grained to resolve microscopically but the spherules are primarily 

composed of secondary quartz, carbonate, and sericite. Most varioles are strongly 

fractured and infilled with chlorite veins and patchy chlorite. Amphibole and epidote 

can be observed in some nodules. The relict spherulitic to dendritic texture stem from 

the original variole. The fine grained groundmass is composed of quartz, sericite, 

carbonate and chlorite and minor plagioclase. In terms of opaque minerals, sphalerite 

is as abundant as is pyrite. Sphalerite appears to be associated with amphibole. 

Epidote is abundant in the groundmass as patchy growths as well as tabular subhedral 

grains which are clear and apple green in colour when viewed in plane polarized light.

In the Vee Lake Lenticle basaltic andesites display an overall aphanitic texture 

but in thin section they generally demonstrate a microporphyritic texture. Plagioclase 

phenocrysts up to 1.5 mm in length occur as prismatic, subhedral grains in a fine 

grained groundmass of microlitic chlorite, plagioclase, sericite and quartz. These grains 

display polysynthetic twinning, have normal zoning and have undergone partial 

resorbtion. Chlorite is the only mafic phase in the groundmass and occur as microlites.
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(A) Brock Lenticle volcanic flow. Variolitic material outlined by white line.

(B) Vee Lake Lenticle pyroclastic breccia. Strongly altered pagioclase phenocryst at 
top of photo. Note quartz eyes hosted in a fine to medium grained hollocrystalline 
groundmass of quartz, sericite, plagioclase and carbonate-chlorite veins.

(C) Vee Lake Lenticle pyroclastic breccia (quartz feldspar porphyry block). This 
photo shows tabular and subhedral plagioclase phenocryst displaying dformation 
twinning.

Plate 3.1
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The remainder of the groundmass consists of intergrown plagioclase, quartz, sericite 

and secondary carbonate.

3.3 Cherty Tuffs

Cherty tuffs occur in the Brock and Niven Lake members of the Townsite 

Formation but are absent in the Vee lake member. Thin sections analyzed from both 

lenticles are petrographically similar. In thin section, these units are massive, quartz 

rich and rarely display quartz and plagioclase phenocrysts.

3.4 Volcaniclastics

Agglomerates are only observed in the Vee lake lenticle. In thin section, the 

overall texture is porphyritic and defined by monolithic clasts almost entirely altered to 

sericite, with quartz eyes ranging in size from 0.5 -  2 mm. Interstitial to these clasts 

there exists fine grained quartz, carbonate, sericite, and minor microlitic chlorite.

Pyroclastic breccia is poorly sorted and consists of meter sized blocks of quartz 

feldspar porphyry sitting in a finely bedded lapilli tuff. In thin sections these blocks 

have similar appearance to Brock quartz feldspar porphyry. Centimeter sized 

plagioclase phenocrysts and quartz eyes are hosted in a fine to medium grained 

hollocrystalline groundmass of quartz, sericite, plagioclase and carbonate with minor 

patchy chlorite (plate 3.IB). The plagioclase phenocrysts are tabular in shape and 

subhedral in form, displaying deformation twinning (plate 3.1C).

Lapilli tuff is found at the northern tip of the Brock lenticle and is continuous 

throughout the Vee Lake Lenticle. At Vee Lake, however, there is a gradation from 

pyroclastic breccia through lapilli tuff brecccia. Gradation into uniform lapilli tuff is
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(A) Lithic fragment in lapilli tuff from central Vee Lake Lenticle. (B) Crossed polars.

(C) Central Vee Lake lenticle. Pumice fragment preserved in quartz crystal tuff 
(lower half of photo). Note flattened vessicles. (D) Crossed polars.

(E) Quartz phyric crystal tuff from central Vee Lake Lenticle. (F) Crossed polars.

Plate 3.2
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accompanied by a greater population of plagioclase phenocryts. These crystals are 

tabular in habit and subhedral in form and are on average 4 mm in size. They also 

display oscillatory zoning. A finer (~ 1mm) generation of plagioclase is also noted. 

These grains display simple twinning but are strongly altered to sericite. Lapilli range 

in size upwards to 4 mm and are composed of quartz and plagioclase phenocryst 

aggregates with interstitial quartz, carbonate, and sericite (plate 3.2A,B). The 

groundmass has an overall seriate texture composed of chlorite after altered glass 

shards, quartz and sericite altered plagioclase microlites. Where rocks are strongly 

altered, the groundmass is flooded with ankerite.

In the Vee Lake Lenticle quartz phyric crystal tuff occurs laterally along strike 

as discontinuous finely bedded lenses. In thin section, quartz eyes are up to 2 mm in 

size. Accessory clasts include relict pumice (plate 3.2 C,D) and fiami as well as the 

occasional lithic fragment. Plagioclase phenocrysts may or may not be present as 

tabular equant grains 1-2 mm in size (plate 3.2 E,F). Where found as rafted sediments 

in south/central Vee Lake they tend to be interbedded with reworked material, 

consisting of platy and cuspate glass shards intermixed with quartz and sericite . The 

very fine grained groundmass, now quartz and sericite, may derive from devitrified 

glass.

Occurring only as a small outcrop on the western shore of Walsh lake, vitric ash 

tuff consists of spindle shaped fiami in a fine grained light green/yellow matrix. Thin 

sections reveal sericite altered fiammi 2-3 mm in size in a ground mass of quartz,
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Plate 3.3

(A) Vitric ash tuff. Sample collected at the shore of Walsh lake (Vee Lake Lenticle). 
Note sericitized, flattened pumice (fiami) outlined in white.

(B) Volcanic sandstone. Note prismatic chloritoid porphyrobasts in quartz rich 
groundmass. (C) Crossed polars.
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sericite, platy glass shards and minor chlorite (plate 3.3A). Subordinate in the 

groundmass are tiny microlites of feldspar and quartz. Spherulitic devitrified glass is 

also evident.

Crossbedded volcanic sandstone lying stratigraphically below and in sharp 

contact with the vitric ash tuff is medium grained, massive rock composed of equal 

amounts of quartz and sericite (plate 3.3 B,C). Scattered throughout the groundmass 

are euhedral chloritoid porphyroblasts (5%), platy glass shards and microlites of 

feldspar.
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3.5 Feldspar Porphyry

The descriptions of feldspar porphyry from Niven lake are based on 

examination of two thin sections. Thin sections reveal an overall porphyritic texture 

with plagioclase phenocrysts in a fine to medium grained groundmass of amphibole, 

chlorite, plagioclase, quartz, sericite and carbonate (plate 3.4 A, B). Plagioclase 

phenocrysts are up to 4 mm in size and have albitic composition. These grains are 

subhedral in form and tabular to prismatic in habit. Twinning is rarely observed as 

grains are strongly altered to sericite. Secondary growths of carbonate and sericite 

occur along most plagioclase rims. Amphibole makes up the major mafic phase, 

occurring as porphyroblastic growths up to 1 mm in size with acicular, dendritic and 

spherulitic habits. Minor chlorite occurs as microlites in the groundmass. The 

remainder of the groundmass is composed of randomly oriented intergrowths of 

plagioclase, quartz, sericite, carbonate and apatite.



(A) Strongly altered plagioclase phenocryst from Niven Lake Lenticle feldspar 
porphyry. (B) Crossed polars.

(C) Brock Lenticle feldspar porphyry. Note oscillatory zoning and twinning. 
Also note the much finer grained groundmass in the Brock example (scale).

Plate 3.4





Descriptions of Brock Lenticle feldspar porphyries are based on an examination 

of three thin sections. In thin section plagioclase is the only phenocryst phase. The 

groundmass is comprised of chlorite, biotite, epidote, sphene, plagioclase, sericite and 

quartz (plate 3.4 C). The majority of the euhedral feldspar phenocrysts are 4-6 mm in 

size, euhedral in form and tabular to prismatic in habit. Their composition is 

exclusively albitic and they comprise 20-25% of most samples. These grains often 

form glomeropyhric aggregates. Fractures are now infilled with secondary carbonate. 

Feldspar phenocrysts poikiolitically enclose minerals occuring in the groundmass. 

Most crystals show well developed oscillatory zoning. Biotite is ubiquitous in the 

groundmass of all Brock feldspar porphyry sections. These crystals show platey habit 

and are always partially replaced by chlorite. Sphene is also abundant throughout 

feldspar porphyries in the Brock, comprising 5-10% of most thin sections. These high 

relief grains often occur as patchy clusters <1 mm in size, are subhedral in form and 

tabular in habit. Most grains are fractured. Epidote occurs locally in most sections but 

is not ubiquitous. These are very fine grained (<1/10 mm) and display third order 

birefringence. Ubiquitous quartz, plagioclase and sericite make up accessory phases in 

the groundmass. Some sections show % mm sized annealed ovals of polygonal quartz. 

Carbonate occurs as veins and increases in areas where rocks are sheared. Opaques 

include pyrite, ilmenite and chalcopyrite.

Feldspar porphyries from the Vee Lake Lenticle appear dark grey in colour with 

2-3 mm sized phenocrysts of plagioclase in an aphanitic groundmass. Cut and polished 

slabs reveal grey prismatic plagioclase phenocrysts as large as 5 mm in size. Here they 

appear as dark grey prismatic grains. Albite phenocrysts occur in a fine grained
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groundmass. Larger plagioclase phenocrysts are tabular to prismatic subhedral grains 

that are overprinted by moderate sericite alteration. Some grains are entirely replaced 

by sericite. Those that have undergone least alteration display excellent lamellar twins 

and oscillatory zoning. The groundmass is comprised of fine (<1 mm) albite 

phenocrysts (50%) and chlorite (50%). Chlorite shows dark brown to blue interference 

and occurs interstitially to microphenocrystic plagioclase. In some sections chlorite 

replaces biotite. Trace sphene and epidote occur throughout the groundmass. Trace 

opaque phases include ilmenite and chalcopyrite.

3.6 Quartz Feldspar Porphyry

The descriptions of quartz feldspar porphyries are based on the examination of a 

total of twelve thin sections. In hand sample Niven Lake Lenticle quartz feldspar 

porphyries exhibit well preserved porphyritic texture defined by plagioclase and quartz 

phenocrysts. Cut and polished slabs of this rock reveal plagioclase phenocrysts 

between 2 and 8 mm and smokey grey quartz eyes between 2 and 3 mm, hosted in dark 

grey aphanitic groundmass. In thin section the overall porphyritic texture is defined by 

plagioclase phenocrysts with subordinate quartz eyes (plate 3.5 A). The groundmass is 

fine grained and composed of biotite, minor chlorite, quartz, plagioclase, sericite, 

carbonate and sphene. The plagioclase phenocrysts are 2-10 mm in size, strongly 

sericitized and display lamellar twins. In most sections plagioclase phenocrysts make 

up 20-25% of the rock and range from tabular to prismatic in habit and subhedral to 

euhedral in form. They show normal zoning and have andesine composition. Rare
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(A) Niven Lake Lenticle quartz feldspar porphyry. Note strong (quartz, 
sericite) alteration of plagioclase phenocryst and quartz eye at lower left.

(B) Brock Lenticle quartz feldspar porphyry. Photo displays quartz eyes, and 
smaller generation plagioclase rich groundmass. Note subhedral to 
anhedral plagioclase phenocrysts altered to sericite along microfractures.

(C) Vee Lake Lenticle quartz feldspar porphyry. Plagioclase grains display 
deformation twinning.

Plate 3.5





(2%) quartz eyes are 1-3 mm in size and display embayed grain boundaries. These 

grains are generally clear and have undulatory extinction.

Patchy biotite makes up approximately 20% of these rocks and occurs as .25 to 

.50 mm equant tabular grains. Sphene makes up approximately 5% modally and occurs 

in close association, with the biotite. Chlorite is rare, and only occurs where it replaces 

biotite. The remainer of the groundmass consists of a finely intergrown assemblage of 

quartz, sericite and carbonate together with microlites of plagioclase and apatite. In 

order of abundance, quartz makes up approximately 30%, carbonate 10%, sericite 5 %  

apatite and plagioclase 5%. Ilmenite occurs as a minor opaque phase rarely associated 

with sulphides.

In cut and polished slabs Brock Lenticle quartz feldspar porphyry intrusives 

reveal prismatic euhedral to subhedral feldspar phenocrysts up to 8 mm in length and 

smokey grey quartz eyes 2-3 mm in diameter hosted in an aphanitic dark grey siliceous 

groundmass. In thin section, Brock Lenticle quartz feldspar porphyries exhibit 

microporphyritic textures characterized by plagioclase and quartz eye phenocrysts in a 

fine grained groundmass (plate 3.5 B). There are two distinct populations of plagioclase 

phenocrysts: those which are 5-8 mm in size and a smaller generation ranging between 

0.5 and 1.5 mm. The macrophenocrysts are euhedral to subhedral in form, tabular to 

prismatic in habit and comprise approximately 25%. Depending on their degree of 

alteration, they usually display lamellar twinning, are albite to oligoclase in 

composition and display normal zoning. Alteration is incipient to pervasive with 

sericite, quartz and chlorite. The microphenocrystic generation of plagioclase 

comprises up to 10%, are prismatic in habit but generally show subhedral to anhedral
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form. These grains commonly display simple twins and poikiolitically enclose sericite 

and minor apatite. The quartz eyes are 2-3 mm in size and comprise approximately 

5%. These grains are usually smokey grey in colour and display undulatory extinction. 

Some grains display microfracturing with fine grained quartz aggregates infilling these 

fractures.

Chlorite is ubiquitous throughout the groundmass and occurs as microlites and 

as patches and veins, comprising up to 15% of most thin sections. Chlorite is dark 

green to bright green in plane polarized light often spatially associated with carbonate. 

Quartz, apatite and secondary carbonate and sericite comprise approximately 70% of 

the groundmass. In some sections the groundmass is almost entirely cryptocrystalline 

quartz. Sphene (comprising 1-2%) is observed in most sections and occurs as 1-2 mm 

subhedral tabular grains that often occur in clusters. Opaques are minor and consist of 

pyrite and ilmenite.

Weathered hand samples of Vee Lake quartz feldspar porphyry intrusives show 

2-3 mm plagioclase and quartz phenocrysts in a siliceous groundmass. Cut and 

polished slabs reveal greenish-grey subhedral to anhedral plagioclase phenocrysts and 

smokey grey quartz eyes in a very dark groundmass. Thin sections display an overall 

porphyritic texture with plagioclase and quartz grains hosted in a fine grained 

groundmass (plate 3.5 C). Areas of shearing, such as northeast of Gold Lake, display 

the most intense alteration of groundmass. Feldspar phenocrysts may be anywhere 

from 2-10 mm in size, are subhedral in form and have tabular to prismatic habit. 

Plagioclase phenocrysts are albite in composition and range between 10 and 40 modal 

%. Although sericite alteration is moderate to high, lamellar twins are readily
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discemable. Quartz eyes ranging between 2-3 mm are less abundant, comprising 5-10 

modal % . These grains are clear and typically equant, display undulatory extinction, 

and are rarely fractured. Samples having a greater intensity of alteration have chlorite- 

carbonate veinlets. In less altered samples, 5-10 % chlorite is ubiquitous throughout 

the groundmass. Throughout the groundmass carbonate, sericite, and apatite comprise 

approximately 5% each. In less altered samples quartz makes up as much as 65% of 

the remaining groundmass component. Pyrite is common and may comprise 2% of the 

more altered samples.

3.7 Hydrothermal Breccias

Mafic pillowed units bordering on massive quartz feldspar porphyry are 

characteristically bleached (silicified-albitized) and commonly exhibit brecciation 

textures. Breccias are readily observed at the eastern end of the Niven Lake Lenticle 

(behind the Racquet Club) and through the southern and central portions of the Brock. 

Breccia types range from fragmented wall rocks with blocks hosted in hydrothermally 

cemented rock flour, through heterolithic mixes with both volcanic and porphyry 

blocks. Monolithic breccias occur in the Brock where quartz feldspar porphyry is host 

to meter sized blocks of feldspar porphyry creating a “jigsaw” like texture. In thin 

section (plate 3.6a,b,c,d), the rock flour is almost entirely composed of quartz or a 

mixture of chlorite, sericite, and quartz. Both macro and microscopic fragments of
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mafic and felsic material are found in this rock flour matrix.



(A) Niven Lake Lenticle hydrothermal breccia. Note mixed felsic (light areas) and 
mafic (dark green areas) hosted in a hydrothermally milled rock flour.

(B) From the same area as (A), this photo shows rock flour being comprised of 
randomly oriented chlorite and amphibole grains in a micro quartz aggregate.

(C) From the same area of (A) and (B) shows the boundary (white line) between 
mafic material and rock flour. Note the extremely fined grained nature of the 
siliceous rock flour. (D) crossed polars.

Plate 3.6
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3.8 Gabbro Sills

53

The description of gabbro sills in the Niven Lake Lenticle is based on four thin 

sections. In thin section, these sills are melano to mesocratic in colour (plate 3.7 A). 

These rocks are largely composed of randomly oriented blades of highly altered 

amphibole up to 5 mm in size. Interstitial to amphibole are fine grained aggregates of 

quartz and microlites of chlorite, epidote and plagioclase that together make up 

approximately 15%. Amphiboles are anhedral in form and partially enclose fine 

grained interstitial material. In some samples 80 % of individual amphibole grains are 

altered to prehnite, 5 %  to chlorite and 5 % to epidote. Prehnite displays bright second 

and third order birefringence and high relief.

The rare plagioclase phenocrysts occurring proximal to cherty tuff units at the 

margins of sills are 95 % altered to sericite. Groundmass plagioclase, preserved as 

microlites with simple twins, are oligoclase to labradorite in composition. Gabbro sills 

display minor carbonate flooding, comprising 5 %  in thin section.

Gabbro sills in the Brock are thinner than those at Niven. The old metagabbro 

is texturally identical to the sills at Niven Lake, exhibiting coarse amphibole and rare 

feldspar phenocrysts where they intrude along cherty tuff horizons. In thin section 

(plate 3.7 B) they differ markedly in their mineralogy and abundance of plagioclase. 

Plagioclase up to 2 mm in size comprise 15 %. These grains are subhedral, tabular to 

prismatic in habit and have andesine to labradorite composition. Although substantially 

altered to sericite, lamellar twins are still discernable. Amphibole is well preserved in 

these rocks and prehnite is absent. Amphiboles are up to 5 mm in size and have 

acicular to dendritic habit and are partially altered to chlorite and epidote. Chlorite



(A) Niven Lake Lenticle gabbro sill. Note the alteration of amphibole to prehnite (P).

(B) Brock Lenticle gabbro sill (old metagabbro). Note amphibole coarsely altered to 
chlorite.

(C) Brock Lenticle sill (intermediate metagabbro), note chlorite alteration along 
cleavage.

Plate 3.7





occuring as a patchy replacement of amphibole and intergrown with epidote, 

plagioclase, quartz and carbonate, comprises approximately 15 %.

Thin sections, of intermediate metagabbro (plate 3.7 C, D), exhibits coarse 

amphibole 1 -  2 mm in size. These grains are 50 % altered to chlorite and epidote. 

Albite to andesine plagioclase up to 1 mm in size make up 15 % of these sections, 

occurring as prismatic grains, subhedral in form, interlocking with amphibole. The fine 

grained groundmass is composed of quartz , sericite , epidote and carbonate. Sphene is 

an accessory phase.

Similar to the Brock, both intermediate and old metagabbro sills occur in the 

Vee Lake lenticle. Here textures are masked due to penetrative deformation and 

alteration. Where identifiable, textural characteristics are essentially equivalent to 

those in the Brock Lenticle. The coarse amphibole is entirely altered to chlorite. Most 

are carbonate (ankerite) flooded and some contain patchy ilmenite. Coarse albitic 

plagioclase occurs up to 2 mm in size in composition and occur as tabular prismatic 

laths. Rare quartz eyes occur in a groundmass of fine grained quartz, epidote and
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Chapter 4 

Geochemistry

4.1 Bulk Rock Geochemistry

4.1.1 Introduction

Major oxide and trace element compositions were determined at Actlabs and the 

laboratory of the Ontario Geological Survey at Sudbury. Major oxides were 

determined by ICP at Actlabs and by WD-XRF at the Ontario Geological Survey at 

detection level of 0.001%. Trace elements were determined by ICP-MS at both labs at 

a detection level of parts per million. Results of these analyses are given in appendix 

A. Sample locations are given in Appendix C.

4.1.2 Major Element Geochemistry of the Townsite Formation

Major element trends in Townsite Formation rocks are shown for CaO, Na20, 

Fe2 0 3 , MgO, and TiC>2 versus Si02 (Fig. 4.1). Plots of CaO vs Si02 and Na20 vs Si02 

show compositional differences among intermediate, and felsic rocks. CaO shows 

linear decrease as Si02 increases. Gabbro sills have the highest weight percent CaO 

followed by volcanic flows, feldspar porphyry and quartz feldspar porphyry. Decrease 

in CaO is paralleled by increase in Na20, reflecting the modal amount of plagioclase.

MgO and Fe2 0 3  (total) both show depletion with increasing Si02 content. 

Gabbro sills show the highest weight percent MgO and Fe2 0 3  followed by volcanic 

flows, feldspar porphyry and quartz feldspar porphyry. The plot of Ti02 vs Si02 shows 

only a slight decrease in weight percent Ti02 between mafic and felsic rocks. Volcanic 

flows and feldspar porphyry show the highest Ti02 content with Vee Lake feldspar 

porphyry exhibiting the highest concentration. Gabbro sills followed by quartz feldspar
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porphyry exhibit the lowest Ti0 2  concentration, with evident depletion accompanying
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increasing SiC>2 content in quartz feldspar porphyry.
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4.1.3 Geochemical Classification of Rocks in the Townsite Formation

Townsite Formation lithologies as plotted on Jensen’s (1976) cation 

discrimination plots are shown in (Fig. 4.2). These were also plotted on the 

discriminant of Winchester and Floyd (1977) where the ratio of Zr/TiC>2 is plotted 

against Nb/Y (Fig. 4.3). The geochemical data is presented for the individual lenticles, 

starting with Niven Lake and moving northward to Vee Lake.

On the Jensen cation plot the mafic lithologies at Niven Lake are classified as 

high magnesium tholeiites. Hydrothermal breccia consisting of brecciated pillowed 

flows on the flanks of intrusive quartz feldspar porphyry and gabbro sills are classified 

as high iron tholeiite, indicating secondary iron enrichment. Gabbro sills at Niven Lake 

are classified as high magnesium tholeiites. Feldspar porphyry plots as calk-alkaline 

basalt and quartz feldspar porphyry as tholeiitic rhyolites which approach a calc- 

alkaline dacite composition. On the Winchester and Floyd plot, Niven Lake rocks 

show a slight variance in rock classification. Mafic flows plot as andesites, feldspar 

porphyries as andesite to andesite/dacite and quartz feldspar porphyries plot exclusively 

as rhyodacite/dacite. Hydrothermally brecciated pillows plot as andesite/basalt as do 

gabbro sills.

On a Jensen cation plot, the Brock litholigies show basically similar tholeiitic to 

calc-alkaline rocks as at Niven Lake. Mafic flows of the Brock lenticle show a larger 

compositional range plotting as calc-alkaline basalts, high magnesium tholeiites and 

high iron tholeiites. Feldspar porphyries straddle the line between tholeiitic andesites



and calc-alkaline basalts. Quartz feldspar porphyries also straddle this line but plot as
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tholeiitic rhyolites to calc-alkaline dacites, or as tholeiitic dacites to calc-alkaline

Niven Lake + ™ 2

Vee Lake FeO* + Ti02

AI203

Volcanic Flows 
Cherty Tuff 
Feldspar Porphyry 
Quartz Feldspar Porphyry
Gabbro Sills 
Hydrothermal Breccia

Figure 4.2 Geochemical classification of Townsite Lithologies (After Jenson, 1976)
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Figure 4.3 Geochemical Classification of the Townsite Formation Lithologies, 
After Winchester and Floyd, 1977 (Symbols Same as on Previous Diagrams)



andesites. One sample of cherty tuff from the upper Crestaurm Formation was 

analyzed for comparison with quartz feldspar porphyries and plotted as a calc-alkaline 

rhyotite. A sample of hydrothermal breccia was selected for analysis from the Brock 

Lenticle and plots as tholeiitic dacite to calc-alkaline rhyolite. Gabbro sills of the 

Brock Lenticle plot as high-iron tholeiites. On a Zr/Ti02 versus Nb/Y plot, these same 

samples appear more felsic in composition. This shift is especially pronounced in 

pillowed flows as these plot between andesite to dacite composition. Feldspar 

porphyries plot as dacites while quartz feldspar porphyry plots as rhyodacite/dacite. 

The cherty tuff again plots as rhyolite. Hydrothermal breccia plots as dacite. Gabbro 

sills show an andesite/basalt composition, appearing more andesitic.

Pillowed flows from Vee Lake straddle the line between calc-alkaline basalt and 

high iron tholeiite on a Jenson plot. Feldspar porphyry exhibits a greater range of 

composition, ranging from tholeiitic andesite to high iron tholeiite. Quartz feldspar 

porphyry also displays a broad compositional range in the calc-alkaline field, from 

calc-alkaline dacite through tholeiitic dacite to calc-alkaline andesite. Gabbro sills 

exhibit a high iron tholeiite composition. Like the Brock suite Vee Lake lithologies 

show felsic affinity on a Zr/TiC>2 versus Nb/Y plot. Both pillowed flows and feldspar 

porphyries exhibit andesitic composition. The quartz feldspar porphyry analyses form 

a tight cluster in the rhyodacite/dacite field. Gabbro sills plot on the andesitic side of
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andesitic basalt.



4.1.4 Trace Element Geochemistry of Rocks in the Townsite Formation
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Townsite formation incompatible and compatible trace elements were plotted 

on Harker diagrams (Fig. 4.4) in order to distinguish trends in trace element behaviour 

for different lithologies of the Townsite Formation. Incompatible elements which 

show obvious enrichment or depletion include Zr, Rb and Ba (ppm).
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Zr is strongly enriched in felsic rocks relative to mafic. Gabbro sills show the lowest 

concentrations followed by volcanic flows, feldspar porphyry and quartz feldspar



porphyry. Rb and Ba also exhibit a general enrichment with increasing SiC>2 . In both 

of these plots quartz feldspar porphyry is divided into two groups with high and low 

concentrations of Ba and Rb at SiC>2 concentrations between 60 and 70 weight percent. 

The anomalously high group reflects the mobility of these elements during subsequent 

metamorphic/hydrothermal overprinting.

The transition metals Sc, V, and Cr (ppm) plotted against SiC>2 (wt%) show 

marked depletion with increasing SiC>2 . Cr decreases in concentration from gabbro sills 

through volcanic flows, feldspar porphyry and quartz feldspar porphyry respectively. 

Sc concentrations exhibit sharp depletion with increasing SiC>2 especially between 

mafic to intermediate rocks. Vanadium and chromium both show a linear decrease 

with increasing SiC>2 , decreasing from gabbro sills to volcanic flows, feldspar porphyry, 

and quartz feldspar porphyry.

Primitive-mantle normalized spidergram patterns for Townsite formation rocks 

are displayed in figures 4.5 -  4.7. Separate plots of volcanic flows, feldspar porphyry, 

quartz feldspar porphyry and gabbro sill data are shown for each of the Niven Lake, 

Brock, and Vee Lake Lenticles. Niven Lake volcanic flows show flat primitive mantle- 

normalized patterns. Two samples are plotted: one showing a negative Nb anomaly is 

enriched in Th, while the other lacking a negative Nb anomaly is not enriched in Th. 

Only one sample of feldspar porphyry was analyzed from the Niven Lake lenticle and 

this shows marked Nb depletion, a slight depletion in Ti, Th enrichment and is LREE- 

enriched. Two samples of quartz feldspar porphyry were analyzed and show parallel 

patterns ie; depleted in Nb and Ti, enriched in Th, and marked LREE enrichment.
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Gabbro sills from Niven Lake do not display REE enrichment. Their REE pattern is
64

flat.

Niven Lake Lenticle

The Brock Lenticle volcanic flows show strong Nb depletion and are Th 

enriched. Some samples show anomalous LREE-enrichment and represent those rocks 

which lie directly adjacent to gabbro sills and quartz feldspar porphyry intrusions. 

Those volcanic flows with flatter REE patterns were sampled from the upper 

Crestaurum Formation for comparison. These rocks generally show a slight enrichment 

in Zr and one sample demonstrates slight Eu enrichment. Ti is slightly depleted in all



samples. Brock feldspar porphyries display highly consistent incompatible element 

patterns; these samples show strong Nb-Ti depletion, Th enrichment and are highly 

LREE-enriched. Brock quartz feldspar porphyries show parallel patterns. These 

samples are slightly more LREE-enriched than the feldspar porphyries with which they 

are spatially associated. Ti depletion is more pronounced in quartz feldspar porphyry 

than in feldspar porphyries. Gabbro sills show only slight depletion in Nb-Ti and their 

REE pattern is extremely flat, with subtle HREE-enrichment.
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Figure 4.6. Spider Diagrams for Brock Lithologies (Sun and 
McDonough, 1989)

Volcanic flows from the Vee Lake Lenticle show a slight depletion in Nb-Ti 

and enrichment in Th. These rocks are similar to several Brock flows in demonstrating



LREE-enrichment. Feldspar porphyries from Vee Lake show enrichment in Th and a 

slight depletion in Nb. Rb and Ba show very strong depletion in one sample, likely the 

result of secondary remobilization. These rocks show LREE-enrichment and one 

sample displays anomalous enrichment in Zr and the other a depletion in Ti. Several 

samples of quartz feldspar porphyry were analyzed from the Vee Lake Lenticle and 

these show consistent patterns. One sample of lapilli tuff and one of quartz carbonate 

sericite schist were also added for comparison. All are highly depleted in Nb-Ti and 

enriched in Th and exhibit well defined LREE-enrichment. The gabbro sills from Vee 

Lake show markedly different patterns relative to gabbros in the Niven lake and Brock 

lenticles. These rocks show Nb-Zr enrichment, and are markedly HREE-enriched.

Vee Lake Lenticle
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Figure 4.7. Spider Diagrams for Vee Lake Lithologies (Sun and 
McDonough, 1989)



Quartz feldspar porphyries are plotted on; Rb vs Y+Nb and Rb vs Yb+Ta 

discrimination diagrams and are plotted in figure 4.8 (after Pearce et al.,1984). The 

plot of Rb vs Y+Nb shows that Vee Lake quartz feldspar porphyries typify volcanic arc 

setting while the Brock and Niven Lake samples plot within a volcanic arc to within 

plate setting. The Nb vs Y plot shows Niven Lake and Brock samples between 

volcanic arc/syn-collisional to within plate, while Vee Lake quartz feldspar porphyries 

plot exclusively as volcanic arc to syn-collisional. Plots of Rb vs Yb + Ta, and Ta vs 

Yb both show quartz feldspar porphyries from Niven , Brock and Vee Lake as plotting 

within the volcanic arc field.
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Figure 4.8 Discrimination Diagrams for Quartz Feldspar Porphyry Intrusive phases. 
Diamonds Represent Vee Lake Lenticle, Squares the Brock Lenticle and Circles 
the Niven Lake Lenticle (After Pearce et al., 1984).
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Post orogenic granites cannot be distinguished from volcanic arc and 

syncollisional granites on these diagrams. However, such settings can be 

distinguished on the Hf-Rb-Ta diagram after Harris et al. (1986). Quartz feldspar 

porphyries from the Townsite formation have been plotted on these diagrams (Fig. 

4.9a). On a ternary plot of Hf - Rb/10 - Ta x 3, Niven Lake and Brock samples range 

from volcanic arc to within plate. Vee Lake quartz feldspar porphyries range 

between within plate and ocean ridge.

Figure 4.9 a,b. Discrimination Diagrams for Quartz Feldspar Porphyry 
intrusive Phases. See Text for Explanation. Symbols same as in 
previous. (Harris et al., 1986)



A modification of this diagram (Harris et al., 1986) which, expands the field of 

collisional granites, has quartz feldspar porphyry from Niven Lake and Brock 

straddling the line between the volcanic arc and within-plate fields, while those from 

Vee Lake plot exclusively within plate (Fig. 4.9b).

4.2 Mineral Chemistry

4.2.1 General Statement

Microprobe analysis were preformed on amphibole, biotite, chlorite, and 

plagioclase. The mineral compositions of these species were determined in order to 

determine compositional variation in these minerals in different rock types, as well as 

define ambient metamorphic conditions and the effects of retrograde hydrothermal 

alteration. Mineral analyses were performed on carbon-coated polished thin sections 

using a JEOL JXA-8600 electron probe xray microanalyser. This probe is equipped 

with four wavelength dispersive spectrometers (WDS) and one energy dispersive 

spectrometer (EDS). Calibration was on natural mineral standards at an accelerating 

voltage of 15kV and a probe current of lOnA. A counting time of 20 seconds on peak 

and background was used for all mineral analyses.

4.2.2 Amphibole

The major element chemistry of amphiboles occuring in gabbro sills and mafic 

to intermediate flows of the Townsite formation have been plotted on the Mg/(Mg +

2"FFe ) versus Si classification diagram of Leake et al., (1997, Fig.10,). Amphiboles 

were analysed in mafic/intermediate flows and gabbro sills from the Niven Lake and
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Brock lenticles. Brock volcanics range in composition from magnesiohomeblende to 

actinolite while Niven Lake amphiboles are exclusively magnesiohomeblende. The 

change from the Brock actinolite to Niven Lake magnesiohomblende indicates higher 

grade rocks at Niven Lake, from mid-greenschist to epidote amphibolite facies 

metamorphic conditions.
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Figure 4. 10. Classification of Amphiboles in Gabbro Sills and Volcanic Flows 
of the Townsite Formation (After Leake et al., 1997). Astrix Represent Gabbro 
Sills and Squares Represent Volcanic Flows.

The gabbro sills show a similar trend. Niven Lake sills range in composition

from high to low Si magnesiohomeblende. Brock sills have amphibole compositions 

ranging between actinolite to ferrohomblende. Those sills with classic “frog rock” 

texture (old metagabbro) contain actinolite and thus are lower in metamorphic rank 

than adjacent intermediate gabbro sills. Thus old metagabbro is a likely precursor to 

intermediate metagabbro. Noteably, however, the old metagabbro sills at the Brock are



lower in Fe and higher in Si contents than texturally similar Niven Lake sills. This
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again reflects the higher grade of metamorphism at Niven Lake.

4.2,3 Biotite

Biotite was analyzed in feldspar porphyry from the Brock Lenticle and in quartz 

feldspar porphyry from the Niven Lake Lenticle. These biotites are classified on the 

plot of A1VI vs Mg/(Mg+Fe) of Guidotti, 1984 ( Fig 4.11).
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Figure 4.11. Classification of Biotites for Niven Lake Quartz Feldspar 
Porphyries and Brock Feldspar Porphyries (After Guidotti, 1984).

Niven Lake quartz feldspar porphyry biotites are more aluminum rich and higher in Fe 

than biotites from feldspar porphyry in the Brock. Niven Lake biotites also show a 

slight increase in Ti relative to those from the Brock. This combined with their higher



A1 and Fe contents reflects the more fractionated quartz feldspar porphyry host at
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Niven Lake.

4.2.4 Chlorite

Chlorite species were analyzed in mafic/intermediate volcanic flows, feldspar 

porphyries, quartz feldspar porphyries and gabbro sills. Chlorites are classified using 

the nomenclature of Hey (1954, Fig 4.12). Niven Lake mafic volcanics have chlorites 

which are exclusively ripidolite in composition. These chlorites are lower in iron than 

those from mafic volcanics in the Brock and Vee Lake lenticles. Chlorites from the 

Brock Lenticle pillowed flows range in composition from ripidolite to pynochlorite. 

This range in composition occurs within individual samples. Vee Lake pillowed flows 

have chlorites which are lower in Si but are exclusively ripidolite in composition.
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Figure 4.12. Classification of Townsite Formation Chlorites (After Hey, 1954). 
Squares represent volcanic flows, circles quartz feldspar Porphyry, Crosses 
Feldspar Porphyry, and Astrix Gabbro Sills.



Feldspar porphyry chlorites from Niven Lake are exclusively brunsvigite in 

composition and are thus higher in Si and Fe than chlorites in felspar porphyry from the 

Brock and Vee Lake lenticles. Chlorites from Brock feldspar porphyries are 

exclusively ripidolite in composition and in terms of Si and Fe contents fall in between 

chlorites from feldspar porphyries from Niven and Vee Lakes. The Vee Lake feldspar 

porphyry chlorites, however, range between relatively high and low Fe contents 

between outcrops. This indicates varying degrees of alteration between sample sites.

Chlorites from Niven Lake quartz feldspar porphyry range in composition from 

ripidolite to brunsvigites and are higher in their Fe content relative to chlorites from the 

Brock and Vee Lake lenticles. Brock quartz feldspar porphyry also have chlorites 

ranging from ripidotite to brunsvigite but are generally lower in Si and iron than those 

from Niven Lake. Vee Lake quartz feldspar porphyry are exclusively ripidolite in 

composition and lower in Fe contents than those from Niven and Brock.

Chlorites from Niven Lake gabbro sills are ripidolite to pynochlore in 

composition. Chlorites from the Brock gabbro sills are ripidolite in composition with 

old metagabbro exhibiting relatively higher Fe and Si than those from intermediate 

metagabbro than those from Niven Lake. Vee lake gabbro sills also contain chlorite of 

ripidolite composition but these chlorites are generally lower in Fe and Si than those 

from the Niven Lake and Brock lenticles.

There is a general trend with chlorite in more felsic lithologies displaying higher 

Fe contents than more mafic lithologies. However, highly altered mafic samples from 

Vee Lake and Niven Lake show Fe contents comparable to those found in quartz 

feldspar porphyries in all three lenticles.
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4.2.5 Feldspar
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Feldspar was analysed from mafic/intermediate flows, feldspar porphyry, quartz 

feldspar porphyry, and gabbro sills in the Townsite Formation. All feldspars analyzed 

are plagioclase, when plotted on a feldspar ternary diagram they plot between albite 

and anorthite end members (Fig. 4.13 a, b, c).

Secondary alteration of plagioclase to sericite +/- prehnite in mafic volcanics at 

Niven Lake made it impossible to get accurate stoichiometry from these feldspars. 

Plagioclase from Brock pillowed flows range in composition from albite to andesine. 

These compositions vary within individual samples and show no systematic variation 

with respect to sample location. Vee Lake flows contain plagioclase that are 

exclusively albite in composition reflecting greenschist metamorphism.

Plagioclase from feldspar porphyries sampled in the Niven Lake, Brock and 

Vee Lake lenticles are exclusively albite in composition, reflecting pervasive sodium 

metasomatism.

Plagioclase from quartz feldspar porphyries in the Niven Lake lenticle have 

andesine composition while those from Brock quartz feldspar porphyry range from 

albite to oligoclase. Vee Lake quartz feldspar porphyry plagioclase are exclusively 

albite. This progressive increase in Ca/Na moving from Vee Lake through Brock and 

south to the Niven Lake lenticle reflects the increase in metamorphic grade from 

greenschist at Vee Lake to epidote-amphibolite at Niven.

Plagioclase compositions from gabbro sills throughout the Townsite are 

variable. Samples from Niven Lake have compositions ranging from oligoclase to 

labradorite. Brock sills show plagioclase compositions ranging from albite to



labradorite with old metagabbro plagioclase being more calcic, ranging between 

andesine and labradorite with intermediate metagabbro exhibiting exclusively 

metamorphic plagioclases ranging between albite and andesine. Noteably, the lower 

Ca plagioclase in the intermediate metagabbro is accompanied by the strong 

epidotization of these rocks. Vee Lake gabbro sills contain plagioclase having 

exclusively albite composition, a further reflection of greenschist metamorphism.

Niven Lake Feldspars

Anorthite

Anorthite Anorthite

Classification of Niven Lake Lenticle Feldspars
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Brock Lenticle Feldspars
Anorthite Anorthlte

Anorthite Anorthite

Figure 4.13b Classification of Brock Lenticle Feldspars
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Vee Lake Lenticle Feldspars

Anorthfte Anorthit©

Anorthite Aiorthite

Figure 4.13c Classification of Vee Lake Lenticle Feldspars



Chapter 5
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Discussion

5.1 Introduction

Detailed mapping of the Townsite Formation demonstrates an intimate 

association of quartz feldspar porphyry intrusions and gabbro sills. The felsic 

intrusions are associated with pyroclastic rocks over the northern third of the extent of 

the Townsite. The following discussion presents an interpretation of the results of 

mapping integrated with analytical work. It focuses on the geological setting, the 

petrogenesis of the quartz feldspar porphyry intrusions and considers the possible 

metallogenic significance of quartz intrusive feldspar porphyries in the Yellowknife 

gold camp.

5.2 Geological Setting

The Yellowknife Greenstone Belt defines the Yellowknife “type” volcanic belts 

that have been recognized throughout the west-central Slave Province on the basis of 

their high mafic/felsic rock ratios (Henderson, 1981, Padgham, 1985) and bimodal 

association of tholeiitic volcanic flows with calc-alkaline felsic units. Models 

proposed for the origin of the Yellowknife-type greenstone belts include: intracratonic 

rifting of ensialic basins (Henderson, 1985, Bleeker, 1988), seafloor spreading centres 

in marginal basins (Helmstaedt et al, 1986a, MacLachland and Helmstardt, 1995), 

oceanic island and island arc/back arc basins (Helmstaedt, 1986). Kusky, (1990,1991) 

envokes an accretionary model for the Slave Province whereby ophiolitic slivers (ie: 

the Yellowknife-type greenstone belts), ocean sediments and greywackes typical of arc



trench settings, are contained in fold-thrust belts characteristic of modem accretionary 

prisms. Kusky’s plate tectonic model is essentially similar to models proposed for the 

Abitibi and other greenstone belts in the Superior Province. (Dimroth, 1982,

Hodgson, 1986).

The Yellowknife Greenstone Belt is unique in terms of its excellent exposure. 

Its essential make up is a tholeiitic dominated succession of volcanic flows (Kam 

Group) which are unconformably overlain by and/or tectonically juxtaposed against 

mixed mafic/intermediates of the Duncan Lake Group. Later intrusive phases include; 

quartz feldspar porphyry , gabbro sills and dykes. Following tilting of the belt, the belt 

was subject to transpressional deformation accompanying the unroofing of granites. 

This is recorded in the deposition of the Jackson Lake Formation which is similar in 

appearance and is also thought to be similar in origin to the Timiskiming-type 

sediments of the Abitibi Greenstone Belt.

In their geochemical study of the Yellowknife Greenstone Belt, Cunningham 

and Lambert (1989), concluded that due to problems of element mobility during 

metamorphism, Archean greenstones do not plot with any consistency on geochemical 

diagrams used to discriminate among modem tectonic settings. Such problems 

notwithstanding, Cousens (2000) notes that Kam Group volcanic rocks plot in the 

ocean floor basalt field, and Banting Group rocks in the convergent margin field. On 

the basis of isotopic systematics of the Kam Group, Cousens (2000) proposed that the 

Kam flows most closely resemble modem back arc basin basalts. This setting allows 

for submarine lavas forming in proximity to a continent of older basement rocks. This
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is consistent with trace element and isotope data which indicate that the lavas have been 

contaminated by continental crust.

At present, there is no consensus of opinion as to the specific setting of the 

Yellowknife type greenstone belts. Furthermore, as increasingly detailed investigations 

are carried out, the simple layer cake stratigraphy as established by Henderson and 

Brown (1967) is being brought into question. The present investigation focuses 

attention on problems with the historical interpretation of the Townsite Formation as a 

felsic volcanic member separating the Crestaurum and uppermost Yellowknife Bay 

Formation of the Kam Group. The felsic rocks of the Townsite Formation are intrusive 

feldspar and quartz feldspar porphyry bodies. Contact relationships indicates that these 

porphyry bodies syn-date the intrusions of major gabbro sills into the base of the 

Yellowknife Bay Formation. Although somewhat speculative due to marked 

discordance, the work of Isachsen (1992) suggests a quartz feldspar porphyry/gabbro 

silling event at 2683 Ma, some twenty million years after Kam volcanism (2705-2712 

Ma).

The quartz feldspar porphyry intrusions have an associated pyroclastic apron 

over the northern third (Vee Lake Lenticle) of the Townsite Formation. Quartz feldspar 

porphyry intrusions and associated volcanic breccias, lapilli tuffs and crystal tuffs have 

identical bulk rock trace element compositions, supporting the interpretation that the 

quartz feldspar porphyry are related to the volcanic facies.

Detailed mapping combined with lithogeochemistry suggests quartz feldspar 

porphyries were generated by partial melting of volcanic flows at the time of gabbro 

silling. The injection of massive high magnesium to high iron gabbro sills caused high
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heat flow within the immediate environs of magma conduits. This resulted in the 

partial melting of wet basaltic andesite to produce an intermediate melt (feldspar 

porphyry) which subsequently evolved to a dacitic melt (quartz feldspar porphyry) by 

fractional crystallization. The detailed contact relationships among mafic volcanics, 

feldspar porphyry, quartz feldspar porphyry and gabbro sills provide evidence for this 

model. The absence of chill margins on intrusive phases combined with undulose 

contacts, interfingering and back veining of quartz feldspar porphyry into gabbro sills 

suggest the existence of coeval melts. The occurrence of the relic “variolitic” pillows 

marginal to quartz feldspar porphyry intrusions represent reservoirs of the partial melts. 

Hydrothermal breccias indicate wet melts at high crustal levels where phreatic injection 

has produced mixed litholigies consisting of clasts of quartz feldspar porphyry, feldspar 

porphyry and disrupted variolitic pillowed flows hosted in milled rock flour.

Over the northern third of the Townsite Formation, hydrothermal breccias give 

way to pyroclastic venting. The lithic lapilli tuff occurring in the northeastern portion 

of the Brock Lenticle and the volcanic breccias, lapilli tuffs, and crystal tuffs in the Vee 

Lake Lenticle is indicative of eruptions. The coarse pyroclastics, occurring centrally in 

the Vee Lake Lentile are vent proximal facies. The lack of bedding in the breccias 

indicates explosive eruptive conduits. Reaction rims on quartz feldspar porphyry clasts 

in this facies suggests they were still hot when deposited. The layering in coarse lapilli 

tuff breccia suggests debris flow with large blocks of quartz feldspar prophyry carried 

down slope. The graduation from lapilli tuff breccia to lappilli tuff suggests a gradation 

away from vent proximal facies. The presence of lapilli tuffs exhibiting unbedded 

microbreccia textures suggests continuous deposition as subaqueous debris flows.
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Capping crystal tuffs represent a distal facies. The preservation of pumice with 

discernable vesicles in crystal tuff suggests direct deposition. Interbeds of reworked 

volcaniclastics suggests an environment where epiclastic processes overlapped. Sharp 

contact between units and the presence of crossbeds in sandstone indicate an epiclastic 

origin.

5.3 Petrogenesis of Quartz Feldspar Porphyry

Prior et al., (1999) compared lithologies formed by the partial melting of crustal 

rocks in Iceland and other modem axial rift zones with the Archean Kidd Creek 

rhyolites at Timmins. The REE patterns and high field strength element contents of the 

Kidd Creek rhyolite are remarkably similar to rhyolites formed in settings undergoing 

seafloor spreading. The quartz feldspar porphyry and related pyroclastics of the 

Townsite Formation show a broadly similar trace element pattern: a particularly close 

similarity occurs with the Whitsunday rhyolite, Queensland, Australia. Ensialic back 

arc rhyolites (eg: the Deception Island rhyodacite and the Rocas Verdes plagiogranite) 

also show a strong geochemical affinity with Kidd Creek rhyolites and a similar pattern 

to the felsic intrusive/extrusive rocks of the Townsite Formation. Similar cases of rift 

related felsic melts have been documented in the Ambler District of northern Alaska as 

well as at Myra Falls, British Columbia (Barrett & Maclean, 1999). Generating wet 

felsic partial melts from hydrated basaltic andesites is considered the most feasible 

method of petrogenesis for the felsic lithologies of the Townsite Formation. As 

reported by Beard and Lofgren (1990) experimental dehydration melting and water 

saturated melting of basaltic and andesitic greenstones and amphibolites at 1,3, and 6.9
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kb at 800-1000°C yields mildly peraluminus to metaluminous granodioritic to 

trondhjemitic melts of similar composition to Townsite Formation felsics.

The trace element patterns for quartz feldspar porphyry from the Townsite 

Formation reveal fractionation of Nb from La and Th between parental mafic rocks and 

felsic melts. This fractionation may occur as a result of a Nb-phase such as rulite or 

sphene remaining as a residual phase (Tatsumi et al., 1985). During production of wet 

melts, fluids readily dissolve K, Rb, Sr, U, Pb, Th and the light REE , but not Nb, Ta, 

Zr, and Ti. These latter high field strength elements have low solubilities in aqueous 

fluids and are prone to retention by phases such as rutile (Tatsumi et al., 1985).

The partial melt produced from basaltic andesite, fractionated to form 

intermediate feldspar porphyry. Collectively the trace element patterns for volcanic 

flows, feldspar porphyry and quartz feldspar porphyry from the Niven Lake, Brock and 

Vee Lake Lenticles show progressive enrichment and fractionation of light REE as the 

melt evolves. Of particular significance, comparison of upper Crestaurum variolitic 

flows with remnant flows in the Brock reveal progressive light REE enrichment. The 

partial melts enriched in light REE are progressively fractionated from feldspar 

porphyry to quartz feldspar porphyry.

Significantly the recent SNd work on the Kam Group demonstrates that of all the 

units in the Kam Group, the Townsite felsic rocks are the closest in composition to 

basaltic andesites (Cousens, personal communication). A sample of quartz feldspar 

porphyry from the Niven Lake Lenticle yielded ENd values of -0.2 while values for 

pillowed volcanics from the Crestaurum and Yellowknife Bay Formations yield values
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of 0.1, 0.7, and -2.9 respectively. Such isotopic signatures corroborates buffering of 

feldspar porphyry -  quartz feldspar porphyry melt chemistry by bordering greenstones.

5.4 Metallogenic Significance of the Townsite Formation in the Yellowknife Gold 

Camp

It is here proposed that the Townsite Formation was formed during an aborted 

rifting event of the Kam mafic platform some twenty million years after the cessation 

of ocean floor volcanism (Fig 5.1). The high level emplacement of massive gabbro 

sills created high heat flow and partial melting of juvenile crust. These melts are 

expressed as the feldspar and quartz feldspar porphyry intrusions. Associated 

hydrothermal breccias demonstrate phreatic injection into immediate wall rocks 

adjacent to these melt bodies. Preservation of related pyroclastics in the northern third 

of the Townsite Formation identifies a “Townsite rift association”, the affiliated 

pyroclastic facies only preserved proximal to the Jackson Lake unconformity. As 

depicted, the southern extension of the Townsite Formation exposes the deeper 

“intrusive” roots, the northern extension the associated pyroclastic volcanic facies.

To date, the significance of this “aborted” 2680 m.y. rift has been overlooked in 

metallogenic studies of the Yellowknife Camp. It has long been recognized that the 

economic segments of the gold-bearing Campbell and Giant shear systems occur where 

these shears directly impinge on “ the Townsite Formation” (Fig.5.2). Given the close 

association of auriferous shears to intrusive quartz feldspar porphyries in the Townsite 

one might readily speculate that the globally recognized quartz feldspar porphyry/gold 

association might well apply to Yellowknife as well. The spatial association of
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Brock Lenticle of the Townsite Formation (After Henderson and Brown, 1966)



porphyries to lode gold deposits in modem and ancient settings has led many 

researchers to advocate porphyry gold models of genesis (Cameron and Hattori, 1985, 

1987, Mason, 1986, Kuhns, 1994, Sillitoe, 1997). The physical processes which allow 

gold concentration in these deposits rely upon initial water concentration within 

magmas and the nature of magma emplacement. Rapid emplacement at shallow levels 

allows for partitioning of gold into a fluid. This is represented by high gold 

concentrations found within hydrothermal breccias at many deposit sites.

At the Con Mine the most economic segments of the Campbell shear is that 

connecting the hangingwall/footwall offsets of the Niven Lake Lenticle. At the Giant 

Mine the major gold bearing stopes occur where the Giant shears impinge directly on 

Brock Lenticle quartz feldspar porphyry bodies. The apparent lack of gold in the 

northern Vee Lake Lenticle remains unexplained as in this pyroclastic facies shearing is 

penetrative. Either gold is strictly related to intrusive quartz feldspar porphyry bodies 

and does not occur north of the Vee Lake intrusive bodies or the nature of gold 

concentration in the Townsite pyroclastic facies may differ, ie: is more “epithermal in 

signature” and still to be identified as a target type.

Although the close spatial relation of gold-bearing segments of shears to quartz 

feldspar porphyry intrusions strongly argues for a genetic tie, the work to date on the 

Yellowknife shear-hosted lode gold ores strongly favours late concentration in post­

peak metamorphic high strain zones preferential to a main structural break separating 

the Kam and Duncan Lake Groups. A genetic tie of gold to Townsite quartz feldspar 

porphyry bodies supplies an important endogenous porphyry gold source, thus
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favouring local gold remobilization into late shears during subsequent prograde 

metamorphic/retrograde hydrothermal overprints.
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Chapter 6

Conclusions

6.1 Summary

The results of detailed mapping of the Townsite Formation challenges previous 

interpretations of the Townsite as a simple conformable felsic volcanic succession 

within the mafic dominated Kam Group. Contact relationships reveal intrusive 

relationships for feldspar porphyry and quartz feldspar porphyry bodies. Associated 

hydrothermal breccias in the south give way to associated pyroclastic facies in the 

north. Related pyroclastics range from vent proximal breccias grading laterally into 

distal tuffs. Undulose, non-chilled contacts between quartz feldspar porphyry and 

massive gabbro sills indicate that they are coeval melts. The origin of the felsic melts 

is therefore linked to high heat flow attending the emplacement of gabbro sills. The 

geochemistry of remnant pillowed flows, feldspar porphyry and quartz feldspar 

porphyry is consistant with the felsic magmas being generated through partial melting 

of hydrated mafic flows of the Kam Group.

The transition from intrusive quartz feldspar porphyry in the southern Niven 

Lake and Brock lenticles to vented pryoclastics in the northern Vee Lake Lenticle 

combined with coeval silling of massive gabbros is consistent with the Townsite 

Formation developing as an aborted rift setting. On the basis of age dating by Isachsen 

(1992), the age of felsic melt generation, emplacement of high level porphyry bodies, 

formation of hydrothermal beccias and pyroclastic facies together with gabbro silling is



considered to postdate Kam volcanism by approximately twenty million years.

Immobile trace element patterns for the Townsite porphyries and related pyroclastics

are consistent with wet partial melting of juvenile crust in both modem and ancient

rifting environments.

6.2 Key Results

(1) The Townsite Formation of the Kam Group is reinterpreted from being a 

stratigraphic unit to signifying an aborted rift setting which postdated Kam 

volcanism by approximately twenty million years.

(2) The generation of felsic magma is linked to high heat flow within the hydrated Kam 

platform, attending emplacement of high level gabbro sills.

(3) From south to north the Townsite rift changes character from an intrusive setting 

with felsic porphyry bodies and related hydrothermal breccias to an extrusive 

setting of vent proximal to distal pyroclastics.

(4) The recognition of rift-related quartz feldspar porphyry intrusions in the 

Yellowknife Greenstone belt suggests that the globally important porphyry gold 

association is present and this genetic relationship should be factored into existing 

metallogenic models for the shear zone hosted lode gold deposits.

6.3 Recommendation for Further Work

(1) Although Isachsen’s (1992) geochronology reveals age discrepancies for the 

Townsite Formation, except for his attemps to date the main Niven Lake quartz 

feldspar porphyry body no additional geochronological results are available on the
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intrusive/extrusive phases in the Brock or Vee Lake lenticles. Isachsen’s work 

should be extended to better document the aborted rift setting as hypothesized.

(2) The present study did not focus on the critical metallogenic problem of tying gold 

mineralization to quartz feldspar porphyry intrusions. An investigation attempting 

to link gold concentration to initial mineralization within the environs of 

subvolcanic porphyry bodies, with late remobilization into post-peak metamorphic 

shear zones, would supply new directions for ongoing exploration strategies in the 

Yellowknife gold camp.
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APPENDIX A

WHOLE ROCK GEOCHEMISTRY



Major Oxide 
Geochemistry

Analyte Si02 AI203 MnO MgO CaO Na20 K20 P205 Ti0 2 Fe203 LOI TO TAL
Units wt% wt% wt% wt% wt% wt% wt% wt% W t% W t% wt% wt%
Detection Limit 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 rVa
CF9833V Quartz Feldspar Porphyry 64.50 12.95 0.07 2.16 2.46 4.39 0.79 0.21 0.86 6.89 4.47 99.75
CF98VR1 Gabbro S ill 44.28 13.16 0.20 6.57 6.83 1.00 1.00 0.07 0.93 13.30 13.17 100.51
CF98NR2 Gabbro S ill 48.66 15.22 0.20 8.43 10.15 2.12 0.37 0.06 0.78 13.95 0.91 100.85
CF997n Quartz Feldspar Porphyry 68.22 14.59 0.06 1.27 282 2.90 2.11 0.21 0.66 5.01 1.79 99.64
CF999n Feldspar Porphyry 58.96 15.13 0.19 4.60 5.38 4.68 0.78 0.17 0.94 8.16 1.05 100.04
CF9910n Breccia 47.12 14.20 0.29 6.66 7.19 2.69 0.22 0.11 1.51 16.47 3.44 99.90
CF9916V Quartz Feldspar Porphyry 69.43 13.77 0.05 1.32 0.98 6.28 0.72 0.19 0.63 3.99 1.96 99.32
CF9922V Quartz Feldspar Porphyry 66.13 13.74 0.10 1.33 3.14 5.30 1.10 0.20 0.75 4.19 3.45 99.43
CF9925V Quartz Feldspar Porphyry 64.01 13.69 0.06 244 2.18 6.31 0.22 0.21 0.87 6.41 2.82 99.22
CF9926V Volcanic Flow 50.49 15.19 0.14 5.43 3.75 4.71 0.19 0.21 1.22 11.02 7.67 100.02
CF9927V Quartz Feldspar Porphyry 65.44 10.21 0.14 1.33 7.31 4.79 0.25 0.09 0.37 2.56 6.63 99.12
CF9934V Feldspar Porphyry 62.15 15.80 0.05 2.79 0.70 0.58 1.84 0.34 1.49 10.95 3.65 100.34
CF9935V Feldspar Porphyry 55.42 15.12 0.14 5.88 2.98 3.97 0.06 0.30 1.58 12.12 3.55 101.12
CF9937v Quartz Carbonate Sericite 59.91 14.52 0.09 2.80 5.17 0.47 3.38 0.18 0.49 4.78 8.94 100.73

Schist
CF9942V Lap illi Tu ff 67.79 13.09 0.05 1.62 3.37 352 1.52 0.17 0.56 5.10 4.04 100.83
CF9949n Quartz Feldspar Porphyry 66.61 14.34 0.08 1.22 4.10 3.29 2.27 0.23 0.73 6.23 0.79 99.89
CF9950n Gabbro S ill 49.05 14.92 0.18 7.81 11.09 1.74 0.64 0.06 0.75 12.85 1.04 100.13
CF9954b Feldspar Porphyry 59.87 14.45 0.10 2.90 3.88 3.98 2.06 0.25 1.16 8.93 1.54 99.12
CF9955b Feldspar Porphyry 56.88 14.44 0.11 3.52 3.36 4.71 0.48 0.26 1.29 9.99 4.68 99.72
CF9948V Quartz Feldspar Porphyry 69.41 12.10 0.06 1.05 3.92 6.38 0.19 0.07 0.31 2.51 3.57 99.57
CF982b Quartz Feldspar Porphyry 67.78 14.18 0.05 1.16 2.03 4.26 1.74 0.22 0.62 0.84 2.79 99.44
CF9818b Quartz Feldspar Porphyry 65.18 14.54 0.09 2.35 1.37 3.69 1.33 0.27 0.82 1.09 2.33 98.80
CF9814b Volcanic Flow 56.03 14.32 0.21 3.71 7.10 3.29 0.71 0.31 1.38 1.69 3.71 99.34
CF9815b Volcanic Flow 59.10 14.41 0.15 4.40 4.38 2.77 0.61 0.31 1.32 1.63 3.02 98.93
CF988b Feldspar Porphyry 59.03 14.66 0.13 3.65 3.69 4.11 0.60 0.29 1.28 1.57 2.92 99.98
CF9824b Volcanic Flow 65.77 14.39 0.07 1.99 1.54 1.84 2.93 0.22 0.64 0.86 3.97 99.61
CF9825b Volcanic Flow 53.80 12.82 0.23 6.78 6.52 1.42 0.29 0.08 0.69 0.77 5.49 99.21
CF9832Ab Volcanic Flow 55.65 12.15 0.21 6.85 6.42 3.79 0.30 0.08 0.69 0.77 4.73 99.27
CF9844blind 64.87 14.17 0.10 2.01 3.17 3.77 0.88 0.26 0.81 1.07 2.25 99.24
CF9830b Volcanic Flow 51.90 11.00 0.18 3.40 9.07 1.86 0.18 0.15 1.28 1.43 7.69 98.82
CF9817b Breccia 63.60 13.37 0.10 2.24 3.13 4.73 0.30 0.30 1.06 1.36 2.98 98.93
CF987b Volcanic Flow 59.99 14.06 0.12 4.92 3.83 4.65 0.08 0.23 0.96 1.19 2.72 99.08
CF986b Volcanic Flow 57.76 15.72 0.12 4.37 1.65 3.77 1.04 0.27 1.04 1.31 4.57 98.98
CF9811b Cherty Tu ff 72.80 14.96 0.03 0.85 0.49 7.16 0.32 0.04 0.12 0.16 0.96 99.98
CF9812b Gabbro Dyke 46.78 12.21 0.20 4.77 5.99 1.20 0.64 1.02 4.07 5.09 5.22 98.20
CF9813b Gabbro S ill 49.20 14.89 0.19 7.63 9.45 2.05 0.29 0.07 0.79 0.86 2.91 99.01
CF98VR8 V itric Tu ff 61.60 15.28 0.08 1.60 3.67 2.48 2.17 0.29 0.83 1.12 4.75 99.67
CF98NR1 Volcanic Flow 54.90 13.23 0.20 6.62 11.10 1.59 0.26 0.09 0.75 0.84 0.65 99.20
CF98NR3 Volcanic Flow 69.63 13.64 0.10 0.73 2.63 3.01 2.25 0.23 0.64 0.87 1.60 99.38
CF98NR4 Quartz Feldspar Porphyry 70.89 13.53 0.07 0.86 3.14 3.36 1.74 0.22 0.62 0.84 0.99 99.23
CF98NR4(PULP DUP) 71.17 13.58 0.07 0.86 3.13 3.35 1.74 0.22 0.61 0.83 1.07 99.60



Acttrace

Lithogeochem (Research Package) Job #: 17457 Report#: 17301
Trace Element Values Are in Parts Per Million. Negative Values Equal Not Detected at That Lower Limit.
Sample ID: V Cr Co Ni Cu Zn Ga Ge As Rb Sr Y Zr Nb Mo Ag In Sn Sb Cs Ba La CeCF982 Quartz Feldspar Porphyry 36 -20 6 -15 14 66 19 0.8 54 54 60 37 268 13 -2 -0.5 -0.1 3 2.7 1.4 594 42.2 85
CF9818 Quartz Feldspar Porphyry 86 -20 13 -15 16 59 21 0.9 6 29 81 28 243 12 -2 -0.5 -0.1 2 1.6 0.3 529 38.5 77
CF9814 Volcanic Flow 161 149 31 118 98 84 18 1.2 30 23 183 31 206 13 -2 -0.5 -0.1 2 2.8 0.2 131 25.8 57
CF9815 Volcanic Flow 159 95 30 70 56 139 18 0.9 37 19 161 32 196 12 -2 -0.5 -0.1 2 1.9 0.8 182 29.3 62
CF988 Feldspar Porphyry 150 85 27 44 42 95 19 1.1 60 22 180 34 226 13 -2 -0.5 -0.1 2 5.2 1.0 115 30.6 66
CF9824 Volcanic Flow 37 475 10 1,630 19 87 21 1.1 29 94 48 39 344 14 7 -0.5 -0.1 3 6.3 1.1 731 50.5 101
CF9825 Volcanic Flow 220 330 41 95 48 150 14 1.1 14 4 109 19 67 2.3 -2 -0.5 -0.1 1 2.9 0.2 78 5.51 13
CF9832A Volcanic Flow 222 159 35 54 31 65 11 0.8 9 4 50 18 71 2.4 -2 -0.5 -0.1 -1 1.1 0.1 59 3.41 7.9
CF9832A REP Volcanic Flow 210 146 33 52 30 75 10 0.7 11 3 50 17 67 2.2 -2 -0.5 -0.1 -1 1.2 -0.1 54 3.31 7.7
CF9844 Repeat 91 41 14 52 21 58 22 1.2 51 20 163 34 240 11 -2 -0.5 -0.1 2 4.5 0.2 305 40.7 83
CF9830 Volcanic Flow 337 26 35 40 107 141 20 0.9 39 4 146 33 116 4.4 -2 -0.5 -0.1 1 1.8 0.2 57 11.4 26
CF9817 Breccia 156 20 19 33 36 80 17 0.7 33 4 79 26 208 9.4 -2 -0.5 -0.1 2 2.9 -0.1 70 24.0 52
CF987 Volcanic Flow 163 178 27 145 64 76 16 0.9 33 -2 112 23 176 7.4 -2 -0.5 -0.1 1 4.5 -0.1 35 19.0 40
CF986 Volcanic Flow 167 30 20 25 51 114 21 0.9 31 38 107 31 236 11 -2 -0.5 -0.1 2 6.3 0.7 445 29.1 63
CF9811 Cherty Tuff 14 -20 3 -15 -10 -30 21 0.6 32 5 168 30 135 8.7 -2 -0.5 -0.1 4 2.2 -0.1 63 19.9 43
CF9812 Gabbro Dyke 279 71 43 44 46 148 22 0.9 45 23 93 59 304 24 -2 -0.5 -0.1 2 1.8 1.5 127 26.4 75
CF9813 Gabbro Sill 250 254 51 149 126 89 16 0.9 23 9 145 18 52 1.7 -2 -0.5 -0.1 -1 2.8 0.2 43 3.05 8.1
CF98VR8 Vitric Tuff 67 -20 13 -15 44 74 22 0.8 19 77 115 48 284 14 -2 -0.5 -0.1 3 1.3 1.0 464 48.0 95
CF98NR1 Volcanic Flow 245 380 52 100 27 88 15 0.9 -5 4 85 22 79 2.6 2 -0.5 -0.1 1 0.6 0.1 47 5.65 13
CF98NR3 Volcanic Flow 33 -20 8 -15 11 63 18 -0.5 -5 80 107 30 251 12 -2 -0.5 -0.1 3 0.4 0.9 484 33.8 71
CF98NR4 Quartz Feldspar Porphyry 34 29 7 23 -10 73 18 0.6 -5 69 167 33 290 13 -2 -0.5 -0.1 3 0.3 1.2 475 36.7 77
CF98NR4 (PULP DUP) 34 -20 7 -15 55 68 18 0.7 -5 69 172 33 271 13 -2 -0.5 -0.1 3 0.3 1.3 480 36.3 77

Sample ID: Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U
CF982 Quartz Feldspar Porphyry 9.78 37.1 6.84 1.460 7.39 1.07 6.10 1.29 3.74 0.574 3.44 0.531 7.1 1.0 1.0 1.15 5 -0.06 18.0 6.07
CF9818 Quartz Feldspar Porphyry 8.94 35.1 6.60 1.611 6.51 0.90 5.08 1.03 2.91 0.459 3.06 0.476 6.4 0.9 1.6 0.39 -5 -0.06 13.8 2.54
CF9814 Volcanic Flow 7.06 28.1 5.60 1.565 5.88 0.89 5.18 1.09 3.20 0.459 2.94 0.471 5.1 0.8 0.9 0.27 -5 0.10 8.53 2.51
CF9815 Volcanic Flow 7.58 30.9 5.94 1.540 6.40 0.94 5.52 1.13 3.16 0.485 3.01 0.453 4.9 0.8 0.8 0.25 8 -0.06 8.14 2.29
CF988 Feldspar Porphyry 7.81 30.5 5.85 1.547 6.57 0.95 5.56 1.17 3.41 0.510 3.16 0.502 5.9 0.9 0.9 0.26 5 -0.06 10.7 3.04
CF9824 Volcanic Flow 11.8 46.6 9.05 1.784 8.85 1.16 6.43 1.31 3.67 0.569 3.55 0.527 7.7 1.1 1.9 0.66 -5 -0.06 19.3 6.10
CF9825 Volcanic Flow 1.62 7.09 1.86 0.681 2.43 0.46 3.03 0.71 2.07 0.318 2.07 0.336 2.0 0.2 0.8 0.22 -5 -0.06 2.20 0.39
CF9832A Volcanic Flow 1.08 5.31 1.60 0.426 2.23 0.42 2.82 0.64 1.96 0.317 1.94 0.318 2.0 0.2 0.2 0.11 -5 -0.06 1.51 0.33
CF9832A REP Volcanic Flow 1.05 5.08 1.51 0.423 2.10 0.40 2.85 0.64 1.89 0.305 1.96 0.304 1.9 0.2 -0.2 0.07 -5 -0.06 1.56 0.23
CF9844 Repeat 9.62 37.1 7.20 2.188 7.60 1.09 6.18 1.24 3.38 0.511 3.26 0.512 6.4 0.9 0.8 0.11 6 0.06 14.2 3.79
CF9830 Volcanic Flow 3.40 15.7 3.80 1.742 4.55 0.81 5.29 1.22 3.60 0.568 3.69 0.576 3.1 0.3 0.6 0.09 -5 -0.06 2.41 0.65
CF9817 Breccia 6.42 25.9 5.02 1.348 5.63 0.81 4.67 0.96 2.78 0.424 2.61 0.411 5.0 0.7 1.0 0.08 -5 -0.06 5.00 1.06
CF987 Volcanic Flow 4.89 19.3 3.84 1.084 4.30 0.64 3.78 0.81 2.29 0.339 2.24 0.355 4.4 0.5 0.5 0.05 -5 -0.06 4.60 1.01
CF986 Volcanic Flow 7.52 29.0 5.50 1.520 5.98 0.89 5.13 1.09 3.08 0.443 2.79 0.424 5.8 0.7 0.6 0.19 -5 -0.06 8.42 2.52
CF9811 Cherty Tuff 4.84 17.4 3.51 1.144 4.07 0.71 4.61 1.02 3.16 0.514 3.28 0.530 5.0 1.9 0.5 0.11 -5 -0.06 35.2 11.3
CF9812 Gabbro Dyke 11.5 56.3 13.2 4.217 14.1 2.02 11.4 2.24 5.82 0.796 4.83 0.686 7.7 1.3 0.5 0.26 -5 -0.06 2.69 0.39
CF9813 Gabbro Sill 1.25 6.17 1.89 0.753 2.40 0.44 2.84 0.65 1.93 0.299 1.85 0.309 1.4 0.1 -0.2 0.15 -5 -0.06 0.58 -0.05
CF98VR8 Vitric Tuff 11.2 42.6 7.79 1.812 8.38 1.21 7.06 1.52 4.65 0.695 4.33 0.698 7.1 1.0 1.0 0.42 -5 0.06 16.1 4.57
CF98NR1 Volcanic Flow 1.76 7.92 2.21 0.717 2.98 0.54 3.56 0.80 2.34 0.357 2.29 0.359 2.2 0.2 0.8 0.17 -5 -0.06 2.31 0.36
CF98NR3 Volcanic Flow 8.11 31.8 5.82 1.316 6.20 0.88 5.02 1.06 3.08 0.490 3.01 0.461 6.6 1.0 0.8 0.38 5 -0.06 17.0 5.37
CF98NR4 Quartz Feldspar Porphyry 8.98 34.1 6.30 1.439 6.73 0.95 5.44 1.15 3.28 0.510 3.13 0.490 7.6 1.1 0.8 0.48 10 0.11 17.8 5.08
CF98NR4 (PULP DUP) 8.96 33.7 6.17 1.439 6.68 0.93 5.37 1.14 3.27 0.495 3.14 0.496 6.9 1.0 0.7 0.49 8 0.16 17.8 4.72

VO
oo

Page 1 of 1



TRACE ELEMENTS

Analyte La Ce Pr Nd Sm Eu Gd Tb oy Ho Er Tm Yb Lu Rb Sr Nb Cs Hf Ta Th U Y Zr
Units ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
Detect! 
on Limit

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 001 0.01 0.01 0.01 0.01 0.01 0.01 0.2 0.02 0.01 0.01 0.01 0.02 0.02 0.5 1

CF9833 Quartz Feldspar 
Porphyry

36.90 72.20 8.56 32.43 6.46 1.50 5.57 0.78 5.18 1.05 3.02 0.38 2.92 046 16.67 56.9 11.63 1.04 5.66 0.98 12.40 3.66 30.77 192.80

CF98V
R1

Gabbro Sill 1.35 3.40 0.53 2.71 1.17 0.59 2.33 0.41 3.30 0.71 2.20 0.28 2.26 0.36 21.80 99.5 2.80 1.70 1 85 0.28 0.45 015 21.48 57.29

CF98N
R2

Gabbro Sill 2.66 6.83 1.09 5.44 1.78 0.65 2.16 0.34 2.67 0.56 1.76 0.20 1.84 0.29 4.92 122.0 2.06 0.22 1.34 0.22 0.33 0.09 17.35 40.49

CF997 Quartz Feldspar 
Porphyry

49.16 94.21 11.04 39.90 7.93 1.76 7.06 1.00 6.68 1.33 3.83 0.52 3.71 0.60 71.87 93.3 13.56 0.64 7.40 1.17 18.25 5.35 39.12 248.76

CF999 Feldspar Porphyry 21.24 41.66 5.00 19.47 4.00 0.99 3.75 0.54 3.77 0.75 2.19 0.25 2.16 0.34 18.36 153.9 7.68 0.19 4.34 0.64 5.06 1.31 22.60 153.22
CF9910 Breccia 6.66 16.26 2.50 12.34 3.72 1.27 4.45 0.68 4.91 1.04 3.01 0.40 2.99 0.48 2.02 123.1 4.84 0.08 2.73 0.41 0.78 0.18 29.96 81.00

CF9916 Quartz Feldspar 
Porphyry

45.50 87.54 10.22 37.37 7.18 1.41 6.07 0.86 5.61 1.13 3.34 0.43 3.20 0.50 15.54 105.0 12.45 0.68 7.10 1.13 17.73 5.11 34.09 239.95

CF9922 Quartz Feldspar 
Porphyry

39.90 77.12 9.10 33.74 6.54 1.44 5.42 0.74 4.87 0.96 2.89 0.36 2.83 0.44 37.21 195.7 12.69 1.14 6.48 1.06 15.07 4.40 28.44 218.05

CF9925 Quartz Feldspar 
Porphyry

33.61 68.61 8.49 32.12 6.96 1.82 6.74 1.01 6.41 1.30 3.73 0.48 3.56 0.56 2.20 133.5 13.00 0.22 6.57 1.05 14.73 4.20 39.97 225.32

CF9926 Volcanic Flow 18.92 38.91 4.89 19.40 4.16 1.18 3.86 0.53 3.68 0.73 2.17 0.26 2.23 0.35 4.66 95.3 8.74 0.27 4.06 0.65 3.88 1.04 21.08 143.84

CF9927 Quartz Feldspar 
Porphyry

36.42 71.25 8.32 30.05 5.75 1.44 4.79 0.64 432 0.81 2.43 0.30 2.46 0.37 3.91 161.5 8.90 0.23 5.77 0.87 16.74 4.62 24.00 193.81

CF9934 Feldspar Porphyry 18.14 38.40 4.87 18.90 4.06 0.97 3.94 0.54 3.88 0.79 2.44 0.31 2.51 0.40 46.15 43.8 14.78 2.30 6.22 1.06 6.45 3.10 23.87 214.85

CF9935 Feldspar Porphyry 27.24 57.72 7.23 28.31 6.02 1.56 5.60 0.83 5.52 1.08 3.09 0.39 3.02 0.46 1.42 150.3 12.70 0.51 4.96 0.88 7.41 2.15 31.31 171.73

CF9937 Quartz Carbonate 
Seriate Schist

54.78 100.77 11.59 40.70 6.14 1.70 3.84 0.39 2.53 0.38 1.19 0.10 1.15 0.17 92.16 62.6 6.00 2.99 4.06 0.56 15.08 2.84 13.12 138.15

CF9942 Lapilli Tuff 55.65 103.56 11.94 42.86 7.88 1.63 6.52 0.90 5.82 1.18 3.46 0.44 3.27 0.52 52.66 52.8 11.83 1.07 6.22 1.05 17.00 5.06 36.30 205.73

CF9948 Quartz Feldspar
PoJE!5?y_______

30.56 57.24 6.54 23.53 4.34 0.78 3.61 0.51 3.63 0.72 2.21 0.28 2.31 0.35 4.49 85.4 7.20 0.30 5.03 0.80 18.40 4.11 22.10 159.57

CF9949 Quartz Feldspar 
Porphyry

44.60 87.10 10.28 37.64 7.40 1.51 6.55 0.94 6.23 1.26 3.73 0.48 3.51 0.55 80.48 174.0 13.18 1.66 7.05 1.09 15.80 4.61 37.27 238.47

CF9950 Gabbro Sill 2.70 6.70 1.02 5.08 1.69 0.58 2.05 0.30 2.52 0.53 1.60 0.18 1.68 0.27 12.34 127.1 1.97 0.40 1.23 0.21 0.33 0.06 16.17 36.96

CF9954 Feldspar Porphyry 37.21 73.05 8.97 34.02 6.99 1.76 6.36 0.89 5.88 1.19 3.37 0.44 3.26 0.53 61.77 182.7 12.92 2.21 5.87 0.99 11.14 328 35.10 202.18

CF9955 Feldspar Porphyry 31.99 63.28 7.56 28.11 5.60 1.32 5.21 0.80 5.62 1.15 3.30 0.43 3.20 0.50 13.19 153.7 13.22 0.35 5.61 0.99 10.79 3.10 33.85 195.88



APPENDIX B

MINERAL CHEMISTRY



Amphibole Chemistry
Basis Of 28 Oxygens

1 2 3 4 5 6 8 9 10 1 2 3
Si02 44.53 50.26 48.58 48.32 43.58 42.69 51.79 54.13 52.46 Si02 49.93 52.73 50.37
Ti02 0.32 0.13 0.29 0.58 1.78 2.15 0.02 0.01 0.82 Ti02 0.69 0.01 0.08
AJ203 11.78 5.65 7.32 4.35 8.08 8.67 3.96 2.03 2.83 AI203 5.07 2.67 5,58
0 2 0 3 0.24 0.02 0.02 0.03 0.01 0.00 0.01 0.00 0.03 Cr203 0.08 0.02 0.02
FeO 17.64 15.49 16.81 22.99 25.39 25.50 14.67 12.88 13.61 FeO 15,37 14.22 16.61
MnO 0.21 0.31 0.32 0.46 0.38 0.31 0.28 0.31 0.28 MnO 0.25 0.25 0.28
MgO 9.37 13.18 12.30 8.30 5.89 6.06 13.58 14.82 13.74 MgO 12.62 14.25 11.94
CaO 12.24 10.72 10.76 11.39 10.34 10.32 12.30 12.51 13.08 CaO 12.69 13.09 12.69
Na20 0.94 0.53 0.71 0.74 1.29 1.30 0.36 0.19 0.30 Na20 0.46 0.29 0.43
K20 0.33 0.11 0.10 0.25 0.21 0.26 0.16 0.08 0.09 K20 0.15 0.09 0.24

Total 97.61 96.40 97.21 97.41 96.95 97.26 97.12 96.96 97.24 Total 97.31 97.62 98.23

FeO 14.90 13.85 13.49 21.00 21.72 20.63 13.38 12.88 13.61 Si 7.3627 76793 7.3868
Fe203 3.04 1.83 3.69 2.21 4.08 5.41 1.44 0.00 0.00 Al IV 0.6373 0.3207 0.6132

Ti 0.0770 0.0013 0.0088
Total 97.91 96.58 97.58 97.63 97.36 97.80 97.27 96.96 97.24 Al 0.2441 0 1382 0.3515

Cr 0.0089 0.0018 0.0023
Si 6.6101 7.3937 7.1221 7.3534 6.7517 6.5865 7.5613 7.8485 7.6531 Fe 1.8955 1.7320 2.0372
Al IV 1.3899 0.6063 0.8779 0.6466 1.2483 1.4135 0.4387 0.1515 0.3469 Mn 0.0316 0.0313 00348
Ti 0.0362 0.0144 0.0318 0.0660 0.2074 0.2499 0.0022 0.0015 0.0896 Mg 2.7734 3.0928 2.6096
Al VI 0.6717 0.3735 0.3873 0.1339 0.2275 0.1635 0.2429 0.1953 0.1406 Ca 2.0051 2.0427 1.9941
Cr 0.0283 0.0021 0.0018 0.0039 0.0014 0.0000 0.0014 0.0000 0.0032 Na 0.1302 0.0806 0.1209
Fe3+ 0.3397 0.2013 0.4045 0.2517 0.4709 0.6232 0.1573 0.0000 0.0000 K 0.0288 0.0175 0.0442
Fe 2+ 1.8502 1.7044 1.6566 2.6744 2.8189 2.6671 1.6339 1.5618 1.6605
Mn 0.0259 0.0387 0.0398 0.0596 0.0499 0.0409 0.0344 0.0382 0.0345 Tot(cat) 15.1947 15.1381 15.2034
Mg 2.0729 2.8896 2.6874 1.8825 1.3600 1.3934 2.9548 3.2024 2.9873
Ca 1.9468 1.6898 1.6903 1.8573 1.7165 1.7061 1.9242 1.9436 2.0446 1 987amp Volcanic Flow
Na M4 0.0282 0.0861 0.1005 0.0765 0.1506 0.1559 0.0500 0.0531 0.0397 2 987amp2 Volcanic Flow
NaA 0.2434 0.0662 0.1019 0.1420 0.2370 0.2326 0.0510 0.0000 0.0464 3 987amp3 Volcanic Flow
K 0.0626 0.0203 0.0192 0.0482 0.0412 0.0504 0.0292 0.0144 0.0172

Total ###### ###### ###### ###### ###### * * * * * * * * * * * * — ######

T 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000
M 1-3 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 4.9993 5.0000
M 4 2.0000 2.0000 2.0000 2.0057 2.0030 2.0000 2.0013 1.9960 2.0000
A 0.3059 0.0865 0.1211 0.1902 0.2781 0.2830 0.0802 0.0144 0.0636

1 cf9950c1amp1 Gabbro Sili
2 cf9950c1amp2 Gabbro Sili
3 cf9950c1amp3 Gabbro Sili
4 cf9810c1amp1 Gabbro Sili
5 cf9810c1amp2 Gabbro Sili
6 cf9810c1amp3 Gabbro Sili
8 cf9813c1amp1 Gabbro Sili
9 cf9813c1amp2 Gabbro Sili

10 cf9813c1amp3 Gabbro Sili



1 2 3
SÌ02 37.62 46.18 44.60
Ti02 0.07 0.31 0.37
A1203 25.19 9.41 11.72
Cr203 0.00 0.01 0.06
FeO 9.32 16.35 16.79
MnO 0.04 0.30 0.26
MgO 0.00 10.61 9.36
CaO 23.86 12.07 11.90
Na20 0.00 0.78 1.14
K20 0.00 0.17 0.24

Total 96.11 96.19 96.45

Si 5.6444 6 9413 6.7143
Al IV 2.3556 1.0587 1.2857
TÍ 0.0084 0.0350 0.0420
Al 2.1001 0.6088 0.7944
Cr 0.0000 0.0011 0.0069
Fe 1.1695 2.0553 2.1139
Mn 0.0055 0.0378 0.0337
Mg 0.0002 2.3768 2.1000
Ca 3.8359 1.9440 1.9196
Na 0.0000 0.2286 0.3320
K 0.0000 00327 0.0469

Tot(cat) 15.1194 15.3200 15.3896

1 cf991 lclam pl Breccia
2 cf991 lclam pl repeat Breccia
3 cf99l lclamp2 Breccia

o



Mica Chemistry
Basis o f 22 oxygens

1
Si02 35.33
Ti02 1.73
A1203 16.22
Cr203 0.02
FeO 22.18
MnO 0.23
MgO 8.79
CaO 0.05
BaO 0.17
N a20 0.01
K 20 9.49

Total

Si
A1IV
Ti
A1
Cr
Fe
Mn
Mg
Ca
Ba
Na
K

Tot(cat)

94.23

5.5516
2.4484
0.2049
0.5564
0.0029
2.9148
0.0300
2.0585
0.0084
0.0107
0.0033
1.9025

15.6925

2
35.52

1.62
16.10
0.00

22.13
0.25
8.63
0.06
0.29
0.02
9.34

93.97

5.5939
2.4061
0.1923
0.5831
0.0000
2.9147
0.0337
2.0255
0.0104
0.0178
0.0067
1.8766

15.6608

3
35.92

1.81
16.01
0.01

22.97
0.25
9.12
0.03
0.25
0.02
9.34

95.72

5.5651
2.4349
0.2109
0.4894
0.0016
2.9763
0.0325
2.1058
0.0043
0.0150
0.0046
1.8461

15.6865

4
35.39

1.69
16.24
0.02

22.83
0.20
9.09
0.02
0.14
0.05
9.08

94.76

5.5297
2.4703
0.1983
0.5213
0.0029
2.9833
0.0269
2.1167
0.0039
0.0084
0.0159
1.8100

15.6877

5
35.98

1.83
16.66
0.00

21.85
0.22
9.29
0.00
0.09
0.05
9.13

95.09

5.5593
2.4407
0.2128
0.5940
0.0000
2.8235
0.0284
2.1392
0.0006
0.0051
0.0143
1.7997

15.6176

Si02
Ti02
A1203
Cr203
FeO
MnO
MgO
CaO
BaO
Na20
K 20

Total

Si
A1IV
Ti
A1
Cr
Fe
Mn
Mg
Ca
Ba
Na
K

Tot(cat)

1 9954c lbiot Feldspar Porphyry
2 9954clbiot Feldspar Porphyry
3 9954clbiot Feldspar Porphyry
4 9954clbiot Feldspar Porphyry
5 988clbiot Feldspar Porphyry



1 2 3 4 5 6 7 8 9 10
35.15 35.15 34.19 34.80 35.00 34.54 33.71 34.08 34.01 25.93

2.02 2.44 2.02 2.12 1.17 2.17 2.02 1.75 1.88 0.19
17.21 16.85 17.16 17.37 17.67 17.03 17.62 17.83 17.81 17.94
0.10 0.03 0.02 0.06 0.01 0.02 0.07 0.00 0.04 0.03

24.60 25.13 25.10 25.17 24.05 26.08 25.37 25.02 24.19 32.89
0.34 0.33 0.28 0.27 0.31 0.31 0.25 0.24 0.25 0.36
6.32 5.90 6.24 6.15 6.89 6.13 6.33 6.33 6.24 9.91
0.05 0.05 0.02 0.00 0.05 0.01 0.00 0.01 0.00 0.00
0.11 0.09 0.11 0.08 0.01 0.06 0.09 0.02 0.09 0.00
0.04 0.04 0.01 0.06 0.07 0.02 0.05 0.02 0.02 0.00
9.52 9.69 8.93 9.63 9.62 9.06 9.09 9.56 9.62 0.14

95.47 95.70 94,08 95.70 94.86 95.43 94.61 94,86 94.15 87.40

5.5085 5.5155 5.4470 5.4590 5.5026 5.4461 5.3564 5.3932 5.4091 4.5065
2.4915 2.4845 2.5530 2.5410 2.4974 2.5539 2.6436 2.6068 2.5909 3.4935
0.2384 0.2878 0.2416 0.2496 0.1379 0.2571 0.2419 0.2082 0.2251 0.0252
0.6881 0.6326 0.6701 0.6713 0.7777 0.6117 0.6570 0.7197 0.7484 0.1823
0.0119 0.0033 0.0029 0.0068 0.0018 0.0029 0.0091 0.0000 0.0050 0.0045
3.2241 3.2978 3.3443 3.3021 3.1622 3.4391 3.3714 3.3114 3.2176 4.7806
0.0458 0.0443 0.0383 0.0358 0.0416 0.0411 0.0342 0.0322 0.0342 0.0524
1.4761 1.3797 1.4816 1.4378 1.6144 1.4405 1.4990 1.4929 1.4790 2.5668
0.0086 0.0090 0.0031 0.0006 0.0092 0.0019 0.0000 0.0012 0.0000 0.0005
0.0070 0.0053 0.0067 0.0047 0.0004 0.0039 0.0056 0.0010 0.0055 0.0000
0.0114 0.0134 0.0045 0.0193 0.0220 0.0065 0.0145 0.0074 0.0053 0.0000
1.9034 1.9398 1.8151 1.9273 1.9296 1.8225 1.8427 1.9301 1.9520 0.0316

15.6147 15.6131 15.6082 15.6552 15.6968 15.6270 15.6754 15.7041 15.6722 15.6439

1 cf9949c2mioQuartz Feldspar Porphyry
2 cf9949c2mioQuartz Feldspar Porphyry
3 cf9949c2mioQuartz Feldspar Porphyry
4 cf9949c2micQuartz Feldspar Porphyry
5 cf9949c3mioQuartz Feldspar Porphyry
6 cf9949c3micQuartz Feldspar Porphyry
7 cf997c3micaQuartz Feldspar Porphyry
8 cf997c3micaQuartz Feldspar Porphyry
9 cf997c3micaQuartz Feldspar Porphyry

10 cf997clmicaQuartz Feldspar Porphyry
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Chlorite Chemistry
Basis of 28 oxygens

1 2 3 4 S 6 7 8 9 10 11
Si02 24.14 2445 24.67 25.25 25.05 24.97 24.96 24.53 24.00 24.11 27.10
Ti02 0.10 0.06 0.05 0.09 0.12 0.06 0.07 0.08 0.06 0.03 0.04
AI203 21.23 23.30 22.20 21.04 20.30 20.63 20,93 2096 22.04 21 88 17.48
Cr203 0.00 0.03 0.37 0.00 0.01 0.11 0.02 0.11 0,00 0.02 0.55
FeO 23.08 26.23 25.97 26.61 28.14 28.33 29.24 29.26 31.64 31.44 28.44
MnO 0.05 0.09 0.1! 0.38 0.44 0.36 0.10 0.14 0.17 0.11 0.36
MgO 12.11 12.58 1356 13.17 13.04 12.79 12.63 12.60 11.05 11.19 14.96
CaO 4.07 0.06 0.01 0.00 0.03 0.04 0.01 0.01 0.00 0.11 0.03
Na20 0.19 0.04 0.02 0.01 000 0.00 0.00 0.00 0.00 0.00 0.00
K 2 0 0.00 0.00 0.00 0.06 0.02 0.04 0.00 0.02 0.00 0.00 0.00

Total 84.98 86.84 86.95 86.62 87.14 87.33 87.97 87.70 88.96 88.89 88.96

Si 5.2838 5.2220 5.2670 5.4341 5.4135 5.3874 5.3580 5.2932 5.1640 5.1862 5 7381
AI IV 2.7162 2.7780 2.7330 2.5659 2.5865 2.6126 2.6420 2.7068 2.8360 28138 2.2619
Ti 0.0169 0.0098 0.0077 0.0151 0.0194 0.0103 0.0108 0.0126 0 0090 0.0055 0.0060
AI 2.7620 3.0889 2.8547 2.7724 2.5855 2.6348 2.6548 2.6254 2.7548 2.7349 2.1015
Cr 0.0000 0.0054 0.0616 0.0000 0.0013 0.0187 0.0040 0.0180 0.0000 0.0035 0.0920
Fe 4.2249 4.6853 4.6370 4.7895 5.0860 5.1119 5.2494 5.2805 5.6936 5.6560 5.0362
Mn 0.0100 0.0160 0.0199 0.0695 0.0804 0.0654 0.0177 0.0258 0.0301 0.0195 0.0644
Mg 3.9503 4.0043 4.3145 4.2241 4.1998 4.1126 4.0406 4.0521 3.5434 3.5873 4.7207
Ca 0.9545 0.0142 0.0012 0.0010 0.0058 0.0101 0.0030 0.0026 0 0000 0.0243 0.0076
Na 0.0819 0.0166 0.0073 0.0046 0.0000 0.0000 0.0000 0.0000 0.0005 00019 00000
K 0.0010 0.0000 0.0006 0.0154 0.0044 0.0109 0.0012 0.0044 0.0013 0.0005 00000

Tot(cat) 20.0017 19.8403 199046 19.8916 19 9826 19.9747 19.9814 20.0213 20.0326 20.0334 20.0283

1 9926c2chlorVolcanic Row
2 9926c2chk>rVolcanic Row
3 9926c lchlorVolcanic Flow
4 9954c lchk>r Feldspar PorphyTy
5 9954clchlorFeldspar Porphyry
6 9954c2chlor Feldspar Porphyry
7 995 5c2chk)r Feldspar Porphyry
8 9955c3chlor Feldspar Porphyry
9 9942c3chlor Quartz Feldspar Porphyry

10 9942clchiorQuartz Feldspar Porphyry
11 987c2chlor Volcanic Row
12 987clchlor Volcanic Flow-
13 9818c4chlor Quartz Feldspar Porphyry
14 9818c2chlorQuartz Feldspar Porphyry
15 982c2chlor Quartz Feldspar Porphyry-
16 982c2chlor Quartz Feldspar Porphyry
17 9825cchlor Volcanic Flow
18 9825chlor2 Volcanic Flow
19 988c3chlor Feldspar Porphyry
20 988c3chlor Feldspar Porphyry
21 989chlor Quartz Feldspar Porphyry
22 989chlor repQuartz Feldspar Porphyry-
23 989chlor2 Quartz Feldspar Porphyry



12 13 14 15 16 17 18 19 20 21 22 23
25.72 26.51 25.98 25.62 24.89 26.06 25.32 25.63 25.20 63 08 24.40 23.77

0.04 0.08 0.18 0.06 0.14 0.09 006 0.07 007 0.02 0.03 0.05
20.85 16.88 17.38 22.90 20.03 20.34 21.18 20.91 21.58 2268 20.91 22.07

O.iO 000 0.00 0.00 0.00 0.07 0.08 0.01 0.01 0.00 000 0.00
26.05 33.44 33.39 33.07 34.12 24.75 25.05 28.23 28.93 2.11 34.30 31.61

0.31 0.42 0.32 0.18 0.23 0.39 0.41 0.49 0.39 0.00 0.23 0.11
15.28 11.15 11.09 9 84 9.56 15.61 15.28 13.31 13.02 099 9.83 9.98
0.03 0.06 0.07 0.07 0.10 0.04 0.06 0.08 0.03 0.23 0.07 0.06
0.01 0.03 0.01 0.15 0.02 0.01 0.03 0.00 0.00 10.64 0.01 0.04
0.01 0.11 0.11 0.03 0.08 0.01 0.00 0.09 0.00 0.11 0.03 0.00

88.40 88.67 88.53 91 92 89.16 87.36 87.47 88.82 89.24 99.86 89.81 87.69

5.4003 5.7954 5.6901 5.3317 54211 5.5009 5.3532 5.4219 5.3196 9.8034 5.2775 5 1936
2.5997 2.2046 2.3099 2.6683 2.5789 24991 2.6468 2.5781 2.6804 0.0000 2.7225 2.8064
0.0061 0.0125 0.0289 0.0099 0.0226 0.0148 0.0092 0.0112 0.0106 0.0029 0.0042 0.0081
2.5613 2.1458 2.1777 2.9500 2.5643 2.5625 2.6324 2.6368 2.6901 4.1554 2.6094 2.8785
0.0165 0.0000 0.0007 0.0000 0.0000 0.0113 0.0133 0.0020 0.0020 0.0000 0.0000 0.0003
4.5743 6 1138 6.1161 5.755 7 6.2151 4.3692 4.4293 49945 5.1074 0.2739 6.2045 5.7761
0.0557 0.0775 0.0593 0.0312 0.0415 0.0688 0.0738 0.0874 0.0701 0.0003 0.0423 0.0203
4.7813 3.6327 3.6199 3.0518 3.1032 4.9107 4.8146 4.1963 4.0961 0.2283 3.1687 3.2497
0.0071 0.0131 0.0157 0.01S8 0.0238 0.0083 0.0130 0.0179 0.0068 0.0384 0.0164 0.0134
0.0031 0.0115 0.0055 0.0615 0.0065 0.0022 0.0103 0.0014 0.0000 3.2062 0,0045 0.0183
0.0018 0.0316 0.0318 0.0079 0.0216 0.0020 0.0008 0.0232 0.0013 0.0210 0.0092 0.0000

20.0073 20.0385 20.0555 198839 19.9987 19.9499 19.9968 19.9707 19.9842 17.7297 20.0592 19.9649
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Chlorite Chemistry
Basis of 28 oxygens

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13
Si02 26.03 25.80 26.09 26.17 25.61 25.00 26.08 25.79 Si02 27.74 25.84 27.08 24.71 24.07 25.08 24.49 22.42 23.08 22.44 26.10 25.70 25.54
Ti02 0.04 0.09 0.08 0.09 0.12 0.27 0.16 0.26 Ti02 0.07 0.07 0.09 0.07 006 0.23 0.07 0.00 0.01 0.01 0.03 0.02 0.03
A1203 20.99 21.42 20.50 20.24 18 11 19.48 17.67 17.68 A1203 17.72 20.47 17.73 21.05 21.69 20.37 21.45 25.02 23.85 24.41 20.42 20.42 21.03
Cr203 0.09 0.21 0.07 0.05 0.06 0.09 0.05 0.09 Cr203 0.02 0.10 0.00 0.02 0.01 0.01 0.01 0.03 0.03 0.05 0.06 0.02 0.04
FeO 23.53 23.90 23.81 23.85 34.56 32.82 33.71 33.92 FeO 2638 25.05 30.27 31.34 30.52 30.21 30.45 32.77 31.98 32.34 24.47 24.73 24.55
MnO 0.21 0.30 0.26 0.26 0.41 0.49 0.40 0.39 MnO 0.31 0.34 0,35 0.09 0.13 0.28 0.23 0.14 0.14 0.12 0.33 0.44 0.28
MgO 16.27 1635 16.62 16.76 8.99 9.28 10.28 9.90 MgO 15.81 15.84 13.24 11.00 10.81 11.58 10.87 8.77 9.20 8.84 16.11 16.08 15.91
CaO 0.02 0.02 0.04 0.04 0.07 0.02 0.03 0.05 CaO 0.06 0.02 0.04 0.00 0.00 0.03 0.02 0.01 0.00 0.00 0.15 0.02 0.02
Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0,00 0.00
K20 0.01 0.00 0.04 0.00 0.07 0.19 0.03 0.03 K 20 0.05 0.02 0.03 0.03 0.03 0.02 0.18 001 0.00 001 0.01 0,00 0.00

Total 87.19 88.08 87.50 87.46 88.01 87.64 88.44 88.11 Total 88.17 87.76 88.82 88.31 87.32 87.80 87.78 89.17 88.28 88.23 87.69 87.44 87.40

Si 5.4604 53716 5.4680 5.4886 5.6787 5.5205 5.7210 5.6919 Si 5.8428 5.4405 5.7861 5.3439 5.2507 5.4297 5.3144 4.8391 5.0114 4.8911 5.4802 5.4262 5.3824
AI IV 2.5396 2.6284 2.5320 2.5114 2.3213 2.4795 2.2790 2.3081 Al IV 2.1572 2.5595 2.2139 2.6561 2.7493 2.5703 2.6856 3.1609 2.9886 3.1089 2.5198 2.5738 2.6176
Ti 0.0064 0.0133 0.0123 0.0137 0.0207 0.0447 0.0270 0.0425 Ti 0.0110 0.0115 0.0137 0.0109 0.0092 0.0367 0.0120 0.0000 0.0010 0.0023 0.0048 0.0037 0.0046
A1 2.6514 2.6293 2.5331 2.4931 2.4128 2.5918 2.2907 2.2921 AI 2.2429 2.5215 2.2522 2.7108 2.8288 2.6288 2.8020 3.2055 3.1166 3.1635 2.5350 2.5091 2.6074
Cr 0.0150 0.0345 0.0119 0.0076 0.0101 0.0164 0.0091 0.0158 Cr 0.0036 0.0165 0.0000 0.0036 0.0018 0.0013 0.0009 0.0043 0.0045 00083 0.0097 0.0040 0.0059
Fe 4.1281 4 1616 4 1734 4.1833 6.4089 6.0611 6.1844 6.2609 Fe 4.6469 4.4109 5.4091 5.6684 5.5680 5.4698 5.5262 5.9153 5.8073 5.8952 4.2970 4.3668 4.3270
Mn 0.0375 0.0523 0.0457 0.0469 0.0779 0.0909 0.0745 0.0729 Mn 0.0553 0.0612 0.0629 0.0169 0.0237 0.0510 0.0414 0.0265 0.0253 0.0220 0.0594 0.0787 0.0508
Mg 5.0865 5.0732 5.1912 5.2386 2.9708 3.0540 3.3608 3.2563 Mg 4.9628 4.9703 4.2161 3.5454 3.5144 3.7363 3.5154 2.8210 2.9771 2.8715 5.0412 5.0598 4.9970
Ca 0.0036 0.0048 0.0089 0.0084 0.0174 0.0053 0.0060 0.0125 Ca 0.0145 0.0049 0.0091 0.0002 0.0000 0.0063 0.0037 0.0018 0.0009 0.0004 0.0342 0.0044 0.0043
Na 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0125 0.0007 Na 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0035 0.0000 0.0000 0.0004
K 0.0038 0.0000 0.0098 0.0003 0.0199 0.0535 0.0075 0.0083 K 0.0146 0.0050 0.0082 0.0073 0.0087 0.0062 0.0511 0.0022 0.0000 0.0027 0.0027 0.0000 0.0009

Tot(cat) 19.9322 19 9690 19.9861 19.9919 19.9385 19.9177 19 9726 19.9621 Tot(cat) 19.9516 20.0017 19.9713 19.9636 19.9545 19.9365 19.9572 19.9767 19.9327 19.9694 19.9840 20.0266 19.9983

1 cf991 lc2chlorl Breccia 1 cf98I5gmchlorl Volcanic Flow
2 cf991 lc2chlor2 Breccia 2 cf9815gmchlor2 Volcanic Flow
3 c(9911clch!or3 Breccia 3 cf9815gmchlor3 Volcanic Flow
4 c!991 lclchlor4 Breccia 4 cf99l6gmchlorl Volcanic Flow
5 cf997clchk»rl Quartz Feldspar Porphyry 5 c(99l6gmchlor2 Volcanic Flow
6 cf997clchlor2 Quartz Feldspar Porphyry 6 cl9922gmchlorl Quartz Feldspar Porphyry
7 d999clchlor3 Feldspar Porphyry 7 cf9922gmchk>r2 Quartz Feldspar Porphyry
8 cf999c3chlor2 Feldspar Porphyry 8 cf9934c2chlorl Feldspar Porphyry

9 cf9934c3chlorl Feldspar Porphyiy
10 cf9934c3chlor2 Feldspar Porphyry
II cf9935clchlorl Feldspar PorphyTy
12 cf9935clchlor2 Feldspar PorphyTy
13 c£9935c2chlorl Feldspar Porphyry
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Chlorite Chemistry
Basis of 28 oxygens

1 2 3 4 5 6

Si02 27.66 26.53 25.81 24.91 25.57 26.60

Ti02 0.10 0.01 0.06 0.03 0.01 0.03

A1203 19.22 20.73 20.21 20.58 21.37 20.45

Cr203 0.00 0.06 0.02 0.12 0.00 0.02
FeO 21.82 22.98 26.42 28.68 21.73 21.86
MnO , 0.11 0.14 0.29 0.30 0.27 0.23

MgO 17.21 16.95 14.65 12.66 17.23 17.66

CaO 0.08 0.09 0.05 0.07 0.02 0.00

N a20 0.00 0.00 0.00 0.00 0.00 0.00
K 20 0.23 0.01 0.02 0.02 0.00 0.00

Total 86.42 87.50 87.52 87.38 86.20 86.85

Si 5.7940 5.5226 5.4872 5.3815 5.3814 5.5486
Al IV 2.2060 2.4774 2.5128 2.6185 2.6186 2.4514
Ti 0.0150 0.0023 0.0098 0.0054 0.0008 0.0043
Al 2.5405 2.6100 2.5526 2.6232 2.6836 2.5776
Cr 0.0000 0.00% 0.0029 0.0203 0.0000 0.0039
Fe 3.8226 4.0007 4.6975 5.1819 3.8247 3.8135
Mn 0.0195 0.0243 0.0513 0.0545 0.0486 0.0413
Mg 5.3727 5.2585 4.6417 4.0761 5.4042 5.4900
Ca 0.0169 0.0198 0.0107 0.0172 0.0041 0.0000
Na 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000
K 0.0608 0.0025 0.0045 0.0053 0.0011 0.0000

Tot(cat) 19.8481 19.9278 19.9711 19.9854 19.9672 19.9307

1 cf9950clchlorlGabbro Sill

2 cf9950clchlor2Gabbro Sill

3 cf9810clchlorlGabbro Sill

4 cf9810clchlor2Gabbro Sill

5 cf9836cl chlor IGabbro Sill

6 cf9836clchlor2Gabbro Sill

7 c!9813c 1 chlor IGabbro Sill

8 cf9813clchlor2Gabbro Sill



7 8

25.92 25.82

0.01 0.04

20.97 20.86

0.00 0.00

23.85 24.04

0.26 0.25

15.94 15.77

0.12 0.07

0.00 0.00

0.01 0.01

87.08 86.86

5.4573 5.4568

2.5427 2.5432

0.0008 0.0064

2.6623 2.6542

0.0000 0.0000

4.1996 4.2491

0.0466 0.0442

5.0016 4.9670

0.0266 0.0156

0.0000 0.0000

0.0036 0.0032

19.9412 19.9397
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Feldspar Mineral Chem istry
Basis o f  8  oxygens

1 2 3 4 S 6 7
S i02 67.60 67.18 68.09 68.08 67.92 67.61 68.43
A1203 19.51 20.19 19.70 19.92 19.72 1958 19.56
F e203 0.00 0.01 0.14 0.07 0.06 0.00 0.00
CaO 0.27 0.48 0.18 0.15 0.04 0.12 0.04
N a2 0 11.26 11.33 11.69 11.47 11.62 11.72 11.86
K 2 0 0.05 0.13 0.04 0.06 0.05 0.05 0.04

Total 98.69 99.33 99.83 99.74 99.40 99.07 99.94

Si 2.9889 2.9584 2.9812 2.9799 2.9836 2.9823 2.9911
A1 1.0170 1.0482 1.0169 1.0279 1.0213 1.0182 1.0079
Fe 0.0001 0.0005 0.0045 0.0021 0.0019 0.0000 0.0001
Ca 0.0127 0.0226 0.0082 0.0068 0.0017 0.0055 0.0021
Na 0.9653 0.9674 0.9924 0.9734 0.9897 1 0024 1.0051
K 0.0025 0.0075 0.0021 0.0031 0.0028 0.0026 0.0023

Tot(cat) 4.9865 5.0047 5.0053 4.9934 5.0011 5.0111 5.0086

An 0.0129 0.0227 0.0082 0.0069 0.0017 0.0054 0.0021
Ab 0.9845 0.9698 0.9897 0.9899 0.9954 0.9920 0.9957
O r 0.0026 0.0075 0.0021 0.0032 0.0028 0.0026 0.0023

1 cf9922c3plagl
2 cf9922c3plag2
3 cf9922c2piag3
4 cf9922c2plag4
5 cf9916clp lagl
6 cf9916c3plagl
7 cf9916c3plag2
8 cf989c2plagl
9 cf989c2plag2

10 cf989clp lag l
11 cf989clplag2
12 cf9935c2plagl
13 cf9935c2plagl
14 cf9935c2plag2
15 cf9935c3plag2
16 cf9935c3plagl

Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Feldspar Porphyry 
Feldspar Porphyry 
Feldspar Porphyry 
Feldspar Porphyry 
Feldspar Porphyry



8 9 10 11 12 13 14 IS 16
67.35 67.48 67.39 67.40 67.11 67.11 67.25 67.58 67.90
19.78 19.97 19.81 19.82 19.76 19.76 20.10 20.12 20.06
0.00 0.08 0.05 0.00 0.16 0.16 0.13 0.11 0.12
0.45 0.37 0.17 0.46 0.40 0.40 0.61 0.55 0.47

11.56 11.33 11.78 11.24 11.29 11.29 11.39 11.13 11.42
0.06 0.11 0.07 0.04 0.04 0.04 0.03 0.03 0.05

99.20 99.34 99.27 98.96 98.75 98.75 99.51 99.51 100.02

2.9702 2.9692 2.9700 2.9747 2.9705 2.9705 2.9575 2.9664 2.9680
1.0284 1.0359 1.0293 1.0313 1.0311 1.0311 1.0421 1.0412 1.0337
0.0000 0.0028 0.0017 0.0000 0.0052 0.0052 0.0042 0.0036 0.0039
0.0212 0.0173 0.0082 0.0218 0.0189 0.0189 0.0289 0.0257 0.0222
0.9885 0.9666 1.0066 0.9619 0.9690 0.9690 0.9712 0.9473 0.9679
0.0031 0.0060 0.0039 0.0021 0.0022 0.0022 0.0018 0.0015 0.0026

5.0114 4.9978 5.0197 4.9917 4.9969 4.9969 5.0058 4.9856 4.9984

0.0209 0.0175 0.0081 0.0221 0.0191 0.0191 0.0289 0.0263 0.0224
0.9760 0.9764 0.9881 0.9757 0.9787 0.9787 0.9693 0.9721 0.9750
0.0031 0.0061 0.0038 0.0022 0.0022 0.0022 0.0018 0.0016 0.0026



Feldspar Mineral Chemistry
Basis Of 8 Oxygens

17 18 19 20 21 22 23 24
67.34 66.81 67.14 66.79 66.40 67.03 61.85 57.67
20.58 20.68 20.82 21.14 21.47 20.99 23.81 27.55

0.35 0.32 0.12 0.11 0.09 0.09 0.16 0.21
1.30 1.45 1.40 1.90 2.26 1.73 4.27 9.39
0.00 0.04 0.05 0.02 0.00 0.02 0.00 0.06

10.85 10.73 10.93 10.66 10.57 10.70 7.86 6.25
0.05 0.07 0.07 0.05 0.05 0.07 1.07 0.15

100.47 100.10 100.53 100.67 100.84 100.63 99.02 101.29

2.9372 2.9275 2.9286 2.9119 2.8937 2.9213 2.7664 2.5553
1.0583 1.0683 1.0707 1.0866 1.1031 1.0785 1.2555 1.4391
0.0115 0.0106 0.0039 0.0035 0.0029 0.0029 0.0053 0.0071
0.0607 0.0680 0.0655 0.0886 0.1057 0.0807 0.2046 0.4458
0.0000 0.0010 0.0012 0.0005 0.0000 0.0005 0.0000 0.0016
0.9176 0.9116 0.9244 0.9011 0.8932 0.9042 0.6817 0.5369
0.0029 0.0037 0.0039 0.0031 0.0028 0.0041 0.0610 0.0085

4.9882 4.9907 4.9982 4.9952 5.0013 4.9921 4.9745 4.9944

0.0618 0.0692 0.0659 0.0892 0.1055 0.0816 0.2160 0.4497
0.9352 0.9271 0.9302 0.9077 0.8917 0.9143 0.7196 0.5417
0.0030 0.0038 0.0039 0.0031 0.0028 0.0042 0.0644 0.0086

17 CF98-8 C2 gm dm s #3
18 CF98-8 C2 gm dm s #4
19 CF98-8 C3 pheno brtpat #5
20 CF98-8 C3 pheno brtpat #6
21 CF98-16 C l gm dm s #1
22 C F 98-16C l gm dm s #2
23 CF98-16 C2 gm dm s #3
24 CF98-14 C l patpheno# l
25 CF98-14 C2 patpheno #2
26 CF98-14 C3 gm dm s #3
27 CF98-14 C3 gmdms #3 (repeat)
28 C F98-14 C3 gm dm s #4
29 CF98-2C1 pheno #1
30 CF98-2C1 pheno #1 (repeat)
31 CF98-2 C2 pheno #2
32 CF98-2 c3 pheno #3

Feldspar Porphyry 
Feldspar Porphyry 
Feldspar Porphyry 
Feldspar Porphyry 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry



25 26 27 28 29 30 31 32
68.34 51.29 59.46 54.82 33.51 68.53 68.17 68.38
20.08 22.78 25.94 28.09 12.10 19.77 19.98 19.73

0.12 0.25 0.36 0.91 0.05 0.04 0.08 0.06
0.79 7.02 7.03 9.81 0.20 0.25 0.47 0.34
0.00 0.06 0.04 0.08 0.00 0.06 0.00 0.00

10.96 6.45 7.36 5.63 10.38 11.24 11.13 11.04
0.10 0.10 0.34 0.53 0.07 0.09 0.09 0.07

100.39 87.95 100.53 99.87 56.31 99.98 99.92 99.62

2.9736 2.6131 2.6412 2.4820 2.7135 2.9907 2.9782 2.9920
1.0300 1.3683 1.3584 1.4993 1.1551 1.0171 1.0291 1.0178
0.0040 0.0097 0.0119 0.0310 0.0029 0.0012 0.0026 0.0019
0.0368 0.3832 0.3346 0.4759 0.0172 0.0116 0.0222 0.0162
0.0000 0.0019 0.0010 0.0022 0.0000 0 0016 0.0000 0.0000
0.9247 0.6372 0.6339 0.4942 1.6297 0.9511 0.9428 0.9366
0.0054 0.0063 0.0193 0.0307 0.0077 0.0049 0.0051 0.0040

4.9745 5.0196 5.0003 5.0153 5.5262 4 9 782 4.9799 4.9685

0.0380 0.3733 0.3387 0.4755 0.0104 0.0120 0.0229 0.0169
0.9564 0.6206 0.6417 0.4938 0.9850 0.9829 0 9 7 1 9 0.9789
0.0056 0.0061 0.0195 0.0307 0.0046 0.0051 0.0052 0.0042

107



Fddspar Minera) Chemistry
Basis of 8 oxygens

2 3 4 S 6 7 8
Si02 59.77 57.77 69.30 68.57 98.93 68.61 58.07 58.10
A1203 25.% 27.06 19.87 19.89 2.29 19.80 26.50 26.52
Fe203 0.09 0.09 0.03 0.01 0.11 0.04 0.07 0.14
CaO 7.36 8.69 0.25 0.47 0.03 0.37 8.37 8.31
Na20 7.42 6.65 11.54 11.47 1.33 1146 689 6.67
K 20 0.13 0.11 0.07 0.05 0.01 0.06 0.11 0.15

Total 100.72 100.36 101.06 100.47 102.71 100.33 100 01 99.88

Si 2.6461 2.5773 2.9924 2.9815 38915 2.9860 2.5982 2.6008
Al 1.3549 1.4233 1.0115 1.01% 0 1063 1.0159 1.3978 1.3995
Fe 0.0029 0.0029 0.0011 0.0005 0.0033 00012 0.0024 00046
Ca 0.3491 0.4154 0.0115 0.0220 0.0014 0.0173 0.4013 0.3986
Na 0.6369 0.5753 0.9662 0.%70 0.1018 0.9671 0.5977 0.5789
K 0.0071 0.0060 0.0036 0.0028 0.0003 0.0032 0.0062 0.0084

Tot(cat) 4.9970 5.0002 4.9862 4.9934 4.1047 4.9906 5.0037 4.9908

An 0.3515 0.4168 0.0117 0.0221 0.0137 0.0175 0.3992 0.4043
Ab 0.6413 0.5771 0.9846 0.9750 0.9832 0.9792 0.5946 0.5872
Or 0.0072 0.0061 0.0037 0.0028 0.0032 0.0032 0.0062 0.0085

1 cf997c4plagl Volcanic Flow
2 cf997c2plag2 Volcanic Flow-
3 cf999c2 plagl Feldspar Porphyry
4 cf999c2 plag2 Feldspar Porphyry-
5 cf999cl plag3 Feldspar Porphyry
6 c1999c 1 p!ag3 repeat Feldspar Porphyry-
7 cf9949clplagl Quartz Feldspar Porphyry-
8 cf9949clplag2 Quartz Feldspar Porphyry
9 cf9949c3plagl Quartz Feldspar Porphyry

9
60.36
25.15

0.07
6.54
7.61
0.07

99.80

2.6871
1.3200
0.0023
0.3120
0.6569
0.0039

4.9821

0.3207
0.6753
0.0040



1 2 3 4 5
SÌ02 54.75 53.79 52.51 67.31 67.24
A1203 27.81 28.50 29.75 20.00 19.73
Fc203 0.74 1.16 1.29 0.37 0.26
CaO 10.31 8.18 11.93 0.60 0.58
Na20 5.72 4.73 4.71 11.41 11.46
K20 006 2.16 0.08 0.01 0.00

Total 99.39 98.52 100.27 99.70 99.27

Si 2.4866 2.4729 2.3802 2.9568 2.9655
Al 1.4890 1.5447 1.5898 1.0357 1.0258
Fe 0.0252 0.0401 0.0440 0.0124 0.0085
c a 0.5017 0.4029 0.5794 0.0280 0.0276
Na 0.5037 0.4216 0.4140 0.9718 0.9800
K 0.0038 0.1266 0.0048 0.0008 0.0001

Tot(cat) 5.0100 5.0088 5.0123 5.0055 5.0074

1 cf9813c3plagl Gabbro Sili
2 c(98l3clplagt Gabbro Sili
3 cf9813clplag2 Gabbro Sili
4 cf9836clplagi Gabbro Sili
5 cf9836clplag2 Gabbro Sili
6 cf9836clpiag3 Gabbro Sili
7 cf981 Oc 1 plag 1 Gabbro Sili
8 cf98IOclplag2 Gabbro Sili
9 cf9810clplag3 Gabbro Sili

10 cf9950clplagl Gabbro Sili
11 cf9950clplag2 Gabbro Sili
12 cf9950clplag3 Gabbro Sili

6 7 8 9 10 11 12
67 14 61.89 67.76 59.93 54.99 59.55 61.31
19.92 23.35 19.90 24.74 28.40 25,84 24.04
0.26 0.31 0.13 0.13 0.24 0.25 0.28
0.52 4.59 0.38 6.63 10.60 5.54 5.41

11.48 9.21 11.58 7.80 5.75 7.48 8.47
0.00 0.07 0.04 0.06 0.08 1.27 0.08

99 32 99.42 99,79 99.30 100.07 99.93 99.59

2.9595 2.7613 2.9701 2.6864 2.4789 2.6603 2.7324
1.0352 1.2282 1.0283 1.3074 1.5093 1.3609 1.2631
0.0086 0.0103 0.0043 0.0045 0.0083 0.0085 0.0094
0.0247 0.2194 0.0179 0.3185 0.5120 0.2652 0.2583
0.9812 0.7967 0.9842 0.6779 0.5026 0.6479 0.7319
0.0000 0.0040 0.0020 0.0036 0.0048 0.0722 0.0044

5.0092 5.0199 5.0067 4.9984 5.0160 5.0150 4.9996
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Feldspar Mineral Chemistry
Basis of 8 oxygens

1 2 3 4 5 6 7
Si02 67.64 67.21 67.09 67.02 68.74 67.93 68.80
A1203 20.03 20.51 20.25 20.36 19.91 20.60 19.87
Fe203 0.26 0.31 0.10 0.09 0.18 0.03 0.07
CaO 0.24 0.48 0.90 0.91 0.30 1.10 0.18
Na20 11.63 11.38 11.57 11.48 11.42 11.13 11.84
K20 0.13 0.22 0.08 0.06 0.04 0.05 0.03

Total 99.93 100.11 99.99 99.92 100.59 100.83 100.79

Si 2.9633 2.9426 2.9436 2.9413 2.9836 2.9484 2.9831
A1 1.0345 1.0586 1.0474 1.0534 1.0188 1.0541 1.0157
Fe 0.0087 0.0102 0.0033 0.0029 0.0060 0.0008 0.0024
Ca 0.0112 0.0225 0.0425 0.0427 0.0141 0.0510 0.0083
Na 0.9879 0.9661 0.9843 0.9769 0.9611 0.9367 0.9954
K 0.0070 0.0120 0.0043 0.0033 0.0021 0.0028 0.0015

Tot(cat) 5.0126 5.0120 5.0253 5.0206 4.9856 4.9939 5.0063

An 0.0111 0.0225 0.0412 0.0417 0.0144 0.0515 0.0082
Ab 0.9820 0.9655 0.9546 0.9550 0.9835 0.9456 0.9903
Or 0.0069 0.0120 0.0042 0.0032 0.0021 0.0028 0.0015

1 9926c3plag Volcanic Flow
2 9926c3plag Volcanic Flow
3 9954c2plag Feldspar Porphyry
4 9954c lplag Feldspar Porphyry
5 9955clplag Feldspar Porphyry
6 9955c4plag Feldspar Porphyry
7 9942c3plag Quartz Feldspar Porphyry
8 9942c2plag Quartz Feldspar Porphyry
9 9818c3plag Quartz Feldspar Porphyry

10 9818c2plag Quartz Feldspar Porphyry
11 987c3plag Volcanic Flow
12 987c2plag Volcanic Flow
13 987clchlor Volcanic Flow
14 987clchlor Volcanic Flow



8
68.75
19.75 
0.04 
0.19

11.76 
0.05

100.54

2.9874
1.0118
0.0013
0.0091
0.9908
0.0025

5.0028

0.0090
0.9885
0.0025

9
67.67
20.44

0.07
1.04

11.28
0.06

100.56

2.9477
1.0497
0.0022
0.0486
0.9527
0.0036

5.0045

0.0484
0.9480
0.0036

10
67.79
20.46

0.08
0.93

11.10
0.13

100.50

2.9522
1.0505
0.0027
0.0435
0.9373
0.0075

4.9936

0.0440
0.9484
0.0076

11
67.91
20.51

0.19
1.02

11.09
0.07

100.79

2.9494
1.0502
0.0063
0.0476
0.9339
0.0039

4.9912

0.0483
0.9478
0.0039

12
67.43
20.95

0.13
1.45

10.98
0.05

100.99

2.9273
1.0722
0.0041
0.0674
0.9242
0.0029

4.9981

0.0678
0.9293
0.0029

13
26.34
17.24
29.30
0.01
0.00
0.00

72.89

1.8125
1.3986
1.5173
0.0010
0.0000
0.0001

4.7296

0.8894
0.0000
0.1106

14
25.28
19.37
27.94
0.01
0.00
0.00

72.60

1.7380
1.5699
1.4455
0.0010
0.0000
0.0000

4.7543

1.0000
0.0000
0.0000
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Feldspar Mineral Chemistry
Basis o f 8 oxygens

1 2 3 4 5 6 7 8
S i02 68.04 68.34 67.47 67.99 67.60 67.66 67.33 61.76
A1203 20.32 20.42 20.18 20.37 20.13 20.33 20.65 23.97
F e203 0.06 0.05 0 0 6 0.04 0.13 0.17 0 3 2 0.35
CaO 0.84 0.91 0.94 0.77 0.88 0.99 1.07 5.91
SrO 0.06 0.03 0.12 0.13 0.06 0.10 0.09 0.04
N a2 0 11.32 11.26 11.29 11.30 11.41 11.21 11.22 8.12
K 20 0.07 0.07 0.07 0.07 0.13 0.06 0.06 0.08

Total 100.70 101.08 100.13 100.67 100.35 100.53 100.75 100.23

Si 2.9578 2.9584 2.9533 2.9570 2.9540 2.9499 2.9328 2.7360
A1 1.0414 1.0421 1.0414 1.0444 1.0371 1.0450 1.0604 1.2519
Fe 0.0018 0.0017 0.0020 0.0012 0.0044 0.0056 0.0105 0.0118
Ca 0.0391 0.0421 0.0443 0.0360 0.0411 0.0461 0.0501 0.2805
Sr 0.0015 0.0008 0.0030 0.0033 0.0016 0.0026 0.0024 0.0010
Na 0.9542 0.9451 0.9582 0.9529 0.9668 0.9476 0.9476 0.6975
K 0.0038 0.0039 0.0038 0.0038 0.0074 0.0034 0.0034 0.0044

Tot(cat) 4.9996 4.9942 5.0060 4.9986 5.0123 5.0003 5.0072 4.9831

An 0.0392 0.0425 0.0440 0.0362 0.0404 0.0463 0.0501 0.2856
Ab 0.9570 0.9536 0.9522 0.9600 0.9522 0.9503 0.9466 0.7100
Or 0.0038 0.0039 0.0038 0.0038 0.0073 0.0034 0.0034 0.0044

1 CF98-24 C 1 phenocx # 1
2  C F98-24C 2 phenocx #2
3 CF98-24 C2 phenocx #3
4  CF98-24 C3 phenocx #4
5 CF98-24 C3 phenocx #5
6  CF98-24 C3 gmdms #6
7 CF98-24 C3 gmdms #7
8 CF98-25 C 1 variole #1
9 CF98-25 C2 variole #2

10 CF98-15 C l gmdms #1
11 CF98-15 C l gmdms #2
12 CF98-15 C2 pheno brtpat #3
13 CF98-15 C2 pheno brtpat #4
14 CF98-15 C2 pheno drkpat #5
15 C F98-8C 1 pheno #1
16 CF98-8 C l pheno #2

Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Quartz Feldspar Porphyry 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Volcanic Flows 
Feldspar Porphyry 
Feldspar Porphyry



9 10 11 12 13 14 IS 16
59.19 59.69 59.92 61.09 59.78 68.56 65.20 66.88
25.49 24.89 24.63 25.13 25.19 19.95 20.30 20.81

0.53 0.19 0.30 0.10 0.29 0.04 0.12 0.14
5.93 7.11 6.61 6.46 7.24 0.58 3.15 1.54
0.01 0.06 0.06 0.03 0.04 0.00 0.05 0.10
6.97 7.74 7.85 8.13 7.68 11.46 10.68 10.89
1.29 0.06 0.51 0.09 0.05 0.05 0.09 0.08

99.41 99.74 99.88 101.04 100.28 100.64 99.59 100.45

2.6603 2.6706 2.6812 2.6909 2.6614 2.9775 2.8938 2.9229
1.3506 1.3129 1.2993 1.3050 1.3221 1.0214 1.0622 1.0722
0.0178 0.0064 0.0100 0.0034 0.0098 0.0013 0.0040 0.0047
0.2856 0.3409 0.3169 0.3049 0.3454 0.0270 0.1498 0.0723
0.0004 0.0017 0.0016 0.0008 0.0011 0.0000 0.0014 0.0026
0.6074 0.6714 0.6811 0.6944 0.6629 0.9650 0.9191 0.9228
0.0741 0.0034 0.0289 0.0051 0.0030 0.0028 0.0049 0.0046

4.9962 5.0072 5.0191 5.0046 5.0056 4.9950 5.0351 5.0023

0.2953 0.3356 0.3086 0.3036 0.3415 0.0271 0.1395 0.0724
0.6281 0.6611 0.6632 0.6913 0.6555 0.9701 0.8559 0.9231
0.0766 0.0034 0.0282 0.0051 0.0030 0.0028 0.0046 0.0046
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APPENDIX C

SAMPLE LOCATIONS



Niven Lake Lenticle

Sample List

c m i Quartz Feldspar Porphyry
Cf998 Feldspar Porphyry
Cf999 Feldspar Porphyry
C19910 Hydrothermal Breccia
Cf9911 Hydrothermal Breccia
Cf9912 Hydrothermal Breccia
Cf9913 Quartz Feldspar Porphyry
Cf9950 Gabbro Sill
Cf9951 Feldspar Porphyry
C198NR1 Volcani Flow
Cf98NR2 Gabbro Sill
Cf98NR3 Volcanic Flow
Cf98NR4 Quartz Feldspar Porphyry
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Brock Lenticle

Sample List

Cf981 Cherty Tuff
Cf982 Quartz Feldspar Porphyry
Cf983 Lamprophyre
Cf984 Quartz Feldspar Porphyry
Cf985 Quartz Feldspar Porphyry
Cf986 Volcanic Flow
Cß>87 Volcanic Flow
Cf988 Feldspar Porphyry
Ci989 Quartz Feldspar Porphyry
0 9 8 1 0 Gabbro Sill
0 9 8 1 1 Cherty Tuff
0 9 8 1 2 Gabbro Dyke
0 9 8 1 3 Gabbro Sill
0 9 8 1 4 Volcanic Flow
0 9 8 1 5 Volcanic Flow
0 9 8 1 6 Volcanic Flow
0 9 8 1 7 Volcanic Flow
0 9 8 1 8 Quartz Feldspar Porphyry
Cf9819 Feldspar Porphyry
Cf9820 Quartz Feldspar Porphyry
0 9 8 2 1 Feldspar Porphyry
Cf9822 Quartz Feldspar Porphyry
Ci9823 Quartz Feldspar Porphyry
Cf9824 Quartz Feldspar Porphyry
Cf9825 Volcanic Flows
Cf9826 Volcanic Flow
Cf9827 Volcanic Flow
Cf9828 Gabbro Dyke
Cf9829 Diabase
Cf9830 Volcanic Flows
Cf9831 Volcanic Flows
Cf9832 Gabbro Sill
Cf9953 Feldspar Porphyry
Cf9954 Feldspar Porphyry
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Vee Lake Lenticle

Sample List

0 9 9 6 Quartz Feldspar Porphyry
e m u Lapilli Tuff
0 9 9 1 5 Quartz Crystal Tuff
Ci9916 Quartz Feldspar Porphyry
Cf9917 Lapilli Tuff
0 9 9 1 8 Agglomerate
Cf9919 Lapilli Tuff
0 9 9 2 1 Lapilli Tuff
0 9 9 2 2 Quartz Feldspar
0 9 9 2 3 Lapilli Tuff
Cf9924 Quartz Feldspar Porphyry
Cf9925 Quartz Feldspar Porphyry
Ci9926 Volcanic Flow
Cf9927 Quartz Feldspars Porphyry
Cf9928 Lapilli Tuff
0 9 9 2 9 Ash Flow Tuff
Ci9930 Ash Flow Tuff
Cf9931 Quartz Crystal Tuff
Cf9932 Volcanic Sandstone
0 9 9 3 3 Lapilli Tuff
Ci9934 Feldspar Porphyry
Cf9935 Feldspar Porphyry
Cf9936 Felsic Dyke
Cf9937 Quartz Carbonate Sericite Schist
Cf9938 Lapill Tuff
Cf9939 Pyroclastic Breccia
Cf9940 Ash Flow Tuff
Cf9941 Lapill Tuff
Cf9942 Quartz Feldspar Porphyry
Cf9948 Quartz Feldspar Porphyry
Cf98VRl Gabbro Sill
Cf98VR8 Vitric Ash Tuff
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