
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

5-6-2021 11:00 AM

Contrastive Learning of Auditory Representations Contrastive Learning of Auditory Representations

Haider Al-Tahan, The University of Western Ontario

Supervisor: Mohsenzadeh, Yalda, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Haider Al-Tahan 2021

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Al-Tahan, Haider, "Contrastive Learning of Auditory Representations" (2021). Electronic Thesis and
Dissertation Repository. 7875.
https://ir.lib.uwo.ca/etd/7875

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7875&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7875?utm_source=ir.lib.uwo.ca%2Fetd%2F7875&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Learning rich visual representations using contrastive self-supervised learning has been

extremely successful. However, it is still a major question whether we could use a similar
approach to learn more efficient auditory and audio-visual representations. In this thesis, we
expand on prior self-supervised methods to learn better auditory and audio-visual representa-
tions. We introduce various data augmentations suitable for auditory and audio-visual data and
evaluate their impact on predictive performance, and demonstrate that training with both super-
vised and contrastive losses simultaneously improves the learned representations compared to
self-supervised pre-training followed by supervised fine-tuning. We illustrate that by combin-
ing all these methods and with substantially less labeled data, our framework achieves signifi-
cant improvement on prediction performance compared to the supervised approach. Moreover,
compared to the self-supervised approach, our framework converges faster with significantly
better representations.

Keywords: Self-supervised Learning, Contrastive Learning, Supervised Learning

i

Summary for Lay Audience
Audio recognition is a fundamental challenge to the goal of automated perception. Although
humans are proficient at perceiving and understanding sounds, making computers do the same
poses a challenge due to the wide range of variations in auditory acoustics. Currently, there
are overabundance amount of unlabelled (or not annotated) auditory data. Moreover, data are
available in a wide range of formats, from various sources, and often they are not stored in a
format that is ready to feed into a machine learning pipeline, hence, the process of curating
and annotating a dataset is expensive and time-consuming. Therefore, advances in this area are
being held back by the lack of adequate unsupervised learning algorithms for auditory data to
utilize these data. This thesis directly addresses this shortcoming by developing an unsuper-
vised approach of training algorithms to carry down tasks such as classification, detection, etc.
The main goal of this thesis is to investigate the various components that have direct effect on
the performance of these algorithms.

ii

Acknowledgements
Navigating academia is a challenging task, especially during a pandemic. Without the enor-
mous support I received throughout this endeavor I would not have been able to complete my
master’s degree. For this reason, I dedicate this section of my thesis to all the individuals that
motivated and helped me succeed:

I would like to express my most sincere gratitude to my supervisor Dr. Yalda Mohsenzadeh
for her valuable guidance and advice. Dr. Mohsenzadeh not only taught me various skills on
how to address academic research questions but she provided me with many opportunities to
learn, grow, and pursue my interests. It was an absolute honour to work with such a person.

With how hard the pandemic made things and being far from home, I feel fortunate to say
that I never felt homesick nor lonely. This is solely because of the Heil family. To everyone in
the Heil family, I extend my deepest gratitude as I always felt welcomed and at home among a
family that cared about me. I will be forever grateful!

The completion of my dissertation would not have been possible without the relentless
support and constructive advice of Dalton Heil. Dalton has always expressed profound belief
in my abilities even when I did not. Even if my dissertation accounted for nothing, I would still
be extremely appreciative of such an opportunity as it has introduced me to Dalton.

I cannot begin to express my appreciation to Ehsan Tousi, who always was the voice of
reason in various parts of my manuscripts. Furthermore, Ehsan’s unwavering advice, guidance,
and patience taught me essential tools to navigate academia.

I’d also like to extend my deepest gratitude to Sohrab Salimian, George Tomou, Sharmini
Atputharaj, and Gaelle Nsamba Luabeya. Their unparalleled insight, advice, and support in-
spired me to pursue academia.

I would like to thank Dr. Dan Lizotte, Dr. Boyu Wang, and Dr. Vijay Parsa for being on
my thesis committee, their encouraging comments and fruitful review of my thesis gave me the
ambition to pursue questions related to my thesis further.

iii

Contents

Abstract i

Lay Summary ii

List of Figures vi

List of Tables viii

List of Abbreviations ix

1 Introduction 1
1.1 Motivation . 2

1.1.1 What makes a representation good? 3
Multiple Levels of Abstractions . 3
Learning Criteria . 4
Shared Representations . 4
Priors for Representation Learning . 4

1.2 Contributions . 5
1.3 Thesis Outline . 5

2 Background 7
2.0.1 Learning Algorithms . 7

Supervised Learning . 7
Unsupervised Learning . 8
Semi-Supervised Learning . 8

2.0.2 Neural Network Architectures . 9
Perceptron . 9
Multi-layer Perceptron . 9

2.0.3 Activation Functions . 10
Convolutional Neural Networks (CNNs) 12
ResNet Architecture . 14

2.0.4 Batch Normalization . 16
2.1 Related Works . 16

2.1.1 Representation Learning . 16
Generative Models for Representation Learning 16

2.1.2 Discriminative Models for Representation Learning 18

iv

Augmentations . 19
Patches . 20
Contrastive Learning . 22

3 Methodology 27
3.1 Audio Pre-porcessing . 27
3.2 Training/Evaluation Protocol . 27
3.3 Datasets . 29
3.4 CLAR Framework . 30
3.5 Augmentations . 31

4 Results 34
4.1 Overview . 34
4.2 Audio Data Augmentations for Contrastive Learning 34
4.3 Raw Signal versus Time-Frequency Features 36
4.4 CLAR versus Supervised & Self-Supervised 36

4.4.1 CLAR improves Learned Representations 37
4.4.2 CLAR improves Speed of Convergence 37

5 Discussion & Conclusion 39
5.1 Conclusion . 39
5.2 Limitations . 39

5.2.1 Applications . 40
5.3 Future Research . 40

Bibliography 41

Curriculum Vitae 49

v

List of Figures

1.1 Illustration of visualized representations of VGG19 [1] architecture trained on
ImageNet dataset [2] consisting of 2 million natural images. Each image be-
low the convolutional block are representations visualized using optimization
methods [3]. 3

2.1 Perceptron Architecture. 9
2.2 Multilayer perceptrons Architecture. Also called deep feedforward network or

feedforward neural network. 10
2.3 Computation of a convolutional layer. On the left, example of 1D convolution

operation. On the right, example of 2D convolution operation. 13
2.4 Computation of a max pooling layer. On the left, example of 1D max pooling

operation. On the right, example of 2D max pooling operation. 14
2.5 Example CNN. Each convolutional block consists of a convolution layer, max

pooling layer, and ReLU activation function. The image is a sample belonging
to the frog class from CIFAR10 [4] dataset. 14

2.6 Residual blocks architecture [5]. 15
2.7 ResNet18/34 Architecture [5]. 15
2.8 Auto-Encoders Architecture. composed of two sub-networks i.e. the encoder

and the decoder. 17
2.9 GAN Architecture. 18
2.10 Examples of randomly generated images using BigGAN [6] a GAN variant. . . 19
2.11 Random augmentations applied to the original patch (top left corner) utilized

in [7]. 20
2.12 Demonstrates the framework proposed by [8]. 21
2.13 Demonstrates the framework proposed by [9]. 22
2.14 Demonstrates the framework proposed by [10] 23
2.15 Conceptual comparison of [10] and [11]. On the left, key representations are

sampled from a memory bank [10]. On the right, shows Moco encoding the
new keys on-the-fly by a momentum-updated encoder, and maintains a queue
of keys [11]. 24

2.16 Illustrations of the studied data augmentation in [12]. Each augmentation can
transform data with some internal parameters (e.g. rotation degree, noise level). 25

2.17 SimCLR framework proposed by [12]. 26

vi

3.1 Raw audio (first) with the subsequent time-frequency features, specifically,
STFT (short-time Fourier transform) magnitudes (second) and phase angles
(fourth), and Mel-spectorgram (third). The raw audio and time-frequency fea-
tures were utilized in training 1D and 2D versions of ResNet. 28

3.2 Training pipeline. We start by applying augmentations directly to the audio sig-
nal followed by either feeding the augmented audio signal or the spectrograms
of the augmented audio signal to the subsequent encoder. We feed the rep-
resentations from the encoder to the same projection head architecture across
all approaches. However, we change the loss and the the layer representation
employed in the loss computation. 31

3.3 Raw audio with the subsequent mel-spectrogram for each audio augmentation
utilized in the paper. Each augmentation have a varying degree of the shown
transformation depending on random hyper parameters. Here an example of
each augmentation is illustrated. 33

4.1 Top-1 test performance on Speech Commands-10 for 1D (left matrix) and 2D
(right matrix) models trained for 1000 epochs. The diagonal line represents the
performance of single augmentation, while other entries represent the perfor-
mance of paired augmentations. Each row shows the first augmentation and
column shows the second augmentation applied sequentially. 35

4.2 Top-1 test performance on Speech Commands-10 computed every 10-epochs
by training an evaluation head attached to a frozen encoder over 1000 epochs.
Each sub-figure represents the top-1 test performance on varying percentage of
labeled data. 38

vii

List of Tables

4.1 Accuracy of ResNet18 trained on various datasets using different augmenta-
tions. 36

4.2 Accuracy of ResNet18 trained for 1000 epochs on Speech Command-10 dataset
with incrementally less labels. During evaluation phase, we trained the evalua-
tion head on all the labeled data with the frozen encoder.
. 37

viii

List of Abbreviations

CLAR Contrastive Learning of Auditory Representations

CNN Convolutional Neural Network

BN Batch Normalization

GAN Generative Adversarial Network

AE Auto-Encoder

NT-Xent Normalized Temperature-scaled Cross Entropy Loss

MLP Multi-layered Perceptron

ReLU Rectified Linear Units

ix

Chapter 1

Introduction

Major advances of the internet in the past decades have introduced an era of overwhelming
amount of unlabelled digital data. The challenge in deep learning has been increasingly grav-
itating towards finding ways to utilize such untapped data. Although humans are proficient at
perceiving and understanding the world around them, making computers do the same poses a
challenge due to the wide range of variations in characteristics (e.g., appearance, acoustics).
Roughly inspired by how the human brain navigates the world, recent deep learning approaches
align with some of the basic principles of human perception. The product of such principle can
be clearly seen in infants with their rapid ability to learn and generalize categorizations of var-
ious entities [13]. At a high level, this unique ability can be argued to be the result of the
parent correcting the child’s inaccurate articulation about entities within his/her environment
(Supervised Learning). Simultaneously, it is also the ability of the child to discriminate enti-
ties by finding dissimilarities between their intrinsic characteristics e.g. appearance, acoustics
(Unsupervised Learning). For instance, the child might intrinsically find that different toys are
not the same based on appearance or even the sound they produce without knowing the name
of the object. At the low-level, decades of cognitive neuroscience research has demonstrated
that the brain accomplishes these complicated tasks through a cascade of hierarchical processes
that nourish high-level representations of the environment [14, 15, 16, 17, 18].

With the power of deep learning and the abundance of uncurated digital data, there has
been growing interest in developing better machines that can perceive the world around us
using sound. Although humans are proficient at perceiving and understanding sounds, mak-
ing algorithms perform the same task poses a challenge due to the wide range of variations in
auditory features. For instance, sounds can be generated from interactions with objects (e.g.,
dropping a glass, closing a door), certain activities (e.g., dish washing, cooking), instruments
(e.g., violin, drum), and can even be environmental (e.g., wind, rain). Further, some can be
repetitive over a duration, while others are momentary. In many real-world scenarios these
sounds occur together, making audio understanding exponentially more difficult. Achieving
automated auditory perception requires the learning of effective representations. Often prior
work derive effective representations through discriminative approaches [19, 20, 21, 22]. That
is, similar to supervised learning, the model learns the mapping between the input signal to
the class label. The underlying assumption with such approach is that the latent representa-
tions carry effective representations for the designed tasks. One fundamental problem with
such learned representations is the potential limitation to generalizability. First, those rep-

1

2 Chapter 1. Introduction

resentations are only limited to availability of expensive and time consuming labeled data.
Secondly, representations are skewed towards one particular domain (e.g. speech, music, etc
. . .). Therefore, in both cases, major fine-tuning to the targeted training data would be required.
Alternatively, recent self-supervised approaches using contrastive learning in the latent space
have been shown to learn efficient representations that achieves state-of-the-art performance in
images [12, 23, 24, 25, 26, 27] and videos [23]. However, it is still a major question on how
we can achieve similar landmark on auditory data.

1.1 Motivation

Developing an efficient system that can perceive sound can aid various applications of sound
understanding ranging from surveillance [28] and music classification [29, 30] to audio gen-
eration [31, 32] and deep-fake detection [33]. However in-order to achieve a notable feat in
sound understanding, we need to learning efficient data representations. Data representation is
a crucial component contributing to the success of machine learning algorithms. Hence, much
of the effort in deploying effective machine learning algorithms are spent on designing pre-
processing pipelines that result in efficient representations (features). Learning efficient data
representations implies that the critical transformations involved in a machine learning algo-
rithm can transform or extract high-level task-relevant information from low-level sensory data
(e.g. images/audio). In deep learning, task relevant information or representations are formed
during optimization by a composition of multiple non-linear transformations of the input data
with the goal of yielding efficient representations for tasks like classification, recognition etc.
Therefore, those learned representations can change depending on - but not limited to - the
model’s architecture, hyper-parameters, model’s initialization, training data, and/or optimiza-
tion method [34].

As a simple example, consider the problem of optimizing a system to classify a set of
shapes (e.g. circle, square, triangle etc. . .). Based solely on the training data, the system might
converge to representations that distinguish between various types of shapes by counting the
number of edges. Although those representations could aid in the classification of a simple
sub-set of shapes, the system would drastically fail when asked to distinguish between a square
and rectangle. This simple example demonstrates that indeed representations are important
component of effective machine learning algorithms in terms of performance and generaliz-
ability. Furthermore efficient representations contribute to interpretability and explainability of
machine learning algorithm. Over the past decade, a great amount of work has been dedicated
towards visualizing representations of models optimized on natural images [35, 36, 37, 38, 3].
For natural images, representations are far more complex than just edges, although edges are
part of those representations. Figure 1.1 shows visualized representations of VGG19 [1] ar-
chitecture trained on ImageNet dataset [2] consisting of ∼2 million natural images. In deep
convolutional neural networks (CNN) [39], early layers representations capture lower level
local information within an image such as edges and textures. The further the layer is from
the input image, higher level global information are captured such as patterns and parts of an
object.

1.1. Motivation 3

Figure 1.1: Illustration of visualized representations of VGG19 [1] architecture trained on Im-
ageNet dataset [2] consisting of 2 million natural images. Each image below the convolutional
block are representations visualized using optimization methods [3].

1.1.1 What makes a representation good?

Given the importance of good representations, knowing what makes a representation good is
also important. Especially given that the machine learning research community is moving
towards large-scale deep models that are more difficult to train and tune [1, 5, 40, 41, 42].
Therefore, developing such intuition can provide us with a road-map towards how we could
improve on such complex systems. In this section, we will point out some relevant concepts
to understanding good representations expressed in [34, 43]. Ideas discussed in this section
provide some landmark to the frameworks introduced in Chapter 4.

Multiple Levels of Abstractions

When dealing with low-level sensory data, we are often presented with higher-level of varia-
tions that are not necessarily helpful for a target task. However, if we disentangle the factors
of variation, it would allow for relatively easier generalization. Good low level representations
should lead to more abstract representations because more abstract concepts can often be con-
structed in terms of less abstract ones (Figure 1.1); with more abstract concepts are generally
invariant to local changes of the input. For instance, assume that we are given MNIST [44];
a handwritten digits dataset with 60,000 training samples of 28 × 28 images. The depth of
a network is defined as the length of the path from the input layer to the output/last layer of
the network. Hence, a relatively shallow feedforward neural network would have less degree
of freedom over the construction of low-to-mid level concepts such as digits’ minor rotations
that generally does not affect the meaning of the digit but is a result of a typical handwriting
alteration. Because the neural network is shallow, it is likely to degrade in performance due
to fewer levels of abstractions in the representations. Alternatively, unlike shallow networks,
deep networks can progressively develop and expand rich representations at higher layers. In
addition to promoting progressive levels of abstractive representations, deep networks also en-
able feature re-use. The feature re-use property denotes that the number of ways that a network
can re-use different representations can grow exponentially with its depth. The idea of feature
re-use is re-enforced in modern CNNs by increasing the width of a network (i.e. the number
of parameters/filters within a layer), showing consistent improvement in the learned represen-

4 Chapter 1. Introduction

tations across networks of different depth [45]. Thereby, by increasing the width of a network,
we allow it to capture more ways to re-use representations.

Learning Criteria

If the network’s architecture influences the level of abstraction the representations can reach,
then the learning criteria could be said to influence the what representations are learned. In
the past decades, tasks such as classification and recognition were widely adopted as learning
objectives to learn efficient representations. However, in the case of representation learning,
our true objective is fairly distanced from the down-stream objective, even though there are
commonality in the representations. In representation learning, we are interested in learning
representations that are not limited to one task, instead shared representations that can be uti-
lized by multiple problems. While, in the case of classification, we want to minimize the
number of incorrect classifications on the training dataset. Hence, one of the major challenges
of representation learning is establishing a clear target objective for training. A good represen-
tation is one that disentangles the underlying factors of variation, but how do we translate that
into appropriate training criteria? Luckily, recent advances in the area of unsupervised learning
have given us an intuition into what such learning criteria can manifest into. We will discuss
this in more detail in Section 2.

Shared Representations

Shared representation across tasks is another desired factor for good representations. A good
representation allows for the re-use of features across tasks and domains. This is often seen
when we train neural networks on general purpose tasks and aim to transfer the learned knowl-
edge to a more specific task (Transfer Learning/Domain Adaptation). The general purpose
tasks could produce representations that can be useful for another task with a small dataset.
For example, we pre-train a neural network on ImageNet for object recognition then fine-tune
the model on MNIST dataset to perform handwritten digit recognition; or the model repre-
sentations could be generalized by the learning method, that is, we pre-train a neural network
using unsupervised learning to learn general representations then fine-tune the model to down-
stream applications such as classification. Transfer learning is one of the advantages behind
deep learning, especially for low-level representations (i.e. edges and textures) that could be
shared irrespective of the task [46, 47, 48]. A prominent example is [49] where pre-training on
ImageNet shows significant boost in predictive performance even on sound classification tasks.

Priors for Representation Learning

In addition to shared representations, representation learning provides a convenient expression
of general prior about the world around us. For instance, when dealing with temporal (e.g.
sound), spatial (e.g. images), or spatio-temporal (e.g. video) data, one desired factor for good
representations is that consecutive or spatially nearby observations tend to be associated with
similar representations. Moreover, generally temporal or spatial changes in the data should
produce slowly moving/changing representations [50, 51, 52]. Recent unsupervised learning

1.2. Contributions 5

methods for visual representations capitalize on such spatial coherence by minimizing the dif-
ference between two different views of an image [12, 53, 54, 55]. Similarly, recent work with
videos has explored similar spatio-temporal coherence [23, 52].

Additional prior that has been proven to be useful in recent unsupervised learning methods
is simplicity of factor dependencies; good high-level representations are related to each other
through linear dependencies. That is, high-level representations of categorical data should
embody categorical information that are observable through linear predictors. Indeed, in the
subsequent chapters, we will use a linear predictor on top of the frozen learned representations
to evaluate the learned representations of unsupervised methods [56, 25, 24].

1.2 Contributions
The focus of this thesis is to leverage unsupervised learning using the contrastive learning
framework to improve representation learning of audio data with deep neural networks. Fur-
thermore, we investigate those approaches to learn superior auditory representations. We ex-
tend on SimCLR [12], a self-supervised framework for contrastive learning of visual repre-
sentations. We show that similar framework could be adopted for learning effective auditory
representations. Moreover, with a simple modification, we are able to reduce the training time
and improve recognition performance. In order to accomplish this, we introduced major com-
ponents that are important to nourish the learning of representations. We:

• Demonstrate the success of contrastive learning in learning efficient auditory representa-
tions.

• Investigate six data augmentation operations and show their effect on auditory classifica-
tion task both with raw audio and extracted time-frequency audio features.

• Show that training with time-frequency audio features substantially improves the quality
of the learned representations in contrastive learning compared to raw audio signals.

• Use our proposed framework CLAR (Contrastive Learning of Auditory Representations)
to show when utilizing supervised and contrastive learning simultaneously while train-
ing, not only improves the learned representations but also speeds up the training.

1.3 Thesis Outline
While several works used contrastive learning on image data but this is yet to be studied in
audio domain. In the following chapters, we trained two family of deep residual neural net-
works [5], one that is trained on raw audio signals while the other utilizes time-frequency
audio features. Furthermore, we introduce composition of augmentations that are most effi-
cient in learning auditory representations. Previous work on auditory data augmentations have
shown effective methods that improve supervised classifications applied both on raw audio
signal [57, 58, 59] and time-frequency audio features [60]. However, auditory data augmenta-
tions that nourish effective representations with contrastive learning is yet to be investigated.
In this work, we also investigate the effect of the augmentations on learning representations

6 Chapter 1. Introduction

from both raw audio signal and time-frequency audio features in contrastive learning frame-
work. Lastly, we introduce a novel semi-supervised approach that incorporate both supervised
and self-supervised frameworks during training without fine-tuning which not only foster more
efficient representations but also speed the training process.

Chapter 2

Background

2.0.1 Learning Algorithms
Machine learning algorithms can be broadly characterized by the kind of data they are allowed
to use during their training process: Supervised, Unsupervised, and Semi-Supervised. In the
following section, we will briefly describe each of them as they play an important part in this
thesis.

Supervised Learning

Supervised Learning is the most popular learning approach as the conceptual idea behind it is
simple and effective when presented with moderate to large amount of labelled data. As the
name insinuates, supervised learning relies on a teacher to penalize inaccurate output from the
model. Hence, the goal of a supervised learning approach is to learn the mapping from an
input x to a corresponding output y. Given a set of N training samples of inputs and outputs
{(x1, y1), ..., (xN , yN)}, we seek to approximate a function (fθ : X → Y) that maximizes the sim-
ilarity between the groundtruth value yi and the predicted output by the function fθ(xi). In this
process, θ are the set of parameter(s) that cumulatively contribute to the outcome of the func-
tion. During training, we utilize gradient descent to systematically adjust the parameters (θ) to
minimize a cost function. The cost function (J) is commonly used to assess the performance
of a given function, the lower the value of the cost function, the less error a given function is
performing on the training data:

J(θ) =

m∑
i=1

L(fθ(xi), yi) (2.1)

where L is a loss function that takes as inputs the predicted value fθ(xi) corresponding to
the groundtruth value yi and outputs how different they are. Depending on the data and task,
X and Y can be of various forms. For instance, X can be image, audio, financial data, etc
and if the task is classification, then Y would be a categorical variable from a finite set, i.e.
yi ∈ {1, ...,C} where C is the number of classes. Alternatively, if the task is regression, then Y
is a real value.

The advantages to this approach as stated before comes from its simplicity. That is, by
minimizing the cost function (J(θ)) of matching the predicted and true values of Y , we are

7

8 Chapter 2. Background

able to obtain representations that are efficient to the task at hand. However, such approach
suffers from various problems:

• Performance degradation with more optimization, in the process of minimizing the
cost function, often large models that deals with complex data such as images would
learn efficient representations to a certain point but the error would not reach an absolute
zero. Hence, by training the model longer, the model would start to learn the noise of the
training data, resulting in less efficient representations (i.e. over-fitting) [12, 61].

• Dependence on labelled data, given that we require to have Y , we are limited by the
number of samples within our dataset that are labelled. In applications were data are
expensive or hard to annotate, this generates a generalizability problem that can be catas-
trophic in deployment (e.g. Healthcare [62], Self-Driving Cars [63]).

Unsupervised Learning

In machine learning, unsupervised learning is often attributed to algorithms that discover hid-
den patterns or data groupings without the need for annotated data. Generally, these algorithms
involves clustering (e.g. K-Means), association (e.g. Association Rules), or dimensionality re-
duction (e.g. Principal Component Analysis). However, in deep learning, one use case for
using unsupervised learning is that we want to learn the entire probability distribution that gen-
erated a dataset, whether explicitly (e.g. Variational Autoencoders), or implicitly (e.g. Gen-
erative Adversarial Networks). The benefit of this process is that it allows us to learn from
unlabeled examples useful representations that can be then used for other down-stream tasks
(i.e., in supervised learning). In Section 2.1.1, we describe in details some of the generative
ways that unsupervised learning is used in representation learning which are closely related to
this thesis.

More recently, there has been growing interest in using unsupervised learning to train mod-
els through discriminative approaches, called Self-Supervised Learning. Self-supervised learn-
ing is a type of unsupervised learning that uses the inherent structure of the data to learn mean-
ingful representations. This is often done by automating the process of generating some kind
of supervisory signal to solve an indirect task. For instance, we can train a model to predict
the relative position of two randomly cropped patches from an unlabelled image [64]. Hence,
the model would need to derive representations that contain the underlying structure of natural
images (e.g. eyes are often close to the mouth). Similar to the generative unsupervised models,
representations learned from this training can later be used for other down-stream tasks.

Semi-Supervised Learning

Following supervised and unsupervised learning, semi-supervised learning aims at integrat-
ing both by using labelled and unlabelled data for training. Depending on the context, semi-
supervised learning can have different applied implications. One type of semi-supervised learn-
ing that considered a common practice in deep learning is to use small labeled data available
to fine-tune parameters of a model - sometimes trained on a completely different task with un-
labeled data- to improve performance. In self-supervised learning this approach is adopted by
performing self-supervised pre-training on unlabeled data followed by supervised fine-tuning

9

on labeled examples [12, 65, 66, 67]. Although fine-tuning can be beneficial in big models
(i.e. > 100 million parameters), fine-tuning on smaller models may result in catastrophic for-
getting [68, 69, 70]. Catastrophic forgetting is a situation where in learning new tasks, the
model may not use the shared parameters from the old task and ”forget” them in the process.
This phenomenon could partially explain why unsupervised learning benefits more from bigger
models after fine-tuning [12]. That is, bigger models have the capacity to maintain represen-
tations from the unsupervised learning stage even after fine-tuning. In later chapters, we will
present a different approach that abolish the two stage training by simultaneously training with
supervised and unsupervised objective functions.

2.0.2 Neural Network Architectures
Perceptron

Loosely inspired by neuronal functions in the brain, neural networks are a family of machine
learning models that aims to recognize underlying relationships in a set of data. These relation-
ships are derived through a collection of units called nodes/neurons. A ”neuron” in a neural
network is a mathematical function that shares connections (through weights wi) with neurons
from the proceeding layer (xi). Each neuron computes the sum over the product between the
set of inputs (xi) and their corresponding weights (wi), followed by a nonlinear function, ap-
plied to the result. A neural network that consists of just an input and output layers is outline
in Figure 2.1, called a Perceptron.

Figure 2.1: Perceptron Architecture.

Multi-layer Perceptron

Perceptrons are limited to the approximation of linear functions, where the output is similar
to multiple linear regressions. By stacking perceptrons vertically, we can build a layer of
perceptrons, also called the width of the model. If we interconnect those layers of perceptrons
(i.e. hidden layers), we progress towards a multi-layered perceptron (MLP), also called deep

10 Chapter 2. Background

feedforward neural network, that can approximate a non-linear function and solve much more
complex problems (Figure 2.2). The feedforward name originate from the notion that each
layer’s output becomes the input of the proceeding layers and no output is ever passed back
to the current (self loop connection) or previous (feedback connection) layers. The learning
algorithm updates hidden layers’ weights until the neural network’s margin of error is minimal.
During training, the samples specify what the output layer must be for a given input, with
no restraint on the hidden layers. Through the feedforward progression, the weights learn
representations given the output of the previous layer and induce them into the neural network’s
further layers.

Figure 2.2: Multilayer perceptrons Architecture. Also called deep feedforward network or
feedforward neural network.

MLP are computationally efficient when the size of input space is relatively low. However,
as the input size increases, MLP becomes less viable option for such problems. For instance,
we can consider the scenario were we are given an image dataset, which consist of colored
images in R3m×n and would like to use a model to predict the classes of these images. We can
flatten the 2-dimensional image to be a vector in R3mn and feed it through an MLP. Where each
pixel is a feature, however, this will lead to a drastic increase in the number of parameters as a
function of m and n and would make the model harder to train. Furthermore, when dealing with
2-dimensional - or n-dimensional - data, we recognize that pixels that are spatially closer to
each other share spatial coherence. This spatial representations would not be captured through
a simple feedforward neural network. These drawbacks are few reasons why current state-
of-the-art architectures predominantly rely on Convolutional Neural Networks [39] (CNN) to
extract feature maps from high-dimensional data (e.g. image, audio, video).

2.0.3 Activation Functions
In prior section, we have introduced activation functions but we did not discuss the different
types of activation functions and why some are used more heavily used than others. Given a
hidden unit in a neural network, initially it computes a weighted sum of its input, were the value
of the output can be anything ranging from −∞ to∞. This property makes it hard to articulate

11

to proceeding hidden unit that a certain hidden unit ’activated’ or not. Hence, one purpose
of activation functions is to non-linearly bound the the outputs to relay important information
about the state of a hidden unit. Activation functions need to be non-linear as a neural network
with many layers and comprised of only linear activation functions is just a linear function of
the input of first layer. The design of activation functions does not yet have many definitive
guiding theoretical principles. Although, there are practices that researchers often default to.
In this section, we will go over some of those activation functions:

1. Sigmoid Function: is traditionally a very popular activation function for neural net-
works. The input to the function is transformed into a value between [0, 1], where inputs
that are much greater than a certain value are transformed very closely to one, while,
inputs that are much less a certain value are transformed very closely to zero. Unlike a
linear function, the output of this activation function is bounded, hence, we would not
have exploding activations on either side. On the other hand, the values on either sides
tend to respond very less to changes in the input, hence the gradient at that region is
going to be small (i.e. vanishing gradient).

σ(x) =
1

1 + e−x (2.2)

2. Hyperbolic Tangent: is very similar to the sigmoid function, in fact, tanh(x) = 2σ(2x)−
1. One distinction is that tanh gradient is stronger in magnitude, with the bounded range
of the activations are between [−1, 1]. However, this also mean that similar to the sigmoid
function, tanh is still susceptible to vanishing gradient problem.

tanh(x) =
2

1 + e−2x − 1 (2.3)

3. Rectified Linear Units (ReLUs): simply output the input if the input is positive, oth-
erwise, it outputs 0. This means that the function is linear for values greater than zero.
While the non-linear property of ReLU are in the negative values were negative values
are always transformed to zero. These characteristics makes ReLU an attractive activa-
tion function for various reasons: (1) computational cost: ReLU is less computationally
expensive than tanh and sigmoid functions because it does not require the use of an
exponential calculation. (2) Sparsity: unlike tanh and sigmoid functions, ReLU is ca-
pable of outputting a true zero value. Meaning that some hidden units in the network
are not activated and thereby making the activations sparse and efficient. This is a desir-
able property as it can accelerate learning, simplify the model, and overcome vanishing
gradients problem.

ReLU(x) = max{0, x} (2.4)

One major drawback of using ReLU is that they cannot learn on examples for which the
input activations are less than equal to zero. For activations in the negative region of
ReLU, the gradient will be zero, hence, the weights will not be adjusted based on that
input. This means that some neurons can potentially get stuck in a state were variations

12 Chapter 2. Background

in the input always results in zero, often called dying ReLU. Various adjustments were
proposed to ReLU to metigate this problem. For instance, absolute value rectification
[71], leaky ReLU [72], or PReLU [5].

Convolutional Neural Networks (CNNs)

CNNs excel at efficiently processing data that has a known 2-D spatial structure. The name of
CNNs originates from the network reliance on a mathematical operation called convolutions.
LeNet-5 [39] were one of the early implementations of a CNN architecture, trained on MNIST
dataset. The use of the convolutional operations typically occurs in the early layers where the
input space is still of high-dimensions, however, as the input space is progressively reduced,
there is a MLP that generally perform the final task e.g. classification. In this section, we will
discuss operations that makes a CNN:

1. Convolutional Layers (Figure 2.3): Convolutional Layers consists of three components:
input, kernel, and feature maps (output). The kernel is often smaller in size than the input
but contain the same dimension. The kernel slides over the input, performing an element-
wise multiplication with the part of the input it is currently on, and then summing up the
results into a single output. The kernel repeats this process for every location it slides
over, converting the input matrix of features into another matrix of features. The output
features are the weighted sums of the input features located roughly in the same location
of the output pixel on the input layer. We can mathematically define this operation as the
following:

(f ∗ g)(i) =

M∑
m

g(m) · f (i − m) (2.5)

where f is a 1D input vector, g is a 1D kernel vector, N is the length of f , and M is the
length of g. We perform this operation for every i ∈ N. This operation can be generalized
to 2D by convolving over more than one axis at a time:

(f ∗ g)(i, j) =

M∑
m

N∑
n

g(m, n) · f (i − m, j − n) (2.6)

The amount of movement the kernel steps per computation is determined by the value of
stride (default = 1).

2. Pooling Layers(Figure 2.4): As mentioned previously, machine learning algorithms
need to extract high-level task relevant information from high-dimensional low-level sen-
sory data (e.g. images/audio). We extract those features through convolutions, however,
as we progress to higher levels of representations, we need to reduce unnecessary spatial
dependency of features. This is done through the pooling layers. The pooling layer is
a down-sampling operation, which reduces the spatial size of generated feature maps.
There are various types of down-sampling operations, however, the most widely adopted
in literature is maximum pooling. Max pooling calculates the maximum, or largest, value
in each patch of each feature map. Hence, the results are pooled feature maps that high-
light the most dominant feature in the patch. Alternatively, average pooling involves
calculating the average for each patch of the feature map.

13

Figure 2.3: Computation of a convolutional layer. On the left, example of 1D convolution
operation. On the right, example of 2D convolution operation.

There are other types of pooling methods that are used on the output of the last convolu-
tional layer, called global pooling. Instead of down sampling patches of the input feature
map, global pooling down samples the entire feature map to a single value. Global pool-
ing is used on the output of the last convolutional layer as to aggressively summarize the
presence of a feature and allow us to transition from feature maps to an output that can
be used for predictions.

3. Fully Connected Layers: The last type of layers in a CNN is typically an MLP or
fully connected layers. The input to the fully connected layer is the flattened or globally
pooled output of the last convolutional layer. The output of the last convolutional layer is
high-level features in low-dimensional space, adding a fully-connected layer is a cheap
way of learning non-linear combinations of these features. Moreover, for a classification
problem, this allows us to set the size of last fully connected layer to match the number
of classes, where each node would output the probability that the input belongs to.

Figure 2.5 shows a basic CNN architecture given a sample image belonging to the frog
class from CIFAR10 [4] dataset. The CIFAR-10 dataset consists of 60,000 32x32 coloured
images in 10 classes, with 6,000 images per class. Each convolutional block in Figure 2.5
consists of a convolution layer, max pooling layer, and ReLU activation function. Although for
CIFAR10 such architecture might suffice, progressively over the past decade, CNNs were built
with deeper architectures to tackle more challenging datasets. One of those prominent datasets
in Computer Vision is ImageNet [2]. ImageNet (or ILSVRC2012) consists of large hand-
labeled 1.2 million natural images of 1000 categories. This evolution began with AlexNet [73]

14 Chapter 2. Background

Figure 2.4: Computation of a max pooling layer. On the left, example of 1D max pooling
operation. On the right, example of 2D max pooling operation.

breaking the state-of-the-art on ImageNet with 5 convolutional layers. Soon after, GoogleNet
[74] and VGG [75] had 19 and 22 layers, respectively.

Figure 2.5: Example CNN. Each convolutional block consists of a convolution layer, max
pooling layer, and ReLU activation function. The image is a sample belonging to the frog class
from CIFAR10 [4] dataset.

ResNet Architecture

Although, increasing networks’ depth improved performance on ImageNet, it also increased
the difficulty to train those networks due to vanishing gradient. Vanishing gradient refers to
the problem that the gradient in early layers approaches zero. For shallow network with only
a few layers, this does not result in a big problem. However, when more layers are used, it
can cause the gradient to be too small for training to work effectively. Early solutions to this
problem introduced an auxiliary loss in a middle layer to re-flow the gradient [74]. However, a
move direct solution to the problem was introduced in the ResNet Architecture [5].

ResNet is named after the residual blocks used within its architecture (Figure 2.7 and Figure
2.6). Figure 2.6 shows the residual connection directly adds the value at the beginning of the
block, to the end of the block:

y = F (x) + x (2.7)

15

where x is the input, F is the convolutions operating on the input. By adding the identity value
of x through the residual connection, the input would skip an activation function that could
vanish the gradient. Thereby, stacking layers should not degrade the network’s performance,
because we could simply stack identity mappings that prevent the gradient approaching zero.
This also means that deeper model should not produce a training error higher than its shal-
lower counterparts, as letting the stacked layers fit a residual mapping is easier than letting
them directly fit the desired under-laying mapping. Typical residual blocks do not change the
spatial resolution of the input, however, as we discussed previously, we need to down-sample
our representations. Hence, following n number of residual blocks without down-sample ca-
pability, we follow it up with one that down-sample the input x through both streams (2.6).
Figure 2.7 shows an example architecture of ResNet18 and ResNet34, the difference between
them is the number of residual connections without down-sampling capability. Following the
initial ResNet architecture, the architecture over the past few years has been studied heavily
with multiple variations [76, 77, 78]. This architecture is introduced because it will be used
extensively in the next chapters.

Figure 2.6: Residual blocks architecture [5].

Figure 2.7: ResNet18/34 Architecture [5].

16 Chapter 2. Background

2.0.4 Batch Normalization
In statistics, normalization is the process of adjusting values measured on different scales to a
common scale, and aligning a given data distribution to a normal distribution (i.e. mean of 0
and standard deviation of 1). Often in deep learning, we normalize the input data to the model
by subtracting the data by the mean:

µ =
1
m

m∑
i

xi

x := x − µ

(2.8)

and normalizing the variance:

σ2 =
1
m

m∑
i

(xi − µ)2

x :=
x
σ2

(2.9)

This is beneficial because different features might have contrasting ranges in value, hence,
it can hinder the performance or training speed and can result in the model not learning at all.
Batch normalization [79] reinforces this idea by performing such operation not only on the
input data, but also in the intermediate layers of the network (Figure 2.6). Generally, in some
way, each layer in a deep neural network aims to ’fit’ the input data to some representations.
However, the flow of data through the layers often create drift in the distributions. Thereby,
making it harder for the proceeding layers to learn meaningful representations, as they would
need to account for the drifts. Another problem that batch normalization aims to solve is ex-
ploding and vanishing gradients. Some activation functions might be pushed to their saturated
areas, which could result in making some representations non-changing.

Batch normalization (Algorithm 1) solves those problems by normalizing each intermediate
layer’s inputs with the dataset mean and standard deviation over a given mini-batch. One
distinction between input data normalization and batch normalization is that the statistics (mean
and variance) applied over a mini-batch rather than on the entire dataset.

2.1 Related Works

2.1.1 Representation Learning
Learning effective visual representations without human supervision is a long-standing prob-
lem. Most mainstream approaches fall into one of two classes: generative or discriminative. In
this section, we will describe both approaches.

Generative Models for Representation Learning

Auto-Encoders (Figure 2.8) are neural networks with two sub-networks [80]: (i) one that maps
a given data sample into lower dimension representation (encoder), and (ii) the other sub-net-

2.1. RelatedWorks 17

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi}

µB ←
1
m

m∑
i

xi // mini-batch mean

σ2
B ←

1
m

m∑
i

(xi − µB)2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B

+ ε
// normalize

yi ← γx̂i + β // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch [79].

work receives those representations and reconstructs them back into the given data sample
(decoder). These family of neural networks are not designed to be generative instead they were
aimed to compress high dimensional data into a smaller representation given no labels (i.e.
unsupervised representational learning). When network is given a data input x, the encoder
encodes it into a latent representation z and the decoder uses that latent representation to re-
construct the data input x. Often to train such network the cost function is defined as the mean
squared error between the input x and the reconstructed x data sample:

f (x, x) = ‖x − x‖2 (2.10)

Figure 2.8: Auto-Encoders Architecture. composed of two sub-networks i.e. the encoder and
the decoder.

Although, Auto-Encoders are generally successful at reconstructing data with high quality,
often because of the high degree of freedom over the latent code, the training objective leads to
a severe over-fitting in the latent space. That is, a small subset of the latent space which is iden-
tified by the encoder will yield meaningful content once decoded. However, if a random latent
code is fed into the decoder, with high probability it will reproduce a meaningless content. Var-
ious methods have introduced measures to improve Auto-Encoders. Denoising Auto-Encoders
[81] was one of the early proposed improvements to reduce over-fitting by partially corrupt-
ing the input by either adding noise or masking content and training the model to recover the

18 Chapter 2. Background

original uncorrupted input. More recent methods not only improved on the robustness but also
reinforced the generative properties of Auto-Encoders [82, 83, 84, 85, 86, 87, 88].

Generative Adversarial Networks (GANs) over the past few years have been the most pop-
ular generative model framework achieving state-of-the-art across various domains of data
[89, 90, 91, 92, 6, 93]. GANs provide an implicit alternative to modeling the density function,
which allows us to synthesize samples from p(x). The GAN framework is a min-max adver-
sarial game between two distinct neural networks: (i) The generator (G), aims at generating
synthetic data by learning the distribution of the real data and (ii) the discriminator (D), aims
at distinguishing the generator’s fake data from real data (Figure 2.9). The generator uses a
function G(z) that maps latent vector z from the prior p(z) (a Gaussian distribution) to the data
space p(x). G(z) is trained to maximally confuse the discriminator into believing that samples
it generates come from the training data distribution. While, the discriminator tries to accu-
rately predict whether the given samples are from the training data (real) or generated from
G(z) (fake). The solution to this game can be expressed as following [94]:

min
G

max
D

[
Ex∼pdata[log D(x)] + Ez∼pz[log (1 − D(G(z)))]

]
(2.11)

where the training procedure for D is to maximise the probability of assigning correct labels
for training examples from the data and examples from G. The training procedure for G is
to maximise the probability of D making a mistake, or in other words to minimise log (1 −
D(G(z))), where z is the prior input noise variables and x is the data. Figure 2.10 demonstrate
the capability of GANs at generating synthetic images.

Figure 2.9: GAN Architecture.

In both generative frameworks, the subsequent discriminative/encoding sub-network is ex-
tracted and utilized as pre-trained model. Hence the major disadvantages of using such ap-
proach to representation learning is that pixel-level generation is computationally expensive to
train and generating images of high-fidelity may not be necessary for representation learning.

2.1.2 Discriminative Models for Representation Learning

As described earlier self-supervised learning is a type of unsupervised learning that uses the
inherent structure of the data to learn meaningful representations. Generative models can be

2.1. RelatedWorks 19

Figure 2.10: Examples of randomly generated images using BigGAN [6] a GAN variant.

thought as self-supervised, but with different objectives. Discriminative self-supervised learn-
ing exploit priors about the data and treat them as labels. The self-supervised task guides the
training through a supervised loss function, however, we do not directly use the loss for final
performance evaluation. Rather we investigate the learned intermediate representations at ex-
tracting meaningful information from our data. In this section, we will introduce some of the
self-supervised methods.

Augmentations

Data Augmentations has been used extensively in Computer Vision literature to reduce over-
fitting to the training data, especially during supervised training. The augmented data often
provide a more comprehensive range of possible data points, thus minimizing the distance be-
tween the training and testing sets. The underlying assumption is that small distortion on an
image should not modify the semantic meaning of an image. For instance, if we have an im-
age of a dog and we rotate the image over the horizontal axis, we would still expect it to be
an image of a dog. [7] utilized such property to create surrogate classes using data augmen-
tations to perform self-supervised learning, called Exemplar-CNN. Exemplar-CNN was one
of the early methods that were able to out-perform prior unsupervised methods for learning
image representations. The framework crops 32 × 32 patches from images and apply a set of
augmentations randomly with varying degree (Figure 2.11). Exemplar-CNN utilized in total
six augmentations:

1. Translation: vertical and horizontal translation by a distance.

2. Scaling: multiplication of the patch scale by a factor.

3. Rotation: rotation of the image by an angle.

20 Chapter 2. Background

4. Contrast 1: multiply the projection of each patch pixel onto the principal components
of the set of all pixels by a factor.

5. Contrast 2: raise saturation and value of all pixels to a power.

6. Color: add a value to the hue of all pixels in the patch.

The training objective is to classify these patches according to their augmented surrogate
classes, where surrogate classes can be created arbitrarily. For instance, the magnitude of
the parameters for each augmentation has a finite space of values between the boundaries of
parameters. Hence, if all of the augmentation have 5 parameters, we can create 56 surrogate
classes.

Figure 2.11: Random augmentations applied to the original patch (top left corner) utilized in
[7].

More recently, the authors of [8] demonstrated a more simple approach for utilizing aug-
mentations to learn visual representations. Compared to previous framework, the work in [8]
introduces a more cheap process, where each input image is rotated by a multiple of 90°at
random, corresponding to [0°, 90°, 180°, 270°]. As such, the training objective is to predict
the degree of rotation that has been applied to the input image (thus it is considered a 4-class
classification problem; Figure 2.12). The intuition behind using these image rotations (as the
only form of augmentation) relates to the idea that in order to effectively predict the degree of
rotations, a model has to first learn to recognize slight differences between classes of objects
as well as their semantic parts in images. That is, a model must necessarily learn to localize
objects in the image, recognize their orientation and object type, and then relate the object ori-
entation with the dominant orientation that each type of object tends to be depicted within the
data distribution.

Patches

While the previously introduced self-supervised methods utilized augmentations to derive the
objective function, the proposed method in [9] employs the spatial relationship between patches

2.1. RelatedWorks 21

Figure 2.12: Demonstrates the framework proposed by [8].

of an image to derive a training objective. The training objective in [9] is to accurately pre-
dict the relative position between two random patches from an image. Similar to the rotation
method, to accomplish this task effectively, a model would need to learn to recognize differ-
ences between classes of objects as well as their semantic parts in images. For instance, if one
of the patches was a cat ear and the second patch was the eye of the cat. The model would need
to first recognize that those patches are part of a cat and that they should be relatively close to
each other.

The method starts by randomly sampling the first patch from the original image, followed
by sampling a 3x3 grid of patches with the first patch located in the middle of the grid. By
using the first patch as the point of reference, and randomly selecting one of the 8 neighboring
as the second patch, the model would predict which one of the 8 neighboring locations the
second patch is selected from (Figure 2.13). To retrain the model from capitalizing on low-
level trivial signals, such as textures continuing between patches, chromatic aberration, and
pixelation, additional noise is introduced. This is done by: (1) adding additional gaps between
sampled patches, (2) randomly jittering each patch location by up to 7 pixels, (3) randomly
down-sampling some patches to as little as 100 total pixels, and then up-sampling, and (4)
randomly dropping 2 of the 3 color channels. Chromatic aberration is triggered by different
focal lengths of lights at different wavelengths passing through a lens. Hence, such process can
create small offsets between color channels where a model can exploit. Chromatic aberration
serves as an excellent example to how models can exploit some underlying features and when
utilizing self-supervised learning this can be severe.

While [9] demonstrated the process on 2 patches, [95] built on the work to generalize
to all 9 patches, in a task called jigsaw puzzle. In jigsaw puzzle, the model processes each
patch independently and outputs a probability vector per patch index out of a predefined set of
permutations. To control the difficulty of jigsaw puzzles, the paper proposed to shuffle patches
according to a predefined permutation set and configured the model to predict a probability
vector over all the indices in the set.

22 Chapter 2. Background

Figure 2.13: Demonstrates the framework proposed by [9].

Contrastive Learning

Previously introduced methods performed self-supervision by utilizing data driven objectives
as a classification problem. This means that such approach although successful in one data
domain, can become insufficient just by changing the data type (e.g. from images to audio). For
instance, although we can use rotation to learn visual representations [8], we would not be able
to utilize similar framework in the audio domain. More recent approaches to self-supervised
learning focus on instance-level discrimination, where each sample/instance is treated as a
distinct class of its own. Suppose we have a CNN (f) that project high-dimensional input to
low-dimensional feature space v, such that vi = f (xi). With such framework, we are interested
in minimizing the distance of these low-dimensional features for visually similar images closer
to each other, that is, d(x, y) = || f (x)− f (y)||. This can be formulated using the softmax function
as the following:

P(i|v) =
exp(wT

i · v)∑n
j=1 exp(wT

j · v)
(2.12)

where v is feature vector of a given sample x (v = f (x)), P(i|v) is the probability of the sample
being recognized as the i-th example, w j is a weight vector for class j, and wT

j v measures how
well v matches the j-th instance. Such approach is problematic in an instance-level discrimina-
tion, as the weight vector serves as a class prototype, thereby, preventing explicit comparisons
between instances. The authors in [10] built on such work by proposing a non-parametric vari-
ant (called contrastive loss) of Eq. 2.12 that replaces wT

j · v with k · v, such that the probability
P(i|v) becomes:

P(i|v) =
exp(k · v/τ)∑n
j=1 exp(k · v/τ)

(2.13)

where k is the feature vector from memory bank, and τ is a temperature parameter that controls
the concentration level of the output distribution, proposed in [96]. The denominator of Eq.
2.13 require the feature vectors for all images, hence, rather than exhaustively computing these

2.1. RelatedWorks 23

representations, [10] utilize a feature memory bank for storing them as shown in Figure 2.14.
During each learning iteration, the parameters are optimized based on the representations then
stored at the corresponding instance entry in the memory bank. Hence, the memory bank
will consist of the representations of all samples in the dataset. It is worth noting that prior
to [10], [97] introduced earlier variant of the contrastive loss (or InfoNCE), which defined
the prediction task by splitting samples into patches and measuring how well the model can
classify representations of close patches amongst a set of unrelated samples.

Figure 2.14: Demonstrates the framework proposed by [10]
.

One major drawback of using memory bank is that the representation of samples in the
memory bank can be from past epochs, thus are less consistent with the encoder’s current state.
For instance, assume we are at epoch n and we compute the loss for the first mini-batch v.
We will still be using feature vectors from epoch n − 1 (i.e. k). The framework proposed in
[11] (called Momentum Contrast or MoCo) enhances such approach by incorporating another
encoder (called momentum encoder) which not only outperforms the memory bank method in
regard to the learned representations but also is more memory-efficient and can be trained on
billion-scale data. MoCo framework is motivated by the fact that these methods can be thought
of as building dynamic dictionaries, where the keys in the dictionary are sampled from data
and are represented by an encoder network. Hence, an encoded query should be similar to its
matching key and dissimilar to others (Figure 2.15). This is accomplished by incorporating
two components:

1. Dictionary Queue: rather than using a memory bank that will span the whole dataset,
MoCo adopt a queue were samples in the dictionary are progressively replaced. Hence,
the dictionary always represents a sampled subset of all data, without extra computation.
Dictionary size can be much larger than the size of a mini-batch, and is seen as a hyper-
parameter.

2. Momentum Encoder: [9] uses samples in the current mini-batch as the dictionary, so
the keys are consistently encoded. However, such approach is limited as the dictionary
size is coupled with the size of the mini-batch.. MoCo resolves this issue by adopting a
momentum update to the key encoder. It can be denoted as:

θk ← mθk + (1 − m)θq (2.14)

24 Chapter 2. Background

where m ∈ [0, 1) is a momentum coefficient, θk are the parameters for the momentum
encoder, and θq are the parameters for the query encoder. Only θq are updated by back-
propagation, θk evolves smoothly through Eq. 2.14.

Figure 2.15: Conceptual comparison of [10] and [11]. On the left, key representations are
sampled from a memory bank [10]. On the right, shows Moco encoding the new keys on-the-
fly by a momentum-updated encoder, and maintains a queue of keys [11].

Following MoCo’s work in learning efficient representations from unlabelled data, [12] not
only introduced a novel method (SimCLR) but also investigated various components of how
to improve performance that can be beneficial to other self-supervised methods. SimCLR has
been shown to not only outperform previous self-supervised methods on ImageNet but also
outperform supervised methods on some natural image classification datasets [12]. In essence,
the framework aims at learning efficient representations by maximizing agreement between
differently augmented views of the same data and maximizing difference across contrasting
images via contrastive loss in the latent space (Figure 2.17). SimCLR consists of three major
modules:

1. Augmentations Module: transforms any given data example randomly resulting in two
augmented views of the same example, denoted x̂i and x̂ j, which are considered the pos-
itive pairs. SimCLR investigated several augmentations for images and their effect on
the learned representations. One type of augmentations involves spatial transformations
such as cropping and resizing, rotation [8], flipping, and cutout [98]. The other types
of augmentations involve appearance transformations, such as color distortion, Gaus-
sian blur, and sobel filtering (Figure 2.16). Through comprehensive search, [12] found
that random cropping followed by resizing back to the input image size, random color
distortion, and random Gaussian blur yield the most efficient representations.

2. Encoder Module - f (·): maps the high-dimensional input images to low-dimensional

2.1. RelatedWorks 25

feature space from augmented examples. Where hi = f (x̂i) and h j = f (x̂ j), such that
hi, j ∈ R

d.

3. Projection Head Module - g(·): maps encoder representations to representations space
where contrastive loss is applied. It was shown that MLP with ReLU non-linearity is
crucial in this method. Compared to using a linear counterpart or no projection head, the
non-linearity significantly improve the quality of the representations obtained. That is,
zi = g(hi) and z j = g(h j), such that zi, j ∈ R

d. The output dimensionality of z was shown
to not change the performance significantly.

Figure 2.16: Illustrations of the studied data augmentation in [12]. Each augmentation can
transform data with some internal parameters (e.g. rotation degree, noise level).

The loss for such objective is termed Normalized Temperature-scaled Cross Entropy Loss
(NT-Xent):

li, j =
exp

(
sim

(
zi, z j

)
/τ

)
∑2N

k=1 1[k,i] exp (sim (zi, zk) /τ)
(2.15)

where 1[k,i] ∈ 0, 1 is an indicator function returning 1 iff k , i, τ denotes a temperature
parameter (default is 0.5), and z denotes the encoded representations of a given augmented
view. N is the number of training samples within a mini-batch, (i, j) are positive pairs of each
sample. The loss is computed across all positive pairs, in a mini-batch. sim (u, v) = uT v/||u||||v||
denotes the cosine similarity between two vectors u and v.

The advantage of MoCo compared to SimCLR is that MoCo decouples the batch-size from
the number of negative samples, but SimCLR requires a large batch-size in order to have
enough negative samples. Hence, SimCLR requires large batch-sizes to reach competitive
performance. With SimCLR proposed improvements such as the projection head and stronger
data augmentation, MoCoV2 [99] was introduced with better performance and no dependency
on large batch-sizes.

26 Chapter 2. Background

Figure 2.17: SimCLR framework proposed by [12].

Chapter 3

Methodology

3.1 Audio Pre-porcessing
We trained two families of models, one that takes as input raw audio signals while the other
utilizes time-frequency audio features as input. For both models, we start by down-sampling
(when applicable) all audio signals to 16 kHz, followed by signal padding (by zeros) or clipping
the right side of the signal to ensure that all audio signals are of the same length. The target
length of the audio signal is set based on the datasets’ assigned audio length (Section 3.3). For
models dependant on time-frequency features, we computed the short-time Fourier transform
(STFT) magnitudes and phase angles of the input audio with 16 ms windows and 8 ms stride
[100], further we projected the STFT to 128 frequency bins equally spaced on the Mel scale
(Figure 3.1). Moreover, we computed the log-power of magnitude STFT and Mel spectrogram
(Eq. 3.1) and stacked the three time-frequency features in the channel dimension, resulting in
a matrix of size: 3 × F × T . Where F is the number of the frequency bins and T is the
number of frames in the spectrogram. This was done to ensure that we have comprehensive
features that could capture multi-domain audio signals (e.g. speech, environmental, and music
sounds) and would not require us to change the baseline ResNet 2D architecture. To compute
the spectrograms, we utilized nnAudio a neural network based audio processing framework
that leverages 1-D Convolutional Neural Network to transform time-domain audio signal to
frequency-domain spectrograms on the GPU [101].

f (S) = 10log10|S |2 (3.1)

where S is the mel-spectrogram or magnitude STFT.

3.2 Training/Evaluation Protocol
To maintain consistency and allow for a fair comparison across supervised, self-supervised and
our proposed method (CLAR), we adopted four components in our framework (see Figure 3.2):

1. Data Augmentation module generates two random views of each sample, which con-
tains an augmented information of the original sample. Section 3.5 describes all the
various augmentations that were used in our experiments and Section 4.2 provides the

27

28 Chapter 3. Methodology

Figure 3.1: Raw audio (first) with the subsequent time-frequency features, specifically, STFT
(short-time Fourier transform) magnitudes (second) and phase angles (fourth), and Mel-
spectorgram (third). The raw audio and time-frequency features were utilized in training 1D
and 2D versions of ResNet.

effect of these augmentations on auditory classification task both with raw audio and
extracted time-frequency audio features.

2. Encoder maps the data samples into a representational vector. To vectorize our repre-
sentations we performed adaptive average pooling on the output of the encoder. For our
encoder, we trained 1D and 2D variants of standard ResNet18 [102] with SimCLR train-
ing protocol. For models trained on time-frequency audio features (i.e. spectrograms)
as input, we utilized a typical ResNet18 [20] with random initialization. Alternatively,
we switched all ResNet18 operations such as convolutions, max-pooling and batch nor-
malization from 2D to 1D for models that takes raw audio signal as input. The output of
both models is a 512 dimension vector.

3. Projection head maps the extracted encoder representations to a space where contrastive

3.3. Datasets 29

and supervised loss is computed. Projection head consists of three fully connected layers
with ReLU activation functions. We calculated the losses on the output of the projection
head with fixed vector size of 128. In the supervised approach we replaced the final linear
layer used for contrastive loss with a linear layer with the size of the class numbers
to compute cross entropy loss. Lastly, in our proposed approach, in addition to the
cross entropy loss computed on the last layer, we computed contrastive loss using the
representations in the layer preceding the last layer.

4. Evaluation head was used to replace the projection head after training the encoder us-
ing different training methods. The evaluation head is a linear classifier trained on top
of the frozen encoder to assess the learned representation quality by computing the test
accuracy. When limiting labeled data to compare performance across supervised, self-
supervised and our proposed approach (Section 4.4), we trained the evaluation head on
the full labeled data. This approach is commonly adopted to evaluate the learned repre-
sentations of self-supervised methods [12, 103, 24].

We trained all models with 1024 batch size, layer-wise adaptive rate Scaling (LARS) op-
timizer [104] with learning rate of 1.0, weight decay of 10−4, linear warmup for the first 10
epochs, decay of the learning rate with the cosine decay schedule without restarts [105] and
global batch normalization. For some datasets, we reduced the batch size to 512 to be able to
fit the data in memory. We trained all our models on augmentations that we found to yield the
best performance on test accuracy. All models were trained from random initialization with 4
NVIDIA v100 Tesla 32GB GPUs.

3.3 Datasets
In this work, we evaluated the performance of our proposed framework on three audio datasets
from different domains (speech, music, and environmental sounds). All datasets have prede-
fined train-validation-test splits by authors (except the ECS dataset), we used the test splits to
compute analysis. The datasets are:

• Speech Commands (Speech): composed of 105,829 16kHz single-channel audios [106]
from 2,618 speakers. Each audio file contains a one second recording of a single spoken
English word from limited vocabulary. The dataset contains 35 labels (words) such as
one-digit numbers, action oriented words, and arbitrarily short words. In addition to the
full dataset, we derive a simpler version (∼20k samples) with only the utterances of the
one-digit numbers.

• NSynth (Music): contains 305,979 four seconds audio of musical notes, each with a
unique pitch and musical instrument family [107]. For every musical note, the note was
held for the first three seconds and allowed to decay for the final second. Similar to
Speech Commands, we composed two variations of the same dataset, (1) we utilized
musical instrument family as the class labels (11 classes) and (2) we used pitch as the
class labels (128 classes). Both variations of NSynth dataset included the same amount
of data, however, the number of classes varied.

30 Chapter 3. Methodology

• Dataset for Environmental Sound Classification (Environmental): consists of two
variants ESC-10 and ESC-50 provided by the authors. Similar to previous datasets de-
scribed, the two variants describe the number of classes. The ESC-50 dataset consists
of 2,000 5-seconds environmental recordings equally distributed across 50 classes (40
clips per class). Classes such as animal, natural and water, non-speech human, interior
and exterior sounds [108]. The ESC-10 is a subset of ESC-50 consisting of 400 record-
ings, making it the dataset with the least number of training data in our collection. Both
datasets are divided into 5 folds by the authors. In this work, we utilized the first 4 folds
for training and the last for testing.

3.4 CLAR Framework

Contrastive and supervised learning share the common goal of constructing representations
that distinguish samples for different tasks. The supervised approach focuses on distinguish-
ing samples from multiple classes without constraints on the latent representations. While,
contrastive learning constructs such representations between paired views from samples with
the constraint being that latent representations of negative views (from different samples) are
maximized and positive views (from same samples) are minimized. These two frameworks
have their own advantages and disadvantages. For instance, constrastive learning benefits from
larger batch sizes and longer training [109, 12]. However, the supervised approach is sim-
pler to optimize, hence, requires less training to achieve relative performance [12]. To improve
the performance of self-supervised contrastive learning, the authors combined the shared repre-
sentations from both self-supervised and supervised frameworks by performing self-supervised
pre-training followed by supervised fine-tuning on labeled examples [12, 65, 66, 67]. However,
this could result in problems such as catastrophic forgetting, especially in smaller networks
[68, 69, 70] and makes the training more difficult as there are two stages that would need to
be optimized. In this work, we abolish the fine-tuning step and integrate both contrastive and
supervised learning frameworks simultaneously during training:

L = LCL +LCE (3.2)

whereLCL is the contrastive loss andLCE is the Categorical Cross-Entropy (CE) loss of the
labeled samples. In CE loss, in cases where the labels for some of the samples within the mini-
batch are missing, then the CE loss will be set to zero. Alternatively, contrastive loss is always
applied as it is not dependent on the labels. A possible approach to guarantee labeled samples
within a mini-batch is to use stratified sampling, this is especially important when the labeled
data is substantially small portion of the whole dataset (e.g. 1% of the data is labeled). In our
analysis, we utilized random sampling because (1) datasets utilized are not large, especially
when compared with ImageNet and (2) we utilized very large batch size (1024). Using the
projection head, we apply the LCE loss on the last layer of the projection head and the LCL loss
on the layer preceding the last layer of the projection head (Figure 3.2).

3.5. Augmentations 31

Figure 3.2: Training pipeline. We start by applying augmentations directly to the audio signal
followed by either feeding the augmented audio signal or the spectrograms of the augmented
audio signal to the subsequent encoder. We feed the representations from the encoder to the
same projection head architecture across all approaches. However, we change the loss and the
the layer representation employed in the loss computation.

3.5 Augmentations
To investigate the impact of various data augmentations suitable for learning auditory represen-
tations, we deployed six distinct augmentations (Figure 3.3). Each augmentation was applied
directly to the audio signal. Augmentations that directly influence spectrograms were not in-
cluded [60] to ensure that we could make direct comparison of augmentations performance
both with the 1D and 2D models. In each iteration during training, each augmentation has a
hyper-parameter which is randomly sampled from a uniform distribution that result in either a
degree of data transformation or none at all. Introduced augmentations could be categorised as
either frequency or temporal transformations:

1. Frequency Transformations

(a) Pitch Shift (PS): randomly raises or lowers the pitch of the audio signal [110].
Based on experimental observation, we found the range of pitch shifts that main-
tained the overall coherency of the input audio was in the range [-15, 15] semitones.

(b) Noise Injection: mix the audio signal with random white, brown and pink noise. In
our implementation, the intensity of the noise signal was randomly selected based
on the strength of signal-to-noise ratio. We adopted two versions of this augmenta-
tion: (1) applied only white noise with varying degree of intensity (White Noise),
(2) applied either white, brown, or pink depending on an additional random param-
eter sampled from uniform distribution (Mixed Noise).

2. Temporal Transformations

(a) Fade in/out (FD): gradually increases/decreases the intensity of the audio in the
beginning/end of the audio signal. The degree of the fade was either linear, loga-
rithmic or exponential (applied with uniform probability of 1/3). The size of the

32 Chapter 3. Methodology

fade for either side of the audio signal could at maximum reach half of the audio
signal. The size of the fade was another random parameter picked for each sample.

(b) Time Masking (TM): given an audio signal, in this transformation we randomly
select a small segment of the full signal and set the signal values in that segment
to normal noise or a constant value. In our implementation, we not only randomly
selected the location of the masked segment but also we randomly selected the size
of the segment. The size of the masked segment was set to maximally be 1/8 of the
input signal.

(c) Time Shift (TS): randomly shifts the audio samples forwards or backwards. Sam-
ples that roll beyond the last position are re-introduced at the first position (rollover).
The degree and direction of the shifts were randomly selected for each audio. The
maximum degree that could be shifted was half of the audio signal, while, the min-
imum was when no shift applied to the signal.

(d) Time Stretching (TST): slows down or speeds up the audio sample (while keeping
the pitch unchanged). In this approach we transformed the signal by first comput-
ing the STFT of the signal, stretching it using a phase vocoder, and computing the
inverse STFT to reconstruct the time domain signal [110]. Following those trans-
formations, we down-sampled or cropped the signal to match the same number of
samples as the input signal. When the rate of stretching was greater than 1, the
signal was sped up. Otherwise when the rate of stretching was less than 1, then
the signal was slowed down. The rate of time stretching was randomized for each
audio with range values of [0.5, 1.5].

3.5. Augmentations 33

Figure 3.3: Raw audio with the subsequent mel-spectrogram for each audio augmentation
utilized in the paper. Each augmentation have a varying degree of the shown transformation
depending on random hyper parameters. Here an example of each augmentation is illustrated.

Chapter 4

Results

4.1 Overview
Although humans are proficient at perceiving and understanding sounds, making algorithms
perform the same task poses a challenge due to the wide range of variations in auditory features.
Applications of sound understanding range from surveillance [28] and music classification
[29, 30] to audio generation [31, 32] and deep-fake detection [33].

Achieving automated auditory perception requires the learning of effective representations.
As discussed in previous chapters, often prior work derive effective representations through
discriminative approaches [19, 20, 21, 22]. In other words, similar to supervised learning, the
model learns the mapping between the input signal to the class label. The underlying assump-
tion with such approach is that the latent representations carry effective representations for the
designed tasks. One fundamental problem with such learned representations is the potential
limitation to generalizability. First, those representations are only limited to availability of ex-
pensive and time consuming labeled data. Secondly, representations are skewed towards one
particular domain (e.g. speech, music, etc . . .). Therefore, in both cases, major fine-tuning to
the targeted training data would be required. Alternatively, recent self-supervised approaches
using contrastive learning in the latent space have been shown to learn efficient representations
that achieves state-of-the-art performance in images [12, 23, 24, 25, 26, 27] and videos [23].
However, it is still a major question on how we can achieve similar landmark on auditory data.

In this work, we build on SimCLR [12], a self-supervised framework for contrastive learn-
ing of visual representations. We show that similar framework could be adopted for learning
effective auditory representations. Moreover, with a simple modification, we are able to reduce
the training time and improve recognition performance.

4.2 Audio Data Augmentations for Contrastive Learning
Data augmentations have been widely adopted in audio [57, 58, 59, 60] and image [111, 112]
domains. Moreover, recently it has been shown that some sequences of augmentations in
image domain can offer a relatively better performance compared to other augmentations in
contrastive learning [12]. In this section, we investigate the impact of different augmentations
applied to the signal level on the quality of learned auditory representations.

34

4.2. Audio Data Augmentations for Contrastive Learning 35

To investigate the effect of individual auditory data augmentations and their sequential or-
dering, we perform comprehensive training of SimCLR framework on Speech Commands-10
dataset for 1000 epochs on all the proposed auditory augmentations (Section 3.5). Figure 4.1
shows top-1 test performance on both 1D and 2D variants of ResNet18. The diagonal line rep-
resents the performance of single augmentation, while other entries represent the performance
of paired augmentations. Each row indicates the first augmentation and each column shows the
second augmentation applied sequentially. The last column and row in each matrix represents
the averaged predictive performance of a specific augmentation. The last column depicts the
average when the augmentation was applied first, while the last row shows the average when
the corresponding augmentation was applied second. The bottom right element represents the
average of the whole matrix. Similar to [12], we found that multiple augmentations are re-
quired to learn efficient representations. In particular, with the 1D model, we observe that the
composition of fade in/out, time stretching and pitch shifting significantly are the top-3 aug-
mentations that improve the quality of representations. While on the 2D model, we observe
that fade in/out, time masking and time shifting are premier in improving the quality of the
auditory representations. On average the 1D variant of the model shows better performance
(1D: 68.6± 0.82; 2D: 67.0± 1.36), partially due time masking yielding the worse performance
when applied as the first augmentation during the training of the 2D model. Moreover, the 2D
variant of the model achieves the maximum recorded performance (89.3%).

Figure 4.1: Top-1 test performance on Speech Commands-10 for 1D (left matrix) and 2D
(right matrix) models trained for 1000 epochs. The diagonal line represents the performance
of single augmentation, while other entries represent the performance of paired augmentations.
Each row shows the first augmentation and column shows the second augmentation applied
sequentially.

36 Chapter 4. Results

Table 4.1: Accuracy of ResNet18 trained on various datasets using different augmentations.

Models Datasets

1D ECS-10 ECS-50 SC-10 SC-50 NSynth-11 NSynth-128

FD 12.5 3.3 67.7 16.1 25.1 52.2

FD + TST 52.1 2.9 84.2 24.2 34.6 70.3

FD + TST + PS 10.0 3.5 79.9 23.6 46.2 10.8

2D

FD 46.2 19.5 70.2 13.7 31.1 52.8

FD + TM 68.7 33.7 89.3 29.1 48.8 84.1

FD + TM + TS 62.5 40.4 84.6 25.0 48.6 80.4

4.3 Raw Signal versus Time-Frequency Features
Time-frequency audio features have been used extensively in the literature, as algorithms
trained on such features have consistently demonstrated better performance compared to al-
gorithms trained on raw audio signals [21, 113, 22, 107]. In this section, we extend on this
concept by investigating the efficiency of representations learned from raw signal and time-
frequency features using contrastive learning.

Table 4.1 shows the accuracy of evaluation head attached to the frozen encoder trained
with augmentations that yielded the best performance from section 4.2. We found that time-
frequency features compared to raw audio signal consistently improve the learned representa-
tions. In particular, fade in/out and time masking using time-frequency features outperforms
all other methods. We also found that increasing the number of augmentations does not nec-
essary improve the learned representations. This was observed when predictive performance
degraded after appending time-stretching augmentation to fade in/out and time masking.

4.4 CLAR versus Supervised & Self-Supervised
In this section, we utilize augmentations that yielded the best performance on SC-10 from
section 4.3 to investigate the efficiency of CLAR when compared with supervised and self-
supervised methods. We utilize SC-10 as the dataset of choice and investigate both the pre-
dictive performance of the evaluation head (Section 3.2 for more explanation) every 10 epochs
for a maximum of 1000 epochs. This would not only shed light on the final performance but
also the speed at which the methods reach such performance. Moreover, as CLAR is capable
of semi-supervised training, we test its capability by training models on 100%, 20%, 10% and
1% labeled data. For the self-supervised simCLR method we use no labeled data, hence, the
performance would be the same across the board.

4.4. CLAR versus Supervised & Self-Supervised 37

Table 4.2: Accuracy of ResNet18 trained for 1000 epochs on Speech Command-10 dataset
with incrementally less labels. During evaluation phase, we trained the evaluation head on all
the labeled data with the frozen encoder.

Method Type Labeled Data Percentage

100% 20% 10% 1%

Cross-Entropy Supervised 94.9 86.4 68.4 28.6

SupCon Supervised 96.0 87.9 82.1 26.6

SimCLR Self-supervised (Unsupervised) 84.8

CLAR Semi-Supervised 96.1 90.5 89.1 77.9

4.4.1 CLAR improves Learned Representations
Table 4.2 shows the top-1 accuracy of models trained using various methods while changing the
percentage of labeled data. We found that the representations of the encoder trained with the
CLAR method outperforms the representations learned using supervised and self-supervised
methods when trained over the same number of epochs. When trained on 100% of the labeled
data, CLAR achieves 96.1%, followed by SupCon [114] with 96.0% and Cross-Entropy with
94.9%. Furthermore, we show that this trend continues as we decrease the labeled data. That
is, while the supervised methods loses 65% of the performance as we decrease the labeled
data from 100% to 1%, CLAR decreases by only 19%. These results show that CLAR indeed
combines both supervised and self-supervised methods to draw more efficient representations.
Lastly, we found that when we decrease the amount of labeled data to only 1%, the perfor-
mance of CLAR’s learned representation degrades compared to the self-supervised method.
This could be the result of overfitting more to the labeled data resulting in less efficient repre-
sentations.

4.4.2 CLAR improves Speed of Convergence
Figure 4.2 shows the top-1 test performance of SC-10 dataset computed every 10-epochs by
training an evaluation head attached to a frozen encoder over 1000 epochs. We found that
the CLAR method not only improves the representations in the encoder but also improves the
speed at which those representation are learned compared to the self-supervised approach. In
particular, when we provide 100% of the labeled data, CLAR shows not only better predictive
performance compared to supervised and self-supervised method but also show better training
speed than self-supervised. As we decrease the amount of labeled data, this trend continues
while the gap between the supervised method and CLAR test performance increases. These
results suggest that both the self-supervised and supervised training tasks indeed share common
representations that improves latent representations in the encoder. Moreover, the training
algorithm optimize for the LCE loss first followed by gradual slow optimization of the LCL

38 Chapter 4. Results

loss.

Figure 4.2: Top-1 test performance on Speech Commands-10 computed every 10-epochs by
training an evaluation head attached to a frozen encoder over 1000 epochs. Each sub-figure
represents the top-1 test performance on varying percentage of labeled data.

Chapter 5

Discussion & Conclusion

5.1 Conclusion
There has been growing interest in self-supervised learning to learn efficient representations
that can be used for down-stream tasks. Recent methods has been successful in learning rich
visual representations by leveraging the inherent structure of unlabeled images. However, it is
still unclear whether we could use a similar self-supervised approach to learn superior auditory
representations. In this thesis, we demonstrated the success of contrastive learning in earning
efficient auditory representations. We performed extensive and comprehensive experiments on
various design choices revealed the effectiveness of our proposed framework (CLAR) in terms
of recognition performance as well as reduced training time in comparison with supervised and
self-supervised methods. With our experiments, we (1) introduced and evaluated the impact of
various auditory data augmentations on predictive performance, (2) showed that training with
time-frequency audio features substantially improves the quality of the learned representations
compared to raw signals, and (3) demonstrated that simultaneous training with both supervised
and contrastive losses improves the learned representations compared to self-supervised and
supervised training. Together, our results depicts a promising path towards automated audio
understanding.

5.2 Limitations
The limitations of the thesis originates predominately from high demand of resources required
to pre-trained these models:

1. Batch & model size: Both the batch-size and model-size are hyper-parameters that di-
rectly effect each other. This is due to hardware limitations in how much memory they
have. As discussed in earlier chapters CLAR requires large batch-sizes due to its depen-
dency on negative samples. In turn, in this thesis we were not able to experiment with
bigger models. As we would not be able to compare the performance directly since the
batch-size would not be controlled for. During the writing of this thesis, various recent
frameworks were proposed to substantially alleviate such limitation, such as MoCov2
[99], SimSiam [55], BYOL [53], and Barlow Twins [115].

39

40 Chapter 5. Discussion & Conclusion

2. Generalizability after fine-tuning: While CLAR achieved top performance in-term
of the quality of representations. It raises an interesting question: does achieving bet-
ter performance with the linear classifier correlates with better generalizability to other
datasets? That is, if we were to pre-train using self-supervised, and supervised methods
on a speech dataset, would we observe similar margins in performance between these
methods when fine-tuning on other dataset? Although this question might seem trivial,
the answer is definitely not. As we can assume that the best achieving model on the
speech dataset might’ve learned more than necessary for that one domain, hence can
result in worse performance when fine-tuned on another dataset.

5.2.1 Applications
Learning abstract auditory representations using self-supervised learning has various down-
stream applications. As these representations can make the process of learning tasks for more
specialized applications substantially easier. Applications of sound understanding can range
from surveillance [28] and music classification [29, 30] to audio generation [31, 32] and deep-
fake detection [33]. Moreover, similar to how models for audio recognition benefit from pre-
training on image dataset, we hypothesize that these audio models might be able to generalize
to vast range of problems that are in the intersection of signal processing and deep learning
such as medical tools [116, 117].

5.3 Future Research
In addition to resolving the limitations described earlier, the current work could substantially
benefit from investigating the quality of representations from models that can encapsulate tem-
poral dynamics such as Convolutional Recurrent Neural Network [29], or Transformers [118].
These dynamics might not improve the quality of auditory representations drastically but would
considerably advance future research in more challenging data, such as videos. Videos are diffi-
cult to work with because they are both spatially and temporally rich, hence finding entangling
representations would be greatly more challenging.

Bibliography

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale im-
age recognition,” arXiv preprint arXiv:1409.1556, 2014.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115,
no. 3, pp. 211–252, 2015.

[3] C. Olah, A. Mordvintsev, and L. Schubert, “Feature visualization,” Distill, 2017.
https://distill.pub/2017/feature-visualization.

[4] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for advanced re-
search),”

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
2015.

[6] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity
natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[7] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discrimina-
tive unsupervised feature learning with exemplar convolutional neural networks,” 2015.

[8] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by pre-
dicting image rotations,” 2018.

[9] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by
context prediction,” 2016.

[10] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via non-
parametric instance discrimination,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3733–3742, 2018.

[11] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised
visual representation learning,” 2020.

[12] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive
learning of visual representations,” 2020.

41

42 BIBLIOGRAPHY

[13] L. Zaadnoordijk, T. R. Besold, and R. Cusack, “The next big thing(s) in unsupervised
machine learning: Five lessons from infant learning,” 2020.

[14] T. Serre, A. Oliva, and T. Poggio, “A feedforward architecture accounts for rapid catego-
rization,” Proceedings of the national academy of sciences, vol. 104, no. 15, pp. 6424–
6429, 2007.

[15] J. J. DiCarlo, D. Zoccolan, and N. C. Rust, “How does the brain solve visual object
recognition?,” Neuron, vol. 73, no. 3, pp. 415–434, 2012.

[16] D. L. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo,
“Performance-optimized hierarchical models predict neural responses in higher visual
cortex,” Proceedings of the national academy of sciences, vol. 111, no. 23, pp. 8619–
8624, 2014.

[17] R. Epstein and N. Kanwisher, “A cortical representation the local visual environment,”
Nature, vol. 392, pp. 598–601, apr 1998.

[18] R. Epstein, A. Harris, D. Stanley, and N. Kanwisher, “The parahippocampal place area:
Recognition, navigation, or encoding?,” Neuron, vol. 23, no. 1, pp. 115–125, 1999.

[19] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le,
“Specaugment: A simple data augmentation method for automatic speech recognition,”
arXiv preprint arXiv:1904.08779, 2019.

[20] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal,
D. Platt, R. A. Saurous, B. Seybold, et al., “Cnn architectures for large-scale audio
classification,” in 2017 ieee international conference on acoustics, speech and signal
processing (icassp), pp. 131–135, IEEE, 2017.

[21] Y. Tokozume and T. Harada, “Learning environmental sounds with end-to-end convo-
lutional neural network,” in 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2721–2725, IEEE, 2017.

[22] A. Guzhov, F. Raue, J. Hees, and A. Dengel, “Esresnet: Environmental sound classifi-
cation based on visual domain models,” ArXiv, vol. abs/2004.07301, 2020.

[23] R. Qian, T. Meng, B. Gong, M.-H. Yang, H. Wang, S. Belongie, and Y. Cui, “Spatiotem-
poral contrastive video representation learning,” 2020.

[24] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representations by maximiz-
ing mutual information across views,” in Advances in Neural Information Processing
Systems, pp. 15535–15545, 2019.

[25] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive
coding,” arXiv preprint arXiv:1807.03748, 2018.

[26] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discriminative unsu-
pervised feature learning with convolutional neural networks,” in Advances in neural
information processing systems, pp. 766–774, 2014.

BIBLIOGRAPHY 43

[27] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant
mapping,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2, pp. 1735–1742, IEEE, 2006.

[28] R. Radhakrishnan, A. Divakaran, and A. Smaragdis, “Audio analysis for surveillance
applications,” in IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, 2005., pp. 158–161, IEEE, 2005.

[29] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional recurrent neural networks
for music classification,” in 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2392–2396, IEEE, 2017.

[30] K. M. Ibrahim, J. Royo-Letelier, E. V. Epure, G. Peeters, and G. Richard, “Audio-based
auto-tagging with contextual tags for music,” in ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 16–20, 2020.

[31] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and A. Roberts, “GAN-
Synth: Adversarial neural audio synthesis,” in International Conference on Learning
Representations, 2019.

[32] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthesis,” 2019.

[33] T. Mittal, U. Bhattacharya, R. Chandra, A. Bera, and D. Manocha, “Emotions don’t lie:
A deepfake detection method using audio-visual affective cues,” 2020.

[34] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new
perspectives,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 8, pp. 1798–1828, 2013.

[35] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer features of
a deep network,” University of Montreal, vol. 1341, no. 3, p. 1, 2009.

[36] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional net-
works: Visualising image classification models and saliency maps,” arXiv preprint
arXiv:1312.6034, 2013.

[37] A. Mahendran and A. Vedaldi, “Understanding deep image representations by inverting
them,” in Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 5188–5196, 2015.

[38] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Synthesizing the pre-
ferred inputs for neurons in neural networks via deep generator networks,” Advances in
neural information processing systems, vol. 29, pp. 3387–3395, 2016.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[40] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,” 2014.

44 BIBLIOGRAPHY

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” 2014.

[42] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected con-
volutional networks,” 2018.

[43] Y. Bengio, Y. LeCun, et al., “Scaling learning algorithms towards ai,” Large-scale kernel
machines, vol. 34, no. 5, pp. 1–41, 2007.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[45] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016.

[46] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-language knowledge transfer
using multilingual deep neural network with shared hidden layers,” in 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pp. 7304–7308, IEEE,
2013.

[47] H. Chang, J. Han, C. Zhong, A. M. Snijders, and J. H. Mao, “Unsupervised transfer
learning via multi-scale convolutional sparse coding for biomedical applications,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, pp. 1182–
1194, 2018.

[48] D. George, H. Shen, and E. Huerta, “Deep transfer learning: A new deep learning glitch
classification method for advanced ligo,” arXiv preprint arXiv:1706.07446, 2017.

[49] G. Gwardys and D. M. Grzywczak, “Deep image features in music information re-
trieval,” International Journal of Electronics and Telecommunications, vol. 60, no. 4,
pp. 321–326, 2014.

[50] S. Becker and G. E. Hinton, “Self-organizing neural network that discovers surfaces in
random-dot stereograms,” Nature, vol. 355, no. 6356, pp. 161–163, 1992.

[51] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsupervised learning of invari-
ances,” Neural computation, vol. 14, no. 4, pp. 715–770, 2002.

[52] H. Mobahi, R. Collobert, and J. Weston, “Deep learning from temporal coherence in
video,” in Proceedings of the 26th Annual International Conference on Machine Learn-
ing, pp. 737–744, 2009.

[53] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch,
B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko,
“Bootstrap your own latent: A new approach to self-supervised learning,” 2020.

[54] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsupervised
learning of visual features by contrasting cluster assignments,” 2021.

BIBLIOGRAPHY 45

[55] X. Chen and K. He, “Exploring simple siamese representation learning,” 2020.

[56] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in European confer-
ence on computer vision, pp. 649–666, Springer, 2016.

[57] B. McFee, E. J. Humphrey, and J. P. Bello, “A software framework for musical data
augmentation.,” in ISMIR, vol. 2015, pp. 248–254, 2015.

[58] J. Schlüter and T. Grill, “Exploring data augmentation for improved singing voice de-
tection with neural networks.,” in ISMIR, pp. 121–126, 2015.

[59] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for speech recog-
nition,” in Sixteenth Annual Conference of the International Speech Communication
Association, 2015.

[60] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le,
“Specaugment: A simple data augmentation method for automatic speech recognition,”
Interspeech 2019, Sep 2019.

[61] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He, “Accurate, large minibatch SGD: training imagenet in 1 hour,” CoRR,
vol. abs/1706.02677, 2017.

[62] J. Wiens and E. S. Shenoy, “Machine learning for healthcare: on the verge of a major
shift in healthcare epidemiology,” Clinical Infectious Diseases, vol. 66, no. 1, pp. 149–
153, 2018.

[63] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-driving cars,” arXiv
preprint arXiv:1604.07316, 2016.

[64] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning,” CoRR,
vol. abs/1708.07860, 2017.

[65] O. J. Hénaff, A. Srinivas, J. D. Fauw, A. Razavi, C. Doersch, S. M. A. Eslami, and
A. van den Oord, “Data-efficient image recognition with contrastive predictive coding,”
2019.

[66] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised
visual representation learning,” 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun 2020.

[67] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun, and S. Fidler,
“Skip-thought vectors,” 2015.

[68] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks:
The sequential learning problem,” in Psychology of learning and motivation, vol. 24,
pp. 109–165, Elsevier, 1989.

46 BIBLIOGRAPHY

[69] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empirical in-
vestigation of catastrophic forgetting in gradient-based neural networks,” arXiv preprint
arXiv:1312.6211, 2013.

[70] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern anal-
ysis and machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017.

[71] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage
architecture for object recognition?,” in 2009 IEEE 12th International Conference on
Computer Vision, pp. 2146–2153, 2009.

[72] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural net-
work acoustic models,” in Proc. icml, vol. 30, p. 3, Citeseer, 2013.

[73] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in Neural Information Processing Systems
(F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), vol. 25, Curran
Associates, Inc., 2012.

[74] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” 2014.

[75] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale im-
age recognition,” 2015.

[76] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,”
2016.

[77] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks,” 2017.

[78] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected con-
volutional networks,” 2018.

[79] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, ICML’15, p. 448–456,
JMLR.org, 2015.

[80] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[81] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, (New York, NY, USA), p. 1096–1103,
Association for Computing Machinery, 2008.

[82] A. Makhzani and B. Frey, “k-sparse autoencoders,” 2014.

BIBLIOGRAPHY 47

[83] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders:
Explicit invariance during feature extraction,” in Icml, 2011.

[84] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2014.

[85] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational
framework,” 2016.

[86] A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete representation learn-
ing,” arXiv preprint arXiv:1711.00937, 2017.

[87] A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse high-fidelity images
with vq-vae-2,” 2019.

[88] K. Gregor, G. Papamakarios, F. Besse, L. Buesing, and T. Weber, “Temporal difference
variational auto-encoder,” 2019.

[89] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4401–4410, 2019.

[90] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” arXiv preprint
arXiv:1605.09782, 2016.

[91] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and
improving the image quality of stylegan,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8110–8119, 2020.

[92] M. Bińkowski, J. Donahue, S. Dieleman, A. Clark, E. Elsen, N. Casagrande, L. C.
Cobo, and K. Simonyan, “High fidelity speech synthesis with adversarial networks,”
arXiv preprint arXiv:1909.11646, 2019.

[93] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthesis,” arXiv preprint
arXiv:1802.04208, 2018.

[94] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Infor-
mation Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, eds.), pp. 2672–2680, Curran Associates, Inc., 2014.

[95] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving
jigsaw puzzles,” 2017.

[96] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
2015.

[97] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive pre-
dictive coding,” 2019.

48 BIBLIOGRAPHY

[98] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural networks
with cutout,” 2017.

[99] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with momentum con-
trastive learning,” 2020.

[100] J. Allen, “Short term spectral analysis, synthesis, and modification by discrete fourier
transform,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 25,
no. 3, pp. 235–238, 1977.

[101] K. W. Cheuk, H. Anderson, K. Agres, and D. Herremans, “nnaudio: An on-the-fly gpu
audio to spectrogram conversion toolbox using 1d convolutional neural networks,” IEEE
Access, 2020.

[102] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[103] A. Kolesnikov, X. Zhai, and L. Beyer, “Revisiting self-supervised visual representation
learning,” 2019.

[104] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of convolutional networks,”
arXiv preprint arXiv:1708.03888, 2017.

[105] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,”
arXiv preprint arXiv:1608.03983, 2016.

[106] P. Warden, “Speech commands: A dataset for limited-vocabulary speech recognition,”
2018.

[107] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck, K. Simonyan, and M. Norouzi,
“Neural audio synthesis of musical notes with wavenet autoencoders,” 2017.

[108] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” 2015.

[109] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He, “Accurate, large minibatch sgd: Training imagenet in 1 hour,” 2018.

[110] B. McFee, V. Lostanlen, A. Metsai, M. McVicar, S. Balke, C. Thomé, C. Raffel, F. Za-
lkow, A. Malek, Dana, K. Lee, O. Nieto, J. Mason, D. Ellis, E. Battenberg, S. Sey-
farth, R. Yamamoto, K. Choi, viktorandreevichmorozov, J. Moore, R. Bittner, S. Hidaka,
Z. Wei, nullmightybofo, D. Hereñú, F.-R. Stöter, P. Friesch, A. Weiss, M. Vollrath, and
T. Kim, “librosa/librosa: 0.8.0,” July 2020.

[111] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in neural information processing systems,
pp. 1097–1105, 2012.

BIBLIOGRAPHY 49

[112] O. J. Hénaff, A. Srinivas, J. De Fauw, A. Razavi, C. Doersch, S. Eslami, and A. v. d.
Oord, “Data-efficient image recognition with contrastive predictive coding,” arXiv
preprint arXiv:1905.09272, 2019.

[113] Y. Tokozume, Y. Ushiku, and T. Harada, “Learning from between-class examples for
deep sound recognition,” arXiv preprint arXiv:1711.10282, 2017.

[114] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and
D. Krishnan, “Supervised contrastive learning,” 2020.

[115] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins: Self-supervised
learning via redundancy reduction,” 2021.

[116] L. Brunese, F. Martinelli, F. Mercaldo, and A. Santone, “Deep learning for heart disease
detection through cardiac sounds,” Procedia Computer Science, vol. 176, pp. 2202–
2211, 2020. Knowledge-Based and Intelligent Information Engineering Systems: Pro-
ceedings of the 24th International Conference KES2020.

[117] A. Raza, A. Mehmood, S. Ullah, M. Ahmad, G. S. Choi, and B.-W. On, “Heartbeat
sound signal classification using deep learning,” Sensors, vol. 19, no. 21, p. 4819, 2019.

[118] S.-w. Yang, A. T. Liu, and H.-y. Lee, “Understanding self-attention of self-supervised
audio transformers,” arXiv preprint arXiv:2006.03265, 2020.

Curriculum Vitae

Name: Haider Al-Tahan

Education: Honour B.Sc. in Computer Science and Psychology
2014-2019
York University
Toronto, Ontario

Honours and NSERC USRA
Awards: 2019

Ontario Graduate Scholarship
2020

Graduate Student Innovation Scholars
2021

Related Work Teaching Assistant
Experience: The University of Western Ontario

2019 - Present

Publications:

1. Al-Tahan, H., Mohsenzadeh, Y. (2021), Reconstructing feedback representations in the
ventral visual pathway with a generative adversarial autoencoder. PLOS Computational
Biology 17(3): e1008775. https://doi.org/10.1371/journal.pcbi.1008775

2. Al-Tahan, H., Mohsenzadeh, Y. (2021), CLAR: Contrastive Learning of Auditory Rep-
resentations. Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics, PMLR 130:2530-2538. http://proceedings.mlr.press/v130/al-tahan21a/
al-tahan21a.pdf

50

https://doi.org/10.1371/journal.pcbi.1008775
http://proceedings.mlr.press/v130/al-tahan21a/al-tahan21a.pdf
http://proceedings.mlr.press/v130/al-tahan21a/al-tahan21a.pdf

	Contrastive Learning of Auditory Representations
	Recommended Citation

	Abstract
	Lay Summary
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	What makes a representation good?
	Multiple Levels of Abstractions
	Learning Criteria
	Shared Representations
	Priors for Representation Learning

	Contributions
	Thesis Outline

	Background
	Learning Algorithms
	Supervised Learning
	Unsupervised Learning
	Semi-Supervised Learning

	Neural Network Architectures
	Perceptron
	Multi-layer Perceptron

	Activation Functions
	Convolutional Neural Networks (CNNs)
	ResNet Architecture

	Batch Normalization

	Related Works
	Representation Learning
	Generative Models for Representation Learning

	Discriminative Models for Representation Learning
	Augmentations
	Patches
	Contrastive Learning

	Methodology
	Audio Pre-porcessing
	Training/Evaluation Protocol
	Datasets
	CLAR Framework
	Augmentations

	Results
	Overview
	Audio Data Augmentations for Contrastive Learning
	Raw Signal versus Time-Frequency Features
	CLAR versus Supervised & Self-Supervised
	CLAR improves Learned Representations
	CLAR improves Speed of Convergence

	Discussion & Conclusion
	Conclusion
	Limitations
	Applications

	Future Research

	Bibliography
	Curriculum Vitae

