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RESEARCH Open Access

Effects of a postnatal Atrx conditional
knockout in neurons on autism-like
behaviours in male and female mice
Nicole Martin-Kenny1,2,3 and Nathalie G. Bérubé1,2,3,4*

Abstract

Background: Alpha-thalassemia/mental retardation, X-linked, or ATRX, is an autism susceptibility gene that encodes a
chromatin remodeler. Mutations of ATRX result in the ATR-X intellectual disability syndrome and have been identified in
autism spectrum disorder (ASD) patients. The mechanisms by which ATRX mutations lead to autism and autistic-like
behaviours are not yet known. To address this question, we generated mice with postnatal Atrx inactivation in
excitatory neurons of the forebrain and performed a battery of behavioural assays that assess autistic-like behaviours.

Methods: Male and female mice with a postnatal conditional ablation of ATRX were generated using the Cre/lox
system under the control of the αCaMKII gene promoter. These mice were tested in a battery of behavioural tests that
assess autistic-like features. We utilized paradigms that measure social behaviour, repetitive, and stereotyped
behaviours, as well as sensory gating. Statistics were calculated by two-way repeated measures ANOVA with Sidak’s
multiple comparison test or unpaired Student’s t tests as indicated.

Results: The behaviour tests revealed no significant differences between Atrx-cKO and control mice. We identified sexually
dimorphic changes in odor habituation and discrimination; however, these changes did not correlate with social deficits.

Conclusion: The postnatal knockout of Atrx in forebrain excitatory neurons does not lead to autism-related behaviours in
male or female mice.

Keywords: Autism spectrum disorder, ATRX, Social behaviours, Repetitive behaviours, Startle response, Genetically
engineered mice, Cre/loxP system

Background
Autism spectrum disorder (ASD) is a behaviourally defined
condition characterized by deficits in social and communi-
cative abilities, impaired sensory gating, as well as the pres-
ence of stereotyped behaviours [1, 2]. Recent work has
highlighted the important contribution of de novo variants
and inherited copy number variants in ASD, confirming a
strong genetic component of this disease [1–3]. Numerous

autism susceptibility genes have been identified and shown
to share commonalities in synaptic, transcriptional, and epi-
genetic mechanisms [4–6]. Mouse models have typically
been used to investigate the behavioural implications of
genetic mutations associated with ASD [7, 8]. However,
these studies often omit the investigation of the sex-specific
effects of these genetic mutations, limiting the potential
translational applications. In the general population, ASD
occurs at a 4:1 male:female ratio, highlighting the need to
study the outcome of genetic mutations in both male and
female model systems [1, 2].
In this study, we describe the impact of targeted inacti-

vation of Atrx in glutamatergic neurons on behaviours
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related to autism in male and female mice. ATRX belongs
to the SWI/SNF family of chromatin remodeling factors
[9, 10]. Mutations in the ATRX gene are associated with
an intellectual disability syndrome referred to as ATR-
Xsyndrome, characterized by autistic-like behaviours in
addition to cognitive deficits, intellectual disabilities, and
developmental delays [11]. Furthermore, autistic carriers
of rare mutations in ATRX have been discovered and mis-
sense variants in ATRX have been identified in male ASD
patients. Interestingly, female carriers of ATRX mutations
experience skewed X-inactivation, and as a result, are
asymptomatic [12–18].
Previous studies have demonstrated that the loss of Atrx in

the mouse forebrain causes changes in gene expression [19,
20]. Specifically, transcription of autism susceptibility genes,
including the monogenic Neuroligin-4 (Nlgn4), are altered
upon loss of Atrx [19]. Additionally, sexually dimorphic tran-
script changes have been revealed in the adult mouse hippo-
campus upon the loss of Atrx in excitatory neurons [21].
However, autistic behaviours were not evaluated in that re-
port and should be addressed given the link between ATRX
mutations and ASD.
In this study, we characterize the impact of Atrx loss

in neurons on autistic-like behaviours in male and fe-
male mice. We used the AtrxCamKIICre model [21]
where Atrx is ablated in forebrain excitatory neurons
postnatally, thus bypassing deleterious effects of ATRX
loss-of-function previously observed in neural progeni-
tors during brain development [22, 23]. An array of be-
havioural assays was performed to investigate the
presence of autistic-like behaviours, including deficits in
sociability, altered sensory gating, and the presence of
repetitive or stereotyped behaviours. These investiga-
tions revealed minimal behavioural deficits related to
autism in both male and female mice. Interestingly, we
identified changes in olfaction, particularly odor discrim-
ination, in both male and female mice upon the condi-
tional loss of Atrx in neurons. Overall, this study
demonstrates that a conditional loss of Atrx in forebrain
excitatory neurons postnatally does not result in typical
autistic-like traits in male or female mice.

Materials and methods
Animal care and husbandry
Mice were exposed to a 12-h light/12-h dark cycle and
with water and chow ad libitum. The AtrxloxP females
(129/Sv background) have been described previously [23].
AtrxloxP mice were mated with C57BL/6 mice expressing
Cre recombinase under the control of the αCaMKII gene
promoter [24]. The progeny includes hemizygous male
mice that produce no ATRX protein in forebrain excita-
tory neurons (Atrx-cKOMALE). The Atrx-cKO males were
mated to AtrxloxP females to yield homozygous deletion of
Atrx in female mice (Atrx-cKOFEMALE). Male and female

littermate floxed mice lacking the Cre allele were used as
controls (CtrlMALE; CtrlFEMALE). Consequently, male and
female mice are from different hybrid generations. Control
littermates from the same hybrid generation as the corre-
sponding conditional knockout mice were used for behav-
ioural assays. Genotyping of tail biopsies for the presence
of the floxed and Cre alleles was performed as described
previously [23]. Conditional loss of the ATRX protein in
postnatal neurons was previously verified in adult Atrx-
cKOMALE and Atrx-cKOFEMALE forebrain [21]. All proce-
dures involving animals were conducted in accordance
with the regulations of the Animals for Research Act of
the province of Ontario and approved by the University of
Western Ontario Animal Care and Use Committee (2017-
048). Behavioural assessments started with less demanding
tasks and moved to more demanding tasks in the follow-
ing order: open-field test, marble-burying assay, induced
self-grooming, pre-pulse inhibition (PPI) and startle re-
sponse, social approach, and 3-chamber social tests. AR-
RIVE guidelines were followed: mouse groups were
randomized, experimenters were blind to the genotypes,
and software-based analysis was used to score mouse per-
formance in all the tasks. All behavioural tasks were per-
formed between 9:00 AM and 4:00 PM. All behavioural
assays were performed when mice were between 3 and 7
months of age. Three cohorts of male and female mice
were used to reach the final sample size (CtrlMALE: 17;
Atrx-cKOMALE: 10; CtrlFEMALE: 13; Atrx-cKOFEMALE: 13).
Statistics were calculated by two-way repeated measures
ANOVA with Sidak’s multiple comparison test or un-
paired Student’s t tests, as indicated in the figure legends.

Odor habituation and discrimination
The odor habituation and discrimination assay was per-
formed as previously described [25] to assess olfaction. In-
dividual mice were placed into a clean cage with a wire lid
and allowed to habituate to the testing room for 30 min.
The mice were then presented with an odor on a cotton
swab (either almond, banana, or water as a control) for a
2-min trial. For each trial, 50 μl of water, almond extract,
or banana extract (club house) was pipetted onto the tip
of a cotton swab and the swab was then secured to the
wire cage top through the water bottle opening. The mice
were presented with the same odor three times before be-
ing presented with a new odour, for a total of nine trials.
During the 2-min trials, the amount of time that the
mouse spent sniffing the odor was recorded by an investi-
gator blind to the genotype. Sniffing was defined as the
animal’s nose being in proximity to the cotton swab (2 cm
or closer), and oriented toward the swab.

Social approach
This test was performed as previously described [26] to
assess for sociability with conspecific mice. For two
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consecutive days prior to the test day, individual mice
were habituated to the open area for 10 min. On the test
day, pairs of unfamiliar, same-sex conspecific mice were
placed into the cage. Behaviour of the mice was recorded
by the AnyMaze software and video-tracking system. The
time spent in social interaction, defined as the experimen-
tal mouse sniffing the stranger mouse, was manually
scored by investigators unaware of the genotype.

Three-chamber social tests (social preference and novelty)
The social preference and social novelty assessments
were performed as described [26, 27] with minor modifi-
cations. Individual mice were placed in the 3-chambered
box and allowed to freely explore the arena during a 10-
min habituation period. After the habituation period, an
unfamiliar, same-sex mouse of a different genotype
(stranger 1) was placed in one of the side chambers
under a wire cage. An identical wire cage containing an
inanimate object was placed in the opposite chamber.
The test mouse was then allowed to explore the entire
3-chambered arena for 10 min. The amount of time
spent in each chamber was recorded by the AnyMaze
video-tracking system. Following this period, a second
unfamiliar, same-sex mouse of a different genotype
(stranger 2) was placed into the wire cage previously contain-
ing the inanimate object. The test mouse was then allowed
to explore the 3-chambered arena for 10 min. The amount
of time spent in each chamber was recorded by the Any-
Maze video-tracking system. Based on the amount of time
spent in each chamber, a ‘sociability index’ and a ‘social nov-
elty index’ was calculated as previously described [27]. The
sociability index was calculated as timestranger/(timestranger +
timeobject) × 100. The social novelty index was calculated as
timenovel/(timenovel + timefamiliar) × 100.

Marble burying
The test was performed as previously described [28] with
modifications to evaluate repetitive digging behaviour. Mice
were brought into the test room to habituate in their home
cages for approximately 30 min prior to the test. The test
cages were filled with 4 cm of wood-chip bedding, with 12
evenly spaced glass marbles placed on the surface. Individ-
ual mice were then placed in the test cage and permitted to
explore for 30 min. Following the test, the number of mar-
bles buried (> 3/4 surface covered) was counted and re-
corded by investigators blind to the genotype.

Induced self-grooming
The test was performed as previously described [27, 29]
to evaluate repetitive grooming tendencies. Mice were
individually habituated in an empty test cage for 30 min
prior to the test. To amplify natural grooming tenden-
cies, mice were misted with water 3 times at 10 cm dis-
tance of the upper-back. Following this misting, the

grooming behaviour of each mouse was recorded by the
Anymaze video-tracking system for 30 min. The time
that each individual mouse spent grooming during this
30-min trial was manually scored by the rater, unaware
of the genotype.

Open-field test
Mice were brought into the testing room to habituate in
their home cages approximately 30 min prior to the test.
Mice were placed in a 20 cm × 20 cm arena with 30 cm
high walls. Locomotor activity was automatically re-
corded in 5-min intervals over 2 h (AccuScanInstru-
ment) [30]. For each mouse the number of vertical
episodes was assessed.

Pre-pulse inhibition of the startle response
The pre-pulse inhibition and startle response tests were
performed as previously described [31] to assess sensory
gating. Mice underwent two days of habituation prior to
the testing day, to acclimate the mice to the apparatus.
During this habituation, mice were individually placed in
the chamber apparatus and exposed to background noise
(65 db) for 5 min (SR-LAB, San Diego Instruments). On
the test day, individual mice were placed in the chamber
and acclimated for 10 min with background noise. The
mice then underwent a habituation block, consisting of
50 acoustic startle trials, with 20 ms stimulus of 115 db,
and intertrial interval of 20 s. After the habituation
block, mice underwent a prepulse-inhibition block con-
sisting of ten sets of five types of trials randomly ordered
with variable intertrial intervals of 10, 15, or 20 s. Four
of the five trial types consisted of prepulses (intensity of
75 or 80 db, length of 20 ms), separated from the startle
stimulus (intensity of 115 db, length of 40 ms) by an in-
terstimulus interval of either 30 ms or 100 ms. The fifth
trial type was a startle pulse alone. The startle response
was measured by the movement of the mouse on the
platform, which generates a transient force analyzed by
the software. The startle magnitude recorded was an
average for the ten trials of each trial type and startle
magnitudes of pre-pulse trials were normalized to the
pulse-only trial.

Results
Sexually dimorphic olfaction differences in Atrx-cKO mice
As olfactory impairments can confound the interpret-
ation of other tests, especially social behaviour assays,
we first wanted to address whether the loss of Atrx in
excitatory neurons of the forebrain alters olfaction in
male and female mice. To do this, we performed the
odor discrimination and habituation assay [25]. In this
test, mice were presented with multiple odors for 2-min
trials, during which the amount of time spent sniffing
the odor was recorded. During this test, Atrx-cKOMALE
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mice spent significantly less time sniffing the odors
throughout the nine trials compared to CtrlMALE mice
(ANOVA, **p = 0.004; Fig. 1a). In particular, Atrx-cKO-
MALE mice spent significantly less time sniffing the cot-
ton swab when first presented with the banana odor
(multiple comparisons, ***p < 0.001). There was no sig-
nificant difference in the overall amount of time spent
sniffing the odors throughout the test between Atrx-
cKOFEMALE and CtrlFEMALE mice. However, Atrx-cKOFE-

MALE mice did spend significantly more time sniffing the
cotton swab when first presented with the banana odor
(multiple comparison, ****p < 0.0001; Fig. 1b). Overall,
the results of this test suggest that the loss of Atrx in
forebrain excitatory neurons results in sexually di-
morphic changes in olfaction that must be considered in
subsequent behaviour testing of these mice.

Social assays reveal no deficits in Atrx-cKOMALE and Atrx-
cKOFEMALE mice
Given that ATRX mutations are associated with autistic
traits in humans, we next sought to investigate if the loss
of Atrx in forebrain excitatory neurons has an effect on
social behaviour. Changes in sociability and social pref-
erence are some of the most common deficits observed
in mouse models with autism-associated genetic muta-
tions [26, 27, 32–34]. As such, we first investigated soci-
ability of Atrx-cKOMALE and Atrx-cKOFEMALE mice by
means of the social approach assay, as described previ-
ously [26]. There was no significant difference in the
total amount of time that Atrx-cKOMALE and Atrx-cKO-
FEMALE mice spent interacting with a stranger mouse
compared to controls (Fig. 2a). However, when these re-
sults were grouped and analyzed by sex, male mice
(Atrx-cKOMALE and CtrlMALE) spent more time socially

interacting with the stranger mouse compared to female
mice (Atrx-cKOFEMALE and CtrlFEMALE) (ANOVA, *p =
0.048; Fig. 2a). When social interaction was analyzed
over 1-min intervals during the 10-min test, there were
no genotypic or sex-differences (Fig. 2b).
We also investigated social preference and social nov-

elty in the three-chambered paradigm [27]. During the
first part of the paradigm, social preference was assessed
as mice were placed into a three-chambered apparatus
and were free to explore between the chambers. The
outer two chambers contained either a novel object or a
stranger mouse, while the centre chamber remained
empty. Both CtrlMALE and Atrx-cKOMALE mice demon-
strated a preference for the chamber containing a stran-
ger mouse compared to the object and the empty
chamber (multiple comparisons, ****p < 0.0001; Fig. 2c).
Similarly, both CtrlFEMALE and Atrx-cKOFEMALE mice
preferred exploration of the stranger mouse (multiple
comparisons, *p = 0.030, ****p < 0.0001; Fig. 2d). No
genotypic differences were observed in social preference
between groups (Fig. 2c, d).
Social novelty was investigated during the second part

of the paradigm in which the outer chambers contained
either the stranger mouse from the first part of the test
(familiar mouse) or a novel mouse. CtrlMALE and Atrx-
cKOMALE mice both spent more time in the chamber
containing the novel mouse compared to the familiar
mouse and the empty chamber (multiple comparisons,
***p < 0.001, ****p < 0.0001; Fig. 2e). Interestingly, al-
though CtrlFEMALE and Atrx-cKOFEMALE mice both
spent significantly less time in the empty chamber, nei-
ther demonstrated a preference for the novel mouse over
the familiar mouse (multiple comparisons, ***p < 0.001;
Fig. 2f). Sociability and social memory indexes were

Fig. 1 Atrx-cKOMALE and Atrx-cKOFEMALE mice exhibit differences in olfaction during the odor habituation and discrimination assay. The amount of time
spent sniffing a cotton swab saturated with an odor during nine, 2-min trials. a Atrx-cKOMALE (n = 24) mice spend less time sniffing cotton swabs with
corresponding odors compared to CtrlMALE (n = 17) (twANOVA, F(1,351) = 8.203, **p = 0.004; mc, ***p < 0.001). b Atrx-cKOFEMALE (n = 19) mice spend
more time sniffing the cotton swab with the banana odor when first exposed to the scent compared to CtrlFEMALE (n = 15) (twANOVA, F(1,288) = 3.188,
p = 0.075; mc, ****p < 0.0001). Error bars: ±SEM
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Fig. 2 (See legend on next page.)
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calculated based on the social preference and social nov-
elty results. Atrx-cKO and Ctrl mice did not display
genotypic or sex-differences in their sociability indexes
(Fig. 2g). Similarly, there was no genotypic difference in
social memory indexes, however, male mice (CtrlMALE

and Atrx-cKOMALE) displayed a greater social memory
index than female mice (CtrlFEMALE and Atrx-cKOFE-

MALE) (ANOVA, *p = 0.019; Fig. 2h). Altogether, these
results demonstrate that the loss of Atrx in forebrain
excitatory neurons postnatally does not result in social
deficits in male and female mice.

Repetitive behaviours are not altered in Atrx-cKOMALE and
Atrx-cKOFEMALE mice
Previous studies using autism mouse models have demon-
strated that the mutant mice often present with repetitive
and stereotyped behaviours [27, 34–37]. We tested for the
presence of these repetitive and stereotyped behaviours in
both Atrx-cKOMALE and Atrx-cKOFEMALE mice using vari-
ous tests. The marble-burying assay was used to assess re-
petitive burying and digging by placing mice in a cage
with 12 marbles and recording how many marbles were
buried following a 30-min period. Percentage of marbles
buried during the marble-burying assay was not signifi-
cantly different when comparing Atrx-cKOMALE and Atrx-
cKOFEMALE mice to their respective controls. There also
was no difference when comparing between genotypes or
sexes. However, the interaction was significantly different
between groups, suggesting the loss of Atrx in forebrain
excitatory neurons has opposing effects on marble burying
when comparing male and female mice (ANOVA, *p =
0.047; Fig. 3a).
We also investigated the presence of repetitive groom-

ing tendencies by misting mice with water to induce
grooming behaviours. The total amount of time spent
grooming during the 30-min induced self-grooming
assay was not significantly different between Atrx-cKO
mice and controls, or between sexes (Fig. 3b). When the
results of this test were analyzed over 5-min intervals,

similarly, there was no difference in the amount of time
spent grooming between Atrx-cKOMALE and CtrlMALE

mice (Fig. 3c) or Atrx-cKOFEMALE and CtrlFEMALE mice
(Fig. 3d). Interestingly, results from the open field test
show a significant increase in the number of vertical epi-
sodes (including rearing and jumping) of female mice
(Atrx-cKOFEMALE and CtrlFEMALE mice) compared to
male mice (Atrx-cKOMALE and CtrlMALE) (ANOVA,
****p < 0.0001; Fig. 3e). When these results were ana-
lyzed in 10-min intervals, it is apparent that these sex-
differences in vertical episodes occurred primarily within
the first 60 min of the open-field test (multiple compari-
sons; *p < 0.05, **p < 0.01; Fig. 3f). In addition to these
sex-differences, there was no genotypic difference be-
tween the total vertical episodes or the vertical episodes
over time. Similarly, there were no significant differences
between Atrx-cKO mice and controls when analyzing
vertical episodes. These behavioural analyses suggest
that the loss of Atrx in forebrain excitatory neurons
postnatally does not result in repetitive or stereotyped
behaviours typically associated with autism.

Atrx-cKOMALE and Atrx-cKOFEMALE mice display typical
startle response to acoustic stimuli
Previous studies have reported that rodent models with
autism-associated genetic mutations can display an exag-
gerated startle response, or impaired pre-pulse inhibition,
to an acoustic stimulus [38–41]. These impairments are
associated with deficits in sensory gating and auditory pro-
cessing often reported in ASD patients [42, 43]. As such,
we wanted to investigate if Atrx-cKO mice display hyper-
sensitivity to an acoustic startle stimulus. The pre-pulse
inhibition and startle response assay using an acoustic
stimulus was performed, as described previously [31].
Mice were placed in a chamber and exposed to 50 trials of
an acoustic stimulus (20 ms, 115 db). Atrx-cKOMALE and
Atrx-cKOFEMALE mice demonstrated a similar startle re-
sponse to the acoustic stimuli compared to their respect-
ive controls (Fig. 4a, b). Additionally, there was no

(See figure on previous page.)
Fig. 2 Social behaviour assays reveal lack of genotypic difference between Atrx-cKO and control mice. a Total amount of social interaction with a mouse
conspecific for genotype and sex during the 10-min social approach assay (twANOVA, genotype, F(1, 49) = 2.496, p = 0.121; twANOVA, sex, F(1, 49) = 4.086, *p =
0.048). b Social interaction over 1-min intervals during the social approach assay (twANOVA, genotype, F(1, 51) = 1.489, p = 0.228; twANOVA, sex, F(1, 51) = 3.425, p
= 0.070). c Amount of time CtrlMALE (twANOVA, F(2, 32) = 78.39, ****p < 0.0001; mc, ****p < 0.0001) and Atrx-cKOMALE (twANOVA, F(2, 18) = 58.26, ****p < 0.0001;
mc, ****p < 0.0001) spent in the empty centre chamber and chambers containing either a stranger mouse or novel object in the social preference assay. d
Amount of time CtrlFEMALE (twANOVA, F(2, 24) = 31.39, ****p < 0.0001; mc, ****p < 0.0001) and Atrx-cKOFEMALE (twANOVA, F(2, 24) = 14.88, ****p < 0.0001; mc, *p <
0.05, ****p < 0.0001) spent in chambers containing either a stranger mouse or novel object, or the empty centre chamber e. Time spent in the empty centre
chamber and chambers containing a familiar mouse or a novel mouse in the social novelty assay for e. CtrlMALE (twANOVA, F(2, 32) = 51.38, ****p < 0.0001; mc,
***p < 0.001, ****p < 0.0001) and Atrx-cKOMALE mice (twANOVA, F(2, 18) = 27.26, ****p < 0.0001; mc, ***p < 0.001, ****p < 0.0001), and f CtrlFEMALE (twANOVA, F(2,
24) = 11.77, ***p < 0.001; mc, ***p < 0.001) and Atrx-cKOFEMALE mice (twANOVA, F(2, 22) = 12.50, ***p < 0.001; mc, ***p < 0.001). g The sociability index for each
mouse was calculated as the time spent in the stranger mouse chamber, divided by the total time in the stranger mouse and novel object chambers
(twANOVA, genotype, F(1, 28) = 0.019, p = 0.890; twANOVA, sex, F(1, 48) = 3.574, p = 0.065). h The social memory index for each mouse was calculated as the
time spent in the novel mouse chamber, divided by the total time in the familiar mouse and novel mouse chambers (twANOVA, genotype, F(1, 48) = 2.217, p =
0.143; twANOVA, sex, F(1, 48) = 5.811, *p = 0.019). Atrx-cKOMALE: n = 10, CtrlMALE: n = 17, Atrx-cKOFEMALE: n = 13, CtrlFEMALE: n = 13. Error bars: ±SEM
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Fig. 3 Atrx-cKOMALE and Atrx-cKOFEMALE mice do not display stereotyped behaviours. a Percentage of marbles buried during 30-min marble burying
task (twANOVA, genotype, F(1, 49) = 0.0003, p = 0.985; twANOVA, sex, F(1, 49) = 1.038, p = 0.313; twANOVA, interaction, F(1, 49) = 4.132, *p = 0.047). b Total
time grooming during 30-min water-induced grooming task (twANOVA, genotype, F(1, 48) = 1.200, p = 0.279; twANOVA, sex, F(1, 48) = 0.268, p = 0.607).
c, d Amount of time spent grooming over 5-min intervals during water-induced grooming task (twANOVA, males, F(1, 44) = 2.386, p = 0.125; twANOVA,
females, F(1, 44) = 0.562, p = 0.455). e Total number of vertical episodes during 120-min open-field test (twANOVA, genotype, F(1, 49) = 0.673, p = 0.416;
twANOVA, sex, F(1, 49) = 18.71, ****p < 0.0001). f Number of vertical episodes over 10-min intervals during the 120-min open-field test (twANOVA,
genotype, F(1, 51) = 0.866, p = 0.356; twANOVA, sex, F(1, 51) = 19.19, ****p < 0.0001; mc, *p < 0.05, **p < 0.01). Atrx-cKOMALE: n = 10, CtrlMALE: n = 17, Atrx-
cKOFEMALE: n = 13, CtrlFEMALE: n = 13. Error bars: ±SEM
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significant difference in startle responses when compar-
ing genotypes (Atrx-cKO vs. Ctrl). Notably, there was a
significant increase in the startle response of male mice
(Atrx-cKOMALE and CtrlMALE) compared to female
mice (Atrx-cKOFEMALE and CtrlFEMALE) (ANOVA, *p <
0.023). We also performed a set of trials that investi-
gated pre-pulse inhibition to the acoustic stimulus by
first exposing mice to a pre-pulse that preceded the
acoustic stimulus. These trials varied in the intensity of
the pre-pulse (75 db or 80 db), and the amount of time
between the pre-pulse and the acoustic “pulse” stimulus
(30 ms or 100 ms). Additionally, there was one trial
that only involved a “pulse” without a pre-pulse. Startle
responses to this “pulse-only” trial were used as a base-
line, and results from all other trials were expressed as
a percentage of this baseline. For all pre-pulse trials,
both Atrx-cKOMALE and Atrx-cKOFEMALE mice did not
demonstrate significant difference in their startle re-
sponses to the acoustic stimulus compared to the con-
trols (Fig. 4c, d). Overall, these results suggest that the
postnatal loss of Atrx in neurons does not result in an
exaggerated startle response or impaired pre-pulse in-
hibition in male or in female mice.

Discussion
In this study we present an assessment of the effects of a
postnatal conditional knockout of the autism susceptibil-
ity gene Atrx on autistic-like behaviours in male and fe-
male mice. We provide evidence that the postnatal loss
of Atrx in forebrain excitatory neurons does not result
in social deficits, stereotypies and repetitive behaviours,
or sensory gating deficits. We identified differences in
olfaction for both male and female mice upon the post-
natal conditional loss of Atrx in neurons; however, these
differences in olfaction did not impair social behaviours.
Prior to investigating ASD-related behaviours, we first

sought to determine whether Atrx-cKO adult mice
present with any olfactory differences compared to con-
trols. We performed the odor discrimination and habitu-
ation assay to assess if Atrx-cKO mice showed habituation
to a repeatedly presented odor and were able to discrimin-
ate between a novel odor [25]. By establishing that experi-
mental mice are able to detect and discriminate between
odors, results of subsequent social behaviour assays can be
more accurately interpreted. Results of the odor habitu-
ation and discrimination assay suggest that Atrx-cKOMALE

mice have deficits in olfaction, as they spent overall less

Fig. 4 Acoustic startle response of Atrx-cKO mice is typical. a, b Quantification of startle responses (recorded in millivolts) to 50 “pulse only” trials
(twANOVA, genotype, F(1, 48) = 0.084, p = 0.773; twANOVA, sex, F(1, 48) = 5.555, *p = 0.023). c, d Averaged pre-pulse inhibition for four trial types, varying
in interstimulus intervals (30 ms or 100 ms) and pre-pulse intensity (75 db or 80 db). Startle responses for these trials are expressed as a percentage of
the normalized “pulse only” trial (baseline) (Student’s t test, Atrx-cKOMALE, and CtrlMALE for each trial type, p > 0.05; Student’s t test, Atrx-cKOFEMALE and
CtrlFEMALE for each trial type, p > 0.05). Atrx-cKOMALE: n = 10, CtrlMALE: n = 17, Atrx-cKOFEMALE: n = 11, CtrlFEMALE: n = 12. Error bars: ±SEM
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time smelling multiple odors compared to controls. In
particular, odor discrimination may be affected in Atrx-
cKOMALE mice as demonstrated by decreased time smell-
ing a novel odor following repeated presentation of an-
other. These differences in olfaction displayed by Atrx-
cKOMALE mice are important to consider when interpret-
ing results from social behaviour assays that require odor
discrimination. It is interesting to note that olfaction defi-
cits have been reported in both ASD patients as well as
models with autism-associated genetic mutations. In a re-
cent clinical study, nine children with ASD demonstrated
impaired olfactory adaption compared to a control group
[44]. Additionally, another study reported that mice with
haploinsufficiency of the autism-associated gene, T-box,
Brain 1 (Tbr1), displayed impairments in olfactory
discrimination [45]. Therefore, these impairments in
olfaction, particularly odor discrimination, may be an
indication of autistic-like features.
While there was no overall difference in olfaction

when we compared Atrx-cKOFEMALE mice to controls,
Atrx-cKOFEMALE mice demonstrated increased time
spent sniffing the cotton swab when presented with the
banana odor for the first trial. These results suggest that
their odor discrimination may be heightened compared
to that of CtrlFEMALE. Altogether, although Atrx-cKO-
MALE and Atrx-cKOFEMALE mice display differences in
olfaction compared to controls, we did not identify any
genotypic-differences in social behaviours either in the
social approach test or the 3-chamber paradigm. There-
fore, any differences in olfaction of Atrx-cKO mice did
not result in impairments in social recognition or dis-
crimination based on olfactory cues.
Although there were no identified genotypic effects on

the behaviours analyzed here, analysis of the data re-
vealed potential sex-differences in sociability, social nov-
elty, startle response, and anxiety levels. Sex differences
in startle amplitude and marble burying have not yet
been reported in the literature for the hybrid strain that
was used in this study and should be repeated using a
replication cohort. However, it is important to note that
our experimental approach was not designed to detect
differences based on sex, as male and female mice were
obtained from different generations of strain hybrids.
The Atrx-cKOFEMALE mice used in our study experi-

ence a complete loss of ATRX expression in forebrain
excitatory neurons postnatally. However, in humans, fe-
males harbouring ATRX mutations are typically carriers
and are asymptomatic due to skewed X-inactivation
[12–18]. As such, the clinical relevance of any observed
differences we observed in this model are limited. Never-
theless, our model allows the exploration of the basic
biology of ATRX function in neurons and the potential
effects on the behavioural outcomes. We theorize that
the absence of autistic-like phenotypes observed in Atrx-

cKO mice is due to the timing at which Atrx is deleted
in forebrain excitatory neurons, which starts at 2–3
weeks of age. ASD is clinically defined as a developmen-
tal disorder due to the majority of symptoms becoming
apparent in the first few years of life. Therefore, genetic
mutations that contribute to autistic phenotypes may
need to occur during embryogenesis or be inherited [1,
2, 4]. Future studies should utilize additional Cre/loxp
systems to investigate if the loss of Atrx in differentiated
forebrain excitatory neurons during embryogenesis leads
to autistic-like behaviours in male and female mice.

Conclusions
In conclusion, a postnatal conditional knockout of the
autism susceptibility gene Atrx did not result in autistic-like
behaviours in either male or female mice. Although changes
in olfaction were observed in both male and female Atrx-
cKO mice, these differences did not result in impaired social
recognition or discrimination. These findings suggest that
the postnatal loss of ATRX is insufficient to cause the subset
of autistic behaviours tested here and support the idea that
ASD is a developmental disorder where disruptions occur at
early stages of brain development.
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