
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2011

Design and Development of a Tele-operated Surgical Simulation Design and Development of a Tele-operated Surgical Simulation

Environment Environment

Jeremy Chad Breetzke

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Breetzke, Jeremy Chad, "Design and Development of a Tele-operated Surgical Simulation Environment"
(2011). Digitized Theses. 3318.
https://ir.lib.uwo.ca/digitizedtheses/3318

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3318?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Design and Development of a T ele-operated Surgical

Simulation Environment

(Spine Title: Design of a Tele-operated Surgical Simulation Environment)

(Thesis Format: Monograph)

by

Jeremy C. Breetzke

Faculty of Engineering Science

Department of Mechanical and Materials Engineering

7
x

Submitted in partial fulfillment

of the requirements for the degree of

Master of Engineering Science

School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Jeremy Chad Breetzke. 2011

Certificate of Examination
THE UNIVERSITY OF WESTERN ONTARIO

FACULTY OF GRADUATE STUDIES
CERTIFICATE OF E X A M IN A T IO N

Chief Adviser(s): Examining Board:

Dr. Michael Naish Dr. Samuel Asokanthan

Dr. Rajni Patel Dr. Ralph Buchal

Advisory Committee: ________________________
Dr. Robert Sobot

The thesis by
Jeremy Breetzke

entitled:
Design and Development of a Tele-operated Surgical Simulation Environment

is accepted in partial fulfillment of the
requirements for the degree of

Master of Engineering Science

Date:

h

Chair of Examining Board
Dr. George Knopf (Chair)

Design and Development of a Tele-operated Surgical Simulation
Environment
Jeremy C. Breetzke

M.E.Sc. Thesis, 2011
Department of Mechanical and Material Engineering

University of Western Ontario

Abstract

With the introduction of robots into laparoscopic surgery, surgeons have difficulties in selecting

the placement of the incisions required to insert the robots instruments into the body and also

determine which patients are suitable for robotically assisted surgery. Poor selection of these two

items mentioned above can result in a conversion to a more invasive form of surgery during the

procedure. This work introduces the design and development of a surgical simulation environment

to assist in the research for optimal incision placement and patient selection.

The simulator allows importing any serial link robot that was designed in a computer aided

modelling package. With minimal added information, the imported robot can be controlled using a

multi-degree of freedom user input device. The simulator allows for importing patient geometries

along with the robot to allow for the simulation of surgical procedures. A Jacobian transpose

algorithm was added onto the simulator in a modular format to control the simulated robots, as

well as to allow for other control systems to be created and implemented.

Experiments were performed to determine the effects of patient geometry models on rendering

speeds. The control system could control the tested robots with a maximum lag time of 15 ms

between moving the input device and the simulated robot moving to the correct desired position.

The simulator makes importing and controlling robots a simple and intuitive matter, without

putting a large restriction on the type of robots to be simulated. The simulator also allows

for importing models of a patient, to make real world analysis of a patient possible. Further

improvements on the presented simulator include the addition of collision detection and more

testing on the control system for stability and response over a larger range of robots.

Keywords: Medical robotics simulator, da Vinci medical robot, Kinematic control, VTK ren­

dering libraries.

iii

Contents

Certificate of Examination ii

Abstract iii

Table of Contents iv

List of Figures viii

List of Tables xi

Nomenclature and Acronyms xii

1 Introduction 1

1.1 Motivation ... 1

1.2 Significant C hallenges.. 9

1.3 O bjectives... 10

1.4 C on tribu tion .. 10

1.5 N otation.. 10

1.6 Organization of this T h e s is ... 11

2 The Simulation Environment 12

2.1 Design Requirements.. 12

2.2 Introduction to the Sim ulator.. 14

2.3 Creating Robots for the S im u lator... 15

iv

CONTENTS v

2.4 Robot J o i n t s .. 17

2.4.1 Defining Robot K inem atics.. 17

2.4.2 Assigning Kinematic J o in ts .. 19

2.5 Creating Kinematic C h a in s ... 23

2.6 Reference Fram es.. 26

2.7 The Closed-loop Kinematic S o lv e r .. 27

2.8 Manipulating Robots in the S c e n e .. 29

2.9 Creating Surgical Targets and Physical Features .. 29

2.9.1 Physical Features... 30

2.9.2 Surgical T a r g e ts ... 31

2.10 Customizing a S ce n e .. 32

2.11 Saving and Loading .. 35

2.12 Conclusion .. 36

3 Teleoperation 37

3.1 Background Inform ation... 37

3.2 Requirements.. 37

3.3 User Input... 38

3.4 Multi-threading... 41

3.5 Rendering... 44

3.6 Conclusion .. 44

4 Control System 45

4.1 Background Inform ation... 45

4.2 Control System Selection .. 46

4.3 Control Law D eriva tion ... 48

4.4 System G a in s .. 51

4.5 Joint Lim itations.. 52

4.6 Defining the E rrors... 53

4.6.1 Position Error .. 54

CONTENTS vi

4.6.2 Orientation E rror.. 55

4.6.2.1 Methods of Representation.. 56

4.6.2.2 Defining the Error M easure.. 58

4.7 Deriving the J a co b ia n ... 59

4.8 Conclusion .. 60

5 Validation 61

5.1 Introduction... 61

5.2 Computer System ... 62

5.3 Rendering T im e s .. 62

5.3.1 Number of Objects in a Scene.. 63

5.3.2 Number of Facets in a Scene ... 63

5.4 Control System Performance .. 66

5.4.1 Robots Tested .. 66

5.4.2 The Tests Perform ed... 67

5.4.2.1 Controlled Trajectory Input ... 68

5.4.2.2 Manual User In p u ts ... 68

5.4.3 Results ... 68

5.5 Real World C om parison ... 70

5.6 Conclusion .. 71

6 Conclusion 83

6.1 S u m m a ry ... 83

6.2 Concluding Rem arks.. 84

6.3 Suggestions for Future Work .. 84

6.3.1 Overall Simulator Performance Suggestions... 85

6.3.2 Robot Motion Suggestions... 85

6.3.3 Teleoperation Suggestions... 86

References 88

CONTENTS vii

A Special Consideration of the Four-Bar Mechanism Solver. 91

B Model Creation of the da Vinci Surgical Robot for Simulation. 93

B.l The Base Frame and Passive L in k s .. 94

B.2 The Tooled Active Section... 95

B.3 Endoscopic Active Section .. 97

B.4 The Surgical Instrum ents... 98

Vita 100

List of Figures

1.1 Laparoscopic grasper, as an example of a typical laparoscopic instrument................. 2

1.2 Two mechanical mechanisms to create an RCM.. 4

1.3 Location of the LAD and LIMA in a side view of a human’s thorax........................... 5

2.1 Main layout of the simulator.. 15

2.2 The Mitsubishi PA10-7C rendered in SolidWorks and in the simulator...................... 17

2.3 Schematic showing kinematic equation values.. 18

2.4 Joint assignments performed in the simulator.. 21

2.5 The creation of kinematic chain in the simulator... 24

2.6 CAD model created to place reference frames at desired locations.............................. 26

2.7 The double four-bar mechanism of the da Vinci.. 28

2.8 Different CAD models made by both automatic and manual process......................... 31

2.9 Manual segmentation of a CT scan in 3D Slicer.. 32

2.10 Splines generated along surgical targets.. 33

2.11 Low polygon model of human body. ... 34

2.12 Model of human body lying on surgical table... 35

2.13 Scene created from multiple imports of the same chain.. 36

3.1 The PHANToM Premium input device... 39

3.2 The network diagram for inputs from the PHANToM Premium.................................. 41

4.1 Block diagram of the Jacobian transpose control system... 50

viii

LIST OF FIGURES ix

4.2 Image showing how the user can change the control system variables and set joint

limitations.. 54

4.3 Diagram of position error.. 55

5.1 Comparison between the number of bodies in a scene and the render time............... 64

5.2 The effect of the number of facets in a scene on the rendering times.......................... 65

5.3 The two robots used to test the control system... 67

5.4 Results from the controlled trajectory input for the PA10.. 73

5.5 Results from the hand input for the PA 10.. 74

5.6 Error measure from the controlled trajectory input for the PA 10................................ 75

5.7 Error measure from the hand input for the PA 10.. 75

5.8 Results from the controlled trajectory input for the prismatic robot........................... 76

5.9 Results from the hand input for the prismatic robot.. 77

5.10 Error measure from the controlled trajectory input for the prismatic robot.............. 78

5.11 Error measure from the hand input for the prismatic robot.. 78

5.12 Results from the hand input for the da Vinci robot.. 79

5.13 Results from the hand input for the da Vinci robot.. 80

5.14 Error measure from the hand input for the da Vinci robot.. 81

5.15 Error measure from the hand input for the da Vinci robot with scaled input. . . . 81

5.16 The test setup for comparing the da Vinci’s motion to its simulated motion............ 82

A . l A Schematic of links that make up a four-bar mechanism.. 92

B. l Master and slave section of the da Vinci.. 94

B.2 The categories of the da Vinci.. 94

B.3 The motion of the RCM... 96

B.4 The double parallelogram mechanism that creates the RCM....................................... 97

B.5 The casing that prevents proper measurements of the da Vinci.................................. 98

B .6 Optimization variables to generate the RCM on the instruments............................... 98

B.7 A da Vinci instrument.. 99

LIST OF FIGURES x

B .8 The models of the wrists for the da Vinci instruments. 99

List of Tables

5.1 Specifications of computer system on which the simulator was run............................. 62

5.2 Comparison between the real da Vinci and a simulated version................................... 70

xi

LIST OF TABLES xii

Nomenclature and Acronyms

Latin Letters

b Translational rate of a prismatic joint

e Subscript used to define an error measure

e Joint unit vector

u Jacobian matrix of frame i defined in frame j . If j is omitted then it is

defined in the world frame. If i is omitted then it is the Jacobian of the end

effector frame.

Vector pointing from origin of frame i to frame j . If j is omitted then the

vector is pointing from the world frame origin.

Matrix that rotates a vector in frame i + 1 to frame i

Rd Desired rotation matrix

Re Rotation matrix that is used as the orientation error measure between two

frames

•Etinput The rotation matrix obtained from the user input

Rinit The initial rotation matrix of the end effector

i T'
t+1 A Matrix that transforms a vector in frame i A 1 to frame i

Xd The desired position of the end effector

Xinit The initial position of the end effector

ÿ First time derivative of a vector y

w Subscript or superscript to define the world coordinate frame

LIST OF TABLES xiii

Greek Letters

€ Vector part of quaternion

V Scalar value of quaternion

e Joint angle

6 Joint velocity

Q Unit quaternion

T Joint torque vector

<f>e Orientation error vector

Xe Position error vector

3Ui Angular velocity of frame i defined in frame j . If j is omitted then the

velocity is defined in the world frame.

Acronyms

2-D Two-Dimensional

3-D Three-Dimensional

CABG Coronary Artery Bypass Graft surgery

CAD Computer Aided Design

CT Computed Tomography

D-H Denavit-Hartenberg parameters

DOF Degree(s) Of Freedom

EE End Effector

GPU Graphics Processing Unit

GUI Graphic User Interface

LAD Left Anterior Descending artery

LIST OF TABLES xiv

LIMA

MIS

MRI

OCS

RAM

RAMIS

RAMICS

RCM

STL

VTK

Left Internal Mammary Artery

Minimally Invasive Surgery

Magnetic Resonance Imaging

Open Chest Surgery

Random Access Memory

Robotically-Assisted Minimally Invasive Surgery

Robotically-Assisted Minimally Invasive Cardiac Surgery

Remote Centre of Motion

STereo Lithography file format

Visualization ToolKit libraries

XML extensible Markup Language

Chapter 1

Introduction

This thesis presents work towards the development of a teleoperated surgical simulation environ­

ment, to assist research in preoperative planning techniques. The simulated environment can be

used to simulate any serial link robot, modelled in a CAD package, that is not mounted on a

mobile base. The robot can have closed-loop parallelogram linkages in the kinematic chain, such

as the linkages found on the da Vinci surgical robot.

1.1 Motivation

The direction of the development of medical technology is towards safer and less invasive techniques

[1], which has led to the development of procedures such as laparoscopic surgery. This type

of surgery is among those that are commonly referred to as Minimally Invasive Surgery (MIS).

Laparoscopic surgery is the performance of general surgery with the use of specialized instruments.

These instruments are generally long thin rigid shafts that have tools, such as grippers or scalpels,

located on one end and surgeon’s control handles on the other. A picture of a common laparoscopic

instrument can be seen in Fig. 1.1. The laparoscopic instruments are inserted into the patient

through trocars.

A trocar is a medical instrument with a hollow cylinder and a seal. The trocar is inserted into

a patient chest through small incisions to seal the insufflated abdomen and provide a portal, or

port, for laparoscopic tools to enter the chest cavity to perform surgical procedures.

1

1.1 Motivation 2

The first laparoscopic surgery was performed in 1987; the procedure was a cholecystectomy,

the surgical removal of the gall bladder [2]. MIS offers an alternative to open surgery where the

surgeon must make openings large enough to fit his/her hands inside the patient to perform the

procedure.

Figure 1.1: Laparoscopic grasper, as an example of a typical laparoscopic instrument.

MIS reduces the recovery time and trauma for patients undergoing surgery [2,3]. Along with

all of the successes of MIS, it has introduced new challenges to the surgeon [2,4]:

• The laparoscopic instruments operating inside the patient are constrained by the ports,

which reduces the number of degrees of freedom (DOF) at the tool end from 6 DOF to 4

DOF and makes procedures such as suturing difficult.

• The only visual feedback available to the surgeon during MIS is provided by an image from

an endoscopic camera that is displayed on a two-dimensional video monitor. This removes

depth perception and makes it challenging for the surgeon to successfully place the tool end

of the instrument at the desired position. Only having a camera for visual feedback can lead

to other problems such as a limited field of view, fog and debris collecting on the lens and

so on.

• The haptic feedback of the laparoscopic tool is hampered by the friction generated between

the rubber seal in the trocar and the laparoscopic instrument [5].

• The instrument’s tool end moves in a nonintuitive manner that is reversed motion from the

surgeons hand motion [2].

1.1 Motivation 3

To overcome the challenges of performing MIS, robots were developed to assist the surgeon

in manoeuvring the laparoscopic tools. Newer versions of these robots introduced an increase in

dexterity by designing additional degrees of freedom into the wrist of the tools and stereoscopic

cameras with a display that gives the surgeon depth perception [4]. These robots also reduce

the surgeon’s hand tremors and with the design of ergonomic workstations they also reduce the

surgeon’s fatigue throughout the procedures [2]. The endoscopic camera has greater magnification

than the human eye. These robots also afford better instrument control by providing motion

scaling and natural (nonreversed) motion. Thus, Robotically Assisted Minimally Invasive Surgery

(RAMIS) has made minimally invasive surgery easier to perform and brought laparoscopic surgery

to procedures that were previously difficult to perform laparoscopically.

The technology in RAMIS is relatively new and it is being used for long standing procedures

that were not designed to make optimal use of the robots. These robotic systems are expensive

to obtain and maintain, they are bulky and take up a large amount of space in the operating

theatre [2]. Surgeons face a long and steep learning curve to be able to master the use of the

robots [6]. A surgeon is firstly trained in the field in which he would perform RAMIS and thereafter

trained to perform the procedures with the assistance of the robot. This adds extra time and cost

for the surgeon to become qualified.

The robots developed for RAMIS use the same type of ports as MIS would. For these ports

to be effective in reducing trauma to a patient, the robots cannot place any loads on the ports.

Therefore, surgical robots were designed in such a way that there is a point on the tool shaft that

is constrained from any motion except pivoting in the port and moving in and out of the port.

There are two mechanical techniques to achieve this constrained point. One is to have a robot

with redundant links and the other is to have a kinematic chain with a remote centre of motion

(RCM) [4].

• Creating a constrained point using redundant links is achieved by adding two passive revolute

joints to the end of a kinematic chain in the configuration shown in Fig. 1.2(a). A passive

joint is defined as a joint that is not actuated by a servo mechanism, and is allowed to rotate

freely without any form of constraint. By using this method, the long thin shaft of the

1.1 Motivation 4

surgical instrument will form the axis on which the constrained point lies.

• The second option of creating a remote centre of motion is shown in Fig. 1.2(b). The long

thin shaft of the surgical instrument will form the link that has the RCM on it. Then as the

first link in the chain is rotated, as shown in the figure, the shaft of the surgical instrument

will pivot about the RCM. This method is described in more detail in Appendix B.

(a) (b)

Figure 1.2: Schematics showing the two main methods of creating an RCM with (a) redundant
links and (b) a mechanical mechanism.

The two main robots that were created for RAMIS are the da Vinci surgical system and

the Zeus surgical system. The da Vinci surgical system is manufactured and sold by Intuitive

Surgical, Inc. The Zeus system was created and sold by Computer Motion Inc. The Zeus is

no longer available as Intuitive Surgical acquired Computer Motion and no longer markets the

device [7]. The Zeus system was made using two passive linkages to create a constrained point on

the tool’s shaft, whereas the da Vinci uses a double parallelogram mechanism to create a remote

centre of motion.

These robots are used for many different surgeries ranging from prostate procedures to cardiac

procedures. At the hospital where this research is conducted, a da Vinci robot is used primarily for

cardiac procedures; therefore this work will focus on cardiac surgeries, with particular emphasis

on the Coronary Artery Bypass Graft surgical (CABG) procedure.

The CABG procedure is performed when a blockage is found in one of the coronary arteries

1.1 Motivation 5

LIMA

Figure 1.3: An internal side view of a human’s thorax, showing the location of the LAD and
LIMA.

close to the heart. In this procedure, the surgeon harvests an artery from the patient’s body and

then sutures it to the blocked artery giving blood an alternate path to follow around the blockage.

A commonly blocked artery is the Left Anterior Descending (LAD) artery. This artery runs along

the surface of the heart muscle. An artery commonly harvested for this procedure is the Left

Internal Mammary Artery (LIMA), which runs along the inside of the patient’s ribcage close to

the sternum. The locations of the LAD and LIMA can be seen in Fig. 1.3.

For the procedure to be performed robotically, the patient is positioned on the operating table

such that the port locations are exposed and the intercostal spaces are opened to their maximum.

This is generally accomplished by rotating a patient’s left side away from the operating table by

about 20°. Then the patient’s left arm is placed over his/her head such that the elbow is bent

across the patient’s face [8]. The robot is then positioned next to the operating table and setup.

When the patient has been prepared, the left lung is collapsed, giving the surgeon room to operate

the robot inside the patient’s chest cavity.

As with the introduction of laparoscopic instruments, RAMIS also adds some disadvantages.

The two major disadvantages are:

1.1 Motivation 6

• The workspace available inside of each patient differs, with some patients having less space

than others. If the space inside the chest cavity is too small, the robot may not be able to

perform the procedure. It is up to the surgeon to decide whether a patient is suitable for

Robotically Assisted Minimally Invasive Cardiac Surgery (RAMICS) or not. This is done

based solely on the experience of the surgeon. If a patient is selected for the procedure but is

not suitable for it, then the surgeon will most likely need to convert to Open Chest Surgery

(OCS).

• The determination of the robot port locations on the patient and the positioning of the

robot is at the discretion of the surgeon. If the choice of port placement is poor, the robot’s

arms may collide during the operation, making it difficult for the surgeon to complete the

procedure. In cases such as this, the surgeon may have to change the port locations or

perform continuous reorientations of the robot during the procedure. This could lead to an

increased operating time and/or more trauma for the patient. In some cases, the surgeon

may still have to convert the surgery to a more invasive form of surgery to complete the

procedure. This could happen when the surgeon has already harvested the replacement

artery and placed it on the heart. The surgeon would then make a new incision right above

the heart between the ribs and make use of a retractor to open a space for him/her to reach

in and suture the artery in place by hand.

In both of these cases, poor choices could lead to less than desirable results from the surgery.

Solutions to reduce these problems include preoperative planning systems or better training meth­

ods for surgeons.

One of the main topics focused on in preoperative planning is the placement of ports [9]. The

selected port locations are directly linked to the orientation of the robot relative to the geometry

of the patient. The general criteria for planning are to reduce the chance of collisions and to

maximize the dexterity of the robot during surgery [10].

The first step in preoperative planing for RAMICS is to collect information on the geometry

of the patient. This generally comes from a Computed Tomography (CT) scan or from Magnetic

Resonance Imaging (MRI). From this information, the space available inside the patient’s chest

1.1 Motivation 7

cavity is determined. This is the first factor considered to determine if a patient is suitable for a

RAMICS procedure or not.

Once a patient is found to be suitable for RAMICS, the patient’s anatomy is then analyzed

using medical image viewing software, such as AtamaiViewer or 3D Slicer. The analysis consists

of recording the locations of the intercostal spaces along with the locations of the surgical targets.

This information is then used to determine the optimal port locations along the intercostal spaces

such that the robot’s dexterity inside the patient’s chest is maximized.

Preoperative planning systems have been designed by various research groups, for different

robots and different procedures with good results [9-11].

Currently the methods available to prove results from preoperative planning systems are as

follows:

• Actual procedures - If the results from the planning system are used by a surgeon in an

actual procedure, the surgeon will be able to report whether the results were successful or

not. The downfall to this is that only one set of results can be measured. Two or more

results cannot be compared against each other on the same patient.

• Cadavers - If multiple results should be compared to each other, they can be performed on

a cadaver. This method can yield more results than the mere pass or fail as with tests done

in actual procedures.

• Animal labs - This method would be similar to using cadaver for research and has a drawback,

in that it would be expensive to perform. Also, because of the differences in anatomy, some

results may not be suitable for translation to humans.

• Phantoms - Using phantoms to prove results can be cheaper and easier than the other meth­

ods. Once a phantom is made, it can be used for multiple results and over a longer period

of time than with animals or cadavers. Unfortunately phantoms can be time consuming

to manufacture and only a limited number of invasive experiments can be performed on a

phantom before it need to be replaced. This method is also limited to the geometry of a

single patient. Each time a new geometry is introduced, the phantom needs to be modified

or replaced.

1.1 Motivation 8

• Simulations - While all of the methods above are expensive, time consuming and afford a

limited number of experiments, simulations do not have these problems. Simulations can

be run on multiple patient geometries, with as many different sets of results as desired. It

does not take as long to set up a simulation for each patient as compared to phantoms. The

drawback to simulations is that they axe generally specific to a set of instruments or specific

tasks to increase the surgeons proficiency.

A significant challenge in developing a simulator is modelling tissue interaction. This is nec­

essary to provide haptic feedback to the user of the simulator. Haptic feedback enables the user

of the simulator to feel when the tool tip is touching or pressing on tissue or other parts of the

geometry of the patient. Simulators often use a two dimensional display as the output.

Methods have been developed to model the force response from human tissue [12]. However

these techniques are still too slow for real time feedback. Meshes created from medical images

for three dimensional representation are large in nature and have a large number of vertices. The

larger the number of vertices, the slower the calculations are for deformations of a mesh. The

challenge increases if the simulation has to take into account cutting or tearing of tissue [12].

This issue can be reduced by taking the time to smooth the models of each organ and reducing

the number of vertices in each organ to an acceptable level, while maintaining the correct overall

dimensions. The problem with this solution is that it is only good for a single patient, and takes

a long time to prepare.

There are some computer simulation environments available to train novice surgeons to use

laparoscopic tools and robots for surgery, such as the LapSim ® [13], i-Sim [14] and the 3-Dmed ®

Minimally Invasive Training Systems [15]. There is also a commercial da Vinci simulator created

by Mimic Technologies, Inc. These systems have carefully modelled organs and tissue to provide

realistic feedback of the force applied to the tool from the tissue. However these simulators are

expensive and cannot be modified to represent patient-specific anatomy. These systems are unable

to assist in the research being done into preoperative planning.

The latest version of the da Vinci Si has a simulation environment built into the master console

of the system, allowing surgeons to practice basic skills with the robot. If more than one master

1.2 Significant Challenges 9

console is available, they can be joined together so that a senior surgeon can watch what a novice

surgeon is doing in the connected console. This allows a novice surgeon to perform live surgeries

with an experienced surgeon helping out where necessary. Once again, these master consoles are

expensive and there is no need for a second console unless it is to be used for training purposes

or for challenging surgeries.

Some academic research groups have developed computer-based simulators for RAMICS. These

systems were either developed for the Zeus robotic system [16], or for the da Vinci specifically

[11,17]. Each of these groups used a 6 DOF haptics device to control the robot in the simulation

environment. Hayashibe et al. [16], showed that the positioning error of the end effector in their

simulator was reduced by adding in stereoscopic vision, thus making it more realistic and easier

to use.

The work performed by the above mentioned research groups introduce the need for medical

simulation environments. With research continuing into preoperative planning techniques at this

university, the need for a simulation environment came about. Without the ability to obtain a

working simulator that can sufficiently aid in current research, this simulator was created.

1.2 Significant Challenges

To simulate the motion of a robot the mass, moments of inertia and geometry of the robot needs

to be known. However, most manufacturers do not make this information available and direct

measurement is difficult and unfeasible.

The simulator should have real-time interaction which requires a suitable multi-DOF input

device, fast kinematic computations as well as fast and accurate scene rendering for the appearance

of smooth motions.

Analytical equations are generally derived for a robot based on its geometry and used for its

motion calculations. Without knowing the geometry for the robot, the motion calculations needs

to be computed without these analytical calculations.

Control systems are based on the robot and the desired control of the robot and are created

specifically for a robot. Without knowing the specific robot to be simulated, a generic control

1.3 Objectives 10

system is needed.

Objects with simpler geometries render faster than large complex objects. When working with

models of human geometries they tend to be large and complex, increasing the rendering time for

a simulator.

1.3 Objectives

The objective of this work is to create a simulation environment that can accommodate any serial-

link surgical robot, including the current da Vinci system, to provide a framework for evaluating

preoperative planning results. The environment should also give a surgeon the opportunity to

use a patient’s specific CT scan and practice the surgery in the simulation environment before

the actual procedure, allowing any problems that might arise during the real procedure to be

identified, and to confirm the desired position of the port locations.

1.4 Contribution

This work covers the development of a framework for a teleoperated medical robotic simulation

environment, to aid research in preoperative planning techniques.

The novelty of this work includes the development of a simulator in which a robotically assisted

surgical procedure can be visualized to test the results of port placement algorithms. Although

there are other robotic simulation environments available, this work allows for the control of

general serial link surgical robots, to analyze the kinematic motions of the robot along a trajectory

inside computer graphic models of human patients.

1.5 Notation

In this thesis, the following conventions are followed. A scalar is represented by an italic symbol

or letter such as 77 or a. A vector is represented by a lowercase bold letter or symbol such as e or

x. A matrix is represented by an uppercase bold letter or symbol such as T or T.

If a matrix R operates on a frame 2, such as rotating or translating it, but is defined in frame

1.6 Organization o f this Thesis 11

j , then the matrix is written as ¿R. If the superscript j is omitted then the matrix ¿R is written

for frame i and defined in the world reference frame. Similarly, if the subscript i is omitted then

the matrix R is written for the robot end effector, but is defined in the world reference frame.

1.6 Organization of this Thesis

This chapter provides a brief introduction to the motivation and goals of this research work. In

Chapter 2, the simulation software is introduced. Insight into its functionality, along with the

methods of generating models for the simulation environment, is provided. In Chapter 4, the

control system used for teleoperation based control of the robot in the simulator is explained.

Chapter 3 outlines the steps taken to achieve teleoperation of the simulator. In Chapter 5, the

experiments conducted for validation purposes are described along with all of the key results.

Finally, Chapter 6 concludes this thesis and provides suggestions for future research that could

be conducted based on this work.

Chapter 2

The Simulation Environment

2.1 Design Requirements

Before creating the simulation environment, some guidelines were established to make sure the

simulator would be as complete as possible. These guidelines are as follows.

1. The simulator should be able to simulate a real surgical procedure as close to reality as

possible. This means that as much detail should be added to the simulator as possible,

such as surgical targets and also internal organs around the targets to the correct relative

scale. Therefore, the surgical targets and human geometry should be obtained from real

patients. This would give a surgeon a sense of the workspace they would have had during a

real procedure with a patient.

2. The simulator should give the view inside of the patient as if the surgeon was busy looking

at the view from the endoscope, which should also be controlled by the user. The lighting

inside the patient should be the same as if a real surgical robot was used. This would add

to the realism of the device. The option should also be available to alter the light intensity

similar to the current surgical robot.

3. The simulator should give an external view with the ability to manually reposition the robot

as desired.

12

2.1 Design Requirements 13

4. The simulator should have the ability to import robots designed in CAD software.

5. The simulator should be able to import any generic serial kinematic chain and simulate the

motion of the chain, without the user needing to enter the analytical equations to define the

kinematic motion.

6. The simulator should not be limited to non-redundant robots.

7. The user should have the option to move the robot with the 7 DOF input device or switch

to an external view and re-orient the base of the robot manually.

8. When using the 7 DOF input device, the user should have the option to control both the

position and orientation or only the position of the end effector.

9. The user should also be able to change the scaling between the input device and the motion

of the robot in the simulation. Some typical values for the scaling should be similar to the

scaling found on the current surgical robot. These scaling values, for the da Vinci, are 2:1,

3:1 and 5:1 [18] where the first number represented the distance the input device is moved

and the second value is the corresponding distance the end effector would move.

10. If the current surgical robot is being simulated then the simulator should have a similar

motion and response to the input when compared to the real robot.

11. The motion of the simulated robot should be controlled in real-time offering the sense of

telepresence.

12. The user should have the option to save the scene, including the robots imported and their

orientations such that it can be reopened at a later stage.

13. The simulator should be user friendly. This included setting up kinematic chains, scenes

and controlling the robot.

2.2 Introduction to the Simulator 14

2.2 Introduction to the Simulator

The simulation environment was written in C + + , making use of the Qt libraries to create the

Graphic User Interface (GUI), and the Visualization ToolKit (VTK) libraries for the rendering

functions.

The VTK libraries are wrapper libraries for the more complex OpenGL rendering functions.

These libraries were created to make the process of writing rendering software simpler. The

VTK libraries are compiled for the C + + computer programming language. It is possible to use

these libraires in other computer programming languages, but would add needless complexity. Qt

libraries were chosen for creating the GUI, as they are the simplest libraries for GUI creation in

C + + .

The person using the simulator is referred to as the user. Any parts from a robot or other

objects added to the simulator are referred to as a body.

The simulator stores a body in one of two classifications, either as a passive body or an active

body. A passive body is a body that has not been added to a kinematic chain, does not have a

driven joint, is a graphic object to add information to a scene or is a surgical target. An active

body is a body that has been linked to other bodies in a kinematic chain and has an active joint

assigned to it.

The simulator’s main display is composed of an information sidebar and the main three di­

mensional (3-D) rendering window, as shown in Fig. 2.1. The side bar is comprised of information

trees that gives information about all the bodies in the 3-D rendering window. As seen in Fig. 2.1

the upper most information tree holds all the information of all the passive bodies in the render­

ing window. The following trees hold the information for all the kinematic chains created in the

simulator. Multiple passive bodies can be grouped together to form a chain that retains all the

relative position information between all the bodies, but has no joints in the chain. This allows

easy movement of groups of bodies. In the 3-D rendering window a scene is shown with a patient

laying on a table with the model created of the current surgical robot that was in use in surgeries

to assist surgeons.

The creation of the scene shown in Fig. 2.1 is explained in this chapter.

2.3 Creating Robots for the Simulator 15

I " ^liiiulut'jr

Body
* ORfaCaoB
ffi OHeart
ffi () LIMA
® () LAD
ffi ()Human Body
♦ () Table

LeftAfmActrve
* () BaseFram
T ()L l (+) L2

(+)LP11
(-)LP21
(-) ! « *
()LP22-Mia.

Serial Cham 1
® () BaseFram* ()L1

(+)12
(+)LP11
OLP21
(-) LP12
()LP22
Ml 3

Rî itArmPassjve
® () BasaRefFrame
ffi (+) Unk 1
ffi (+)Unk_2
ffi (+)Urk_3
ffi (+) Unk_4
ffi (+) Link 5
ffi OEERefFrame

() RightWall
() Left Wall
()RK**Wat
O Window
()Ce*ng
() Floor

* (\ Tablet ens

ffi () Stopper
♦ () Stopper
ffi () Head
ffi () Central column
♦ ()H
ffi () 5Sde_ra«ls_rmdi
♦ Ü S»de_rafc_slde

LeftArmPassive
t) () BasaRefFrame

ffi (+) Unk_l
ffi (+)Unk 2
* (+) Link_3
ffi (ffi) Link 4
* (ffi)LriCs
ffi OEERefFrame

Figure 2.1: A screen capture showing the main layout of the simulator.

2.3 Creating Robots for the Simulator

The simulator does not serve as a CAD modelling tool, therefore no robot can be modelled or al­

tered in the simulator itself. Another tool is required to perform this task and is left to SolidWorks

or any other CAD modelling software that has links to MATLAB such as Pro/ENGINEER and

Autodesk Inventor, for modelling. The need for the links to MATLAB is that the simulator needs

the files generated by the MATLAB linker. This reduces the complexity of trying to interface

directly with the CAD programs. A robot created for the simulator is created similar to any other

model created in the CAD modelling software. Each part is created separately and compiled into

one final file through the assembly process. The only restriction of the model created in CAD

modelling software is that only simple mating features can be used in the creation of the assembly.

2.3 Creating Robots for the Simulator 16

Joint limits and other such information would be manually added to the kinematic chain created

in the simulator if desired.

The robots created in the CAD package can then be exported using the MATLAB linker for

SimMechanics. The linker generates one XML file and a separate STL file for every part created

in the CAD package. The STL file format is used to store information about computer graphic

models. The file contains lists of position and facet values that rendering software can use to

recreate a graphic model. The XML file format is used to store structured text. The text is

grouped into sections that can be easily searched, making parsing of these files relatively quick.

The simulator then imports these files using the information in the XML file generated by the

linker. This XML file contains all the relevant information required to import the robot into the

simulator. The specific information used from this file for importing is:

• STL file names for each part of the robot.

• The position and orientation of each part.

• All the relative joints between the parts.

and the rest of the information is disregarded, as it contains information such as special linking

information between bodies specific for MATLAB’s SimMechanics, and scene information such as

colours. It should be noted that only SolidWorks was used to make robot models for this project,

therefore only SolidWorks will be referred to instead of any other CAD packages.

The simulator then reads and stores all this information and proceeds to import all the STL files

associated with the robot and position them accordingly in the scene. It then creates indicators

for each available joint in the robot for use in constructing a kinematic chain. Using only the three

items listed above the robot can be recreated in the simulator. An example is shown in Fig. 2.2.

If a closer look is taken at the parts imported into the simulator, it can be seen that the

surfaces are not as smooth as the ones seen in SolidWorks. The reason for this is that SolidWorks

is a parametric modelling tool which exports the parts into an STL format. This conversion can

cause problems as SolidWorks attempts to make the STL files as smooth as possible which can

result in too many facets created for a part. The effects of the number of facets is shown in

2.4 Robot Joints 17

(a) (b)

Figure 2.2: A screen shots of a robot (Mitsubishi PA10-7C) which was (a) created in SolidWorks
and then (b) imported into the simulator.

Chapter 5.

In order to have a simulation of the current surgical robot, a model of it was created in

SolidWorks. The process of the creation of this model is shown in Appendix B and the resulting

robot was used to make Fig. 2.1.

2.4 Robot Joints

Before covering the process by which the simulator calculates the motion of a robot, the basic

principle behind robot kinematics is covered first.

2.4.1 Defining Robot Kinematics

A joint is required between two parts of a robot to allow relative motion between them. A joint

can be either a revolute or prismatic. If the joint is revolute then the relative motion between

2.4 Robot Joints 18

/

Figure 2.3: The kinematics values used to describe the forward kinematics of a robot [19].

the two parts will be a rotation around the axis of the joint. If the joint is prismatic then the

relative motion between the two parts will be a rectilinear translation on the plane defining the

joint, along the axis of motion.

A coordinate frame is defined for the joint such that the Z-axis of the frame is coincident with

the axis of the joint and the X-axis points along a line that is perpendicular to the axis of the

joint and the axis of the following joint in the robot [19].

If a coordinate frame is attached to each joint in a robot, then vectors defined in one frame

can be transformed to another frame with a transformation matrix, as shown in the following

equation:

¿v =i+i T i+iv , (2.1)

where the subscripts i and i + 1 refer to the coordinate frames assigned to Joints i and i T 1. The

vector is defined as v and the transformation matrix is defined as T.

The transformation matrix that can transform a vector between any two joints can be created

using only the following four measurable quantities [19], as shown in Fig. 2.3: •

• The distance between the two coordinate frames assigned joints i and i + 1, measured along

2.4 Robot Joints 19

the X-axis of frame i. This value is known as ai.

• The angle that Z-axis, of frame i needs to rotate by, to make it parallel to the Z-axis of

frame i + 1. This value is known as a*.

• The distance frame i needs to move along the newly rotate Z-axis of frame i such that frames

i and i + 1 are coincident. This value is known as d{.

• Finally, the angle that frame i must rotate, about the newly rotated Z-axis of frame i, such

that the X-axes of frames i and i-|-l are concentric. This value is known as 9{.

These four values are known as the Denavit-Hartenberg parameters. When defining a the

kinematics of a serial link robot, only these four values are noted for each joint and are generally

displayed together in a table. Using these parameters the basic kinematics of the robot is known.

If these four quantities are defined correctly then the transformation matrix that will transform

vectors from frame i -f 1 into frame i can be defined as follows [19]:

/

¿+1T =

V

cos0i+i — sin0i+i 0 ai

sin Qi+1 cos ai cos Qi+\ cos a* — sin a* di+\ (— sin a*)

sin Oi-i-i sin ai cos 6i+\ sin ai cos a* di+\ (cos ai)

0 0 0 1

\

(2.2)

Using this matrix, the position of the robots end effector and joints can easily be mapped into

one coordinate frame and forms the basis of robot kinematics.

It should be noted that the frame assigned to each, is done so with its Z-axis concentric to the

axis on which the joint moves. All positive directions are in the direction of the Z-axis or around

the Z-axis using the right hand rule method. As this frame is used to calculate the motion of a

body, it will be referred to as the kinematic frame in this thesis.

2.4 .2 Assigning Kinem atic Joints

Once the files has been imported, the user can then assign joints to each body based on the

information read in from the XML file. This is accomplished by scrolling through all the joints

2.4 Robot Joints 20

available from the information file and assigning them to the necessary bodies. Each available

joint has a cone representing its location and direction, which is shown in Fig. 2.4. If the joint is

a revolute joint the direction of the cone shows the axis about which rotation occurs. Using the

right-hand rule a positive rotation of the joint can be determined. If the joint is a prismatic joint

then the direction indicates the axis along which motion occurs. It does not matter whether the

a joint is assigned in the wrong direction, it is merely an indication of a direction for anyone who

wants to use it. The simulator will work correctly whether the user changes the orientation of the

joint or not.

The different colours of the cone indicate whether the joint is revolute or prismatic. If the

cone is green, then the joint is prismatic. If the colour is red, then the joint is revolute. If the

simulator does not understand which type of joint is available, then it will be coloured blue, such

as when the XML file lists joints as welds. These joints were displayed as they could come in

useful when dealing with many passive bodies in a design.

Manually assigning joints to a robot gives the user the ability to create a robot with different

kinematic chains, using the same CAD model. If one joint is left out, then it would be similar to

locking a joint in a real robot. It is not expected of the person creating the chain in the simulator

to know about kinematic algorithms, merely to know where the robot should have a joint.

A joint can be assigned as either an active joint or as a passive joint in the simulator, which

are described in the paragraphs below. Once joints have been assigned to a body, a Cartesian

coordinate frame is assigned to the body and is used to calculate any motion of the body. This

Cartesian coordinate frame will be referred to as the body’s kinematic frame from this point on.

Active joint An active joint is a joint that allows a body to be driven around this joint. It would

simulate a joint that has an actuator connected to it, if it was a real robot. If an active joint

is assigned to a body, then a kinematic frame is created with the origin of the frame at the

same location as the joint position given by the CAD software. The frame is then rotated

such that the Z-axis is pointing in the same direction as the joint direction. Therefore, if

any rotation is made about the joint, it will then rotate about the kinematic frame’s Z-axis.

The kinematic frame is then rotated once again such that the frame’s X-axis is pointing

2.4 Robot Joints 21

Fia Edt «rema»! vtow

£ 0 1 &

Figure 2.4: A screen capture showing the representation of a joint to be assigned to a body.

towards the body’s original coordinate reference frame from its original STL file. If the

original coordinate frame is coincident with the joint location, then the kinematic frame is

rotated such that the two X-axes are aligned. This gives the frame a unique orientation and

will follow the body as it is moved. The frame assignment is done in this manner so that if

a rotation or translation is applied to the joint then the rotation or translation will always

be around or along the Z-axis of the kinematic frame making motion calculations easier to

handle, than if the frames were randomly placed around the body.

Passive joint A passive joint is one in which no actuation can be applied to the joint. The joint

is actuated through connecting bodies that have an active joint, or if the passive joint is

connected to a body that also has an active joint.

If two passive joints are assigned to a body, a kinematic frame is created to be used for

calculating the motion of the body. If either of the passive joints or both of them are moved,

then the kinematic frame is repositioned according to the new position of the joint (s),

2.4 Robot Joints 22

showing the motion of the joint(s). Therefore, the kinematic frame needs to be uniquely

defined, if it is randomly positioned between the joints each time a joint was moved then

the motion of the body will not be properly defined. This imposed a restriction, in that a

body could only be positioned kinematically if it has at least two passive joints assigned to

it. If not, the body will act as if it is welded to the body before it in the chain.

The kinematic frame created by two passive joints is defined by placing it at the mid point

between the position of the two passive joints assigned to the body. The kinematic frame is

then rotated such that the kinematic frame’s Z-axis is pointing in the same direction as the

second joint assigned to the body. A vector is then defined pointing from the position of

the first joint to the position of the second joint. The kinematic frame is then rotated again

such that the projection of this vector, that lies between the two passive joints position, lies

on the kinematics frame’s X-axis and is pointing in the same direction as the kinematics

frame’s X-axis.

If a passive joint is added to a body that already has a kinematic frame assigned to it, then

the relative position and orientation of the joint between the kinematic frame and the joint

is stored for calculations when the kinematic frame is shifted.

Any number of passive joints can be assigned to any body, as only the first two passive joints

or the body’s active joint, fully define the motion of the body. Any subsequent passive joints

do not play any part on the motion of the body.

The reason a kinematic frame is defined, is that the coordinate frame of the body from the

STL file does not always lie on the same axis of motion. The coordinate frame for the STL file is

created in the CAD modelling software and can lie anywhere relative to the body, based on how

the part is created in the software. The body’s coordinate frame will lie on the axis of motion

only if it is specifically created with that purpose. This makes the calculations for motion of a

body a difficult task if no new frame is assigned.

Once a kinematic frame is defined, relative transformation matrices between the kinematic

frame and body’s reference frame is created using the following equation:

2.5 Creating Kinematic Chains 23

£t = (W T) 1 i^T, (2.3)

where k refers to the kinematic frame, b refers to the body’s reference frame and W refers to the

world coordinate frame.

A transformation matrix is a matrix composed of a rotation matrix and position vector that

can transform a vector or another transformation matrix from one Cartesian reference frame to

another. Therefore, if the kinematic frame is transformed in any way, the body’s new position

can be transformed by using the following equation:

w T = w T kT j (2.4)

where the subscripts and superscripts have the same definition as in (2.3).

These equations can be applied to kinematic frames assigned by either passive or active joints

and shows the need for a kinematic frame to be uniquely defined for each body.

2.5 Creating Kinematic Chains

The user can create a kinematic chain by selecting a passive body’s names currently in the 3-D

display and assigning them to a chain. An example of this can be seen in Fig. 2.5. All the bodies

added to the desired kinematic chain have to be added in the correct order from the base body to

the effector frame, which is the order they would be connected together in reality. If a group of

bodies form a closed-loop chain, they can be added in any order as long as the first body of the

closed-loop is the driving body of the loop, which is explained later on in this section.

Once the user has completed the list of the bodies desired in the kinematic chain, the program

then reads through all the bodies position information in the list and calculates the relative

transformation matrices between the kinematic frames in the chain. If a body is added to the

chain without a kinematic frame assigned to it yet, its reference coordinate frame from its STL

file is used instead. The relative transformation matrix is calculated using (2.5).

2.5 Creating Kinematic Chains 24

Figure 2.5: A figure showing how the user creates a kinematic chain.

r 1T = (^ 1T) 1 ™T, (2.5)

where i refers to the body’s position in the kinematic chain and W refers to the world coordinate

frame.

If a body is moved in the chain, its kinematic frame would be transformed prompting the

repositioning of the rest of the bodies in the chain, using the following steps:

• The relative matrix between the body that is moved and the previous body is recalculated

and stored, using (2.5).

• All the positions of the passive joints connected to the body are updated, if there were any,

as described below.

• If the body is the driving part of a closed-loop chain, then the closed-loop solver is called

2.5 Creating Kinematic Chains 25

and all the bodies affected by this solver axe moved accordingly.

• The rest of the bodies in the chain are moved according to the motion of the initial shift

plus any motion from a closed-loop chain, using the following equation:

WT = W jT r 1T , (2.6)

where i referred to the current body’s position in the kinematic chain and W refers to the

world coordinate frame.

The position of all the passive joints are updated by the following method (it should be noted

that the position of the passive joints, relative to the body’s kinematic frame, are already known):

• The relative rotation matrix is calculated between the body’s kinematic frame’s current

rotation matrix and its new transformed rotation matrix as follows:

Wr = Wr (WR) - 1 ; (2.7)

where R is the rotation matrix, W is the world coordinate reference frame, n is the new

rotation matrix of the kinematic frame after it had been transformed and p is the previous

rotation matrix of the kinematic frame.

• The relative position vector between the positon of the passive joint and the kinematic frame

is then rotated using the new relative rotation matrix calculated above.

• The direction of the joint is then rotated using the same rotation matrix as above.

• The joint is repositioned by using the following equation:

P r = P s + P r, (2.8)

where r is the relative position and s is the shift applied to the kinematic frame. All of these

vectors are defined in the world coordinate reference frame.

2.6 Reference Frames 26

Figure 2.6: A diagram showing the reference frame that would be created from the SolidWorks
part designed to give a desired reference frame at the end effector and base frame.

However, if the chain is not a pure serial chain, such as the active section of the da Vinci,

more information about the chain is required, otherwise the kinematic chain has been established

at this point and the chain is ready for motion calculations.

2.6 Reference Frames

When a part for a CAD model is created, it is created with coordinates relative to a reference

frame. If the part is then exported to another file type, such as exporting from a SolidWorks

part to an STL file type, all the geometrical relationships are made relative to the parts reference

frame. This reference frame does not always coincide with the position of the desired references

frame. If special attention is paid to the creation of the part then the part’s reference frame could

be located at the desired point. However, this should not be expected. So an extra part was

designed in SolidWorks such that it can be added to the final assemblies of a robot in SolidWorks

to define the desired location and orientation of the frame for the part. This is essential for the

base frame and end effector frame for a robot.

The reference frame model was designed such that it is small in size, relative to the current

medical robots. It was made small so that it will not have any visual impact on any simulated

scenes. It was also designed in so that it had sides showing the positive direction of the Z-axis and

2.7 The Closed-loop Kinematic Solver 27

the X-axis of its reference frame. The part created can be seen in Fig. 2.6 with the orientation

of the parts reference frame shown in the lower left corner of the figure. The parts reference

frame lies in the centre of the cube with the orientation shown. The part has both cylindrical and

rectangular faces making it easy to mate into any Solid Works assembly.

If a user creates a new robot in SolidWorks, the user can then insert this part at the location

of the desired end effector reference frame and base reference frame.

2.7 The Closed-loop Kinematic Solver

Solving for generic closed-loop chains adds unwanted complexity to the system, so it was decided

that smaller solving algorithms would be written and added on to the serial kinematic chain solver

already in place. Therefore as new types of closed-loop chains are needed, new solvers could easily

be written and added on.

One such solver was written and added on to the serial kinematic chain solver. This algorithm

solves the closed-loop chain that makes up the active section of the da Vinci, and is known as the

four-bar mechanism solver, which is explained in detail in Appendix A. This algorithm is also

used on the endoscopic arm as it has the same basic structure.

If the da Vinci’s active section is observed from the side, as shown in Fig. 2.7, it can be seen

that the closed-loop chain is composed of two parallelograms connected to each other, with seven

joints. The joints can be grouped together in two groups as follows:

• Joints 1, 2, 3 and 4

• Joints 3, 5, 6 and 7

Observing the lower parallelogram in Fig. 2.7, composed of Joints 1-4, it can be seen that the

lower two joints (numbered 1 and 2) are fully defined in position and orientation by the motion of

the body before the closed-loop chain. It should be noted that Joint 1 is the driving joint of the

closed-loop and sets the position of the body it is joined to, therefore the position of Joint 3 is

defined in position and orientation as Joint 1 is rotated. That leaves Joint 4, the only undefined

joint in the group.

2.7 The Closed-loop Kinematic Solver 28

Figure 2.7: A schematic showing the double four-bar mechanism of the da Vinci tooled active
section.

As Joint 1 in Fig. 2.7 is rotated then only the position of Joint 4 needs to be calculated and the

parallelogram is fully defined and all the positions and orientations of the bodies can be calculated.

Once the first group of joints has been calculated, the second group can be solved for as follows.

Once again looking at Fig. 2.7, it should be noted that the body with Joints 3, 4 and 7 connected

to it, has already been positioned by the first group of joints, therefore Joint 7 has also been fully

defined. Joint 5 is also connected to the body driven by Joint 1, so it too had been fully defined.

Therefore, the only joint that needs to be calculated is Joint 6. Once again the position for this

joint can be calculated using the four-bar mechanism equations described in Appendix A.

This method is chosen for solving for the closed-loop chains in the da Vinci as the positions

and orientations of all the joints in the loop can be solved for by knowing the angle of only the

first joint in the loop, and reduces the complexity in defining the closed-loop chain for the user.

As mentioned previously, if other closed-loop solvers are needed then they can easily be created

and added on to the program.

2.8 Manipulating Robots in the Scene 29

2.8 Manipulating Robots in the Scene

Once a robot has been successfully imported into the scene and combined into a kinematic chain

it can then be manipulated or moved around the scene. This can be done in the following three

methods.

• The base of the robot can be repositioned by manually entering new values for its position.

This is done by selecting the option to reposition the base of the robot and manually entering

in the values for the base position. Both the position and orientation can be entered. The

orientation can be entered in the form of a rotation matrix, a quaternion or Euler XYZ

angles.

The option is not given to shift the base around by manually dragging it around with the

mouse. This is because the display is as a 2-D screen, with a 2-D input from the mouse, of

a 3-D rendering. Which means that the software cannot be sure of the desired location and

will place it in unwanted positions.

• Each link can be individually moved by clicking on it and dragging the mouse from side to

side. This rotates/translates the body in the robot along/about its axis if it has an active

joint assigned to it. If no active joint is assigned to the body, no motion will occur.

• The end effector can be moved around using an external multi-DOF input device. Which is

covered later in this thesis. While this option is selected, no user interaction can take place

except through the multi-DOF input device.

2.9 Creating Surgical Targets and Physical Features

To increase the realism of the simulator, an option was created for the user to import surgical

targets and physical features into the scene. Physical features are defined as parts of the human

body that will be taken into account when a surgery is performed, such as the rib cage or heart.

Surgical targets are defined as the targets of the simulated surgical procedure, such as the artery

harvested to replace a blockage.

2.9 Creating Surgical Targets and Physical Features 30

Any number of targets or features can be imported into the simulator. Once a complete set of

targets and features are imported into the simulator, they can be combined together into a chain

without any active joints. This welds all the bodies together such that if one body is shifted, all

the other bodies in the chain are shifted accordingly.

2.9 .1 Physical Features

Physical features can be created in any manner, as long as they are stored in an STL file format.

One method of generating a physical feature is to make use of a medical imaging software such as

3D Sheer [20].

The segmentation process begins by opening a patient’s CT scan in 3D Slicer. Segmentation

is the process by which pixels are labelled according to their intensity in the scan and recorded.

This can be done because matter of different densities have different pixel intensities in the CT

scan. The range of notable differences in densities is from air to bone, with air being the darkest

pixel intensity and bone being the brightest. Therefore, if only the bone structure is required in

the segmentation, all the pixels with an intensity above a given threshold can be segmented out.

This process can be performed automatically but CT scans are noisy and objects such as the table

the patient is lying on will appear as bone. Therefore, not only would the bone be segmented out

but also some other random spots will be included. Also, if only the ribcage is desired and the CT

scan includes the arm and other bones the software will not know the difference. This means that

if a nice and clean segmentation is sought, manual segmentation must be done. Fig. 2.8 compares

the result from a manual segmentation and an automatic segmentation.

Manual segmentation of a CT scan is performed by looking at each slice in the CT scan and

physically marking off the areas that are desired in the segmentation. The process of manual

segmentation is shown in Fig. 2.9. Manual segmentation is a time consuming process, which is

useful in the end to generate a complete and clean model. The higher the quality of the scan,

the more slices there are and the more time it takes to segment it. Some scans of the chest can

have as many as 300 slices in it. The lower the quality of the scan, the fewer slices are available,

but less information can be found in the scans too. It is difficult to determine the location of the

arteries in a low quality scan, therefore high quality scans are generally used.

2.9 Creating Surgical Targets and Physical Features 31

segmentation (a) and an automatic segmentation (b) of a human ribcage made from
a CT scan.

Once all the slices in the CT scan are correctly segmented, then the segmented pixels can be

used to generate a 3-D model. The model is created using the marching cubes algorithm built

into 3D Slicer. The output of the algorithm is a set of polydata that can be saved in the format

of an STL file.

These STL files have a large number of facets, which is bad for rendering and memory man­

agement. The large number of facets from a clean segmentation cannot be prevented. To reduce

the number of facets in the STL file, the following series of cleaning steps can be performed on it.

The number of facets and vertices are first reduced using the algorithms built into the software

package MeshLabs. These algorithms merely subsample the amount of points in the file while

keeping the overall geometric shape constant. The STL file is then opened in the software package

Blender and any unwanted vertices, created by noise or other problems, are manually deleted,

further reducing the number of facets in the file.

2.9 .2 Surgical Targets

Surgical targets for RAMICS are generally arteries or veins. To create models of the surgical

targets in the simulator the software AtamaiViewer [21] is used. A module was found in the

2.10 Customizing a Scene 32

Figure 2.9: A screen capture showing the process of manual segmentation on a CT scan in 3D
Slicer.

software that allows a person to pick out intercostal spaces in a patients CT scan and generate

splines from the chosen points. This module was modified to allow a person to chose more inter

costal spaces and also allow the user to pick points along desired surgical targets and specifying

the surface on which the targets lay. The result of this module is shown in Fig. 2.10. The cones in

the figure above the surgical targets are surface normals to indicate the approach vector needed

to avoid the surface it is lying on, to assist preoperative planning research.

The targets are stored in a file as a set of points along each spline. These points can be read

in by the simulator, which recreates the splines to represent the surgical target in the simulation

environment.

2.10 Customizing a Scene

The user has the option to modify most of the graphical representations of the bodies in the

simulator.

The user has the option to change the colour of each body in the scene. One body cannot have

2.10 Customizing a Scene 33

LIMA

LAD
ntercostal
paces.

Figure 2.10: A screen capture showing splines generated along surgical targets in the Ata-
maiViewer. The surgical targets selected were the intercostal spaces, LAD and LIMA.
The LAD and LIMA had normals along their splines to help the preoperative plan­
ning algorithm.

multiple colours assigned to it as the bodies are not defined parametrically. This means that an

individual face cannot be selected to assign a specific colour to it. The scene’s background colour

can also be changed as desired.

The view from the camera can be shifted by clicking on the scene’s background or a passive

body and dragging it around. If the left mouse button is used, the camera rotates around its focal

point. If the right mouse button is used the camera pans in the dragged direction. The camera

can zoom on the focal point by clicking the middle mouse button and moving the mouse up and

down relative to the display.

A new camera can be placed in the scene by attaching it to the end effector of a kinematic

chain. When this is done the simulator creates a second 3-D display and opens it up with the

display from the new camera. If the given kinematic chain is then moved in the original rendering

window the camera is moved accordingly.

To complete the scene, models of a surgical table and human body were also created. If only

the internal structure of the patient is observed through a simulation, problems can arise with

the external structure of the human body interfering with the motion of the robot. So a general

2.10 Customizing a Scene 34

Figure 2.11: A screen capture of the low polygon model of the human body created, showing the
vertices that make up the model.

model of a human body was created to represent the general area that is be taken up by a patient

through a surgery. The surgical table was also measured to show its geometry and any problems

it can create during the procedure.

As the human body is relatively large and a complex object, it could consume necessary

computer memory to rendering it, so a low polygon model was created. A low polygon model

means the body represented will appear rough and blocky, devoid of any natural contours. The

advantage of using a low polygon model is that the rendering time is increased. An image of the

low polygon model created for this project is shown in Fig. 2.11.

The body model was initially created using photographs of a person from the front and the

side. This process was done in Blender, where one half of the body can be modelled and then

mirrored to created the other half. The pose of the model created is not similar to a person lying

on the surgical table, so the legs and arms were shifted to represent the pose of a patient on the

table ready for a surgical procedure. This is shown in Fig. 2.12.

The human body model is scaled relative to the surgical markers from 3D Sheer and Ata-

maiViewer; therefore if the model is imported together with the surgical targets into a single

program, they are all done so relative to the same frame of reference and will automatically be

placed in the correct position and orientation.

2.11 Saving and Loading 35

Figure 2.12: A screen capture of the body model positioned on the surgical table in a pose similar
to a real patient ready for surgery.

Finally, to give the illusion of a surgical room the option is also given to add in planes with

pictures attached to them which can be seen as walls, such as the walls shown in Fig. 2.1.

2.11 Saving and Loading

The option to save the current setup was created. This means that at every stage in setting up

a scene it can be saved and reloaded if a mistake is made. The undo functionality has not been

created yet and is listed as tasks to still be completed.

Two options are available for saving. Firstly, the user can save a single kinematic chain, which

would record the position and orientation of each body as well as any joints assigned to a body.

Secondly, the user also has the choice of saving a scene.

If the scene is saved, all the kinematic chains in the scene will be saved into the file, along with

all the passive bodies and other scene information. A single kinematic chain cannot be extracted

from this file. Each body of a chain is written to an STL file and a new information file is created

along with the STL files with all the information required to recreated the chain or scene. This

means that the initial files created from SolidWorks are no longer needed. All other information

about the scene is also recorded, such as the camera position and orientation and the colours and

images attached to bodies.

By having the option of saving a chain, a scene can be created quickly if a scene is composed

of more than one set of the same robot. They can be imported individually into a scene and used

in the scene as necessary. A scene is shown in Fig. 2.13 that was created using the method of

2.12 Conclusion 36

Pædve Bodes
♦ ()CheslModelICRA2

left Arm
♦ OBseAssemUy
♦ (+) PartlAsserriJy
♦ (+) Part3Who(e
♦ (+) Parts
9 (+) Part7

Right Arm
♦' () BaseAssembly
♦ (+) Parti Assembly
9 (+) Part3Whole
9 (+) Parts
* (+) Part7

Figure 2.13: A screen shot showing a scene created from importing multiple chains.

importing multiple chains.

2.12 Conclusion

This chapter outlined the framework for the simulator created for this thesis. It listed the design

requirements and showed how the simulator was created to match them.

The simulator created for this thesis transforms the complex task of performing motion cal­

culations, of a serial link manipulator, into the simple task of assigning joints to a CAD model

and sorting them into the correct order. Even though a method was not created to solve generic

closed-loop chains, a method is shown where simple closed-loop chains can be solved by adding

algorithms on as needed.

The process of creating models of a patients geometry and surgical targets is explained along

with methods for reducing the memory size of these models. A generic model of a human body

and surgical table was also created to represent boundaries for the positioning of a robot in the

simulator.

Chapter 3

Teleoperation

3.1 Background Information

Many robot simulators have been created to date and they can be grouped into two main cate­

gories, the first being an offline and the other being a real-time simulator. The difference between

the two categories, is when a robot’s motion is calculated and rendered to the display. The offline

simulator does all the calculations before any rendering is done, whereas real-time simulators do

the calculations and rendering concurrently and in real-time.

Both of these simulators can perform simulations for predefined trajectories, but only the real­

time simulator allows for continuously changing trajectories while the simulation is in progress.

For this work, both predefined and continuously changing trajectories need to be handled.

The continuously changing trajectories are from inputs from surgeons running through surgical

procedures with a multi-DOF input device. This method of simulation is referred to as teleoper­

ation. The predefined trajectory can come from the results of a preoperative planning algorithm

for testing.

3.2 Requirements

In making the simulator teleoperated, a list of guidelines needs to be established beforehand to

make sure the resulting system is user friendly and complete. The following set of requirements

37

3.3 User Input 38

are shown here, which outline a successful teleoperated system.

• A teleoperated simulator should have a simple and intuitive method of entering the desired

position and orientation of the robot. The simulator should work in such a way that the

user would have the perception of directly controlling the end effector of the robot. This is

known as telepresence.

• The most challenging part of teleoperated simulators is to give the user a sense of telep­

resence, while maintaining the stability of the system [22]. For stability of the system, the

robot should be sufficiently controlled regardless of the motion required from the user.

• It should be possible to control the simulated robot from a distance.

• The robot should follow the given trajectory as closely as possible.

3.3 User Input

For teleoperation of the simulator software, the user of the software needs a form of input that can

control all the DOFs of the robot, rather than a simple 2 DOF input such as the computer mouse.

One such device available for this project is the PHANToM Premium. The PHANToM Premium

is a haptic input device produced by the company Sensable Technologies, Inc. The device gives

the user the ability to intuitively give a desired position and orientation for the end effector of

the robot. It is similar to what a surgeon could use in a RAMIS procedure. It does differ from

the inputs found on the master controller of the da Vinci in both dimensions and in the number

of DOFs. Although the PHANToM Premium device has 7 DOF, it only has 6 DOF for position

control and a switch on the handle to give a seventh that can be used for simulating the closing

of jaws on the end effector.

The controllers on the da Vinci have a much larger workspace, allowing the surgeon almost full

use of his/her arms. The da Vinci’s controllers also have an extra DOF, to prevent any kinematic

singularities. The implications of these differences is that the PHANToM Premium would have

to be readjusted more often in a simulation compared to the readjustments required by the da

Vinci’s controllers.

3.3 User Input 39

Although the device used for this project has haptic feedback, no force was reflected to the

device from the simulator for this project due to time constraints. This is listed as one of the

possible future projects based on this work. The PHANToM Premium only has force feedback

along the Cartesian axes, but has no method for applying any moments about the Cartesian axes.

A picture of the haptic device is shown in Fig. 3.1.

Figure 3.1: The PHANToM Premium input device used to control the simulator.

Rather than having this device as the only possible input for the simulator, the simulator was

created to accept inputs from devices on a network. Therefore, if multiple inputs are needed, they

can simply be connected to a computer and joined to the network to send the desired trajectory

to the simulator. If a surgeon would like to test the results of a preoperative planning algorithm

in the simulator, the surgeon would want multiple inputs, similar to the real surgical robots. Also,

by connecting the device to the network it frees up resources on the main computer.

By placing the input on a network, the performance of the simulator is not reduced due to

latency, as long as there is a small number of devices on the network. For this work, there was

only one network switch and two computers connected together. Also, the amount of information

sent between the computers is small and at widely spaced intervals. Therefore, this is currently

not a performance issue. However, if this system is setup on a busy network with many devices

connected to the network, it could cause lag between the motion of the input device and the main

3.3 User Input 40

computer receiving the updated position.

The network protocol that is used for the simulator is a simple ad-hoc communication protocol.

The protocol was as follows:

• The main computer would ask for the position information from the first haptic device. It

would wait for six pieces of data in response. If the main controller does not receive all six

pieces of data in a specified time frame, the system would ignore any information from that

device.

• Once the computer communicating with the first input device received the request for a

response, it would send the six current values from the input device. The six pieces of data

are composed of three Cartesian coordinates and three Euler XYZ angles. Once the six pieces

of data are sent, the computer would not send any more information until more positions

were requested. As systems could vary from 32-bit to 64-bit machines, it is necessary to

choose the correct types of data to transmit. If data is sent in an integer format, the values

for the same set of data will differ between the 32-bit and 64-bit machines. That is why all

the data is sent in a double format as both types of operating system use the same type of

memory allocation for a double variable.

• Once the main computer has successfully received all six pieces of data, it converts the Euler

XYZ angles into a rotation matrix and uses these values to define the error measure for the

control system of the specified robot.

• This process is then repeated with however many input devices are said to be connected to

the system.

A diagram showing a network structure with multiple PHANToM Premiums is shown in

Fig. 3.2.

The maximum possible number of concurrent control systems on the main computer would

be the limiting factor to the number of input devices connected to the system. With the update

rate of 1 kHz from each PHANToM Premium device and a network communication speed of 10

Mbps, more input devices could be put on the system than the amount that could be used by

3.4 Multi-threading 41

Figure 3.2: A diagram outlining the network structure used in communicating with the PHAN-
ToM Premium input devices.

the main controller. Every time the input device is sampled, the resulting desired position for the

control loop is updated. Although the update rate of 1 kHz seems fast, the control loop was able

to complete 2 to 3 loops between each position update. This was the case for all the robots tested

for this work.

3.4 Multi-threading

To make the system perform faster without changing the hardware of the main computer, the

simulator was changed to run in multiple threads. This means that sections of the simulators

code could be run concurrently by the computer, speeding up the computations as compared to

performing calculations sequentially.

By dedicating an important task to run in its own thread, the computer will have more

resources to perform other necessary calculations. Therefore, it is best to add as many threads

to the system as possible, allocating a thread to every critical task. However, this is not possible.

Only algorithms that can be calculated independently of each other can be assigned to their own

threads. If one algorithm depends on the result of another, then both those algorithms should be

run in the same thread. Most operating systems allow for more threads than the simulator would

need.

One problem that arises with multi-threading is sharing of variables between threads. If one

3.4 Multi-threading 42

thread tries to access a memory location while another thread is writing to that location at the

same time, the system may crash. To prevent this, certain memory locations can be ‘ locked’ by

one thread while it is busy writing the information. If another thread needs to access the ‘locked’

memory location it will pause until the other thread is finished writing and ‘unlocks’ the memory

location. This can lead to a bottleneck if some threads share a lot of the same data. This happens

when the system is busy performing kinematic calculations and attempting to update the render

display.

The following tasks were each assigned to their own threads in an attempt to optimize the

motion calculations during a simulation routine.

GUI This is the main thread for the system. This thread is the initial thread that is created

when the simulator is started, and all the other threads are created from this one. All flags

are stored in this thread and shared to all the subsequent threads, making it easy to share

the flags between all threads.

This thread also shares memory allocations with the control algorithm thread. This is

because, the control algorithm will manipulate the position values for all the bodies in the

render window.

Network Communication This thread establishes communication with the client computers

and handles all the information sent between the computers. This thread also reads in all

the positions and angles, sent from the client computer, and converts them into a position

vector and rotation matrix for the control algorithm.

This thread shares only the memory locations of the desired position and orientation with

the control algorithm thread.

Control Algorithm The control algorithm thread reads the values from the position vector

and rotation matrix collected by the network communication thread to create the error

measures. It then runs through the loop of the control system. In the loop, all of the

kinematic calculations are performed. New positions and orientations for all of the bodies

in the render window are also calculated and updated. This is the thread that is the most

3.4 Multi-threading 43

critical and generally takes the longest to repeat. This thread is looped continuously or until

the user ends the control algorithm manually.

If a new position is not available from the user input at the time the loop repeated itself,

the previous values are reused for the following iteration of the loop. The faster this thread

loops, the better it will perform, as it will continuously reduce the error between the desired

position of the robot’s end effector and the desired position.

This thread shares memory with the trajectory recorder thread as it sends the desired and

current end effector positions, for analysis. It also shares memory with the GUI thread and

network communications thread, as mentioned before.

Trajectory and Error Recording To measure the accuracy and response of the control sys­

tem, a thread was dedicated to recording desired and current position of the end effector

every time the control algorithm completed a loop.

When a simulation is ended, this thread would store the results in a text file for later

analysis. If the option is selected, then this thread would also graph all of the results upon

completion.

This thread shares memory with the control algorithm thread, as mentioned before.

Render Timer A thread was created with a dedicated timer, that sets the render window to

update itself at a specified rate. The render window is run in the GUI thread, which is

continually updated by the operating system. As the update function for this thread could

not be changed, the rendering refresh function was rewritten for the simulator. This allows

the simulator to manually update the render window whenever it is needed, and prevents

the operating system from updating it. This ensures that the simulator will not crash, if

the system tries to update the render window while the control system is busy updating the

positions of the bodies in the render display.

3.5 Rendering 44

3.5 Rendering

The time it takes to render a scene can vary in time based on the bodies in the scene, and could

sometimes take longer than desired, which will be quantified in the following chapter. Therefore,

the updating process is run while the control algorithm is performing kinematic calculations.

To keep the process flowing smoothly and to prevent the appearance of any jittering, the

render window is only updated at a rate of 30 Hz. While humans can still discern motion between

frames or blurring at 30 Hz, this effect is negligible for small motions and found to be suitable

for the simulator. If the rendering rate is increased it can affect the control algorithm timing and

slow the whole system down, sometimes making it unstable. If the rendering time for a scene is

too large making the 30 Hz update rate impossible, the simulation is stopped so bodies can be

removed from the render window before another simulation is attempted. When a simulation is

started, a visual reference is given to the user to show the maximum update rate of the render

window, based on the scene’s rendering times. This will allow the user to remove bodies from the

simulator if the rendering rate is too low.

3.6 Conclusion

This chapter outlined the basic features and some of the difficulties in creating a teleoperated

simulator. It then showed how the simulator, created for this work, attempted to best address

these features and overcome the problems.

By creating a network to allow for multiple multi-DOF input devices also allows for the

prospect of control from a distance. If the simulator software is installed on a server, and a high

enough bandwidth was available, a user could run the simulator from a distance.

The network communication protocol is a simple ad-hoc protocol. This method is sufficient for

the proof of concept, but will not suffice in the long run. A more stable communication protocol

with error checking, such as a check sums, should be instituted.

By using the multi-threading, the system can run and be stable on the hardware used for this

work. However, it did reach the limits of the computer. If a more complex simulation, or more

robots are needed in a simulation, a more powerful machine is needed.

Chapter 4

Control System

4.1 Background Information

For the implementation of teleoperation, the user of the simulator has some means of entering a

desired position and orientation for the end effector of the robot, and the control system will then

move the robot to match the input from the user. The means of entering this information, for this

work, is a multi-DOF input device. It is important to have the end effector match the motion of

the user’s input device as closely as possible. If this is accomplished, the perception of the user

will be that they are directly controlling the end effector.

For this to work, a fast control algorithm is needed. The control system will take the user’s

input and calculate the angles of each joint for the robot’s end effector to match the motion of

the user’s input in realtime.

Most control systems strive to control either the position and orientation of the robot’s end

effector or the force or torque the end effector exerts on a surface. These control systems use

various algorithms to achieve the desired result. The control system is chosen based on the type

of robot being controlled and the work the robot is made to do. The choice of control system will

have an impact on the performance of the robot [23]. This work is focused on the position and

not the force exerted by the end effector. Therefore, it focuses on position control systems.

There are many different control systems available for controlling robots. These can range

from independent joint control [23] used for preplanned motions, to adaptive control systems [19],

45

4.2 Control System Selection 46

that can continuously update system variables to increase the performance of the system. These

control systems will be narrowed down by the type of trajectory the robot will follow. For this

work, a continuous path tracking system is needed as opposed to a trajectory that is straight lines

between discrete points.

Control systems generally make use of the robot dynamics equation:

r = M (0)0 + V (0 ,0) + g(0), (4.1)

where r is a vector of torque applied to each joint of the robot to achieve the desired input

trajectory. M (0) is the robot’s mass matrix, V (0 ,0) is a matrix of inertial and Coriolis forces

and g(0) is the gravitational force based on the pose of the robot. 6 is a vector of the robot’s

joint angles, along with 0 the joint velocities and 0 the joint accelerations.

The control systems derived from (4.1) are based on extensive knowledge of the robot, including

the robot’s dynamic equations and the mass of the robot. This conflicts with the design of the

simulator, where the simulator does not require any analytical equations or the mass of the robot

for the robots being simulated.

As noted before, a single control system cannot control all robots correctly. Therefore, the

control system selected for this work was designed in a modular manner, allowing for other control

systems to be implemented as desired. The control system chosen for this work was done so for

initial testing purposes.

4.2 Control System Selection

A simple [24] and intuitive [23] type of control system was found for the simulator. The type of

control system found is referred to as kinematic control systems. These control systems only take

into account the current pose of the robot and the linkage dimensions.

Kinematic control differs from dynamic control in that the system dynamics are not modelled.

Therefore, all inertia and link masses are not described and are ignored. The system will not have

damping or overshoot in the conventional terms. The effects of forces such as gravity are also

ignored. For this simulator, the dynamics can be ignored as only the kinematic reach and pose of

4.2 Control System Selection 47

the robot is needed to check results from preoperative planning algorithms. The simulator is not

focused on the dynamic response of a robot, but merely its kinematic behaviour.

Firstly, a matrix called the robot’s Jacobian needs to be defined. The Jacobian is a matrix

used to map a robot’s joint velocities into its end effectors Cartesian velocities and rotations.

This means that if the robot’s joint velocities are known, by using the Jacobian, the velocities and

rotations o f the end effector can be calculated.

The Jacobian is a first-order temporal derivative of the forward kinematics of the robot [19]

and is defined as follows:

x = j(q)q , (4.2)

where X is velocities and rotations of the robot’s end effector (EE), q is a vector defining all the

first time derivatives of the joints in the kinematic chain and J(q) is the Jacobian.

It should be noted from (4.1) that the Jacobian is a function of the joint values, q. Therefore,

the Jacobian needs to be recalculated as the pose of the robot is adjusted.

If both sides of (4.2) are premultiplied by the inverse of the Jacobian the following equation

is obtained:

q = J tq) -1* . (4.3)

Given (4.3), it can be seen that it should be a simple process to determine the desired joint

velocities, if given a vector of desired end effector velocities and the pose of the robot is known.

Their are control systems based on this equation and they are known as the Jacobian inverse

control system [24].

The challenge with this type of control system is when the pose of the robot changes, the

Jacobian can lose rank and the inverse of the Jacobian will not exist, making it impossible to

calculate the desired joint velocities. This is known as a kinematic singularity. Even if the

robot is in the vicinity of a singularity the calculated joint velocities will be amplified, leading

to erroneous and unstable control. It is not known when a singularity might occur. To prevent

kinematic singularities the rank of the Jacobian is monitored.

These kinematic singularities can be handled with different methods. Some of the more com­

mon ways is to map out the workspace of the robot and identify all singularities. Then the control

4.3 Control Law Derivation 48

system can only allow motions in a subset of the workspace where there are no singularities, or if

the robot has redundant links, a redundant link can be moved as the singularity is approached to

prevent the Jacobian from loosing rank.

Another method of solving this equation is to use a pseudoinverse of the Jacobian instead

of the inverse, which is useful is the Jacobian is not square. This method is referred to as the

Moore-Penrose pseudoinverse method [25] and is shown here:

q = J*(q)X. (4.4)

The pseudoinverse J* is defined asJ* = JT(JJT)_1 which results in a square matrix and gives

the minimum norm joint velocities [25]. However, the pseudoinverse can still have singularities.

The problem with this approach is that it can be computationally expensive and that the

kinematic singularities are not completely avoided, as it is still prone to calculating amplified

velocities near singularities [25].

Another method that builds on the pseudoinverse adds constraints to the system. This leads

to the calculation of an extended Jacobian [26] which increases the complexity and the compu­

tations required to obtain a result. This method also leads to algorithmic singularities from the

constraints.

A simpler solution was posed by Wolovich and Elliot [27], to use the Jacobian transpose

rather than using any matrix inversion. This control system is used for this work, as it does not

have workspace singularities. This means that the workspace of the robot does not need to be

mapped out beforehand to test for singularities. This control system is derived and discussed in

the following section.

4.3 Control Law Derivation

By using the principle of virtual work the following statement for each joint in the robot is true [19]:

FTdx = t t 6@, (4.5)

4.3 Control Law Derivation 49

where F is a Cartesian force or moment applied at the end effector. Jx is an infinitesimal dis­

placement vector of the end effector, t is a vector of the torques applied at each joint and 6© is

a vector of infinitesimal displacements of each joint.

Given the definition of a Jacobian:

¿x = J5S, (4.6)

where J is the Jacobian, and substituting it into (4.5) the following is obtained:

F t J<50 = tT(50,

therefore,

Ft J = t t .

by transposing both sides of (4.8) the following is obtained

r = J t F. (4.9)

If the generalized spring observation is used, the following formula applies:

(4.7)

(4.8)

F - K (X d - X), (4.10)

where K is diagonal scalar matrix, is the desired position of the end effector and X is the

current position of the end effector.

If the tracking error is defined as follows:

e = X d — X , (4.11)

and then inserting (4.10) and (4.11) into (4.9) the following equation is derived

r = K JTe, (4.12)

where r is the torque required at each joint to obtain the desired velocities of the end effector. It

4.3 Control Law Derivation 50

Figure 4.1: Block diagram of the Jacobian transpose control system.

can be said that the r is a direct indication of the desired velocities of the joints q [27], and can

be used as a direct substitution. Therefore, the control law is defined as follows [19,24,27]:

q = K JTe, (4.13)

where q is the vector defining all the joint velocities of the robot. The block diagram for the

(4.13) is shown in Fig. 4.1.

It should be noted that the matrix K in (4.13) is a diagonal matrix where the scalars along

the diagonal are referred to as the gains of the system.

This control algorithm is simple in that it only requires the current Jacobian of the robot as

well as the desired trajectory of the end effector to obtain the desired joint velocities. It also avoids

any singularities in its workspace as it does not perform any matrix inversion. The simplicity of

the equation means that the amount of computation to obtain the desired velocities is minimal

compared to most other kinematic control systems.

Some advantages of this method are that it has a zero steady state error for a unit step input

and it has a bounded tracking error for a given trajectory [26]. These bounds can been reduced

by increasing the scalar gain matrix K found in (4.13). It should also be noted that the system

does not have a zero steady state error for a ramp input. The steady state error for a ramp input

is bounded and may be reduced by increasing the scalar gain matrix K.

The draw back of this control system is that it is not as accurate as other kinematic control

systems, such as the Jacobian inverse control system and is only suitable for slower trajectories.

This is not a problem for this work as the sample rate for the user’s input is 1 kHz, which is set by

4.4 System Gains 51

the 7 DOF input device, is lower than the speed the control system can update its desired joint

velocities.

Another challenge with this control system is that the optimal gain matrix is not constant

between robots or over the entire workspace of the robot. If the gains are chosen too large the

system can overshoot its desired position and the robot’s end effector might oscillate around

the desired position. If the gains are too low the robot will move at an undesirably slow rate

towards the desired position, making it difficult to control. This is overcome by noting that when

working with most robots, only a small subset of their entire workspace is used in a single surgical

simulation, therefore once a suitable set of gains is defined they can be used for the simulation

without the need for recalculation.

4.4 System Gains

Each robot imported into the system needs its own set of system gains. The gains are entered

manually, and should be chosen in such a way that the robot is responsive to user inputs, but is

not unstable.

The most important factor in the choice of gains is the physical structure of the robot. If a

link is added, removed or even changed the response of the system will change accordingly and

new gains should be entered.

If optimal gains are chosen for a robot in one pose, it does not mean that the gains are optimal

throughout the rest of the robot’s workspace [19]. This is not a problem as the response of the

system does not change noticeably over the workspace for all the robots tested.

Because the integration for the control system is performed numerically, its results are time

dependant, as the integration is a multiplication of the time it took the loop to execute and the

result of the loop. This means that if the control system takes a long time to complete a loop

the integration results will vary from a loop that was performed much faster, if all other factors

are constant. Therefore, if the gains are chosen on one computer, they might not be sufficient on

another. However, for noticeable differences in the performance of the control system, between

two computers, the calculation speeds of the two computers would need to vary widely.

4.5 Joint Limitations 52

The means of choosing the system gains for a robot is a simple process. The simulator is run

with the robot being controlled by the user input device, then stopped a short time later. While

the simulator is running, the user moves the input device randomly. When the simulator ends,

graphs are plotted with the desired trajectory and the motion of the robot. The gains are then

increased in a direction to make the response faster in that direction, or made smaller if the robot

would have sudden motions in the given direction. This process is repeated until the response of

the robot is satisfactory.

4.5 Joint Limitations

In the control loop, each time a new set of joint values are calculated they are checked against

constraints before being applied to the robot. For example, the robot can have larger than desired

velocities making the simulation move faster than an actual robot could, making it unrealistic.

The reason the joint limitations are left for the user to enter, is that different makes of robots

have different architectures, and therefore different joint limits.

Therefore, the following constraints can be entered to the simulator:

• Acceleration limits

The change in each joint’s velocity is measured against the time it takes for the control

system to define the new velocity of the joint. If the acceleration is found to be higher

than the allowable maximum limit, the change in joint velocity is reduced to the maximum

allowable acceleration.

The maximum allowable acceleration is a single value entered, for each joint, by the user and

is used throughout the joint’s complete motion. It is also used for both positive and negative

accelerations. This value does not take into account any inertial effects of the system, but

only a numerical change in the joint velocity.

• Velocity limits

Once the results from the control algorithm have been tested against the maximum accel­

erations, they are then tested to see if the resulting velocity is above the maximum velocity

4.6 Defining the Errors 53

as specified by the user.

Once again, if the velocity is above the specified maximum the velocity is reduced to the

maximum value. The value entered by the user is once again a single value, for each joint,

that is used for both positive and negative velocities.

• Angle or displacement limits

The final test of the control system results is to test to see if the resulting angle or dis­

placement would be larger than the maximum allowable value. If this is the case, the joint

will only be set to its maximum value. This will be repeated every time the control system

attempts to set an value larger or smaller than allowable.

Both maximum and minimum joint limits can be set for each joint.

All of these constraints are set to large numbers initially, and are up to the user to modify

as desired. The initial values are shown in Fig. 4.2. If these values are left to their initial large

numbers, they will have no effect on the system and the robot will respond to motions based

on the gains of the control system. Therefore, if a user is not specifically concerned about these

limitations, they can be ignored.

4.6 Defining the Errors

A control system can be defined as an algorithm that continually attempts to reduce a given error

to zero. Therefore, if the control system is to perform correctly, the correct method of obtaining

the error, between the desired input and actual output of the system, should be obtained correctly.

The process of calculating these errors are described here.

As the desired position is generally defined in 6 DOF, to perform complete control of the end

effector, the input values for the control algorithm are specified in a [6 x 1] vector with the first 3

values being the position error and the final three being the orientation error. This error vector

can be written as follows:

(4.14)

4.6 Defining the Errors 54

2e+07

2e+07

2 e +07 2e+07

p | Control O rientation On:

Motion Scale:

© lx O 7.5x O 10x

R x 10

Acceleration LimitJo int Name

L2

Velocity Limit

2e+07|

l P I 1 2e+07 .> + 0 7

> KJ7

2e+07 2e+07

2»+07 2S4-07

Figure 4.2: A screen capture showing where the user has the option of adjusting the gains for the
system, along with any limitations for the robot’s joints.

where x G ls the positional error and 0e is the orientation error.

4.6 .1 Position Error

The position error is the simpler of the two errors to obtain. This error is obtained by vector

subtraction between the desired position and the current position of the end effector. This is

defined as follows:

Xe = Xd - x , (4.15)

where is the desired position and x is the current position of the end effector.

The vectors x Gi x d> and x are all [3 x 1] vectors and are always defined in the same Cartesian

reference frame. A digram illustrating the definition of the positional error is shown in Fig. 4.3.

If the velocity error is desired, it can simply be defined in the same manner as the positional

error, as long as both the desired velocity and actual velocity are defined in the same Cartesian

reference frame.

Another point that is taken into account, is that the end effector can be manually positioned

4.6 Defining the Errors 55

anywhere in its workspace before it is controlled by teleoperation. Once the end effector is po­

sitioned the multi-DOF user input device will send the desired position relative to its starting

position, which is a zero vector. If the control system is to calculate the correct position error,

the initial position of the end effector needs to be recorded. Then any position error sent from the

multi-DOF user input device is relative to the initial position of the end effector from when the

teleoperation began. The initial position is presented as xinit, and is added to the position error

equation as follows:

Xe = xd - (xinit + X) . (4.16)

4 .6 .2 Orientation Error

The problem of defining the orientation error is more complicated than the position error. The

orientation error can be thought of as the difference between two Cartesian reference frames

sharing the same origin, only rotated into different orientations. The orientation error between

the two frames can be defined as the amount one frame needs to be rotated about a given axis,

such that the two frames are then aligned. This error is needed in the form of a [3 x 1] vector for

z

Figure 4.3: Diagram illustrating the positional error vector for the control system.

4.6 Defining the Errors 56

the control system, and can be calculated using one of the methods described below [28].

4.6.2.1 Methods of Representation

• Euler Angles

Euler angles are a set of three angles that can be used to rotate a reference frame, in a

specified order, to obtain a desired orientation. Euler angles are minimal representations

of a specific orientation. By using the Euler angle approach the orientation error can be

determined by subtracting the current Euler angles from the desired angles.

However, it is known that Euler angles have inherent singularity points [28-30], making

the use of these angles unstable and prone to errors. Therefore, if desired orientations

are defined in Euler angles along a smooth trajectory, the output error angles between the

previous orientation and the following orientation will not be a continuously smooth change

but can have discontinuities.

Another drawback of this approach is that unique Euler angles can not be extracted from

a given rotation matrix at representation singularities, making conversions between Euler

angles and rotation matrices unreliable. These representation singularities occur when the

rotations of the first and last Euler angle lie along the same direction [29].

• Angle-Axis Pairs

The orientation of a body can be defined as a single rotation around a given axis, which

is known as the angle-axis theorem [19]. Therefore, an orientation can be defined by four

values: 9 - the rotation angle, and u a [3 x 1] unit vector of the axis about which the rotation

occurs.

The draw back of using this approach, is that the orientation error is not uniquely defined,

for example the rotation of angle —9 about axis —u is the same as the rotation of 9 about

axis u. This is a problem when deciding which three values, out of the four possible values,

to be use for defining the error.

4.6 Defining the Errors 57

Another problem is when 0 = 0. For this angle the axis u is arbitrary [29] making it difficult

to define three unique values to use as the error measure.

• Unit Quaternions, or Euler Parameters

The nonuniqueness of the angle-axis values can be overcome by the unit quaternion values

defined as Q = { 77, e}, where 77 is the scalar part of the unit quaternion and e = (ex, ey, ez)T

is the vector part of the unit quaternion. Unit quaternion’s are always constrained by the

following equation [24]:

r)2 + e2x + e2y + e2z = l. (4.17)

When selecting three unique values for the error measure, for the unit quaternion, the

following should be noted. The unit quaternion will be Q c = [1,0] if and only if the

orientation error between two reference frames is zero. Therefore, the three values to be

used as a measure of error from this approach is the vector part of the unit quaternion, e.

This approach seems to be the desirable approach, however it only works if the relative

rotations about a given axis do not exceed 180°. This is an undesirable quality for an error

measure, as motions performed by a surgeon can exceed 180° in maneuvers such as suturing.

• Rotation Matrix

A rotation matrix is a [3 x 3] matrix that is used to rotate a reference frame from one orien­

tation to another. A rotation matrix is an orthogonal matrix that always has a determinant

of one. The entries of the matrix are always real numbers [19].

Rotation matrices can uniquely define a 3 DOF orientation in space. This means that, if

given a smooth trajectory of rotations to follow, the rotation matrix will have continuous

transitions between the points on the trajectory, unlike the Euler angles approach listed

above. This approach also accommodates rotations greater than 180° about a given axis.

Therefore, this method is chosen to calculate the error measure.

One restriction with this method is that the relative rotation between two successive desired

points, from the input, should be small. This restriction holds for inputs from a human

4.6 Defining the Errors 58

hand performing surgical maneuvers. If the control system is far slower than the sample

rate from the input device, successive orientation errors will become relatively large making

this method unstable. This is not a problem as the control system on the computer is faster

than the 1 kHz sample rate of the multi-DOF input device.

4.6.2.2 Defining the Error Measure

Given two reference frames with rotations relative to the world frame as R (j and R c, then the

relative rotation between the two reference frames is defined as:

R c = R (j R c (4.18)

where Rc is the orientation error between the two frames.

This will hold true for all rotations defined in the same coordinate system. Therefore, if Rd is

defined as the desired rotation matrix of the end effector, and R c as the current rotation matrix of

the end effector, then R c is the orientation error between the current orientation and the desired

orientation for the control system.

Given that a rotation matrix is composed of nine elements and only three are required for

the orientation error, three unique values need to be chosen from the orientation error rotation

matrix, to be used as an error measure. The three elements to be used are proposed by Luh et

al. [31] and are described here.

Given an orientation error rotation matrix:

/ \
r l i r 12 r 13

R , = 7*21 r 2 2 7*23

V r31 r 3 2 »*33 j

(4.19)

Luh et al. state that the orientation error between two frames can be reduced to zero, if the

following terms of Rc are reduced to zero:

4.7 Deriving the Jacobian 59

/ \
^32 “ ^23

0e = r 13 - r 3i (4.20)

y 2̂1 - n2

These three values are used to define the orientation error for the control algorithm.

However, there is an initial offset between the orientation of the multi-DOF user input device

and the simulated robot’s end effector, which means that desired orientation obtained from the user

input device is not relative to the initial end effector position, but it is relative to the orientation

of the world reference frame.

To account for this initial offset, all the desired rotation matrices obtained from the multi-DOF

input device is rotated to void the initial offset using the following formula:

Rd — R,}nitRjinput (4.21)

where Rinput is the rotation matrix from the user input device, and Rinit is the initial orientation

of the end effector.

This gives the final error rotation matrix as:

Re — Rinit Rinput (4.22)

4.7 Deriving the Jacobian

Having no analytical algorithms for the kinematic chain in the simulator makes defining a Jacobian

numerically a problem. This is overcome using the method defined by Angeles [32]. He stated

that a Jacobian can be written as follows:

J = (4.23)

where j* is the i-th column vector of the Jacobian. Each column vector can be defined as:

4.8 Conclusion 60

if the joint is revolute, or

(4.24)

J i =

\ev

(4.25)

if the joint is prismatic.

In (4.24) and (4.25) e* is the unit vector of the axis of Joint i. 0 is a [3 x 1] zero vector, r*

is the vector that points from the origin of the kinematic frame of Joint i to the origin of the

reference frame of the end effector.

The resulting Jacobian is a [6 x n] matrix, with n being the number of active joints in the

robot and 6 is the number of degrees of freedom that the end effector reference frame has.

4.8 Conclusion

This chapter briefly introduced control systems and named a few types that are available for

controlling modern robots. The main control systems were narrowed down so that a control

system could be chosen for this work. Some of the viable control systems are listed along with

the reason they were not chosen.

The control system for this work was then explained, and the strengths and weaknesses of the

algorithm were discussed. The methods for defining the error measure for the control system were

then presented, along with the method chosen for this work.

The Jacobian transpose control system chosen for this work is able to control the robots

imported into the simulator. By adjusting the gains of the control system the response and

accuracy of the robot can be enhanced. The performance of this control system is tested with the

results presented in Chapter 5.

Chapter 5

Validation

5.1 Introduction

When creating a teleoperated simulation environment for robots, the following key factors need to

be tested to determine if the simulator operates satisfactorily. These factors are: (a) the rendering

times for the display, and (b) the response of the control system. Inherent in these two factors are

other factors, such as the kinematic computation times, control loop times and the times taken

to transform all the bodies in the rendered scene.

The rendering time is important, in that if it takes too long, the simulator will use more time

rendering the scene than performing calculations for the control system. This would make the

control system at worst unstable and at best sluggish. The rendering time will be affected by

many factors, such as the amount and complexity of objects being rendered or the computations

used to perform the rendering. Using the VTK libraries for rendering means that the rendering

method has already been defined, and it only needs to be tested to determine if the rendering

speed is fast enough for this work or if it needs to be modified.

Without having the ability to directly control which objects will be added to a rendering scene,

it is vital to know what limitations the rendering method will have, based on the number and

type of object (s) being added to the rendering scene. If the specific numbers are known, these

can be set as limitations in the simulator to keep it functioning correctly.

The response of the control system is altered by the type of robot being simulated as well

61

5.2 Computer System 62

as the speed of the system performing the calculations. If the robot is comprised of complicated

linkage systems, it will slow down the kinematic calculations.

5.2 Computer System

To better define the performance of the simulator, the specifications of the computer system on

which it is run is listed in Table 5.1. The computer used to obtain information from the multi-

DOF input device is not listed here, as it does not need to be a powerful machine and does not

affect the performance of the simulator. Its only task is to request positions from the input device

and relay the response over the network, which can be accomplished by most current PC’s.

5.3 Rendering Times

It is known that the main factors to influence the rendering times of a scene is the number of

objects in the scene or the number of facets to be rendered. Increasing the number of objects in

a scene simply increases the memory required to render a scene as well as increase the number of

facets in the scene.

The number of facets in a scene increases the rendering times, as the rendering algorithm

needs to compute the colour and the intensity of light reflected from each facet in the scene. The

rendering algorithm also needs to determine which facets should be visible and which ones are

hidden behind other facets. If a complex shading technique is used, then the rendering algorithm

also needs to compute the colour gradient along each facet, based on its orientation in the scene.

Table 5.1: The specifications of the computer system on which the simulator was run.

Operating System Windows XP SP2 x64
CPU Intel Core 2 quad Q6600
Processor Speed 2.4 GHz
Memory 8 GB
Memory Type DDR2
GPU NVIDIA GeForce GTX 260

5.3 Rendering Times 63

5.3 .1 N um ber of O bjects in a Scene

To test the effect of the number of objects in a rendering scene, nine different objects were created

with the same shape but with a different number of facets for each object. The lowest number

of facets for one of the objects was 2,000. This number increased by 1,000 for each consecutive

object, and continued like this up to 10,000 facets on the final object.

A blank rendering scene was created, with a simple single coloured background, for the test.

One of the objects was then imported into the scene. The scene was then rendered 1,000 times

and the average rendering time was recorded. A second version of the same object was added to

the scene and rendered 1,000 times again. This was repeated until the scene had 100 of the same

object.

The rendering times were calculated using one of the VTK libraries built-in functions. As a

scene is rendered, the time taken to perform the rendering is automatically calculated. For this

test, these render times were merely recorded.

This process was repeated for each of the nine objects created. These rendering times are

shown in Fig. 5.1. Some spikes can be seen in the figure, but these were caused by other processes

running in the background on the computer at the time of the test.

The test only went up to 100 objects as it is not likely that more than 100 objects would be

used in the simulator at one time. The complete scene shown in Fig. 2.1 is comprised of 70 objects

and is on the limit of the rendering time.

Fig. 5.1 shows that the number of objects in the scene does affect the rendering times, but not

as much as the collective number of facets in the scene, as shown below.

5 .3 .2 N um ber o f Facets in a Scene

When rendering a scene, the light reflected from every facet to the camera needs to be calculated

as each facet can have a different surface normal from the surrounding facets. This means that

the more facets a scene has, the more calculations are needed to render it in the scene. To test

the effect of the number of facets on rendering times the following test was performed.

Two separate objects were created, one with a model of a human rib cage and the other with

5.3 Rendering Times 64

The influence of the number of facets and amount of bodies on the
rendering time of a vtkRenderWindow.

N u m b e r o f Actors

■ 2000

■ 3000

■ 4000

■ 5000

■ 6000

■ 7000

« 8 0 0 0

9000

10000

Facets p e r actor

Figure 5.1: A graph representing the change in the rendering time with the number of bodies
added to a scene and the number of facets on each body.

a simple sphere primitive. The rib cage model initially had 950,000 facets. This model was then

subsampled down by 5,000 facets creating a new object. This process was repeated until the final

model of the rib cage had 20,000 facets. This process created 186 models with a different number

of facets in each.

The model of the sphere primitive initially had 500,000 facets and was also subsampled by

5,000 facets, creating new models, until the final model only had 20,000 facets.

A rendering scene was setup with a blank background, a single camera and a single light source

in the scene. One of the objects of the rib cage was then imported into the scene. The scene was

rendered 1,000 times and the average of these times was recorded. This process was then repeated

with every object created of the rib cage and the sphere primitive, each being rendered in its own

scene. The results of this test are shown in Fig. 5.2.

As can be seen in Fig. 5.2 the rendering times are relatively fast until the scene has 350,000

facets or more. From that point on the rendering time increases rapidly. These graphs also show

that it does not matter how complex a shape is, the rendering time is affected by the number of

facets and not the shape of the object.

Th
e

Av
er

ag
e

re
nd

er
in

g t
im

es
 (s

)
5.3 Rendering Times 65

The average rendering time of the VTK rendering library as a function of
the number of facets in the render window. (RibCage)

(a)
The average rendering time of the VTK rendering library as a function

of the number of facets in the render window. (Sphere)

Number of facets

(b)

Figure 5.2: Two graphs showing the comparison between the number of facets in a scene and the
rendering time for the scene using (a) a rib cage model and (b) a sphere primitive.

5.4 Control System Performance 66

The reason there is a large jump in the rendering times in Fig. 5.2 is due to the limited amount

of memory available on the GPU for rendering. As soon as all the memory is consumed on the

GPU the excess memory required is then used from another source which is slower than using the

on-board GPU memory.

In keeping with the idea of rendering at a rate of 30 Hz the rendering times need to be kept

below 0.03 seconds. Therefore, the number of facets in a scene must be limited to 350,000 facets,

for optimal performance. This number is dependant on the system upon which the simulator is

running. This might be perceived as a large number of facets, but when dealing with natural

contours such as found in the human body this number can easily be exceeded.

5.4 Control System Performance

Given that the simulator should be suitable for any serial link robot, it is difficult to test the

control system accurately. Therefore, two different robots were created, on which to run tests.

These tests were done to determine the general performance of the control system. The two robots

created are a prismatic and a revolute robot. A revolute robot is a serial link robot comprised of

only revolute joints. Similarly a prismatic robot is one that is comprised of only prismatic joints.

These two robots and the tests performed on them are described below.

5.4 .1 R obots Tested

The two robots used in the tests are described here. The first robot is a model of the Mitsubishi

PA10-7C robot. It was chosen as it is a re volute serial link robot. To make it perform like a

surgical robot, the wrist section of da Vinci instrument was attached to the end of a long thin rod

and mounted to the end of the robot.

The second robot used is a prismatic robot. This robot was created to test the control system

on prismatic robots and is not based on any real robot. The robot is made up of 10 prismatic

joints and a revolute joint for the instrument shaft with a revolute wrist attached to it. The wrist

partition of a da Vinci instrument was also used as the wrist for this robot.

5.4 Control System Performance 67

(b)

Figure 5.3: A picture of the two robots used to
robot and (b) the revolute robot.

test the control system with (a) being the prismatic

5 .4 .2 The Tests Performed

Three tests were chosen to measure the general performance of the control system, and they are

described as follows:

• Measuring the response of the robot with a predefined smooth sinusoidal input.

• Measure the response of the robot with a random smooth input, such as the input from the

multi-DOF input device.

• The final test is only for the model created of the da Vinci robot. A preset trajectory was

given to the real da Vinci robot and the pose of the robot was measured along these points.

The same trajectory was given to the simulated robot to check that the simulated motion

was similar to the motion of the real robot. It should be noted that the model of the da

Vinci was created from measurements taken of the real robot for this work. This is covered

in Appendix B.

5.4 Control System Performance 68

5.4.2.1 Controlled Trajectory Input

The simulator was setup such that a predefined trajectory could be entered, in place of the multi-

DOF input device. This gives control over the input to the simulator, such that the response of

the simulator can be tested accurately.

Before running this test, each robot was setup in the simulator with its optimal gains already

calculated. The input trajectory was created such that the average velocity, between consecutive

points on the trajectory, was 5 m /s which corresponds to the average speed a user would be able

to accurately maneuver the multi-DOF input device over a distance of 16 cm [33]. This speed

was used as it corresponded to roughly the maximum distance a user would have to move the end

effector of a robot in a surgical simulator.

A trajectory was created such that the end effector would move about a point with a sinusoidal

input for all three axes. The orientation of the end effector tip was kept stationary throughout

the trajectory. The reason for choosing a sinusoidal trajectory is that it engages motion in all

direction with continuously changing velocities.

5.4.2.2 Manual User Inputs

For the manual user input test, the multi-DOF input device was moved by hand in a circular

fashion, such that the end effector would move in all three axes of the Cartesian coordinate

system. In this test the end effector orientation constantly changed, based on the orientation of

the multi-DOF input device. The user did not follow an exact path, as this tested whether the

system could track an undefined trajectory.

The speed of the multi-DOF input device in this test is much faster than the controlled motion

of a surgical simulation.

5.4.3 Results

The following results were obtained from the tests described above. In each of the results the multi-

DOF input device would read zero while the user had already started moving it around. After

a delay it would send its adjusted position, causing a rapid change in the desired location. This

5.4 Control System Performance 69

procedure was not corrected to illustrate how the control system would converge to the desired

location, rather than follow the trajectory from begin to end. The results from the revolute robot

with controlled trajectory input can be seen in Fig. 5.6. The results for the same robot, but

with the trajectory from the multi-DOF user input, can be seen in Fig. 5.7. The corresponding

trajectory and motions for these errors are shown in Fig. 5.4 and Fig. 5.5 respectively.

These results show that the control system does follow the desired trajectory but does have a

lag between the desired input and position of the robot. For the controlled input trajectory test,

the error stayed below 5 mm in all three Cartesian directions. The hand input results has higher

magnitudes of error, which were created by the erratic motion of the human hand. The control

system did bring these errors down to an acceptable level within a time frame of about 30 ms.

The results for the controlled trajectory input for the prismatic robot are shown in Fig. 5.10,

and the results for manual input, for the same robot, are shown in Fig. 5.11. The corresponding

trajectory and motions for these errors are shown in Fig. 5.8 and Fig. 5.9 respectively.

Once again for this robot, there are noticeable errors in the two figures. These errors are

larger than the errors for the revolute robot. The increase in magnitude for these errors can be

attributed to the extra number of links in the robot, which slowed down the kinematic calculations

and the control system. During the test there were noticeable errors, but these errors were not

large enough to make the user think the robot was lagging and that it could not be controlled

properly.

The hand input test was repeated on a da Vinci active section with a 1:1 ratio between the

user input and the desired position for the robot. These results are shown in Fig. 5.14. With

the erratic hand motions, the da Vinci did not track the input motion as desired, but did follow

the trajectory with a noticeable lag. The scaled ratio was changed to 5:1, similar to the scaling

used on the real da Vinci robot, and the test was run again. These results are shown in Fig. 5.15.

The da Vinci model followed this input closely. The error in these simulations are attributed to

the complex kinematic of the active section. The corresponding trajectory and motions for these

errors are shown in Fig. 5.12 and Fig. 5.13 respectively.

5.5 Real World Comparison 70

5.5 Real World Comparison

To compare the way the simulator moves a robot to the motion of the real robot, the following

test was run. The real robot was moved through a given set of points, and the joint angles of

the robot were measured at each point. The simulated robot was moved through the same set of

points, recording the joint angles for comparison.

To make sure the simulator and the robot started in the same configuration a guide was built

to position the real robot at the start of the test. This guide is shown in Fig. 5.16 along with

the same setup in the simulator. The base of the guide has a pattern of holes. The da Vinci

was moved around placing the end effector into the holes. The holes were numbered so that the

motions could be recorded.

Absolute angles from each joint could not be obtained from the da Vinci, so the joint angles

at the beginning of the test were taken as zero and all the subsequent angles were relative to the

first set of angles. The joint angle of the shaft of the surgical tool could not be measured and was

ignored. For the end effector of the simulated robot and the real robot to be in the same position,

with 5 of the 6 joints having the same angle, then the angle of the instruments shaft does not

matter. If the angle between the real and the simulated robot differs by 180°, it will not matter

as this will not cause collisions.

The results from the simulated and real experiment are shown in Table 5.2. This test was

repeated with several different patterns and it was found that the motion of the simulated robot

match up to the motion of the da Vinci.

The motions did not compare when the distances between two given points were too large. If

Table 5.2: Comparison between the real da Vinci and a simulated version.

0i 02 d3 05 06
pos real simulated real simulated real simulated real simulated real simulated

1 0 0 0 0 0 0 0 0 0 0
3 0 1.6 40 39.04 33.61 36.17 30 32.57 20 23.78
11 -35 -38.64 0 -1.14 35.72 36.54 -20 -21.24 30 33.35
15 0 0.5 -35 -35.86 39.91 36.36 -15 -16.05 -10 -10.57
23 35 38.35 0 1.07 35.7 35.37 20 21.77 -25 -32.42
1 0 0 0 0 0 0 0 0 0 0

5.6 Conclusion 71

the simulated da Vinci had a joint reach its limit, then it would behave differently from the real

da Vinci.

5.6 Conclusion

In order to have smooth motions in the simulator, the number of facets in the render scene should

be kept as low as possible. This can be accomplished by making models for the simulator with

sharp edges rather than round edges, which would require less facets in the STL file. Also, models

of human body parts should be subsampled to as low a resolution as possible, while trying to keep

it as realistic as possible.

Even if a large group of facets fall on the same plane and have the same surface normals, the

rendering algorithm will calculate the light being reflected off of each facet. Therefore, the number

of facets on an object should be reduced and made as large as possible. Reducing the number of

bodies in a scene will also speed up he rendering time.

The values tested to determine a suitable rendering time are not the only factors to influence

the rendering time of a scene, but are the major contributors to slowing the process down.

It can also be seen in Fig. 5.10 that the response of the prismatic robot is not as accurate as

with the PA 10 robot. This is because the prismatic robot has more joints in its kinematic chain

making the control loop calculations slower.

The control system did exhibit noticeable errors, but did manage to reduce these errors in

times that were generally faster than the human eye could discern. As this project is for aiding

in preoperative planning research, and only the kinematic reach is what is desired, if the control

system can control the robot faster than the human eye can discern, it will be sufficient.

Also, the control system is not a finely tuned control system for a specific robot. Therefore, it

will not perform as well as some other control systems. The control system did control the tested

robots to an acceptable level, for the purpose of this simulator. If a faster response is desired for

a specific robot a different control system should be implemented. This control system is only

suitable for slower trajectories and should suffice for the general controlled motions a surgeon

would use in a surgical procedure.

5.6 Conclusion 72

The results of these tests are dependant on the hardware used for running the simulator. If a

different system is used, these results would change and would need to be checked again to make

sure that the system will perform optimally.

5.6 Conclusion 73

The motion of the PA10, with a specified trajectory, in the
world X-axis.

------Desired position

— Actúa position

The motion of the PA10, with a specified trajectory, in the
world Y-axis.

The motion of the PA10, with a specified trajectory, in the
world Z-axis.

Time (s)

Desired position

— — Actual position

Figure 5.4: Results from the controlled trajectory input for the PA10.

5.6 Conclusion 74

The motion of the PA10, with a user's hand input, in the
world X-axis.

—Oesired position

—Actual position

Figure 5.5: Results from the hand input for the PA10.

5.6 Conclusion 75

T h e erro r m e a su re fo r the P A 10 , with s p e c if ie d tra je cto ry a n d fix e d o rientatio n o f the en d
effe cto r

time (s)

Figure 5.6: Error measure from the controlled trajectory input for the PA 10, with a fixed orien­
tation for the end effector.

T h e e rro r m e a su re fo r the P A 1 0 , with a u s e r 's h a n d in p u t

error (m m)

-------- X-axis

--------Y-axis

-------- 2-axis

Figure 5.7: Error measure from the hand input experiment for the PA10.

5.6 Conclusion 76

The motion of the prismatic robot, with a specified
trajectory, in the world X-axis.

—Desired position

—Actual position

The motion of the prismatic robot, with a specified
trajectory, in the world Z-axis.

—Desired position

—Actual position

Figure 5.8: Results from the controlled trajectory input for the prismatic robot.

5.6 Conclusion 77

The motion of the prismatic robot, with a user's hand input,
in the world X-axis.

—Desired position

—Actual position

The motion of the prismatic robot, with a user's hand input,
in the world Z-axis.

—Desired position

—Actual position

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Tlm e(s)

Figure 5.9: Results from the hand input for the prismatic robot.

•
rr

or
 (

m
m

)
r

r

er
ro

r
(m

m
)

5.6 Conclusion 78

T h e e rro r m e a su re fo r the p r ism a tic rob ot, with a s p e c if ie d tra je cto ry a n d fix e d o rientatio n o f
the en d effe cto r

Error measure from the controlled trajectory input for the prismatic robot, with a
fixed orientation for the end effector.

T h e erro r m e a su re fo r the p r ism a tic robot, w ith a u s e r 's h a n d in pu t

-------- X-axis

------ Y-axis

-------- Z-axis

time (s)

Figure 5.11: Error measure from the hand input experiment for the prismatic robot.

5.6 Conclusion 79

The motion of the da Vinci, with a user's hand input, in the
world X-axis.

Desired position

— - Actual position

The motion of the da Vinci, with a user's hand input, in the
world Y-axis.

Desired position

— —Actuel position

The motion of the da Vinci, with a user's hand input, in the

— Desired position

— Actual position

0 1 2 3 4 5 6 7
Tlm e(s)

Figure 5.12: Results from the hand input for the da Vinci robot.

5.6 Conclusion 80

The motion of the da Vinci, with a user's hand input, in the
world Y-axis.

-D e s ire d position

—Actual position

The motion of the da Vinci, with a user's hand input, in the
world Z-axis.

—Desired position

—Actual position

Figure 5.13: Results from the hand input for the da Vinci robot, where the input is scaled similar
to the real robot..

5.6 Conclusion 81

T h e e rro r m e a su re fo r the d a V in c i, with a u s e r 's h a n d in p u t fo r a trajectory.

Figure 5.14: Error measure from the hand input experiment for the da Vinci robot.

T h e e rro r m e a su re fo r th e d a V in c i, with a u s e r ’s h a n d in pu t, with a s c a le d in p u t

-------- X-axis

--------Y-axis

------ Z-axis

Figure 5.15: Error measure from the hand input experiment for the da Vinci robot, where the
input is scaled similar to the real robot.

5.6 Conclusion 82

Figure 5.16: The test setup for comparing the da Vinci’s motion to its simulated motion.

Chapter 6

Conclusion

6.1 Summary

This thesis describes the design and development of the framework for a teleoperated RAMIS

simulation environment, for assistance in research and development of teleoperated surgical robots.

A non-mobile serial link robot can be designed in CAD modelling software, then exported into

the simulator for analysis. With a minimal amount of extra information, a kinematic chain can be

created for the robot, which can then be controlled in real-time from a multi-DOF input device.

The simulator also incorporates an initial, modular, control system that allows for controlling

robots, without the need for explicit analytical kinematic algorithms.

The simulator is designed to make use of two computers, with one as the main computer

and the second as a client computer, which performs the task of the master console. The main

computer performs all of the simulators calculations and performs all the rendering. The client

computer connects to the multi-DOF user input device, sending the information from the user

input device to the main computer over a network connection. The network communication

protocol is a simple ad-hoc protocol created for the simulator. The ad-hoc protocol was created

to speed up the development of the simulator. The multi-DOF user input device is a PHANToM

premium haptic input device. Although the PHANToM premium did have the option for haptic

feedback, haptics was not used.

This work shows that the Jacobian transpose control system can successfully track a person’s

83

6.2 Concluding Remarks 84

hand motion from the user input device, for various robots. With a scaled input, similar to the

scale found on the da Vinci, the simulated da Vinci model can track a persons hand motions. This

work also provides some constraints for models to be imported into the simulator, that should be

taken into account for real-time rendering.

6.2 Concluding Remarks

Some RAMIS simulators have already been created by research groups for simulating the da Vinci

or the Zeus system, but these simulators were each created specifically for a single robot. These

simulators would need to be modified if a newer version of the robot is released, or if a different

robot needs to be simulated.

Although this work only shows the connection of a single user input device, a second one could

be added to the system by connecting it to the client computer, with a slight modification to the

network protocol.

The software written for this work provides a base for performing the kinematic calculations

for a serial link robot, without any analytical kinematic equations. If any further work is required,

it can be created on top of the work already completed, without the need to modify any of the

low-level kinematic algorithms.

Although the simulator performs well, it is not a finished product. As with the development

of all software, there are many more features that can be added on to make the system function

better and provide a more complete package. Some of the recommended features that could not

be added on, due to time constraints, are listed below.

6.3 Suggestions for Future Work

The suggestions below will complement the work already completed. These suggestions are clas­

sified into categories, with each category adding to a different section of the simulator.

6.3 Suggestions for Future Work 85

6.3 .1 Overall Simulator Performance Suggestions

The first suggestion for the simulator would be, to create multiple control systems. This would

allow the user to decide which control system to use for a robot in a scene. This will give the

option, to more knowledgable users, to define analytical equations for the robot if desired, allowing

for a more robust control system, with possibly faster control calculations.

Another suggestion for the simulator would be to incorporate a form of hand tremor reduction,

as found on the da Vinci. This could be done by looking at sudden erratic motion from the input

device and filtering it down to reduce the tremors. Another option could be to take the weighted

average of all the desired positions from the input device to smooth out erratic motions.

6 .3 .2 R obot M otion Suggestions

The first recommendation for the control system, created for this work, would be to add more

closed-loop mechanism solvers to complement the four-bar mechanism solver. Closed-loop mecha­

nism solvers were not the focus of this work, so a simple method dealing with specific closed-loop

mechanisms was developed. This method enabled specific mechanism solvers to be created and

added to the code as needed. To allow for the simulation of the da Vinci, a four-bar mechanism

solver was created and added to the software.

With the Jacobian transpose control system not explicitly avoiding joint limits, the joint can

get ‘stuck’ on its limit during a simulation. Then as the simulation continues and the joint needs

to move away from its limit, it would remain ‘stuck’ for a number of the control loop iterations,

and would then rapidly move away from the limit, causing errors in the tracking systems. This

is a known side-effect of the Jacobian transpose control system, which is generally overcome by

imposing extra constraints to the system [26]. This would add extra complexity to the user of

the simulator, which is undesirable. A method of avoiding these limits without the need for input

from the user can be developed to prevent this from happening.

Collision detection and obstacle avoidance can be added to the simulator. This would allow

for automatic monitoring of any collisions between objects in a simulation. This would be a vital

addition for when the simulator is being used to test preoperative planning algorithms. Currently

6.3 Suggestions for Future Work 86

the simulator does not check for collisions. If two bodies occupy the same space in the scene, the

two bodies merely move into each other and there is no notification of the collision, and it is up

to the user to visually monitor for any collisions. Obstacle avoidance can be used as a constraint

in the control system if the robot has redundant links.

For robots that do not have a set of mechanical linkages to create an RCM for surgery, software

based control can be used to create the RCM. A robot that uses software control for an RCM has

been developed and is called the MicroSurge [34]. This leads to the need for adding a method for

creating an RCM on a robot using a software approach rather than a mechanical design.

Currently, one of the hardest parts of importing a robot into the simulator is choosing the

optimal gains for the control system. To speed this process up, an auto-tuning algorithm can be

developed to find the optimal gains for any robot added to the simulator. This algorithm could

be run in the background, intermittently, while a simulation is performed to make sure the robot

always has optimal gains throughout its workspace.

Another point to consider is adding an algorithm that can optimally solve any given closed loop

chain. This is a complex task to perform, without any analytical equations for the kinematic chains

to be imported into the simulator, while still maintaining real-time motion calculations. This will

eliminate the need to create multiple closed loop algorithms for various linkage mechanisms, and

remove the need for the user to define a closed loop chain and to select which solver to use.

6 .3 .3 Teleoperation Suggestions

To add more value to the teleoperation of the simulator, tissue interaction with haptic feedback

could be added to the simulator. This is a complicated task. Not only in the calculations of force

feedback, but also maintaining real-time teleoperation.

If a third haptic device is added to the system, this device could control a visual cue in the

render scene and therefore be used as a training tool. In such a case, a less experienced surgeon

can be using two multi-DOF input devices to practice a procedure, while a senior surgeon could

manipulate the third input device to point out features in the scene. This would be similar to the

training techniques available in the newest da Vinci Si robots.

Another suggestion for the simulator would be to add a 3-D output display to the simulator.

6.3 Suggestions for Future Work 87

This could add to the realism of the simulator, and make it easier to accurately position the end

effector of a robot as compared to operations performed using a 2-D output display.

The final suggestion would be to add an extra arm for an endoscope to add an internal view

to the simulation.

References

[1] M. Lum, D. Trimble, J. Rosen, K. Fodero, H. King, G. Sankaranarayanan, J. Dosher,
R. Leuschke, B. Martin-Anderson, M. Sinanan, and B. Hannaford, “Multidisciplinary ap­
proach for developing a new minimally invasive surgical robotic system,” in The First IEEE
/ RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Tus­
cany, Italy, pp. 841-846, February 20-22, 2006.

[2] A. Lanfranco, A. E. Castellanos, and J. Desai, “Robotic surgery: a current perspective,”
Annals of Surgery, vol. 239, pp. 14-23, 2004.

[3] G. Guthart and J. Salisbury, “The intuitive telesurgery system: Overview and application,”
in Proceedings of the IEEE International Conference on Robotics and Automation, California,
USA, pp. 618-621, April 24-28, 2000.

[4] A. J. Mahdhani, Design of Teleoperated Surgical Instruments. PhD thesis, MIT, 1997. pp.
20-25.

[5] M. Zhou, J. Perreault, S. D. Schwaitzberg, and C. G. L. Cao, “Force perception threshold
varies with experience in minimally invasive surgery,” in Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, Quebec, Canada, pp. 2227-2232, October 7-10,
2007.

[6] F. Corcione, C. Esposito, D. Cuccurull, A. Settembre, N. Miranda, F. Amat, F. Pirozzi,
and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery,” Surgical
Endoscopy, vol. 19, pp. 117-119, January 2005.

[7] Intuitive Surgical Inc., “Intuitive surgical and computer motion close merger.” h t t p : / /
in v e s to r . in tu it iv e s u r g ic a l . com, November 2005.

[8] T. Vassiliades, “Technical aids to performing thoracoscopic robotically-assisted internal mam­
mary artery harvesting,” Heart Surgery Forum, vol. 5, pp. 119-124, June 27, 2001.

[9] A. L. Trejos, R. Patel, I. Ross, and B. Kiaii, “Optimizing port placement for robot-assisted
minimally invasive cardiac surgery,” The International Journal of Medical Robotics and Com­
puter Assisted Surgery, vol. 3, pp. 355-364, November 14, 2007.

[10] H. Azimian, J. Breetzke, A. Trejos, R. Patel, M. Naish, B. Kiaii, T. Peters, J. Moore,
and C. Wedlake, “Preoperative planning of robotics-assisted minimally invasive coronary
artery bypass grafting,” in Proceedings of IEEE International Conference on Robotics and
Automation, Alaska, USA, pp. 1548-1553, May 3-7, 2010.

88

REFERENCES 89

[11] M. Hayashibe, N. Suzuki, M. Hashizume, Y. Kakeji, K. Konishi, S. Suzuki, and A. Hattori,
“Preoperative planning system for surgical robotics setup with kinematics and haptics,” The
International Journal of Medical Robotics and Computer Assisted Surgery, vol. 1, pp. 76-85,
November 17, 2005.

[12] S. Cotin, H. Delingette, and N. Ayache, “A hybrid elastic model for real-time cutting, de­
formations, and force feedback for surgery training and simulation,” The Visual Computer,
vol. 16, pp. 437-452, December 2000.

[13] Surgical Science Inc., “Surgical science medical training simulator.” http://w w w .
su rg ica l-sc ien ce .com /, November 2010.

[14] iSurgicals, “Laparoscopy simulator.” h ttp ://w w w .isu rg ica ls .com /, March 2011.

[15] 3-Dmed, “Laparoscopic - minimally invasive training system.” http://www.3-dm ed.com /,
March 2011.

[16] M. Hayashibe, N. Suzuki, and M. Hashimuze, “Robotic surgery setup simulation with the
integration of inverse-kinematics computation and medical imaging,” Computer Methods and
Programs in Biomedicine, vol. 83, pp. 63-72, July 2006.

[17] L. wah Sun, F. V. Meer, Y. Bailly, and C. K. Yeung, “Design and development of a da vinci
surgical system simulator,” in Proceedings of IEEE International Conference on Mechatronics
and Automation, Heilongjiang, China, pp. 1050-1055, August 5-7, 2007.

[18] Intuitive Surgical, Inc., 950 Kifer Road, Sunnyvale, CA, USA, da Vinci surgical system user
manual, 4th ed., April 2004.

[19] J. J. Craig, Introduction to Robotics: Mechanics and Control Prentice Hall, Upper Saddle
River, New Jersey, USA., 3rd ed., August 6, 2004.

[20] BWH - Harvard, “3D Sheer.” h ttp ://w w w .S lice r .o rg /, February 2010.

[21] D. Gobbi, “AtamaiViewer software.,” May 11 2004.

[22] P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: An historical survey,” Automatica,
vol. 42, pp. 2035-2057, December 2006.

[23] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modelling and Control John Wiley
and Sons, Inc., Hoboken, NJ, USA, 1st ed., November 1989.

[24] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Con­
trol Springer-Verlag London Limited, 1st ed., 2009.

[25] B. Siciliano, “Kinematic control of redundant robot manipulators: A tutorial,” Journal of
Intelligent and Robotic Systems, vol. 3, pp. 201-212, September 01, 1990.

[26] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-loop inverse kinematics
scheme for constrained redundant manipulators with task space augmentation and task pri­
ority strategy,” International Journal of Robotics Research, vol. 10, pp. 410-425, August 10,
1991.

http://www
http://www.isurgicals.com/
http://www.3-dmed.com/
http://www.Slicer.org/

REFERENCES 90

[27] W. A. Wolovich and H. Elliot, “A computational technique for inverse kinematics,” in
Proceedings of IEEE International Conference on Decision and Control, Las Vegas, USA,
pp. 1359-1363, December 12-14, 1984.

[28] R. Campa and H. de la Torre, “Pose control of robot manipulators using different orien­
tation representations: A comparative review,” in Proceedings of IEEE American Control
Conference, St. Louis, MO, USA, pp. 2855-2860, June 10-12, 2009.

[29] F. Caccavale, B. Sicilliano, and V. Luigi, “The role of Euler parameters in robot control,”
Asian Journal of Control, vol. 1, pp. 25-34, March 2, 1999.

[30] B. Xian, S. de Queiroz, D. Dawson, and I. Walker, “Task-space tracking control of robot
manipulators via quaternion feedback,” IEEE Transactions on Robotics and Automation,
vol. 20, pp. 160-167, February 2004.

[31] J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of mechanical manipulators,”
IEEE Transactions on Automatic Control, vol. 25, pp. 468-474, June 1980.

[32] J. Angeles, Fundamentals o f Robotic Mechanical Systems: Theory, Methods, and Algorithms.
Springer, 5th Ave., New York, NY, USA, 2nd ed., October 16, 2002.

[33] L. Stocco, S. Salcudean, and F. Sassani, “Optimal kinematic design of a haptic pen,”
IEEE/ASME Transactions on Mechatronics, vol. 6, pp. 210-220, September 2001.

[34] A. Tobergte, R. Konietschke, and G. Hirzinger, “Planning and control of a teleoperation sys­
tem for research in minimally invasive robotic surgery,” in Proceedings of IEEE International
Conference on Robotics and Automation, Kobe, Japan, pp. 4225-4232, May 12-17, 2009.

[35] H. H. Mabie and C. F. Reinholtz, Mechanisms and Dynamics of Machinery. John Wiley and
Sons, Inc., Hoboken, NJ, USA, 4th ed., January 2, 1987.

Appendix A

Special Consideration of the

Four-Bar Mechanism Solver.

The four-bar mechanism is a well known kinematic mechanism. The equations to solve for the

motions of this mechanism can readily be found in textbooks. The schematic for this mechanism

is shown in Fig. A .l. Where, Joints 1 and 4 are connected to ground and Joint 1 is rotated,

moving the rest of the links. When Joint 1 is actuated, the equations for this mechanism solve

for the position of Joint 3. Once the position of Joint 3 is known, the position and orientation of

all the links are defined [35].

The equations for this mechanism are generally defined for 2-D space. The following steps

show how the simulator performed the calculations for the four-bar mechanism in 3-D space.

• Before any calculations are performed, the four joints assigned to the four-bar solver are

checked, making sure they are parallel to each other.

• If the four joints used to create the mechanism are found to be parallel, the following values

are then recorded.

— The initial distance between Joint 1 and 3.

— The vector Z from Fig. A .l.

— The lengths between each of the joints.

91

92

Figure A .l: A Schematic of links that make up a four-bar mechanism.

• When Joint 1 is rotated, the following steps are followed to shift the joints such that the

four-bar solver equation are valid.

— The joints are all rotated such that the direction of Joint 1 is aligned with the world

Z-axis.

— The joints are then translated to make the position of Joint 1 coincided with the origin

of the world frame.

— The four-bar mechanism equations are then used to recalculate the position of Joint 3.

— Calculations are performed to make sure that the original link lengths are maintained

and that a valid solution has been obtained. The length of Z is also compared to it’s

previous value to make sure that it did not change by a large amount, to prevent the

inversion of the mechanism. If a valid solution is not found, all the motions are reversed

and failure flag is set.

— All the joints are then rotated and shifted back to their original positions, in the 3-D

environment, using the inverse of the matrices that were used to shift the joints for the

mechanism solver.

Appendix B

Model Creation of the da Vinci

Surgical Robot for Simulation.

To allow for the simulation of the current robot used in RAMIS, the da Vinci was measured to

create a CAD model. The da Vinci is produced by a private corporation for profit. Therefore,

the company will not easily disclose any information about its product that they think should be

kept a secret, such as the dimensions of the robot. Thus, to create a computer model of the robot,

a da Vinci robot was manually measured. This process is described here.

The da Vinci is a teleoperated robot, where the surgeon sits at a master console and controls

the slave section, which performs the procedure inside the patient. These two sections can be seen

in Fig. B .l. Only the slave section of the robot was modelled for this work.

Most of the shafts, for the joints of the slave section, are covered by a protective casing. This

makes it difficult to get the exact dimensions of the robot correct. These protective casings could

not be removed as the robot is currently being used for surgical procedures.

To ease the process of measuring the da Vinci slave section, the linkages were categorized

into the following sections: the base frame, the passive linkages, the tooled active sections, the

endoscopic active section and the removable instruments. These categories are illustrated in

Fig. B.2.

93

B.l The Base Frame and Passive Links 94

(a) (b)

Figure B .l: Pictures showing the (a) master and (b) slave sections of the da Vinci.

Figure B.2: A screen capture showing the different categories of the slave section of the da Vinci.

B .l The Base Frame and Passive Links

The base frame of the robot forms the main support structure on which everything else is mounted.

The da Vinci is positioned in the operating theatre using the base as the reference point. The

B.2 The Tooled Active Section 95

base is mounted on wheels, allowing the da Vinci to be moved around and stored away, when not

in use. Once the base is in position for surgery, the wheels are locked, securing it in place for the

duration of the procedure. It should be noted that the base frame has more parts than shown

in Fig. B.2, such as the electronics and electrical connections, which will not interfere with the

motions of the robot. Therefore, they were not modelled.

The passive linkages of each arm are simple geometric links and only the outer casings were

measured and modelled similar to the base frame.

B.2 The Tooled Active Section

The tooled active sections is the section of the robot that moves the laparoscopic instruments

during a procedure. These are the only sections of the robot, along with the endoscopic section,

that moves during a procedure.

The most important part of RAMIS is the Remote Center of Motion (RCM) created by the

robot’s linkages. An RCM is the point on a link that is the centre of rotation for that link, which

does not coincide with its joint. The location of the RCM for the tooled active section can be seen

in Fig. B.3. The tooled active section was designed in such a manner that the RCM is created

by the mechanical mechanism of the linkages, as apposed to an RCM maintained by software,

or passive linkages as mentioned in chapter 1. This mechanism adds to the overall safety of the

manipulator.

The RCM is created by a double parallelogram mechanism, as shown in Fig. B.4. The elec­

tronics and motors for the tooled active section are mounted in the base of the tooled active

section, inside its casings. The motors drive their respective joints through tungsten cables that

run along the section under its protective casings.

The first teo joints of the active section are covered by casings and other objects. The locations

of the hidden shafts are shown in Fig. B.5.

In an attempt to accurately measure the active sections mechanism, the size of the linkages

were measured where possible and the location of the covered joints were then estimated. A

MATLAB function was then written to simulate the motion of the tooled active section based

B.2 The Tooled Active Section 96

Figure B.3: An image showing the motion of the tooled active section and the RCM created by
the its linkages.

on these measurements. The MATLAB function simulates the motion of the mechanism, while

recording the motion of the expected position of the RCM. To reduce the motion of this point,

an optimization algorithm was applied, where the cost function was the sum of the euclidean

distances between the initial position in a motion and every subsequent position of the expected

RCM. The initial position is defined when the first link in the chain is perpendicular to the base

linkage that it is attached to. This initial position is the 0° position.

The simulated motion of the mechanism is created by rotating this link from —45° to 60°. The

motion of the mechanism can be seen in Fig. B.3. It was found that the only measurements to

affect the motion of the expected RCM are the variables (j> and the distance between joints 1 and

3 (/i) as shown in Fig. B.6. The length l\ can be measured relatively accurately and is assumed

to be correct. Therefore, the code was changed such that it only optimizes for the value of 0.

The optimal angle was found to be 15.07°. If the length l\ is changed, a new optimal angle

would need to be recalculated.

B.3 Endoscopie Active Section 97

B.3 Endoscopic Active Section

To assist a surgeon in visualizing the procedure inside a patient while performing a MIS or RAMIS

procedures, a camera is mounted on the end of a laparoscopic instrument and is inserted with

the other instruments with its own port. In MIS the camera is hand controlled, however the da

Vinci has an arm dedicated to positioning an endoscope for the procedure. The endoscope for

the da Vinci has two cameras next to each other on the same instrument, giving the surgeon a

stereoscopic view and a sense of depth. The surgeon has the ability to move the view around

by physically repositioning the endoscope using the same controls that are used to control the

instruments on the tooled active section. To shift the endoscope, the surgeon presses down on a

foot pedal, which releases the controls from the instruments and allows the surgeon to control the

endoscope.

To allow the endoscope to physically move inside the patient, it also needs an RCM. This RCM

is generated in the same method as the one on the tooled active section with a minor modification

in the linkage mechanism.

Figure B.4: Schematic of the tooled active section, showing the double parallelogram linkage mech­
anism that creates the RCM.

BA The Surgical Instruments 98

Figure B.5: An image showing how casings around shafts hinder the measurement of the tooled
active section.

Figure B.6: A schematic showing the values that can be optimized for, to reduce the error in the
RCM motion in the CAD model of the tooled active section.

B.4 The Surgical Instruments

The surgical instruments of the da Vinci are mounted onto the tooled active sections to perform

the procedures. They can be easily removed or interchanged based on what the surgeon requires

B. 4 The Surgical Instruments 99

Figure B.7: A screen capture showing a typical surgical instrument for the da Vinci.

during a procedure. The following four surgical instruments were modelled, as they are the tools

generally used by the da Vinci for cardiac procedures. These tools are the Cardiere Forceps,

Permanent Cautery Spatula, Potts Scissors and the Small Clip Appliers. The wrists for these

instruments are shown in Fig. B.8.

The four tools modelled have different wrist configurations. However, the configuration of each

surgical instrument is the same above the wrist, as shown in Fig. B.7.

Figure B.8: A screen capture of the different surgical instrument ends used in the CABG pro­
cedures. The above ends were named as follows: (a) Alligator Clips, (b) Caudiere
Forceps, (c) Permanent Cautery Spatula and (d) Pott’s Scissors.

	Design and Development of a Tele-operated Surgical Simulation Environment
	Recommended Citation

	tmp.1623784265.pdf.zDze_

