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ABSTRACT
This thesis aims to evaluate the utility o f dynamic contrast enhanced computed 

tomography (DCE-CT) imaging in conjunction with kinetic analysis (CT Perfusion) 
for the investigation o f fibrotic liver disease. Monte Carlo simulations and sensitivity 

analysis o f the kinetic model were used to characterize the bias, variance and 

covariance o f perfusion parameters calculated with CT Perfusion. DCE-CT scans 

were performed on rats treated with carbon tetrachloride (CCI4) for 8 weeks to induce 

liver fibrosis, as well as sham injected control rats. Perfusion parameters were then 

derived from the DCE-CT scans using CT Perfusion. CCI4 treated rats showed 

significant changes in total hepatic blood flow, arterial hepatic blood flow, blood 

volume, and arterial fraction o f blood flow. Histological samples were collected at 
various stages o f  treatment and stained with methyl blue. Digital image analysis was 

used to quantify fibrosis content o f stained tissue. A strong correlation was found 

between fibrosis content and arterial fraction o f blood flow (r=.82 p<.00001).

Keywords: Dynamic Contrast Enhance Computed Tomography, DCE-CT, CT 

Perfusion, Hepatic perfusion, Liver disease, Hepatic fibrosis, Cirrhosis, Hepatic blood 
flow
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CHAPTER 1

INTRODUCTION AND BACKGROUND TO HEPATIC FIBROSIS AND CHIRROSIS

1.1 INTRODUCTION TO THE LIVER

The liver is a vital organ that has many functions within the body. The primary 

functions include detoxification synthesis and production o f substrates necessary for 

metabolism o f lipids and carbohydrates. Situated in the upper abdomen behind the 

right ribcage and below the diaphragm, the liver blood flow is supplied by two 

sources (See Figure 1.1). The portal vein supplies blood from the spleen, gut and other 

mesentery, and accounts for approximately 75% of total liver blood flow. The 

remaining 25% o f liver blood flow is supplied from the hepatic artery ’. Owing to the 

higher oxygen content o f arterial blood, oxygen delivery to the liver is about equally 

derived from the portal vein and hepatic artery.
The liver plays an essential role in metabolism and has numerous roles in the 

body, including glycogen storage, decomposition o f red blood cells, plasma protein 

synthesis, hormone production, and detoxification. Unlike other organs, the liver 

benefits from a substantial regenerative capability. If as much as fifty percent o f its 

overall mass is surgically removed or damaged by intoxication, the liver is still 
capable o f complete regeneration . This regenerative ability makes the liver 

extremely resilient to toxins and disease, however, chronic liver injury over prolonged 

periods will result in the replacement o f normal healthy liver tissue with non­
functioning scar tissue (fibrosis) and reduced liver function. This scarring disrupts the
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normal liver architecture, leading to a resistance to blood flow through the liver. 
When the scarring progresses far enough that it encapsulates regenerating nodules o f  

liver parenchyma, the condition is referred to as cirrhosis. Cirrhosis is a potentially 

life-threatening condition with serious complications. The following section describes 

causes o f cirrhosis and its complications

1.1.1 Liver Disease
The Canadian Liver Foundation estimates that 3 million Canadians, including 

men, women and children, are currently living with some form o f liver diseases. The 

most common causes o f liver disease in Canada are listed below:
•  Viral infections such as hepatitis B, C and D virus (HBV, HCV, HDV)
• Non-alcoholic fatty liver disease

• Chronic alcoholism
• Genetic disorders such as hemochromatosis and Wilson disease
•  Autoimmune disorders such as primary biliary cirrhosis or primary sclerosing 

cholangitis
Treatment o f  liver disease can be labor intensive and costly 3. It is estimated that the 

annual cost to treat HCV infected intravenous drugs users alone, in Canada, is 
approximately $176,000,000. 4

No matter the etiology, the liver has a common innate wound healing response 

to chronic liver injury characterized by fibrosis o f the liver. If the cause o f the insult 
cannot be removed, fibrosis will progress to cirrhosis and eventually liver failure and
death.
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Normally blood flow from the intestines and spleen is pumped through the 

portal vein. The altered vasculature o f a cirrhotic liver presents a large resistance to 

blood flow. This resistance is measured as the pressure gradient between and the 

portal vein and the inferior vena cava, also known as the hepatic venous pressure 

gradient (HVPG). In a normal liver the HVPG is less than 5mmHg. A HVPG greater 

than lOmmHg is known as portal hypertension 5. The major complications o f portal 
hypertension are ascites, gastrointestinal hemorrhage and renal dysfunction.

Ascites is the accumulation o f fluid in the peritoneal cavity, driven by 

increased capillary hydrostatic pressure within the splanchnic bed as a result o f portal 
hypertension. Ascites carries a risk o f spontaneous bacterial peritonitis and sepsis. 
Diuretics can be used to control the accumulation o f fluids but as liver disease 

progresses this becomes more difficult6. Ascites and the abnormal handling o f sodium 

in combination with altered systemic circulation leads to hepatorenal disease 6. Liver 

transplant is the only long-term solution to hepatorenal disease, after which kidney 

function returns to normal or near normal leve ls.7
When the HVPG is greater than lOmmHg, blood flow though the hepatic 

portal venous system is redirected from the liver into areas with lower venous 

pressures. This means that collateral circulation develops in the lower esophagus, 
abdominal wall, stomach and rectum. The small, thin walled vessels become 

distended and are at risk o f rupture, causing the patient to bleed internally.
Portal hypertension and its complications are the leading cause o f morbidity

oand mortality in patients with cirrhosis.
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Hepatocellular carcinoma (HCC) is also a common complication for patients 

with liver disease. It has been estimated that 80% o f all HCC occurs in a cirrhotic 
background9. The annual risk o f developing HCC for patients with HCV infection has 

been estimated to be 3-8%9.

1.2 MICROSTRUCTURE OF THE LIVER
The hepatocyte is the primary parenchymal cell o f the liver, making up 80% of  

the total hepatic cell population. They are arranged in unicellular plates, sometimes 

referred to as Remak’s plates. These plates branch and anastamose with each other 

forming a maze like arrangement o f partitions. Between the plates o f hepatocytes are 

the liver sinusoids. Liver sinusoids can be regarded as unique capillaries. Unlike 

typical capillaries, the sinusoids have a discontinuous endothelial layer and lack a 

basement membrane 10. This endothelial layer is made up o f specialized liver 

sinusoidal endothelial cells (LSEC), which have groups o f fenestrations (pores) 
measuring 150-175 nm in diameter ". These fenestrations act as a dynamic filter for 

fluids, solutes and particles, allowing only particles smaller than the fenestrae to reach 

the parenchymal cell l0. Between the endothelial layer and the hepatocytes is the 

space o f  Disse. This space is primarily filled with hepatocyte microvilli as can be seen 

in Figure 1.2, which allows proteins and other components o f plasma to be absorbed 

by the hepatocytes. The hepatic stellate cell (HSC), also known as the Ito cell, 
lipocyte or fat-storing cells, resides within the space o f Disse. The HSC is the major 

cell type involved in the pathogenesis o f liver fibrosis, as is discussed in further detail 
in section 1.3. Kupffer cells are resident liver macrophages within the sinusoidal
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space where they can phagocytose and destroy foreign material such as bacteria.
Blood flow at the microscopic level originates at the portal triads. The portal 

triads consist o f an arrangement o f branches from the hepatic artery, portal vein, and 

bile duct, as well as lymphatic vessels. Blood supplied by the hepatic artery and portal 
vein passes through the sinusoids and empties into the central veins, which then 

coalesce into the hepatic veins. Figure 1.3 shows a representation o f the microvascular 

structure o f  the liver.

1.3 HEPATIC FIBROSIS AND VASCULAR REMODELING

A great deal o f progress has recently been made in understanding the 

pathogenesis o f  hepatic fibrosis. Fibrosis, or scarring o f the liver, is a wound-healing 

response that engages a range o f cell types and mediators to encapsulate injury. 
Although acute injury will activate mechanisms o f fibrogenesis, the sustained signals 

associated with chronic liver disease caused by infection, drugs, metabolic disorders, 
or immune attack are required for significant fibrosis to accumulate. Under certain 

circumstances a normal, or mildly fibrotic liver may rapidly progress to cirrhosis over 

several weeks or months. For example, patients with HCV receiving 

immunosuppressant drugs after liver transplant can have high viral load resulting in a 

rapid progression to cirrhosis . A similar situation exists in patients with human 

immunodeficiency virus (HIV)/HCV co-infection l3.
The hepatic stellate cell is the primary cell in the liver responsible for excess 

collagen synthesis during hepatic fibrosis14. Upon injurious stimuli the HSC
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undergoes ‘activation’ which is a complex transformation to a proliferative, 
contractile, myofibroblast-like cell. In reviewing the mechanisms o f hepatic fibrosis, 
Firedman S. defined three stages o f  fibrosis based on the activation o f stellate cells 15. 
These stages are initiation, perpetuation, and resolution. Initiating stimuli include 

paracrine signals such as reactive oxygen species from apoptotic hepatocytes, injured 

cholangiocytes, macrophages, stellate cells, and inflammatory cells 16 17. Early injury 

o f LSECs stimulates the production o f cellular fibronectin, as well as platelet derived 

growth factor (PDGF), which has an activating effect on stellate cells18. Apoptosis has 

also been implicated in the fibrogentic response19. Apoptotic proteins released from 

hepatocytes are fibrogenic towards cultured stellate cells20,21.
These initial parcrine signaling pathways result in changes in gene expression 

and phenotype allowing the now ‘activated’ HSC to respond to new stimuli leading to 

perpetuation. The induction o f type I collagen gene expression causes the HSC to 

become directly fibrogenic . In addition, PDGF and it’s receptor have been shown 

to be rapidly induced in culture and in vivo 24 25, resulting in proliferation as well as 

chemotaxis 26. The expression o f PDGF by LSECs along with the mitogenic effect of  

PDGF on HSCs results in an enhanced coverage o f sinusoids by HSCs in vivo .
Contractility is another key feature o f the activated HSC. HSC’s have been 

demonstrated to have contractile capability both in-vivo and in-vitro . This 

contractile capability is mediated primarily by endothelian-1 (ET-1) and inhibited by 

nitric oxide (NO) produced by LSECs 29 30. During liver injury, LSEC show impaired 

generation o f  NO resulting in vasoconstriction .
The combination o f proliferated HSCs covering the sinusoidal lumen, and their
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subsequent contraction from reduced NO production in LSECs, results in a 

constricted sinusoidal space. This alteration in the normal vascular structure, in 

combination with increased deposition o f collagen, contributes to increased 

intrahepatic sinusoidal pressure, portal hypertension, and it’s subsequent
• • 77 99complications
The activated HSC is not simply a fibrogenic cell, it also plays an important role 

in vascular structural changes and angiogenesis in hepatic fibrosis. Angiogenesis is 

the dynamic formation o f new vessels from pre-existing vessels 33,34. Angiogenic 

processes occur throughout the body and are associated with tissue damage, wound 

healing and vascular remodeling. Thus, it should come as no surprise that 
angiogenesis occurs concurrently with hepatic fibrosis. Stimulation o f angiogenesis 

during hepatic fibrosis is thought to come from several possible sources. Vascular 

endothelial growth factor (VEGF) is produced by hepatocytes in response to hypoxia
i f  'i f -as well as an autocrine signaling loop within LSECs . Activated HSCs have

• • ^ 7  "20also been shown to express angiogenic factors such as VEGF and angiopoietin-1 

HSCs and LSECs play a unique dual role in both fibrogenesis and angiogenesis as 
part o f  a total wound healing response. As a result anti-angiogenic drugs originally 

designed for cancer treatments have seen renewed interest for the treatment o f hepatic 

fibrosis and it’s complications. The inhibition o f the PDGF signaling pathway by the 

receptor tyrosine-kinase inhibitor Imatinib was capable o f  reducing portal pressure in 

an animal model o f  cirrhosis . Reduced portal pressure was primarily the result o f 

reduced sinusoidal coverage by HSCs, thus resulting in reduced constriction o f the 

sinusoids. Although portal pressure was reduced no reduction in fibrogenesis was
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observed 27 39.
The resolution phase is still not completely understood. With the removal o f  the 

underlying cause o f liver injury, activated HSCs may revert back to a quiescent state 

or be cleared through an apoptotic pathway30. Reversibility o f  fibrosis and cirrhosis is 

still a debated topic but recently there has been increasing evidence that fibrosis and 

cirrhosis can resolve to at least some extent 40 41 42.
A strong motivation for the use o f perfusion imaging in hepatic liver disease is 

evident. The combination o f vascular remodeling and the role o f angiogenesis in the 

development o f cirrhosis mark it as a disease with significant vascular consequences. 
One direct consequence o f vascular changes in liver cirrhosis is portal hypertension. 
Portal hypertension is a major complication o f liver cirrhosis representing a primary 

cause o f  death or liver transplant 5 43. Currently the only measure o f portal 
hypertension is the HVPG. This technique is highly invasive and impractical under 

normal circumstances however, it is also currently the best predictor o f complications 

from cirrhosis and the development o f HCC 43 44. Non-invasive dynamic contrast 
enhanced magnetic resonance (DCE-MR) perfusion measurements have already been 

correlated to the HVPG in cirrhotic patients 45. Further research into perfusion 

imaging techniques may provide useful non-invasive biomarkers o f fibrotic liver 

disease. These biomarkers could be capable o f predicting disease outcome and aid in 

patient treatment planning.

1.4 HEPATIC CIRCULATION AND BLOOD FLOW REGULATION
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Roughly 25% o f blood flow and 50% o f oxygen is delivered to the liver from 

the hepatic artery. The remaining 75% o f blood flow and 50% o f oxygen is supplied 

from the portal vein. Total Hepatic blood flow is estimated to be approximately 25- 
30% o f cardiac output. Normal changes to hepatic blood flow can result from a 

variety o f conditions. Exercise and sleep have been shown to cause a decrease in 

hepatic blood flow 46, while an increase in hepatic blood flow has been observed in 

the postprandial state 47. Finally, hepatic blood flow tends to decrease with increasing 

age 48.
Regulation o f blood flow in the liver is governed through three different sites. 

Arterial flow is controlled by terminal hepatic arterioles, which are richly supplied in 

smooth muscles cells. Portal flow is dependent on the flow in the supplying organs 

and thus, is determined by the arterioles o f these organs (eg. spleen and mesentery). 
Finally, liver sinusoids and terminal hepatic venules are a source o f intrahepatic 

resistance 47. Blood flow in the liver is influenced by both intrinsic and extrinsic 
mechanisms.

1.4.1 Intrinsic hepatic bloodflow regulation
In autoregulation, increased arterial perfusion pressure results in hepatic artery 

vasoconstriction, presumably because o f a myogenic response o f the arteriolar smooth 

muscle to stretch imposed by the increased perfusion pressure [REF]. Pressure-flow 

autoregulation in the hepatic arterial system exists to some extent in the postprandial 
liver, but probably not in the fasted liver 49 50. There is no evidence o f autoregulation
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in the portal venous system; instead o f  the nonlinear pressure-flow relationship 

associated with autoregulation, there exists a linear pressure-flow relationship51.
Changes in the composition o f  the portal venous and systemic blood 

composition affect liver blood flow. These changes include arterial hypoxemia 52, 
systemic hypercapnia 53, and alkalosis 54. Hepatic arterial blood flow is increased by 

decreased portal oxygen tension and pH 54.
A relationship between arterial and portal venous blood flow has long been 

known to exist. It was demonstrated that an occlusion o f the portal vein results in an 

immediate rise in hepatic arterial blood flow 55. This response o f increased hepatic 

arterial blood flow in response to a decrease in portal blood flow is called the ‘hepatic 

arterial buffer response’ (HABR) 56. Lautt et al. 57 suggested that a change in the 

concentration o f adenosine, a vasoactive molecule, was responsible for this 

relationship. Adenosine is released at a constant rate in the space o f Mall, which 

contains the hepatic arterioles and portal venules, and its concentration is regulated by 

washout into these vessels, principally the portal vein. Thus, a drop in portal blood 

flow would induce an increase in the local concentration o f adenosine, which would 

in turn increase arterial blood flow 57. Conversely, an increase in portal flow would 

increase clearance o f adenosine, causing arterial vasoconstriction. As further 

evidence, it has been shown in the rabbit that the adenosine receptor antagonist, 8- 
phenyltheophylline, inhibited this response while, the adenosine uptake inhibitor, 
dipyridamole potentiated the HABR . Although increases in hepatic arterial blood 

flow result only in a partial compensation for decreased portal flow, oxygen delivery 

is maintained, even in cirrhotic livers ,9. While portal perfusion has a large effect on

_
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arterial blood flow, the reverse is not true. Changes in hepatic arterial flow have not 
been shown to cause significant changes in the portal venous flow .

Despite identifying adenosine as the clear regulator o f the HABR, the exact 
cell type or site o f adenosine production, as well as the specific biochemical pathway 

have yet to be identified. It is suggested that the adenosine involved with the HABR 

and autoregulation is produced at a constant rate and secreted into the space o f Mall. 
This adenosine is most likely derived from demethylation o f S- 
adenosylhomocysteine, a reaction that is oxygen independent and is proposed to 

account for basal adenosine production in the heart60.
Although the exact site o f  interaction o f the hepatic artery and portal vein has 

not been identified, it is clearly occurring at a very localized level. Lobular changes in 

blood flow, due to selective ligation o f the portal inflow, clearly demonstrates this 61. 
When portal flow to a single lobe was reduced by ligation, an increase in portal flow  

occured in the other lobes. The ligated lobe showed an increase in arterial blood flow  

while the unligated lobes showed a decrease in arterial flow. This demonstrates 

lobular independence o f the HABR 61.
In patients with cirrhosis, the HABR is blunted . A reduction in portal 

perfusion due to increased intrahepatic sinusoidal resistance has been observed in 

cirrhotic patients . This sustained reduction in portal flow results in the continuous 

activation o f the HABR 64. Accordingly, the HABR could play a protective role in 

hepatic circulation by maintaining oxygenation65.
The continuous activation o f the HABR in patients with fibrotic liver disease 

provides a potential target for evaluating the stage o f liver disease as well as the risk
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o f complications. The continuous, adenosine mediated, activation o f  the HABR has 

been implicated in the development o f hepatorenal disease 66, which is a severe 

complication o f liver disease that can result in death. Currently, perfusion imaging 

techniques are the only non-invasive way to regionally measure hemodynamic 

changes in the liver that are consistent with the HABR. This thesis attempts to 

measure hemodynamic changes in a rat model o f liver fibrosis using dynamic contrast 
enhanced CT (DCE-CT) scanning or CT Perfusion.

1.4.2 Extrinsic hepatic blood flow regulation
Branches o f the vagus, splanchnic, and sometimes phrenic nerves enter the 

liver mainly in association with the blood vessels and bile ducts. The sympathetic and 

parasympathetic nerves form an intercommunicating plexus, which terminates on 

arterioles and venules. Functional vagal innervation does exist in the dog and 

influences regional distribution within the liver by exerting effects on presinusoidal 
sphincters 67, rather than by affecting total liver blood flow.

O f the systemic hormones, epinephrine is the most likely to attain vasoactive 

concentrations physiologically. Both alpha and beta-adrenergic receptors are present 
in the hepatic arterial bed, whereas only alpha receptors exist in the portal vasculature
/TO Thus, epinephrine injected directly into the hepatic artery initially induces 

vasoconstriction via the alpha receptors, followed by vasodilation mediated by the 

beta receptors; the portal bed only vasoconstricts in response to intraportal 
epinephrine.
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Glucagon causes a graded and long-lasting hepatic arterial vasodilation and 

can antagonize the hepatic arterial vasoconstrictor responses to a wide range o f  

physiologic stimuli, including stress-induced sympathoadrenal outflow 69. 
Angiotensin II evokes profound vasoconstriction o f both hepatic arterial and portal 
beds, together with a significant reduction in mesenteric outflow, and this translates 

into a substantial reduction in total liver blood flow 70. Vasopressin also induces 

marked splanchnic vasoconstriction; consequently, reduction in venous outflow into 

the portal system and a reduction in inflow resistance in the portal vasculature 

occurring after vasopressin administration make this hormone very effective in 

alleviating portal hypertension .

1.5 ANIMAL MODELS OF LIVER FIBROSIS AND CIRRHOSIS

Several experimental models o f hepatic fibrosis have been developed. These 
include chemically induced fibrosis using hepatotoxic agents such as carbon 

tetrachloride (CCI4) 72, dimethylnitrosamine 73 and thioacetamide 74, immunological 
damage , biliary fibrosis via common bile duct ligation , and alcoholic liver disease 
such as the Tsukamoto/French model in rats77.

Carbon tetrachloride is the most commonly used toxin-based experimental 
model o f  liver fibrosis. It can be easily administered to rodents by inhalation, gastric 

gavage, and subcutaneous or intraperitoneal injections 11. The trichloromethyl radical, 
a metabolite produced by cytochrome P450 in hepatocytes leads to lipid peroxidation 

and membrane damage , which results in acute centrilobular liver necrosis. CCI4
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models o f  liver fibrosis have the advantage o f being well characterized with respect to 

the histological and biochemical changes associated with injury, inflammation, and 

fibrosis77,78. A further asset o f CCI4 models for in vivo animal studies is the ability to 

elicit a predictable and reproducible response. The administration o f barbiturates in 

drinking water can enhance the activation o f cytochrome p450, enhancing CCI4 liver 

injury, and is a common method o f hastening the development o f fibrosis. With a 

combination o f barbiturates and CCI4 treatment, development o f fibrosis can occur in 

as few as four weeks, and cirrhosis as early as eight weeks.
CCI4 models do have limitations. First, there is no direct human disease 

counterpart , and second, there is a failure to progress to the development of  

hepatocellular carcinoma unlike the dimethylnitrosamine model o f fibrosis 79. 
Although depending on the requirements o f  the fibrosis model, lack o f cancerous 

progression could also be viewed as an advantage.
A combination o f CCI4 and the barbiturate, phénobarbital, are used in this thesis 

to develop fibrosis and cirrhosis in rats. A detailed description o f the methodology can 
be found in chapter 3.

1.6 NON-INVASIVE METHODS FOR THE INVESTIGATION OF 
HEPATIC FIBROSIS AND CIRRHOSIS

The current gold standard for assessing fibrosis is liver biopsy through a 

percutaneous, transjugular, laparoscopic, or fine-needle approach. This invasive 

method can be painful and carries a small but significant risk o f serious
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• 80complications . Further limitations come with the analysis liver biopsy samples. 
Histological grading is not reproducible; there are both intra- and inter-observer 

variability on small sized or fragmented biopsy samples . Because o f these 

limitations, biopsy is an impractical method for the regular monitoring o f liver 

fibrosis. As new anti-fibrotic treatments are developed, there is a growing need for 

non-invasive methods o f evaluating these treatments, as well as monitoring the 

progression o f hepatic fibrosis in patients. The most promising methods currently 

under development are reviewed below.

1.6.1 Serum indices
Serum markers can be divided into direct and indirect markers o f fibrosis. 

Direct markers are fragments o f  the liver matrix components produced by HSCs 

during the development o f fibrosis, and the molecules involved in regulating the 

progression o f fibrosis. These include hyaluronic acid, collagens IV and VI, and 

amino terminal fragment o f procollagen III. Indirect markers o f  fibrosis include 

molecules released into the blood due to liver inflammation, such as alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST), molecules 

synthesised, regulated or excreted by the liver (such as clotting factors, cholesterol 
and bilirubin), and processes that become deranged as liver function becomes 

impaired, such as insulin resistance. Both direct serum markers, and indirect serum 

markers have been thoroughly investigated . When these markers are used
individually they can reasonably diagnosis or exclude cirrhosis but lack the ability to 

differentiate intermediate stages o f fibrosis. To increase diagnostic capability,
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algorithms combining multiple serum markers, such as Fibrotest or the Enhanced 

Liver Fibrosis (ELF) test have been proposed to improve diagnostic accuracy. In a 

meta-analysis Fibrotest was able to distinguish between METAVIR stages ^ 1  vs 

^F2 or ‘clinically significant’ fibrosis with area under the receiver operating 

characteristic curve (AUROC) o f .84 87. Currently, the ability to measure direct serum 

markers is not routinely available in most hospitals. Additionally, direct serum 

markers are not liver specific thus; they require patient specific considerations to be 

taken into account when interpreting the results.

1.6.2 Transient elastography
Transient elastography is performed with an ultrasound transducer probe 

mounted on the axis o f a vibrator. A vibration transmitted from the vibrator toward 

the tissue induces an elastic shear wave that propagates through the tissue. The 

velocity o f  the shear wave is then measured using pulse-echo ultrasound acquisitions. 
The harder the tissue, the faster the shear wave propagates 88. Transient elastography 

is advantageous in that it can be repeatedly performed, does not require a highly 

experienced operator, and has a low risk o f  complications. Results o f several recent 
studies have shown that measurement o f liver stiffness with transient elastography is 

excellent for the diagnosis o f cirrhosis, but lacks sensitivity and specificity for the
• OQintermediate stages o f  fibrosis . The reproducibility o f transient elastography is also 

substantially reduced in patients with steatosis and increased body mass index (BMI), 
as well as patients with ascities. This is because ultrasonography itself has limitations 

for clearly visualizing the liver in such patients. 90
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1.6.3 Magnetic resonance elastography (MRE)
MRE is a promising non-invasive method for monitor the progression o f liver 

fibrosis. MRE typically uses vibrations generated by external driver devices within 

the audio frequency range to induce shear waves in the liver. A signal generator 

triggered by and synchronized to the MR pulse sequence creates the electrical signal 
for these devices. A modified phase-contrast technique is used to image the 

propagation characteristics o f the acoustic shear waves 91 92. The technique is easily 

implemented on a conventional MRI system with modest additional hardware and 

software. Several studies have demonstrated the excellent diagnostic capability o f  

MRE to stage liver fibrosis 93 94 9S, but activity o f  the underlying cause and steatosis 
seem to influence measurements 95.

While MR elastography is a promising new method for staging liver disease it 
does not provide vital functional information about the liver. For the evaluation of  

new anti-fibrotic treatments a reduction in fibrotic content and reduced liver stiffness 

may not necessarily indicate successful treatment. For a patient with portal 
hypertension, a reduction in fibrosis content and liver stiffness is not clinically 

relevant unless it is accompanied by hemodynamic changes that alleviate the portal 
hypertension. Reversal o f  hemodynamic changes must accompany the reduction in 

fibrosis content for treatment to be completely successful.

1.6.4 Dynamic contrast enhanced computed tomography (DCE-CT)
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Dynamic contrast enhance computed tomography (DCE-CT) was developed in 

the late 1970s, with the aim o f studying hemodynamics in tissue 96. However, spatial 
and temporal resolutions o f early hardware limited the widespread acceptance o f  

DCE-CT. Advancements in CT scanning technology over the years has addressed 

these issues. The implementation o f slip ring technology has increased temporal 
resolutions to the sub-second mark. Detector technology has also progressed, allowing 

DCE-CT imaging o f  whole organs, such as the liver, in a single study. These 

advancements have allowed DCE-CT to become a more competitive imaging 

modality, as well as to gain wider clinical acceptance. Some o f the benefits o f  DCE- 
CT include its widespread availability in hospitals, its rapid scan times, with excellent 
spatial and temporal resolution, and its ability to image soft tissues, bone and blood 

vessels. Drawbacks o f DCE-CT include use o f contrast agents, which can impair renal 
function, and the exposure to carcinogenic ionizing radiation.

DCE-CT has become a valuable clinical and research tool in the study of 

angiogenesis and vascular changes associated with cancer and stroke diseases 97 98. 
Various methods have been developed to measure hepatic perfusion in vivo. These 

include Doppler ultrasound (US) 45, dynamic contrast enhanced magnetic resonance 

(DCE-MR)99 and DCE-CT 97. Compared to Doppler US, which is capable of  

measuring blood flow velocity in large vessels, DCE-CT is able to measure perfusion, 
blood volume, mean transit time, and capillary permeability surface area product in a 

single study97 In addition to this, DCE-CT can provide regional information that 
Doppler ultrasound can not. This set o f functional parameters provides a more 

complete evaluation o f tissue hemodynamics .
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The use o f MR as a modality for perfusion techniques seems appealing due to 

the lack o f  ionizing radiation. However, MR lacks a linear relationship between the 

concentration o f the gadolinium-based contrast agent and MR signal intensity. This 

fact along with velocity-induced signal intensity changes in larger vessels has created 

difficulties in obtaining quantitative perfusion data with DCE-MR 10°. In contrast, the 

relationship between iodine concentration and x-ray attenuation during DCE-CT 
examination is linear.

The maximum slope method for calculating liver perfusion is a commonly 

used method based on the Fick Principle 10°. If F is blood flow and Ca(t) is the contrast 
concentration at the arterial inlet and Cv(t) the contrast concentration at the venous 
outlet then:

QiT) = F - ) [ C „ - C ,} d t  (1)
0

Where Q(t) is the contrast concentration in the tissue at time T. If T is less than the 

minimum transit time o f the contrast agent through the capillaries, then one can 

assume no venous outflow and thus,

Q(T) = F-}c.-dt (2)0
or,

= F C a(T) (3)

The rate o f  contrast accumulation in the tissue, dQ(t)/dt, will be maximal when the 

arterial concentration is maximal. Solving for blood flow gives,

dQ{t)
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F =1 t=T

dQ(l)
dl

C M (4)

The ratio o f  the maximum rate o f contrast accumulation, or maximum slope o f  

dQ(t)/dt to the maximum arterial concentration is equal to the blood flow.
The liver however, receives blood flow from both the hepatic artery and the 

portal vein, which further complicates the calculation. The tissue concentration curves 

from each blood flow source are overlaid, because the arrival o f  the contrast from the 

portal vein arrives seconds after the contrast from the hepatic artery. To separate the 

two concentration curves one can use the concentration curve from the spleen. 
Because o f the arrival time o f the contrast agent through the body, one can assume 

that peek enhancement o f the spleen occurs after the maximum rate o f change o f the 

contrast concentration in the liver tissue. Knowing this, the hepatic arterial blood flow  

can simply be calculated by the maximum slope o f the tissue concentration curve, 
before peak splenic enhancement, divided by the peak hepatic arterial concentration, 
Ca(t)max- Calculation o f portal perfusion is more complex because the initial slope o f  

the portal concentration curve is overlaid by the hepatic arterial concentration curve.
If one assumes that the liver and spleen show similar contrast agent dynamics 

during he arterial phase then the ratio o f the hepatic arterial blood flow to the splenic 

blood flow should be equal to the ratio o f their concentration curves. Hence, a model 
curve o f pure arterial hepatic enhancement is computed by multiplying the splenic 

time-concentration curve by the ratio o f  the maximum arterial liver gradient to the 

maximum splenic gradient o f the time-attenuation curves. This model curve is then 

subtracted from the original hepatic concentration curve, Q(t), resulting in a portal
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venous concentration curve o f the liver, Qpv(t), separate from its arterial component. 
Portal perfusion can then be calculated from dQpv(t)/dt divided by the the peak o f the 

portal venous concentration curve Cpv(t).
The maximum slope method has two main drawbacks. First the no venous 

outflow assumption may not always hold true, especially in a cirrhotic liver, which 

can have substantial shunt formation 101. Second the use o f the splenic concentration 

curve to model the hepatic arterial concentration curve has not been validated.
CT Perfusion (GE healthcare) is a commercially available software package 

capable o f analyzing DCE-CT datasets. It has been validated in the rabbit liver using 

radioactive microspheres as the gold standard 102, as well as in brain tumor 103 and 
VX2 thigh tumors104.

With its ability to assess hemodynamics in a non-invasive fashion, DCE-CT 

offers a way o f tracking the progression o f  hepatic fibrosis and cirrhosis in vivo 102. 
This thesis attempts to evaluate the utility o f  DCE-CT coupled with CT Perfusion in 

the assessment o f fibrotic liver disease. This is done using Monte Carlo simulation 

techniques as well as correlating CT Perfusion parameters to fibrotic content in a CCU 

rat model o f  hepatic fibrosis.
DCE-CT studies were performed on rats with a clinical multi-slice CT scanner 

(Discovery VCT, GE Healthcare). At DCE-CT examination, an iodinated contrast 
agent is injected via a peripheral vein while the CT scanner is used to measure the 

passage o f contrast through the vasculature and the uptake o f contrast in the 

extravascular (Disse) space, followed by the subsequent washout. In the analysis o f  

the DCE-CT data there are two fundamental underlying assumptions. The first is that
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the iodinated contrast agent is uniformly distributed throughout the vascular system 

and the second is that the enhancement (increase in attenuation) o f a particular tissue 

is proportional to the concentration o f the contrast agent in the tissue.
A localization scan was first performed to place eight 5mm slices covering the 

entire rat liver. After the scan location was selected the DCE-CT scan was conducted 

in two phases. In the first phase, images were acquired in cine mode under breath hold 

by turning o ff the ventilator with a tube voltage and current o f 120kVp and 80mA 

respectively and a gantry speed o f one rotation per second. Images were reconstructed 

using the detail reconstruction filter and a temporal resolution o f 0.45 seconds. Total 
time for the first phase cine scan was 34 seconds. In the second phase the ventilator 

was turned on with a breath rate o f 80 breaths per minute and animals were scanned in 

cine mode for 1.2 second, every 10 seconds, up to a total o f  two minutes. This two 

phase scanning protocol was designed for imaging a ventilated rat under ‘forced’ 
breath hold in the first phase by turning o ff the ventilator and ventilated breathing in 

the second phase. Chapter 3 gives further detail on animal procedures as well as the 

registration o f the second phase images.
The acquired two phase DCE-CT data were analyzed with CT Perfusion 

software (GE Healthcare) to derive quantitative maps o f total hepatic blood flow (F t ), 

hepatic arterial blood flow (Fa), blood volume (Vb), mean transit time (Tc), 
permeability surface area product (PS), as well as the hepatic arterial fraction o f blood 

flow a.

When a bolus o f contrast agent is injected into a peripheral vein, the rate o f  

delivery o f contrast agent to the capillary network in a unit mass o f  tissue is
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FT-[aCa(t)+(l-a)C pv(t)], where FT is total liver blood flow in ml/min per unit mass o f  

liver tissue and aC a(t)+(l-a)C pv(t) is a weighted sum o f the contrast concentration 

over time in the hepatic artery (Ca) and portal vein (Cpv) with the a  being the fraction 

o f Ft that is derived from hepatic artery. If the mass o f contrast in tissue (vessels plus 

Disse space) is linear with respect to the arterial concentration and Ft remains 

constant in time, then the following relationship holds true as a result o f  linear 
superimposition:

where Q(t) is the concentration o f contrast in tissue over time, R(t), is the impulse 

residue function (IRF), and * is the convolution operator. Q(t), Ca(t), and Cpv(t) in 

equation (5) can be measured by dynamic CT scanning as described previously and 

deconvolution between these two curves then yields FT-R(t), the flow-scaled impulse 

residue function (See Figure 1.4). R(t) describes the mass o f contrast that remains in 

the tissue following bolus injection o f a unit mass o f contrast l05. The algorithm used 

in CT Perfusion for the calculation o f the functional parameters is based on the 

adiabatic approximation o f the Johnson-Wilson model, a hybrid compartment and 

distributed parameter model with bidirectional exchange o f contrast between the 

intravascular space and the extra vascular space 106 107. The adiabatic approximation 

assumes that the tracer concentration in parenchymal tissue changes slowly relative to 

that in hepatic sinusoids. This assumption allows for a closed-form mathematical 
solution to the flow-scaled impulse residue function, FT-R(t) where R(t) is defined by :

(5)



R(t) = - 1.0
E e - « - ^
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0 < t< T a
T0< tc <Ta + Tc (6)
t >T0 + TC

By definition, Fx-R(t) is equal to Fx(ml/min/100g) from time zero to the (vascular) 
mean transit time, Tc, E is the extraction fraction 108 and k is FTE/Ve (where Ve is the 

distribution volume o f contrast in the Disse space). The area under the rectangular 

portion o f the blood flow scaled IRF corresponds to the blood volume (Vb, ml/lOOg). 
Fa, the hepatic arterial blood flow is then calculated as oc-Fx while the permeability 

surface area product o f  the liver sinusoids (PS) is calculated via the Renkin and Crone 
relationship. PS=-Fln(l-E).

The calculation o f perfusion parameters (T0, Ft, Vb, Fa and PS) described 

above is applied to the unique tissue enhancement curve Q(t) corresponding to each 

voxel in the DCE-CT time series. The model is fit to the measured Q(t) by searching 

all parameter values and minimizing the sum o f squares deviation. All parameter 

values are constrained to be positive, a  and E are fractions and are constrained to be 

between 0 and 1. Values for the calculated perfusion parameters are then assign to 

voxels corresponding to the Q(t) from which they were derived. This process 

generates a two-dimensional functional map for each perfusion parameter 

corresponding to each slice o f the liver in the DCE-CT scan. These maps are 

displayed as false color images from low (blue) to high (red) functional values.
CT Perfusion is a useful tool in the study o f vascular and angiogenic changes 

that occur in hepatic fibrosis and cirrhosis. It provides a non-invasive means to track
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changes in the development o f liver disease, and can aid in assessing the effects o f  
treatment as well as prediction o f clinical outcomes.

1.7 REASEARCH GOALS

The aim o f this project was to evaluate the utility o f  CT Perfusion in the 

investigation o f fibrotic liver disease. In this regard the three primary goals o f this 
thesis were as follows:

(1) Characterize the bias, variance and covariance o f perfusion parameter estimates 
associated with the CT Perfusion software package.

(2) Track changes in perfusion parameters during the progression o f fibrotic liver 
disease in a rat CCI4 model o f  liver fibrosis.

(3) Correlate perfusion parameters in rats measured with CT Perfusion to hepatic 

fibrosis content at various stages o f  liver disease.

1.8 THESIS OUTLINE

Chapter 2 presents a study investigating the CT Perfusion software package in 

terms o f the bias, variance and covariance associated with the perfusion parameters 

estimated. Three different parameter sets corresponding to normal, mild and severe 

liver disease were used for simulation. My contributions to the study were the 

determination o f parameters sets used, the completion o f all mathematical
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calculations, setup and running o f the Monte Carlo simulations, all subsequent data 
analysis and interpretation, and the writing and revision o f the manuscript.

Chapter 3 presents a study investigating changes in perfusion parameters in a 

rat CCI4 model o f liver fibrosis in comparison to a control group. Perfusion 

parameters were also correlated to histology. My contributions to this work were as 

follows; the handling and treating o f the animals with the assistance o f a trained 

animal technician; the conducting o f all DCE-CT examinations and subsequent image 

registration; analysis o f the DCE-CT scans with CT Perfusion; performing analysis on 

the derived functional maps; performing analysis o f  histological samples; statistical 
analysis; writing and revising the manuscript.

Chapter 4 provides a summary o f the findings from chapter 2 and chapter 3, 
followed by concluding remarks and suggestions for future work on the evaluation o f  

anti-fibrotic treatments and management o f fibrotic liver disease.
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Figure 1.1. Gross anatomy o f the gut showing the hepatic artery (red) as well as 

the portal vein and supplying vessels (blue). The portal vein supplies blood from the 

spleen, gut and other mesentery, and accounts for approximately 75% o f total liver 

blood flow. The remaining 25% o f liver blood flow is supplied from the hepatic 

artery. Grey's Anatomy. Vein: Hepatic Portal Vein. 28 March 2011. 

<http://upload.wikimedia.Org/wikipedia/commons/3/33/Gray591 .png>

http://upload.wikimedia.Org/wikipedia/commons/3/33/Gray591_.png
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Figure 1.2. Sinusoid o f a rat liver with fenestrated endothelial cells. Fenestrae are 

approx 100-175nm in diameter, and sinusoidal width 5 microns. Original mag 30,000. 
Note the hepatocyte microvilli occupying the space o f Disse. Prof. Robin Fraser. 
Sinusoid. 28 March 2011. <http://en.wikipedia.0rg/wilci/File:Sinus0id.jpeg>

http://en.wikipedia.0rg/wilci/File:Sinus0id.jpeg
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Figure 1.3 The hepatic lobule. Blood flows from the portal triad (hepatic artery, 
portal vein, bile duct) through the liver sinusoids to a hepatic venule. (Adopted from: 
Cunningham, C.C., and Van Horn, C.G. Energy availability and alcohol-related liver 
pathology. Alcohol Research & Health 27(4):281-299, 2003.)
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-k(t-To-Tc)

Figure 1.4. The blood flow scaled impulse residue function (IRF) according to the 

Johnson-Wilson model with adiabatic approximation. Ft (ml/min/100g) is the blood 

flow, Vb (ml/100g) is the blood volume (shaded area), E is the extraction efficiency, 
Tc (seconds) is the mean transit time, k is the net back flow rate o f the contrast from 

the extravascular (Disse) space to the intravascular space.



1.9 REFERENCES

1. Zhong, L., Wang, W. J. & Xu, J. R. Clinical application o f hepatic CT perfusion. 
World journal of gastroenterology: WJG 15, 907 (2009).

2. Haga, J. et al. Liver regeneration in donors and adult recipients after living donor liver 
transplantation. Liver Transpl 14, 1718-1724 (2008).

3. Sherman, M. et al. The management o f chronic viral hepatitis: A Canadian consensus 
conference 2004. Can J  Infect Dis Med Microbiol 15, 313-326 (2004).

4. Werb, D. et al. Treatment costs o f hepatitis C infection among injection drug users in 
Canada, 2006-2026. IntJ Drug Policy 22, 70-76 (2011).

5. Bosch, J., Berzigotti, A., Garcia-Pagan, J. C. & Abraldes, J. G. The management o f  
portal hypertension: rational basis, available treatments and future options. J  Hepatol 
48 Suppl 1, S68-92 (2008).

6. Sussman, A. N. & Boyer, T. D. Management o f refractory ascites and hepatorenal 
syndrome. Curr Gastroenterol Rep 13, 17-25 (2011).

7. Testino, G. & Ferro, C. Hepatorenal syndrome: a review. Hepatogastroenterology 57, 
1279-1284 (2010).

8. Sass, D. A. & Chopra, K. B. Portal hypertension and variceal hemorrhage. Med Clin 
North Am 93, 837-53, vii-viii (2009).

9. Tsukuma, H. et al. Risk factors for hepatocellular carcinoma among patients with 
chronic liver disease. New Englandjournal of medicine 328, 1797-1801 (1993).

10. Braet, F. & Wisse, E. Structural and functional aspects o f liver sinusoidal endothelial 
cell fenestrae: a review. Comparative Hepatology 1, 1 (2002).

11. Wisse, E., De Zanger, R. B., Charels, K., Van Der Smissen, P. & McCuskey, R. S.
The liver sieve: considerations concerning the structure and function o f endothelial 
fenestrae, the sinusoidal wall and the space o f  Disse. Hepatology 5, 683-692 (1985).

12. Gane, E. J. et al. A longitudinal analysis o f hepatitis C virus replication following 
liver transplantation. Gastroenterology 110, 167-177 (1996).

13. Bonnard, P. et al. Documented rapid course o f  hepatic fibrosis between two biopsies 
in patients coinfected by HIV and HCV despite high CD4 cell count. Journal of viral 
hepatitis 14, 806-811 (2007).

14. Gressner, A. M. Transdifferentiation o f hepatic stellate cells (Ito cells) to 
myofibroblasts: a key event in hepatic fibrogenesis. Kidney international. Supplement 
54, S39 (1996).

15. Friedman, S. L. Mechanisms o f hepatic fibrogenesis. Gastroenterology 134, 1655- 
1669 (2008).

16. Parola, M. & Robino, G. Oxidative stress-related molecules and liver fibrosis. Journal 
of hepatology 35, 297-306 (2001).

17. Jaeschke, H. Mechanisms o f liver injury. II. Mechanisms o f neutrophil-induced liver 
cell injury during hepatic ischemia-reperfusion and other acute inflammatory 
conditions. American Journal of Physiology-Gastrointestinal and Liver Physiology 
290, G1083 (2006).

18. Jamagin, W. R., Rockey, D. C., Koteliansky, V. E., Wang, S. S. & Bissell, D. M. 
Expression o f  variant fibronectins in wound healing: cellular source and biological



32

activity o f  the EIIIA segment in rat hepatic fibrogenesis. The Journal of cell biology 
127, 2037(1994).

19. Canbay, A., Friedman, S. & Gores, G. J. Apoptosis: the nexus o f liver injury and 
fibrosis. Hepatology 39, 273-278 (2004).

20. Canbay, A. et al. Apoptotic body engulfment by a human stellate cell line is 
profibrogenic. Laboratory investigation 83, 655-663 (2003).

21. Zhan, S. S. et al. Phagocytosis o f apoptotic bodies by hepatic stellate cells induces 
NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 43, 435-443 
(2006).

22. Tsukada, S., Parsons, C. J. & Rippe, R. A. Mechanisms o f liver fibrosis. Clinica 
chimica acta 364, 33-60 (2006).

23. Stefanovic, B., Stefanovic, L., Schnabl, B., Bataller, R. & Brenner, D. A. TRAM2 
protein interacts with endoplasmic reticulum Ca2+ pump Serca2b and is necessary for 
collagen type I synthesis. Molecular and cellular biology 24, 1758 (2004).

24. Pinzani, M. et al. Expression o f platelet, Aederived growth factor in a model o f acute 
liver injury. Hepatology 19, 701-707 (1994).

25. Czochra, P. et al. Liver fibrosis induced by hepatic overexpression o f PDGF-B in 
transgenic mice. Journal of hepatology 45, 419-428 (2006).

26. Melton, A. C. & Yee, H. F. Hepatic stellate cell protrusions couple platelet, Aederived 
growth factor,AeBB to chemotaxis. Hepatology 45, 1446-1453 (2007).

27. Semela, D. et al. Platelet-derived growth factor signaling through ephrin-b2 regulates 
hepatic vascular structure and function. Gastroenterology 135, 671-679 (2008).

28. Laleman, W. et al. Both Ca2+-dependent and-independent pathways are involved in 
rat hepatic stellate cell contraction and intrahepatic hyperresponsiveness to 
methoxamine. American Journal of Physiology-Gastrointestinal and Liver Physiology 
292, G556 (2007).

29. Rockey, D. C. Vascular mediators in the injured liver. Hepatology 37, 4-12 (2003).
30. Melton, A. C., Datta, A. & Yee, H. F. [Ca2+] i-independent contractile force 

generation by rat hepatic stellate cells in response to endothelin-1. American Journal 
of Physiology-Gastrointestinal and Liver Physiology 290, G7 (2006).

31. Shah, V. et al. Impaired endothelial nitric oxide synthase activity associated with 
enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology 117, 
1222-1228(1999).

32. Rockey, D. C. Hepatic fibrosis, stellate cells, and portal hypertension. Clin Liver Dis 
10, 459-79, vii-viii (2006).

33. Lee, J. S., Semela, D., Iredale, J. & Shah, V. H. Sinusoidal remodeling and 
angiogenesis: A new function for the liver, Aespecific pericyte? Hepatology 45, 817- 
825 (2007).

34. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932-936 (2005).
35. Corpechot, C. et al. Hypoxia,Aeinduced VEGF and collagen I expressions are 

associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 
35,1010-1021 (2002).

36. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 
130, 691-703 (2007).

37. Taura, K. et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis 
in liver fibrosis. Gastroenterology 135, 1729-1738 (2008).



33

38. Novo, E. et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating 
migration o f  human hepatic stellate cells. Am J Pathol 170, 1942-1953 (2007).

39. Neef, M. et al. Oral imatinib treatment reduces early fibrogenesis but does not prevent 
progression in the long term. J Hepatol 44, 167-175 (2006).

40. Sato, Y. et al. Resolution o f liver cirrhosis using vitamin A,Àicoupled liposomes to 
deliver siRNA against a collagen-specific chaperone. Nature biotechnology 26, 431 - 
442 (2008).

41. Issa, R. et al. Spontaneous recovery from micronodular cirrhosis: Evidence for 
incomplete resolution associated with matrix cross-linking* 1. Gastroenterology 126, 
1795-1808 (2004).

42. Desmet, V. J. & Roskams, T. Cirrhosis reversal: a duel between dogma and myth. 
Journal of hepatology 40, 860-867 (2004).

43. Reiberger, T. et al. Portal Pressure Predicts Outcome and Safety o f Antiviral Therapy 
in Cirrhotic Patients with HCV infection. Clin Gastroenterol Hepatol (2011).

44. Choi, G. H. et al. Predictive factors for long-term survival in patients with clinically 
significant portal hypertension following resection o f hepatocellular carcinoma. Liver 
Int 31, 485-493 (2011).

45. Annet, L. et al. Hepatic flow parameters measured with MR imaging and Doppler US: 
correlations with degree o f cirrhosis and portal hypertension. Radiology 229, 409-414 
(2003).

46. Boushel, R. et al. Regional blood flow during exercise in humans measured by near- 
infrared spectroscopy and indocyanine green. Journal of Applied Physiology 89, 1868 
(2000).

47. Burggraaf, J., Schoemaker, H. C. & Cohen, A. F. Assessment o f changes in liver 
blood flow after food intake,Àîcomparison o f ICG clearance and echo,ÀêDoppler. 
British journal of clinical pharmacology 42, 499-502 (1996).

48. Wynne, H. A. et al. The effect o f  age upon liver volume and apparent liver blood flow  
in healthy man. Hepatology 9, 297-301 (1989).

49. Norris, C. P., Barnes, G. E., Smith, E. E. & Granger, H. J. Autoregulation o f superior 
mesenteric flow in fasted and fed dogs. American Journal of Physiology-Heart and 
Circulatory Physiology 237, HI74 (1979).

50. Greenway, C. V., Lawson, A. E. & Mellander, S. The effects o f stimulation o f the 
hepatic nerves, infusions o f noradrenaline and occlusion o f the carotid arteries on liver 
blood flow in the anaesthetized cat. The Journal of physiology 192, 21 (1967).

51. Richardson, P. D. & Withrington, P. G. Pressure-flow relationships and effects of  
noradrenaline and isoprénaline on the hepatic arterial and portal venous vascular beds 
o f the dog. J Physiol 282, 451-470 (1978).

52. Hughes, R. L., Mathie, R. T., Campbell, D. & Fitch, W. Systemic hypoxia and 
hyperoxia, and liver blood flow and oxygen consumption in the greyhound. Pfl^°gers 
Archiv European Journal of Physiology 381, 151-157 (1979).

53. Scholtholt, J. & Shiraishi, T. The reaction o f liver and intestinal blood flow to a 
general hypoxia, hypocapnia and hypercapnia in the anesthetized dog. Pjlsl°gers Arch 
318, 185-201 (1970).

54. Richardson, P. D. I. & Withrington, P. G. Physiological regulation o f the hepatic 
circulation. Annual review of physiology 44, 57-69 (1982).



34

55. Lautt, W. W., Legare, D. J. & Ezzat, W. R. Quantitation o f the hepatic arterial buffer 
response to graded changes in portal blood flow. Gastroenterology 98, 1024 (1990).

56. Lautt, W. W. Mechanism and role o f intrinsic regulation o f hepatic arterial blood 
flow: hepatic arterial buffer response. American Journal of Physiology- 
Gastrointestinal and Liver Physiology 249, G549 (1985).

57. Lautt, W. W., Legare, D. J. & d'Almeida, M. S. Adenosine as putative regulator o f  
hepatic arterial flow (the buffer response). American Journal of Physiology-Heart and 
Circulatory Physiology 248, H331 (1985).

58. Browse, D. J., Mathie, R. T., Benjamin, I. S. & Alexander, B. The role o f  ATP and 
adenosine in the control o f hepatic blood flow in the rabbit liver in vivo. Comp 
Hepatol 2, 9 (2003).

59. MV°cke, L, Richter, S., Menger, M. D. & Vollmar, B. Significance o f hepatic arterial 
responsiveness for adequate tissue oxygenation upon portal vein occlusion in cirrhotic 
livers. International journal of colorectal disease 15, 335-341 (2000).

60. Lloyd, H. G. E. The importance o f the transmethylation pathway for adenosine 
metabolism in the heart. Topics and Perspectives in Adenosine Research (1987).

61. Rocheleau, B., Ethier, C., Houle, R., Huet, P. M. & Bilodeau, M. Hepatic artery 
buffer response following left portal vein ligation: its role in liver tissue homeostasis. 
American Journal of Physiology-Gastrointestinal and Liver Physiology 277, G1000 
(1999).

62. Iwao, T. et al. Hepatic artery hemodynamic responsiveness to altered portal blood 
flow in normal and cirrhotic livers. Radiology 200, 793-798 (1996).

63. Van Beers, B. E. et al. Hepatic perfusion parameters in chronic liver disease: dynamic 
CT measurements correlated with disease severity. American Journal of 
Roentgenology 176, 667 (2001).

64. Aoki, T. et al. Intraoperative direct measurement o f hepatic arterial buffer response in 
patients with or without cirrhosis. Liver transplantation 11, 684-691 (2005).

65. Richter, S., MV°cke, L, Menger, M. D. & Vollmar, B. Impact o f intrinsic blood flow  
regulation in cirrhosis: maintenance o f hepatic arterial buffer response. American 
Journal of Physiology-Gastrointestinal and Liver Physiology 279, G454 (2000).

66. Lautt, W. W. Regulatory processes interacting to maintain hepatic blood flow  
constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, 
liver regeneration, escape from vasoconstriction. Hepatology Research 37, 891-903 
(2007).

67. Rappaport, A. M. & Schneiderman, J. H. The function o f the hepatic artery. 
Ergebnisse der Physiologie, biologischen Chemie und experimentellen 
Pharmakologie 76, 129-175 (1976).

68. Richardson, P. D. I. & Withrington, P. G. The role o f (E<-adrenoceptors in the 
responses o f  the hepatic arterial vascular bed o f the dog to phenylephrine, 
isoprénaline, noradrenaline and adrenaline. British Journal of Pharmacology 60, 239 
(1977).

69. Richardson, P. D. & Withrington, P. G. Glucagon inhibition o f hepatic arterial 
responses to hepatic nerve stimulation. American Journal of Physiology-Heart and 
Circulatory Physiology 233, H647 (1977).



35

70. Cohen, M. M. & Sitar, D. S. Vasopressin and angiotensin on resistance vessels of 
spleen, intestine, and liver. American Journal of Physiology—Legacy Content 218, 
1704(1970).

71. Richardson, P. D. & Withrington, P. G. The effects o f intra-arterial and intraportal 
injections o f  vasopressin on the simultaneously perfused hepatic arterial and portal 
venous vascular beds o f the dog. Circulation research 43, 496 (1978).

72. Onori, P. et al. Hepatic microvascular features in experimental cirrhosis: a structural 
and morphometrical study in CC14-treated rats. Journal of hepatology 33, 555-563 
(2000).

73. Jenkins, S. A. et al. A dimethylnitrosamine-induced model o f cirrhosis and portal 
hypertension in the rat. Journal of Hepatology 1, 489-499 (1985).

74. Laleman, W. et al. A stable model o f cirrhotic portal hypertension in the rat: 
thioacetamide revisited. European journal o f clinical investigation 36, 242-249 
(2006).

75. Meijuan, Y. S. B. C. Y. & Liyun, B. J. Z. Comparison between Immunological and 
Chemical Injury Hepatic Fibrosis Animal Models [J]. LABORATORY ANIMAL 
SCIENCE AND ADMINISTRA TION 4, (1995).

76. Issa, R. et al. Apoptosis o f hepatic stellate cells: involvement in resolution o f biliary 
fibrosis and regulation by soluble growth factors. Gut 48, 548 (2001).

77. Tsukamoto, H., Matsuoka, M. & French, S. W. Experimental models o f hepatic 
fibrosis: a review. Seminars in liver disease 10(1), 56 (1990).

78. Perez, T. R. Is cirrhosis o f  the liver experimentally produced by CC14 and adequate 
model o f human cirrhosis? Hepatology (Baltimore, Md.) 3, 112 (1983).

79. Nishikawa, A. et al. Comparative study on organ-specificity o f tumorigenicity, 
mutagenicity and cell proliferative activity induced by dimethylnitrosamine in Big 
Blue-vE mice. Cancer letters 117, 143-147 (1997).

80. Bravo, A. A., Sheth, S. G. & Chopra, S. Liver biopsy. N Engl J  Med 344, 495-500
(2001).

81. Bedossa, P., Dargere, D. & Paradis, V. Sampling variability o f  liver fibrosis in 
chronic hepatitis C. Hepatology 38, 1449-1457 (2003).

82. Halfon, P. et al. Accuracy o f hyaluronic acid level for predicting liver fibrosis stages 
in patients with hepatitis C virus. Comp Hepatol 4, 6 (2005).

83. Guechot, J. et al. Diagnostic accuracy o f hyaluronan and type III procollagen amino- 
terminal peptide serum assays as markers o f liver fibrosis in chronic viral hepatitis C 
evaluated by ROC curve analysis. Clin Chem 42, 558-563 (1996).

84. Walsh, K. M., Fletcher, A., MacSween, R. N. & Morris, A. J. Basement membrane 
peptides as markers o f liver disease in chronic hepatitis C. J Hepatol 32, 325-330 
(2000).

85. Wong, V. S. et al. Serum hyaluronic acid is a useful marker o f liver fibrosis in chronic 
hepatitis C virus infection. J Viral Hepat 5, 187-192 (1998).

86. Park, G. J., Lin, B. P., Ngu, M. C., Jones, D. B. & Katelaris, P. H. Aspartate 
aminotransferase: alanine aminotransferase ratio in chronic hepatitis C infection: is it 
a useful predictor o f cirrhosis? J Gastroenterol Hepatol 15, 386-390 (2000).

87. Poynard, T. et al. Meta-analyses o f FibroTest diagnostic value in chronic liver 
disease. BMC Gastroenterol 7, 40 (2007).



36

88. Sandrin, L. et al. Transient elastography: a new noninvasive method for assessment o f  
hepatic fibrosis. Ultrasound in medicine & biology 29, 1705-1713 (2003).

89. Friedrich-Rust, M. et al. Performance o f transient elastography for the staging o f liver 
fibrosis: a meta-analysis. Gastroenterology 134, 960-974. e8 (2008).

90. Koizumi, Y. et al. Liver Fibrosis in Patients with Chronic Hepatitis C: Noninvasive 
Diagnosis by Means o f Real-time Tissue Elastography, AiEstablishment o f the 
Method for Measurement. Radiology 258, 610 (2011).

91. Grenier, D., Milot, L., Peng, X., Pilleul, F. & Beuf, O. A magnetic resonance 
elastography (MRE) approach for liver investigation. Conf Proc IEEE Eng Med Biol 
Soc 2007, 2607-2610 (2007).

92. Kruse, S. A. et al. Tissue characterization using magnetic resonance elastography: 
preliminary results. Phys Med Biol 45, 1579-1590 (2000).

93. Motosugi, U. et al. Magnetic resonance elastography o f the liver: preliminary results 
and estimation o f inter-rater reliability. JpnJ Radiol 28, 623-627 (2010).

94. Yin, M. et al. Assessment o f hepatic fibrosis with magnetic resonance elastography. 
Clin Gastroenterol Hepatol 5, 1207-1213.e2 (2007).

95. Lupsor, M. et al. Analysis o f histopathological changes that influence liver stiffness in 
chronic hepatitis C. Results from a cohort o f 324 patients. J Gastrointestin Liver Dis 
17, 155-163 (2008).

96. Axel, L. Cerebral blood flow determination by rapid-sequence computed tomography: 
theoretical analysis. Radiology 137, 679 (1980).

97. Lee, T. Y., Purdie, T. G. & Stewart, E. CT imaging o f angiogenesis. The quarterly 
journal of nuclear medicine: official publication of the Italian Association of Nuclear 
Medicine (AIMN)jand] the International Association of Radiopharmacology (IAR)
47, 171 (2003).

98. Murphy, B. D. et al. Identification o f penumbra and infarct in acute ischemic stroke 
using computed tomography perfusion-derived blood flow and blood volume 
measurements. Stroke 37, 1771 (2006).

99. Mateme, R. et al. Assessment o f hepatic perfusion parameters with dynamic MRI. 
Magnetic resonance in medicine 47, 135-142 (2002).

100. Miles, K. A. et al. Application o f CT in the investigation o f angiogenesis in oncology. 
Academic radiology 7, 840 (2000).

101. Li, X., Benjamin, I. S., Naftalin, R. & Alexander, B. Location and function o f  
intrahepatic shunts in anaesthetised rats. Gut 52, 1339 (2003).

102. Stewart, E. E., Chen, X., Hadway, J. & Lee, T. Y. Hepatic perfusion in a tumor model 
using DCE-CT: an accuracy and precision study. Physics in Medicine and Biology 53, 
4249 (2008).

103. Cenic, A., Nabavi, D. G., Craen, R. A., Gelb, A. W. & Lee, T. Y. A CT method to 
measure hemodynamics in brain tumors: validation and application o f cerebral blood 
flow maps. American journal of neuroradiology 21, 462 (2000).

104. Purdie, T. G., Henderson, E. & Lee, T. Y. Functional CT imaging o f angiogenesis in 
rabbit VX2 soft-tissue tumour. Physics in Medicine and Biology 46, 3161 (2001).

105. BASSINGTHWAIGHTE, J. B„ KNOPP, T. J. & ANDERSON, D. U. Flow 
estimation by indicator dilution (bolus injection): Reduction o f errors due to time- 
averaged sampling during unsteady flow. Circulation Research 27, 277 (1970).



37

106. Lawrence, K. S. S. & Lee, T. Y. An adiabatic approximation to the tissue 
homogeneity model for water exchange in the brain: I. Theoretical derivation. Journal 
of Cerebral Blood Flow & Metabolism 18, 1365-1377 (1998).

107. Johnson, J. A. & Wilson, T. A. A model for capillary exchange. The American journal 
of physiology 210, 1299 (1966).

108. Crone, C. & Thompson, A. M. Permeability o f brain capillaries. Capillary 
Permeability. C. Crone and NA Lassen, editors. Munksgaard, Copenhagen 447-453 
(1970).



38

CHAPTER 2
ERROR ANALYSIS OF HEPATIC PERFUSION PARAMETERS 

CALCULATED WITH CT PERFUSION

2.1 INTRODUCTION

In the past, fibrosis and cirrhosis were thought to be irreversible. Newer 

understanding o f the pathogensis o f hepatic fibrosis1,2 has resulted in many potential 
anti-fibrotic drugs such as the dual endothelin receptor antagonist, Bosentan. In order 

to test the efficacy o f potential anti-fibrotic drugs, a non-invasive measure o f fibrosis 

in animal models and eventually human clinical trials will be required.
The progressive breakdown o f normal vascular structure in a cirrhotic liver is 

associated with an increase in intrahepatic vascular resistance. Consequentially a 

change in both regional and global perfusion takes place in the liver 3'4. Patients with 

cirrhosis have been shown to have a decrease in portal hepatic blood flow (PHBF). 
The decreased portal perfusion is thought to be partially balanced by an increase in 

arterial hepatic blood flow (AHBF) via the hepatic arterial buffer response (H A B R )5. 
Lautt et. Al. originally demonstrated the HABR in the liver o f cats. Richter et. al. 
demonstrated this process in normal and cirrhotic rat livers and Aoki et. al. later 

demonstrated it in normal and cirrhotic livers o f humans. If PHBF and AHBF can be 

measured non-invasively, then the change in the ratio o f PHBF and AHBF could 

provide a non-invasive bio-marker for hepatic fibrosis.
Liver perfusion has previously been measured with dynamic PET methods 67.
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To properly estimate both PHBF and AHBF a dual input model must be used, 
requiring arterial and portal time activity curves. Due to the poor spatial resolution o f  

PET images, the portal activity curves cannot be obtained in a non-invasive manor 6.
Doppler ultrasound has also been investigated as a non-invasive method o f  

measuring hepatic blood flow 8. Doppler ultrasound measures the average velocity o f  

blood (cells) in a vessel, then flow is calculated using an estimate o f  the cross 

sectional area o f the vessel. This leads to two o f the major drawbacks o f using 

Doppler ultrasound. First, blood flow can only be calculated in large vessels, so no 

regional blood flow information can be obtained. Second, the measure o f the cross 

sectional area depends highly on the skill o f the operator, which leads to large intra­
observer variability 9.

Both dynamic contrast enhanced computed tomography (DCE-CT) and 

magnetic resonance imaging (MRI) offer greatly improved resolution over 

radioisotope techniques, eliminating the need for invasive portal venous 

measurements. Completely non-invasive measurements o f hepatic perfusion can be 

made and have been shown to correlate well with the severity o f cirrhosis 8,10,1'. MRI 

has the advantage o f not exposing patients to potentially harmful ionizing radiation, 
however, the non-linearity between contrast agent concentration and MRI signal poses 

problems for quantification.
Using either MRI or CT, several different methods o f analysis have been 

investigated. Miles et al 199310 proposed a simple method o f measuring blood flow  

based on the maximum slope o f the tissue time density curve (TDC) divided by the 

peak arterial concentration. Blomley et al 1995 reported a modified version that
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measures portal venous perfusion by subtracting the splenic time density curve, scaled 

to represent hepatic arterial flow, from the liver tissue curve. As previously pointed 

out 13 14 15 16 the maximum slope method has two shortcomings. First, the method 

assumes no venous outflow o f contrast at the time o f maximum initial slope, which 

may not always be true especially in liver disease. Second, modeling techniques allow 

for the measurement o f additional parameters. The maximum slope method only 

determines arterial and portal venous perfusion, whereas modeling methods can 

measure additional parameters such as mean vascular transit time (Tc), vascular 

volume and permeability surface area product (PS). These additional parameters may 

offer further insight into the development and progression o f liver disease.
Matem et al. proposed a dual input compartmental model to estimate both 

arterial and portal hepatic perfusion. However to achieve the perfusion estimates they 

assume that the extraction fraction, E, is simply 1.0, meaning that there is no barrier to 

diffusion between the vascular space and the Space o f Disse. This assumption is 

justified by the fenestrated endothelium o f  the liver sinusoids, allowing contrast agent 
to freely diffuse into the extravascular space (EVS). In the normal liver this 

assumption may be correct, however, capillarization o f the sinusoids has been 

reported in liver fibrosis and cirrhosis 17, which could limit the extraction o f contrast 
agent to the EVS to a varying degree.

The Johnson and Wilson two-compartment model is a good balance between 

mathematical complexity and accuracy . A time domain solution (the adiabatic 

approximation) has been proposed and thoroughly investigated for application with 

oxygen labeled water in the brain as well as treatment planning in stroke with regular
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CT contrast 19 20. This model has recently been modified for use in the liver by 

incorporating a dual blood flow source, allowing for the measurement o f both PHBF 

and AHBF, and validated using microspheres in rabbit liver with excellent results 15. 
In contrast to the dual input model proposed by Matem et al., the dual input Johnson 

and Wilson model makes no assumptions on the value o f the extraction fraction.
In this study we conduct a sensitivity analysis o f the model utilized in CT 

perfusion (GE Healthcare), as well as Monte Carlo simulations, to investigate the 

software’s utility in the investigation o f fibrotic liver disease in a rat model. We 

consider the normal, mild, and severe stages o f liver disease. Hepatic arterial and 

portal venous input functions used in the analysis and simulations were obtained from 
actual DCE-CT studies on rats.

2.2 METHODS

2.2.1 Tracer Kinetics Model
Simulations were conducted using CT Perfusion (GE Healthcare). The software 

utilizes the adiabatic approximation to the Johnson and Wilson model 18 described by 

St. Lawrence and Lee 19. A schematic o f the model is shown in Figure 2.2, where Ft is 

the total hepatic blood flow, Vb is the liver blood volume, Ve is the distribution o f  

contrast in the extravascular space o f the liver (Space o f Disse) and PS is the 

permeability surface area product o f  the endothelium o f liver sinusoids. The adiabatic 

approximation solution for the impulse residue function, R(t), o f the Johnson and 

Wilson model can be expressed as follows:
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R(t)=
0.0
1.0

0 < t < T 0
T0 < t < T 0 + T c

E e -k(« -T„-Tc) t > T ( ) + T c
( 1)

-PS/where E is the extraction fraction21 defined as, E = l - e  ' Ff, k=FTE/Ve is the rate 

constant o f  the washout o f contrast from the EVS to the intravascular space (IVS), To 

is the time delay between the arrival o f  contrast at the hepatic artery (or portal vein) 
and the liver, and Tc is the mean transit time o f contrast through the liver vasculature.

For organs with a single blood flow source, such as the brain, the tissue time 

density curve, Q(t), is defined by Equation 2 l9. F is the blood flow and C(t) is the 
time density curve o f the supplying vessel.

gtt)=Fc(f)*m  (2)
For the liver, which derives its blood flow from both the hepatic artery and the portal 
vein, Q(t) is the sum o f the enhancement from both blood flow sources. Thus, Q(t) for 
the liver becomes:

C*)='v <:„(/).«(0 (3)
Where Fa and Ca(t) are the AHBF and the hepatic artery time density curve 

respectively. Likewise Fpv and Cpv(t) are PHBF and the portal vein time density 

curve. R(t) is the same for both Fa and Fpv since the same unit o f tissue will have the 

same impulse response function. Equation 3 can be re-written in terms o f total blood 
flow to give Equation 4.

QV) = Ft- [aC„(0+(l-a)C^(0]*/!(<) (4)

Where Ft is the total hepatic blood flow and a  is the fraction o f total hepatic blood
□flow from the hepatic artery.
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2.2.2 Sensitivity Analysis
Sensitivity analysis provides a more in-depth understanding o f the tracer 

kinetics model. We calculate the sensitivity functions o f each parameter using 

Equation 5 where, SFI is the sensitivity function for the ith model parameter Pt.

□
SF = M )æ (5)

□

Each sensitivity function represents the changes in the model output, namely the 

tissue time density curve (Q(t)), from a small change in the respective parameter. The 

greater the magnitude o f a parameter’s sensitivity function, the more sensitive the 

model output (Q(t)) is to a small change in that parameter and the estimation o f that 
parameter is less affected by noise in Q(t). Also the more similar the sensitivity 

functions o f  two parameters are the harder it is to separate the parameters.

2.2.3 Covariance/Correlation Matrix
Calculating the covariance (COV) matrix is important in understanding the inherent 
variance associated with estimating each o f  the model parameters. The COV matrix 

was calculated from the Fisher information matrix, F , as explained by Huang and 

Phelps and similarly used by Henderson et. al .
Each column o f the Fisher information matrix is composed o f a different

sensitivity function.
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The covariance matrix is:

c o v ^ ^ - F Ï  (7)

where ct is the estimate o f the noise variance in the measured model output, Q(t).

The diagonal elements o f the covariance matrix are the variances ( of i=Ft, a , 

E, k, To and Tc) o f the estimated parameters from the model. The o ff diagonal 

elements are the covariances (ajjij=FT, a , E, k, T0 and Tc) o f two estimated

parameters. The covariance matrix can be converted into the correlation matrix

P = - ^u a ai j (8)

Elements o f  the correlation matrix are all between -1 and 1. Unity represents 

perfect positive correlation and -1 is perfect negative correlation. A coefficient o f zero 

represents no correlation. The correlation matrix allows for an easier interpretation of 

parameter interactions.

2.2.4 Monte Carlo Simulation
Three different states o f  disease severity were considered for simulation. Table 1 

lists the parameter values for normal, mild and severe liver fibrosis. The values for a ,
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F, E, k, T0, and Tc were estimated from microsphere experiments and indicator 

dilution techniques in rats 24 25 26. Total hepatic blood volume, Vb and PS were derived 

from the assumed parameter values as Vb= F T c according to the Central Volume 

Principle 27 28 and PS=-Frln(l-E) from the Crone relationship 21. Using the assumed 

parameter values o f each disease state, along with the arterial and portal venous time 

density curves in Figure 2.1, the tissue TDC, Q(t), can be calculated using Equation 1 
and Equation 4. Gaussian random noise, which standard deviation was equal to the 

square root o f Q(t), was added to the tissue TDC.
For each disease state a time series o f  simulated CT images were generated from 

the simulated noisy curves o f the corresponding tissue TDC. Each set o f images 

consisted o f a 48x48 pixel block where the time density curve o f a pixel was a 

simulated noisy curve o f  the corresponding tissue TDC. CT Perfusion was used to 

analyze each set o f images to estimate the different parameters and their differences 

from the ‘true’ values. This method resulted in the equivalent o f 2304 simulation runs 

per simulated tissue TDC. From this data the variance and bias o f  each estimated 

parameter was determined.

3.3 RESULTS

Figure 2.3 shows the sensitivity functions calculated from Equation 1 for each 

parameter o f  the model as well as for each disease condition, normal, mild, and 

severe. Total blood flow was the most sensitive parameter followed by a , k, E, Tc, 

and To respectively. The sensitivity o f total blood flow increased with increasing
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disease severity while the sensitivity o f a  decreased. E and k both exhibited low 

sensitivity in the first 30 seconds, followed by increased sensitivity in the later phase. 
The mean transit time, Tc, showed decreasing sensitivity with increasing disease 

severity. The sensitivity o f To showed little change with disease severity.
Table 2 lists the variances o f  the estimated model parameters under normal, 

mild, and severe disease conditions, as determined from the diagonal o f  the 

covariance matrix. The variances o f Vb and PS were calculated from those o f other 

parameters using standard error propagation techniques. As disease severity increased 

all estimated parameters showed a decrease in their variation except a , which showed 

a slight increasing trend.
The correlation matrix was calculated for each disease severity and is shown in 

Table 3. (a ) was highly correlated with To for normal and mild disease states as well 

as Ft for mild and sever disease states. The highest correlations were observed 
between Ft and Tc as well as between E and k.

Figure 2.4 show the results from the Monte Carlo simulations. The bias is 

plotted on the vertical axis and standard deviation o f the added Gaussian noise on the 

horizontal axis. Error bars represent the standard deviation o f the estimated biases at 
each level o f noise. To and Vb showed little change in bias for both increasing noise 

and disease severity. Bias remained stable for Tc and Ft estimates for the mild and 

severe disease states but increased with noise for the normal disease state. The 

accuracy o f  parameter estimation amongst all parameters tended to decrease with 

increasing noise. The accuracy o f estimating To and Tc increased with increasing 

disease severity while a  estimates showed decreasing accuracy with increased disease
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severity.

3.4 DISCUSSION

To evaluate the utility o f CT-Perfusion software in assessing changes in a rat 
model fibrotic liver disease, we conducted a sensitivity analysis o f the Johson and 

Wilson model utilized by CT-Perfusion as well as performed Monte-Carlo simulations 

for normal, mild and severe disease conditions as outlined in Table 1.
In the Monte-Carlo simulations To estimates were very stable, showing little 

bias among all disease states and noise levels. As predicted by the covariance matrix 

the variance o f the estimate decreased with increasing disease level.
Monte-Carlo simulations for Tc showed a positive bias under the normal 

condition. Mild and sever disease conditions showed little bias. The correlation matrix 

showed a strong negative correlation between Tc and FT. In the Monte-Carlo 

simulations the estimates o f Ft was negatively biased for normal conditions. Thus, the 

Monte Carlo simulations demonstrate the strong negative correlation between Tc and 

Fj predicted by the covariance/correlation matrix. The variances o f  Tc and Ft in the 

Monte Carlo simulations also agreed with the predictions o f the covariance matrix, 
both decreased with increasing disease severity.

The Vb estimates in the Monte Carlo simulations were stable among disease 

states and noise levels. The mild diseased state had the largest bias but still remained 

less than 10% relative to the mean. The Vb estimates also had the smallest variance o f  

all the estimated parameters relative to their means. This is likely because o f  the
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strong negative correlation between Tc and FT. Since Vb is the product o f Tc and Fb 
according to the Central Volume Principle27,28, any error in one parameter would 
largely be canceled out by error in the other.

Determined by Ft and E via Crone’s equation 21, PS was the least stable and 

accurate o f all the parameters. This should not be surprising as the covariance matrix 

predicted a very large variance for the estimation o f PS. As the Monte-Carlo 

simulations demonstrate in Figure 2.4, constraints applied by CT Perfusion software 

greatly reduce this variance. Consequentially a large bias is introduced into the 

estimate. The changes in the sensitivity function o f E over disease severities were the 

largest among all the parameters (Figure 2.3 C). These changes in sensitivity also 

affect the parameters with which E is correlated. Under normal conditions E is 

partially correlated with Tc, but then becomes more closely correlated with a  and Ft 

as the disease severity worsens. These correlations mean that any bias in E will be 

transferred to the correlated parameters. Thus, bias in the estimate o f E, which is 

caused by constraints intended to reduce its variance in CT Perfusion, is a major 

source o f bias seen in the other parameters.

The covariance matrix showed no trend in the variance o f a , however, in the 

Monte-Carlo simulations the variance for a  increased as disease severity worsens. 

This is likely due to the physiological constraint that a  must be positive which is 

employed by CT-Perfusion. At low values o f a  this constraint will affect the estimate 

more than at the higher values. As a result the low a  (low disease severity) estimates 

have lower variance than predicted by the covariance matrix. Overall the Monte-Carlo 

simulations show a stable estimate o f a  with disease severity and noise levels.
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Variance, although increasing with disease severity, remained reasonable. The 

sensitivity function for a  shows a narrow temporal window o f sensitivity. Care should 

be taken that no motion or other artifacts occur during this window o f imaging or 

large errors in the estimation o f a  may result.

We conducted a sensitivity analysis o f the model utilized by CT-Perfusion, as 

well as performed Monte-Carlo simulations for different health conditions, both 

normal and abnormal, o f  the liver. The comparison o f the theoretical estimates o f  

variance from the covariance matrix to the results o f the Monte-Carlo simulations 

highlight some o f the effects o f constraints used in CT-Perfusion software. While 

constraining a variable can reduce its variance, this inevitably introduces a bias into 

the estimate. Whenever there is a high level o f correlation between parameters, 
caution should be used when applying constraints. Any bias introduced by a constraint 
will not only bias the constrained parameter, but can bias other correlated parameters 

as well.
There are limitations in this study. First, one set o f the arterial and the portal 

venous time density curves from a single DCE-CT rat study was used to generate the 

Monte-Carlo simulations as well as the sensitivity functions and covariance and 

correlation matrices. Second, the effects o f different noise levels o f  the input time 

density curves or injection rates were not investigated. The effect o f  different 
injection rates on compartmental models has been investigated several times before 14 

.I t  has been concluded that slowing down the injection rate generally increases 

uncertainty and bias in parameter estimation.
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Overall these simulations suggest that CT-Perfusion can accurately and 

reliably measure multiple physiological parameters in the liver o f the rat. One o f these 

parameters, a, being the ratio between the Fa and Ft, could be a sensitive parameter 

for non-invasively measuring fibrosis progression in the liver.
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Figure 2.1 Time density (concentration) curves o f the abdominal aorta, Ca(t), and 

the portal vein, Cpv(t), acquired from a DCE- CT study on a rat scanned at 120kVp
and 80mA.
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Figure 2.2 Schematic o f Jonson and Wilson model modified for dual input for the
liver. Contrast arriving from the hepatic artery Ca(t) and portal vein Cpv(t) flows into 

the intravascular space. From the vascular space the contrast can diffusion into the 

extravascular (Disse) space.
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Mean Vascular Transit Time 
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Figure 2.3 Sensitivity functions for normal, mild, and severe disease conditions.
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Figure 2.4 Results from the Monte Carlo simulations. The bias is plotted on the 

vertical axis and standard deviation o f the added Gaussian noise on the horizontal axis. 
Error bars represent the standard deviation o f  the estimated parameter at each level o f
noise.
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Values Used For Sensitivity Analysis
a Fy E k To Tc vb PS

Normal 15 200 0.17 0.063 4.0 8.5 28.3 37.3
Mild 25 150 0.12 0.021 4.0 10.5 26.3 19.2

Severe 40 125 0.10 0.011 4.0 10.5 21.9 13.2

Table 2.1 Parameter values used for sensitivity analysis and Monte-Carlo
simulations. The values were determined form previous microsphere experiments and 

indicator dilution techniques. Units are as follows: a  %; Fj ml/min/lOOg; E unitless; k 

min'1; T0 seconds; Tc seconds; Vb ml/lOOg; PS ml/min/lOOg.

Disease
Severity

Noise
Level

Variance as Predicted by the Covariance Matrix
<x(%) Ft E k To Tc vb PS

Normal SD=2 5.27 13.5 0.20 0.020 0.7 0.8 3.27 233.2
SD=4 10.5 26.9 0.40 0.039 1.4 1.6 6.55 466.3
SD=6 15.8 40.4 0.59 0.059 2.0 2.4 9.82 699.5
SD=8 21.1 53.9 0.79 0.078 2.7 3.2 13.1 932.7

Mild SD=2 5.89 8.95 0.16 0.008 0.5 0.7 2.42 197.1
SD=4 11.8 17.9 0.32 0.016 1.0 1.3 4.84 394.1
SD=6 17.7 26.8 0.47 0.024 1.5 2.0 7.26 591.2
SD=8 23.5 35.8 0.63 0.032 2.0 2.6 9.68 788.2

Severe SD=2 5.32 7.54 0.17 0.006 0.3 0.6 1.88 216.3
SD=4 10.6 15.1 0.35 0.012 0.7 1.1 3.76 432.6
SD=6 16.0 22.6 0.52 0.018 1.0 1.7 5.65 648.9
SD=8 21.3 30.2 0.69 0.024 1.3 2.3 7.53 865.2

Table 2.2 Variances o f estimated parameters for normal, mild, and severe liver
disease, as determined from the diagonal o f  the covariance matrix. Units are as
follows: a  %; Ft ml/min/lOOg; E unitless; k min'1; To seconds; Tc seconds; Vb
ml/100g; PS ml/min/lOOg.
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Disease
Severity Correlation Matrix

a Ft E k To Tc
a 1.000 0.027 0.137 -0.186 0.870 -0.147
Ft 0.027 1.000 0.264 0.222 0.476 -0.948

Normal E 0.137 0.264 1.000 0.883 0.224 -0.500
K -0.186 0.222 0.883 1.000 -0.078 -0.360
To 0.870 0.476 0.224 -0.078 1.000 -0.554
Tc -0.147 -0.948 -0.500 -0.360 -0.554 1.000

a Ft E k To Tc
a 1.000 -0.623 0.576 0.310 0.793 0.322
Fy -0.623 1.000 -0.305 -0.116 -0.079 -0.895

Mild E 0.576 -0.305 1.000 0.908 0.511 -0.086
K 0.310 -0.116 0.908 1.000 0.306 -0.173
To 0.793 -0.079 0.511 0.306 1.000 -0.232
Tc 0.322 -0.895 -0.086 -0.173 -0.232 1.000

a Ft E k To Tc
a 1.000 -0.748 0.690 0.511 0.570 0.420
Ft -0.748 1.000 -0.534 -0.380 0.018 -0.861

Severe E 0.690 -0.534 1.000 0.939 0.425 0.110
K 0.511 -0.380 0.939 1.000 0.330 0.027
To 0.570 0.018 0.425 0.330 1.000 -0.364
Tc 0.420 -0.861 0.110 0.027 -0.364 1.000

Table 2.3 Correlation matrices o f  estimated parameters for normal, mild, and 

severe liver disease. Elements o f  the correlation matrix are all between -1 and 1. 
Unity represents perfect positive correlation and -1 is perfect negative correlation. A  

coefficient o f zero represents no correlation.
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CHAPTER3
IN-VIVO MONITORING OF THE DEVELOPMENT AND PROGRESSION 
OF HEPATIC FIBROSIS IN A CCL, RAT MODEL WITH CT PERFUSION

3.1 INTRODUCTION

With an increased understanding o f the mechanism o f fibrosis in response to 

chronic liver injury1, potential anti-fibrotic drugs have been proposed and 

demonstrated the reversal o f  liver fibrosis in-vitro and in-vivo2 3 4. To effectively test 
these drugs, both in animals and eventually in clinical trials, a repeatable measure o f  

fibrosis progression will be required.
The staging o f fibrosis is also an important factor in treatment planning. 

Patients with hepatitis C virus have been shown to benefit from antiviral therapy
r  /  *7however; interferon treatment is not without its complications . Thus, therapy is 

reserved for those who have already shown a marked progression o f liver disease. 
Currently patients with a METAVIR score o f F2 or F3 are classified as having 

‘clinically significant’ fibrosis meaning they are at higher risk for developing cirrhosis 

and it’s subsequent complications. Thus, patients with clinically significant fibrosis 

have a higher indication for anti-viral treatment than patients with no, or minimal 
fibrosis (METAVIR F0/F1) 9 l0. Patients with the highest METAVIR score o f  F4 

should be monitored and treated for cirrhosis related complications such as, portal 
hypertension and hepatocellular carcinoma.
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Liver biopsy is currently the gold standard for assessing fibrosis, however it is 

not without limitations. Histological grading is not reproducible; there are both intra- 
and inter-observer variability on small sized or fragmented biopsy samples11. In 

addition the biopsy procedure can be painful and carries a risk o f serious 

complications , greatly reducing patients’ willingness to participate in clinical trials. 
Because o f these limitations, biopsy is an impractical method for the regular 

monitoring o f liver fibrosis required for the evaluation o f new anti-fibrotic treatments 
as well as treatment planning.

In response to this need, many noninvasive methods for monitoring hepatic 

fibrosis have been proposed; o f which the most thoroughly investigated is serum 

markers. Both direct serum markers, such as hyaluronate, and indirect serum markers 

such as alanine transaminase (ALT) and aspartate transaminase (AST) have been 

investigated 13 14 15 16 I7. When only direct or indirect markers are used individually 

they can reasonably diagnosis or exclude cirrhosis but lack the ability to differentiate 

intermediate stages o f  fibrosis. Thus newer algorithms, combining multiple markers, 
such as Fibrotest or the Enhanced Liver Fibrosis (ELF) test have been proposed to 

improve diagnostic accuracy. In a meta-analysis Fibrotest was able to distinguish 

between METAVIR stages ^F1 vs or ‘clinically significant’ fibrosis with 

AUROC o f .84 .A  limitation o f direct liver markers is that they are not liver specific 

thus; they require patient specific considerations to be taken into account when 

interpreting the results. Currently, the ability to measure direct markers is not 
routinely available in most hospitals.
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Non-invasive imaging methods for staging o f liver fibrosis have been 

proposed as well. Some o f these include, diffusion-weighted magnetic resonance 

(MR) , liver stiffness measurement (LSM) techniques such as transient
elastography22,23 and MR elastography24 25 26, as well as perfusion imaging 27'29.

The goal o f perfusion imaging in the liver is to track changes in the hepatic 

microvasculature. Chronic liver disease, regardless o f the etiology, leads to the 

“activation” o f hepatic stellate cells30. This activation results in the transition o f  the 

quiescent hepatic stellate cells to a proliferative, fibrogenic, and contractile 

myofibroblast-like phenotype. The contractility o f the activated hepatic stellate cells, 
as well as the resulting fibro-genesis and collagen deposition, disrupts the normal 
sinusoidal vasculature. Consequentially, an increase in blood flow resistance is 

observed leading to decreased portal blood perfusion and portal hypertension31.
In this regard the aim o f our study was to correlate the perfusion parameters 

calculated using CT-Perfusion (GE Healthcare) in the liver o f the rat, to the amount of  

liver fibrosis determined by digital image analysis o f  stained excised liver sections.

3.2 METHODS

3.2.1 Animal Model
Male Sprague-Dawley rats (300g - 350g) were randomized into control and 

treated groups. To induce liver cirrhosis, the treated group (n=9) received 

intraperitoneal injections o f carbon tetra-chloride (CCI4) three times a week at a dose 

o f 0.15ml/kg diluted 1:6 in olive oil. Phénobarbital (0.04g/L) was also added to the
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drinking water o f the CCI4 treated animals to further potentiate liver damage 32. The 

control group (n=6) received intraperitoneal saline injections three times a week. 
Dynamic contrast enhance computed tomography (DCE-CT) scans, as described 

below, were performed on all animals at baseline and after 2, 4, 6, and 8 weeks of 

treatment. After 8 weeks o f treatment all animals were euthanized. Livers were 

removed and fixed in 10% buffered formalin for histological examination.
To obtain histology samples at intermediate disease levels two groups o f  rats 

were treated with CCI4 and phénobarbital as described above. The first group (n=5) 
received treatment for 4 weeks and the second group (n=5) received treatment for 6 

weeks. After the respective 4 and 6 weeks o f treatment, DCE-CT scans were 

performed. The animals were then euthanized and livers were removed for 

histological analysis.

3.2.2 Animal Preparation
Animals were initially sedated with 3% isoflurane. Once sedated, a catheter was 

inserted into the tail vein. 35mg/kg o f pentobarbital was then administered via intra­
venous (IV) injection and isoflurane anesthesia was discontinued. Animals were then 

intubated and placed in a supine position o f  the CT bed where they were mechanically 

ventilated on oxygen at a rate o f approximately 80 breaths per minute. To facilitate a 

breath hold, 0.1ml/kg o f the paralytic, pancuronium, was administered IV just prior to 

imaging. CO2 and O2 levels were monitored using a pulse oximeter. PCO2 was 

maintained at 40+/-2 mm Hg and O2 saturation was maintained above 98%. 
Temperature was monitored via rectal probe and maintained at 37.5 +/- 0.5C with a
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re-circulating heated water blanket. Supplemental doses (5mg/kg) o f pentobarbital 
were administered IV as required during the experiment.

3.2.3 Imaging
DCE-CT scans were performed using a clinical GE multi-slice CT scanner 

(Discovery VCT, GE Healthcare). A localization scan was first performed to place 

eight 5mm slices covering the entire liver. After the scan location was selected the 

DCE-CT scan was conducted in two phases. In the first phase, images were acquired 

in cine mode with a tube voltage and current o f  120kVp and 80mA respectively and a 

gantry speed o f one rotation per second. Images were reconstructed using the detail 
filter and a temporal resolution o f 0.45 seconds. Total time for the first phase cine 

scan was 34 seconds. At the beginning o f  the scan lml/kg o f an iodinated contrast 
agent (Omnipaque 300mgl/ml) was injected via the tail vein catheter over 4s. During 

the entire first phase the ventilator was turned off to simulate a breath hold and 

eliminate any respiratory motion in the liver.
In the second phase the ventilator was turned on (80 breaths per minute) and 

animals were scanned in cine mode for 1.2 seconds, every 10 seconds, up to a total o f  

two minutes. After completion o f the scan, images from the second phase were 

retrospectively gated to match the first phase images. Using the first phase images, a 

region o f interest was drawn at the level o f the diaphragm. From the 16 images in each 

o f  the second phase cine scans, the image that best matches the first phase images 

(acquired with breath hold) was manually selected based on image intensity. This 

proved to be a simple manual registration requiring only a few minutes to complete
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per study. The smooth second phase o f the portal venous and aortic time density 

curves demonstrate the aptitude o f the retrospective gating method (Figure 3.1).

3.2.4 CTPerfusion Measurements/Data Analysis
CT images were analyzed using CT Perfusion software, which utilizes a dual 

input hybrid, compartment and distributed parameter, model. This model has been 

previously described and validated with microspheres in the rabbit liver 33. As 

expressed in equation (1), a weighted sum o f the aortic, Ca(t), and portal venous, 
Cpv(t), time density curves (TDC) were deconvolved against the liver parenchyma 

TDC, Q(t), in CT Perfusion (GE Healthcare) on a pixel-by-pixel basis to obtain the 

impulse residue function (IRF) 34 35 from which hepatic hemodynamic parameters are 

derived as explained below. The abdominal aorta was used as a surrogate for the 

hepatic artery due to its small size. Equation (2) defines the IRF, R(t)

that is derived from the hepatic artery and thus, the hepatic arterial blood flow (Fa) is 

calculated as a-Fj. E is the extraction fraction o f the contrast agent to the extra 

vascular space, k is the net back flow rate o f  the contrast from the extravascular space

( 1)

0.0 0 < t < T0
R(t) = « 1.0 T0 < t < T 0 +Tc

Ee-k(«-T0-Tc) t > T0 + Tc
(2)

Ft is the total hepatic blood flow, a  is the fraction o f total hepatic blood flow
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to the intravascular space defined as k= FyE/Ve, where Ve is the extra vascular 

volume. Tc is the mean transit time o f the contrast agent from the arterial side to the 

venous side. To is the appearance time o f the contrast agent in the parenchyma relative 

to that o f  the aorta. Blood volume (Vb) is calculated as the product F rT c via the 

Central Volume Principle. The permeability surface area product (PS) is calculated 
from the Crone relationship as P S = -F rln (l-E )36.

Perfusion weighted (PW) maps were generated for each CT-Perfusion study by 

averaging the images in the first phase o f each scan. In the PW maps the hepatic artery 

and portal vein branches appeared hyper-dense while the hepatic veins appeared hypo- 
dense. Using custom software (IDL v6.0; RSI Inc., CO, USA) a region o f interest 
(ROI) was drawn on each PW map to encompass as much liver parenchyma as 

possible while avoiding large vessels. Measurements were obtained by applying the 

set o f  liver ROIs for each study to its respective functional maps (Ft, Fa, a , Vb, Tc, PS) 
generated by CT-Perfusion.

3.2.5 Histological Analysis
After the final CT examination, rats were sacrificed with sodium pentobarbital 

overdose. Livers were removed and fixed in 10% buffered formalin. Multiple liver 

lobes were collected and embedded in paraffin and 5 pm thick slices were obtained for 

histological analysis. The slices were then stained with methyl blue and mounted on 

slides. The slides were digitized using an Aperio Scan Scope system (Aperio 

Technologies Inc., Vista, Ca, USA). Twelve images with an individual area o f  

approximately 5mm were collected over multiple liver lobes o f each rat. The ImageJ
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software package 37 was used to measure percent positive area o f stained collagen 

(PPAC). Thresholds were automatically determined using the maximum entropy 

method . An example o f a fibrotic liver stained with methyl blue is shown in Figure 

3.3(A) and the resulting PPAC determined with Image J in Figure 3.3(B).

3.2.6 Statistical Analysis
Statistical analysis was performed using SPSS software (SPSS Inc., Chicago, 

IL, USA). A Mixed Model ANOVA was used as an omnibus test to identify 

significant differences between the control and CC14 treated groups. Student t-tests 

with Bonferroni correction were used for post-hoc analysis o f differences. To assess 

differences in PPAC between control rats and rats treated with CC14 for 4, 6 and 8 

weeks, independent unpaired t-tests for unequal variances were used. The Spearman 

correlation method was used to evaluate the relationship between the PPAC and a. A 

P-value <0.05 was regarded as statistically significant.

3.3 RESULTS

CT imaging and subsequent analysis was successfully performed in all animals 

at all time points. None o f the rats suffered any obvious adverse effects from the CC14 

treatment nor did they develop any complication such as acities.
Liver samples in 3 animals (one treated with CC14 for 6 week and 2 treated 

with CCL4 for 8 weeks) were not adequately fixed and thus, subsequent staining and 

digital image analysis could not be performed. For the other 22 rats (6 treated with
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saline for 8 weeks and 6, 5, 8 treated with CC14 for 4, 6, and 8 weeks respectively) 
PPAC was quickly and easily assessed. The mean PPAC for saline treated animals 

was 0.37%. The mean PPAC for animals treated with CC14 was as follows; four 

weeks o f treatment, 1.74%; 6 weeks o f treatment, 2.31%; eight weeks o f treatment, 
2.20%. The PPAC o f animals treated with CC14 for 4, 6 and, 8 weeks were all 
significantly higher than controls (P<0.002). However weeks 4, 6 and, 8 were not 
significantly different from each other.

Figures 3.4 through 3.9 show measurements o f  Ft, Fa, a , Vb, Tc, and PS 

respectively over 8 weeks o f treatment with either saline (control) or CC14 (treated). 
The mixed model analysis showed that CC14 treatment had a significant effect on Ft, 
Fa, a , and Vb but not Tc. PS showed a non-significant trend o f increase with time in 

the treated group
Post hoc analysis using a two-tailed student t-test with Bonferroni correction 

showed significant differences in F t , Fa, a , and Vb between control and treated 

animals. There was a significant difference in Ft between control and CC14 treated 

animals at weeks 6 and 8, as well as between CC14 treated animals at week 0 

(baseline) and week 8. Fa showed a significant difference between treated and control 
animals at week 6. a  showed a significant difference between control and CC14 

treated animals at weeks 4, 6 and, 8. a  o f CC14 treated animals at weeks 4, 6, and 8 

were also significantly higher from the baseline value. Vb for CC14 treated animals at 
week 8 was significantly lower than baseline value and that o f control animals at week
8.
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A substantial correlation (r=.82 p<.00001) was observed between a  and PPAC 

and is shown in Figure 3.10. All other perfusion parameters showed a low (r < 0.5) 
correlation with PPAC.

3.4 DISCUSSION

Digital image analysis was used in this study as a quantitative method for 

assessing liver fibrosis in excised liver sections. The common histopathological
Omethods o f assessing fibrosis has been the METAVIR staging system . METAVIR 

was designed for the prognostic evaluation o f biopsy from hepatitis C patients. 
Categorical staging methods place a larger emphasis on the patterns and structures 

present than the actual extent o f fibrosis and are thus limited by their semi-quantitative 

nature as well as inter-observer variability. In contrast to this, digital image analysis 

uses a continuous variable and has implicitly high reproducibility and accuracy39.
Of all the perfusion parameters only a  showed a strong correlation (r=0.82 

PO.OOOOl) with PPAC (Figure 3.10). The increase in a  is caused by the hepatic 

arterial buffer response (HABR). As resistance to blood flow increases with collagen 

deposition as fibrosis progresses, portal blood flow has been shown to decrease. It is 

suspected that decreased washout o f adenosine, a vasodilator, caused by decreased 

portal blood flow mediates an increase in hepatic arterial blood flow31. Thus, a , which 

is the ratio o f Fa/Fr, increases with disease severity and may potentially be an
excellent biomarker for liver fibrosis.
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The CC14 model o f liver fibrosis used in this study is common and has been 

well explored 40. Over the 8 weeks o f treatment, liver fibrosis progressed from normal 
liver architecture to portal fibrosis with few septae and finally bridging fibrosis and 

cirrhosis (Figure 3.3). Only three o f the treated animals developed cirrhosis. Although 

Ft and Vb did not correlate well with PPAC treated animals had significantly lower 

values than control animals after 8 weeks o f treatment. While a  seems to be a good 

biomarker for moderate fibrosis, Fj and Vb may be good biomarkers for predicting 

cirrhosis which was starting to develop in our model. Other perfusion studies o f  

cirrhotic liver disease have found similar decreases in Ft and Vb41,42. Multiple 

biomarkers o f different stages o f  liver disease may be useful for staging. Similar to 

serum marker algorithms, combinations o f perfusion parameters could improve 

diagnostic performance and warrant further investigation.
The use o f mechanical ventilation along with a paralytic agent allowed for a 

simulated breath hold in the animal. Along with a simple and fast manual registration 

technique almost all motion was eliminated from the cine scan. While this 

methodology cannot be used in patients, novel registration methods have the potential 
to substantially reduce breathing motion and noise respectively in clinical practice43.

In our study the histological samples were not precisely matched to the 

location o f perfusion analysis. Although liver disease is generally thought o f as a 

diffuse disease, some heterogeneity has been shown to occur". Thus, correlation of  

PPAC and perfusion parameters may have been improved if  an exact match between 

the area analyzed at CT examination and histological samples could be obtained.
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DCE-CT imaging carries with it the inherent risks o f cancer 

induction/mortality and nephrotoxicity from ionizing radiation and iodinated contrast 
agents used in the study. Repeated imaging o f the same location required for DCE 

imaging techniques can lead to high effective doses o f typically 15-20 mSv in 

patients. However, newer iterative reconstruction techniques can reduce the effective 
dose by several fold. 44 45

DCE-MR offers a solution to radiation dose but has it’s own drawbacks. 
Compared to DCE-CT, DCE-MR has a lower spatial resolution. Additionally, 
velocity-induced signal intensity changes in larger vessels has created difficulties 

in obtaining quantitative perfusion data with DCE-MR 46 47.
For this study we used a commercially available dual input hybrid, 

compartment and distributed parameter, model (CT-Perfusion, GE Healthcare, 
Waukesha,WI, USA). Several different methods for the measurement o f liver 

perfusion have previously been proposed 48 29. However, discrepancies between 

models used for perfusion analysis have been demonstrated 49. Choice o f method for 

the estimation o f perfusion parameters must be assessed for each application. Models, 
and respective assumptions, must be applicable to the physiology o f both the normal 
and disease states. Ideally, in-vivo validation o f perfusion parameters against a non­
model based gold standard would allow quantitative evaluation o f various models. To 

this effect, microspheres have been used to validate hepatic arterial and portal venous 

blood flow in the liver 33 29. While these methods allow validation o f blood flow other 

perfusion parameters such as blood (or distribution) volume, Tc and PS currently lack 

a strong reference standard for validation. Until all perfusion parameters can be
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reliably validated, under normal and disease states, the utility o f various models will 
depend largely on their diagnostic capability and availability.

In conclusion this study showed that perfusion parameters estimated with CT- 
Perfusion correlated with fibrosis content determined by digital image analysis. In 

particular, a , correlated very well (r=0.82 PO.OOOOl) with the progression o f fibrosis 

and significant changes in Ft and Vb were observed when rats progressed to cirrhosis. 
These result show that CT-Perfusion is a useful method for quantifying hepatic 

fibrosis and subsequent progression to cirrhosis.
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Figure 3.1 Concentration time curves from the abdominal aorta, Ca(t), and the 

portal vein, Cpv(t), acquired from actual CT data o f a rat. The smooth nature o f the 

second phase demonstrates the aptitude o f the registration method used.
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C o n tro l  4 W e e k s  C C I 4  8 W e e k s  C C I 4

Figure 3.2 Example o f Regions O f Interest (ROI) drawn for measurement o f  

perfusion parameters. Care was taken to include as much liver parenchyma as possible 

while excluding large vessels. Histology was stained with methyl blue for collagen. 
Decreased hepatic blood flow (Ft) and blood volume (Vb) can been seen after 8 weeks 

o f treatment. And increase in arterial fraction o f blood flow (a) can be seen after only
4 weeks o f  treatment.
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Figure 3.3 An example o f quantification o f liver fibrosis with digital image 

analysis. Sample image used for quantification (top) and 8-bit converted imaged for 

digital image analysis (bottom). Red area corresponds to the percent positive area o f  
collagen (PPAC). In this example PPAC was 2.9% o f the total area.
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Weeks of Treatment
Figure 3.4 Total hepatic perfusion measured in rats treated with CCI4 and saline 

over 8 weeks o f treatment. (*significant difference from treated baseline; #significant 
difference from control)

0 2 4 6 8
Weeks of Treatment

Figure 3.5 Hepatic arterial blood flow measured in rats treated with CCI4 and 

saline over 8 weeks o f treatment. (* significant different from treated baseline)
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0 2 4 6 8
Weeks of Treatment

Figure 3.6 Hepatic arterial fraction o f blood flow measured in rats treated with 

CC14 and saline over 8 weeks o f treatment. (*significant difference from treated 
baseline; #significant difference from control)

Weeks of Treatment
Figure 3.7 Blood volume measured in rats treated with CCI4 and saline over 8 

weeks o f treatment, (♦ significant difference from treated baseline; #significant 
difference from control)
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0 2 4 6 8
Weeks of Treatment

Figure 3.8 Mean vascular transit time measured in rats treated with CCU and 

saline over 8 weeks o f treatment.

Weeks of Treatment
Figure 3.9 Permeability surface area measured in rats treated with CCI4 and saline
over 8 weeks o f treatment.
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Figure 3.10 Correlation between hepatic arterial fraction and percent positive area 

o f collagen (PPAC) from digital image analysis o f  liver specimens. Spearman 

correlation coefficient, r=0.82 PO.OOOOl.



79

3.5 REFRENCES

1. Friedman, S. L. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol 
Hepatol 7, 425-436 (2010).

2. Galli, A. et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and 
hepatic stellate cell activation in vivo and in vitro. Gastroenterology 122, 1924- 
1940 (2002).

3. Tugues, S. et al. Antiangiogenic treatment with sunitinib ameliorates 
inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 
4 6 ,1919-1926 (2007).

4. Pinzani, M. & Vizzutti, F. Fibrosis and cirrhosis reversibility: clinical features 
and implications. Clin Liver Dis 12, 901-13, x (2008).

5. Simin, M., Brok, J., Stimac, D., Gluud, C. & Gluud, L. L. Cochrane systematic 
review: pegylated interferon plus ribavirin vs. interferon plus ribavirin for 
chronic hepatitis C. Aliment Pharmacol Ther 25, 1153-1162 (2007).

6. Kasahara, A. et al. Interferon treatment improves survival in chronic hepatitis C 
patients showing biochemical as well as virological responses by preventing 
liver-related death. J Viral Hepat 11, 148-156 (2004).

7. Yoshida, H. et al. Interferon therapy prolonged life expectancy among chronic 
hepatitis C patients. Gastroenterology 123, 483-491 (2002).

8. Bedossa, P. & Poynard, T. An algorithm for the grading o f activity in chronic 
hepatitis C. The METAVIR Cooperative Study Group. Hepatology 24, 289-293 
(1996).

9. Strader, D. B., Wright, T., Thomas, D. L. & Seeff, L. B. Diagnosis, 
management, and treatment o f hepatitis C. Hepatology 39, 1147-1171 (2004).

10. Veldt, B. J. et al. Sustained virologic response and clinical outcomes in patients 
with chronic hepatitis C and advanced fibrosis. Ann Intern Med 147, 677-684 
(2007).

11. Bedossa, P., Dargere, D. & Paradis, V. Sampling variability o f  liver fibrosis in 
chronic hepatitis C. Hepatology 38, 1449-1457 (2003).

12. Bravo, A. A., Sheth, S. G. & Chopra, S. Liver biopsy. N Engl J Med 344, 495- 
500 (2001).

13. Halfon, P. et al. Accuracy o f hyaluronic acid level for predicting liver fibrosis 
stages in patients with hepatitis C virus. Comp Hepatol 4, 6 (2005).

14. Guechot, J. et al. Diagnostic accuracy o f hyaluronan and type III procollagen 
amino-terminal peptide serum assays as markers o f liver fibrosis in chronic viral 
hepatitis C evaluated by ROC curve analysis. Clin Chem 42, 558-563 (1996).

15. Walsh, K. M., Fletcher, A., MacSween, R. N. & Morris, A. J. Basement 
membrane peptides as markers o f liver disease in chronic hepatitis C. J Hepatol 
32, 325-330 (2000).

16. Wong, V. S. et al. Serum hyaluronic acid is a useful marker o f liver fibrosis in 
chronic hepatitis C virus infection. J Viral Hepat 5, 187-192 (1998).



80

17. Park, G. J., Lin, B. P., Ngu, M. C., Jones, D. B. & Katelaris, P. H. Aspartate 
aminotransferase: alanine aminotransferase ratio in chronic hepatitis C infection: 
is it a useful predictor o f cirrhosis? J Gastroenterol Hepatol 15, 386-390 (2000).

18. Poynard, T. et al. Meta-analyses o f FibroTest diagnostic value in chronic liver 
disease. BMC Gastroenterol 7, 40 (2007).

19. Taouli, B. et al. Diffusion-weighted MRI for quantification o f liver fibrosis: 
preliminary experience. AJR Am J  Roentgenol 189, 799-806 (2007).

20. Lewin, M. et al. Diffusion-weighted magnetic resonance imaging for the 
assessment o f fibrosis in chronic hepatitis C. Hepatology 46, 658-665 (2007).

21. Fujimoto, K. et al. Evaluation o f the mean and entropy o f apparent diffusion 
coefficient values in chronic hepatitis C: correlation with pathologic fibrosis 
stage and inflammatory activity grade. Radiology 258, 739-748 (2011).

22. Sporea, I., Sirli, R., Popescu, A. & Danila, M. Acoustic Radiation Force Impulse 
(ARFI)--a new modality for the evaluation o f liver fibrosis. Med Ultrason 12, 
26-31 (2010).

23. Myers, R. P., Elkashab, M., Ma, M., Crotty, P. & Pomier-Layrargues, G. 
Transient elastography for the noninvasive assessment o f liver fibrosis: a 
multicentre Canadian study. Can J Gastroenterol 24, 661-670 (2010).

24. Huwart, L. & van Beers, B. E. MR elastography. Gastroenterol Clin Biol 32, 68- 
72 (2008).

25. Asbach, P. et al. Viscoelasticity-based staging o f hepatic fibrosis with 
multifrequency MR elastography. Radiology 257, 80-86 (2010).

26. Salameh, N. et al. Hepatic viscoelastic parameters measured with MR 
elastography: correlations with quantitative analysis o f liver fibrosis in the rat. J  
Magn Reson Imaging 26, 956-962 (2007).

27. Ronot, M. et al. Liver fibrosis in chronic hepatitis C virus infection: 
differentiating minimal from intermediate fibrosis with perfusion CT. Radiology 
256, 135-142 (2010).

28. Miles, K. A., Hayball, M. P. & Dixon, A. K. Functional images o f hepatic 
perfusion obtained with dynamic CT. Radiology 188, 405-411 (1993).

29. Mateme, R. et al. Non-invasive quantification o f liver perfusion with dynamic 
computed tomography and a dual-input one-compartmental model. Clin Sci 
(Lond) 99, 517-525 (2000).

30. Friedman, S. L. Hepatic fibrosis -  overview. Toxicology 254,120-129 (2008).
31. Richter, S., Mucke, I., Menger, M. D. & Vollmar, B. Impact o f  intrinsic blood 

flow regulation in cirrhosis: maintenance o f hepatic arterial buffer response. Am 
J  Physiol Gastrointest Liver Physiol 279, G454-62 (2000).

32. Wasser, S. & Tan, C. E. Experimental models o f hepatic fibrosis in the rat. Ann 
Acad Med Singapore 28, 109-111 (1999).

33. Stewart, E. E., Chen, X., Hadway, J. & Lee, T. Y. Hepatic perfusion in a tumor 
model using DCE-CT: an accuracy and precision study. Phys Med Biol 53, 
4249-4267 (2008).

34. Lawrence, K. S. S. & Lee, T. Y. An adiabatic approximation to the tissue 
homogeneity model for water exchange in the brain: I. Theoretical derivation. 
Journal of Cerebral Blood Flow & Metabolism 18, 1365-1377 (1998).



81

35. Lawrence, K. S. S. & Lee, T. Y. An adiabatic approximation to the tissue 
homogeneity model for water exchange in the brain: II. Experimental validation. 
Journal o f Cerebral Blood Flow & Metabolism 18, 1378-1385 (1998).

36. CRONE, C. THE PERMEABILITY OF CAPILLARIES IN VARIOUS 
ORGANS AS DETERMINED BY USE OF THE 'INDICATOR DIFFUSION' 
METHOD. Acta Physiol Scand 58, 292-305 (1963).

37. AbramofF, M. D., Magelhaes, P. J. & Ram, S. J. Image processing with ImageJ, 
Biophoton. Int 11, 36—42 (2004).

38. Kapur, J. N., Sahoo, P. K. & Wong, A. K. C. A new method for gray-level 
picture thresholding using the entropy o f the histogram. Computer vision, 
graphics, and image processing 29, 273-285 (1985).

39. Masseroli, M. et al. Automatic quantification o f liver fibrosis: design and 
validation o f a new image analysis method: comparison with semi-quantitative 
indexes o f fibrosis. J Hepatol 32,453-464 (2000).

40. Constandinou, C., Henderson, N. & Iredale, J. P. Modeling liver fibrosis in 
rodents. Methods Mol Med 117, 237-250 (2005).

41. Chen, M. L. et al. Assessment o f the hepatic microvascular changes in liver 
cirrhosis by perfusion computed tomography. World J  Gastroenterol 15, 3532- 
3537 (2009).

42. Hagiwara, M. et al. Advanced Liver Fibrosis: Diagnosis with 3D Whole-Liver 
Perfusion MR Imaging— Initial Experience 1. Radiology 246, 926 (2008).

43. Hachama, M., Desolneux, A., Cuenod, C. A. & Richard, F. J. A classifying 
registration technique for the estimation o f enhancement curves o f DCE-CT scan 
sequences. Med Image Anal 14, 185-194 (2010).

44. Yu, Z., Thibault, J. B., Bouman, C. A., Sauer, K. D. & Hsieh, J. Fast model- 
based X-ray CT reconstruction using spatially nonhomogeneous ICD 
optimization. IEEE Trans Image Process 20, 161-175 (2011).

45. Comfeld, D., Israel, G., Detroy, E., Bokhari, J. & Mojibian, H. Impact o f  
Adaptive Statistical Iterative Reconstruction (ASIR) on Radiation Dose and 
Image Quality in Aortic Dissection Studies: A Qualitative and Quantitative 
Analysis. AJR Am J Roentgenol 196, W336-40 (2011).

46. Goh, V. & Padhani, A. R. Imaging tumor angiogenesis: functional assessment 
using MDCT or MRI? Abdominal imaging 31, 194-199 (2006).

47. Assumpcao, L., Choti, M., Pawlik, T. M., Gecshwind, J. F. & Kamel, I. R. 
Functional MR imaging as a new paradigm for image guidance. Abdominal 
imaging 34, 675-685 (2009).

48. Blomley, M. J. et al. Liver perfusion studied with ultrafast CT. J Comput Assist 
Tomogr 19, 424-433 (1995).

49. Kudo, K. et al. Differences in CT perfusion maps generated by different 
commercial software: quantitative analysis by using identical source data o f  
acute stroke patients. Radiology 254, 200-209 (2010).



82

CHAPTER 4
SUMMARY AND FUTURE WORKS

4.1 SUMMARY

The primary objective o f this thesis was to evaluate the utility o f  dynamic 

contrast enhanced computed tomography (DCE-CT) imaging in conjunction with CT 

Perfusion (GE Healthcare) for the investigation o f fibrotic liver disease. Monte Carlo 

simulations and sensitivity analysis were used to characterize the bias, variance and 

covariance o f perfusion parameters calculated with CT Perfusion. DCE-CT scans 

were performed bi-weekly on rats treated with peritoneal injections o f CC14 to induce 

liver fibrosis and, by eight weeks o f treatment, cirrhosis. Sham injected (control) rats 

were similarly imaged for comparison. The perfusion parameters: total hepatic blood 

flow ( F t ) ,  hepatic arterial blood flow (Fa), blood volume (V b ) , mean vascular transit 
time (Tc), hepatic arterial fraction o f blood flow (a), and permeability surface area 

(PS), were then derived from the DCE-CT scans using CT Perfusion. As treatment 
progressed, CC14 treated rats showed significant changes in perfusion parameters. 
Histological samples stained with methyl blue were collected at various stages of 

treatment. From these stained samples liver fibrosis was quantified with digital image 

analysis and correlated to perfusion parameters. A strong correlation was found 

between fibrosis content and hepatic arterial fraction o f blood flow (a).
The next sections summarize results obtained in each set o f experiments 

completed in this thesis; followed by a discussion o f the experimental and clinical
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relevance o f all major findings. Monte Carlo simulations demonstrated reasonable 

bias and variance in perfusion parameter estimates. In addition we were able to 

illustrate significant changes in FT, Vb, Fa, and a  as fibrosis progressed in a CCI4 rat 
model. This demonstrates the ability o f  DCE-CT imaging with CT Perfusion to 

quantitatively assess changes associated with vascular changes known to occur during 

the development o f cirrhosis . The chapter concludes with a discussion on potential 
avenues o f further research.

4.2 ERROR ANALYSIS OF HEPATIC PERFUSION PARAMETERS 
CALCULATED WITH CT PERFUSION

Chapter 2 presents the results o f  the sensitivity analysis o f perfusion parameters 

estimated with CT Perfusion software. Results o f the Monte Carlo simulations are 

presented for normal, mild, and severe stages o f  liver fibrosis. All sensitivity and 

Monte Carlo simulations were conducted using hepatic arterial and portal venous 

input functions obtained from actual DCE-CT studies on rats. Sensitivity analysis 

showed that Ft was the most sensitive parameter followed by a , k, E, Tc, and To 

respectively. Subsequent calculation o f the correlation matrix showed high correlation 

between Ft and Tc. Monte Carlo simulations showed that the accuracy o f parameter 

estimation amongst all parameters tended to decrease with increasing noise.
To and Vb showed little change in bias for both increasing noise and disease 

severity. Bias remained stable for Tc and Ft estimates for the mild and severe disease 

states but increased with noise for the normal disease state. The accuracy of
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estimating To and Tc increased with increasing disease severity.
An interesting observation was the effect o f constraints imposed by CT 

Perfusion software on the parameter estimates. These constraints imposed a bias on 

the parameter estimates, as could be seen in the Monte Carlo simulations. Of 

particular note, the bias over varying disease levels was inconsistent for Ft, Tc, and 

PS. This inconsistent bias could affect the ability to measure changes in perfusion 

parameters as liver disease progresses. Other parameter estimates such as Vb and a  

were accurate and consistent among all levels o f disease severity.

4.3 IN-VIVO MONITORING OF THE DEVELOPMENT AND 
PROGRESSION OF HEPATIC FIBROSIS IN A CC14 RAT MODEL WITH CT 
PERFUSION

Chapter 3 presents a study tracking changes in perfusion parameters in a CCI4 

rat model o f liver fibrosis. Animals were randomized into control (n=6) and CCI4 

treated (n=9) groups. Dynamic contrast enhance computed tomography (DCE-CT) 
scans were performed on all animals at baseline and after 2, 4, 6, and 8 weeks o f 

treatment. After 8 weeks o f treatment all animals were euthanized and livers were 

removed and stained for fibrosis with methyl blue. To obtain histology samples at 
intermediate levels o f progression two additional groups o f rats were treated with 

CCI4. The first group (n=5) received treatment for 4 weeks and the second group 

(n=5) received treatment for 6 weeks. DCE-CT scans were performed in these two 

shorter treatment groups at the same time points as the first, 8-week treatment, group,
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animals were euthanized and livers were removed for histological analysis at the end 
o f  experiment.

The DCE-CT scans were analysed with CT Perfusion software and the 

perfusion parameters, Fj, Fa, Vb, Tc, a , and PS were measured. Mixed model analysis 

showed that CCI4 treatment had a significant effect on Ft, Fa, a , and Vb but not Tc or 

PS. Post hoc analysis using a two-tailed student t-test with Bonferroni correction 

showed significant differences in F t , Fa, a , and Vb between control and treated 

animals. Digital image analysis was used to measure percent positive area o f stained 

collagen (PPAC). A substantial correlation (r=.82 p<.00001) was observed between a  

and PPAC. All other perfusion parameters showed a low (r < 0.5) correlation with 

PPAC. The strong correlation between a  and PPAC suggests that a  is a sensitive 

biomarker o f fibrosis progression in the liver. CT-Perfusion proved to be an effective 

tool for tracking known vascular changes associated with the development o f cirrhosis 
in an animal model.

4.4 EXPERIMENTAL AND CLINICAL RELEVENCE
t

The studies completed in this thesis have a number o f implications 

experimentally. In the first study the variance, bias and correlation o f perfusion 

parameters calculated with CT Perfusion were characterized for the analysis o f  liver 

disease. Results o f this study are applicable to the interpretation o f rat and possibly 

patient liver DCE-CT studies analyzed with CT Perfusion.
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In the second study a CT imaging method for measuring changes in perfusion 

parameters in a CCI4 rat model o f liver fibrosis was developed. Because o f the non- 
invasive nature o f the imaging method, repeat measurements can be made in the same 

subject. Furthermore, the CT hardware and relevant software used are widely 

available. The ability o f CT Perfusion to rapidly and accurately assess tissue 

hemodynamics makes the methodology developed in this thesis useful for 

investigating liver diseases involving vascular changes o f the liver. Of particular note 

would be cancer and ischemia/reperfusion injury in pre-clinical models.
The methods used in this thesis could be readily advanced to clinical use. The 

DCE-CT scanning protocol used the combination o f a paralytic and a ventilator, 
allowing for a simple registration method to reduce motion and noise in the data set. 
This methodology is impractical in the clinical setting however, registration 

techniques and iterative reconstruction methods currently under development4 5 could 

sufficiently reduce noise to acceptable levels. Radiation dose would not be a barrier to 

clinical implementation. DCE-CT imaging results in an effective dose to the subject 
of 15-20 mSv which, is similar to current clinical three-phase liver scans6.

4.5 FUTURE WORKS

The presented studies show the potential o f  using DCE-CT with CT Perfusion 

to longitudinally follow hemodynamic changes associated with the progression o f  

fibrotic liver disease. With an increased understanding o f the mechanisms o f fibrosis,
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nnew treatment options are becoming available . Future studies could use the methods 

developed in this thesis to aid in the assessment o f potential anti-fibrotic treatments.
OCT Perfusion has also been effectively used to study cancers o f the liver . 

Since 80% o f hepatocellular carcinoma (HCC) occur in a cirrhotic background 9 a 

cirrhosis/HCC model would be o f particular interest. A Dimethylnitrosamine model is 

capable o f producing fibrosis and cirrhosis in rats and eventually HCC 10. The 

methods developed in this thesis would be ideal for studying such a model, as well as 

evaluating potential anti-angiogenic treatments on both the development o f cirrhosis 

and HCC.

4.6 LIMITATIONS

There are a few limitations to these studies. Parameters used for simulation 

and sensitivity analysis were only appropriate for the study o f rat liver. The results 

can not be applied to studies in humans or other animal models where hepatic 

perfusion parameters differ.
Histological samples were not precisely matched to the location o f perfusion 

analysis. Although liver disease is generally thought o f as a diffuse disease, some 

heterogeneity has been shown to occur 11. Thus, correlation o f PPAC and perfusion 

parameters may have been improved if  an exact match between the area analyzed at 
CT examination and histological samples could be obtained.
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Although the CCI4 rat model o f  liver fibrosis is commonly used and well 
understood it has no direct human counterpart. The changes in perfusion parameters 

noted in the CCI4 model may differ in alternative models o f liver disease.

4.7 CONCLUSIONS

The most significant conclusions o f this thesis are listed below:
1) DCE-CT with CT Perfusion can track changes in hepatic hemodynamics 

associated with the development o f fibrotic liver disease.
2) The hepatic arterial fraction o f blood flow is strongly correlated with liver 

collagen content in a CCI4 rat model o f  liver fibrosis.
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APPENDIX A

Jan uary 29, 2007

"This  is the Original A pproval for this protocol*
*A Full Protocol submission will be required in 2011*

Dear Dr. Lee:

Your Animal Use Protocol form entitled:
Perfusion and Lipid Imaging with a Liver Specific C T  Contrast Agent to Detect Progression of Cirrhosis 
Funding Agency CIHR - applied for

has been approved by the University Council on Animal Care. This approval is valid from January 29, 2007 to 
January 31, 2008. The protocol number for this project is #2007-02jMi and replaced #2005-051-07 (pilot).

1. This number must be indicated when ordering animals for this project
2. Animals for other projects may not be ordered under this number.
3. If no number appears please contact this office when grant approval is received.

If the application for funding is not successful and you wish to proceed with the project, request that an internal 
scientific peer review be performed by the Animal Use Subcommittee office.
4. Purchases of animals other than through this system must be cleared through the A C V S  office. Health 
certificates will be required.

A N IM A L S  A P P R O V E D  FO R  1 YR.

Species Strain O ther Detail
Pain
Level

Anim al # Total 
for 1 Year

Rat Sprague Dawley -2 0 0  gm Male C 16

S TA N D A R D  O P E R A TIN G  P R O C E D U R E S
Procedures in this protocol should be carried out according to the following SOPs. Please contact the Animal Use 
Subcommittee office (661-2111 ext. 86770) in case of difficulties or if you require copies.
SO P's are also available at htto://www.uwo.ca/animat/acvs 
310 Holding Period Post-Admission
320 Euthanasia
321 Criteria for Early Euthanasia/Rodents
330 Post-Operative Care/Rodent \
343 Surgical Prep/Rodent/Recovery Surgery

R EQ U IR EM EN TS /C O M M EN TS
Please ensure that individual(s) performing procedures on live animals, as described in this protocol, are familiar 
with the contents of this document.

c.c. Approved Protocol 
Approval Letter

V/

The University of Western Ontario 
Animal Use Subcommittee/University Council on Animal Care 

Health Sciences Centre • London. Ontario • CANADA - N6A 5C1

http://www.uwo.ca/animat/acvs
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02 .01.2010
*This is the 3rd Renewal of this protocol

*A Full Protocol submission will be required in 01.31.2011

Dear Dr. Lee

Your Animal Use Protocol form entitled:

Perfusion and lipid imaging with a liver specific C T  contrast agent to detect progression of 
cirrhosis

has had its yearly renewal approved by the Animal Use Subcommittee.

This approval is valid from 02.01.2010 to 01.31.2011 

The protocol number for this project remains as 2007-028

1. This number must be indicated when ordering animals for this project.
2. Animals for other projects may not be ordered under this number.
3. If no number appears please contact this office when grant approval is received.

If the application for funding is not successful and you wish to proceed with the project, request that an internal 
scientific peer review be performed by the Animal Use Subcommittee office.

4. Purchases of animals other than through this system must be cleared through the ACVS office. Health 
certificates will be required.

REQUIREMENTS/COMMENTS
Please ensure that individual(s) performing procedures on live animals, as described in this protocol, are familiar 
with the contents of this document.
The holder of this Animal Use Protocol is responsible to ensure that all associated safety 
components (biosafety, radiation safety, general laboratory safety) comply with institutional safety 
standards and have received ai! necessary approvals. Please consult directly with your 
institutional safety officers.

c.c.

The University o f  Western OntarioAnimal Use Subcommittee / University Council on Animal Care Health Sciences Centre, • London, Ontario • CANADA -N6A 5C1
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