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Abstract

This thesis introduces a novel and interpretable index of increase which is mathematically

defined based on the distance between a given function and a set of non-increasing

functions. Unlike the widely used traditional statistical methods for analyzing relationships

between variables, the index does not rely on assumptions such as linearity, normality,

and monotonicity, which may not be satisfied. Hence, it has the flexibility to be applied

directly on pairs of data points to measure and compare non-linear, asymmetric, and

non-monotonic relationships between two variables.

We begin with a review of the literature and background knowledge in Chapter 2.

In Chapter 3, we propose a distance-based index of increase, describe its properties in

detail, and show its benefits through applying it to an educational dataset. In this way, we

see the interpretability of the index of increase and how it can be applied. We also propose

several modifications for different scenarios, such as subgroup analysis. Lastly, we provide

a step-by-step implementation guideline for non-statistical researchers or practitioners.

In Chapter 4, we investigate two extensions of the index of increase, which quantify

the interchangeability between variables. We discuss the usage of them in the context of

developing curricula, accompanied with extensive graphical and numerical illustrations.

In Chapter 5, we introduce and explore an empirical index of increase that works in

both deterministic and random environments, thus allowing to assess monotonicity of

functions that are prone to random measurement-errors. We prove consistency of the

empirical index and show how its rate of convergence is influenced by deterministic and

random parts of the data. In particular, the obtained results suggest a frequency at which

observations should be taken in order to reach any pre-specified level of estimation precision.

We illustrate the index using data arising from purely deterministic and error-contaminated

functions, which may or may not be monotonic.

Finally, in Chapter 6, we summarize our main results and give an outline of potential

future works.

Keywords: index of increase; monotonicity; consistent estimator; distance-based

measure; curriculum development; student performance evaluation
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Summary for lay audience

Traditional statistical methods for analyzing relationships between variables often rely on

assumptions such as linearity, normality, and monotonicity, which may not be satisfied.

For example, this is the case when analyzing curves depicting sales versus prices, exports

versus economic growth – they are hardly monotonic, let alone linear. Thus, the use of

traditional statistical tools becomes problematic. Furthermore, random noise or random

measurement errors frequently contaminate data, and thus true relationships are blurred,

thus leading to misrepresentations of results.

In this thesis, we explore an index of increase and its estimator that works in both

deterministic and random environments, thus enabling the assessment of monotonicity of

functions that might be exposed to random noise. The index and its estimator allow us

to quantify non-linear, asymmetric, and non-monotonic relationships between variables.

We shall illustrate theoretical results using data arising from deterministic and error-

contaminated functions, which may or may not be monotonic. We also apply the index of

increase with proper modifications in educational datasets to illuminate the use cases and

potential extensions. Finally, we summarize the contributions of this thesis and outline

the potential future works.
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Chapter 1

Introduction

Several statistical tools provide ways to capture associations between variables, particularly

monotonic associations. Many of these measures are primarily applications and extensions

of simple linear regression and Pearson correlation coefficient, which tell the extent of

the relationship by the measures’ values and indicate monotonic relationships by their

signs. In the following section, we provide several examples to illustrate where measuring

relationships between variables matters, and how those traditional statistical tools play on

stage, as well as their main limitations. Then, we introduce a novel method, the index of

increase, to overcome the limitations of traditional statistical methods when quantifying

non-linear, asymmetric, and non-monotonic relationship between variables.

1.1 Motivation

One popular method of measuring relationships between variables is linear regression.

Linear regression is able to depict asymmetric relationships between variables. It also has

solid statistical background to provide more information such as confidence intervals of

estimators. Yet, linear regression has two major limitations. One is that linear regression

is unable to accurately reflect relationships between variables in the case of non-linear

relationships. The other is that the results are biased if the data do not meet the normality

assumption. Inaccurate or biased measurements of the relationships between variables may

1



2 CHAPTER 1. INTRODUCTION

have important practical consequences. We provide two examples which are extensions of

linear regression in finance and economics to demonstrate the limitations in detail.

In finance, the Capital Asset Pricing Model (CAPM) proposed by Sharpe (1964) and

Lintner (1965) is one of the most famous models in portfolio management used to make

decisions about adding assets to a well-diversified portfolio. For CAPM’s discussions and

extensions, we refer to Fama and French (2004, 2006); Daniel et al. (2001); Eisenbeiss et

al. (2007); Zhang (2017); Gonçalves et al. (2020), and references therein. The standard

CAPM has the following structure:

E(Ri) = Rf + βi(E(Rm)− Rf ),

where E(Ri) is the expected return on the capital asset i, Rf is the risk-free rate of interest

such as interest arising from government bonds, and E(Rm) is the expected return of the

market. CAPM provides a quantity βi to measure the ith asset sensitivity of the expected

excess asset returns to the market premium E(Rm)− Rf , also known as systematic risk.

The sign of βi indicates whether the risk is increased or diminished from portfolio. In

statistical terms, β is the slope of a simple linear regression

Y = α + βX + ε,

where X is the market return, Y is the individual asset return, and ε is the error term,

which is independent of X. Thus, β is usually defined as:

β =
Cov(X, Y )

V ar(X)
.

Suppose we have daily individual stock returns {yi}ni=1 and daily market return {xi}ni=1.

Then the estimate of β is the estimate of the slope in simple linear regression:

β̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
.

From the nature of simple linear regression model, the constant slope β characterizes

the linear relationship between the independent variable X and the response variable Y .

Particularly, it measures the monotonic relationship between X and Y . It is obviously a
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directional association. When we change the positions of X and Y , β changes accordingly,

which makes sense in the CAPM case as the market performance and individual asset

performance are not interchangeable. Another important assumption of linear regression

is the normality assumption, which assumes the asset returns to be normally distributed

in the CAPM case. Practically, the asset returns seldom follow the normal distribution.

Instead, fat-tailed behaviour and skewness are common, which violate the model normality

assumption, thus leading to the biased estimates of the risk measure, β.

In economics, there is another commonly used concept called price elasticity of demand,

which measures the sensitivity, or elasticity, of the quantity demanded of a good or service

to changes in its price, all else held equal. More precisely, it is the percentage of the

change in unit sales relative to one percent of the change in the price. Price elasticity

plays an important role in optimizing product pricing and maximizing the revenues. For

the applications of price elasticity, we refer to Havranek et al. (2012); Tucker et al. (2018);

Perera and Tan (2019); Corrigan et al. (2021). The formula for the price elasticity of

demand is given as follow:

ep =
dQ/Q

dP/P
=

dlog(Q)

dlog(P )
=

dlog(Q)

dP
× P, (1.1.1)

where P is the unit price of the demanded good and Q is the quantity of the demanded

good. By the law of demand in economy, ep is usually negative as people are less likely to

buy a product when product price increases. From Eq. (1.1.1), we know that if we want to

estimate ep, we can build the following equation:

log(Q) = α + β × log(P ) + ε or log(Q) = α + β × P + ε, (1.1.2)

which is nothing but a simple linear regression with price P or its function as the predictor

and function of unit sales as the response variable. Hence, the price elasticity of demand

can be derived based on Eq. (1.1.1) and (1.1.2). In this example, we can actually describe

the non-linear relationship between unit sales and its price by using a linear model through

taking the logarithm transformation to variables. However, certain transformations of

variables as well as probabilistic assumptions are needed when using linear regression

model, which makes it inflexible in some cases when the underlying function is unknown.
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Therefore, these examples illustrate the restricted uses of linear regression owing to its

assumptions of data.

Next, we introduce some cases where researchers use other traditional statistical

techniques when quantifying and analyzing correlations between variables. Measuring and

comparing student performance are of interest for educators and psychologists. Naturally,

particular attention has been paid to the design of experimental studies and careful analyses

of observational data. As a rule, the Pearson correlation coefficient and its extension, the

intraclass correlation coefficient (ICC), and the Spearman correlation coefficient have been

extensively used in educational and psychometric literature for describing and analyzing

associations in bivariate and multivariate data. We also note that the ICC and the

Spearman correlation coefficient can solve some deficiencies exhibited by the Pearson

coefficient. For enlightening discussions and references on the ICC, we refer to, e.g.,

Looney (2000), Hedges and Hedberg (2007), Zhou et al. (2011), and on the Spearman

coefficient, to Gauthier (2001), Puth et al. (2015), and references therein. It should be also

noted that the two coefficients are closely related to the Pearson correlation coefficient.

Namely, the ICC is the Pearson correlation coefficient but with the pooled mean as the

centering constant and the pooled variance as the normalizing constant. The Spearman

correlation coefficient is the Pearson correlation coefficient of the ranks of the underlying

random variables. Consequently, both the Spearman correlation coefficient and the ICC

are symmetric with respect to the random variables, and we find this feature unnatural in

the context of the research presented in later chapters.

There are other issues with the use of these coefficients when assessing trends, as we

can clearly see from Figure 1.1.1. Namely, all the four panels have very different trends

but virtually identical Pearson correlation coefficients. We have produced these trends by

connecting the classical Anscombe (1973) bivariate data using straight lines. Each panel

of Figure 1.1.1 is also supplemented with the corresponding value of the index of increase,

denoted generically by I, which we shall introduce formally later in this thesis, once the

necessary preliminary work has been done. At the moment, we only note some of the

properties of the index that convey its idea and main features. Namely, the index is:
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Figure 1.1.1: Trends and indices of increase arising from the classical Anscombe (1973)

quartet.

• normalized, that is, its range is the unit interval [0, 1];

• take the value 1 when the trend is increasing;

• take a value in the interval [1/2, 1] when, loosely speaking, the trend is increasing

more than decreasing;

• take a value in the interval [0, 1/2] when, loosely speaking, the trend is decreasing

more than increasing;

• take the value 0 when the trend is decreasing;
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• is symmetric only when the explanatory and response variables are interchangeable;

• has a clear geometric interpretation.

Keeping these features in mind, we can now familiarize ourselves with the numerical

values of the index of increase reported in the four panels of Figure 1.1.1. Rigorous

definitions and modifications of the index of increase will be introduced in following

chapters, based on the context.

1.2 Organization of this thesis

In this thesis, we deliberately limit our research scope to the analysis of associations of

bivariate variables, which means that relationships between the variables can be expressed

via curves or scatterplots. In particular, we are interested in quantifying monotonicity

between two variables. We focus on proposing and developing a distance-based index of

increase and its practical modifications that are intuitive and interpretable to researchers

in various areas of application. We have organized this thesis as follows.

In Chapter 2, we begin with a literature review of relevant measures that quantify

associations between variables, especially monotonicity of functions. Then, we provide

background knowledge that is either closely related to the proposed index of increase

or used throughout this thesis, such as non-parametric curve fitting. In Chapter 3, we

formally introduce the novel index of increase, its properties, and practical modifications.

We illustrate its benefits through analyzing and comparing student performance between

genders using an education dataset. We also provide a step-by-step implementation guide

for non-statistical researchers. In Chapter 4, we apply the index of increase in the context

of curriculum development. In addition, we propose two extended measures based on the

index of increase, which quantify the interchangeability between subjects. Discussions of

advantages of the index and its extensions are based on an education dataset. In Chapter 5,

we introduce and explore an empirical estimator of the index of increase that works in both

deterministic and random environments, thus allowing to assess monotonicity of functions

that are prone to random measurement-errors. We prove consistency of the index and
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show how its rate of convergence is influenced by deterministic and random parts of the

data. In particular, the obtained results suggest a frequency at which observations should

be taken in order to reach any pre-specified level of estimation precision. We illustrate

the index using data arising from purely deterministic and error-contaminated functions,

which may or may not be monotonic. In Chapter 6, we make general comments related to

our contributions through this thesis and state some possible future studies.



Chapter 2

Literature review and background

knowledge

2.1 Literature review: development of measuring and

quantifying monotonicity

Monotonicity is a simple but essential property stating that if one variable increases

(or decreases), the related output also increases (or decreases). Studying monotonicity

between two variables arises naturally from daily life problems. Are higher product prices

indicating higher product sales? Are higher returns of stock A suggesting higher returns

of stock B? Is higher education level resulting higher wages? Besides, considering the

monotonicity between the input variable and output variable has been topic of interest for

data scientists as the development of monotone constraint in machine learning algorithms,

such as regressions (e.g., Brezger and Steiner, 2008), XGBoost (e.g., Wang et al., 2020),

and so on. As a results, measuring the monotonicity between input and output is becoming

increasingly vital. In some cases, data scientists rely on domain knowledge from experts.

Nevertheless, having an objective measure is more desirable. Due to efficiency and

interpretability, measures such as linear regression and the Pearson correlation coefficient

and its extensions are the first choices in practice, even though they may have limitations.

To address the issues of traditional statistical tools such as linear regression and the

8
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Pearson correlation coefficient noted in Chapter 1, we propose a novel technique, the

index of increase. The index of increase is designed specifically for illuminating directional

associations between variables, particularly useful when the variables follow non-linear and

non-monotonic relationships. In the following section, we briefly review the recent related

developments in quantitative measures for monotonicity, which provided the motivations

and inspirations for developing the index of increase. Then, we describe the use of the

index of increase and its properties as well as our theoretical contributions.

2.1.1 Importance to interpret statistical measures that capture

dependency between variables

Except for the theoretical interests (i.e. assessing nonlinear, asymmetric, monotonic

relationships) that we illustrated in the previous chapter, one of the crucial motivations of

developing the index of increase is interpretability. In this thesis, by interpretability, we

mean that we can use plain language to explain the meaning of the statistical measures

and interpret the results. In any area where statistical methods are applied, people seek for

the ability to interpret statistical results. For instance, from the perspective of academic

researchers, they desire not only to identify whether a monotonic relationship between

a pair of variables exists or not, but also want to quantify, compare, and interpret it.

From practitioner’s points of view, even though modelling with big data is becoming the

mainstream nowadays, understanding and interpreting the potential dependency between

variables are still essential before moving to a more structural modelling process. In many

cases, machine learning algorithm’s performance, such as prediction or classification ability,

highly depends on the quality of data cleaning and feature engineering, which are the

results of domain knowledge and data mining techniques. In order to better conduct

these pre-modelling processes, it is crucial to choose proper and interpretable measures to

understand the underlying relationships between variables.

With the development in statistical techniques, researchers focus more on developing

complicated probability theories such as asymptotic properties and hypothesis testing,

which deviate farther away from the interpretability of measures themselves (Reimherr and
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Nicolae, 2013). It does not mean these statistical theories are not important. Yet, being

able to explain the measures in plain language is important for a wider application beyond

statistics and mathematics. Here, we give a few examples of such measures, or frameworks,

which lack intuitive and straightforward explanations. Some of them only have explanation

at the boundary values 0 and 1. Note that value 0 usually means “independence” while

value 1 means “dependence”.

• Distance correlation

Székely, Rizzo, and Bakirov (2007) propose the distance correlation dCor2(X, Y ) as a

measure of dependence of two random vectors of arbitrary dimensions. The definition

of dCor2(X, Y ) is proved to be closely related to joint and marginal characteristic

functions. Consistency and other asymptotic properties of the empirical distance

correlation dCor2n(X, Y ) have also been proved (cf. Székely, Rizzo, and Bakirov,

2007; Székely and Rizzo, 2009). Therefore, we can naturally identify independence

through hypothesis testing. Compared to the Pearson’s correlation, distance correla-

tion can detect nonlinear and/or non-monotone dependency. Theoretically, when

dCor2(X, Y ) = 0, it implies X and Y are independent. If dCor2(X, Y ) = 1, then

there exists a vector a, a nonzero value b, and an orthogonal matrix C such that

Y = a + bXC. However, the interpretation of values between 0 and 1 remains

unclear.

One of the usages of measures of dependence is in reducing dimension of predictors,

which is important in many big data related modelling areas. Similar to feature

screening process via the Pearsons correlation introduced by Fan and Lv (2008),

feature screening process via distance correlation is also studied and implemented in

different areas (e.g., Li, Zhong, and Zhu, 2012; Kong, Wang, and Wahba, 2015).

• Maximal information coefficient

Reshef et al. (2011) present the maximal information coefficient (MIC) as a measure

of the strength of the linear or non-linear relationship between two variables, which

is based on information theory. MIC uses binning as a method to apply mutual

information (cf. Cover and Thomas, 2006) on continuous variable. Given a finite set
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D of ordered pairs, we create x bins on x-axis and y bins on y-axis so that a grid G

is defined by integers (x, y). Then, for all grids G with x columns and y rows, we try

to find the largest possible normalized mutual information mx,y. Looping through

all possible integers (x, y), MIC is defined as the maximum of all mx,y. Since MIC

is defined through mutual information, it is natural that MIC is symmetric. Also,

when MIC equals to 0, it means the random variable X and Y are independent.

When MIC tends to 1, certain noiseless relationship exists. Nevertheless, masked

by the complex definition of MIC, the explanation of values between 0 and 1 is not

straightforward. Other properties, technical details and applications of MIC can be

found in Reshef et al. (2011, 2016, 2018). Similarly, MIC can also be implemented

in feature screening process in data analysis (e.g., Ge et al., 2016; Sun et al., 2018;

Wen et al., 2019).

• Copula and copula-related measures

Copula is a widely-used framework for modelling dependency structure of random

variables, especially in quantitative finance (e.g., Li, 2000; Low et al., 2013, 2016;

Rad et al., 2016). Essentially, the copula function is the joint cumulative distribution

function of (U1, ..., Un), where Ui follows uniform distribution on interval [0, 1]. An

important theorem proved by Sklar (1973) states that the joint distribution function

can be expressed with marginal distribution functions and a copula function. For

other properties of the copula function, we refer to Nelsen (2006). Moreover, several

famous and popular measures of association of (X, Y ) can be expressed by copula,

for example, the Spearman’s ρ and the Kendall’s τ (cf. Schweizer and Wolff, 1981)

as follows

ρ(X, Y ) = 12

∫ 1

0

∫ 1

0

[C(u, v)− uv]du dv,

τ(X, Y ) = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1.

Even though copula framework has solid background theories, it is still elusive and
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cannot be easily explained in plain language due to its complicated setting.

2.1.2 Index of monotonicity inspired by the Gini index

Several researchers have worked on areas that assess and quantify monotonicity of func-

tions. As we noted previously, the index of increase in this thesis has a clear geometric

interpretation and it is a distance-based measure. Hence, we briefly introduce recent

developments of distance-based methods that measure monotonicity.

Davydov and Zitikis (2005) propose an index of monotonicity to quantify monotonicity

of a function, which is inspired by econometric concepts, the Lorenz curve and the Gini

index. In economics, the Lorenz curve (cf. Lorenz, 1905) is a graphical representation of

the distribution of income or wealth. It shows the proportion of the overall income or

wealth assumed by the bottom x% of population. The Lorenz curve starts from (0, 0) (the

origin of coordinate) to (1, 1). The curve is always monotonically increasing and never

exceeds the diagonal which is drawn under the assumption of income or wealth equality.

Mathematically, let X be a random variable representing the income with cdf F (x) and a

finite mean µF = E[X]. The actual population Lorenz function is

LF (p) =
1

µF

∫ p

0

F−1(t) dt.

When we assume income equality, we have the egalitarian Lorenz function LE(p) = p,

0 ≤ p ≤ 1. The Gini index (cf., e.g., Gini, 1914, 1921) is used to measure social inequality

in population, which is widely applied in economics (e.g., Yitzhaki and Schechtman, 2013;

Inoue et al., 2015; Liao, 2006; Greselin and Zitikis, 2018). The Gini index, denoted by GF ,

has the format

GF = 2

∫ 1

0

(LE(p)− LF (p)) dp.

From a mathematical point of view, the Gini index quantifies the area between the Lorenz

curve and the diagonal. Namely, the Gini index quantifies the gap between real social

income distribution and the social income distribution under equality assumption, which

makes the Gini index have a clear geometric interpretation.
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The logic behind the Gini index is to set a reference assuming a statement is true (i.e.,

the egalitarian Lorenz function), then compare and quantify the deviation of the actual

observation and the reference. Davydov and Zitikis (2005) adapt the similar logic and

build the following Gini-type index of monotonicity.

Definition 2.1.1. (Davydov and Zitikis, 2005) Let f : [0, 1] → [0,∞) be a function

integrable over the interval [0, 1] with respect to the Lebesgue measure λ. The Gini-type

index of monotonicity of function f is defined in the following:

If =

∫ 1

0

(Ff (t)− Cf (t)) dt =

∫ 1

0

∫ t

0

(f(u)−G−1f (u)) du dt, (2.1.1)

where Ff(t) =
∫ t
0
f(u) du, Cf(t) =

∫ t
0
G−1f (u) du, G−1f (u) = inf{x ∈ R : Gf(x) ≥ u}, and

Gf (x) = λ{s ∈ [0, 1] : f(s) ≤ x}.

Note 2.1.1. To better connect the concepts to a statistical background, Davydov and

Zitikis (2005) outline that we can interpret f as a random variable on the probability space

([0, 1],B[0,1], λ). Then, the terms introduced in Definition 2.1.1 can be interpreted as follows.

Gf(x) is the distribution function of f . G−1f (u) is the quantile function of f , which is

also called generalized inverse of the function Gf . In mathematical literatures, G−1f (u) is

also called a monotone (non-decreasing) rearrangement of f , which means G−1f (u) is a

non-decreasing measurable function such that its distribution function equals Gf(x). In

addition, Cf is called the convex rearrangement of the distribution function Ff .

Note 2.1.2. As noted by Davydov and Zitikis (2005), when a function is convex, then

its convex rearrangement coincides with the function. Thus, the area between the original

function and its convex rearrangement can be thought as a measure of convexity of

the function. Also, if a function is non-decreasing, then its integral over the intervals

[0, t], 0 ≤ t ≤ 1 is convex.

In view of Note 2.1.2, Definition 2.1.1 shows that the index of monotonicity Davydov

and Zitikis (2005) proposed adopted the general idea of the Gini index. It can measure

the lack of monotonicity of a function f because it quantifies the distance between the

probability distribution Ff generated by given function f and its convex rearrangement Cf .
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Namely, if f is non-decreasing, Ff and Cf coincide which lead to If = 0. Otherwise, If > 0.

Moreover, Davydov and Zitikis (2005) provided the general form of estimation of If and

explored its convergence rate as well as the asymptotic distribution, which contributes to

the theoretical results significantly.

Based on the aforementioned index of monotonicity, Qoyyimi and Zitikis (2014) further

proposed a L1-based index of non-decreasingness

If =

∫ 1

0

|f(t)−G−1f (t)| dt, (2.1.2)

where f and G−1f are defined the same as the ones in Definition 2.1.1. The geometric

interpretation of Eq. (2.1.2) is the L1 distance between function f and its non-decreasing

rearrangement G−1f . Theories and numerical procedures for calculating the above two

indices are also provided by Qoyyimi and Zitikis (2014). In the following chapters, when we

need to provide the numerical calculation for our proposed index of increase, we will also

embrace the general idea in their numerical procedure, namely, discretization. Qoyyimi

and Zitikis (2015) also calculated the Gini-type If in an educational dataset by fitting

curves to pairs of data points. However, there are two main concerns that we notice, which

give us reasons in favour of another distance-based measure. Firstly, the aforementioned

indices are not normalized, which gives us a difficulty to interpret the numerical results

given that we usually use 0 and 1 as the boundary. Secondly, the calculation of the indices

highly relies on the estimation of function f . Namely, it is based on the assumption that

we can choose proper curve fitting methods and the data are well fitted. In order to resolve

these concerns, we discover another candidate that measures the monotonic relationship

(or lack of it) between two variables.

2.1.3 Index of increase motivated from actuarial concept

Another distance-based candidate to measure monotonicity or lack of monotonicity of a

function is inspired by the weighted premium calculation principle in insurance context. It

also comes naturally from an optimization problem. Davydov and Zitikis (2017) proposed

the index of lack of increase (LOI) as the distance between a given function and the set

that contains all the non-decreasing functions.
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Definition 2.1.2. (Davydov and Zitikis, 2017) Let F denote the set of all absolutely

continuous functions f on the interval [0, 1] such that f(0) = 0. Denote the total variation

of f ∈ F on the interval [0, 1] by ‖f‖, that is, ‖f‖ =
∫ 1

0
|f ′| dλ. Furthermore, let F+

denote the set of all f ∈ F that are non-decreasing. For any g ∈ F , we define its LOI as

LOI(g) = inf

{∫ 1

0

|g′ − f ′| dλ : f ∈ F+

}
= inf

f∈F+
‖g − f‖. (2.1.3)

Note 2.1.3. A function h0 defined on an interval [a, b] can always be ’standardized’

into a function h defined on the interval [0, 1] such that h(0) = 0 by considering h(t) =

h0(a+ (b− a)t)− h0(a). That is why we can introduce Definition 2.1.2 for functions on

the unit interval without loss of generality.

Theorem 2.1.1. (Davydov and Zitikis, 2017) The infimum in Definition 2.1.2 is attained

at a function f1 ∈ F+ such that f ′1 = (g′)+, and thus

LOI(g) =

∫ 1

0

(g′)− dλ. (2.1.4)

Theorem 2.1.1 gives a simplified but computable representation of LOI. Direct proof

of Theorem 2.1.1 that was not provided in Davydov and Zitikis (2017) will be given in

Chapter 5. The LOI index has potential to be applied in different areas due to its intuitive

and computable definition. For example, in material science, Kirk et al. (2021) use the

LOI index as a new cost function to extend the computational design methodology for

planning compositionally graded alloys.

From theoretical aspect, we appreciate the beauty of the distance-based indices (2.1.1 –

2.1.4) that quantify monotonicity of functions. In the following chapters, we will adapt the

general idea from Definition 2.1.2 and Theorem 2.1.1 but approach them from a different

angle to form our index of increase I. We will further investigate how our index of increase

is closely related to Definition 2.1.2 but easier to understand and more intuitive. That is,

instead of studying the lack of increase, we switch to the lack of decrease which is defined

analogously and gives bigger values when the relationship between variables is increasing

more. However, when it comes to data, the underlying functions between variables

are usually unknown, which poses a significant obstacle to measuring the monotonic
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relationship between two variables using the indices in literatures. The index of increase

we propose in this thesis can definitely overcome this obstacle, since it is not only defined

in terms of given functions but also pairs of data points. We will further illustrate that

these two forms of definitions coincide in a special case.

2.2 Background knowledge

2.2.1 Curve fitting

In the following chapters, we will formally introduce the index of increase which is defined

based on underlying function between X and Y . In reality, it is almost impossible to

know in advance the real underlying function. Generally, there are two ways for us to

estimate the index of increase: 1) estimate the underlying function first, either parametric

or non-parametric, then apply the definition; 2) tweak the definition to get an estimate

with new formulation that only relies on pairs of data. Recall that one of the strengths of

the index of increase is to capture unknown nonlinear relationship. Therefore, we briefly

review a few non-parametric curve fitting methods that are widely implemented and have

flexibility in estimating the underlying regression function from given data.

Generally, one-dimensional regression problem given a response variable Y and a

explanatory variable X can be described as

Y = f(X) + ε,

where ε is the noise term, and the function f is not specified. The general goal is to find

an estimate of function f , such that the mean square error is minimal:

min
f∈F

E(Y − f(X))2. (2.2.1)

Proposition 2.2.1. minf∈F E(Y −f(X))2 = E(Y −m(X))2, where m(x) is the conditional

mean

m(x) = E(Y |X = x) =

∫
y
fX,Y (x, y)

fX(x)
dy =

∫
yfX,Y (x, y) dy∫
fX,Y (x, y) dy

, (2.2.2)
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assuming there exists a joint distribution between X and Y . That is, m(X) is the optimal

predictor of Y given X. As a result, the goal for solving one-dimensional regression problem

in (2.2.1) turns into estimating the conditional mean m(x).

The next step is to estimate the numerator and denominator in (2.2.2). In statistics,

kernel density estimation is a non-parametric technique to estimate the probability density

functions, either univariate or multivariate. This approach leads to the most popular

non-parametric regression estimator, the Nadaraya-Watson estimator (Watson, 1964;

Nadaraya, 1965), which essentially is a local constant kernel regression estimator. The

Nadaraya-Watson estimate at each target point x is written as

m̂λ(x) =

∑N
i=1Kλ(x, xi)yi∑N
i=1Kλ(x, xi)

, (2.2.3)

where Kλ(·) is the kernel function with smoothing/tuning parameter λ, which controls

the width of the local neighbourhood and needs to be specified. The bigger the λ is, the

smoother the fitted line is. The estimator in (2.2.3) can also be viewed as the weighted

sum of response variable in a local neighbourhood of target point x, which means the

underlying local approximation of the target point x is a constant. Generally, the kernel

function treats the points from the left and from the right of target point x equally.

These properties may lead to biased estimates when the X values are not equally spaced,

especially around the boundaries.

The bias can be reduced by fitting a local polynomial regression instead of a local

constant. Hence, we introduce the locally weighted polynomial regression, which is known

as the LOESS method for curve fitting. For the following chapters in this dissertation, the

LOESS method will be used to estimate the underlying relationships between variables,

and the index of increase will be applied after. The LOESS fitting process is similar to the

Nadaraya-Watson estimator. Firstly, at each point x in the data, the local neighbourhood

around x and weights for points in the neighbourhood are defined based on the smoothing

parameter λ and the kernel functions. Secondly, a low-degree polynomial is fitted using

weighted least squares, giving more weights to points near x and less weights to points
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farther away:

min
α(x),β(x),j=1,...,d

N∑
i=1

Kλ(x, xi)[yi − α(x)−
d∑
j=1

βj(x)xji ]
2

with solution f̂(x) = α̂(x) +
∑d

j=1 β̂j(x)xj. Theoretically, the degree of polynomial is not

limited to first or second degree (i.e., linear or quadratic). Nevertheless, using higher

degree of local polynomial tends to overfit the data in each neighbourhood. As a result, in

most cases, using linear or quadratic function will be sufficient.

In this dissertation, we implement the loess function in stats (R Core Team, 2017) in

R software to generate LOESS fit. The default setting for local polynomial is with degree

2. The smoothing parameter λ that controls the size of the neighbourhood is defined as

the proportion of the points, if λ < 1. And the kernel function has the form

Kλ(x, xi) = D(
|x− xi|
hλ(x)

),

where hλ(x) is the maximum distance between target point x and the points in the

neighbourhood. D(t) is the tri-cube weighting function:

D(t) =

 (1− |t|3)3 if |t| < 1;

0 otherwise.

2.2.2 Cross validation

In Chapter 5, we will introduce an adjusted estimator for the index of increase under the

situation where the data contains deterministic trend and random errors. This adjusted

estimator relies on a smoothing/grouping parameter as well. Similar to the kernel regression

which requires to decide the bandwidth λ, the grouping parameter of the index estimator

can be determined by a popular numerical technique, that is, cross validation.

The core of cross validation is to partition the sample data into a training set and a

validation set (or test set). Then, we use the training set for fitting the statistical models,

and the validation set for evaluating the performance. Through the validation set, we can

have a better idea about how the statistical models can be generalized to unknown data.
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We usually repeat the process several times to average out the influence of data partition.

Given these motivations, considering the ways that we separate the dataset and whether

we repeat the validation process or not, we have a few typical validation algorithms stated

as follows:

• Holdout method. Using this method, we randomly separate the data into a

training set used for model training and a test set used for calculating statistical

measures that quantify the model performance. Thus, the validation results depend

on the random splits. Mostly, the test set contains less data points than the training

set. Notice that the validation process is a single run, one may get misleading results

because of an “unfortunate” split. Hence, it leads to the application of the next

method.

• Repeated random subsampling method. It repeatedly generates random splits

of training and validation sets with a fixed size. For each split, similar processes

in the holdout method are executed. The final measurement of performance is

then averaged over the splits. In this way, the potential misleading results due

to an “unfortunate” split can be reduced, even though the results still depend on

the randomness. Also, since the partition is randomly decided at each split, the

validation sets might be overlapped, meaning that we may not be able to fully utilize

the original dataset to do the validation. To improve the cross validation, we can add

more restrictions to the data partitioning process, thus moving to the next method.

• K-fold cross validation. Unlike the previous method, we randomly divide the

original sample data into k groups with the same number of samples. For each group,

we treat it as the test set and the remaining groups as the training set. Then, we

conduct the model training and validation procedures. After looping through all

groups, model evaluation measures are averaged across. In this way, we ensure that

each data point appears in the test set once and k − 1 times in the training set,

which makes full use of all the data points. The choice of number of folds depends on

the size of dataset. There is a trade-off between bias and variance when deciding the
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number of folds. For example, if the number of folds is large, then we can reduce the

bias of the estimate of model performance measures while increasing the variance.

In practice, a common choice of fold number is k = 10 or k = 5 (James et al., 2013,

pp. 184).

• Leave-p-out cross validation. If the number of folds in k-fold method becomes

the number of samples, then the k-fold method degenerates to the leave-one-out

method. Its general case is called the leave-p-out cross validation. We firstly find

all the possible ways to choose p observations from original sample. Then we loop

through those combinations where we use the p observations as the validation set

and the remaining points as the training set.

More details can be found in James et al. (2013, Chapter 5). In this dissertation, we

choose the k-fold cross validation, which is a popular and intuitive method.

2.2.3 Bootstrapping

Bootstrapping is a resampling technique used to obtain estimates of summary statistics,

such as standard error and confidence interval, especially when asymptotic distribution is

unknown for an estimator. In our case, even though the consistency of the estimator of

the index of increase is proved in Chapter 5, the sampling distribution of the estimator is

still unknown and complicated to derive. However, from the point of view of statistical

inference, standard error or confidence interval of an estimator is important for completing

the inference procedure, as we have no idea how good or poor the point estimate is in

representing the population. That is, the point estimate contains less information and

cannot reveal the uncertainty associated with it. Consequently, we need to implement the

bootstrap method to estimate its confidence interval to align with the standard statistical

procedures and provide the statistical inference.

Efron (1979) first developed the bootstrap method inspired by the previous jackknife

method proposed by Quenouille (1949). Efron (1979) also pointed out that jackknife is

a linear approximation of the bootstrap method. The main idea of jackknife method is
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similar to the idea of leave-one-out cross validation. To get the jackknife estimator, given

samples X1, X2, ..., Xn, the population parameter of interest T , and the statistics of interest

Tn = g(X1, ..., Xn), we can calculate the leave-one-out estimators T−i, for i = 1, 2, ..., n.

Then we average all the T−i to get the jackknife estimator 1
n

∑n
i=1 T−i. And the jackknife

standard error is defined as

SEjack =

n− 1

n

n∑
i=1

(
T−i −

1

n

n∑
i=1

T−i

)2


1/2

.

However, it is well-known that the jackknife method fails when we consider the sample

median case. Efron (1979) provided the explanation that the naive bootstrap method can

correctly estimate the variance of sample median. The main difference between jackknife

and naive bootstrap is the resampling method. For naive bootstrap, we repeatedly resample

n points Xb
1, X

b
2, ..., X

b
n from the original sample X1, ..., Xn for B times. For each new

sample, we calculate the statistic of interest Tn,b, b = 1, ...,B, then 1
B

∑B
k=1 Tn,b as the

bootstrap estimator. The standard error of the bootstrap estimator is defined as

SEboot =

 1

B

B∑
k=1

(
Tn,b −

1

B

B∑
k=1

Tn,b

)2


1/2

.

If we know that the asymptotic distribution of Tn is close to the normal distribution, it

is natural to construct a normal-distribution-based confidence interval for the population

parameter T . That is, the (1− α)× 100% confidence interval of T has the following form

T ∈ (Tn − zα/2 × SEboot, Tn + z1−α/2 × SEboot).

Nevertheless, the mystery of the sampling distribution is the reason why we want to

implement non-parametric resampling techniques, such as bootstrapping. We therefore

are in favour of a more general format of the (1− α)× 100% confidence interval which is

based on the sample quantiles of the Tn,1, Tn,2, ..., Tn,B, i.e.,

T ∈ (T ∗α/2, T
∗
1−α/2), (2.2.4)
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where T ∗α/2 is the α/2 quantile and T ∗1−α/2 is the 1− α/2 quantile of Tn,1, Tn,2, ..., Tn,B.

Even though the naive bootstrap method can solve the problems that jackknife has,

there are still cases where the naive bootstrap will fail. For example, Bickel et al. (1997)

summarized a few examples where the naive bootstrap method fails, such as finding

the confidence bound for an extremum, and so on. In the case of approximating the

distribution of trimmed mean, the naive bootstrap also fails (Gribkova and Helmers, 2011).

Other theoretical details about bootstrap methods and examples of successes and failures

of bootstrap can be found in DasGupta (2008), Chapter 29. As a result, researchers argued

in favour of the so-called m out of n bootstrap method to overcome the failure of the

naive bootstrap (Bickel et al., 1997; Wu, 1990; Politis and Romano, 1994; Gribkova and

Helmers, 2007). Hence, we decided to use the m out of n bootstrap method to produce

the confidence interval of the index of increase estimator in Chapter 5. We will introduce

the steps in details when we reach to this topic again in Chapter 5.

2.3 Problem statement

To show how we can apply the proposed index of increase and what insightful conclusions

we can draw from it, we decided to apply our index of increase to two educational datasets

in this thesis. For each dataset, we extract different information and conclusions using the

index of increase. Educational data are not only meaningful but also more accessible. And

the analyses are more straightforward for both educators and people who are not familiar

to educational context to understand.

2.3.1 Assessing monotonicity and comparing students perfor-

mance between boys and girls

Mathematics, spelling, and reading are the most important subjects for elementary

education. For teachers, measuring the association between any two of these subjects can

help them understand the students’ studying behaviour better so that they can adjust

the effort they put in a certain subject. For example, if reading scores tend to increase
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more when spelling scores increase, then the teacher can put more effort into spelling

class to make both subjects scores increase efficiently. This situation makes common sense

because spelling is the fundamental part of reading. Also, comparing the performance

between boys and girls is always an interesting topic for both educators and phycologists.

For educators, if boys or girls perform significantly differently, they may adjust their way

of teaching for those who fall behind to catch up. For psychologists, they can detect

significant discrepancies of performance between boys and girls using the index of increase.

They can also use the index of increase in other experiments where they further explore

the factors that trigger different behaviours between boys and girls.

As a result, the index of increase fits the purpose of usage since it provides numbers

for comparison. Also, the index of increase can be applied either directly to pairs of

data points or combined with other popular curve-fitting techniques. This property gives

us flexibility when we use the index. Most importantly, given the definition of index of

increase, we will see it is as interpretable as those traditional statistical tools.

2.3.2 Quantifying monotonicity and interchangeability to help

curriculum development

Constructing a reasonable curriculum benefits not only educators but also students.

Naturally, deciding which courses should be taught first and which courses can be taught

at the same time becomes an interesting research topic for educators. However, deciding

which course is more basic and which course has greater influence on other courses are

complex tasks without a proper measure. As we mentioned, trends for student scores

between two subjects can be non-linear, non-monotonic, and asymmetric, which violates

the foundations of using traditional statistical tools.

Taking advantage of a natural property that the index of increase is asymmetric,

we can apply it to provide scientific and statistical support for curriculum development

by analyzing students’ scores in different subjects such as Mechanics, Vectors, Algebra,

Analysis, and Statistics. More specifically, we can define a measure that quantifies the

interchangeability between two variables by considering the absolute difference or relative
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difference between I(x,y) and I(y,x). If the index of interchangeability between two

subjects is relatively low, it means the two subjects are more interchangeable, since the

difference between I(x,y) and I(y,x) is low. As a result, the performance of one subject is

not strongly correlated to the other. In other words, they are not the “prerequisite” courses

for each other. In this case, a student can construct his or her “educational portfolio”

by choosing these two subjects at the same time. For schools, subjects that are more

interchangeable (i.e., with a lower index of interchangeability) can be scheduled in the

same semester. In contrast, if two subjects are less interchangeable, students may need to

take them one after another (i.e., take the prerequisite course first).

From this aspect, we see a potential extension of the index of increase. We can not

only calculate the index itself as a measure, but also develop other meaningful measures

to describe and assess the relationships between variables.

2.3.3 Estimator of index of increase: balancing deterministic

and random data

Educational dataset has a limited sample size. Yet, it does not stop us from thinking

about using the index of increase under a large sample situation. Moreover, rather than

considering deterministic data points, we would like to start considering applying the index

of increase to the situations where measurement errors may exist. That is, the deterministic

index of increase I(x,y) will start embracing a random component since measurement

errors usually appear in the form of random variable with a certain distribution. Firstly,

we need to construct the estimator of the index of increase from data. Of course, we need

to investigate if we can still use the same form as the deterministic case. If not, we need

to create a proper estimator along with some adjustments.

Following the traditional path in statistics, we are curious what the index of increase

estimator’s convergence performance will be, as it is essentially a statistic. Namely, we

want to know if the index of increase estimator generated from a sample with measurement

errors or other noises will converge to its true value (without measurement error) when the

sample size is large enough. Intuitively, our estimator should be able to smooth out the
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measurement error. That is, the estimator should be capable of balancing the deterministic

part and the random part of the data.

Generally, there are four types of convergence of random variables: convergence

in probability, convergence in distribution, almost sure convergence, and convergence

in Lp − mean. Convergence in probability will be our main concern because (weak)

consistency is one of the most important properties of an estimator. Also, we want to

know the speed of convergence which will give us a hint that how large a dataset should

be to apply the index of increase estimator properly. After exploring the consistency, it is

also crucial to construct the confidence interval for our estimator because we want both

the point estimate and interval estimate to conclude the statistical inference.

In general, our problem becomes the following: does the novel index of increase estimator

we propose have not only high interpretability but also a solid statistical background?

2.4 Notation

Lastly, we conclude the current chapter with notations in this thesis. Throughout this

thesis we use the notation I when discussing the index of increase in generic terms.

When the index is applied on scatterplots, we tend to use the notation I(x,y) (e.g.,

definition (3.3.2 and 4.4.4)), where x and y are n-dimensional vectors of explanatory and

response variables, respectively. When the explanatory data x = (x1, . . . , xn) do not have

ties (i.e., xi 6= xj , 1 ≤ i, j ≤ n), we emphasize this fact by using the notation I0(x,y) (e.g.,

definition (3.3.1 and 4.4.3)). When the index is calculated from fitted to data functions,

denoted by h, we use the notation I(h) for the corresponding index (e.g., definition (3.4.1

and 4.4.1)). A numerical approximation for I(h) is denoted by Îk(h) (e.g., definition (3.4.2

and 4.4.2)), with the latter approaching I(h) when k gets larger. In the process of analysis,

we sometimes find it useful to restrict explanatory variables to certain regions, say intervals

[L,U ], and then calculate the corresponding index values. In such instances, we denote the

index by I(x,y | L,U) for scatterplots (e.g., definition (3.5.7 and 4.4.7)) and I(h | L,U)

for fitted functions h.
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Remark 2.4.1. The notation is revealing: our dataset is in the form of scatterplots, which

we sometimes analyze as they are, but sometimes truncate to certain sub-scatterplots (e.g.,

with explanatory variables restricted to some intervals [L,U ]), or to which we sometimes

fit continuous functions and then analyze the functions. There are several reasons for such

transformation, one of them being outliers, whose ability to distort statistical analyses and

thus decision making should not be underestimated. We shall illustrate this point with an

example in Section 4.4.2, where we illustrate a property of the index of increase.



Chapter 3

Measuring and comparing student

performances between genders

3.1 Motivation

Measuring and comparing student performance have been topics of much interest for

educators and psychologists. Are higher marks in Mathematics indicative of higher marks

in other subjects such as Reading and Spelling? Alternatively, are higher marks in Reading

or Spelling indicative of higher marks in Mathematics? Do boys and girls exhibit similar

associations between different study subjects? These are among the many questions that

have interested researchers. The literature on these topics is vast, and we shall therefore

note only a few contributions; their lists of references lead to earlier results and illuminating

discussions.

Given school curricula, researchers have particularly looked at student performance in

Mathematics, Science, Reading, and Writing (e.g., Ma, 2001; Masci et al., 2017; Newman

and Stevenson, 1990), and explored whether or not there are significant differences with

respect to gender (e.g., Jovanovic and King, 1998; McCornack and McLeod, 1988; Mokros

and Koff, 1978). Differences between other attributes have also been looked at, including

teacher performance (e.g., Alexander et al., 2017), oral and written assessments (e.g.,

Huxham et al., 2012), spatial and verbal domains (e.g., Bresgi et al., 2017). As for certain

27
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statistical techniques that are used in these area, such as interclass correlation coefficient

(ICC) and Spearman’s ρ, we already gave a few references in Chapter 1. We also outlined

their limitations there.

We have organized the rest of the chapter as follows. In Section 3.2 we describe a data

set that we use to explore the new technique. In Section 3.3 we introduce an index for

assessing directional associations in raw data, and illustrate the performance of the index.

For those wishing to employ the index in conjunction with classical techniques of curve

fitting, such as LOESS or other regression methods, in Section 3.4 we provide a recipe

for accomplishing the task and so, for example, the proposed index can also be used as a

summary index for the LOESS and other fitted curves. In Section 3.5 we demonstrate how

the index of increase facilitates insights into student performance and enables comparisons

between different student groups. In Section 3.6 we give a step-by-step illustration of how

the index works on data. Section 3.7 concludes the chapter with a brief overview of our

main contributions, and it also contains several suggestions to facilitate further research in

the area. Appendix A contains illustrative computer codes and additional data-exploratory

graphs.

We note at the outset that throughout this paper we deliberately restrain ourselves from

engaging in interpretation and validation of the obtained numerical results, as these are

subtle tasks and should be left to experts in psychology and education sciences to properly

handle. We refer to Kane (1994, 2013) and references therein for an argument-based

approach to validation of interpretations. Throughout this paper, we concentrate on

methodological aspects of educational data analysis.

3.2 Data

We begin our considerations from the already available solid classical foundations of

statistics and data analysis. To make the considerations maximally transparent, we use

the easily accessible data reported in the classical text of Thorndike and Thorndike Christ

(2010, pp. 24-25). A brief description of the data with relevant for our research details

follow next.
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The data set contains scores of 52 sixth-grade students in two classes, which we code

by C1 and C2. The sizes of the two classes are the same: the enrollment in each of them

is 26 students. Based on the student names, we conclude that there are 15 boys and 11

girls in class C1, and 11 boys and 15 girls in class C2; we code boys by B and girls by G.

All students are examined in three subjects: Reading (R), Spelling (S), and Mathematics

(M). The maximal scores for different subjects are different: 65 for Mathematics, 45 for

Reading, and 80 for Spelling. The frequency plots of the three subjects are in Figure 3.2.1.
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Figure 3.2.1: Frequency plots of the scores of all students.

Our interest centers around the trends that arise when associating the scores of two

study subjects. One of the classical and very common techniques employed in such studies

is fitting linear regression lines which, for the sake of argument, we also do in Figure 3.2.2.

We see from Figure 3.2.2 that all the fitted lines exhibit increasing trends, with the

slopes of Spelling vs. Reading, Reading vs. Spelling, Mathematics vs. Reading, and

Reading vs. Mathematics being similar, with the value of the Pearson correlation coefficient

r between 0.62 and 0.64. These slopes are considerably larger than those for Mathematics

vs. Spelling and Spelling vs. Mathematics, whose correlation coefficient is r = 0.15. Of

course, the coefficient is symmetric with respect to the two variables, and thus its values

for, e.g., Spelling vs. Mathematics and Mathematics vs. Spelling are the same, even

though the scatterplots (unless rotated) are different. More generally, we report the

values of all the aforementioned correlation coefficients—Pearson, ICC, and Spearman—as
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Figure 3.2.2: Scatterplot matrix of the scores of all students.

well as of the index of increase to be introduced in the next section, in Table 3.2.1.

I Pearson ICC Spearman

R vs. M 0.70 0.62 0.10 0.56

M vs. R 0.57 0.62 0.10 0.56

S vs. M 0.48 0.15 −0.11 0.15

M vs. S 0.53 0.15 −0.11 0.15

R vs. S 0.59 0.64 0.58 0.67

S vs. R 0.53 0.64 0.58 0.67

Table 3.2.1: The index of increase and three classical correlation coefficients.

In addition, we have visualized—in two complementing ways—the data of Thorndike
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and Thorndike Christ (2010, pp. 24-25) in Figures 3.2.3 and 3.2.4.
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Figure 3.2.3: Scatterplot matrix of piece-wise linear fits to the scores of all students.

A close inspection of the figures suggests non-linear and especially non-monotonic

relationships. In Figure 3.2.4, we have used one of the most popular regression meth-

ods, called LOESS. Specifically, we have employed the loess function of the R Stats

Package R Core Team (2013) with the default parameter value span = 0.75. There are

of course numerous other regression methods that we can use (e.g., Koenker et al., 2017;

Young, 2017, and references therein). For example, the quantile regression method has

recently been particularly popular in education literature (e.g., Haile and Nguyen, 2008;

Castellano and Ho, 2013; Dehbi et al., 2015). These methods, however, are inherently

smoothing methods and thus provide only general features of the trends, whereas it is the

minute details that facilitate unhindered answers to questions such as those posited at the
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Figure 3.2.4: The fitted LOESS curves (span = 0.75) to the scores of all students.

very beginning of Section 3.1.

Furthermore, when dealing with small data sets, which are common in education

and psychology, we cannot reliably employ classical statistical inference techniques, such

as goodness-of-fit, to assess the performance of curve fitting techniques. In this thesis,

therefore, we advocate a technique that facilitates unaltered inferences from data sets of

any size, n ≥ 2. We shall discuss and illustrate the technique using the classical Thorndike

and Thorndike Christ (2010, pp. 24-25) data sets, and we shall also use artificial data

designed specifically for illuminating the workings of the new technique in a step-by-step

manner.
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3.3 Index of increase

We see from Figures 3.2.3 and 3.2.4 that trends are mostly non-monotonic. In such cases,

how can we assess which of the trends are more increasing than others? We can fit linear

regression lines as in Figure 3.2.2 and rank them according to their slopes or, alternatively,

on the values of the Pearson correlation coefficient. However, the non-linear and especially

non-monotonic trends make such techniques inadequate (e.g., Wilcox, 2001). In this

section, therefore, we put forward the idea of an index of increase, whose development has

been in the works for a number of years (Davydov and Zitikis, 2005, 2017; Qoyyimi and

Zitikis, 2014, 2015).

To illuminate the idea, we use a very simple yet informative example. Consider two

very basic trigonometric functions, sin(z) and cos(z) on the interval [−π/2, π], depicted in

Figure 3.3.1.
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(a) y = sin(x).

I = 0.33
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(b) y = cos(x).

Figure 3.3.1: Two functions and their indices of increase.

Obviously, neither of the two functions is monotonic on the interval, but their visual

inspection suggests that sine must be closer to being increasing than cosine. Since one can

argue that this assessment is subjective, we therefore employ the aforementioned index

whose rigorous definition will be given in a moment. Using the computational algorithm

presented in Section 3.4 below, the values of the index are 2/3 ≈ 0.67 for sin(x) and

1/3 ≈ 0.33 for cos(x). Keeping in mind that 3 is the normalizing constant, these values

imply that sine is at the distance 2 from the set of all decreasing functions on the noted
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interval, whereas cosine is at the distance 1 from the same set. In other words, this implies

that sine is at the distance 1 from the set of all increasing functions on the interval, whereas

cosine is at the distance 2 from the set of increasing function. Inspecting the graphs of

the two functions in Figure 3.3.1, we indeed see that sine is ‘twice more increasing’ than

cosine on the interval [−π/2, π]. For those willing to experiment with their own functions

on various intervals, we provide a computer code in Appendix A.1.1.

The rest of the chapter is devoted to a detailed description and analysis of the index.

3.3.1 Basic idea

Suppose we possess n ≥ 2 pairs (x1, y1), . . . (xn, yn) of data (all the indices to be introduced

below can be calculated as long as we have at least two pairs), and let—for a moment—all

the first coordinates (i.e., x’s) be different, as well as all the second coordinates (i.e., y’s)

be different. Consequently, we can order all the first coordinates in the strictly increasing

fashion, thus obtaining x1:n < · · · < xn:n, called order statistics, with the corresponding

second coordinates y[1:n], . . . , y[n:n], called concomitants (e.g., David and Nagaraja, 2003,

and references therein). Hence, instead of the original pairs, we are now dealing with the

pairs (x1:n, y[1:n]), . . . (xn:n, y[n:n]) ordered according to their first coordinates. We connect

these pairs, viewed as two-dimensional points, using straight lines and, unlike in regression,

obtain an unaltered genuine description of the trend exhibited by the first coordinates

plotted against the second ones (see Figure 3.2.3). Having the plot, we can now think of a

method for measuring its monotonicity, and for this purpose we use the index of increase

I0(x,y) =

∑n
i=2(y[i:n] − y[i−1:n])+∑n
i=2 |y[i:n] − y[i−1:n]|

, (3.3.1)

where x = (x1, . . . , xn), y = (y1, . . . , yn), and z+ denotes the positive part of real number

z, that is, z+ = z when z > 0 and z+ = 0 otherwise. The superscript ”0” means that there

are no ties among coordinates.

Obviously, the index is not symmetric, that is, I0(x,y) is not, in general, equal to

I0(y,x). This is a natural and desirable feature in the context of the present chapter

because student performance on different subjects is not interchangeable, and we indeed
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see this clearly in the figures above. The symmetry of the Pearson, ICC and Spearman

correlation coefficients is one of the features that makes their uses inappropriate in a

number of applications, especially when the directionality of associations is of particular

concern. In general, there is a vast literature on the subject, which goes back to at least

the seminal works of C. Gini a hundred years ago (e.g., Giorgi, 1990, 1993) and, more

generally, to the scientific rivalry between the British and Italian schools of statistical

thought. For very recent and general discussions on the topic, we refer to Reimherr and

Nicolae (2013); as well as to Furman and Zitikis (2017), and references therein, where a

(non-symmetric) Gini-type correlation coefficient arises naturally and plays a pivotal role

in an insurance/financial context.

To work out initial understanding of the index I0(x,y), we first note that the numerator

on the right-hand side of Equation (3.3.1) sums up all the upward movements, measured

in terms of concomitants, whereas the denominator sums up the absolute values of all

the upward and downward movements. Hence, the index I0(x,y) is normalized, that is,

always takes values in the interval [0, 1]. It measures the proportion of upward movements

in the piece-wise linear plot originating from the pairs (x1, y1), . . . (xn, yn). Later in this

chapter (Note 3.4.2), we give an alternative interpretation of, and thus additional insight

into, the index I0(x,y), which stems from a more general and abstract consideration of

Davydov and Zitikis (2017). We note in passing that the index employed by Qoyyimi

and Zitikis (2015) is not normalized, and is actually difficult to meaningfully normalize,

thus providing yet another argument in favour of the index that we employ in the present

thesis. A cautionary note is in order.

Namely, definition (3.3.1) shows that the index I0(x,y) can be sensitive to outliers

(i.e., very low and/or very high marks). The sensitivity can, however, be diminished by

removing a few largest and/or smallest observations, which would mathematically mean

replacing the sum
∑n

i=2 in both the numerator and the denominator on the right-hand

side of Equation (3.3.1) by the truncated sum
∑n−κ2

i=2+κ1
for some integers κ1, κ2 ≥ 1. This

approach to dealing with outliers has successfully worked in Statistics, Actuarial Science,

and Econometrics, where sums of order statistics and concomitants arise frequently (e.g.,
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Brazauskas et al., 2007, 2009, and references therein). In our current educational context,

the approach of truncating the sum is also natural, because exceptionally well and/or

exceptionally badly performing students have to be, and usually are, dealt with on the

individual basis, instead of treating them as members of the statistically representative

majority. This approach of dealing with outliers is very common and, in particular, has

given rise to the very prominent area called Extreme Value Theory (e.g., De Haan and

Ferreira, 2006; Reiss and Thomas, 2007, and references therein) that deals with various

statistial aspects associated with exceptionally large and/or small observations.

We next modify the index I0(x,y) so that its practical implementation would become

feasible for all data sets, and not just for those whose all coordinates are different.

3.3.2 A practical modification

The earlier made assumption that the first and also the second coordinates of paired

data are different prevents the use of the above index on many real data sets, including

that of Thorndike and Thorndike Christ (2010, pp. 24-25) as we see from the frequency

histograms in Figure 3.2.1. See also panel (d) in Figure 1.1.1 for another example. Hence,

a natural question arises: how can piece-wise linear plots be produced when there are

several concomitants corresponding to the single value of a first coordinate? To overcome

the obstacle, we suggest using the median-based approach that we describe next.

Namely, given n ≥ 2 arbitrary pairs (x1, y1), . . . (xn, yn), the order statistics of the first

coordinates are x1:n ≤ · · · ≤ xn:n with the corresponding concomitants y[1:n], . . . , y[n:n]. Let

there be m (≤ n) distinct values among the first coordinates, and denote them by x∗1, . . . x
∗
m.

For each x∗i , there is always at least one concomitant, usually more, whose median we

denote by y∗i . Hence, we have m pairs (x∗1, y
∗
1), . . . (x∗m, y

∗
m) whose first coordinates are

strictly increasing (i.e., x∗1 < · · · < x∗m) and the second coordinates are unique. Note that

x∗i actually means x∗i:m and y∗i is equivalent to y∗[i:m]. We use x∗i and y∗i for simplicity. We

connect these m pairs, viewed as two-dimensional points, with straight lines and obtain a

piece-wise linear plot (e.g., Figure 3.2.3). The values of the index I := I(x,y) reported in
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the right-bottom corners of the panels of Figure 3.2.3 refer to the following modification

I(x,y) =

∑m
i=2(y

∗
i − y∗i−1)+∑m

i=2 |y∗i − y∗i−1|
(3.3.2)

of the earlier defined index of increase. Note that index (3.3.2) collapses into index (3.3.1)

when all the coordinates of the original data are different, thus implying that definition

(3.3.2) is a genuine extension of definition (3.3.1), and it works on all data sets.

Property 3.3.1. The index of increase is translation and scale invariant, which means

that the equation

I(x,y) = I(α + βx, δ + γy) (3.3.3)

holds for all real ‘locations’ α and δ, and all positive ‘scales’ β > 0 and γ > 0.

Proof. Since β is positive, the order of the coordinates of the vector α + βx is the same

as the order of the coordinates of the vector x, and the relationship between the order

statistics is (α+ βx)i:n = α+ βxi:n. Consequently, and also recalling that γ is positive, all

the median-adjusted concomitants satisfy the relationship (δ + γy)∗i = δ + γy∗i and so

I(α + βx, δ + γy) =

∑m
i=2(δ + γy∗i − δ − γy∗i−1)+∑m
i=2 |δ + γy∗i − δ − γy∗i−1|

=
γ
∑m

i=2(y
∗
i − y∗i−1)+

γ
∑m

i=2 |y∗i − y∗i−1|

=

∑m
i=2(y

∗
i − y∗i−1)+∑m

i=2 |y∗i − y∗i−1|

= I(x,y).

This concludes the proof of Property 3.3.1.

The property is handy because it allows us to unify the scales of each subject’s scores,

which are usually different. In our illustrative example, the Mathematics scores are

from 0 to 65, the Reading scores are from 0 to 45, and those of Spelling are from 0 to

80. Due to Property 3.3.1, we can apply—without changing the value of I(x,y)—the
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linear transformation xi/xmax × 100% on the original scores xi, thus turning them into

percentages, where xmax is the maximal possible score for the subject under consideration,

like 65 for Mathematics.

3.3.3 Discussion

To facilitate a discussion of the values of the index I(x,y) reported in the panels of Figure

3.2.3, we organize the values in the tabular form as follows:

I(R,M) = 0.70 I(M,R) = 0.57

I(S,M) = 0.48 I(M, S) = 0.53

I(R, S) = 0.59 I(S,R) = 0.53

The value 0.70 for Reading vs. Mathematics is largest, thus implying the most

increasing trend among the panels. The value suggests that there is high confidence that

those performing well in Reading would also perform well in Mathematics. Note that the

value 0.57 for Mathematics vs. Reading is considerably lower than 0.70, thus implying

lower confidence that students with better scores in Mathematics would also perform

better in Reading.

The index value of Spelling vs. Mathematics is the smallest (0.48), which suggests

neither an increasing nor a decreasing pattern, and we indeed see this in the middle-bottom

panel of Figure 3.2.3: the scores in Mathematics form a kind of noise when compared to

the scores in Spelling. In other words, the curve in the panel fluctuates considerably and

the proportion of upward movements is almost the same as the proportion of downward

movements. On the other hand, higher scores in Mathematics seem to be slightly better

predictors of higher scores in Spelling, with the corresponding index value equal to 0.53.

Finally, the values of Reading vs. Spelling and Spelling vs. Reading are fairly similar,

0.59 and 0.53 respectively, even though higher Reading scores might suggest higher Spelling

scores in a slightly more pronounced way than higher Spelling scores would suggest higher

Reading scores.

Note 3.3.1. On a personal note, having calculated the indices of increase for the three
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subjects and then having looked at the graphs of Figure 3.2.3, the authors of this article

unanimously concluded that the trends do follow the patterns suggested by the respective

index values. Yet, interestingly, prior to calculating the values and just having looked at

the graphs, the authors were not always in agreement as to how much and in what form a

given study subject influences the other ones. In summary, even though no synthetic index

can truly capture every aspect of raw data, they can nevertheless be useful in forming a

consensus about the meaning of data.

3.4 The Index of increase for fitted curves

Raw data may not always be possible to present in the way we have done in Figure 3.2.3,

because of a variety of reasons such as ethical and confidentiality. Indeed, nothing is

masked in the figure—the raw data can be restored immediately. The fitted regression

curves in Figure 3.2.4, however, mask the raw data and can thus be more readily available

to the researcher to explore. Therefore, we next explain how the index of increase can be

calculated when the starting point is not raw data but a smooth fitted curve, say h defined

on an interval [L,U ], like those we see in the panels of Figure 3.2.4 (for a computer code,

see Appendix A.1.1). Hence, in particular, the index of increase can be used as a summary

index for the LOESS or other fitted curves. Namely, the index of increase I: = I(h) for the

function h is defined by the formula

I(h) =

∫ U
L

(h
′
(x))+ dx∫ U

L
|h′(x)| dx

, (3.4.1)

where h′ is the derivative of h. Two notes follow before we resume our main consideration.

Note 3.4.1. Definition (3.4.1) is compatible with that given by Equation (3.3.1). Indeed,

let the function h be piece-wise linear with knots d1 < · · · < dn such that the function

h is linear on each interval [di−1, di] whose union is equal to [L,U ] with L = d1 and

U = dn. The derivative h′(x) in this case is replaced by (h(di)− h(di−1))/(di − di−1) for

all x ∈ [di−1, di]. Index (3.4.1) for this piece-wise linear function is exactly the one on the

right-hand side of Equation (3.3.1).
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Note 3.4.2. It is shown by Davydov and Zitikis (2017) that the integral
∫ U
L

(h
′
(x))− dx is

a distance of the function h from the set of all non-decreasing functions, where z− denotes

the negative part of real number z, that is, z− = −z when z < 0 and z− = 0 otherwise.

Hence, the larger the integral, the farther the function h is from being non-decreasing.

For this reason, the integral is called by Davydov and Zitikis (2017) the index of lack of

increase (LOI), whose normalized version—always taking values between 0 and 1 – is given

by the formula

LOI(h) =

∫ U
L

(h
′
(x))− dx∫ U

L
|h′(x)| dx

.

Since |z| = z+ + z− for every real number z, we have the relationship

I(h) = 1− LOI(h),

which implies that the index of increase I(h) takes the maximal value 1 when the function

h is non-decreasing everywhere; it also follows the other properties noted in Chapter 1.

In general, given any differentiable function h, calculating index (3.4.1) in closed form is

time consuming. Hence, an approximation at any pre-specified precision is desirable. This

can be achieved in a computationally convenient way as follows. Let di for i = 1, . . . , k be

defined by

di = L+
i− 1

k − 1
(U − L),

where k is sufficiently large: the larger it is, the smaller the approximation error will be.

(We note that the underlying index of increase can be calculated whenever we have at

least two pairs of data; the k used throughout the current section is the ‘tuning’ parameter

that governs the precision of numerical integration.) The numerator on the right-hand

side of Equation (3.4.1) can be approximated as follows:
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∫ U

L

(h
′
(x))+ dx =

k∑
i=2

∫ di

di−1

(h
′
(x))+ dx

≈
k∑
i=2

∫ di

di−1

(h
′
(di))+ dx

=
U − L
k − 1

k∑
i=2

(h
′
(di))+

≈ U − L
k − 1

k∑
i=2

(h(di)− h(di−1))+
di − di−1

=
k∑
i=2

(h(di)− h(di−1))+.

Likewise, we obtain an approximation for the denominator on the right-hand side of

Equation (3.4.1):

∫ U

L

|h′(x)| dx ≈
k∑
i=2

|h(di)− h(di−1)|.

Consequently,

I(h) ≈ Îk(h) :=

∑k
i=2(h(di)− h(di−1))+∑k
i=2 |h(di)− h(di−1)|

. (3.4.2)

This approximation turns out to be very efficient, with no time or memory related issues

when aided by computers, as we shall see from the next example.

Example 3.4.1. To illustrate the computation of the index I(h) via approximation (3.4.2),

we use the functions h1(x) = (x − 1)2 + 1 + sin(4x) and h2(x) = (x − 2)2 + 1 + sin(4x)

defined on the interval [0, 5]. We visualize them in Figure 3.4.1.

In the figure, the corresponding values of the index of increase are reported in the bottom-

right corners of the two panels. They have been calculated using approximation (3.4.2)

with L = 0, U = 5, and k=10,000. In order to check the approximation performance with

respect to k, we have produced Table 3.4.1.
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(b) y = h2(x).

Figure 3.4.1: The functions h1 and h2 and their indices of increase.

k h1 h2

10 0.9014996 0.6829716

50 0.8719495 0.6670377

500 0.8712794 0.6664844

1000 0.8712688 0.6664817

10,000 0.8712662 0.6664808

20,000 0.8712662 0.6664808

actual 0.8712662 0.6664808

Table 3.4.1: Performance of the approximation În.

The ‘actual’ value in the bottom row of the table is based on Formula (3.4.1) and calculated

using the integrate function of the R Stats Package (R Core Team, 2013). We emphasize

that the index of increase can be calculated as long as we have at least two pairs of data;

the k used in the current example (and throughout Section 3.4) is the ‘tuning’ parameter

that governs the precision of numerical integration. This concludes Example 3.4.1.

We now come back to Figure 3.2.4, whose all panels report respective values of the

index of increase, calculated using approximation (3.4.2) with k = 10,000. To check

whether this choice of k is sufficiently large, we have produced Table 3.4.2.
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k M vs. R M vs. S R vs. M R vs. S S vs. M S vs. R

10 1.0000000 0.8182878 0.9776247 1.0000000 0.3866698 0.8259335

50 0.9947776 0.8038232 0.9750816 0.9906566 0.3954920 0.8252337

500 0.9940148 0.8035203 0.9722912 0.9905645 0.3957937 0.8252272

1000 0.9939938 0.8035174 0.9722785 0.9905559 0.3957953 0.8252266

10,000 0.9939889 0.8035172 0.9722651 0.9549793 0.3957954 0.8252262

20,000 0.9939889 0.8035172 0.9722651 0.9549793 0.3957954 0.8252262

Table 3.4.2: Convergence performance of each case in Figure 3.2.4.

Note that the index values when k = 10,000 and k = 20,000 are identical with respect

to the reported decimal digits, and since in the panels of Figure 3.2.4 we report only the

first two decimal digits, we can safely conclude that k = 10,000 is sufficiently large for the

specified precision.

We see from the two bottom rows of Table 3.4.2 that the values for Spelling vs. Reading,

Reading vs. Mathematics, Reading vs. Spelling, and Mathematics vs. Reading are the

largest ones, similarly to what we have seen in Figure 3.2.3. However, the values for

these four cases are larger when we use LOESS. This is natural because the technique has

smoothed out the minute details of the raw data and thus shows only general trends. Of

course, the LOESS parameters can be adjusted to make the fitted curves exhibit more

details, but getting closer to the raw data would, in practice, make confidentiality issues

more acute and thus perhaps unwelcome. At any rate, when it comes to minute details

and raw data, which can be of any size as long as there are at least two pairs, we have the

above introduced index of increase accompanied with an efficient method of calculation.

3.5 Group comparisons

Suppose that we wish to compare two student groups, ω1 and ω2—which could for example

be the boys and girls in the data set of Thorndike and Thorndike Christ (2010, pp. 24-25)—

with respect to their monotonicity trends in Mathematics vs. Reading, Mathematics vs.
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Spelling, and so on. We could set out to calculate the indices of increase for ω1 and ω2, and

then compare the index values and make conclusions, but we have to be careful because

of possibly different minimal and maximal scores for the two groups. Indeed, comparing

monotonicity patterns over ranges of different length should be avoided because the wider

the interval, the more fluctuations might occur. Hence, to make meaningful comparisons,

we have to perform them over intervals of the same length, even though locations of the

intervals can be different, due to the earlier established translation-invariance Property

3.3.1.

In the context of our illustrative example, we find it meaningful to compare monotonic-

ities of plots over the same range of scores. Hence, in general, given two groups ω1 and ω2

of sizes n(ω1) ≥ 2 and n(ω2) ≥ 2, respectively, let the two data sets consist of the pairs

(
xi(ω1), yi(ω1)

)
, i = 1, . . . , n(ω1),

and (
xj(ω2), yj(ω2)

)
, j = 1, . . . , n(ω2).

These data sets give rise to two piece-wise linear plots: the first one ranges from x1:n(ω1)(ω1)

to xn(ω1):n(ω1)(ω1), and the second one from x1:n(ω2)(ω2) to xn(ω2):n(ω2)(ω2). The overlap of

the two ranges is the interval [L,U ], where

L = max
{
x1:n(ω1), x1:n(ω2)

}
and

U = min
{
xn(ω1):n(ω1), xn(ω2):n(ω2)

}
.

We identify and order the distinct first coordinates in each of the two samples and calculate

the medians of the corresponding concomitants. We arrive at the following two sets of

paired data: (
x∗i (ω1), y

∗
i (ω1)

)
, i = 1, . . . ,m(ω1), (3.5.1)

and (
x∗j(ω2), y

∗
j (ω2)

)
, j = 1, . . . ,m(ω2), (3.5.2)
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where m(ω1) and m(ω2) are the numbers of distinct x’s in the original data sets. Note

that here we use x∗i (ω1) (or x∗j(ω2)) and y∗i (ω1) (or y∗j (ω2)) instead of x∗i:m(ω1)
(ω1) (or

x∗j:m(ω2)
(ω2)) and y∗[i:m(ω1)]

(ω1) (or y∗[j:m(ω2)]
(ω2)) in order to simplify the notations. We next

modify data set (3.5.1):

Step 1: If L = x∗1(ω1), then we do nothing with the data set. If L > x∗1(ω1), then let the

pairs
(
x∗l (ω1), y

∗
l (ω1)

)
and

(
x∗l+1(ω1), y

∗
l+1(ω1)

)
be such that x∗l (ω1) is the closest first

coordinate in data set (3.5.1) to the left of L, and thus x∗l+1(ω1) is the closest one to

the right of L. We delete all the pairs from set (3.5.1) whose first coordinates do not

exceed x∗l (ω1), and then augment the remaining pairs with (L, y∗L(ω1)), where

y∗L(ω1) = y∗l (ω1) +
y∗l+1(ω1)− y∗l (ω1)

x∗l+1(ω1)− x∗l (ω1)
(L− x∗l (ω1)). (3.5.3)

Formula (3.5.3) is useful for computing purposes. We have visualized the pair

(L, y∗L(ω1)) as an interpolation result in panel (a) of Figure 3.5.1.

●

●

●

xl
* (ωi) L xl+1

*  (ωi)

y l+
1

*
 (ω

i)
y L*  (ω

i)
y l*  (ω

i)

(a) (L, y∗L(ω1)) via Formula (3.5.3)

●

●

●

xu−1
*  (ωi) U xu

*  (ωi)

y u
−1

*
 (ω

i)
y U*

 (ω
i)

y u*  (ω
i)

(b) (U, y∗U (ω1)) via Formula (3.5.4)

Figure 3.5.1: The two augmenting-pairs via the interpolation technique.

Step 2: If U = x∗m(ω1)
(ω1), then we do nothing with the data set. If U < x∗m(ω1)

(ω1), then

let the pairs
(
x∗u−1(ω1), y

∗
u−1(ω1)

)
and

(
x∗u(ω1), y

∗
u(ω1)

)
be such that x∗u−1(ω1) is the
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closest first coordinate in the data set to the left of U , and thus x∗u(ω1) is the closest

one to the right of U . From the set of pairs available to us after the completion of

Step 1, we delete all the pairs whose first coordinates are on or above x∗u(ω1), and

then augment the remaining pairs with (U, y∗U(ω1)), where

y∗U(ω1) = y∗u−1(ω1) +
y∗u(ω1)− y∗u−1(ω1)

x∗u(ω1)− x∗u−1(ω1)
(U − x∗u−1(ω1)). (3.5.4)

As an interpolation result, we have visualized the pair (U, y∗U(ω1)) in panel (b) of

Figure 3.5.1.

In the case of data set (3.5.2), we proceed in an analogous fashion:

Step 3: If L = x∗1(ω2), then we do nothing, but if L > x∗1(ω2), then we produce a new

pair (L, y∗L(ω2)) that replaces all the deleted ones on the left-hand side of data set

(3.5.2).

Step 4: If U = x∗m(ω1)
(ω2), then we do nothing with the pairs available to us after Step

3, but if U < x∗m(ω1)
(ω2), then we produce a new pair (U, y∗U(ω2)) that replaces the

deleted ones on the right-hand side of the data set obtained after Step 3.

In summary, we have turned data sets (3.5.1) and (3.5.2) into the following ones:

(
vi(ω1), wi(ω1)

)
, i = 1, . . . , k(ω1), (3.5.5)

and

(
vj(ω2), wj(ω2)

)
, j = 1, . . . , k(ω2), (3.5.6)

with some k(ω1) and k(ω2) that do not exceed m(ω1) and m(ω2), respectively. Note

that the smallest first coordinates v1(ω1) and v1(ω2) are equal to L, whereas the largest

first coordinates vk(ω1)(ω1) and vk(ω2)(ω2) are equal to U . Hence, both data sets (3.5.5)

and (3.5.6) produce piece-wise linear functions defined on the same interval [L,U ]. The
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corresponding index I : = I(x,y|L,U) : = I(v(ω),w(ω)) for any ω ∈ {ω1, ω2} is calculated

using the formula

I(x,y|L,U) : = I(v(ω),w(ω)) =

∑k(ω)
i=2 (wi(ω)− wi−1(ω))+∑k(ω)
i=2 |wi(ω)− wi−1(ω)|

. (3.5.7)

To illustrate, we report the index values and the comparison ranges for boys and girls

in the three subjects, and in all possible combinations in Table 3.5.1.

Span M vs. R M vs. S R vs. M R vs. S S vs. M S vs. R

Boys

N/A 0.58 0.53 0.72 0.63 0.52 0.56

0.35 0.61 0.52 0.73 0.72 0.54 0.62

0.75 0.85 0.49 1.00 0.99 0.91 0.99

Girls

N/A 0.55 0.50 0.61 0.57 0.49 0.54

0.35 0.62 0.52 0.61 0.58 0.48 0.57

0.75 0.94 0.57 0.94 0.94 0.37 0.61

Range 33.85–81.54 33.85–81.54 48.89–93.33 48.89–93.33 50.00–92.50 50.00–92.50

Table 3.5.1: Performance of boys and girls in the two classes combined on the three

subjects as measured by the index I.

The values in the rows with span = N/A have been calculated based on the piece-wise

linear fits. The rows with span values 0.35 and 0.75 are based on the LOESS curve fitting.

We note in this regard that the parameter span controls the smoothness of the fitted

curves: the larger the span, the smoother the resulting curve, with the default value

span = 0.75 that we already used in Figure 3.2.4. The graphs corresponding to Table

3.5.1 are of interest, but since they are plentiful, we have relegated them to Appendix A.2

at the end of the thesis.

3.6 A step-by-step guide

To have a better understanding and appreciation of the suggested method, we next

implement it in a step-by-step manner using a small artificial data set. Namely, suppose

that we wish to compare the performance of two groups of students, say ω1 and ω2, in two
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subjects, which we call x and y. Let the scores, given in percentages, be those in Table

3.6.1.

i 1 2 3 4 5 6

xi(ω1) 100 75 75 50 75 87.5

yi(ω1) 90 40 40 50 50 70

xi(ω2) 100 87.5 75 37.5 75 87.5

yi(ω2) 100 60 50 50 50 70

Table 3.6.1: Illustrative scores.

As the first step, we order the data according to the x’s and also record their concomi-

tants, which are the y’s. The numerical outcomes are reported in Table 3.6.2.

i 1 2 3 4 5 6

xi:6(ω1) 50 75 75 75 87.5 100

y[i:6](ω1) 50 40 40 50 70 90

xi:6(ω2) 37.5 75 75 87.5 87.5 100

y[i:6](ω2) 50 50 50 60 70 100

Table 3.6.2: Ordered scores and their concomitants.

Using piece-wise linear plots, we have visualized them in Figure 3.6.1.
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Figure 3.6.1: Piece-wise linear fits to the illustrative scores.
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In both panels of the figure, we see only five points, whereas the sample sizes of the two

groups are six: n(ω1) = 6 and n(ω2) = 6. The reason is that each of the two groups has

two identical points: (75, 40) in the case of ω1, and (75, 50) in the case of ω2.

Next we apply the median-based aggregation: in the case of ω1, the median of 40, 40,

and 50 (which correspond to 75) is 40, and in the case of ω2, the median of 50 and 50

(which correspond to 75) is 50, and that of 60 and 70 (which correspond to 87.5) is 65.

(There are several definitions of median, but in this thesis we use the one implement in

the R Stats Package (R Core Team, 2013): given two data points in the middle of the

ranked sample, the median is the average of the two points.) We have arrived at two data

sets with only m(ω1) = 4 and m(ω2) = 4 pairs, which are reported in Table 3.6.3.

i 1 2 3 4

x∗i (ω1) 50 75 87.5 100

y∗i (ω1) 50 40 70 90

x∗i (ω2) 37.5 75 87.5 100

y∗i (ω2) 50 50 65 100

Table 3.6.3: Condensed scores using the median approach.

The corresponding piece-wise linear plots are given in Figure 3.6.2.
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Figure 3.6.2: Piece-wise linear fits to median adjusted data.
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Note that the x-ranges of the two data sets are different: [50, 100] and [37.5, 100]. We

therefore unify them. Since the range for ω1 is a subset of that for ω2, we keep all the ω1

pairs, and thus k(ω1) = 4. In the case of ω2, the lower bound 50 is not among the x’s

and thus we apply the interpolation method to find the y-value corresponding to L = 50.

Using Equation (3.5.3), we have

y∗L(ω2) = 50 +
50− 50

75− 37.5
(50− 37.5) = 50. (3.6.1)

For the upper bound U , since 100 is present in the data set, nothing needs to be done.

We have k(ω2) = 4 because one pair was removed and one added. The new data set is

reported in Table 3.6.4.

vi(ω1) 50 75 87.5 100

wi(ω1) 50 40 70 90

vi(ω2) 50 75 87.5 100

wi(ω2) 50 50 65 100

Table 3.6.4: Ordered scores with unified ranges.

The corresponding piece-wise linear plots are depicted in Figure 3.6.3.
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Figure 3.6.3: Piece-wise linear fits with unified ranges.
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For the pairs in Table 3.6.4, we can now calculate the index of increase according to

Equation (3.5.7). Namely, for ω1 we have

I =
(40− 50)+ + (70− 40)+ + (90− 70)+
|40− 50|+ |70− 40|+ |90− 70|

=
30 + 20

10 + 30 + 20

=
5

6
,

(3.6.2)

and for ω2 we have

I =
(50− 50)+ + (65− 50)+ + (100− 65)+
|50− 50|+ |65− 50|+ |100− 65|

=
15 + 35

15 + 35

= 1.

(3.6.3)

Both values are greater than 0.5, and thus both trends are more increasing than not, but

the trend corresponding to ω1 is less increasing than that for ω2, which is of course obvious

from Figure 3.6.3. Finally, the index for ω2 is 1, which means that the corresponding trend

is non-decreasing everywhere.

3.7 Concluding notes

In many real-life applications, trends tend to be non-monotonic and researchers wish to

quantify and compare their departures from monotonicity. In this chapter, we have argued

in favour of a technique that, in a well-defined and rigorous manner, has been designed

specifically for making such monotonicity assessments.

We have illustrated the technique on a small artificial data set, and also on the larger

data set borrowed from the classical text by Thorndike and Thorndike Christ (2010,

pp. 24-25). Extensive graphical and numerical illustrations have been provided to elucidate

the workings of the new technique, and we have compared the obtained results with those

arising from classical statistical techniques.
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To facilitate free and easy implementation of the technique in various real-life contexts,

we have conducted all our explorations using the R software environment for statistical

computing and graphics (R Core Team, 2013). We have implemented the new technique

relying on our own R codes (see Appendix A.1 for details). For data visualization,

whenever possible, we have used the R packages ggplot2 by Wickham (2009) and GGally

by Schloerke et al. (2017).

A large number of notes that we have incorporated in the chapter have been inspired—

directly or indirectly—by the many queries, comments, and suggestions by anonymous

reviewers. A few additional comments follow next. First, there can, naturally, be situations

where measuring and comparing the extent of decrease of various (non-monotonic) patterns

would be of interest. In such cases, instead of, for example, the index of increase I(x,y)

defined by Equation (3.3.1), we could use the index of decrease D(x,y) defined by

D(x,y) =

∑n
i=2(y[i:n] − y[i−1:n])−∑n
i=2 |y[i:n] − y[i−1:n]|

,

where z− is the negative part of z, that is, z− = −z when z < 0 and z− = 0 otherwise.

The above developed computational algorithms do not need to be redone for the index

D(x,y) because of the identity

D(x,y) = 1− I(x,y),

which follows immediately from the equation z+ + z− = |z| that holds for all real numbers

z. As a consequence of the identity, for example, the ratio

O(x,y) =

∑n
i=2(y[i:n] − y[i−1:n])−∑n
i=2(y[i:n] − y[i−1:n])+

,

which can be used for measuring the extent of downward movements relative to the upward

movements, can be rewritten as the “odds ratio”

O(x,y) =
D(x,y)

I(x,y)
=

D(x,y)

1−D(x,y)

with D(x,y) viewed as a probability, which can indeed be viewed this way because
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D(x,y) is the proportion of downward movements with respect to all—downward and

upward—movements.

The next comment that we make is that, as noted by a reviewer, researchers may wish

to assess the degree of non-exchangeability between x and y. In the case of, for example,

the index of increase I(x,y), such an assessment can be done either in absolute terms with

the help of

AI(x,y) =
∣∣I(x,y)− I(y,x)

∣∣
or, in relative terms, using

RI(x,y) =

∣∣∣∣I(x,y)

I(y,x)
− 1

∣∣∣∣.
It might be desirable to remove the absolute values from the right-hand sides of the

above two definitions, thus making the newly formed two indices either positive or negative,

and both of them being equal to 0 when I(x,y) = I(y,x). We will explore these two

extended measures of the degree of non-exchangeability with another education dataset in

the following chapter.



Chapter 4

Quantifying directional associations

and interchangeability among

subjects for curriculum development

4.1 Motivation

Assessing and comparing student performance have been important and fascinating areas

of educational research. Literature is abundant and covers diverse topics such as measuring

differences in student performance due to differences in teacher performance (e.g., Ross,

1992; Hill et al., 2005), study subjects (e.g., Gamoran and Hannigan, 2000; Chen and

Zitikis, 2017), examination formats (e.g., Agarwal et al., 2008; Heijne-Penninga et al.,

2008, 2010), and gender (e.g., Leedy et al., 2003; Nguyen et al., 2005; Putwain, 2008; Wade

et al., 2017).

Various methods for collecting relevant data have been employed, including observa-

tional studies and experiments, open- and closed-book examinations. Furthermore, various

statistical techniques have been used, including linear and nonlinear regression, with the

Pearson correlation coefficient naturally arising as a measure of relationship between

variables (e.g., Krasne et al., 2006; Agarwal et al., 2008; Heijne-Penninga et al., 2008, 2010;

Thorndike and Thorndike Christ, 2010).

54
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In addition to research by professional educators, a considerable body of specialized

statistical literature has utilized educational data to illustrate various methods and

techniques, including distance-based and classical multivariate analyses (e.g., Groenen

and Meulman, 2004), Bayesian analysis (e.g., Efron, 2012), orthogonal simple component

anlaysis (e.g., Anaya-Izquierdo et al., 2011), and robust structural equation modelling

with missing data and auxiliary variables (e.g., Yuan and Zhang, 2012). Furthermore,

Qoyyimi and Zitikis (2014, 2015) have employed Gini-based arguments to assess the lack

of relationship in multivariate educational data. Chen and Zitikis (2017) use an index of

increase to quantify the amount of monotonicity in nonlinear relationships. Duzhin and

Gustafsson (2018) suggest an automated procedure for analyzing educational data based

on machine learning, with features such as decision making that accounts for students’

prior knowledge.

As is usually the case with methods that condense raw data into a few parameters,

some information inevitably gets lost in the process. The loss is sometimes acceptable,

but sometimes is not. An example of the latter case would be the use of the Pearson

correlation coefficient, as it gives the same value irrespective of which of the two variables

under consideration is explanatory or response. Later in this chapter, we shall illuminate

these issues using educational data, and will in turn put forward arguments in favour of

an index of increase (Davydov and Zitikis, 2017) as a measure for quantifying the presence

of monotonicity in inherently non-monotonic scatterplots. The index has recently been

employed by Chen and Zitikis (2017) to revisit a dataset of Thorndike and Thorndike

Christ (2010), with further theoretical insights worked out by Chen et al. (2018).

Our current research builds upon the work of Chen and Zitikis (2017), but unlike that

work, we explore the rich data reported by Mardia et al. (1979, pp. 3-4). Due to the

popularity of this textbook, the data have been frequently used by statisticians and others

to illustrate various notions and techniques of Multivariate Analysis. Consequently, and

naturally, the data are available in several computing packages, such as MVT (Osorio and

Galea, 2015). In the current chapter we revisit the data with the aid of additional insights

on the topic that have been acquired since the publication of Chen and Zitikis (2017).
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We have organized the rest of this chapter as follows. In Section 4.2, we describe the

dataset of Mardia et al. (1979, pp. 3-4) and give its preliminary analysis. In Section 4.3,

we fit certain functions to the data and give reasons why this exercise is of interest, and

sometimes even necessary. In Section 4.4, we explain basic concepts and intuition behind

the index of increase, which can take on several forms depending on the nature of available

data (e.g., scatterplots, fitted functions, etc.). In Section 4.5, we use the index to illuminate

directional relationships between several subjects. Section 4.6 finishes the chapter with a

summary of main contributions and concluding notes.

4.2 Data and an idea of measuring increase

The dataset of Mardia et al. (1979, pp. 3-4) consists of n = 88 examination scores in five

subjects: Algebra, Analysis, Mechanics, Vectors, and Statistics. The scores are out of 100

possible in each of the five subjects, with the scores in Mechanics and Vectors coming

from closed-book examinations, and the scores in Algebra, Analysis, and Statistics coming

from open-book examinations. In Figure 4.2.1 we give a snapshot of the data based on

commonly used scatterplots and least-squares regression lines. The response variables are

noted in the rows and the explanatory ones in the columns. The corresponding values of

the Pearson correlation coefficient r are inside of each of the twenty off-diagonal panels.

For example, the panel with r = 0.553 in the top row is the scatterplot of Vectors vs

Mechanics, whereas the panel with the same r = 0.553 one row below is the scatterplot of

Mechanics vs Vectors. The slopes of the fitted lines are different because the variances of

the explanatory and response variables are different. Each of the five diagonal panels has,

obviously, r = 1.

Note that the reported r values are symmetric with respect to the two variables under

consideration, although the study subjects clearly lack symmetry with respect to each

other. Hence, the use of r in the current context is hardly suitable. The slope b = rsy/sx of

the linear regression line is a better choice, where sx and sy denote the standard deviations

of the explanatory and response variables, respectively. However, the scatterplots can

hardly suggest linear patterns. Hence, neither r not b seem to be particularly informative
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Figure 4.2.1: Least-squares regression lines fitted to the data of Mardia et al. (1979, pp. 3-4)

with the corresponding values of the Pearson correlation coefficient r = r(x,y).

in the current context. Given our goal to understand and even predict how changes in the

scores of one study subject are reflected in the scores of another subject, we therefore find

it desirable to search for alternative ways for quantifying nonlinear relationships.

Note that although b is not perfect, it is nevertheless better than r, and this is in

part due to asymmetry of b with respect to the explanatory and response variables. This

feature is natural when quantifying dependence, as elucidated by Reimherr and Nicolae

(2013, p. 119). If, however, symmetry is desirable for any reason, then it can be imposed

by symmetrization, which can be achieved in many ways (see, e.g., Reimherr and Nicolae,
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2013, p. 120). We shall briefly come back to this topic at the end of Section 4.3, noting

now that the measure that we are to employ for quantifying relationships between study

subjects is asymmetric, which we find natural and appropriate.

Namely, to assess how much a pattern (scatterplot, function, etc.) is increasing, we

measure its distance from the set of decreasing patterns. Hence, if the pattern is decreasing,

the distance is 0. By normalizing the distance, we do not allow it to exceed 1. Not going

into any more mathematical details at the moment (Davydov and Zitikis, 2017), we obtain

an index of increase, denoted by I, with the following features:

• it takes values only in the interval [0, 1],

• vanishes when there are no segments of increase,

• takes the maximal value 1 when there are no segments of decrease,

• exceeds 0.5 when the pattern is more upward than downward,

• is smaller than 0.5 when the pattern is more downward than upward.

To illustrate the features, in Figure 4.2.2 we have depicted the dataset of Mardia et

al. (1979, pp. 3-4) by connecting the consecutive data points using straight lines, which

have enabled us to calculate the index of increase for each panel using a computational

formula that we shall give and discuss later in this chapter. Note, for example, that

Algebra vs. Vectors, Algebra vs. Analysis, Algebra vs. Statistics have the largest three

values, thus implying that the corresponding patterns are most increasing among the

twenty off-diagonal panels. We can interpret this by saying that students with higher

scores in Algebra tend to have higher scores in Vectors (I = 0.576), Analysis (I = 0.575),

and Statistics (I = 0.578) than in any other study subject. This, we think, is due to

Algebra being a fundamental subject for Vectors, Analysis, and Statistics. For strong

arguments and evidence in favour of Algebra, we refer to Gamoran and Hannigan (2000).

Vectors vs. Algebra (I = 0.527) and Statistics vs. Algebra (I = 0.546) have lower indices

than the three ones mentioned in the previous paragraph, and so we are less confident

that better performance in Vectors and Statistics would lead to higher scores in Algebra.
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Figure 4.2.2: Piece-wise linear fits to the data of Mardia et al. (1979, pp. 3-4) with the

corresponding values of the index of increase I = I(x,y).

Furthermore, Analysis vs. Algebra (0.566) has just a slightly lower index than the three

top ones. This, we think, is due to Analysis and Algebra being fundamental subjects, and

thus students possibly viewing them as equally important, or equally challenging, and

thus demanding similar study efforts.

Among the twenty panels, Statistics vs. Mechanics has the lowest index (I = 0.514),

which is not far away from the boundary value 0.500 separating more increasing patterns

from more decreasing ones.

Remark 4.2.1. In the above discussion, to illustrate the mathematical concept of the
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index of increase, we treated the dataset of Mardia et al. (1979, pp. 3-4) as a “population,”

and not as a sample with variability. We shall do so quite often throughout the chapter,

but we shall also let the reader know our thoughts on the statistical side of the subject

matter (see, e.g., Remark 4.4.3, and also the second half of concluding Section 4.6).

4.3 Functions, fitted curves, and interchangeability

The index of increase can be calculated not only from (discrete) scatterplots, such as

those in Figure 4.2.2, but also from continuous functions. The latter ones naturally, and

sometimes inevitably, arise due to several reasons:

• The phenomena under consideration might be modelled using continuous functions,

which could, for example, arise as solutions to differential equations, as is frequently

the case in mathematical biology, as well as in other areas dealing with dynamical

modelling.

• Continuous functions may arise due to fitting curves to scatterplots (e.g., Hastie et

al., 2009; Murphy, 2012, and references therein). Such fitting might also be done by

the researcher already possessing raw data but wishing to smooth out noise from

the data, mitigate the influence of potential outliers, or due to some other statistical

considerations.

• Fitted curves may be the only objects available to the researcher for analysis and

decision making, due to reasons such as ethics and confidentiality. For example,

research that involves the use of personal data, irrespective of whether the data

are identifiable or de-identified, requires a research ethics board review at most

institutions. Scatterplots would be among such datasets, but the fitted curves would

hardly be such.

Irrespective of the origins of continuous functions, calculating their indices of increase

is discussed in Section 4.4.1 below. In the next subsection, for comparative and illustrative
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purposes, we shall fit curves to the scatterplots of Figure 4.2.2 and also provide the values

of their indices of increase calculated using a method to be described later in this chapter.

4.3.1 Fitted curves

To illustrate, we employ one of the most commonly used regression methods for fitting

nonlinear relationships, which is locally estimated scatterplot smoothing, or LOESS for

short. It is a non-parametric method that combines multiple regression models and

k-nearest-neighbor-based meta-models. Jacoby (2000) describes the LOESS methodology

in detail, including how to fit LOESS functions and perform goodness-of-fit tests, with

particular attention on those cases when subject-matter knowledge suggests nonlinear

relationships but little, if anything, is known about the actual underlying functional forms.

This is precisely the situation we deal with in the current chapter.

There have been many uses of LOESS in educational research, and from those studies

we gain valuable insights relevant to the topic of the present paper. For example, Abramo

et al. (2012) use LOESS regression to explore the influence of research group’s size on

research productivity, with emphasis on the Italian higher-education system. Avendano et

al. (2009) employ LOESS to explore the impact of educational level on changes in health

outcomes among Europeans, with analyses performed separately for regions with different

welfare state regimes.

Coming back to the dataset of Mardia et al. (1979, pp. 3-4) and using the R package

stats (R Core Team, 2017), we have implemented the loess function with its default

parameter span = 0.75. The resulting curves are depicted in Figure 4.3.1. We note

in this regard that the parameter span controls smoothness: the larger the value, the

smoother (i.e., less wiggly) is the fitted function. Some of the reported values of I in the

panels of Figure 4.3.1 are equal to 1, thus implying that the fitted functions are increasing

everywhere on their domains of definition. Interestingly, some index values are equal to 1

even when the horizontal and vertical axes are interchanged, as is, for example, for Algebra

vs. Analysis and Analysis vs. Algebra. We should not, however, hastily infer from these

values that Algebra and Analysis are interchangeable subjects: first, the rates at which
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the two fitted functions increase are different, and second, the values of the two indices

are influenced by the degree of smoothing, governed by the parameter span. We shall

illustrate the latter feature later in the paper, when we set span = 0.35, in addition to the

default value span = 0.75.
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Figure 4.3.1: LOESS fitted functions h = h0.75 to the data of Mardia et al. (1979, pp. 3-4)

with the corresponding values of the index of increase I = I(h0.75).

We conclude this subsection with Table 4.3.1, which summarizes our findings so

far. Specifically, in the table we report the values of the Pearson correlation coefficient

r = r(x,y) (Figure 4.2.1), and also those of I = I(x,y) for the raw data (Figure 4.2.2) and

I = I(h) for the LOESS fits under the default parameter span = 0.75 (Figure 4.3.1).
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Student scores Pearson Data LOESS0.75

x y r RI% I RI% I RI%

Mechanics Vectors 0.553 0.000 0.541 -5.749 1.000 0.908

Vectors Mechanics 0.553 0.000 0.574 6.099 0.991 -0.900

AI% 0.000 3.300 0.900

Vectors Algebra 0.610 0.000 0.527 -8.507 0.800 -20.000

Algebra Vectors 0.610 0.000 0.576 9.298 1.000 25.000

AI% 0.000 4.900 20.000

Algebra Analysis 0.711 0.000 0.575 1.590 1.000 0.000

Analysis Algebra 0.711 0.000 0.566 -1.565 1.000 0.000

AI% 0.000 0.900 0.000

Analysis Statistics 0.607 0.000 0.543 -0.549 1.000 0.000

Statistics Analysis 0.607 0.000 0.546 0.552 1.000 0.000

AI% 0.000 0.300 0.000

Mechanics Algebra 0.547 0.000 0.558 0.722 1.000 0.000

Algebra Mechanics 0.547 0.000 0.554 -0.717 1.000 0.000

AI% 0.000 0.400 0.000

Vectors Analysis 0.485 0.000 0.522 -3.512 0.802 -18.990

Analysis Vectors 0.485 0.000 0.541 3.640 0.990 23.441

AI% 0.000 1.900 18.800

Algebra Statistics 0.665 0.000 0.578 5.861 0.991 -0.502

Statistics Algebra 0.665 0.000 0.546 -5.536 0.996 0.505

AI% 0.000 3.200 0.500

Mechanics Analysis 0.409 0.000 0.555 1.093 0.936 -4.781

Analysis Mechanics 0.409 0.000 0.549 -1.081 0.983 5.021

AI% 0.000 0.600 4.700

Vectors Statistics 0.436 0.000 0.538 1.701 0.840 -14.023

Statistics Vectors 0.436 0.000 0.529 -1.673 0.977 16.310

AI% 0.000 0.900 13.700

Mechanics Statistics 0.389 0.000 0.558 8.560 0.940 -4.762

Statistics Mechanics 0.389 0.000 0.514 -7.885 0.987 5.000

AI% 0.000 4.400 4.700

Table 4.3.1: Summary statistics for all subjects.
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4.3.2 Interchangeability of study subjects

In Table 4.3.1 we have also reported the values of the relative index RI% := RI× 100% of

interchangeability of x and y, where

RI := RI(x,y) =
I(x,y)

I(y,x)
− 1,

and also the values of the absolute index of interchangeability AI% := AI× 100% of x and

y, where

AI := AI(x,y) =
∣∣I(x,y)− I(y,x)

∣∣.
We note that the indices RI and AI, which are also mentioned in the concluding section

of Chen and Zitikis (2017), are not specific to the index I. Indeed, RI and AI can be

calculated for any index of interest, including the Pearson correlation coefficient r = r(x,y),

but in the latter case, the values of RI and AI are always 0 due to the symmetry of r

with respect to x and y. The latter note highlights the unsuitability of r in the context of

current research.

4.4 Index of increase

In the previous sections, we introduced the index of increase via its properties, and

illustrated its performance with numerical results. The latter task required actionable

formulas, adapted for the two scenarios of particular interest: scatterplots and functions.

We next provide and discuss such formulas, starting with functions.

4.4.1 The index for functions

Let h : [L,U ]→ R be a real-valued function defined on an interval [L,U ]. For example, h

could be a LOESS function fitted to a scatterplot {(xi, yi), i = 1, . . . , n}, with L = mini{xi}

and U = maxi{xi} being the smallest and largest x-values, respectively.

The index of increase of h is, by definition, the normalized distance between the function

h and the set of all decreasing (precisely speaking, non-increasing) functions (Davydov

and Zitikis, 2017). Hence, the index is equal to 0 when the function h is decreasing,
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and is equal to 1 when it is increasing (precisely speaking, non-decreasing). When h is

differentiable, the formula for this distance-based index is (Davydov and Zitikis, 2017)

I(h) =

∫ U
L

(h′(x))+ dx∫ U
L
|h′(x)| dx

, (4.4.1)

where z+ denotes the positive part of any real number z, that is, z+ = z when z > 0 and

z+ = 0 otherwise.

A practical way to calculate the index I(h) is via discretization. Namely, we first

divide the interval [L,U ] into many small subintervals [di−1, di], 2 ≤ i ≤ k, where

di = L+ i−1
k−1(U − L), 1 ≤ i ≤ k. Then we calculate

Îk(h) =

∑k
i=2(h(di)− h(di−1))+∑k
i=2 |h(di)− h(di−1)|

. (4.4.2)

It has been shown (Davydov and Zitikis, 2017; Chen and Zitikis, 2017) that when k grows

indefinitely, Îk(h) converges to I(h). Based on this fact, we can calculate I(h) at any

desired precision by calculating Îk(h) for a sufficiently large k.

Remark 4.4.1. The parameter k, which is not to be confused with the scatterplot size n,

is chosen by the researcher, and can be as large as computing time and power permit. For

example, Chen and Zitikis (2017) show that for their chosen illustrative functions, setting

k = 20, 000 is sufficient to reach the true value of I(h) at the precision of six decimal digits.

4.4.2 The index for scatterplots

By their very nature, scatterplots are discrete, but even when we connect their points with

straight lines, the resulting functions, though continuous, are not differentiable and thus

formula (4.4.1) cannot be engaged. For this reason, Chen and Zitikis (2017) propose a

modification, which resembles formula (4.4.2) of the numerical approximation Îk(h). To

describe it, let {(xi, yi), i = 1, . . . , n} be the scatterplot under consideration. For the sake

of simplicity, let all the xi’s be different, the assumption that we shall remove in Section

4.4.3 below. Hence, we can, and thus do, uniquely order the xi’s from the smallest to the

largest, thus obtaining x1:n < x2:n < · · · < xn:n that are called order statistics (e.g., David

and Nagaraja, 2003).
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For every xi:n, we find the corresponding point (xj, yj) in the scatterplot, with j

determined by the equation xj = xi:n. We denote the second coordinate of the point

(xj, yj) by y[i:n], which is usually called the ith concomitant (e.g., David and Nagaraja,

2003). The index of increase is defined by the formula (Chen and Zitikis, 2017)

I0(x,y) =

∑n
i=2(y[i:n] − y[i−1:n])+∑n
i=2 |y[i:n] − y[i−1:n]|

, (4.4.3)

with the superscript “0” reminding us that there are no ties among the x’s.

To easily interpret the index I0(x,y), we first note that the numerator in its defini-

tion (4.4.3) sums up all the upward movements y[i:n] − y[i−1:n] > 0, while the denominator

sums up the absolute values of all the movements y[i:n]−y[i−1:n] ∈ R, upward and downward.

Hence, the index of increase is the proportion of upward movements among all the move-

ments. In particular, when I0(x,y) < 0.5, the proportion of downward movements is larger

than that of upward movements, and so the pattern looks more decreasing than increasing.

Analogously, when I0(x,y) > 0.5, the proportion of upward movements is larger than that

of downward movements, and so the pattern looks more increasing than decreasing. When

I0(x,y) is near 0.5, the proportions of upward and downward movements are similar, thus

suggesting that the values of the first and the last concomitants (i.e., of y[1:n] and y[n:n])

must be similar. The following property establishes this observation rigorously.

Property 4.4.1. We have I0(x,y) = 0.5 if and only if y[1:n] = y[n:n].

This property follows from the equations z = z+ − z− and |z| = z+ + z−, which imply

the equivalence of I0(x,y) = 0.5 and
∑n

i=2(y[i:n] − y[i−1:n]) = 0, the latter being equivalent

to y[1:n] = y[n:n].

Remark 4.4.2. Based on definition (4.4.3) and Property 4.4.1, we can now complete

Remark 2.4.1 by providing an example (suggested by one of the reviewers of this paper)

in order to show how much outliers can skew our analysis, as they usually do with any

statistical analysis. Namely, suppose that the scatterplot consists of n points, with the left-

and right-hand points having the same y-coordinates (i.e., y[1:n] = y[n:n]). However, all the

points except the right-most point have strictly increasing y-coordinates. Hence, we can say
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that the scatterplot exhibits a strictly increasing pattern, with the right-most point being an

outlier. By Property 4.4.1, we have I0(x,y) = 0.5, but if we remove the outlier (i.e., the

right-most point) and calculate the index of increase for the just obtained sub-scatterplot,

we get I0(x,y) = 1, because the sub-scatterplot exhibits an increasing pattern and thus the

numerator and the denominator on the right-hand side of definition (4.4.3) coincide. Of

course, from the strictly mathematical point of view, given the original scatterplot with

no points removed, the index I0(x,y) does not lie by giving us the value 0.5, as the trend

that arises from the scatterplot ends at the same height on the right-hand side as it started

on the left-hand side, thus technically making the trend neither increasing nor decreasing.

Yet, the statistician would likely remove the right-hand point, calculate the index value 1,

and would disagree with the mathematician’s conclusion. Both would be right in their own

ways.

Another notable property of I0(x,y) is translation and scale invariance, utilized by

Chen and Zitikis (2017) in order to unify the scales of measurement of different scatterplots.

Property 4.4.2. For all real α, β ∈ R and all positive γ, δ > 0, we have

I0(x,y) = I
(
γ(x− α), δ(y − β)

)
.

This property is particularly useful when dealing with student performance on different

subjects, when they are assessed using different score scales. Indeed, the property says

that shifting and stretching (or shrinking) data do not affect the value of the index.

Remark 4.4.3. The parameter n, though arbitrary, is nevertheless fixed throughout this

paper. The statistical tradition of letting n grow indefinitely is not appropriate in the context

of the present research, since uncontrollably expanding class sizes do not facilitate insights

that we aim to gain in the paper; more on this topic will be in concluding Section 4.6.

Nevertheless, one may naturally wish to assess the estimator’s variability for a given fixed

n, due to reasons such as testing one- or two-sample hypotheses. In such cases, we would

suggest using the (exact) permutation test (e.g., Wasserman, 2004, pp. 161–164).
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4.4.3 Adjustments due to data ties

The index of increase I0(x,y) is defined under the assumption that all x’s are different, but

quite often this assumption is violated. Hence, we suggest the following modification (cf.

Chen and Zitikis, 2017). Given any scatterplot {(xi, yi), i = 1, . . . , n}, let x∗1, x
∗
2, . . . , x

∗
m

denote all the m(≤ n) distinct values among x1, x2, . . . , xn. For each x∗i , let Yi be the set all

those y’s whose corresponding x’s are equal to x∗i . Each set Yi has at least one element, and

let y∗i denote the median of the elements in Yi. This gives rise to the modified scatterplot

{(x∗i , y∗i ), i = 1, . . . ,m} with distinct x’s, and thus with uniquely defined order statistics

x∗1:m < x∗2:m < · · · < x∗m:m and their corresponding concomitants y∗[1:m], y
∗
[2:m], . . . , y

∗
[m:m].

Applying definition (4.4.3) on the just constructed modified scatterplot, we obtain the

index of increase

I(x,y) =

∑m
i=2(y

∗
[i:m] − y∗[i−1:m])+∑m

i=2 |y∗[i:m] − y∗[i−1:m]|
. (4.4.4)

The values of I that we earlier reported in Figure 4.2.2 are actually those of the just

defined index I(x,y), because the data of Mardia et al. (1979, pp. 3-4) contain ties among

x-coordinates.

Remark 4.4.4. Given (x∗i ,Yi), instead of calculating the median of the values inside Yi,

we may calculate their mean or some other summary statistic. The various possibilities

available to the researcher depend on the data under consideration and/or the researcher’s

point of view.

4.4.4 Scatterplots over a specific range

In our explorations so far, we have utilized all the scatterplot points. Hence, piecewise

linear and LOESS fitted functions have been defined on the scatterplot-specific interval

[x1:n, xn:n], where x1:n = mini{xi} and xn:n = maxi{xi}. There are, however, situations

(as the one we shall encounter in the next section) when we wish to assess monotonicity

only on a certain subinterval [L,U ] of [x1:n, xn:n]. This can be desirable due to a number

of reasons, such as:

• A few left- and right-hand points of the scatterplot might be outliers, and we shall
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encounter such a situation in the next section; see Remark 4.5.1 therein. Hence,

removing the points might be warranted. This idea of truncation in order to improve

the robustness of statistical analysis has long been employed by statisticians, and

in various situations. For example, to robustify the classical sample mean as an

estimator of the population mean, one typically uses trimmed or winsorized means

(e.g., Serfling, 1980; Jurečková et al., 2019).

• One may wish to explore the scores of only a certain portion of the entire class,

such as the middle 80% of students, with 10% of under- and 10% of over-performing

students treated in special ways in order to make their learning experience more

fulfilling.

• When comparing several scatterplots, which we frequently do throughout this chapter,

it is advisable to make their ranges comparable, since comparing monotonicity of, for

example, two scatterplots with one covering the entire interval [0, 100] and another

only [60, 100] may not lead to meaningful conclusions.

Hence, since L and U may not be the minimal and maximal x’s of the scatterplot,

we therefore need a modification of our previous considerations. This can be done by

artificially, though quite naturally, augmenting the scatterplot with points (L, y∗L) and

(U, y∗U ) with specially constructed y-coordinates y∗L and y∗U , as described next. Namely, let

{(xi, yi), i = 1, . . . , n} be the scatterplot under consideration, and let [L,U ] be a subinterval

of [x1:n, xn:n] of particular interest to the researcher. We convert this scatterplot into the

modified one {(x∗i , y∗i ), i = 1, . . . ,m} with m(≤ n) distinct x-coordinates. Among the

points of the modified scatterplot, we find (x∗l:m, y
∗
[l:m]) and (x∗(l+1):m, y

∗
[(l+1):m]) such that

x∗l:m is the closest x-coordinate to the left of (or equal to) L, and x∗(l+1):m is the closest

x-coordinate to the right of (or equal to) L. To L we attach

y∗L = y∗[l:m] +
y∗[(l+1):m] − y∗[l:m]

x∗(l+1):m − x∗l:m
(L− x∗l:m) (4.4.5)

and arrive at the point (L, y∗L), which we add to the modified scatterplot. Analogously we
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arrive at the point (U, y∗U) with

y∗U = y∗[(u−1):m] +
y∗[u:m] − y∗[(u−1):m]

x∗u:m − x∗(u−1):m
(U − x∗(u−1):m), (4.4.6)

where (x∗(u−1):m, y
∗
[(u−1):m]) and (x∗u:m, y

∗
[u:m]) are the two points in the modified scatterplot

such that x∗(u−1):m is the closest x-coordinate to the left of (or equal to) U , and x∗u:m is the

closest x-coordinate to the right of U . With

z∗[i:m] =


y∗L when i = l,

y∗[i:m] when i = l + 1, . . . , u− 1,

y∗U when i = u,

we define the (conditional on [L,U ]) index of increase

I(x,y | L,U) =

∑u
i=l+1(z

∗
[i:m] − z∗[i−1:m])+∑u

i=l+1 |z∗[i:m] − z∗[i−1:m]|
. (4.4.7)

Our following explorations of the dataset of Mardia et al. (1979, pp. 3-4) rely on this index.

4.5 A revisit of Mardia et al. (1979, pp. 3-4)

Based on the dataset of Mardia et al. (1979, pp. 3-4) and using the just introduced

conditional index of increase, we next explore relationships between the scores from

closed-book examinations (Section 4.5.1), open-book examinations (Section 4.5.2), and

also general performance based on the combined scores arising from closed- and open-book

examinations (Section 4.5.3). When comparing any pair of scatterplots, we do so based on

only those points whose x-coordinates are in the largest common interval [L,U ].

Namely, let the two scatterplots be {(xi, yi), i = 1, . . . , n1} and {(vi, wi), i = 1, . . . , n2}

with some n1 and n2; for every scatterplot of Mardia et al. (1979, pp. 3-4), we have n1 =

n2 = n = 88. Using the median adjustment described in Section 4.4.3, the two scatterplots

reduce to the modified scatterplots {(x∗i , y∗i ), i = 1, . . . ,m1} and {(v∗i , w∗i ), i = 1, . . . ,m2},

respectively. The endpoints of their common interval [L,U ] are calculated by the formulas

L = max{x∗1:m1
, w∗1:m2

} and U = min{x∗m1:m1
, w∗m2:m2

}. (4.5.1)
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4.5.1 Closed-book examinations

Vectors and Mechanics are the only two subjects in the dataset of Mardia et al. (1979, pp. 3-

4) that were assessed using closed-book examinations. To illuminate relationships between

the scores in these subjects, in Figure 4.5.1 we have depicted Mechanics vs. Vectors as

well as Vectors vs. Mechanics over their common range [L,U ] = [9, 77], which we obtained

using formula (4.5.1). For the LOESS fits, we have used the default span = 0.75 and
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Figure 4.5.1: Piece-wise linear fits (panels (a) and (b)), and the LOESS fits (panels (c)

and (d)) when the span is 0.75 (thicker) and 0.35 (thinner) with the index I = I(h0.35) in

parentheses.

also span = 0.35. The former smoothes out more fluctuations and thus reveals general

patterns, which are fairly increasing, whereas span = 0.35 maintains more minute details.

Table 4.5.1 summarizes the results.
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Study subjects Data LOESS0.75 LOESS0.35

x y I RI% I RI% I RI%

Mechanics[9,77] Vectors 0.545 -3.540 0.972 -0.715 0.744 -14.483

Vectors[9,77] Mechanics 0.565 3.670 0.979 0.720 0.870 16.935

AI% 2.000 0.700 12.600

Table 4.5.1: Closed-book examination summaries

The reported values of the index I suggest that Vectors vs. Mechanics exhibits a more

increasing pattern than Mechanics vs. Vectors. This is also seen from the values of the

relative index of interchangeability, RI%, which is positive for Vectors vs. Mechanics (and

thus negative for Mechanics vs. Vectors) irrespective of the degree of smoothing. Hence,

we conclude that students with higher scores in Vectors are more likely to get higher scores

in Mechanics than the other way around, that is, when Mechanics precedes Vectors. This,

we think, is due to the fact that Vectors is a fundamental subject for learning Mechanics;

think of, e.g., the notion of force. To support this observation, we refer to the introductory

sections of the classical textbook by Synge and Griffith (1949), who first recall basics of

Vectors and only then teach Mechanics.

In view of the above, it becomes revealing why curriculum developers tend to include

Mechanics modules into Mathematics classes. To illustrate the point, Kitchen et al.

(1997) argue that in order to strengthen the appreciation of Mathematics, students should

study Kinematics, Statics, and Dynamics, which make up parts of Mechanics and require

knowledge of Vectors. Moreover, the authors argue that the use of illustrations based on

Mechanics make Mathematics more relevant and thus more appreciated. Consequently,

changes in Mathematics curricula have the potential of affecting Mechanics modules, which

can in turn become particulary worrisome among those who teach first-year engineering

students at universities (e.g., Lee et al., 2006, and references therein). The results reported

in Table 4.5.1 are in good agreement with the aforementioned observations, and may

therefore lend support to those in favour of encouraging students not to avoid “harder”

study subjects.
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We now take a look at the issue of interchangeability of Mechanics and Vectors with

the aid of the absolute index of interchangeability, AI%. For the raw scatterplot, AI% is

2%, which is a relatively small number, likely due to the noise, but not to the pattern

itself. We can smooth out the noise using a LOESS fit with a large span value. For

example, the default value span = 0.75 smoothes out a lot of variability and makes the

two fits virtually increasing: the index I values are 0.972 and 0.979, quite close to the

maximum 1. By setting span to 0.35, the absolute index of interchangeability surges to

12.6%, which is large, and we would therefore hesitate to state that Mechanics and Vectors

are interchangeable. Reiterating our earlier discussion based on RI%, and also recalling our

note concerning Synge and Griffith (1949), and further arguments by Kitchen et al. (1997),

we would tend to believe that viewing Vectors as an explanatory variable for Mechanics is

more appropriate than the other way around.

4.5.2 Open-book examinations

Algebra, Analysis, and Statistics are the three subjects in the dataset of Mardia et al.

(1979, pp. 3-4) that were assessed using open-book examinations. Hence, we have three

pairs of scatterplots, whose summaries are in Table 4.5.2,

Study subjects Data LOESS0.75 LOESS0.35

x y I RI% I RI% I RI%

Algebra[15,70] Analysis 0.569 7.156 0.992 -0.800 0.879 18.623

Analysis[15,70] Algebra 0.531 -6.678 1.000 0.806 0.741 -15.700

AI% 3.800 0.800 13.800

Analysis[9,70] Statistics 0.543 0.185 1.000 1.317 0.899 13.367

Statistics[9,70] Analysis 0.542 -0.184 0.987 -1.300 0.793 -11.791

AI% 0.100 1.300 10.600

Algebra[15,80] Statistics 0.578 4.521 1.000 4.493 0.865 11.326

Statistics[15,80] Algebra 0.553 -4.325 0.957 -4.300 0.777 -10.173

AI% 2.500 4.300 8.800

Table 4.5.2: Open-book examination summaries



74 CHAPTER 4. QUANTIFYING DIRECTIONAL ASSOCIATIONS...

with corresponding Figures B.1.1–B.1.3 relegated to Appendix B.1. Note the different

intervals [L,U ] for each of the three pairs, and we shall therefore restrain from comparing,

for example, Algebra vs. Analysis and Algebra vs. Statistics. However, we shall compare

and discuss, for example, Algebra vs. Analysis with Analysis vs. Algebra.

Algebra and Analysis provide fundamental concepts for other subjects, such as Statistics,

with Algebra playing a particularly prominent role, as argued by, e.g., Gamoran and

Hannigan (2000). Based on the data of Mardia et al. (1979, pp. 3-4), we reach this

conclusion from the raw data (RI%=7.156) as well as from the moderate LOESS0.35 fit

(RI%=18.623). The default LOESS0.75 fit (RI%=−0.800) gives a slight preference to

Analysis over Algebra.

Remark 4.5.1. A possible reason for this change of preference is likely due to an outlier:

one student’s Algebra score deviates considerably from the overall pattern of scores. Obvi-

ously, the LOESS fit under the default value span = 0.75 smoothes out the outlier, making

I(Analysis,Algebra) equal to 1, whereas I(Algebra,Analysis) takes the value 0.992.

The observed slight uncertainty when deciding which of the two study subjects –

Algebra or Analysis – should be taught first does not seem to really matter in practice

because, as far as we are aware of, Algebra and Analysis are considered fundamental

subjects, focussing on different aspects of mathematics, and are thus often taught at

the same time. Hence, neither of them can be easily substituted by another one: better

performance in these two subjects leads to better performance in other subjects, such as

Statistics, as seen from the RI values in Table 4.5.2. Note in this regard that irrespective of

the degree of smoothing, the RI values for Statistics vs. Analysis and Statistics vs. Algebra

are negative, and thus the empirical evidence provided by Mardia et al. (1979, pp. 3-4)

suggests that Analysis and Algebra should be taught first and only then Statistics.

4.5.3 Closed-book vs. open-book examinations

In the previous two sections, we discussed subjects within closed-book examinations and

also within open-book examinations. In the current section, we look at the six combinations
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with one subject from closed-book examinations and another subject from open-book

examinations. Table 4.5.3 summarizes our findings, with corresponding Figures B.1.4–B.1.9

Study subjects Data LOESS0.75 LOESS0.35

x y I RI% I RI% I RI%

Mechanics[15,77] Algebra 0.545 -1.089 1.000 0.000 0.756 0.265

Algebra[15,77] Mechanics 0.551 1.101 1.000 0.000 0.754 -0.265

AI% 0.600 0.000 0.200

Mechanics[9,70] Analysis 0.516 -6.011 0.876 -12.400 0.640 -23.900

Analysis[9,70] Mechanics 0.549 6.395 1.000 14.155 0.841 31.406

AI% 3.300 12.400 20.100

Mechanics[9,77] Statistics 0.541 7.129 0.966 15.137 0.700 24.113

Statistics[9,77] Mechanics 0.505 -6.654 0.839 -13.147 0.564 -19.429

AI% 3.600 12.700 13.600

Vectors[15,80] Algebra 0.554 -3.819 1.000 0.000 0.964 15.865

Algebra[15,80] Vectors 0.576 3.971 1.000 0.000 0.832 -13.693

AI% 2.200 0.000 13.200

Vectors[9,70] Analysis 0.517 -4.436 0.775 -22.111 0.560 -20.680

Analysis[9,70] Vectors 0.541 4.642 0.995 28.387 0.706 26.071

AI% 2.400 22.000 14.600

Vectors[9,81] Statistics 0.538 1.701 0.835 -14.534 0.723 9.380

Statistics[9,81] Vectors 0.529 -1.673 0.977 17.006 0.661 -8.575

AI% 0.900 14.200 6.200

Table 4.5.3: Comparison for cross category

relegated to Appendix B.1. Note from Table 4.5.3 that the values of the index of increase

differ from those in Table 4.3.1. The piecewise linear and LOESS fits also differ from

the corresponding ones in Figures 4.2.2 and 4.3.1, because the latter two figures are not

based on unified ranges calculated by formula (4.5.1), whose notion was only introduced

in Section 4.4.4.
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From the RI values in Table 4.5.3, we see that irrespective of the degree of smoothing,

Analysis as a study subject should precede Mechanics, which in turn should precede

Statistics. Furthermore, Analysis should precede Vectors. If we do not take into account

the RI values based on raw data and concentrate only on the two LOESS fits, then

we conclude that both Mechanics and Vectors should precede Algebra. As to Vectors

and Statistics, the two LOESS fits give somewhat conflicting suggestions, thus implying

that the two subjects may not be good at determining each other’s scores. This we find

natural: given our teaching experience, these two subjects – on the introductory level – are

hardly related to each other. We should add, however, that advanced statistics requires

good knowledge of vectors, matrices, and related concepts, which can in turn be used as

illuminating examples when teaching vectors and matrices.

4.6 Concluding notes

Measuring relationships and, consequently, monotonicity relationships between paired

variables is an important and highly challenging problem, especially when relationships

• are inherently non-linear,

• cannot be described using closed-form formulas.

To tackle such problems, we have employed the index of increase, which is a relatively

new technique that has emerged from the works of Davydov and Zitikis (2017), Chen and

Zitikis (2017), and Chen et al. (2018). Since the use of computers is essential, we have

thoroughly described the packages and algorithms that we have used in our computations

and explorations.

By revisiting the popular dataset of Mardia et al. (1979, pp. 3-4), which is frequently

used by university teachers to illustrate various classical concepts of multivariate analysis,

we have enabled those familiar with the textbook and the dataset to see the need for,

and benefits of, thinking outside the box. To facilitate the task, we have provided a

comprehensive explanation of the index of increase, its calculation techniques under various
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scenarios, and interpretations. For example, we have found the following relationships

between different study subjects with respect to the timing of exposure to students:

• Vectors ≺ Mechanics (Section 4.5.1)

• Algebra ≺ Statistics (Section 4.5.2)

• Analysis ≺ Statistics (Section 4.5.2)

• Algebra ⊥⊥ Analysis (Section 4.5.2)

• Analysis ≺ Mechanics ≺ Statistics (Section 4.5.3)

• Analysis ≺ Vectors (Section 4.5.3)

• Mechanics ≺ Algebra (Section 4.5.3)

• Vectors ≺ Algebra (Section 4.5.3)

• Vectors ⊥⊥ Statistics (Section 4.5.3)

where S1 ≺ S2 means that prior familiarity with subject S1 is beneficial for learning subject

S2, and S1 ⊥⊥ S2 when the two subjects do not clearly exhibit S1 ≺ S2 or S2 ≺ S1, and can

thus be taught in any order. (The sign ⊥⊥ is frequently used in Statistics and Probability

to indicate independence, which in the current context connotes “timing independence.”)

Next, we make a few cautionary notes that we think are particularly important when

dealing with problems such as those we have tackled in the present paper.

First, our interpretations and suggested decision-making are based on the data of

Mardia et al. (1979, pp. 3-4), and should not be lightheartedly generalized or extended to

other educational contexts. Nevertheless, as is the case with many statistical methods and

techniques, they are insightful when used with care and in conjunction with subject-matter

knowledge.

Second, not only the subject-matter knowledge that determines whether or not we are

likely to be right (or wrong) when making decisions but also the knowledge of instructor’s

personality and performance are crucial. For more details and references on this topic,



78 CHAPTER 4. QUANTIFYING DIRECTIONAL ASSOCIATIONS...

and for associated consequences when teaching, e.g., Calculus and Algebra, we refer to

Wade et al. (2017). The “conversation” by Taylor (2019) provides further enlightening

thoughts and additional references.

Third, the classically trained statistical researcher would spontaneously ask what

would happen if the sample size n (i.e., the class size in the current context) would grow

indefinitely. Firstly, such situations cannot happen in the context of educational research,

but if, for the sake of argument, this happens, then the answer would undoubtedly be

“it would be a mess.” Interestingly, in contexts outside of educational research, such as

insurance and finance (e.g., Gribkova and Zitikis, 2018; Ren et al., 2019) and engineering

(e.g., Gribkova and Zitikis, 2019a,b), exploring the index of increase when the sample size

n grows indefinitely is meaningful and even pivotal.

It is the latter studies from which we know that the above reply “it would be a mess”

is indeed the correct answer, in the sense that if each observation is a non-deterministic

outcome (as is the case with student marks), then when n grows to infinity, the index of

increase inevitably converges to 0.5, meaning that the underlying scatterplot grows into a

chaotic pattern, with no clear upward or downward trends. In a sense, this is natural and

does manifest in large-size (say, more than 200 students) introductory statistics/calculus

classes, whose main purpose, roughly speaking, is not to make subtle recommendations to

students such as directing them to theoretical or computational statistics/calculus studies

– this is usually done in upper-year and small class-size environments – but to simply make

a general assessment of student suitability to achieve a comprehensive university-level

education.

Finally, a few notes concerning future work are in order. First, we reiterate that our

choice of the classical dataset of Mardia et al. (1979, pp. 3-4) has been deliberate: we

have aimed at contrasting classical and new techniques in a highly accessible way. But

this, in turn, raises an interesting research question. Namely, with the currently rapidly

developing societal need for more computer proficiency and familiarity with topics such

as machine learning and artificial intelligence, are the above reached conclusions based

on an old dataset still relevant today? To have well-informed answers, and we think
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there is no single correct answer to this question, one would need to run observational

and experimental studies, whose outcomes may depend on geographical regions, societal

traditions, and so on. These are very interesting research problems, and much has already

been done by educational researchers; the present thesis offers them an additional tool of

analysis.



Chapter 5

Estimating the index of increase via

balancing deterministic and random

data

5.1 Motivation

Dynamic processes in populations are often described using functions (e.g., Bebbington

et al., 2007, 2011, and references therein). They are observed in the form of data points,

usually contaminated by measurement errors. We may think of these points as randomly

perturbed true values of underlying functions, whose measurements are taken at certain

time instances. The functions, their rates of change, and de/acceleration can be and

frequently are non-monotonic. Nevertheless, it is of interest to assess and even compare

the extent of their monotonicity, or lack of it. We refer to Qoyyimi (2015) for a discussion

and literature review of various applications.

Several methods for assessing monotonicity have been suggested in the literature (e.g.,

Davydov and Zitikis, 2005, 2017; Qoyyimi and Zitikis, 2014, 2015). In particular, Davydov

and Zitikis (2017) show the importance of such assessments in insurance and finance,

especially when dealing with weighted insurance calculation principles (Furman and Zitikis,

2008), among which we find such prominent examples as the Esscher (Bühlmann, 1980,

80
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1984), Kamps (1998), and Wang (1995, 1998) premiums. Furthermore, Egozcue et al.

(2011) provide problems in economics where the sign of the covariance

Cov[X,w(X)] (5.1.1)

needs to be determined for various classes of function w. One of such examples concerns

the slope of indifference curves in two-moment expected utility theory (e.g., Eichner and

Wagener, 2009; Sinn, 1990; Wong, 2006, and references therein). Another problem concerns

decision making (e.g., speculation, normal backwardation, contango, etc.) of competitive

companies under price uncertainty (e.g., Feder et al., 1980; Hey, 1981; Meyer and Robinson,

1988, and references therein).

Lehmann (1966) has shown that if the function w is monotonic, then covariance

(5.1.1) is either positive (when w is increasing) or negative (when w is decreasing). This

monotonicity assumption on w, though satisfied in a number of cases of practical interest,

excludes a myriad of important cases with more complex risk profiles. For example, when

dealing with the aforementioned economics-based problems, the role of w is played by

the derivative u′ of the underlying utility function, which may not be convex or concave

everywhere, as argued and illustrated by, e.g., Friedman and Savage (1948), Markowitz

(1952), Kahneman and Tversky (1979), Tversky and Kahneman (1992), among others.

Hence, since w might be non-monotonic, how far can this function be from being monotonic,

or increasing? Furthermore, since the population risk- or utility-profile cannot be really

known, the non-monotonicity of w needs to be assessed from data, and this leads us to

the statistical problem of this paper.

In addition, supported by the examples of Anscombe (1973) on potential pitfalls when

using the classical correlation coefficient, Chen and Zitikis (2017) argue in favour of

using the index of increase, as defined by Davydov and Zitikis (2017), for assessing non-

monotonicity of scatterplots. Chen and Zitikis (2017) apply this approach to analyze and

compare student performance in subjects such as mathematics, reading and spelling, and

illustrate their reasoning on data provided by Thorndike and Thorndike Christ (2010). One

of the methods discussed by Chen and Zitikis (2017) deals with scatterplots representing

finite populations, in which case large-sample estimation is not possible. The other method
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involves large-sample regression techniques (Figure 5.1.1), in which case Chen and Zitikis

(2017) calculate the corresponding indices of increase using a numerical approach, that

gives rise to the values denoted by I and reported in the bottom-right corners of the panels

of Figure 5.1.1. Though important, these methods do not allow direct large-sample non-
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Figure 5.1.1: Regression curves fitted to the student scores reported by Thorndike and

Thorndike Christ (2010), and their indices of increase.

monotonicity quantifications and thus inferences about larger populations. In this paper,

therefore, we offer a statistically attractive and computationally efficient procedure for

assessing data patterns that arise from non-monotonic patterns contaminated by random

measurement errors.

We have organized the rest of the chapter as follows. In Section 5.2, we introduce

the index and provide basic arguments leading to it. In Section 5.3, we explain why and

how the index needs to be adjusted in order to become useful in situations when random
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measurement errors are present. In Section 5.4, we rigorously establish consistency of

the estimator and introduce relevant data-exploratory and cross-validatory techniques.

Since the limiting distribution of the estimator is complex, in Section 5.5 we implement

a bootstrap-based procedure for determining standard errors and, in turn, for deriving

confidence intervals. Section 5.6 concludes the paper with a brief summary of our main

contributions.

5.2 The index of increase

Davydov and Zitikis (2017) have introduced the index of increase

I(h0) =

∫ b
a
(h′0)+dλ∫ b
a
|h′0|dλ

(
:=

∫ b
a
(h′0(t))+dt∫ b
a
|h′0(t)|dt

)
(5.2.1)

for any absolutely continuous (e.g., differentiable) function h0 on interval [a, b], where

(h′0)+ := max{h′0, 0}, and “:=” denotes equality by definition. Throughout the chapter,

we use λ to denote the Lebesgue measure, which helps us to write integrals compactly,

as seen from the ratios above. We shall explain how the index arises later in the current

section. Of course, this framework reduces to the unit interval [0, 1] by considering the

function h(t) := h0(a+ (b− a)t) instead of h0. Namely, we have

I(h0) =

∫ 1

0
(h′)+dλ∫ 1

0
|h′|dλ

=: I(h). (5.2.2)

To illustrate, in Figure 5.2.1 we have visualized the following quartet of functions

h1(t) = sin
(
− π

2
+

3π

2
t
)
, h2(t) = cos

(
− π

2
+

3π

2
t
)
,

h3(t) = sin
(π

2
t
)
, h4(t) = cos

(π
2
t
)
,

(5.2.3)

and we have also calculated their indices of increase. Since h3 and h4 are monotonic

functions on the interval [0, 1], calculating their indices of increase using formula (5.2.2)

is trivial, but the same task in the case of non-monotonic functions h1 and h2 requires

some effort. To facilitate such calculations in a speedy fashion, and irrespective of the

complexity of functions, we suggest using the numerical approximation

In(h) :=

∑n
i=2(h(ti,n)− h(ti−1,n))+∑n
i=2 |h(ti,n)− h(ti−1,n)|

(5.2.4)
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Figure 5.2.1: The functions of quartet (5.2.3) and their indices of increase

with ti,n = (i−1)/(n−1) for i = 1, . . . , n. Intuitively, In(h) is the proportion of the upward

movements of the function h with respect to all the movements, upward and downward.

Knowing the convergence rate of In(h) to I(h) when n→∞ is important as it allows

us to set a frequency n at which the measurements of h(ti,n) could be taken during the

observation period (e.g., unit interval [0, 1]) so that any pre-specified estimation precision

of I(h) would be achieved. For example, we have used n = 10000 to calculate the index

values with the four-digit precision reported in Figure 5.2.1. We refer to Chen and Zitikis

(2017) for details on computational precision.

The following proposition, which is a special case of Lemma 5.4.1 below, establishes

the convergence rate based on the level of smoothness of the function h.

Proposition 5.2.1. Let h be a differentiable function defined on the unit interval [0, 1],
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and let its derivative h′ be γ-Hölder continuous for some γ ∈ (0, 1]. Then, when n→∞,

we have
n∑
j=2

`
(
h(ti,n)− h(ti−1,n)

)
=

∫ 1

0

`
(
h′
)
dλ+O(n−γ) (5.2.5)

for any positively homogeneous and Lipschitz function ` (e.g., `(t) = t+ and `(t) = |t|).

Consequently,

In(h) = I(h) +O(n−γ). (5.2.6)

To explain the basic meaning of the index I(h), we start with an un-normalized version

of it, which we denote by J(h). Namely, let F denote the set of all absolutely continuous

functions f on the interval [0, 1] such that f(0) = 0. Denote the total variation of

f ∈ F on the interval [0, 1] by ‖f‖, that is, ‖f‖ =
∫ 1

0
|f ′|dλ. Furthermore, by definition,

we have (f ′)+ = max{f ′, 0} and (f ′)− = max{−f ′, 0}, and we also have the equations

f ′ = (f ′)+− (f ′)− and |f ′| = (f ′)+ + (f ′)−. Finally, we use F− to denote the set of all the

functions f ∈ F that are non-increasing. All of these are of course well-known fundamental

notions of Real Analysis (e.g., Kolmogorov and Fomin, 1970; Dunford and Schwartz, 1988;

Natanson, 2016).

For any function h ∈ F , we define its (un-normalized) index of increase J(h) as the

distance between h and the set F−, that is,

J(h) = inf
f∈F−

‖h− f‖. (5.2.7)

Obviously, if h is non-increasing, then J(h) = 0, and the larger the value of J(h), the

farther the function h is from being non-increasing on the interval [0, 1]. Determining

the index J(h) using its definition (5.2.7) is not, however, a straightforward task, and to

facilitate it, we next establish a very convenient integral representation of J(h).

Theorem 5.2.1. (Davydov and Zitikis, 2017) The infimum in definition (5.2.7) is attained

at any function f1 ∈ F− such that f ′1 = −(h′)−, and thus

J(h) =

∫ 1

0

(h′)+dλ. (5.2.8)

A direct proof of this theorem was not provided by Davydov and Zitikis (2017), who

refer to a more general and abstract result. Nevertheless, a short and enlightening proof

exists, and we present it next.
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Proof of Theorem 5.2.1. We start with the note that the bound J(h) ≤ ‖h− f‖ holds for

every function f ∈ F−, and in particular for the function f1 specified in the formulation

of the theorem. Hence,

J(h) ≤
∫ 1

0

|h′ − f ′1|dλ

=

∫ 1

0

|h′ + (h′)−|dλ

=

∫ 1

0

(h′)+dλ. (5.2.9)

It now remains to show the opposite bound. Let T+ be the set of all t ∈ [0, 1] such that

h′(t) > 0, and let T− be the complement of the set T+, which consists of all those t ∈ [0, 1]

for which h′(t) ≤ 0. Then

J(h) = inf
f∈F−

(∫
T+

|h′ − f ′|dλ+

∫
T−
|h′ − f ′|dλ

)
≥ inf

f∈F−

∫
T+

|h′ − f ′|dλ

= inf
f∈F−

(∫
T+

h′dλ+

∫
T+

|f ′|dλ
)

=

∫ 1

0

(h′)+dλ, (5.2.10)

where the last equation holds when f ′(t) = 0 for all t ∈ T+, that is, when f ′ = −(h′)−.

Bounds (5.2.9) and (5.2.10) establish equation (5.2.8), thus finishing the proof of Theorem

5.2.1.

The index J(h) never exceeds ‖h‖, and so the normalized version of J(h) is

I(h) := J(h)/‖h‖,

which is exactly the index of increase given by equation (5.2.2). In summary, the index

of increase I(h) is the normalized distance of the function h from the set F− of all

non-increasing functions on the interval [0, 1]: we have I(h) = 0 when the function h is

non-increasing, and I(h) = 1 when the function is non-decreasing. The closer the index

I(h) is to 1, the more (we say) the function h is increasing, and the closer it is to 0, the

less (we say) the function h is increasing or, equivalently, the more it is decreasing.
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5.3 Practical issues and their resolution

Measurements are usually taken with errors, whose natural model is some distribution

(e.g., normal) with mean 0 and finite variance σ2. In other words, the numerical index

In(h) turns into the random index of increase

In(h, ε) :=

∑n
i=2(Yi,n − Yi−1,n)+∑n
i=2 |Yi,n − Yi−1,n|

, (5.3.1)

where, for i = 1, . . . , n,

Yi,n = h(ti,n) + εi. (5.3.2)

Right at the outset, however, serious issues arise. To illustrate them in a speedy and

transparent manner, we put aside mathematics such as in Davydov and Zitikis (2004,

2007) and, instead, simulate n = 10000 standard normal errors εi, thus obtaining four

sequences Yi,n corresponding to the functions of quartet (5.2.1). Then we calculate the

corresponding indices of increase using formula (5.3.1). All of the obtained values of In(h)

are virtually equal to 1/2 (see Figure 5.3.1). Clearly, there is something amiss.

It is not, however, hard to understand the situation: when all εi’s are zero, the definition

of the integral as the limit of the Riemann sums works as intended, but when the εi’s are

not zero, they accumulate so much when n gets larger that the deterministic part (i.e., the

Riemann sum) gets hardly, if at all, visible (compare Figures 5.2.1 and 5.3.1). In summary,

we are facing two extremes:

• If the model is purely deterministic in the sense that there are no measurement

errors, which we can understandably argue to be outside the realm of practice, then

the more frequently we observe the function h, the more precisely we can estimate

its index of increase.

• If, however, there are measurement errors, as they usually are in practice, then the

more frequently we observe the function, the less precisely we can estimate its index

of increase, because the accumulated measurement errors obscure the deterministic

part.
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Figure 5.3.1: The indices of increase and their numerical estimators for quartet (5.2.3)

with added random errors.

Neither of the two extremes can be of much interest, or use, for reasons either practical

or computational. The purpose of this chapter is to offer a way out of this difficulty by

showing how to strike a good balance between determinism and randomness inherent in

the problem.

We next present an intuitive consideration that will guide our subsequent mathematical

considerations, and it will also hint at potential applications of this research. Namely,

suppose that the unit interval [0, 1] represents an one-day observation period, and let

an observation be taken (e.g., by a measuring equipment) every second. Hence, in total,

we have n = 86400 observations Yi,n of the (unknown) function h, and they are prone
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to measurement errors εi as in expression (5.3.2). For the sake of argument, let εi’s be

i.i.d. standard normal. If we calculate the index In(h, ε) based on these data, we already

know the problem: In(h, ε) tends to 1/2 when n→∞. To diminish the influence of these

errors, we average the observed values:

1

n

n∑
i=1

Yi,n =
1

n

n∑
i=1

h(ti,n) +
1

n

n∑
i=1

εi

d
≈
∫ 1

0

hdλ+
1√
n
ε0,

where
d
≈ means ‘approximately in distribution,’ and ε0 follows the standard normal

distribution. However, in the process of averaging out the errors, we have inevitably also

averaged the deterministic part and arrived at the mean value
∫ 1

0
hdλ of the function

h. This value has very little to do with the index I(h), which fundamentally relies on

the derivative h′. In short, we have clearly over-averaged the observations Yi,n: having

maximally reduced the influence of measurement errors, we have obscured the function h

so much that the estimation of I(h) has become impossible. Clearly, we need to adopt a

more tempered approach.

Hence, we group the observations into only M < n groups Gj,n, j = 1, . . . ,M , whose

cardinalities N := #(Gj,n) we assume to be the same for all j = 1, . . . ,M . It is convenient

to re-parametrize these choices using parameter α ∈ (0, 1), which turns M and N into

M = bnαc and N = bn1−αc.

This re-parametrization is not artificial. It is, in a way, connected to smoothing histograms

and estimating regression functions, and in particular to bandwidth selection in these

research areas. We shall elaborate on this topic more in the next section. At the moment,

we only note that the aforementioned connection plays a pivotal role in obtaining practically

useful and sound estimates of the parameter α.

To gain additional intuition on the grouping parameter α, we come back for a moment

to our numerical example with the one-day observation period, which is comprised of

n = 86400 observations, one per second. Suppose that we decide to average the sixty

observations within each minute. Thus, we have N = 60 and in this way produce M = 1440
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new data points, which we denote by Ỹj,n. Since NM = n, we have α = 1− log(N)/ log(n)

and thus α = 0.6398. If, however, instead of averaging minute-worth data we decide to

average, for example, hour-worth data, then we have N = 3600 (=group cardinality),

M = 24 (=number of groups), and thus α = 0.2796.

Continuing our general discussion, we average the original observations Yi,n, i = 1 . . . , n,

falling into each group Gj,n and in this way obtain M group-averages

Ỹj,n :=
1

N

∑
i∈Gj,n

Yi,n, j = 1, . . . ,M.

Based on these averages, we modify the earlier introduced index In(h, ε) as follows:

Ĩn,α(h, ε) :=

∑M
j=2(Ỹj,n − Ỹj−1,n)+∑M
j=2 |Ỹj,n − Ỹj−1,n|

. (5.3.3)

The problem that we now face is to find, if exist, those values of α ∈ (0, 1) that make the

index Ĩn,α(h, ε) converge to I(h) when n→∞. This is the topic of the next section.

5.4 Consistency

The following theorem establishes consistency of the estimator Ĩn,α(h, ε) and, in particular,

specifies the range of possible α values.

Theorem 5.4.1. Let h be a differentiable function defined on the unit interval [0, 1], and

let its derivative h′ be γ-Hölder continuous for some γ ∈ (0, 1]. If α ∈ (0, 1/3), then

Ĩn,α(h, ε) is a consistent estimator of I(h), that is, when n→∞, we have

Ĩn,α(h, ε)
P→ I(h). (5.4.1)

The rate of convergence is of the order

OP(1)n−min{δ(α),ρ(α)} (5.4.2)

with δ(α) = αγ arising from the deterministic part of the problem, that is, associated with

the function h, and ρ(α) = (1− 3α)/2 arising from the random part, that is, associated

with the measurement errors εi’s.
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We next discuss the choice of α from the theoretical and practical perspectives, which

do not coincide due to a number of reasons, such as the fact that theory is concerned with

asymptotics when n → ∞, while practice deals with finite values of n, though possibly

very large. Under the (practical) non-asymptotic framework, any value of α ∈ (0, 1] is, in

principle, acceptable because the quantities OP(1) and n−min{δ(α),ρ(α)} in the specification

of convergence rate (5.4.2) interact, as both of them depend on h and α.

Under the (theoretical) asymptotic framework, the values α = 0 and 1 have to be

discarded immediately, as we have already noted. The remaining α’s should, as Theorem

5.4.1 tells us, be further restricted to only those below 1/3. Since we wish to chose α that

results in the fastest rate of convergence, we maximize the function α 7→ min{δ(α), ρ(α)}

and get

αmax =
1

3 + 2γ
. (5.4.3)

For example, if the second derivative h′′(t) is uniformly bounded on the interval [0, 1],

which is the case in all our illustrative examples, then γ = 1 and thus αmax = 1/5.

The grouping and averaging technique that we employ is closely related to smoothing

in non-parametric density and regression estimation (e.g., Silverman, 1986; Härdle, 1991;

Scott, 2015, and references therein). To elaborate on this connection, we recall that the

number of groups is M ≈ nα, whose reciprocal

b := 1/M ≈ n−α (5.4.4)

would play the role of ‘bandwidth.’ In non-parametric density and regression estimation,

the optimal bandwidth is of the order O(n−1/5) when n→∞, which in our case corresponds

to αmax = 1/5. Hence, α = 0 means only one bin/group and thus over-smoothing, whereas

α = 1 means as many bins/groups as there are observations, and thus under-smoothing.

Of course, as we have already noted above, the values α = 0 and α = 1 are excluded,

unless all the measurement errors vanish, in which case smoothing is not necessary and

thus α = 1 can be used, as we indeed did earlier when dealing with the numerical index

In(h).

Thinking of the role of γ-Hölder continuity of h′ on the problem, it is useful to look at

two extreme cases: First, when γ = 1, we have αmax = 1/5 from formula (5.4.3), which
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corresponds (under weak conditions) to the optimal bandwidth O(n−1/5) in non-parametric

density and regression estimation. Second, when no smoothing is applied, like in the case

of the histogram density-estimator, then (under weak conditions) the optimal bandwidth

is of the order O(n−1/3), which corresponds to αmax = 1/3 when γ = 0, which essentially

means boundedness but no continuity of h′.

Hence, choosing an appropriate value of the grouping parameter α is a delicate task.

We next discuss two approaches: The first one is data-exploratory (visual) when we assume

that we know the population and want to gain insights into what might happen in practice.

The second, practice-oriented approach relies on the idea of cross-validation (e.g., Arlot and

Celisse, 2010; Celisse, 2008, and references therein) and is designed to produce estimates

of α based purely on data.

5.4.1 Data exploratory (visual) choice of α

To gain intuition on how to estimate the grouping parameter α from data, we start out with

the functions in quartet (5.2.3), which we view as populations, and then we contaminate

their observations with i.i.d. errors εi ∼ N (0, 1) according to formula (5.3.2).

We have visualized the values of the estimator Ĩn,α(h, ε) with respect to n and α in

Figure 5.4.1, where the hyperplane in each panel is at the height of the corresponding

actual index of increase I(h). For each panel, we visually choose a value of α which is in

the intersection of the curved surface with the hyperplane, because in this case the index

Ĩn,α(h, ε) is close to the actual index I(h).

Even though the chosen parameter α value, which we denote by αvi, may not be

optimal due to roughness of the surface, it nevertheless offers a sound choice, as we see

from Figure 5.4.2 where we depict the convergence of Ĩn,α(h, ε) to I(h) when n grows. In

each panel, the horizontal ‘reference’ line is at the height of the actual index value.

Note that in panel (a) of Figure 5.4.2, the visually obtained αvi = 0.35 is slightly larger

than 1/3, but we have to say that we had decided on this value (as a good estimate) before

we knew the result of Theorem 5.4.1, and thus before we knew the (theoretical) restriction

α < 1/3. Nevertheless, we have decided to leave the value αvi = 0.35 as it is, without
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(a) The hyperplane at the height I(h1) = 0.6667 (b) The hyperplane at the height I(h2) = 0.3333

(c) The hyperplane at the height I(h3) = 1 (d) The hyperplane at the height I(h4) = 0

Figure 5.4.1: Values of Ĩn,α(h, ε) with respect to n and α in the case of quartet (5.2.3).

tempering with our initial guess in any way. As we shall see in next Section 5.4.2, however,

the purely data-driven and based on cross-validation α value is αcv = 0.28, which is within

the range (0, 1/3) of theoretically acceptable α values.

5.4.2 Choosing α based on cross validation

As we have already elucidated, equation (5.4.4) connects our present problem with non-

parametric regression-function estimation. In the latter area, researchers usually choose
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Figure 5.4.2: The performance of Ĩn,α(h, ε) with respect to n in the case of quartet (5.2.3)

and based on visual α’s.

the optimal bandwidth as the point at which cross-validation scores become minimal (e.g.,

Arlot and Celisse, 2010; Celisse, 2008, and references therein). We adopt this viewpoint

as well. Namely, given a scatterplot, say (ti,n, Yi,n), we cross validate it (computational

details and R packages will be described in a moment). Then we find the minimizing

value b = bcv and finally, according to equation (5.4.4), arrive at the ‘optimal’ αcv via the

equation

αcv = log(1/bcv)/ log(n). (5.4.5)

In Figure 5.4.3, we see some differences between the values of αvi and αcv. Nevertheless,
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Figure 5.4.3: Cross validation, minima bcv, and the grouping parameters αcv for quartet

(5.2.3).

we should not prejudge the situation in any way because in practice, when no hyperplanes

can be produced due to unknown values of I(h), only the values of αcv can be extracted

from data. Note, however, that the four values of αcv reported in the panels of Figure

5.4.3 are in compliance with the condition of Theorem 5.4.1 stipulating that α’s must be

in the range (0, 1/3) in order to have (asymptotic) consistency.

To explore how the grouped estimator Ĩn,α(h, ε) based on αcv’s actually performs, we

have produced Figure 5.4.4. Naturally, since the respective visual αvi’s and cross-validatory

αcv’s do not coincide, the corresponding values of Ĩn,α(h, ε) are also different. Which of

them are better from the statistical point of view will become clearer only in Section 5.5,
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Figure 5.4.4: The performance of Ĩn,α(h, ε) with respect to n in the case of quartet (5.2.3)

and cross validation.

where bootstrap-based standard errors and confidence intervals are derived.

We next present a detailed implementation procedure for finding cross-validatory

estimates αcv of the grouping parameter α. Naturally, the help of the R computing

language (R Core Team, 2013) becomes indispensable, and we have used a number of

R packages to accomplish the task. We also wish to acknowledge the packages ggplot2

(Wickham, 2009) and plotly (Sievert et al., 2017) that we have used extensively in this

chapter to draw two-dimentional plots and interactive surface plots; the latter plots have

been pivotal in extracting the values αvi visually.

Hence, from the purely practical computational perspective, we now utilize bandwidth
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selection techniques of kernel-based regression-function estimation in order to get estimates

of the grouping parameter. First, for the sake of programming efficiency, we restrict

b’s to the interval (0.01, 0.99), and we evenly split the latter interval into bins of width

(0.99 − 0.01)/29 ≈ 0.0338, all of which can of course be refined in order to achieve, if

desired, smaller computational errors. Hence, from now on, we have thirty equidistant

b’s, which are bi ≈ 0.01 + (i − 1)0.0338 for i = 1, . . . , 30. Next we use the common

cross-validation method called repeated k-fold cross validation, and we set k = 5 for our

purpose. The following main steps are:

1. For each function h under consideration, we generate n = 10000 data points based

on equation (5.3.2).

2. We randomly split the given n points into k folds, denoted by D1, . . . , Dk, of roughly

equal sizes.

3. For each value bi, we use D1 as the validation set and let other D’s be training

sets, which we use to fit a kernel regression model. Specifically, we use the function

ksmooth from the R package stats, with the parameter kernel set to normal, which

means that we use the normal kernel. Then we use the validation set D1 to get

the predicted values and calculate one prediction error, defined as the mean-square

error and denoted by E1. We repeat this step until we use up all the folds as our

validation sets. Hence, we obtain k prediction errors E1, . . . , Ek. Finally, we average

these k prediction errors and denote this average by Ebi,1.

4. We repeat Step 3 for all bi’s, thus arriving at one estimated prediction error for each

bi. Hence, in total, we have Eb1,1, . . . , Eb30,1.

5. We repeat Steps 1–4 fifty times, for every bi, and then take the averages of the

corresponding fifty estimated prediction errors. This gives us thirty final estimates,

which we denote by Ebi . For example, for b1, the final estimate Eb1 is the average

of Eb1,1, . . . , Eb1,50. In summary, after this step, we have Eb1 , . . . , Eb30 of the final

estimates of the prediction error.
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6. We draw the plot of the bi’s versus the corresponding estimated prediction errors.

The bi that gives the minimal prediction error is denoted by bcv. Finally, we use

equation (5.4.5) to get αcv.

5.4.3 Proof of Theorem 5.4.1

The following lemma, whose special case is Proposition 5.2.1 formulated earlier, plays a

pivotal role when proving Theorem 5.4.1.

Lemma 5.4.1. Let h be differentiable, and let its derivative h′ be γ-Hölder continuous for

some γ ∈ (0, 1]. Furthermore, let ` be any positively homogeneous and Lipschitz function.

Then there is a constant c <∞ such that, for any set of points s1 := 0 < s2 < · · · < sM ≤ 1,

M∑
j=2

`
(
h(sj)− h(sj−1)

)
=

∫ sM

0

`
(
h′
)
dλ+ θc

M∑
j=2

|sj − sj−1|1+γ (5.4.6)

where θ is such that |θ| ≤ 1.

Proof. Since ` is Lipschitz and h′ is γ-Hölder continuous, we have∫ sM

0

`
(
h′
)
dλ =

M∑
j=2

∫ sj

sj−1

`
(
h′(s)

)
− `
(
h′(sj)

)
ds+

M∑
j=2

(
sj − sj−1

)
`
(
h′(sj)

)
= θc

M∑
j=2

∫ sj

sj−1

|s− sj|γds+
M∑
j=2

(
sj − sj−1

)
`
(
h′(sj)

)
= θc

M∑
j=2

|sj − sj−1|1+γ +
M∑
j=2

(
sj − sj−1

)
`
(
h′(sj)

)
, (5.4.7)

where the values of c < ∞ and |θ| ≤ 1 might have changed from line to line. Next, we

explore the right-most sum of equation (5.4.7), to which we add and subtract the left-hand

side of equation (5.4.6). Then we use the mean-value theorem with some ξj ∈ [sj−1, sj]

and arrive at the equations

M∑
j=2

(
sj − sj−1

)
`
(
h′(sj)

)
=

M∑
j=2

`
(
h(sj)− h(sj−1)

)
+

M∑
j=2

(sj − sj−1)
(
`
(
h′(sj)

)
− `
(
h′(ξj)

))
=

M∑
j=2

`
(
h(sj)− h(sj−1)

)
+ θc

M∑
j=2

|sj − sj−1|1+γ, (5.4.8)



5.4. CONSISTENCY 99

where the last equation holds because ` is positively homogeneous and Lipschitz, and h′ is

γ-Hölder continuous. Equations (5.4.7) and (5.4.8) imply equation (5.4.6) and finish the

proof of Lemma 5.4.1.

Proof of Theorem 5.4.1. We start with the equations

Ỹj,n =
1

N

∑
i∈Gj,n

h(ti,n) +
1

N

∑
i∈Gj,n

εi

=
1

N

∑
i∈Gj,n

h(ti,n) + ε∗j,n, (5.4.9)

where

ε∗j,n =
1

N

∑
i∈Gj,n

εi.

We next tackle the deterministic sum on the right-hand side of equation (5.4.9), and start

with the equation

1

N

∑
i∈Gj,n

h(ti,n) =
n− 1

N

N∑
i=1

h

(
i− 1

n− 1
+

(j − 1)N

n− 1

)
1

n− 1

because Gj,n = (j − 1)N + {1, . . . , N} for all j = 1, . . . ,M . Consequently,

1

N

∑
i∈Gj,n

h(ti,n) =
n− 1

N

( N∑
i=1

h

(
i− 1

n− 1
+

(j − 1)N

n− 1

)
1

n− 1
−
∫ jN/(n−1)

(j−1)N/(n−1)
hdλ

)

+
n− 1

N

∫ jN/(n−1)

(j−1)N/(n−1)
hdλ

=
n− 1

N

∫ jN/(n−1)

(j−1)N/(n−1)
hdλ+O(n−1), (5.4.10)

where we used the fact that h is Lipschitz. By the mean-value theorem, there is t∗j,n

between (j−1)N/(n−1) and jN/(n−1) such that the right-hand side of equation (5.4.10)

is equal to h(t∗j,n) +O(n−1). Consequently, with the notation

Y ∗j,n := h(t∗j,n) + ε∗j,n,

we have Ỹj,n = Y ∗j,n + O(n−1) and thus the increments Ỹj,n − Ỹj−1,n are equal to Y ∗j,n −
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Y ∗j−1,n +O(n−1). This gives us the equations

M∑
j=2

`
(
Ỹj,n − Ỹj−1,n

)
=

M∑
j=2

`
(
Y ∗j,n − Y ∗j−1,n

)
+O(n−(1−α))

=
M∑
j=2

`
(
h(t∗j,n)− h(t∗j−1,n)

)
+O

( M∑
j=2

|ε∗j,n − ε∗j−1,n|
)

+O(n−(1−α))

(5.4.11)

because |`(t)− `(s)| ≤ |t− s| for all real t and s. The random variables ε∗j,n, j = 1, . . . ,M ,

are independent and identically distributed with the means 0 and variances σ2/N . Hence,

E

( M∑
j=2

|ε∗j,n − ε∗j−1,n|
)
≤ cM max

j

√
E
(
(ε∗j,n)2

)
≤ cM max

j

√
σ2/N

= O
(
n−(1−3α)/2

)
,

which implies
M∑
j=2

|ε∗j,n − ε∗j−1,n| = OP

(
n−(1−3α)/2

)
. (5.4.12)

The right-hand side of equation (5.4.12) converges to 0 because α ∈ (0, 1/3). In view of

equations (5.4.11) and (5.4.12), we have

M∑
j=2

`
(
Ỹj,n− Ỹj−1,n

)
=

M∑
j=2

`
(
h(t∗j,n)−h(t∗j−1,n)

)
+OP

(
n−(1−3α)/2

)
+O(n−(1−α)). (5.4.13)

Furthermore, by Lemma 5.4.1 we have

M∑
j=2

`
(
h(t∗j,n)− h(t∗j−1,n)

)
=

∫ 1

0

`
(
h′
)
dλ+O

(
n−αγ

)
. (5.4.14)

Combining equations (5.4.13) and (5.4.14), and using β to denote min{αγ, (1− 3α)/2},

we have

Ĩn,α(h, ε) =

∫ 1

0
(h′)+dλ+OP

(
n−β

)∫ 1

0
|h′|dλ+OP

(
n−β

)
P→
∫ 1

0
(h′)+dλ∫ 1

0
|h′|dλ

= I(h).

The rate of convergence is of the order OP(n−β). Theorem 5.4.1 is proved.



5.5. BOOTSTRAP-BASED CONFIDENCE INTERVALS 101

5.5 Bootstrap-based confidence intervals

To construct confidence intervals for I(h) based on the estimator Ĩn,α(h, ε), we need to

determine standard errors, which turns out to be a very complex task from the viewpoint

of asymptotic theory. Hence, we employ bootstrap (e.g., Hall, 1992; Efron and Tibshirani,

1993; Shao and Tu, 1995; Davison and Hinkley, 1997, and reference therein). The re-

sampling size m is quite often chosen to be equal to the actual sample size n, but in

our case, we find it better to re-sample fewer than n observations (i.e., m < n) and thus

follow specialized to this topic literature by Bickel et al. (1997), Bickel and Sakov (2008),

Gribkova and Helmers (2007, 2011); see also references therein. Specifically, the steps that

we take are:

• For a given function h, we generate n = 10000 values y1, ...., yn according to the

model Yi = h(ti,n) + εi, where εi are i.i.d. standard normal.

• We re-sample 1000 times and in this way obtain 1000 sub-samples of size m, which

we choose to be m ≈ 2
√
n according to a rule of thumb (DasGupta, 2008, p. 478).

• We use formula (5.3.3) to calculate the grouped index of increase, thus obtaining

1000 values of it; one value for each sub-sample. We denote the empirical distribution

of the obtained values by F ∗.

• With Q∗ denoting the (generalized) inverse of F ∗, the 95% quantile-based confidence

interval is (q2.5%, q97.5%), where q2.5% = Q∗(0.025) and q97.5% = Q∗(0.975).

To illustrate, we introduce a second quartet of functions of this paper, namely:

h5(t) = (t− 1)2 + sin(6t), h6(t) = (t− 0.25)2 + sin(0.25t),

h7(t) = t3 − 5.6t2 + 6t, h8(t) = sin(2πt).
(5.5.1)

We have visualized the functions in Figure 5.5.1. As expected, our preliminary analysis

has shown that the un-groped estimators converge to 0.5 in all the four cases, but the

grouped estimator Ĩn,α(h, ε) does converge under appropriate choices of the grouping (or

smoothing) parameter α values. Next are summaries of our findings using two approaches:

the first one is data exploratory (visual) and the second one is based on cross validation.
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Figure 5.5.1: Quartet (5.5.1) functions and their indices of increase

5.5.1 Data exploratory (visual) choice of α

Based on the crossings of surfaces and hyperplanes depicted in Figure 5.5.2, we choose

appropriate α values, denoted by αvi, for the functions of quartet (5.5.1). To check the

performance of these values, we draw convergence graphs in Figure 5.5.3. Next, we use

formula (5.3.3) to calculate point estimates of the actual index of increase for each of the

functions in quartet (5.5.1), whose values appear in Table 5.5.1. Finally, we use bootstrap

to get standard errors and confidence intervals, all of which are also reported in Table

5.5.1.

Reflecting upon the findings in Table 5.5.1, we see that the values of αvi corresponding

to the functions h5 and h8 are outside the range (0, 1/3) specified by the consistency result

of Theorem 5.4.1, but this of course does not invalidate anything – we are simply working
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(a) The hyperplane at the height I(h5) = 0.3311 (b) The hyperplane at the height I(h6) = 0.9799

(c) The hyperplane at the height I(h7) = 0.8157 (d) The hyperplane at the height I(h8) = 0.5000

Figure 5.5.2: Values of Ĩn,α(h, ε) with respect to n and α in the case of quartet (5.5.1).

with finite sample sizes n. Naturally, we are now eager to compare all the findings reported

in Table 5.5.1 with the corresponding ones obtained by cross validation, which is our next

topic.
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Figure 5.5.3: The performance of Ĩn,α(h, ε) with respect to n in the case of quartet (5.5.1)

and based on visually assessed α’s.

h5 h6 h7 h8

True values 0.3311 0.9799 0.8157 0.5000

Point estimates 0.3274 0.9737 0.8094 0.5042

Standard deviations 0.0745 0.1103 0.1067 0.05237

Confidence intervals (0.0372, 0.3368) (0.6527, 1.0000) (0.6090, 1.0000) (0.3675, 0.5713)

Estimates αvi 0.36 0.25 0.28 0.50

Table 5.5.1: Basic statistics and 95% confidence intervals for quartet (5.5.1) based on

visually assessed α’s.
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5.5.2 Choosing α based on cross validation

We now use the cross-validation technique to get estimates αcv of the grouping parameter

α for all the functions of quartet (5.5.1). In Figure 5.5.4, we visualize the cross-validation
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Figure 5.5.4: Cross validation, minima bcv, and the grouping parameters αcv for quartet

(5.5.1).

scores, specify their minima bcv, and also report the grouping parameters αcv derived

via the equation αcv = log(1/bcv)/ log(n). Based on these αcv values, we explore the

performance of Ĩn,α(h, ε) using the convergence graphs depicted in Figure 5.5.5. The values

of point estimates, standard errors, and confidence intervals are reported in Table 5.5.2.

Note that the first three values of αcv reported in Table 5.5.2 are inside the range (0, 1/3)
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(d) I(h8) = 0.5000, αcv = 0.34

Figure 5.5.5: The performance of Ĩn,α(h, ε) with respect to n in the case of quartet (5.5.1)

and cross validated α’s.

h5 h6 h7 h8

True values 0.3311 0.9799 0.8157 0.5000

Point estimates 0.2771 0.9894 0.8378 0.4703

Standard deviations 0.0797 0.1201 0.1084 0.1185

Confidence intervals (0.0000, 0.2813) (0.5987, 1.0000) (0.6256, 1.0000) (0.1803, 0.6193)

Estimates αcv 0.28 0.24 0.24 0.34

Table 5.5.2: Basic statistics and 95% confidence intervals for quartet (5.5.1) based on cross

validation.
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specified by the consistency result of Theorem 5.4.1, whereas αcv = 0.3396 corresponding

to h8 is just slightly outside the range. Note also that the values of αcv corresponding to

the functions h5 and h8 are considerably smaller than the corresponding αvi’s reported in

Table 5.5.1.

The confidence intervals reported in Tables 5.5.1 and 5.5.2 comfortably cover the

actual values of I(h), and the widths of these confidence intervals, denoted by widthvi

and widthcv respectively, are comparable for the functions h5, h6 and h7. The widthcv of

the cv-based confidence interval for the function h8 is, however, considerably wider than

the corresponding widthvi reported in Table 5.5.1. In summary, the relative differences

widthcv/widthvi − 1 for the functions h5, h6, h7 and h8 are −0.0611, 0.1555, −0.0425 and

1.1541, respectively. We finish the discussion by recalling advice from Wasserman (2004):

“Do not assume that, if the estimator [...] is wiggly, then cross-validation has let you down.

The eye is not a good judge of risk” (Remark 20.18, page 317).

5.6 Summary and concluding notes

Davydov and Zitikis (2017) introduced an index of increase when populations are modelled

with continuous functions. Chen and Zitikis (2017) explored a modification of the index

when populations are discrete and presented in the form of scatterplots, and they also

explored the situation when scatterplots are viewed as data sets, in which case they fitted

(non-monotonic) regression functions and subsequently applied the technique by Davydov

and Zitikis (2017) to assess monotonicity of the fitted functions.

In the present chapter we have extended the aforementioned technique to the case

when it is not desirable, or appropriate, to view scatterplots as populations, or to use

regression methods to fit curves to scatterplots. The herein proposed technique is based

on grouping and averaging data, and then calculating the index of increase. Since the

grouping parameter depends on both deterministic and random features of the underlying

problem, we have suggested a way for grouping data so that the resulting estimator of the

index of increase would be consistent. Based on this estimator, we have then suggested a

construction of bootstrap-based confidence intervals for the index of increase.
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The derived theoretical results have been made accessible to practitioners by detailed

descriptions and analyses of various computational aspects inherent in our proposed

solution of the problem.



Chapter 6

Summary and further research topics

In this dissertation, we have developed a novel technique, the index of increase, that

measures non-linear, asymmetric, and non-monotonic relationships between two variables.

The index of increase has been applied in educational datasets. Simulation studies and

theoretical developments have also been provided to reveal the meaning of the index of

increase. We summarize our results as follows.

In Chapter 3, we firstly introduced the definition of the index of increase in both discrete

and continuous forms, which can be applied directly to data points and differentiable

functions. Properties such as translation and scale invariance were discussed. We also

provided a discretization method for any fitted curve in order to calculate the index of

increase. This discretization method has been justified and illustrated mathematically.

Numerical simulation results also indicate that when we discretize the target interval in

a sufficiently fine way, we can achieve any desired precision. Furthermore, two practical

modifications of the index of increase (discrete form), including unifying data range and

ruling out ties, have been described in detail. These preparations allowed us to implement

the index of increase in a dataset in classical text (Thorndike and Thorndike Christ,

2010). Numerical comparisons of students’ performance between boys and girls have been

provided as comprehensive explanations. This application shows that the index of increase

fits the purpose for comparing student performance, since relationships between subjects

are asymmetric, non-linear, and non-monotonic in most cases, which makes the index

109
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of increase stand out from other traditional statistical tools. Moreover, convenience and

interpretability of the index of increase may also attract more researchers and educators

to use it.

In Chapter 4, we explored a possible and meaningful extension of the index of increase,

building upon our work in Chapter 3. We developed two indices that measure the

interchangeability between two variables: the relative index of interchangeability and the

absolute index of interchangeability. These two indices have been developed on top of

the index of increase, and so we briefly and systematically revisited the index of increase.

We further emphasized the meaning of studying the index of increase in both forms (i.e.,

discrete and integral forms) and its practical modifications. Then, we applied the index

of increase and the two indices of interchangeability to an education dataset (Mardia et

al., 1979). Comprehensive discussions have been provided. We concluded that the indices

of interchangeability are suitable ways to figure out the “timing independence” property

of subjects as described in Section 4.6, which provides suggestions to both schools and

students to construct their “education portfolios” (i.e., curricula).

In Chapter 5, we elucidated how the index of increase defined in former chapters

would perform in a large sample context where data contain random component such as

measurement error or other noise. We have numerically shown that if we do not modify the

index of increase in this situation, the index of increase will always approach to 1/2. Next,

we proposed a resolution which is an estimator of the index of increase, and it allows us to

reduce the effect of random component in data based on averaging a certain number of data

points. Furthermore, we proved (weak) consistency of the estimator of index of increase

as well as its convergence rate. We also provided a practical and data-driven algorithm

based on cross validation to choose a proper smoothing parameter for the estimator of the

index of increase. Last but not least, we provided bootstrap-based confidence intervals for

the estimates.

In summary, current research has expanded the area of distance-based measures that

quantify non-monotonic relationships between variables in both theoretical and practical

aspects. Naturally, it opens the gate to other research topics, and we would like to point
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out some potential future studies:

• In Chapter 5, we provided bootstrap-based confidence intervals for the estimates

of index of increase. Naturally, we would like to know the explicit asymptotic

distribution of the estimator. After developing the real distribution, we can further

apply standard statistical inference procedures, such as hypothesis testing, to provide

more rigorous results on the performance of the index of increase in practice.

• As an extension of Chapter 3 and Chapter 4, from the practical perspective, in

what other areas can we use the index of increase except for education? For cases

mentioned in Chapter 1, can the index of increase be a meaningful measure? For

instance, when constructing portfolio, will our index perform better than the CAPM

or other advanced portfolio theory such as the Modern portfolio theory (MPT)

considering to achieve high profit and low risk? Also, for the price elasticity of

demand example, can we use the index of increase instead of price elasticity to

determine the optimal price through maximizing the total revenue?

• We only considered 2-dimensional relationships in this thesis. That is, the index

of increase can only quantify relationship between two variables. However, we

can further adapt the distance-based idea for higher dimensions. Davydov et al.

(2018) have developed an index of convex which is a 3-dimensional index and can

quantify the convexity, or lack of it, so that we can use it to search for non-convex

regions of functions. Yet, the index of convexity relies on the Hessian matrix and its

eigenvalues, so the functions under consideration must have second partial derivatives.

Another problem for the index of convexity is that for simple functions, it is already

complicated to obtain the numerical or theoretical results. Therefore, how are we

going to develop a simplified version of estimation relies on further development of

the theory behind the index of convexity?. Also, how can we apply the index of

convexity to data sets? Solutions to these problems still remain unclear.

• In order to popularize the index of increase and its extension, the index of convexity,

it is beneficial to show its convenience when using. More specifically, providing
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built-in functions or packages written in programming languages such as R or Python

will be meaningful. In this way, people from different backgrounds, either researchers

or practitioners, would easily implement these novel techniques.



Appendix A

Supplementary material for Chapter

3

A.1 Computer codes

The following three computer codes calculate the index of increase under various scenarios.

The codes are written using the very accessible and free R software environment for

statistical computing and graphics R Core Team (2013).

A.1.1 Function-based index of increase

Suppose that we wish to calculate the index of increase of a function h on the interval

[L,U ] for some L < U . For this, we employ the computational algorithm described in

Section 3.4. The desired precision is achieved by setting a large value of the discretization

parameter n. Specifically, in the R Console, we run code:

indexh <- function(h,n=10000,L,U){

temp1 <- seq(L,U,length=n)

y <- h(temp1)

x <- data.frame(temp1,y)

denominator <- sum(abs(diff(x[,2])))

temp <- c()
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for(i in 1:(length(x[,2])-1)){

temp[i] <- ifelse(diff(x[,2])[i] > 0, diff(x[,2])[i],0)

}

numerator <- sum(temp)

index <- numerator/denominator

return(index)

}

As an illustration, we next run the following code in order to calculate the index of

increase for the function h(x) = sin(x) on the interval [−π/2, π]:

h <- function(x){sin(x)}

indexh(h,n=10000,L=-pi/2,U=pi)

The result is 0.6666667, which suggests (because 0.6666667 > 0.5) that the trend is

more increasing than decreasing.

A.1.2 Index of increase for discrete Data when the are no ties

In this appendix, we provide the code pertaining to the ‘basic idea’ described in Section

3.3.1. In this case, all of the first coordinates (i.e., xs) are different, and all of the second

coordinates (i.e., ys) are also different. (When there are ties among the x’s or y’s, the next

appendix provides a more general and complex code, which of course also works when

there are no ties.) To begin with, in the R Console, we run the following code:

index <- function(data){

##order the dataset according to x’s

data <- data[order(data[,1]),]

##calculate the denominator of index I

denominator <- sum(abs(diff(data[,2])))

##calculate the numerator of index I

temp <- c()

for(i in 1:(length(data[,2])-1)){

temp[i] <- ifelse(diff(data[,2])[i] > 0, diff(data[,2])[i],0)
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}

numerator <- sum(temp)

index <- numerator/denominator

return(index)

}

As an illustration, we calculate the index of increase for the three pairs (3, 1), (1, 3),

and (2, 0) by running the following code:

x <- c(3,1,2)

y <- c(1,3,0)

data <- data.frame(x,y)

index(data)

The result is 0.25, which suggests (because 0.25 < 0.5) that the trend is more decreasing

than increasing.

A.1.3 Index of increase for arbitrary discrete data

The following code is an augmentation of the previous one in order to allow for ties

among the x’s as well as for ties among the y’s. The code follows the median-adjusted

methodology described in Section 3.3.2. We start by running the following code in the R

Console:

indexmed <- function(data){

#order the dataset according to x’s

data <- data[order(data[,1]),]

#find all the distinct value of x

tempx <- unique(data[,1])

#for each distinct x, find the median of y’s

medy <- c()

for(i in 1:length(tempx)){

medy <- c(medy,median(data[data[,1]==tempx[i],2]))

}

newdata <- data.frame(tempx,medy)
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#calculate the index value

denominator <- sum(abs(diff(newdata[,2])))

temp <- c()

for(i in 1:(length(newdata[,2])-1)){

temp[i] <- ifelse(diff(newdata[,2])[i] > 0,diff(newdata[,2])[i],0)

}

numerator <- sum(temp)

index <- numerator/denominator

return(index)

}

As an illustration, we calculate the index of increase for the data set that consists of

the five pairs (1, 1), (2, 3), (2, 2), (3, 1), and (3, 2). For this, we run the following code:

x <- c(1,2,2,3,3)

y <- c(1,3,2,1,2)

data <- data.frame(x,y)

indexmed(data)

The result is 0.6, which suggests (because 0.6 > 0.5) that the trend is more increasing

than decreasing.
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A.2 Supplementary graphs
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Figure A.2.1: Piece-wise linear fits and their indices of increase for both classes combined.
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Figure A.2.2: Continuation of piece-wise linear fits and their indices of increase for both

classes combined.
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Figure A.2.3: LOESS fits when span = 0.75 (thicker line) and 0.35 (thinner line; the index

I in parentheses) for both classes combined.
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Figure A.2.4: Continuation of LOESS fits when span = 0.75 (thicker line) and 0.35

(thinner line; the index I in parentheses) for both classes combined.



Appendix B

Supplementary materials for

Chapter 4

B.1 Supplementary figures

In Figures B.1.1–B.1.9 below, panels (a) and (b) contain piecewise linear fits, and panels (c)

and (d) contain LOESS fits when the span is 0.75 (thicker) and 0.35 (thinner). Panels (c)

and (d) contain two index values: the top one is I = I(h0.75) and, in parentheses, the

bottom value is I = I(h0.35).
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Figure B.1.1: Piecewise linear and LOESS fits for Analysis and Algebra.
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Figure B.1.2: Piecewise linear and LOESS fits for Analysis and Statistics.
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Figure B.1.3: Piecewise linear and LOESS fits for Algebra and Statistics.
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Figure B.1.4: Piecewise linear and LOESS fits for Algebra and Mechanics.
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Figure B.1.5: Piecewise linear and LOESS fits for Analysis and Mechanics.
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Figure B.1.6: Piecewise linear and LOESS fits for Mechanics and Statistics.
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Figure B.1.7: Piecewise linear and LOESS fits for Algebra and Vectors.
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Figure B.1.8: Piecewise linear and LOESS fits for Analysis and Vectors.
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Figure B.1.9: Piecewise linear and LOESS fits for Statistics and Vectors.
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