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Abstract 

Naphtha is used to dilute the froth from bitumen treatment. Naphtha is recovered using 

a Naphtha Recovery Unit (NRU) and sent back to the froth dilution step. To minimize the 

environmental and economic impact of the NRU, it is imperative to maximize the naphtha 

recovery. It is, in this respect, that enhanced NRU Vapour-Liquid-Liquid equilibrium data 

is a significant value. The prediction of phase equilibria for hydrocarbon/water blends in 

separators, is a subject of considerable importance for chemical processes. Despite its 

relevance, there are still pending questions. Among them, is the prediction of the correct 

number of phases. While a stability analysis using the Gibbs Free Energy of mixing and the 

NRTL model for n-octane/water, provide a good understanding of calculation issues when 

using HYSYS V9 and Aspen Plus V9 software, this shows that significant phase equilibrium 

uncertainties still exist. In the case of multicomponent mixtures, the Tangent Plane 

Distance (TPD) is evaluated as a possible criterion for calculating the number of phases. 

Additionally, Paraffinic Aromatic Synthetic Naphtha (PASN) with a similar True Boiling 

Point (TBP) as typical naphtha can be used. Runs were developed in a CREC VL Cell 

operated with n-octane/water and PASN/water mixtures under dynamic conditions and 

used to establish the two-phase (liquid-vapour) and three-phase (liquid-liquid-vapour) 

domains. Results obtained demonstrate that the complete solubility is larger than the 

predicted by simulation software or reported in the technical literature. Furthermore, and 

to provide an effective and accurate method for predicting the number of phases, a 

Classification Machine Learning (ML) technique was implemented. Finally, traditional 

flash split calculations are reported explaining the challenges presented for the solution 

of the Rachford-Rice equations. A comparison of flash calculations between water/n-

octane and PASN/water mixtures using SRKKD EoS is provided. The value of an ML 

approach developed based on the abundant experimental data available from the CREC-

VL experimental Cell experiments is presented. 
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Summary for Lay Audience 

Canada has produced its Alberta oil sands for about 40 years and has become the world 

leader in oil sands production. The challenge is to reduce environmental impact and 

maximize project economics by optimizing each process step involved. One crucial 

process within bitumen production is the recovering of Naphtha. Naphtha is a chemical 

blend used as a solvent to facilitate the transportation of bitumen. Naphtha is recovered 

using a Naphtha Recovery Unit (NRU) and sent back to the dilution step. To minimize the 

environmental and economic impact of the NRU, it is imperative to maximize the naphtha 

recovery. To do this, it is essential to understand the interactions between water and 

hydrocarbon and establish Vapour-Liquid-Liquid equilibrium data is of considerable 

importance for chemical processes. However, there are still pending questions. Among 

them, is the prediction of the correct number of phases. While a stability analysis of 

simple mixtures such as n-octane/water, provide a good understanding of calculation 

issues, when using HYSYS V9 and Aspen Plus V9 software, this shows that significant phase 

equilibrium uncertainties still exist.  

To clarify these matters, n-octane and water blends, are good surrogates of 

naphtha/water mixtures. Additionally, Paraffinic Aromatic Synthetic Naphtha (PASN) 

similar to a typical naphtha, can be used. Runs were developed in a CREC VL Cell operated 

with n-octane/water and PASN/water mixtures under dynamic conditions and used to 

establish the two-phase (liquid-vapour) and three-phase (liquid-liquid-vapour) domains. 

Results obtained demonstrate, that the complete solubility in the liquid phase is larger 

than the one reported in the technical literature. Furthermore, and to provide an effective 

and accurate method for predicting the number of phases, a Classification Machine 

Learning (ML) technique was implemented. Finally, traditional flash split calculations are 

reported explaining the challenges presented for the solution. A comparison of between 

water/n-octane and PASN/water mixtures using an ecuation of state is provided. The 

value of an ML approach developed based on the experimental data available from the  

CREC-VL experimental Cell experiments is presented. 
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1. Introduction 

The use of natural energy resources such as bitumen (crude obtained from oil sands) and 

heavy oils has increased due to the growing demand for energy [1,2]. Canada has 

developed its Alberta oil sands for about 40 years and has become the world leader in oil 

sands production [1,3]. The challenge in bitumen and heavy oil processing is to maximize 

project economics through the optimization of each process step involved [2]. Within the 

bitumen upgrading process, the addition of a solvent such as naphtha is required to 

facilitate transportation. The naphtha is recovered in a Naphtha Recovery Unit (NRU) and 

recirculated to the process. This recovery step is essential from an economic and 

environmental point of view. Naphtha recovery should be maximized to reduce 

wastewater treatment costs and operating costs related to naphtha losses. 

In this sense, the vapour-liquid-liquid (VLL) Equilibrium data and flash calculations for 

hydrocarbon/water mixtures are essential to increase the process economy. In this 

Chapter 1, first, the context of this research is established, including the properties of 

bitumen, then the objectives and a thesis overview are presented.  

 

1.1. Context 

Compared to conventional crudes, the development of oil sands is energy-intensive [2]. 

The intensity of oil sand processing significantly augments given the decreased quality 

with increased density, aromaticity, or impurities from unconventional resources [2]. A 

simplified process flow diagram for the bitumen process is presented in Figure 1-1. 
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Figure 1-1. Simplified Process Flow Diagram of Bitumen Extraction. Adapted from Oil Sands [4]. 

The first step in bitumen production is its extraction. In northern Alberta, the bituminous 

oil sands are surface-mined, and then a hot-water extraction process is applied to recover 

the bitumen (up to 90% bitumen is recovered) [2]. In southern Alberta, the bitumen is 

recovered from the surface reservoir by steam injection (SAGD which refers to steam-

assisted gravity drainage and with  80% bitumen recovery [2]. The froth that is produced 

from a hot water extraction process is a highly viscous fluid containing approximately 

60wt% bitumen, 30wt% water and 10wt% solids [4]. This froth is diluted with naphtha 

and is sent to a centrifuge system where the bitumen is separated and sent downstream 

for upgrading [4]. The tailings, consisting of mostly water, sand and trace amounts of 

diluent and bitumen, are sent to the Naphtha Recovery Unit (NRU) [4]. The NRU unit is 

the one of interest for this research. Figure 1-2 presents the process flow of the NRU. 
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Figure 1-2. Schematic description of the NRU Process Unit. Figure from [4] 

The NRU consists of a vacuum stripping tower with steam injected at its bottom. This unit 

recovers naphtha from the tailings for reuse, and the remnants are discharged to the 

tailing pond [4]. The primary role of the Naphtha Recovery Unit (NRU) is to recover 

naphtha from the tailings for reuse, in this process. One should note that the naphtha 

recovery process is a high energy consumption process where strict environmental 

guidelines for naphtha recovery must be met [4]. 

Maximizing the naphtha recovery is imperative, to minimize the environmental impact of 

the NRU. The analysis of the NRU requires knowledge of the thermodynamic phenomena 

occurring within the unit. Therefore, the main objective of this thesis is to develop an 

improved methodology for flash calculations for naphtha/water mixtures. 

1.1.1. Properties and Chemistry of Bitumen 

Bitumen is the organic fraction from oil sands, obtained following hydrocarbon recovery. 

Oil sands are constituted by a mixture of quartz/clay particles, water and bitumen [2].  

Water, of  about 10 microns thickness around the particle perimeter, makes the oil sands 
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water-wet, and plays an important role in the separation of bitumen from the quartz, by 

use of a hot-water extraction technique [2]. 

 

Figure 1-3. Schematic Description of the  Oil Sands Particles Showing the Quarts, Bitumen and 
Water Components. Figure from [2]. 

The production and refining methods of bitumen are quite diverse. Thus, the properties 

of the starting bitumen and the used diluents can vary widely as well. As a result, products 

from this process involve highly variable behaviours [3]. In general, Canadian bitumen has 

an API gravity of less than 10° and a viscosity above 10,000 cP, at reservoir conditions. It 

is practically a solid at room temperature [2]. 

Bitumen content in the oil sands in Alberta varies with the types of oil sand mines. It may 

vary from 0 to 15 weight percent (wt%), depending on the geographical location. Oil sands 

are usually divided into three main classes, depending on the concentration of 

bitumen[2]: (i) Low-grade oil sands, which have a bitumen content of 6–8 wt%, (ii) 

Medium-grade oil sands, which have a bitumen content of 8–10 wt%, and (iii) Rich oil 

sands, which have a bitumen content of >10 wt%. Mined oil sands in the northern part of 

Alberta are considered to be rich oil sands  [2]. 

The total percentage of bitumen plus water in the oil sands remains almost constant at 

15 wt%. The remaining 85 wt% is composed of quartz and clay. As the bitumen content 

increases, the water content decreases, by the same ratio [2]. 

The typical composition of Alberta bitumen consists of [2]: 
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• Distillable gas oil product with a boiling point <535°C, which is composed of: 

o Atmospheric Gas Oil (AGO): initial boiling point (IBP) at 350°C 

o Vacuum Gas Oil (VGO): boiling point: 350-535°C 

• Undistillable resid with a boiling point >535°C which is composed of : 

o Asphaltenes 

Asphaltenes are found in the insoluble bitumen fraction in a normal paraffin solvent, and 

the soluble fraction in benzene or toluene [2]. Asphaltenes are molecular species with an 

exact molecular weight that can vary in an ample range from 500 to 15000, with exact 

quantification being influenced by the analytical technique used  [2]. 

Bitumen is a complex mixture of hydrocarbons containing mainly carbon (82.0 – 83.0 

wt%), hydrogen (10.1 – 10.2 wt%), nitrogen (3000 – 5000 pmm), sulfur (4.5 – 6.0 wt%), 

oxygen (<1 wt%), nickel (80 ppm), and vanadium (220 ppm) [2]. Bitumen is a high-acid 

crude with an average Total Acid Number (TAN) of 2.5 mg KOH/gram of sample. 

Concentrations of asphaltene and Conradson Carbon Residue (CCR) in the bitumen are 

15.0 wt% and 13.5 wt%, respectively [2]. The atomic ratio of hydrogen to carbon (H/C 

ratio) in various types of bitumen remains almost constant, within 1.4–1.5, as compared 

to that in conventional light crude (1.7–1.8) and that in asphaltenes (1.2–1.3) [2]. 

Bitumen can be classified as well considering its major fractions as: i) saturates, aromatics, 

resins, and asphaltenes (SARA, Figure 1-4), or ii) paraffins + olefins (<10%), naphthenes 

(20-30%), and aromatics (60-70%) (PONA) [2].  

 



6 

 

 

 

Figure 1-4. SARA Classification of Bitumen (adapted from [2]) 

Fractionation by distillation is the most important single operating characteristic in a 

refinery, used to evaluate conventional crude oil feedstocks and their manufactured 

products [2]. First, the distillate portion (AGO) is distilled under atmospheric pressure 

(760 mmHg) at about 350°C. The undistilled portion, known as atmospheric residue, is 

then distilled under a vacuum below 1 mmHg and at 325°C (525-545°C equivalent 

atmospheric temperature) [2]. In the laboratory, simulated distillation (SimDist) by gas 

chromatography (GC) is used as a quick method to determine the boiling-point 

distribution of a bitumen sample. In this process, temperatures can be as high as 640-

700°C in a high-temperature SimDist (HTSD) gas chromatograph [2]. 

In the characterization of bitumen, one of the main challenges is the measurement of true 

molecular weight. Computer-modelling techniques applicable to lower-molecular weight 

conventional oil are widely used to predict the properties of heavy oils and bitumen [2]. 

However, due to the complexity of bitumen molecules, often these models fail to make 

correct predictions of, for example, molecular weight, viscosity or density [2]. 
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1.1.2. Solvents Employed in Diluted Bitumen 

Bitumen is so heavy, thick, and viscous that it is virtually immobile at normal conditions. 

To transport bitumen to refineries, it must be diluted with condensates or with synthetic 

crude oils [3]. In order to meet pipeline specifications (e.g. maximum of 940 kg/m3 density 

and 350 cSt viscosity) which are governed by pumping and pipe considerations [2,3], the 

viscosity is decreased, and the API gravity is increased. This is achieved by adding a solvent 

such as a gas condensate, synthetic crude, C4/C5, or naphtha (25-30% vol.) [2,3]. A high 

amount of alkanes such as C4 or C5 can cause the precipitation of asphaltenes [3]. When 

naphtha is added, the diluted bitumen is called DilBit. The diluent consists of 

hydrocarbons in the range of C5-C12.  As a result given that bitumen contains 

hydrocarbons with a carbon number larger than C30, the resuting  DilBit involve a C5-C12 

and a C30+ fractions without hydrocarbons in the C13-C30 range [2]. 

Bitumen is usually commercialized as a Synthetic  Crude Oil (SCO) or as a Dilbit [3]: 

1. Diluted bitumen (Dilbit) is a mixture of bitumen and a solvent. This mixture can be 

transported by pipeline.  

2. Synthetic crude oil (SCO) is a bitumen that has been upgraded by chemical 

processing and separations. 

Diluted bitumens can be divided into four main classes, depending on the diluent [3]: 

1. Standard Dilbit where the diluent is a gas condensate, 

2. Synbit where the diluent is a synthetic crude, 

3. Lightened Dilbit where  the diluent is a gas condensate with added C4 and/or C5 

diluents, and is also called C4/C5 Enhanced Dilbit, 

4. Dilbit which is diluted with a synthetic naphtha. 

Synbits are sometimes modified by the addition of a gas condensate, to meet pipeline 

specifications. These are alternatively called Dilsynbits  [3]. 
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1.2. Objectives 

This research is aimed to develop an improved algorithm for the flash calculations of 

naphtha/water mixtures. While understanding that the actual blends in the NRU unit is 

naphtha, water and bitumen, the focus, however is on naphtha/water blends as a first 

step for better thermodynamic understanding of the NRU process. Further studies should 

in our view also include the bitumen. As a result the following two specific objectives are 

considered in the present Ph.D. thesis: 

1. To develop a thermodynamic model for naphtha/water mixtures in the NRU 

process. 

2. To propose an improved methodology for flash calculations of naphtha/water 

mixtures, accounting for the proposed thermodynamic model. 

 

1.3. Thesis Overview 

The present Ph.D. dissertation includes the research developed, as reported in articles 

published and articles submitted for publication. 

This thesis is organized as follows:  

a) Chapter 2 provides the reader with background information and a review of the 

literature on phase equilibrium simulations including, number of phases and 

phase compositions,  

b) Chapter 3 presents the mathematical model and experimental setup employed to 

obtain the data used for the development of this thesis,  

c) Chapter 4 discusses inconsistencies found when using simulation software to 

simulate n-Octane/Water mixtures. A phase stability analysis is developed and a 

machine learning classification approach to predict the number of phases, is 

proposed. Most of the information of Chapter 4 was published in the journal 

Processes [5], 
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d) Chapter 5, establishes a Machine Learning approach to predict the number of 

phases for Paraffinic Aromatic Synthetic Naphtha (PASN). A manuscript related to 

the results of this chapter was submitted to The Canadian Journal of Chemical 

Engineering [6],  

e) Chapter 6, describes flash calculations for n-Octane/water and PASN/water 

mixture and involves a Machine Learning approach for the prediction of the 

mixture pressure,  

f) Chapter 7, draws the main conclusions and discusses potential extensions to this 

research, 

g) Finally, Chapter 8 summarizes the accomplishments of this research. 
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2. Background and Literature Review 

This chapter provides background information related to the following topics: i) 

Thermodynamic principles, including phase equilibrium and flash calculations, ii) Machine 

learning fundamentals and, iii) State of the art regarding hydrocarbon/water mixture 

thermodynamic studies. 

2.1. Thermodynamic Principles 

To establish a model able to represent naphtha/water blends, it is essential to consider 

classical thermodynamics. In this sense, three conditions are key for VLL thermodynamic 

equilibria [7]: i) equality of chemical potentials, ii) conservation of mass, and iii) 

maximization of entropy.  

In this section, a summary of the fundamental thermodynamic concepts involved in 

thermodynamic equilibrium and flash calculations is presented. First, the Gibb’s phase 

rule is stated, then, thermodynamic equilibrium is considered. Finally, the isothermal 

phase equilibrium calculations are discussed. 

 

2.1.1. Gibbs Phase Rule 

To specify the intensive properties in a system of 𝑁 components distributed among 𝜋 

phases, the temperature (T), the pressure (P) and the molar fractions in each one of the 

phases must be determined. Regarding these required data, there are (𝑁 − 1) unknown 

mole fractions in each phase. Thus, the total number of unknowns is: 2 + 𝜋(𝑁 − 1).  

The equations used to find these unknowns are given by the equilibrium conditions for 

each 𝑖 component as: 𝜇𝑖
𝑝ℎ𝑎𝑠𝑒 𝐼

= 𝜇𝑖
𝑝ℎ𝑎𝑠𝑒 𝐼𝐼

= ⋯ = 𝜇𝑖
𝑝ℎ𝑎𝑠𝑒 𝜋

 (𝑖 = 1,2,…𝑁). This gives 

𝑁(𝜋 − 1) available equations in total.  
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In this respect, the degree of freedom is then given by the Gibbs’s phase rule (Equation 

(2-1)). This equation helps to determine the number of variables needed to fully define 

the thermodynamic state of the system [8]: 

ℱ = 2 + 𝜋(𝑁 − 1) − 𝑁(𝜋 − 1) = 2 + 𝑁 − 𝜋 (2-1) 

2.1.2. Thermodynamic Equilibrium 

A system is considered to be in equilibrium if the driving forces for all possible internal 

processes are zero [9]. At the microscopical level, when a mixture splits into two phases, 

molecules of both components are transferred continuously from one phase to the other. 

However, at equilibrium, the net component transfer between phases is zero. This means 

that the transfer rate in one direction equals the rate of transfer in the reverse direction. 

Thus, the average (macroscopic) composition of each phase at equilibrium remains 

constant [8]. This thermodynamic equilibrium between phases, can be expressed by using 

the chemical potential (μ) for each component, with this chemical potential being the 

same in both phases: 

𝜇𝑖
𝑗
= 𝜇𝑖

𝑝
 (2-2) 

One should note that the chemical potential represents the component molar 

contribution to the Gibbs energy of the mixture (G) such as [8]: 

𝐺 = ∑𝑥𝑖

𝑖

𝜇𝑖  
(2-3) 

𝜇𝑖|𝑝𝑢𝑟𝑒 = 𝐺𝑖 = 𝐻𝑖 − 𝑇𝑆𝑖 (2-4) 

Where 𝐺𝑖  refers to the chemical potential of the pure component and 𝜇𝑖  refers to the 

chemical potential of a component in a mixture.  

The chemical potential is a partial molar property, which complies  with the Gibbs-Duhem 

Equation [8]: 

∑𝑥𝑖𝑑𝜇𝑖

𝑖

= 0, (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑃, 𝑇) (2-5) 
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For an ideal gas mixture (igm), the Gibbs free energy of the mixture and the chemical 

potential for component 𝑖 in the mixture are given by: 

𝐺𝑖𝑔𝑚 = ∑𝑥𝑖𝐺𝑖
𝑖𝑔

𝑖

+ 𝑅𝑇 ∑𝑥𝑖 ln 𝑥𝑖

𝑖

 (2-6) 

𝜇𝑖
𝑖𝑔𝑚

= 𝐺𝑖
𝑖𝑔

+ 𝑅𝑇 ln 𝑥𝑖  (2-7) 

where 𝐺𝑖
𝑖𝑔

 is the Gibbs free energy (chemical potential) of the pure component in the 

ideal-gas state. In a real mixture, the Gibbs free energy should be written in terms of the 

residual Gibbs free energy as follows: 

𝐺 = 𝐺𝑖𝑔𝑚 + 𝐺𝑅  (2-8) 

Then, 

𝜇𝑖 = 𝜇𝑖
𝑖𝑔𝑚

+ 𝐺̅𝑖
𝑅 (2-9) 

𝐺̅𝑖
𝑅 = (

𝜕𝑛𝐺𝑅

𝜕𝑛𝑖
)

𝑇,𝑃,𝑛𝑗

 
(2-10) 

The partial molar residual Gibbs free energy (𝐺̅𝑖
𝑅) is important for the definition of the 

fugacity coefficient. The fugacity of a component in a mixture is related to its ability to 

“escape” and is defined as: 

𝑓𝑖 = 𝑥𝑖𝜙𝑖𝑃 (2-11) 

where 𝑥𝑖 is the component mole fraction  in the multicomponent mixture,  𝑃 is the 

pressure and 𝜙𝑖  is the component fugacity coefficient of the component given by: 

ln𝜙𝑖 =
𝐺̅𝑖

𝑅

𝑅𝑇
 

(2-12) 

  

The fugacity of a component in a mixture is related to the chemical potential. For the two 

possible states (A and B) of a mixture at the same temperature, the relationship is given 

by Equation (2-13), with fugacity being a mathematical transformation of the chemical 

potential [8]. 
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𝜇𝑖
𝑗
− 𝜇𝑖

𝑝
= 𝑅𝑇 ln

𝑓𝑖
𝑗

𝑓𝑖
𝑝   (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑇) 

(2-13) 

Furthermore, the necessary criteria for phase equilibrium (Equation(2-2)) can also be 

expressed in terms of fugacity ( Equation (2-14)): 

𝑓𝑖
𝑗
= 𝑓𝑖

𝑝
 (2-14) 

However, chemical equilibrium is defined not only by the equality of component 

fugacities across phases [7], but also by the conservation of mass and maximization of 

entropy. For the maximization of entropy, the change of entropy between the system and 

its surroundings  can be  expressed in Table 2-1 [7]:  

Table 2-1. Change of Entropy for Different Types of Systems 

Irreversible process 𝑑𝑆 = 𝑑𝑆𝑠𝑦𝑠 + 𝑑𝑆𝑠𝑢𝑟𝑟 ≥ 0 (2-15) 

Reversible process 𝑑𝑆 = 𝑑𝑆𝑠𝑦𝑠 + 𝑑𝑆𝑠𝑢𝑟𝑟 = 0 (2-16) 

Isolated system 𝑑𝑆𝑠𝑢𝑟𝑟 = 0, then 𝑑𝑆 = 𝑑𝑆𝑠𝑦𝑠 ≥ 0 (2-17) 

If the system is at equilibrium, the entropy is at its maximum, 𝑑𝑆 ≥ 0 and Equation (2-18) 

applies: 

 𝑇𝑑𝑆 − 𝑃𝑑𝑉 − 𝑑𝑈 ≥ 0 (2-18) 

The mathematical condition of stable equilibrium depends on the moles, temperature 

and volume (isothermal-isochoric) set, with the equilibrium state corresponds to the 

minimum Helmotz free energy (Equation (2-19)). If the moles, the temperature and the 

pressure (isothermal-isobaric) are fixed, the minimum Gibbs free energy should be at a 

minimum level [8]. Mathematical conditions for stable equilibrium are summarized in 

Table 2-2. 

𝐴 ≡ 𝑈 − 𝑇𝑆 (2-19) 

Table 2-2. Mathematical Conditions of Stable Equilibrium [8] 

(𝑑𝐺 ≤ 0)𝑇,𝑃,𝑛 (2-20) 

(𝑑𝐴 ≤ 0)𝑇,𝑉,𝑛 (2-21) 

(𝑑𝐻 ≤ 0)𝑆,𝑃,𝑛 (2-22) 

(𝑑𝑈 ≤ 0)𝑆,𝑉,𝑛 (2-23) 
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2.1.3. Isothermal phase equilibrium calculations 

The phase equilibrium calculation problem deals with two main issues [10]: i) phase 

stability: number of phases, and ii) phase-split: composition and amount of each phase 

present. The challenge in phase equilibrium calculation is that the number of phases at 

thermodynamic equilibrium is unknown a priori [10]. To solve this problem, two 

approaches are typically followed [11]:  

i. The number of phases is pre-assigned, and the phase-split calculation are 

performed, if the negative flash condition (unphysical solution) is obtained, the 

number of phases is decreased and the phase-split calculation is repeated 

ii. Stability testing is performed in a step previous to the phase-split calculation, to 

determine if it is necessary to increase the number of phases. 

For water/hydrocarbon mixtures these conventional approaches are computationally 

expensive, and there is a lack of reasonable initial estimates of equilibrium ratios [11,12]. 

 

2.1.3.1 Phase Stability Analysis 

Regarding number of liquid phases in a  multicomponent system, one can consider that 

in a closed system, as is the case in the CREC VL Cell of the present study,  species 

molecules will tend to configure in a state that minimizes their Gibbs free energy [13].  

For instance, in the case of a binary mixture, the species blend  remain  as a stable  single-

liquid phase, if the tangent line to  the Δ𝐺𝑚𝑖𝑥 curve at of the blend feeding condition point 

does not contact  Δ𝐺𝑚𝑖𝑥  curve anywhere else [13]. If it does contact  the Δ𝐺𝑚𝑖𝑥  curve, 

two or more phases will be present, as shown  in Figure 2-1.    
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Figure 2-1. Δ𝐺𝑚𝑖𝑥/𝑅𝑇 of Methanol/Carbon disulfide at 10°C. Adapted from [8] showing the 
tangent line contact  Δ𝐺𝑚𝑖𝑥/RT in two points, thus predicting two phases for all feeding 

conditions with a water molar fraction between 0,043 and 0.745. 

One should consider that for multicomponent mixtures, the Δ𝐺𝑚𝑖𝑥 will be a surface, and 

the tangent line will correspond to a tangent plane. Thus, a mixture will display a single 

liquid phase if the tangent plane to the Δ𝐺𝑚𝑖𝑥  surface at the point of molar composition 

feeding does not contact the Δ𝐺𝑚𝑖𝑥  surface anywhere [13]. The presence of a plurality of 

contact points indicates one or more phases. If the distance from the plane to the 𝛥𝐺 

mixing surface (TPD, Equation (2-24)) is evaluated, when the result is non-negative, for all 

the trial functions, the feed mixture form only one phase. If a trial phase gives a negative 

TPD value, then the mixture will split into two or more phases. Further explanation is 

provided in Chapter 0 and Chapter 5. 

𝑇𝑃𝐷(𝑦1, 𝑦2, … , 𝑦𝑁) = ∑𝑦𝑖(𝜇𝑖
𝑦−𝑝ℎ𝑎𝑠𝑒

− 𝜇𝑖
𝑓𝑒𝑒𝑑

)

𝑁

𝑖=1

 (2-24) 

2.1.3.2  Flash Calculations 

Traditionally, Rachford-Rice equations [14] are used for the phase splitting analysis for a 

flash unit. Once this preliminary analysis is completed, the equations for two phases and 

three phases calculations are established. 
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Two phases flash equations 

Figure 2-2 reports the schematic diagram for a two phases flash unit. Equations (2-25) to 

(2-27) represent the mole balances (no reaction is present, then the number of moles is 

constant). Equation (2-28) is obtained from equilibrium. Combing mass balances and 

equilibrium conditions, in equations (2-29) to (2-32) it is possible to arrive to Rachford-

Rice equation (2-33). 

 

Figure 2-2. Schematic of a flash system dealing with two phases 

𝐹 = 𝐿 + 𝑉 
(2-25) 

𝐹𝑧𝑖 = 𝐿𝑥𝑖
𝐿 + 𝑉𝑦𝑖 

(2-26) 

∑𝑥𝑖
𝐿

𝑁

𝑖

= ∑ 𝑦𝑖

𝑁

𝑖

= 1 
(2-27) 

From equilibrium: 

𝐾𝑖
𝑉 =

𝑦𝑖

𝑥𝑖
𝐿 =

𝜙𝑖
𝐿

𝜙𝑖
𝑉 (2-28) 

1 =
𝐿

𝐹
+

𝑉

𝐹
 (2-29) 



17 

 

 

1 = 𝛽𝐿 + 𝛽𝑉  (2-30) 

𝑥𝑖
𝐿 =

𝑧𝑖

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1)

 (2-31) 

𝑦𝑖 = 𝑥𝑖
𝐿𝐾𝑖

𝑉 =
𝑧𝑖𝐾𝑖

𝑉

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1)

 (2-32) 

The Rachford-Rice equation is given below: 

𝑅𝑅𝑦 = ∑(𝑦𝑖 − 𝑥𝑖
𝐿)

𝑁

𝑖=1

=
𝑧𝑖(𝐾𝑖

𝑉 − 1)

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1)

= 0 (2-33) 

Three phases flash equations 

Similarly, Figure 2-3 presents the schematic diagram for a three phases flash unit. 

Equations (2-34) to (2-36) represent the mole balances (no reaction is present, then the 

number of moles is constant). Equations (2-37) and (2-38) are obtained from equilibrium. 

Finally, by combining mass balances and equilibrium conditions, in equations (2-39) to 

(2-43) it is possible to arrive to Rachford-Rice equations (2-44) and (2-45). 

 

Figure 2-3. Schematic of a flash system dealing with three phases 

 

𝐹 = 𝐿 + 𝑊 + 𝑉 (2-34) 

𝐹𝑧𝑖 = 𝐿𝑥𝑖
𝐿 + 𝑊𝑥𝑖

𝑊 + 𝑉𝑦𝑖 (2-35) 

∑𝑥𝑖
𝐿

𝑁

𝑖

= ∑𝑥𝑖
𝑊

𝑁

𝑖

= ∑𝑦𝑖

𝑁

𝑖

= 1 (2-36) 
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From equilibrium: 

𝐾𝑖
𝑉 =

𝑦𝑖

𝑥𝑖
𝐿 =

𝜙𝑖
𝐿

𝜙𝑖
𝑉 (2-37) 

𝐾𝑖
𝑊 =

𝑥𝑖
𝑊

𝑥𝑖
𝐿 =

𝜙𝑖
𝐿

𝜙𝑖
𝑊 (2-38) 

1 =
𝐿

𝐹
+

𝑊

𝐹
+

𝑉

𝐹
 (2-39) 

1 = 𝛽𝐿 + 𝛽𝑊 + 𝛽𝑉 (2-40) 

𝑥𝑖
𝐿 =

𝑧𝑖

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)
 (2-41) 

𝑥𝑖
𝑊 = 𝑥𝑖

𝐿𝐾𝑖
𝑊 =

𝑧𝑖𝐾𝑖
𝑊

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)
 (2-42) 

𝑦𝑖 = 𝑥𝑖
𝐿𝐾𝑖

𝑉 =
𝑧𝑖𝐾𝑖

𝑉

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)
 (2-43) 

The Rachford-Rice equations can be then,  summarized as follows: 

𝑅𝑅𝑦 = ∑(𝑦𝑖 − 𝑥𝑖
𝐿)

𝑁

𝑖=1

=
𝑧𝑖(𝐾𝑖

𝑉 − 1)

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)
= 0 

(2-44) 

𝑅𝑅𝑥𝑖,𝐵
= ∑(𝑥𝑖

𝑊 − 𝑥𝑖
𝐿)

𝑁

𝑖=1

=
𝑧𝑖(𝐾𝑖

𝑊 − 1)

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)
= 0 

(2-45) 

Furthermore, if after completion of the stability analysis, the presence of two or more 

phases is determined, the Rachford-Rice equations stated below have to be used [15].  

Equations for these cases are summarized in Table 2-3 
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∑
𝑧𝑖(𝐾𝑖

𝑚 − 1)

𝐻𝑖

𝑁

𝑖=1

= 0,    𝑚 = 1,2… , 𝐽 − 1 (2-46) 

𝐻𝑖 = 1 + ∑ 𝛽𝑚(𝐾𝑖
𝑚 − 1)

𝐽−1

𝑚=1

 (2-47) 

𝑦𝑖
𝑚 =

𝑧𝑖𝐾𝑖
𝑚

𝐻𝑖
   𝑖 = 1,2,… ,𝑁     𝑚 = 1,2,… , 𝐽 − 1 (2-48) 

𝑦𝑖
𝐽 =

𝑧𝑖

𝐻𝑖
   𝑖 = 1,2,… , 𝑁  (2-49) 

Table 2-3. Rachford-Rice equation for two and three phases flash calculation 

Two Phases Flash Three Phases Flash 

 
Figure 2-4. Schematic of a flash system dealing with 

two phases 

 
Figure 2-5. Schematic of a flash system dealing with three 

phases 

𝐹(𝛽) = ∑
𝑧𝑖(𝐾𝑖−1)

1+𝛽(𝐾𝑖−1)
𝑁
𝑖=1 = 0     (2-50) 

 

∑
𝑧𝑖(𝐾𝑖

𝑚−1)

𝐻𝑖

𝑁
𝑖=1 = 0        (2-51) 

𝐻𝑖 = 1 + 𝛽𝐿(𝐾𝑖
𝐿 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1) 

(2-52) 
 

 

Where 𝛽 corresponds to the phase mole fraction. 
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2.2. Fundamentals of Machine Learning 

Artificial Intelligence (AI) has been used in chemical engineering for more than 35 years 

[16]. AI is defined as “the study of how to make computers do things at which, at the 

moment, people are better” [17]. 

Among AI techniques, Machine Learning (ML) has helped to solve problems that require 

pattern recognition, reasoning and decision making under complex conditions [16]. ML is 

about modelling data [18] and combines statistics, optimization and computer science 

[19]. ML gives computers the ability to learn without being explicitly programmed [20]. 

ML algorithms can be classified into different categories [20]:  

• Supervised Learning Methods  with training data (labeled data) being considered 

to represent  desired solutions. These methods are designated as classification 

and regression problems. Among the supervised ML algorithms, the following 

have been reported k-nearest neighbour (KNN), naïve Bayes classifier, support 

vector machines (SVMs), neural networks, decision trees, random forests, linear 

regression, and logistic regression [20]. 

• Unsupervised Learning with training “unlabeled” datasets being employed, such 

as in clustering and dimensionality reduction. Among the unsupervised ML 

algorithms, the following has been reported: k-means, fuzzy c-means, hierarchical 

cluster analysis, and self-organizing map, principal component analysis, locally 

linear embedding, and t-distributed stochastic neighbour embedding [20]. 

• Semi-supervised Learning with both training “unlabeled” datasets and some 

“labeled” data set being used, with the anomaly detection being an good example. 

One should note that most semi-supervised learning algorithms are combinations 

of unsupervised and supervised algorithms. This is the case of the deep belief 

networks (DBNs) [21] .  

• Reinforcement Learning, the learning system algorithm (agent) accounts for 

system environment, and has the ability to select,perform actions, and get 

rewards in return [21]. 
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This section introduces ML fundamental concepts that will help understand how to better 

use ML to improve flash calculations. The focus of this section is on regression and 

classification techniques.   

2.2.1. Machine Learning tasks 

• Regression: A typical task in ML is to predict a target numeric value given a set of 

features (predictors) [21] 

• Classification: It can be seen as converting a regression prediction problem, where 

the target variable is continuous, to a discrete representation [22]. Past data 

(labelled items) are used to place new instances into their respective groups or 

classes in classification problems [22]. Typically, a confusion matrix is used to 

measure the accuracy of the method (Figure 2-6). Other standard metrics are 

accuracy, true positive rate, true negative rate and precision. 

  

Figure 2-6. Confusion matrix for binary classification. Adapted from [22] 
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2.2.2. Logistic Regression 

The logistic function is an S-shaped sigmoid function with an output value between 0 and 

1 (Equation 2.53). Logistic Regression estimates the probability of an instance to belong 

to a given class. If this probability is higher than 50%, the model predicts that the instance 

considered belongs to that class [21]. 

𝑆(𝑧) =
1

1 + 𝑒−𝑧
  (2-53) 

 

 

Figure 2-7. Sigma function. Note: Figure was reproduced under creative commons licence from 
Martin Thoma 

2.2.3. Decision Tree  

Decision Tree algorithms can perform regression or classification tasks and are capable of 

fitting complex datasets. Decision Trees build the classification or regression models 

based on a chain of partitions of the dataset as presented in Figure 2-8 [23]. The goal is 

to create a model that predicts the value of a target variable by simple decision rules 

inferred from the data features[24]. They are robust to noise, tolerant to missing 

information and have a low computational cost. The main tuning parameters in Sklearn 

library for these models are (a) The maximum depth of the tree, designated as 

max_depth, (b) The function that measures the quality of a split designated as criterion, 

(c) The minimum number of samples of a node that the tree must include before the split 

operation, named min_samples_split, and (d) Tthe minimum samples of a leaf node called 

min_samples_leaf [21].    

https://commons.wikimedia.org/w/index.php?title=User:Jeremybeauchamp&action=edit&redlink=1
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Figure 2-8. Typical Representation of a Decision Tree applied to Hydrocarbon/Water Blends 

2.2.4. K-Nearest Neighbors (KNN) 

The “nearest neighbour” concept was proposed in 1967 by Cover & Hart [25]. The basis 

of this model compares attributes of the unknown point to the K number of nearest 

neighbours to establish similarity (Figure 2-9). KNN is based on the Euclidian distance 

(Equation (2.54)) between the training and testing datasets. KNN  finds the K neighbours 

that represent the lowest distance. The main parameter of this model is the number of K 

neighbours. The value of K is selected as a hyperparameter to be optimized [19]. This 

method compares the attributes related to the data points [26,27]. 

𝑑𝐸(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (2-54) 
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Figure 2-9. Typical representation of a KNN method applied to Hydrocarbon/Water Blends 

2.2.5. Support Vector Machine (SVM) 

A Support Vector Machine [28] can be used for regression or classification problems. 

Using a process known as the “kernel trick” there is always one higher dimension where 

a mapped data set is linearly separable [19,29]. In this sense, the model’s objective  is to 

map the X input vectors via a kernel function (e.g. polynomial kernel, radial basis, 

multilayer perceptron kernel) and to make it a linear regression (Figure 2-10). In this 

study, a radial basis function was used. The tuning parameters characteristics of this 

model  are the C regularization parameter and the kernel scale width [30]. 
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Figure 2-10. Typical Representation of a SVC Classification Algorithm applied to Pressure and 

Composition at a set Temperature for Hydrocarbon/Water Blends 

2.3. State of the Art 

2.3.1. Experimental Studies 

The experimental study of hydrocarbon/water phase behaviour has been reported since 

1980 as summarized in Table 2-4. Van Konynenburg and Scott [31] proposed a 

classification for the phase behaviour of binary mixtures based on critical points. 

According to van Konynenburg and Scott classification scheme, water + hydrocarbon 

binary mixtures present a Type II or Type III phase behaviour classes [32].  

One can notice in Table 2.4 the vast technical literature available involving a diversity of 

water-hydrocarbon blends including paraffins, aromatics, cycloparaffins and olefins. One 

can also see that the reported studies consider vapour-liquid and liquid-liquid equilibrium 

over different temperature and pressure ranges. 
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Table 2-4. Literature References of Experimentally Studies hydrocarbon/water mixtures 

Hydrocarbon/water Conditions Ref. 

Propane 

Vapour-liquid equilibrium 

Temperature: 312 – 387 °C 

Pressure: 15 – 200 MPa 

[33] 

n-Pentane 

Vapour-liquid and liquid-liquid 

equilibrium 
Temperature: 21 – 280 °C 

Pressure: 0.1 – 14 MPa 

[34] 

n-Hexane 

Vapour-liquid equilibrium 

Temperature: 337 – 402 °C 
Pressure: 15 – 140 MPa 

[35] 

n-pentane, n-heptane 
Vapour-liquid equilibrium 
Temperature: 327 – 402 °C 

Pressure: 15 – 170 MPa 

[36] 

n-Butane, n-hexane 
Vapour-liquid equilibrium 
Temperature: 227 – 427 °C 

Pressure: 15 – 170 MPa 

[37] 

n-Decane 

Vapour-liquid and liquid-liquid 

equilibrium 
Temperature: 300, 320, 340 °C 

Pressure: 13 – 230 bar 

[38] 

n-Dodecane, squalane 

Vapour-liquid and liquid-liquid 

equilibrium 
Temperature: 327- 387 °C 

Pressure: 9 – 310 bar 

[39] 

1.3-Butadiene, 1-butene, 2-butene, isobutylene, n-butane, isobutene, n-

pentane, isopentane, benzene, n-hexane, cyclohexane, n-heptane, 1-heptene, 

1.5-hexadiene, n-octane 

Mutual solubilities.  

Temperature: 5 – 25 °C 
[40] 

n-Pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-undecane, 

2-methylbutane, 2,2-dimethylbutane, 2,3-dimethylbutane, 2-methylpentane, 3-
methylpentane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-

dimethylpentane, 3,3-dimethylpentane, 2-methylhexane, 3-methylhexane, 3-
methylheptane, 2,2,4-trimethylpentane, 2,3,4-trimethylpentane, 2,2,5-

trimethylhexane, cyclopentane, cyclohexane, methylcyclopentane, 
cycloheptane, methylcyclohexane, cyclooctane, cis-1,2-dymethylcyclohexane, 

ethylcyclohexane, 1,2-dymethylcyclohexane, ethylcyclohexane, 1-
butylcyclohexane, pentylcyclopentane 

Mutual solubilities. Liquid-Liquid 
equilibrium. 

Temperature: 0 – 430 °C 

[41] 

n-Octane 
Vapour-liquid equilibrium 

Temperature: 5 – 75 °C 
[42] 

Ethylbenzene, Ethylcyclohexane, and n-Octane 
Vapour-liquid equilibrium 
Temperature: 0 – 568 °C 

[43] 

Benzene, cyclohexane, n-hexane 
Vapour-liquid equilibrium 

Temperature: 0 – 568 °C 
[44] 

n-Pentane, n-hexane, n-heptane, n-octane, n-nonane, decane, hexadecane 
Mutual solubilities 

Temperature: 25 °C 
[45] 

n-Pentane, n-hexane, n-heptane, n-octane, 2-methylbutane, 2-methylpentane, 

3-methylpentane, 3-methylhexane, 2,2-dimethylbutane, 2,3-dimethylbutane, 
2,4-dimethylpentane, 2,2,4-trimethylpentane, 2,3,4-trimethylpentane, 2,2,5-

trimethylhexane, benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-
xylene 

Mutual solubilities 
Temperature: 0-25 °C 

[46] 

n-alkanes: C1-C12, C14, C16, C18, C20, C24, C25, C26, C28, C30, C32, C36 
→ n-octane 

Liquid-Liquid-Gas equilibrium 
Temperature: 357 – 387 °C 

Pressure: 19 – 23 MPa 

[47] 
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Some of the thermodynamic models considered by various authors to describe the phase 

equilibrium of hydrocarbon/water mixtures are summarized in Table 2-5. This table 

includes activity coefficient models such as NRTL and UNIQUAC and equations of state such 

as Cubic Plus Association (CPA) with statistical based thermodynamics models being 

highlighted.  

Table 2-5. Literature References addressing Phase Equilibrium Thermodynamic modelling for  
hydrocarbon/water mixtures 

Hydrocarbon/water Model Phase Equilibrium Ref. 

n-Octane 
NRTL, UNIQUAC 

(activity coefficient) 
Flash point [48] 

n-Heptane, n-octane, toluene, 

propylbenzene, cyclohexylamine 

(CHA)  

NRTL LLE (ternary) [49] 

Hexane, decane, butylcyclohexane, 1-
hexene, 1-octene, benzene, 

ethylbenzene, 1,3-diethylbenzene 

PC-SAFT  
LLE 

 
[50] 

Ethane, propane, n-hexane, ethylene, 
propylene, cyclohexane, 2,2-

dimethylpropane, 2,3-dimethylbutane, 

2,2-dimethylpentane,  benzene, toluene, 

ethylbenzene,  

GC-PR-CPA Eos (with 

group contribution 

method) 

LLE 

 
[51] 

Methane, ethane, propane, n-hexane, n-

octane, 1-hexene, 1-octene 
CPA and SAFT 

LLE 

 VLE 
[52] 

n-propane, n-butane, n-pentane, n-

hexane, n-heptane, n-octane, n-nonane, 
n-decane, n-undecane, n-dodecane, n-

tridecane, n-tetradecane, n-pentadecane 

PC-SAFT 

LLE 

 VLE 

VLLE 

[53] 

n-alkanes: C5-C16, C18, C20 → n-

octane 
PC-SAFT 

LLE 
VLE 

VLLE 

[54] 

Methane, ethane, propane, n-butane, n-

pentane, n-hexane, n-heptane, n-

octane, n-decane 
CPA Eos LLE [55] 

Cyclohexane, n-hexane, n-heptane, n-

octane, n-decane 
CPA Eos 

LLE 

VLE 
[56] 

 

Regarding naphtha /water and bitumen/water blends, they have the intrinsic 

characteristic of displaying low mutual solubilities and form two liquid phases. According 

to the phase behaviour classification proposed by van Konynenburg and Scott [31], 

Athabasca bitumen/water mixture is considered  as type IIIm [32]. Furthermore and 
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regarding bitumen transport some processes use n-alkanes as a solvent leading to 

asphaltene bitumen component precipitation. In this sense, the modelling of bitumen/n-

alkanes phase equilibria has been approached by different authors are reported in Table 

2-6. One should note as well that while using a naphtha fraction as bitumen diluent, there 

is aromatic constituent fractions to be considered as well [4,57].  

Table 2-6. Literature References Related to Experimental Studies using bitumen/hydrocarbon 
mixtures 

Bitumen Component Conditions Ref. 

Athabasca 

Ethane 
Liquid-liquid equilibrium 

Temperature: 22 °C 
Pressure: 5 – 9 MPa 

[58] 

Propane 
Phase behaviour, phase composition, and phase densities 

Temperature: 30 – 120  °C 
Pressure: 1 – 6 MPa 

[59] 

Propane 

Phase behaviour 
Vapour-Liquid and Liquid-Liquid Equilibrium 

Temperature: 50 – 200  °C 
Pressure: up to 10 MPa 

[60] 

n-Butane 

Liquid-liquid equilibrium 
Saturated liquid densities and viscosities   

Peng-Robinson EoS 
Temperature: up to 200  °C 

Pressure: 1 – 6 MPa 

[61] 

Athabasca and Cold 
Lake 

n-Butane 
Phase behaviour 

Temperature: 100, 150, and 186 °C 
Pressure: up to 4 MPa 

[62] 

Western Canadian n-Pentane 

Vapour-liquid and liquid-liquid equilibrium 
Saturation pressures  

Temperature: 21 – 280 °C 
Pressure: up to 14 MPa 

[34,63] 

Peace River n-Pentane 

Vapour–liquid–liquid equilibria, saturation pressures and 
asphaltene precipitation 

Peng Robinson EoS 
Temperature: 21 – 180 °C 

[64,65] 

Athabasca n-Decane 

Density and dynamic viscosity 
Weight fractions of n-decane:  0.05, 0.1, 0.2, 0.3, 0.4, 0.5 

Temperature: 20 – 344 °C 
Pressure: up to 10 MPa 

[66] 

Athabasca n-Tetradecane 

Density and dynamic viscosity 
Weight fractions of n-decane:  0.05, 0.1, 0.2, 0.3, 0.4, 0.5 

Temperature: 20 – 344 °C 
Pressure: up to 10 MPa 

[67] 

 
Methane, ethane, propane, n-
butane, n-pentane, n-decane, 

n-tetradecane, toluene, xylene 
 [68] 

Athabasca Toluene 
Density and viscosity 

Temperature: 22 – 190 °C 
Pressure: up to 10 MPa 

[69] 

Athabasca Water 

Vapour-liquid-liquid equilibrium 
9.2 to 96.6 wt% Athabasca bitumen 

Temperature: 250 – 370 °C 

Pressure: 4.2–35.7 MPa 

[32] 
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Regarding hydrocarbon/water blends containing bitumen, their behaviour has been 

studied using methane, ethane, propane, n-butane and toluene as solvents (Table 2-7).  

Table 2-7. Literature related to experiments of solvent/bitumen/water mixtures 

Bitumen Solvent Conditions Ref. 

MacKay River 
Methane, ethane, 

propane, n-butane 

Phase behaviour 

Temperature: up to 150 °C 
Pressure: up to 5 MPa 

[70] 

Athabasca n-Butane 

Phase behaviour 

Temperature: up to 160 °C 
Pressure: up to 10 MPa 

[71] 

Athabasca, Coalinga, Cat 

Canyon, Huntington Beach, 

Peace River, Mackay River 

Propane 

Phase boundaries 

Temperature: 20 - 160 °C 

Pressure: up to 10 MPa 

[72] 

Athabasca Toluene 

Phase behaviour 

Temperature: 200 -  300 

°C 

Pressure: 2.5 to 12.6 MPa 

[73] 

However, and to the author’s knowledge, there is no published data in the open literature 

related to more complex mixtures such as naphtha/bitumen/water, which are key stream 

components in a NRU (Naphtha Recovery Unit). Furthermore, there is also very limited 

equilibrium data on naphtha/water mixtures. Thus, in-depth analysis of naphtha-water 

thermodynamics provides a unique opportunity for original studies. 

2.3.2. Flash Calculations 

Flash calculations with water hydrocarbon blends may involve two phases (vapour-liquid) 

and three phases (vapour-liquid-liquid). Three-phases calculations are however, more 

difficult than two-phases calculations [74]. Procedures for three-phases calculations of 

water/hydrocarbon mixtures have been proposed previously.  

In 1952, Rachford & Rice studied the vapour-liquid equilibrium for hydrocarbons and 

proposed to use as the objective function ∑ (𝑥𝑖 − 𝑦𝑖)𝑖 = 0 instead of ∑ 𝑥𝑖𝑖 = ∑ 𝑦𝑖𝑖 = 1.  

This approach eliminates the numerical problems related to multiple roots [74].  
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Peng & Robinson [75] proposed the so-called Peng Robinson Equation of State for systems 

containing water and at least two other components. This restriction is based on the 

degrees of freedom when three phases exist. As stated by Peng & Robinson [75], there 

are three types of calculations as described in Table 2-8 within this region: bubble –point, 

dew-point and flash calculation. Peng & Robinson proposed two successive iterations 

using different objective function according to the type of calculation being developed: 

Table 2-8. Objective function according with the type of calculation. Taken from [75] 

Type of Calculation Objective Function 

Liquid-liquid-vapour bubble-point prediction ∑𝑥𝑖
𝐿

𝑖

− ∑𝑥𝑖
𝑊

𝑖

= 0,    ∑𝑦𝑖

𝑖

− 1 = 0 

Liquid-liquid-vapour Flash Calculation ∑𝑥𝑖
𝐿

𝑖

− ∑𝑦𝑖

𝑖

= 0,    ∑𝑥𝑖
𝑊

𝑖

− 1 = 0 

Liquid-liquid-vapour Dew-point prediction ∑𝑥𝑖
𝐿

𝑖

− ∑𝑦𝑖

𝑖

= 0,    ∑𝑥𝑖
𝐿

𝑖

− 1 = 0 

Or 

∑𝑥𝑖
𝑊

𝑖

− ∑𝑦𝑖

𝑖

= 0,    ∑𝑥𝑖
𝐿

𝑖

− 1 = 0 

Liquid-liquid Flash Calculation ∑𝑥𝑖
𝐿

𝑖

− ∑𝑥𝑖
𝑊

𝑖

= 0 

Liquid-vapour Flash Calculation ∑𝑥𝑖
𝐿

𝑖

− ∑ 𝑦𝑖

𝑖

= 0 

Or 

∑𝑥𝑖
𝑊

𝑖

− ∑ 𝑦𝑖

𝑖

= 0 

Liquid-vapour Dew-point prediction ∑𝑥𝑖
𝐿

𝑖

− 1 = 0 

Or 

∑𝑥𝑖
𝑊

𝑖

− 1 = 0 

Furthermore, the methodology proposed by Mokhatab [76,77] presents two successive 

substitution iteration schemes as shown in Figure 2-11. Then, the algorithm for three-

phases flash calculation  starts assuming the equilibrium relations between the 

compositions of each phase. The first iterative step checks the convergence of the value 

of the equilibrium relations calculated using fugacity coefficients. Following this, the 

second iterative scheme checks the convergence of the objective function: ∑ 𝑥𝑖
𝐿

𝑖 =
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∑ 𝑥𝑖
𝑊

𝑖 = ∑ 𝑦𝑖𝑖 = 1. As well, other alternative is to use a successive substitution followed 

by a Newton Raphson method [78]. 

 

Figure 2-11. Successive substitution iteration diagram for three phases flash calculations. 
Reproduced with Licence Number 5037061032696 [76]  

In order to proceed with calculations, Li & Nghiem proposed the results from Wilson’s 

equation as an initial guess for the equilibrium ratios [79]. As well, Chien [74] proposed 

to proceed with calculations a two-dimensional search method that divides the 

calculations into different regions according to the number of phases present in the 

mixtures at given conditions. Finally, Michelsen's [80,81] approach considers a phase 

stability test before the phase split for two-phases mixtures and proposed the distance 

from the plane to the 𝛥𝐺𝑚𝑖𝑥 surface (TPD) methodology presented in Chapter 5. 
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Traditional methods for phase stability test and phase splitting calculations are iterative 

schemes solving nonlinear equations [82]. These methodologies are computationally 

expensive and rely on the initial assumption of the equilibrium relations between the 

compositions of each phase. Additionally, traditional flash calculation methods present 

convergence and accuracy problems giving results with no physical meaning that are 

excluded manually [83].In this sense, in the last years, with the advance of computer 

power, new approaches have been implemented considering phase stability and phase 

splitting calculations within the same algorithm. 

Nazari et al. [84] proposed a stability algorithm based on a negative flash procedure to 

detect the stable phases. The aqueous phase equilibrium calculations by using EOS lead 

to an inaccurate prediction of stable phases in the vecinity of phase change regions [84]. 

These authors obtained a new analytical derivative of fugacity coefficient with respect to 

mole fraction, improving the accuracy and convergence, and reducing the runtime 

compared to numerical derivatives [84].  

Wang et al. [82] used artificial neural networks to assist traditional flash calculations to 

achieve fast and robust convergence. The artificial neural networks provided more robust 

initial guesses for phase splitting calculations [82].  

Li et al. [83] compared Newton’s method, Sparse Grid Method and a deep learning model 

for phase splitting problem and flash calculation procedures. These authors propose to 

use the deep learning model as better first estimates for more thermodynamically 

rigorous vapour-liquid equilibrium calculations.  

Sabet et al. [85] considered a new stability algorithm with application to three-phase flash 

calculations of hydrocarbon/water in the presence of brine. They modelled hydrocarbon 

phase with an equation of state (EOS) and aqueous phase using Henry's law. They also 

proposed and a new initial guess for three-phase flash calculations that assure the 

convergence of the scheme.  
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Okuno et al. [86,87] developed a reduced variables method that improved convergence 

behaviour near the critical region. The method was adapted for hydrocarbon/water 

mixtures [10], where steam saturation pressure was used as a guide for the trial phase. 

On the basis of the above, one can see that the development methodologies with better 

initial guesses, most efficient and robust calculation methods for the analysis of 

hydrocarbon/water systems are imperative to reduce the environmental impact of oil and 

gas processes. Additionally, these methodologies should be able to be extended to more 

hydrocarbon/water complex mixtures, such as the ones in  Dilbit/water systems.  

In summary and given the above, an in-depth discussion of flash calculations for water/n-

octane and water/PASN is reported in Chapter 6. 

2.3.3. Use of Machine Learning (ML) tools for the vapour-liquid equilibrium 

calculation 

Machine Learning (ML) techniques have been used in Chemical Engineering for more than 

35 years, helping to solve problems that require pattern recognition and reasoning, and 

decision making under complex conditions [16]. Machine Learning has been previously 

applied to thermodynamic problems, the phase stability problem and phase split 

calculations. 

Schmitz et al. [88] proposed a classification methodology to solve the phase stability test, 

by determining the number and nature of the phases present in the ethanol/ ethyl 

acetate/ water system, which show an heterogeneous azeotrope. They used Feedforward 

Neural Networks (FNN) and Probabilistic Neural Networks (PNN) trained with the data 

obtained from the NRTL model with literature parameters. Their model was able to 

correctly predict the type of equilibrium for  more than  99.9% of the cases. 

Poort et al. [89] studied water/methanol mixtures, using classification neural networks 

for the phase stability and regression networks to calculate thermodynamic properties. 

The data for training was generated for 101 feed composition, 500 temperatures (273-

700 K), and 500 pressures (1x104–3x107 Pa). Overall, phase classification showed accuracy 
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scores that were quite high (around 97%), although classification accuracy of the two-

phase region was considerably lower than that of the pure liquid and vapour phase 

regions. Many property predictions showed good accuracy (R2 > 0.95). 

Kashinath et al. [90] studied the isothermal phase equilibria at 260 K and 370 K using a 

compositional model (3, 6 and 13 components). Data for reservoir conditions was 

generated by a phase diagram using isothermal negative flash calculations. The authors 

used Relevance Vector Machines (RVMs) for a classification problem in order to solve the 

phase stability. Following this, they solved the phase split by using Artificial Neural 

Networks ( ANN), which predicted equilibrium K-values.  

Artificial Neural Networks (ANN) for modelling vapour-liquid equilibrium of 

multicomponent mixtures was studied by Argatob & Kocherbitov (2019) [91]. They 

proposed ANN as a generalization of Wilson and NRTL models. In this way, they included 

previous knowledge related to VLE into ANN architecture  [91]. They “introduced two 

ANN-based thermodynamic models for approximating the excess Gibbs energy of a multi-

component mixture, which generalize the Wilson and NRTL models” [91]. 

Jones et al. [88] used Feedforward Neural Networks (FNN) and Probabilistic Neural 

Networks (PNN) trained with data obtained from NRTL model with literature parameters. 

They considered a classification problem to solve the phase stability test, determining the 

number and nature of the phases present in the system ethanol/ ethyl acetate/ water, 

which present a heterogeneous azeotrope. Their model was able to correctly predict the 

type of equilibrium for > 99.9% of the cases. 

Mohanty [92] found better results for ANN compared to SRK-EoS and PR-EoS for 

calculating the VLE of binary mixtures of carbon dioxide/ ethyl caproate, ethyl caprylate 

or ethyl caprate.  

Vaferi et al. [93] used ANN to derive predictive models of bubble point pressure and 

vapour phase composition using literature data from different binary systems containing 

ethanol. 
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Poort et al. [89] studied water/methanol mixtures, using classification neural networks 

for the phase stability and regression networks to calculate thermodynamic properties. 

The data for training was generated for 101 zi composition, 500 temperatures (273-700 

K), and 500 pressures (1x104 – 3x107 Pa). Phase classification showed overall relatively 

high accuracy scores (around 97%), although classification accuracy of the two-phase 

region was considerably lower than for the pure liquid and vapour phase regions. 

Property predictions showed good accuracy for many properties (R2 > 0.95), 

Kashinath et at. [90] analyzed the isothermal phase equilibria at 260 K and 370 K using a 

compositional model (3, 6 and 13 components). Data was generated by phase diagram 

for reservoir conditions using isothermal negative flash calculations. They used a 

Relevance Vector Machines (RVMs) for a classification problem to solve the phase 

stability, with phase split via ANN predicting equilibrium K-values. In both cases, they set 

input blend composition and pressure. 

In spite of progress, one can notice that while ML has been employed for a limited number 

of water-hydrocarbon blends, with its successful application to octane-water and 

naphtha-water blends still missing. As shown in the present Ph.D. Dissertation, ML 

application is successfully shown in the present Ph.D. thesis for both phases stability 

analysis and hydrocarbon solubility, with this being an important original contribution of 

the present study. 
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2.4. Conclusions 

Chapter 2 reports  the following critical topics for the development of this research: 

a) Thermodynamic equilibrium fundamental concepts including  phase stability and 

phase split calculations, needed for the development of this research.  

b) Machine Learning (ML)  concepts required for the data analysis of the present 

study 

c) Hydrocarbon/water mixtures thermodynamics and ML techniques as relevant for 

supporting the number of phases, solubility and flash calculations findings 

relevant to the research developed. 
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3. Mathematical Model Validation and Experimental Setup 

During the development of this research, two thermodynamic models were used. An 

activity coefficient model (NRTL) to describe the n-octane/water mixtures, and an 

Equation of State (Soave Redlich Kwong with Kabadi-Danner modification) to describe the 

more complex mixtures of Paraffinic Aromatic Synthetic Naptha/water. 

This chapter provides model validation for i) the NRTL model, ii) the Soave Redlich Kwong 

model with a Kabadi-Danner modification. Additionally, it provides information about the 

CREC-VL-Cell [94,95] employed to obtain the experimental data, which is then used for 

this research. 

3.1. NRTL Model in Python 

Regarding the activity coefficient models, they can be defined in terms of the excess Gibbs 

free energy (Equation (3-1)), with excess variables representing deviations from the ideal 

behaviour. 

ln 𝛾𝑖 =
𝐺𝑖̅

𝐸

𝑅𝑇
 

(3-1) 

The NRTL model is based on local composition theories and can be implemented using 

Equations (3-2) to (3-4). 𝑔𝑖𝑗   represents the interaction energy and 𝛼 is set at 0.2-0.3 as 

recommended, while  accounting for local composition variations [8,96] as follows:   

𝐺𝐸

𝑅𝑇
= ∑ 𝑥𝑖

∑ 𝜏𝑗𝑖𝐺𝑗𝑖𝑥𝑗𝑗

∑ 𝐺𝑗𝑖𝑥𝑗𝑗
𝑖

 
(3-2) 

𝜏𝑖𝑗 =
𝑔𝑖𝑗−𝑔𝑗𝑗

𝑅𝑇
,𝜏𝑖𝑖 = 0, 𝐺𝑖𝑗 = 𝑒𝑥𝑝(−𝛼𝜏𝑖𝑗) (3-3) 

ln 𝛾𝑖 =
∑ 𝜏𝑗𝑖𝐺𝑗𝑖𝑥𝑗𝑗

∑ 𝐺𝑗𝑖𝑥𝑗𝑗
+ ∑

𝑥𝑗𝐺𝑖𝑗

∑ 𝑥𝑘𝐺𝑘𝑗𝑘
(𝜏𝑖𝑗 −

∑ 𝑥𝑘𝜏𝑘𝑗𝐺𝑘𝑗𝑘

∑ 𝑥𝑘𝐺𝑘𝑗𝑘
)

𝑗

 
(3-4) 

  

The NRTL model parameters are obtained from the Aspen Plus V9 software and from 

Klauck et al. (2006) [49]. The NRTL model obtained from Aspen Plus V9 was used as a 
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comparison reference with the NRTL model implemented in Python. NRTL parameters 

from Aspen Plus,  as well as the related literature references [48,49] are reported in Table 

3-1.  

Table 3-1. NRTL Parameters for a Water(1)/Octane(2) System. 

 Aspen Plus V9  Klauck et al. [49] and Liaw [48] 

Model 
𝜏𝑖𝑗 = 𝑎𝑖𝑗 +

𝑏𝑖𝑗

𝑇
+ 𝑒𝑖𝑗 ln 𝑇 + 𝑓𝑖𝑗𝑇 

 

𝜏𝑖𝑗T = 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑇 + 𝑐𝑖𝑗𝑇
2 

 

Parameters 

𝑎𝑖𝑗 𝑎12 = 1.2166 , 𝑎21 = −12.035 𝑎12 = −169.718 , 𝑎21 = 4197.06 

𝑏𝑖𝑗 𝑏12 = 2997.7 , 𝑏21 = 5381.43 𝑏12 = 12.5591 , 𝑏21 = −7.5243 

𝑐𝑖𝑗 𝑐12 = 𝑐21 = 0.2 𝑐12 = 0 , 𝑐21 = 0 

𝑑𝑖𝑗 𝑑12 = 𝑑21 = 0 N/A 

𝑒𝑖𝑗 𝑒12 = 𝑒21 = 0 N/A 

𝑓𝑖𝑗 𝑓12 = 𝑓21 = 0 N/A 

𝛼𝑖𝑗 𝛼𝑖𝑗 = 𝑐𝑖𝑗 + 𝑑𝑖𝑗(𝑇 − 273.15𝐾) 0.2 

Figure 3-1 and Figure 3-2 report data obtained using the NRTL model from Aspen Plus V9 

and the NRTL model developed in Python. For model validation in Python, both the Aspen 

Plus V9 and the Klauck’s et al. [49] parameters were employed. On this basis, one can 

conclude that NTRL model both in Aspen Plus and in Python displays reasonable 

agreement.  

 

Figure 3-1. Comparison between the NRTL Model in Aspen Plus and the NRTL Model in the 
Python Software (using Aspen Plus and Klauck Parameters) at 70°C. 
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Figure 3-2. Comparison between the NRTL Model in Aspen Plus and the NRTL Model in the 
Python Software (using Aspen Plus and Klauck Parameters) at 100°C. 

Furthermore, one can state that the NRTL algorithm developed, in the context of the 

present Ph.D. Dissertation,  using Python, is in agreement with the  Aspen Plus models 

and could therefore be the basis of a reliable approach for VLL hydrocarbon/water blends. 

3.1.1. Comparison of Predicted Three Phase Region  

Table 3-2 reports the Three Phase Region (TPR) (also known as the azeotropic point) 

calculations, obtained using the Python model of the present study, with the  NTRL 

Activity Coefficients model [48].  

One can notice that the predicted temperature for the TPR, at atmospheric pressure, is 

89.5°C, as shown in Table 3-2. This value is close to the ones previously reported in the 

technical literature:  89.89 °C  with a 0.6822 vapour water molar fraction [97], and 89.76 

°C with a  0.6787 vapour water molar fraction [41].  

Table 3-2. Predicted TPR at Different Temperatures for Water(1)/N-Octane(2) Blends Using the 
Klauck’s Parameters [49]. 

Temperature 

(°C) 

Pressure at TPR 

(kPa) 
𝒙𝟏

𝑰  𝒙𝟐
𝑰𝑰 𝒚𝒘

𝑻𝑷 

80 70.39 0.0047998 9.1363 x10-7 0.6730 

89.5 101.32 0.006714 9.2015 x10-7 0.6796 
90 103.10 0.00682 9.2068 x10-7 0.6799 

100 147.48 0.009561 9.3652 x10-7 0.6867 

 



40 

 

 

Furthermore, Figure 3-3 reports the comparison of the NRTL model using the Klauck et al. 

parameters, (2006) [49] with the experimental data from the technical literature,  for the 

n-octane/water mixture at isobaric conditions. One can see, in this case, the good 

predictions obtained using the NRLT model. 

 

Figure 3-3. Comparison of the NRTL Model Using the Klauck et al. [49] Parameters, with the  
Reported Literature Data  by Tu et al., (1998) [97] in Red, by Haarmann et al., (2018) [53] in 

Green and Ma̧czyński et al., (2004) [41]in Blue.  

Thus, and on this basis, one can further confirm the ability of the NRTL algorithm of the 

present study to predict TPR conditions, mutual solubilities and VL equilibrium.  

3.1.2. Vapour-Liquid-Liquid Equilibrium using an NRTL Model 

An NRTL activity coefficient model [96] for VLL calculations of n-octane/water mixtures, 

was implemented in the present study, using Python. For low pressures (close to 1 atm) 

and typical conditions in a NRU (Naphtha Recovery Unit), an activity coefficient model 

was adopted.  

The proposed activity coefficient model (NRTL) involves correction factors for the 

chemical potential and the fugacity, accounting for non-ideal interactions between 

chemical species [8].  
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One should note as well, that the procedure for the calculation of VLL equilibrium, at 

isothermal and isobaric conditions, considers the coexistence of three VLL phases, as 

described in Equations (3-5) and (3-6).  

𝑃𝑇𝑃𝑅 = ∑𝑃𝑖 = 𝑥1
𝐼𝛾1

𝐼𝑃𝑣,1
𝑠𝑎𝑡 + 𝑥2

𝐼𝐼𝛾2
𝐼𝐼𝑃𝑣,2

𝑠𝑎𝑡 
(3-5) 

𝑦1,𝑇𝑃𝑅 =
𝑥1

𝐼𝛾1
𝐼𝑃𝑣,1

𝑠𝑎𝑡

𝑃𝑇𝑃𝑅
 

(3-6) 

with 𝑃𝑣,i
𝑠𝑎𝑡  representing the vapour pressure of the i component (1 for water and 2 for n-

octane), with 𝛾i
𝐼 representing the activity coefficient for phase I, and with  𝛾i

𝐼𝐼 

representing the activity coefficient for phase II. 

Regarding the cases with two liquid phases being present, as in water and hydrocarbons, 

the chemical species involved included partially miscible phases. As well, both liquid-

liquid phases can contribute to vapour pressure, forming a three-phase system: two liquid 

phases and a single vapour phase (VLL) [8]. This “Three Phase Region Domain or (TPR)” 

can be represented using TTPR and PTPR, with all three phases (vapour-liquid-liquid) 

containing different fractions of the various chemical species [74].  

Figure 3-4 reports the calculation procedure for the TPR conditions, in the case of Pxy 

(fixed T) and Txy (fixed P) calculations. One can notice in Figure 3-4, that when the 

temperature is fixed, the establishment of a Pxy involves a direct calculation. However, in 

the case of calculating Txy at a set pressure (Figure 3-4b), the process of calculation 

becomes iterative, and one has to use a Newton-Raphson or a successive iteration 

algorithm with set objective functions. 
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a) 

 

b) 

Figure 3-4. Algorithm for Three Phase Region (TPR): a) Calculations at a Fixed T and b) 
Calculations at a Fixed P. 

Regarding the objective functions to be considered, they involve the mutual solubilities 

of the phases. This equilibrium condition is set, given the need of complying with the 

equality of the liquid fugacities of both phases at equilibrium, and the calculation of the 

Three Phase Region (TPR) pressure as follows: 

𝐹𝑜𝑏𝑗 1,𝑖 = √(𝑥𝑖
𝐼𝛾𝑖

𝐼 − 𝑥𝑖
𝐼𝐼𝛾𝑖

𝐼𝐼)2 
(3-7) 

𝐹𝑜𝑏𝑗 2 = √(𝑃 − (𝑥1
𝐼𝛾1

𝐼𝑃𝑣,1
𝑠𝑎𝑡 + 𝑥2

𝐼𝐼𝛾2
𝐼𝐼𝑃𝑣,2

𝑠𝑎𝑡 + 𝑃𝑎𝑖𝑟))
2

 
(3-8) 

 

Thus, to obtain Txy or Pxy equilibrium values, the mutual solubilities at VLL equilibrium 

must be calculated by solving Equation (3-7), with the fsolve function in Python. This 
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function is a wrapper around MINPACK’s hybrid and hybrid algorithm for solving non-

linear equations [98].  

Finally, the VL equilibrium can be established using Equations (3-9) and (3-10). 

𝑃 = ∑𝑃𝑖 = 𝑥1
𝐼𝛾1

𝐼𝑃𝑣,1
𝑠𝑎𝑡 + 𝑥2

𝐼𝛾2
𝐼𝑃𝑣,2

𝑠𝑎𝑡 
(3-9) 

𝑦1 =
𝑥1

𝐼𝛾1
𝐼𝑃𝑣,1

𝑠𝑎𝑡

𝑃
 

(3-10) 

3.2. Soave-Redlich-Kwong-Kabadi-Danner (SRKKD) Equation of 

State in Python 

Traditionally, the Peng-Robinson (PR) Equation of State (EoS) is one of the most popular 

EoS, for predicting hydrocarbon-based PVT behaviour, including vapour pressures [99]. 

When using simulation software, such as HYSYS V9 or Aspen Plus V9, it is considered one 

of the most enhanced models with an extensive binary interaction parameter database.  

However, the PR EoS displays limitations when the considered blends include water or 

aqueous hydrocarbon mixtures [100]. In these cases, as suggested by previous research 

from our group [94], the PR EoS does not describe well the system under study, and a 

different EoS must be used. In binary systems, such as n-octane/water mixtures, an 

activity coefficient model can be used, as we proposed in our previous work [5].  

Nevertheless, classical activity coefficient models are limited to low pressures (≤10 bar) 

with no C7+ species contained. In the context of water and heavy hydrocarbons, such as 

naphtha or bitumen (C7+), as in the case of this study, a Cubic Equation of State is strongly 

suggested. In this work, the Soave-Redlich-Kwong (SRK) EoS with a Kabadi-Danner [101] 

modification is used. These authors suggested that it improves the VLLE calculations for 

water-hydrocarbon systems, particularly in dilute regions, which is of great interest for 

this research.  

Given the reported advantages of using the Kabadi-Danner modification with the Soave-

Redlich-Kwong EoS (SRKKD EoS), for VLL equilibrium calculations, in the case of 
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hydrocarbon-water blends [102,103], the SRKKD EoS was used to describe the 

hydrocarbon-water blends of this study. The SRKKD EoS can be defined by Equations 

(3.11)  to (3.15) as follows:  

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎

𝑉(𝑉 + 𝑏)
 

(3-11)  

𝑎 = 0.42748
𝑅2𝑇𝐶

2

𝑃𝐶

[1 + Ω(1 − 𝑇𝑟
1/2)]

2
 

(3-12)  

𝑏 = 0.08664
𝑅𝑇𝐶

𝑃𝐶
 

(3-13)  

Ω = 0.480 + 1.574ω − 0.176ω2 (3-14)  

𝑍3 − 𝑍2 + (𝐴′ − 𝐵′ − 𝐵′2) 𝑍 − 𝐴′𝐵′ = 0 (3-15)  

Where 𝐴′ =
𝑎𝑃

(𝑅𝑇)2 and 𝐵′ =
𝑏𝑃

𝑅𝑇
 

The mixing rules required to determine the SRK EoS parameters are given by Equations 

(3.17) and (3.18), with the Kabadi-Danner modification being reported by Equations 

(3.16)and (3.19) to (3.21) [101].   

𝑎𝑚𝑖𝑥 = 𝑎0 + 𝑎𝐾𝐷  (3-16)  

𝑎0 = ∑∑𝑥𝑖𝑥𝑗(1 − 𝑘𝑖𝑗)√𝑎𝑖𝑎𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(3-17)  

𝑏𝑚𝑖𝑥 = ∑𝑥𝑖𝑏𝑖

𝑁

𝑖=1

 

(3-18)  

𝑎𝐾𝐷 = ∑𝑎𝑤𝑖
′′ 𝑥𝑤

2 𝑥𝑖

𝑁

𝑖=1

 

(3-19)  

𝑎𝑤𝑖
′′ = 𝐺𝑖 [1 − (

𝑇

𝑇𝑐𝑤
)

0.8

] 
(3-20) 
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𝐺𝑖 = ∑𝑔𝑙

𝑙

 (3-21) 

With respect to the 𝐺𝑖  , it can be calculated using a group contribution method, which 

accounts for the sum of the contributions of the different functional groups, included in 

every hydrocarbon molecule. Values from various functional groups can be obtained from 

the table published by Kabadi-Danner (1985) [101]. The kij parameters used for the 

calculations reported in this work, were taken from the HYSYS V9 software.  

Furthermore, and to compute the fugacity coefficient with the SRKKD EoS, Equations 

(3.22) and (3.23) can be used [8] as follows:  

ln𝜙𝑖 =
𝑏𝑖

𝑏
(𝑍 − 1) − ln(𝑍 − 𝐵′) − 𝐶𝑖′ ln

𝑍 + 𝐵′

𝑍
 

(3-22)  

𝐶𝑖
′ =

𝐴′

𝐵′
(−

𝑏𝑖

𝑏
+

2

𝑎
∑𝑥𝑗√𝑎𝑖𝑎𝑗(1 − 𝑘𝑖𝑗)

𝑁

𝑗=1

) 

 (3-23) 

 

Finally, and to be able to validate the SRKKD model in Python, the Pxy diagram for 

water/n-octane mixtures can alternatively be obtained using the algorithm described in 

Figure 3-5.  
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Figure 3-5. Algorithm Used in Python Software to Develop the Pxy Diagram for Water/N-Octane 

Systems, Using the SRKKD EoS. 

One should note that the algorithm described in Figure 3-5, involves a nested calculation 

with a first iteration being employed to establish the mutual solubility of the liquid phases, 

as indicated by Equation (3.24). This is followed by a second iterative calculation used to 

compute the pressure of the mixture and to compare it with the assumed value, as 

proposed by Equation (3.25). 

 

𝐹𝑜𝑏𝑗 1,𝑖 = √(𝑥𝑖
𝐼𝜙𝑖

𝐼 − 𝑥𝑖
𝐼𝐼𝜙𝑖

𝐼𝐼)2 
(3-24) 

𝐹𝑜𝑏𝑗 2 = √(𝑃𝑚𝑖𝑥 − (𝑥1
𝐼𝜙1

𝐼𝑃𝑠𝑢𝑝 + 𝑥2
𝐼𝐼𝜙2

𝐼𝐼𝑃𝑠𝑢𝑝 + 𝑃𝑎𝑖𝑟))
2

 
(3-25) 
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For the HYSYS V9 simulation, a 3-phase separator was specified, using a 100 kgmol/h 

blend consisting of a 50%mol water / 50%mol n-octane. This mixture was fed into the 

unit, at different temperatures, ranging from 80-110 °C, with a vapour fraction of 0.  

In the case of the Aspen Plus V9 simulations, a binary analysis was performed. For the first 

part of the calculations, and in order to validate the program in Python, the air was not 

considered. The VLLE was calculated under these conditions.  

The difference in the Python results with the pressure at the Three Phases Region (TPR) 

for HYSYS V9 and Aspen Plus V9 at 80°C was 8%. A comparison is presented in Figure 3-6. 

We consider that the Python version can be used for further analysis as it provides a 

designated White Box or fundamentally thermodynamically based methodology. 

 

Figure 3-6. Comparison of Results for the SRKKD EoS in Python, Using HYSYS V9 and Aspen Plus 
V9 at 80°C, in a Water/N-Octane System. 

3.3. Experimental Setup 

3.3.1. Materials 

Distilled water was used in all the experimental studies. The alkanes were obtained from 

Sigma-Aldrich. The purity of the components was as follows: n-hexane: >97%, n-heptane 

>96%, n-octane >99%, n-decane >99%, n-dodecane >99%. The water content of the n-



48 

 

 

alkanes was 0% for n-octane and n-dodecane, 0.01% for n-hexane and n-decane, and 

0.02% for n-heptane. Toluene was obtained from Fisher Scientific with purity >99% and 

0.008% water content. 

3.3.2. CREC-Vapour Liquid Equilibrium-Cell 

The Chemical Reactor Engineering Center (CREC) recently developed a CREC-VL-Cell which 

allows the measurements of VLL equilibrium (Figure 3-7) using a “dynamic method”, with 

the temperature of the cell increasing progressively, using a thermal ramp of 1.22°C/min. 

As a result, every run provides a large amount of vapour-liquid equilibrium data (10 Hz), 

with the vapour pressure data being recorded at various temperatures, every 0.01 

seconds. Additional explanations about the cell operation are reported in [94]. Data 

obtained from this dynamic method has been validated with static measurements [94]. 

The CREC-VL-Cell uses a marine type of impeller (propeller). The unit propeller helps to 

ensure the homogeneous mixing of the phases, providing a good heat distribution inside 

the CREC-VL-Cell. This special cell design proposed by the CREC team, allows one to 

analyze a process sample directly, avoiding losses of light volatile components due to 

sample transfers. 

  

Figure 3-7. CREC-VL-Cell: a) Photography, b) Diagram 1) Stirring Head, 2) Isolation Shells, 3) 
Stirring Hot Plate, 4) Aluminum Vessel, 5) VL-Cell, 6) Thermofield, 7) Octane/water Blend. 
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4. Thermodynamics and Machine Learning Based Approaches 

for Vapour-Liquid-Liquid Phase Equilibria in n-Octane/Water, 

as a Naphtha-Water Surrogate in Water Blends  

A simulation software is typically used in the oil and gas industry to provide a quick 

process analysis and to facilitate engineering decisions. De Tommaso et al. [104], 

highlighted the importance of process simulators to build digital twins, facilitating the 

implementation of industry 4.0 guidelines.  

Usually, simulation software are used to establish the project economics, through the 

optimization of each process step involved [2]. For instance, to optimize the production 

from oil and gas fields, it is essential to have extensive knowledge of the volumetric and 

phase changes taking place, from the petroleum reservoir to the oil refinery [13]. 

When bitumen is extracted from oil sand and a naphtha based process is employed for 

froth treatment, the Naphtha Recovery Unit (NRU) is employed to recover naphtha from 

the tailings, for reuse in the process and to reduce the environmental impact of the 

process. This is an energy-intensive step, with environmental guidelines for naphtha 

recovery are required to be met [4]. Therefore, the thermodynamics for highly diluted 

hydrocarbon in water systems is of particular interest. While HYSYS V9 and Aspen Plus V9 

software may be used with this objective in mind, the results regarding 

hydrocarbon/water mixtures from these simulations are not always reliable.  

Hydrocarbons are separated from wastewaters before their disposal, usually by using 

vapour-liquid equilibrium operations. In this sense, the knowledge of the thermodynamic 

behaviour of hydrocarbon/water systems is of importance. It is well established that the 

miscibility between water and hydrocarbons is limited. However, the solubility of 

hydrocarbon in the aqueous phase can be an issue in terms of environmental regulations 

and process footprint [13].  
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Liquids exhibit partial miscibility only when their interactions at the molecular scale 

display strong positive deviations from ideality. In the case of hydrocarbon/water 

mixtures, these interactions do not yield full liquid-liquid miscibility [6]. However, some 

partially miscible systems may become fully miscible at higher temperatures, with the 

effect of total pressure increase being negligible [8]. 

Water and hydrocarbons do not intermix well. Water tends to segregate from 

hydrocarbons as a result of the strong polar forces acting between molecules [13]. As 

expressed by Carlson (1996) [105], most equilibria calculations assume two phases only: 

Vapour-Liquid equilibrium (VL). However, in hydrocarbon/water blends, three Vapour-

Liquid-Liquid (VLL) phases may also contribute, depending on the separator operating 

conditions. In this respect, the accurate establishment of the number of phases (2 or 3 

phases) is critical for phase equilibrium calculations.  

The selection of the proper thermodynamic method to represent hydrocarbon/water 

mixtures is of major importance. To accomplish this, available decision trees were 

described by others [104,105]. For non-ideal mixtures, however, as is the case of n-

octane/water systems, the NRTL model can be used. 

Jia et al. (2018) [106] investigated the separation of the n-propanol/water azeotrope, 

using Aspen Plus, with different thermodynamic models. According to their experimental 

data, n-propanol/water systems form a homogeneous azeotrope, but Aspen Plus 

simulations miss predicting it by calculating two liquid phases [106]. On the other hand, 

de Tommaso et al. (2020) [104], calculated the absence of an azeotrope for the water and 

acetic acid blends, using available binary parameters from the PRO/II database and the 

UNIQUAC model.  

Moreover, Marcilla et al. (2017) [107] analyzed 25 papers with 70 cases considered for 

the Liquid-Liquid Equilibrium (LLE) of ternary systems using a NRTL model. In the reported 

cases, 60% of the cases considered displayed phase inconsistencies in 52% of the papers 

reviewed. Regarding the number of phases discrepancies reported, they were assigned 
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to: i) parameters representing partial miscibility in systems that are totally miscible, ii) tie-

line inconsistencies that do not satisfy the phase equilibrium criterion, showing meta-

stable solutions and non-compliance with the iso-activity condition, and iii) the use of 

mass fractions instead of molar fractions for model definition.  

In Marcilla et al.’s study  [107], 12 examples using Aspen Plus for the LLE data regression 

were described. Three of them reported inconsistencies, with the cause being assigned 

to the calculation algorithm. In this regard, as Marcilla et al. [107] stated, the use of 

unreliable parameters can create severe uncertainty, when used in chemical process 

simulation software. Furthermore, given this situation, Marcilla et al. [107] recommended 

the use of the minimization of the Gibbs energy of mixing function (∆𝐺𝑚𝑖𝑥 𝑅𝑇⁄ ), as an 

additional condition to ensure the phase equilibrium prediction consistency.  

In the case of flash calculations, the phase stability test and phase splitting calculations 

have also been studied. From an experimental point of view, phase thermodynamic 

equilibrium is usually measured in experimental setups that provide a limited number of 

data points in manageable times. Phase equilibrium measurements for dilute 

hydrocarbon/water systems were made in a specially designed CREC-VL Cell were 

reported [10]. Unlike earlier experimental techniques, the implemented CREC VL Cell is 

operated in the dynamic mode with a temperature ramp [94],  recording up to 10 points 

per second of Pmix values. This can be considered as “big data” in the context of these 

experiments.  Big data in ML is characterized by data volume (size or scale), variety 

(multitype), velocity (batch or streaming) and veracity (uncertainty, quality and accuracy) 

[108–110]. ML is about modelling data [18] and combines statistics, optimization and 

computer science [19]. ML gives computers the ability to learn without being explicitly 

programmed [20].  

Given the above, the objectives of this work are as follows: i) to establish the problems 

faced with estimating the number of phases in highly diluted octane/water mixtures 

when using HYSYS V9 and Aspen Plus V9, and ii) to develop a methodology to predict the 

correct number of phases, using experimental data obtained in a new CREC VL Cell [94]. 
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Most of the information provided in this chapter was published in a recent article in 

Processes [5]. 

4.1. Approach Adopted in the Present Study 

A comparison between different thermodynamic models, using HYSYS V9 or Aspen Plus 

V9, was first attempted through the simulation of a flash unit. Discrepancies in simulation 

results were noticed depending on the software used. Then the NRTL activity coefficient 

model was selected and implemented in Python, with the Gibbs energy of mixing function 

(∆𝑮𝒎𝒊𝒙 𝑹𝑻⁄ ) being used to explain the discrepancies between HYSYS V9 and Aspen Plus 

V9 parameters. As well, experimental data from a CREC VL Cell and a t-test data analysis 

were considered to establish the two phases (VL equilibrium) and the three phases (VLL 

equilibrium) domains. Furthermore, machine learning methods were implemented in 

order to obtain an accurate classification of the phase domains in the 80-110 °C range. 

Accurate classification in this range is of great importance, as it is within the NRU 

operation conditions. 

4.2. Specific Strategy 

An octane/water mixture can be considered as a good surrogate for naphtha/water 

blends. As shown in Table 4-1, n-Octane has properties similar to those of naphtha, which 

is one of the primary solvents used in bitumen processing. 

Table 4-1. Properties for n-Octane and Naphtha.  

 n-Octane Naphtha [111] 

Carbon number 8 6-13 

Molecular weight (g/gmole) 114.23 145* 

Boiling point (°C) 125.6 65-230 

Density (kg/m3) 703 781 
* Average molecular weight 

HYSYS V9 and Aspen Plus V9 software contain VL and VLL equilibrium modules, that were 

used as a starting point for evaluating conventional thermodynamic models, in the 

present work. Water/n-octane systems have been experimentally studied in previous 
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works [94]. Furthermore, and regarding n-octane-water blends, there is already a 

significant body of data in the technical literature, as shown in Table 4-2.   

Table 4-2.  Results in the Technical Literature Related to Experiments with  Water/N-octane 
Mixtures.  

Conditions  Ref. 

Temperature: 5 – 25 °C Mutual solubilities.  [40] 

Temperature: 0 – 430 °C Mutual solubilities. Liquid-liquid 

equilibrium. 
[41] 

Temperature: 5 – 75 °C Vapour-liquid equilibrium [97] 

Temperature: 0 – 568 °C Vapour-liquid equilibrium [112] 

Temperature: 25 °C Mutual solubilities [113] 
Temperature: 0-25 °C Mutual solubilities [114] 

Temperature: 357 – 387 °C 

Pressure: 19 – 23 MPa 
Liquid-liquid-vapour equilibrium [47] 

 

4.3. Gibbs Energy Analysis from Activity Coefficient Model 

A detailed description of the thermodynamic equilibrium is essential for 

water/hydrocarbon mixtures. To accomplish this, three key considerations can be 

adopted [7]: i) equality of chemical potentials, ii) conservation of mass, and iii) 

maximization of entropy.  

One should note that while chemical potential equality is a “necessary” condition, it is not 

sufficient to secure solution uniqueness in phase equilibrium calculations [115]. To 

achieve this, the system should display a maximum entropy. One should note that at a 

fixed pressure and temperature, the maximization of entropy is equivalent to the 

minimization of the Gibbs free energy. Thus, the Gibbs free energy of mixing analysis 

helps to determine this condition [8].  

In the case of a binary system, where the reference state of each component is a pure 

liquid, the Gibbs free energy of mixing for the liquid phase can be calculated, as in 

Equation (4-1). Additional details of the derivation of these equations are provided in [8]: 

∆𝐺𝑚𝑖𝑥
𝐿

𝑅𝑇
= ∑𝑥𝑖 ln(𝑥𝑖𝛾𝑖)

𝑖

= 𝑥1 ln(𝑥1𝛾1) + 𝑥2 ln(𝑥2𝛾2) 
(4-1) 
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With xi representing the molar fraction of each component in the liquid phase.  

Thus, to establish the change of mixing Gibbs free energy for the liquid phase as per 

Equation (4-1), one must vary the xi values in the 0 to 1 range. In this respect, a common 

tangent plane criterion can be applied to multiple liquid phases as described in 

[8,116,117]. Furthermore, and to compare the Gibbs free energy of mixing curve for liquid 

and vapour phases, it is important that both phases have a common reference state [116]. 

In this respect, the pure component as a liquid at the same temperature and pressure as 

the mixture, is selected as the reference state (
𝐺𝑖,𝑜

𝐿

𝑅𝑇
= 0).  

On this basis,  Equations (4-2) and (4-3) can thus be considered as applicable [115,116] 

for the vapour phase as follows:   

∆𝐺𝑚𝑖𝑥
𝑉

𝑅𝑇
= ∑𝑦𝑖

𝐺𝑖,𝑜
𝑉

𝑅𝑇
𝑖

+ ∑𝑦𝑖 ln(𝑦𝑖)

𝑖

 

(4-2) 

𝐺𝑖,𝑜
𝑉

𝑅𝑇
−

𝐺𝑖,𝑜
𝐿

𝑅𝑇
= ln

𝑃

𝑃𝑖
𝑠𝑎𝑡  

(4-3) 

 

Thus, given Equations (4-2) and (4-3), yi can be varied, establishing as a result, the Gibbs 

free energy of mixing for the gas phase in the yi 0 to 1 range. This  Gibbs free energy of 

mixing phase can be also considered to be under the common tangent plane criterion as 

suggested in [116]. 

In practice however, it is always useful to know, before conducting the mixing 

calculations, whether the liquid-liquid blend considered yields a single liquid phase 

solution, or whether species in the liquid phase may split in more than one liquid phase 

[8]. This Gibbs free energy of mixing evaluation involves NRTL activity coefficients. This is 

based on an excess Gibbs energy model and can be applied at low total pressures (≤10 

bar), as is the case of the system under study.  
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4.4. Results and Discussion  

4.4.1. Issues with Available Models while Evaluating VLLE  

The three-phase equilibrium (VLL) of n-octane/water systems was first considered in the 

present study, using Aspen Plus V9 and HYSYS V9. To accomplish this, activity coefficient 

models (NRTL and UNIQUAC), a Peng Robinson Cubic Equation of State and a COMThermo 

model were evaluated. One should note that activity coefficient models offer an 

alternative to models which consider equations of state for low pressure systems [8]. For 

the case of COMThermo, the vapour phase is modelled using the Antoine vapour pressure 

model, and the liquid phase is modelled using the Margules activity coefficient model. For 

a thorough comparison between models, both models (activity coefficient and fugacity 

coefficient) were considered in the present study using Aspen Plus V9 and HYSYS V9 and 

octane/water blends. 

For the simulation, a 100 kgmol/h blend with a 50% mol water / 50% mol n-octane 

mixture was fed into a flash separator working at different temperatures from 20-120 °C. 

The bubble point pressure (vapour fraction = 0) and dew point pressure (vapour fraction 

= 1) were then calculated. A 3-phase separator was specified in HYSYS V9. In Aspen Plus 

V9, a flash3 separator was set, with water being selected as a key component in the liquid 

phase. 

One should note that while using these models for VLLE, two dominant issues were found: 

• Discrepancies between models when running with two different available 

software (e.g. HYSYS V9 and Aspen Plus V9)   

• Inconsistency of the available thermodynamic model predictions (e.g. Aspen Plus 

V9) with available experimental data.  

Figure 4-1 reports bubble point pressure calculations with Aspen Plus V9 and HYSYS V9, 

while the estimates for dew point pressure can be found in Figure 4-2. One can see that 

the results from HYSYS V9 differ by a large amount as compared to those from Aspen Plus 
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V9 (differences up to 104.66%) except when the Peng-Robinson EOS is employed (mean 

error = 7.98% for boiling point and 3.91% for dew point).  

Thus, VLL results when applying HYSYS V9 software must be used with extreme caution, 

and this given these results are indicators of phase prediction inconsistency, as will be 

done in the upcoming Section 4.4.2.  

 
a) 

 
b) 

Figure 4-1. Bubble Point Pressure Calculations with Different Thermodynamic Models for a) 
HYSYS V9 and b) Aspen Plus V9. Note: 0.5 Octane/0.5 water molar fractions. 

 

a) 

 

b) 

Figure 4-2. Dew Pressure Calculations with Different Thermodynamic models Using a) HYSYS V9 
and b) Aspen Plus V9. Note: 0.5 Octane/0.5 water molar fractions. 
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Table 4-3.  Comparison between HYSYS V9 and Aspen Plus V9. 

Model 
Boiling point 

Difference 
Dew Point 
Difference 

Peng Robinson 

Min: 5.67% 

Mean: 7.98% 

Max: 11.58% 

Min: 1.78% 

Mean: 3.91% 

Max: 6.83% 

NRTL 

Min: 92.88% 

Mean: 99.95% 

Max: 104.66% 

Min: 34.12% 

Mean: 49.96% 

Max: 66.45% 

UNIQUAC 

Min: 83.20% 

Mean: 86.28% 

Max: 90.39% 

Min: 37.86% 

Mean: 62.98% 

Max: 48.89% 
 

Furthermore, and while reviewing HYSYS V9 VLL results for water/n-octane streams, it 

was possible to identify that only the Peng-Robinson (PR) Model accounts for two liquid 

phases, with the activity coefficient models (NRTL and UNIQUAC), considering the 

octane/water stream as two totally miscible liquids. This single liquid phase 

misrepresentation does not agree with experimentally observed liquid-liquid phase 

separations as reported by Kong (2020) [94], and shows the need for developing a reliable 

methodology for the prediction of the number of phases of hydrocarbon/water systems.  

Given the above, the proposed methodology reported here is planned to allow the 

software user to develop a better than “black box” model (the user does not have access 

to calculations and parameters), with the user being fully aware of all equations involved. 

To this end, a NTRL thermodynamic model was chosen for the various calculations. This 

model was programmed using Python, with the Gibbs free energy analysis considered 

using binary interaction parameters (BIP) from HYSYS V9, Aspen Plus V9 and the technical 

literature [48,49]. The aim was to better models leading to two-phase simulations, 

predicting vapour pressures and three phases region. Finally, experimental data from the 

CREC VL Cell was also used, and a methodology to predict the number of phases of the n-

octane/water system was proposed.  
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4.4.2. Theoretical Discussion of Model Discrepancy 

The Gibbs Energy Analysis from the Activity Coefficient Model described in Section 4.3 

was used to understand the differences between simulation software. Figure 4-3 reports 

the GL
mix using the NRTL model at 70°C and 100°C. One should note that the 

temperatures selected were one lower, and the other higher than the Three Phases 

Region (TPR) at 1 atm, as reported by Tu et al. [97]. Concerning the BIP (Binary Interaction 

Parameters), the ones from HYSYS V9, Aspen Plus V9, and Klauck et al. [49] were used. In 

the case of HYSYS V9, two cases were considered: a) the BIPs parameters for HYSYS V9 

were set at the zero default values and b) the BIPs were estimated by HYSYS V9 assuming 

liquid phase immiscibility. 

  

a) 

 

b) 

Figure 4-3. Gibbs Free Energy of Mixing for a n-Octane/Water System, at Various Water Molar 
Fractions and Two Thermal Levels: a) 70°C and b) 100°C. 

Figure 4-3 reports that the HYSYS V9 results having the BIPs set to zero, display a catenary-

shaped curve (in yellow), with only one anticipated liquid phase for the mixture at both 

70°C and 100°C. One should note that the Gmix/RT in HYSYS V9 is inconsistent with 

experimental observations where a liquid-liquid phase equilibrium is observed [94]. 

Furthermore, and when considering HYSYS V9 with the non-zero BIPs as reported in Table 
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4-4, it predicts a phase splitting behaviour. Nevertheless, the Gmix/RT differs significantly 

from the other Gmix/RT calculated with Aspen Plus V9 and Klauck et al. [49] BIPs. 

Furthermore, the calculation of mutual water/n-octane solubilities, assuming a single 

liquid phase, is considered as shown in Table 4-4. One can see the significant difference 

of BIP parameters for the various models. As expected, BIPs from HYSYS V9, when set to 

zero, give a trivial single-liquid phase solution that is not in agreement with experimental 

results [94]. Furthermore, and when Aspen Plus V9 or Klauck et al. [49] are employed, the 

solubility of water in the hydrocarbon phase is, as expected, higher than the one for the 

hydrocarbon in a water phase. On the other hand, one can also observe that in the case 

of HYSYS V9, with non-zero estimated parameters, the predicted relative solubility is the 

reverse in magnitude. This means, that there is a discrepancy between the mutual 

solubilities obtained using the BIP default parameters of the NRTL, and the ones 

calculated with the HYSYS V9 method.   

Table 4-4. Predicted Mutual Solubilities for Water(1) / n-Octane(2) Blends at 70°C and 100°C in 
liquid phase molar fractions. 

 70°C 100°C 

BIP reference 

Water in  

Hydrocarbon 
phase (x1

I) 

n-Octane in 

Aqueous phase 
(x2

II) 

Water in 

Hydrocarbon 
phase (x1

I) 

n-Octane in 

Aqueous phase  
(x2

II) 

Klauck et al. (2006) [6,29] 3.32245*10-3 9.1571*10-7 9.56125*10-3 9.3652*10-7 

Aspen Plus (Python)  7.50095*10-3 8.1543*10-6 2.644388*10-2 2.1395*10-5 

HYSYS (estimated BIP)  8.9570*10-6 0.02069 1.3065*10-5 0.05936 

HYSYS (zero) (* one 

single phase) 
-6.1590*10-10 1 -6.1590*10-10 1 

 

       To address these issues, both the “unstable” and the “metastable” regions of the 

liquid-liquid equilibrium for a n-octane/water system were calculated, as reported in 

Figure 4-4(a-d). Furthermore, and to establish the boundary between unstable and 

metastable regions, inflection points complying with the second derivative criteria as in 

(Equation(4.4)) were considered [8,118]. As explained by Soares et al. (1982) [119], a feed 

with a composition in the metastable region, may either present as a single liquid phase 

or alternatively may split and form two liquid phases under external perturbations. 
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𝑑2∆𝐺𝑚𝑖𝑥

𝑑𝑥1
2 = 0 

(4-4) 

 

Figure 4-4. Unstable and Metastable Liquid-Liquid Equilibrium Regions for a Water/n-Octane 
Blends using: (a, b) Klauck et al. parameters [49] and (c, d) Aspen Plus V9 parameters. 

Parameters reprinted with permission from Klauck, M.; Grenner, A.; Schmelzer, J. Liquid-liquid(-
liquid) equilibria in ternary systems of water + cyclohexylamine + aromatic hydrocarbon 

(toluene or propylbenzene) or aliphatic hydrocarbon (heptane or octane). J. Chem. Eng. Data 
2006, 51, 1043–1050, doi:10.1021/je050520f. Copyright 2021 American Chemical Society. 

Furthermore, it is possible to observe in Figure 4-4(a-d), that a “stable” region boundary 

can be established by using a “double tangent line” (black broken line) connecting two 

Gmix points. These “double tangent line” shared points correspond to the mutual 

miscibility of both phases. The double tangent condition shows the system's stable state 
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[81,115]. One should note that in the case of the “metastable” region, the temperature 

and model parameters that are used have an influence over the region, adding 

uncertainty over the mixture stability. 

Figure 4-5 reports the VLLE at 1 atm and 89.5°C, for the water/n-octane blends. This 

condition corresponds to the calculated TPR (Three Phase Region) at 1 atm. One should 

note that TPRs at 89.89°C [97] and 86.76°C [41]  were previously reported. It is possible 

to observe, as is suggested in Figure 4-5(a), that the tangent line now contacts the “three” 

Gmix minima points, instead of two, with this corresponding to two liquid phases and one 

vapour phase condition (Three Phase Region). One can notice as well, that the “three-

point tangent line” is better described by Klauck et al. [49] parameters. However, and as 

shown in the “close up” in Figure 4-5(b), in practice, none of the available models present 

an exact three-point tangent line. This suggests that there are errors in this prediction and 

that a better model still needs to be developed.   

 

a) 

 

b) 

Figure 4-5. Vapour-Liquid-Liquid Equilibrium: a) 𝚫Gmix/RT including the full range of values, b) 
𝚫Gmix/RT close-up for water/n-octane system at 1 atm and T = 89.5 °C. 

Figure 4-6 provides a closer view of the ΔGmix for VLLE at 70C, for n-octane-water blends, 

at low and high n-octane concentration levels, with this showing that evaluating mutual 

miscibility of hydrocarbon/water systems remains a challenge.  
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In fact, for the low water molar fractions, the solubility of water in the hydrocarbon phase 

is described as a change of slope in the Gmix. In the same way, it is possible to notice that 

for high water fraction regions (aqueous phase) the solubility of hydrocarbon in water 

experiences a flattening of the Gibbs Free energy of mixing. In this sense, the n-octane in 

the water mixture presents partial miscibility, which is a critical condition to be identified 

for environmental reasons and process optimization purposes.  

  

(a) (b) 

Figure 4-6. Closer View of 𝚫Gmix/RT  and Mutual Solubility Regions of Water/n-Octane system. 
The NRTL model implemented with win Aspen Plus V9 and Klauck et al. (2006)  BIP parameters  

at 70°C. a) highly diluted water in n-octane region, b) highly diluted octane in water region. 
Note: reported data points are from [41,97]  

However, as presented in Figure 4-7, when the Gmix is calculated using published data at 

1 atm, for the different phases [49], the need of a better prediction of number of phases 

is confirmed. This is given the fact that the reported technical literature experimental data 

points are not located at the minimum value of the Gibbs energy of mixing.  
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a) 

 

b) 

Figure 4-7. Comparison of the Vapour 𝚫Gmix with Available Data from the Technical Literature 
for a) VLE at 99.76°C and 1 atm and b) VLLE at 89.5°C and 1 atm. Note: Reported data points are 

from [97]. 

Specifically, in the case of Figure 4-7(b), the  vapour phase Gmix  varies significantly when 

calculated at  89.5°C or alternatively at 89.89°C, the experimental reported value [97]. As 

a result, the shared tangent line criterion does not strictly adhere in any of these two 

cases.  In this respect, one can only agree that the availability of VLLE data at different 

temperatures and pressures, such as the ones provided by the CREC VL Cell, are 

imperative for establishing the TPR region. These data are required to obtain improved 

modelling of the number of phases of hydrocarbon/water mixtures. 

4.4.3. Analysis of Experimental Results 

Figure 4-8 reports the various phase regions that one can anticipate when using n-

octane/water blends. One can notice that at a given temperature, the following is 

expected:  

a) Three coexisting liquid-liquid-vapour (VLL) phases with the vapour pressure 

remaining unchanged, while the initial water composition is varied (horizontal 

broken line)  
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b) Two liquids phases at higher pressures, with every phase involving highly diluted 

blends,  

c) Two phases, vapour and liquid, with the liquid phase encompassing completely 

solubilized species.  

d) A mixed vapour phase at low pressures. 

 

Figure 4-8. Schematic Description of the Two and Three Phase Regions for n-Octane/Water 
Blends Using the NRTL Model. 

In the present study, however, one is especially interested in the behaviour described by 

the VLL dashed line in Figure 4-8, which corresponds to the Three Phase Region (TPR) and 

the two vapour-liquid phase domains, in the highly diluted region of a separator unit. 

Regarding the experimental data considered in the present study, they are extensively 

described in Kong (2020) [94]. These vapour-liquid equilibrium measurements were 

developed at the CREC laboratory using a CREC VL Cell. These experiments were 

conducted using 17 different mass compositions of n-octane in water and were repeated 
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at least three times with good reproducibility. Standard deviations for repeats were +/- 

4.85 kPa in the 80-110°C range of interest. Given the high density of the experimental 

data points, curves reported were obtained via linearization of data neighbours, followed 

by interpolation as needed for comparison of thermal levels.   

Figure 4-9 reports the experimental points at different temperatures and octane 

concentrations, in the range of interest. The experimental setup considers the presence 

of air, as would occur in industrial operation. In that sense, the pressure of each 

experimental point and the models used for comparison, consider air. 

Baselines with the mean values of pressure at 20% to 98%wt octane compositions were 

calculated and reported as blue lines in Figure 4-9. These baselines represent two 

coexisting liquid phases, as confirmed with visual observations in a Plexiglass unit [94]. In 

the same way, the blue band reports the 95% confidence intervals, calculated from the 

experimental data. In this range, data has a near-normal behaviour, the confidence 

intervals are calculated on this basis [120]. One should also note that the red line in Figure 

4-9 describes the fully immiscible Two Liquid Model given by (Poct + Pw). As expected, the 

immiscible assumption does not represent the experimental values but rather 

overestimates them. 
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Figure 4-9. Experimental Pmix Results at 80C and 100C. Note: i) The red line describes the two-
phase fully immiscible model, ii) all Pmix  experimental and model derived points include the 

presence of air.  

Figure 4-10 describes the Pmix for highly diluted octane in water (aqueous phase), while 

Figure 4-11 reports Pmix for highly diluted water in octane (hydrocarbon phase). One can 

notice in both cases, there are significant Pmix reductions, with this being attributed to the 

solubility of highly diluted mixtures. It is also important to notice, that at 100-110C  the 

highly diluted mixtures change from the TPR to the two-phase region domain. This is 

consistent with Figure 4-8, where a three-point straight line can be used to explain the 

presence of the three-phase region (TPR), with two liquid phases and a vapour phase 

being present. 
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Figure 4-10. Pmix  for Highly Diluted Octane in Water Mixtures at 80°C, 90°C, 100°C, 110°C. 

 

Figure 4-11. Pmix  for Highly Diluted Water in Octane Mixtures at 80°C,90°C, 100°C, 110°C. 
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Furthermore, when the NRTL model results are plotted as in Figure 4-12, together with 

the experimental data points obtained in the CREC VL Cell, similar trends for the 

immiscible model can be observed. Here, one can see that the TPR pressure predicted by 

the NRTL is higher than the experimental values. Thus, better predictions are needed for 

Pmix, as is being considered in Chapter 6, with the emphasis of the present chapter being 

on the establishment of the right number of liquid phases. 

 

Figure 4-12. Comparison of Pmix  for the NRTL Model with Experimental Data. Notes The Pmix 
from NRTL Aspen Plus is represented as a green horizontal line while the Pmix  from the NRTL 

from Klauck [49] is represented as a red line. Parameters reprinted with permission from Klauck, 
M.; Grenner, A.; Schmelzer, J. Liquid-liquid(-liquid) equilibria in ternary systems of water + 

cyclohexylamine + aromatic hydrocarbon (toluene or propylbenzene) or aliphatic hydrocarbon 
(heptane or octane). J. Chem. Eng. Data 2006, 51, 1043–1050, doi:10.1021/je050520f. Copyright 

2021 American Chemical Society. 

Figure 4-13 reports the Gmix/RT calculated for n-octane/water blends at 80°C, with those 

for liquid phases represented with blue lines and those for the vapour phase with a red 

line. Regarding the Gmix/RT values, one should note that the experimental Pmix pressures 

were used to calculate the vapour phase, including the uncertainty related to the 95% 

confidence intervals (red band) using estimates from Figure 4-9.  Furthermore, the blue 
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bands in Figure 4-13 represents the Gmix/RT for the liquid phases, which was calculated 

with the experimental temperature measurement uncertainty in the CREC VL Cell (±2°C).  

 

a) 

 

b) 

Figure 4-13. Gmix/RT at  80°C Using a NRTL Model and Experimental Pmix. a) NRTL Klauck et al. 
[49] parameters and b) NRTL with Aspen Plus V9 parameters. Notes: (i) Red bands represent the 

experimental Gmix/RT uncertainty for the vapour phase, (ii) Thick blue line includes the 

experimental Gmix/RT for the liquid phases. Parameters reprinted with permission from 
Klauck, M.; Grenner, A.; Schmelzer, J. Liquid-liquid(-liquid) equilibria in ternary systems of water 
+ cyclohexylamine + aromatic hydrocarbon (toluene or propylbenzene) or aliphatic hydrocarbon 
(heptane or octane). J. Chem. Eng. Data 2006, 51, 1043–1050, doi:10.1021/je050520f. Copyright 

2021 American Chemical Society. 

Thus, and as Figure 4-13 shows, there is an important intrinsic uncertainty when the 

classical, three-point tangent line criteria [116] is applied to experimental data with the 

available models. As was reported already when discussing Figure 4-7, the data from the 

technical literature did not exactly match the three-point tangent criteria condition. The 

fact, that this condition does not precisely agree with a TPR tangent line criteria, reflects 

the inability of the classical stability analysis to include the experimental uncertainty, 

when predicting the number of phases. Thus, and to address this issue more effectively, 

a new Machine Learning Approach is proposed, as will be discussed in the upcoming 

section of this manuscript. 
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4.5. The Machine Learning Approach 

Classification is one of the most common tasks in ML. It can be seen as converting a 

regression prediction problem of a target continuous variable , into a discrete function 

[22]. Past data (labeled items) are used to place new predictions into their respective 

groups or classes [22]. To establish the method reliably, standard metrics such as 

accuracy, true positive rate, true negative rate, precision, and a confusion matrix can be 

used. 

In this respect, and to predict the number of phases, a classification task is implemented 

in the present study, with the goal of classifying the experimental data into two different 

equilibrium phase regions: i) three phases (VLL) and ii) two phases (VL). One should note 

that the experimental data points from the CREC VL Cell are included without averaging 

them, with this allowing one to incorporate the typical variations of the temperature and 

pressure measurements within the classification task. 

The first step in this classification was to determine if the mean value of the experimental 

measured pressures was outside the 95% confidence interval of the VLL equilibrium 

baseline value.  

To test this hypothesis, a t-student test was applied. This was done using the fact that the 

pressure baseline for highly diluted experiments displayed a difference in some liquid 

fraction regions. This approach allowed us to establish that the baseline's mean was 

different from the experimental pressures, for highly diluted octane and highly diluted 

water points, with a 95% confidence interval leading to a p-value that was smaller than 

𝛼 = 0.05 [120].  

Figure 4-14 and Figure 4-15 describe the p-values calculated for the highly diluted 

mixtures at different temperatures. The red line represents the 𝛼 = 0.05 value while the 

blue line the p-values from experiments. When the experimental p-values were found to 

be higher  than 0.05 (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 𝛼), as is shown in Figure 4-14(a) for the 0.1%wt of 

octane in water below 85°C, the TPR assumption was considered suitable. At 
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temperatures above 85°C the opposite was true, with a shift occurring from 3-phases 

(VLL) to 2-phases (VL), with octane/water being fully soluble in each other at these 

conditions.     

 

a) 

 

b) 

 

c) 

Figure 4-14. t-student test  for Highly Diluted Octane in Water Experiments a) 0.1%wt octane, b) 
0.25%wt octane, c) 0.5%wt octane. 

On the other hand, Figure 4-14(b) and Figure 4-14(c) also display the p-value for 0.25%wt 

and 0.5%wt of n-octane in water, with a similar transition from the TPR domain to the 

two-phase region, occurring at higher thermal levels of 99°C and 108°C, respectively.   

 Figure 4-15 considers the case of a p-value for highly diluted water in an octane blend. 

One can see that for 0.25%wt water in octane, there is a change from the TPR to the two-

phase region at 102°C, with the 0.1%wt water in octane blend displaying complete 

miscibility in the entire temperature range of interest.  

 



72 

 

 

 

a) 

 

b) 

Figure 4-15. t-student test for Highly Diluted Water in Octane Experiments a) 99.75%wt octane, 
b) 99.9%wt octane 

Figure 4-16 summarizes the transition temperature for highly diluted octane in water 

mixtures showing a progressive increase of the transition temperature from the TPR to 

two-phases at initial increasing feeding separator concentrations. For instance, at 

concentrations in the 0.02-0.04 % molar range, the transition temperature rate seems 

faster than the one in the 0.04-0.08 % mol range. Demonstrating the importance of 

studying the phase transitions of highly diluted hydrocarbons in water. 

  

Figure 4-16. Temperature Change from the TPR to the Two-Phase Region (highly diluted octane 
in water). 
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4.5.1. Classification Methodology 

Four classification methods were applied to the experimental dataset from the CREC VL 

Cell with the objective of establishing the value of these methods to predict the number 

of phases in n-octane/water mixtures. To prepare the data, an identifier label was 

assigned according to the t-test, to experimental results as two phases or three phases . 

The main features involved were temperature (°C), absolute pressure (kPa, including air), 

zi (mol) and phase number. The first step was to apply a min-max scaler to T and P data. zi 

was already in the 0 to 1 range, and no modification was required. Furthermore, and for 

the phases number label, the phase class was encoded as 1 for 2-Phases and 0 for 3-

Phases. 

In terms of the classification models, Logistic Regression, Decision Tree, K-neighbors, and 

Support Vector Classification from the Sklearn library in Python, were used to predict the 

number of phases of the experiments, available in the Temperature range of interest (80-

110°C) (refer to Table 4-5 and Section 2.2). One of the main challenges of this classification 

problem is that it consists of an imbalanced dataset, with 4056 (approx. 23%) 

experimental data points for the 2-phase region and 13402 data points for 3-phase region 

as shown in Figure 4-17.  
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Figure 4-17. Distribution of Three Phase (liquid-liquid-vapour) and Two Phase (Liquid-vapour) 
Data Available. 

To address the data imbalance issue, two strategies are considered: i) to undersample or 

downsize the 3-Phase class so that the proportion of data to train the models is the same 

for both phase classes, ii) to use a weighted algorithm, in the case of logistic regression 

and SVC, with a class weight hyper-parameter option being used. The objective of this 

approach is to compare the behaviour of the various models and establish which one 

better predicts and represents the 2-Phase region.  

Table 4-5 summarizes the four models implemented with the Logistic Regression, the K-

Neighbor Classifier (KNN) and the Support Vector Classifier (SVC), using default 

parameters [24]. Regarding the Decision Tree Classifier, a shallow tree (max depth = 3) 

with entropy as  the classification criteria was considered to establish the split quality. 

The default hyper-parameters were selected as provided by the Scikit Learn library, to 

make of the model a predictive one and to demonstrate the applicability of the ML 

Classification. 
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Table 4-5. Classification Models Implemented. 

Model 

# 

Type Hyper-parameters Class Weight 

option 

1 Logistic Regression penalty: 12, tol: 0.0001, C: 1.0, fit_intercept: True, 
intercept_scaling: 1 

Yes 

2 Decision Tree Classifier criterion: entropy, splitter: best, max_depth: 3, 

min_samples_split: 2, min_samples_leaf: 1 

Yes 

3 K-Neighbors Classifier n_neighbors: 5, weights: uniform, algorithm: auto, 

leaf_size: 30, p: 2, metric: Minkowski 

No 

4 Support Vector Classifier (SVC) C:1.0, kernel: rbf, degree: 3, gamma: scale, shrinking: 
True, probability: True, tol=0.001 

Yes 

In order to better evaluate the classification methods, 20% of the temperature data was 

excluded randomly from the original training dataset. This 20% of excluded data was kept 

aside to be included later, in the final testing dataset. After dropping these temperature 

data points, the remaining ones were split at 20% test data using a “train test split” 

function from the Sklearn library, which considers the classes ratio while performing the 

train splitting. Additionally, and to deal with the imbalance of the dataset, the majority 

class of the three phases data was randomly downsized with the idea of having two 

datasets with a similar class ratio.  

To establish the performance of these classification models, precision, recall and F1-score 

were calculated as reported in the following equation.  

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4-5) 

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4-6) 

F1score =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑟𝑒𝑐𝑎𝑙𝑙

 
(4-7) 

 

Where TP refers to a true positive, TN to a true negative, FP to a false positive and FN to 

false negative.  

Furthermore, the Receiver Operating Characteristics (ROC) and the Areas Under the ROC 

Curve (AUC) were also considered in the analysis. These parameters are commonly used 
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in binary classifiers. ROCs plot the true positive rate (also known as Recall) versus the 

False Positive Rate (FPR)[21]. It is important to note that the selected models could be 

calibrated, with calibrated probabilities reflecting the likelihood of true events. 

4.5.2. Classification Models Results 

In the classification analysis developed, the more abundant class (Major Class or Class 0) 

was randomly downsized to match the size of the less abundant class (Minor class or Class 

1). Figure 4-18 reports the resulting confusion matrix for this strategy, with the 

classification report being given in Table 4-6, and AUC and ROC results being shown in 

Figure 4-19. It can be observed that the K-Neighbors Classifier and SVC presented the best 

results for the 2-Phase case, which is the most valuable one in the present study. One can 

thus see, that the K-Neighbors Classifier and SVC can predict both 2-Phase and 3-Phase 

experiments with high precision, recall and F1 scores. 

  

Figure 4-18. Confusion Matrix for the Tested Classification Models using Strategy 1. Note: 
Calculated based on test dataset. 
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Table 4-6. Classification Phase Report - Strategy 1. Note: Calculated based on test dataset.  

Logistic Regression 

 Precision Recall F1 score 

3-Phases 0.92 0.93 0.94 

2-Phases 0.78 0.83 0.80 

    

Decision Tree Classifier 

 Precision Recall F1 score 

3-Phases 1.00 0.90 0.95 

2-Phases 0.75 0.99 0.85 

    

K-Neighbors Classifier (KNN) 

 Precision Recall F1 score 

3-Phases 1.00 0.97 0.98 

2-Phases 0.91 1.00 0.95 

    

SVC 

 Precision Recall F1 score 

3-Phases 1.00 0.93 0.96 

2-Phases 0.80 0.99 0.88 

Figure 4-19(a) describes  the AUC-ROC curves for the first phase classification strategy. It 

is possible to observe that Logistic Regression is the one with the worst performance with 

an AUC of 0.97, with the KNN being the best one with an AUC of 0.998. 

 

a) 

 

b) 

Figure 4-19. AUC and ROC Results for Strategies a) 1 and b) 2. Note: Calculated based on test 
dataset. 
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One should, however, consider that  under sampling (downsized sample) one phase class 

can  bias the posterior probabilities of the classifier [121]. To address this issue, strategy 

2, which uses weighted algorithms without changing the size of the testing dataset was 

considered.  Figure 4-20, Table 4-7 and Figure 4-19(b) report the results for the confusion 

matrix, classification report and AUC and ROC results using Strategy 2. One can notice an 

improvement using the weighted algorithms; without under sampling, the KNN and 

weighted SVC results were able to improve for the 2-Phase predictions, reducing the 

number of false positives and false negatives.  

 

Figure 4-20. Confusion Matrix for Strategy 2. Note: Calculated based on test dataset. 
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Table 4-7. Classification Reports for Strategy 2. Note: Calculated based on test dataset. 

Logistic Regression (penalized) 

 Precision Recall F1 score 

3-Phases 0.92 1 0.96 

2-Phases 1 0.72 0.84 

    
Decision Tree Classifier (penalized) 

 Precision Recall F1 score 

3-Phases 0.95 1.00 0.97 

2-Phases 1.00 0.82 0.90 

    
K-Neighbors Classifier (KNN) 

 Precision Recall F1 score 

3-Phases 1.00 0.99 0.99 

2-Phases 0.97 0.98 0.98 

    
SVC (penalized) 

 Precision Recall F1 score 

3-Phases 0.98 1 0.99 

2-Phases 1 0.94 0.97 

 

Given the promise of obtaining ML results for phase classification, the calibration plot for 

the KNN model and the weighted SVC, which represent the best models, were further 

validated as reported in Figure 4-21(a) and Figure 4-21(b). As a result, one can conclude 

that the ML model was well calibrated with the predicted probabilities corresponding 

closely to the expected distribution of probabilities for each class. 
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a) 

 

b) 

Figure 4-21. Calibration for a) KNN and b) SVC Models. Note: Calculated based on test dataset. 

As well, one can notice that the KNN classifier shows near-perfect calibration, with this 

being an improvement over the weighted SVM classifier. In addition, the KNN model 

presents the better results overall, and is selected for our future work. Thus, it is shown 

in the present study, that Machine Learning provides a valuable tool to accurately 

discriminate between 2-Phase or 3-Phase equilibrium regions. This prediction is critical 

while implementing phase equilibrium calculations, where the identification of the 

number of phases is a critical starting point for the flash calculations. This is achieved 

using to train the ML classifiers the abundant CREC VL Cell experimental data, instead of 

available thermodynamic models or simulation software, securing the good quality of the 

data considered and the adequate successful application of ML techniques. 
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4.6. Conclusions 

 

a) It is shown that reliable models, based on fundamentals principles, are still needed 

to represent the number of phases, in diluted hydrocarbon in water mixtures at 

phase equilibria. 

b) It is proven that a phase stability analysis involving the Gibbs energy of mixing, can 

be used to explain calculation result discrepancies, in water/n-octane mixtures 

when using available simulation software. 

c) It is demonstrated that runs in a CREC VL Cell employing a dynamic technique 

(1.22/min temperature ramp), can provide the “big data sets” required to 

accurately determine the fully miscible, partially miscible, and fully immiscible 

octane/water blend states. 

d) It is proven that ML models based on the obtained “big data sets” can be proposed 

for the prediction of the number of phases under the studied conditions, with the   

KNN model and the weighted SVC model, identified as the ones with best 

performance.  
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5. A Machine Learning Approach for Vapour-Liquid-Liquid and 

Vapour-Liquid Equilibrium of Paraffinic Aromatic Synthetic 

Naphtha/ Water Systems: Prediction of Phase Number 

Canada has produced synthetic crude from Alberta oil sands for about 40 years and has 

become the world leader in oil sands production [1,3]. The crude obtained from the oil 

sands is called bitumen. The challenge for bitumen and heavy oil processing is to maximize 

project economics through the optimization of each process step involved [2]. When 

compared to conventional crudes, one can note that the processing of oil sands is energy 

intensive.  

The NRU consists of a vacuum stripping tower with steam being injected at the bottom of 

a deck. This unit recovers naphtha from the bitumen process tailings for reuse, while the 

remaining fraction being discharged to the tailings pond [4]. This process is energy-

intensive, and environmental guidelines for naphtha recovery must be met [4]. 

The simulation of the NRU requires knowledge of the unit thermodynamics involved. One 

of the main issues to clarify in naphtha-water systems is the transition from the three-

phase VapourVapour-Liquid-Liquid (VLL) equilibrium to the two-phase VapourVapour-

Liquid (VL) equilibrium. In this respect, this work’s main objective is to develop an 

improved methodology, to predict the number of phases in naphtha/water systems, 

under the NRU operation conditions. 

Traditionally, the Peng-Robinson (PR) Equation of State (EoS) is one of the most popular 

to predict hydrocarbon-based PVT behaviourbehaviour, including vapour pressures [99]. 

When using simulation software such as HYSYS V9 or Aspen Plus V9, it is considered one 

of the most enhanced models with an extensive binary interaction parameter database. 

However, the PR EoS displays limitations when the considered blends include water or 

aqueous hydrocarbon mixtures [100]. In this sense, as suggested by previous research 

from our group [94,95], the PR EoS does not describe the system under study well, and a 
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different EoS should be used. In the case of binary systems, such as n-octane/water 

mixtures, an activity coefficient model can be used, as we proposed in our previous work 

[5]. However, the limit of classical activity coefficient models is low operation pressures 

(≤10 bar) and no presence of C7+ in the components. Therefore, for water and heavy 

hydrocarbon blends such as naphtha or bitumen (C7+) in water streams, as in the case of 

this study, a Cubic Equation of State is strongly suggested. In this work, the Soave-Redlich-

Kwong (SRK) EoS with a Kabadi-Danner [101] modification is used, given that it can 

improve the VLLE calculations for water-hydrocarbon systems, particularly in dilute 

regions, as shown in the present study.  

For the experimental studies, an paraffinic-aromatic synthetic naphtha (PASN) was used. 

As reported in Kong’s Master Thesis [94], the PASN was prepared using 5 paraffinic 

compounds, and toluene. The True Boiling Point (TBP) Curve of the PASN used for this 

work, was similar to that  of  a typical naphtha [94]. In this work, analyses of (a) the phase 

stability using Soave-Redlich-Kwong Equation of State with a Kabadi-Danner modification 

(SRKKD EoS), (b) the experimental data reported by Kong (2020) [94] for this mixture, and 

(c) a machine learning approach used to predict the number of phases in PASN/water 

systems, are presented. The ML methodology developed in our previous work [5], for n-

octane/water systems, was adapted for PASN/water mixtures. 

5.1. Materials and Methods 

5.1.1. Materials 

Distilled water was used in all the experimental studies. As proposed by Kong’s Master 

Thesis (2020) [94], typical naphtha can be represented by a mixture of paraffins consisting 

of 5 paraffinic hydrocarbons (in the 6 to 12 carbon range) and toluene (Table 5.1). The  

composition of the blend was selected to represent a typical naphtha, as reported in the 

technical literature [122]. The aromatic synthetic naphtha (PASN) presented a similar 

distillation curve to the one in the literature, as demonstrated by Kong (2020) [94].  
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Table 5-1. Aromatic Synthetic Naphtha (PASN) Composition. 

Component  Brand Purity (%) 
Water 

content (%) 
Composition (wt%) 

Composition 
(mole%) 

n-hexane Sigma-Aldrich >97 0.01 9.5% 11.94% 

n-heptane Sigma-Aldrich >96 0.02 20.9% 22.59% 

n-octane Sigma-Aldrich >99 0.00 57.0% 54.05% 
n-decane Sigma-Aldrich >99 0.01 5.7% 4.34% 

n-dodecane Sigma-Aldrich >99 0.00 1.9% 1.21% 

Toluene 
Fisher 

Scientific 
>99 0.008 5.0% 5.88% 

5.1.2. HYSYS V9 simulations 

The behaviour of water/PASN mixtures such as the one described in Table 5.1 can be 

simulated using HYSYS V9. For this, a 3-phase separator was specified. A 100 kgmol/h 

stream of water was mixed with a PASN stream getting a blend with a 50%mol water / 

50%mol PASN mixture. This blend was fed into the unit, with temperatures in the 80-110 

°C range and a vapour fraction of 0.  

It is important to notice that the expected percentual molar fraction difference related to 

the PASN is much lower than 0.1%, when the feed and the hydrocarbon phase are 

compared in 80-110°C range as reported in Table 5.2 and Table 5.3. In this way, the 

change on initial relative composition of hydrocarbons within the PASN is expected to be 

negligible. 

Table 5-2.Predicted HYSYS V9 Molar Fraction Difference in VLLE between feed and outlet for the 
Hydrocarbon Phase at 80°C. 50wt% PASN in water 

 
Feed 
(H20) 

(mole%) 

Feed 
(PASN) 

(mole%) 

Outlet 
Hydrocarbon 

Phase 
(mole%) 

Outlet 
Aqueous  

Phase 
(mole%) 

Hydrocarbon 
Phase 

(mole%, base 
free of water) 

Hydrocarbon 
Phase 

(% diff) 

Water 100 0.0% 6.27E-03 0.99995061   

n-Hexane  11.9% 11.87% 3.26E-06 11.94% 0.002% 

n-Heptane  22.6% 22.45% 1.44E-06 22.59% 0.004% 

n-Octane  54.0% 53.71% 6.53E-07 54.05% 0.005% 
n-Decane  4.3% 4.31E-02 5.38E-10 4.34% 0.005% 

Toluene  5.9% 5.84E-02 4.40E-05 5.87% 0.070% 
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n-Dodecane  1.2% 1.20E-02 8.95E-13 1.21% 0.005% 

 

Table 5-3. Predicted HYSYS V9 Molar Fraction Difference in VLLE between feed and outlet for the 
Hydrocarbon Phase at 110°C. 50wt% PASN in water 

 Feed (H2O) 
(mole%) 

Feed (PASN) 
(mole%) 

Hydrocarbon 
Phase 

(mole%) 

Aqueous  
Phase 

(mole%) 

Hydrocarbon 
Phase 

(mole%, 
base free of 

water) 

Hydrocarbon 
Phase 

(% diff) 

Water 100 0.0% 1.64*10-2 0.999932   

n-Hexane  11.9% 11.74% 4.73*10-6 11.94% 0.006% 

n-Heptane  22.6% 22.22% 2.25*10-6 22.59% 0.004% 

n-Octane  54.0% 53.16% 1.12*10-6 54.05% 0.009% 

n-Decane  4.3% 4.27*10-2 1.37*10-9 4.34% 0.011% 

Toluene  5.9% 5.78*10-2 6.02*10-5 5.87% 0.094% 

n-Dodecane  1.2% 1.19*10-2 3.62*10-12 1.21% 0.012% 

5.2. Phase Stability Testing 

The NRU can be represented as a flash unit. One problem when dealing with flash 

calculations is that the number of phases in phase equilibrium calculations is not know a 

priori. To address this issue, there are two main approaches [10]: (i) to assume a number 

of phases and proceed to phase split calculations, (ii) to perform a phases stability test. 

This work focuses on the second approach. 

The stability analysis for binary systems can be extended to multicomponent mixtures, by 

minimizing the Gibbs Free energy of mixing, as reported in our previous work [5]. In the 

case of a multicomponent mixture, the Δ𝐺𝑚𝑖𝑥  can be defined by a surface instead of a 

curve, and the tangent line expressed as a tangent plane [13]. This Tangent Plane Distance 

(TPD) approach was originally proposed by Baker et al. (1982) [118].  

The Tangent Plane Distance (TPD) represents the separation between two Gibbs free 

energies, at constant temperature and pressure [123]. TPD analysis for a multicomponent 

fluid can be used to determine the stability of a phase, and is related to the chemical 

potential and fugacity coefficients as follows [124]: 



86 

 

 

𝑇𝑃𝐷̅̅ ̅̅ ̅̅ = ∑𝑦𝑖[𝜇𝑖(𝒚) − 𝜇𝑖(𝒛)]

𝑐

𝑖=1

 
 (5-1) 

 

𝑇𝑃𝐷 =
𝑇𝑃𝐷̅̅ ̅̅ ̅̅

𝑅𝑇
= ∑𝑦𝑖[ln𝜙𝑖(𝒚) + ln𝑦𝑖 − ln𝜙𝑖(𝒛) − ln 𝑧𝑖]

𝑐

𝑖=1

 
 (5-2) 

Where 𝒚 = 𝑦1, 𝑦2, … , 𝑦𝑁  refers to the trial phase (liquid or vapour) and 𝒛 = 𝑧1, 𝑧2, … , 𝑧𝑁 

refers to the testing phase (feed) [125]. The multicomponent blend is considered to be 

stable if the TPD is positive or zero, for any trial phase composition of  𝒚 [124]. 

{

𝑇𝑃𝐷 ≥ 0  ∀ 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁) ∈ ℜ

∑𝑦𝑖

𝑁

𝑖=1

= 1
 

 (5-3) 

Regarding the stability analysis, it is expected that if all the stationary points of the TPD 

function are calculated, then a Δ𝐺𝑚𝑖𝑥 global minimum can be established [7]. However, 

in practice, it is not easy to find all the stationary points, as the Δ𝐺𝑚𝑖𝑥 surface is non-

convex with a local minima, with the calculation methods converging towards local 

minima [7]. The stationary condition is related to the derivative of Equation (5.1) as 

explained elsewhere [7], and is given by Equation(5.4): 

ln𝜙𝑖(𝒚) + ln 𝑦𝑖 − ln𝜙𝑖(𝒛) − ln 𝑧𝑖 = 0  (5-4) 

 

In this respect, Equation (5.4)  can be considered as proposed by Michelsen as an 

unconstrained local minimization using a variable change [80]: 𝑌𝑖 = 𝑦𝑖𝑒
𝜇𝑖(𝒛)−𝜇𝑖(𝒚) with 

𝑦𝑖 =
𝑌𝑖

∑ 𝑌𝑖
𝑁
𝑖=1

. Thus, the resulting stationary condition (zero derivative) is given by: 

ln𝜙𝑖(𝒀𝒊) + ln𝑌𝑖 − ln𝜙𝑖(𝒛) − ln 𝑧𝑖 = 0  (5-5) 

 

One should note that the stability condition to be satisfied by all the stationary points, 

given that 𝑇𝑃𝐷 ≥ 0, is equivalent to ∑ 𝑌𝑖
𝑁
𝑖=1 = 1.   
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Thus and given the above, an equivalent equation can be obtained, 

𝑇𝑃𝐷∗ = ∑𝑌𝑖[ln𝜙𝑖(𝒀) + ln𝑌𝑖 − ln𝜙𝑖(𝒛) − ln 𝑧𝑖]

𝑐

𝑖=1

 
 (5-6) 

 

With 𝑌𝑖 > 0  and the stationary points with the same sign, assessed with TPD (Equation 

(5.2)) and TPD* (Equation (5.6)). 

5.3. Results and Discussion 

5.3.1. Validation of the SRKKD EoS Python Model with N-Octane /Water 

Mixtures 

As explained in Section 5.1.2, HYSYS simulations were completed using a 3-Phases 

separator, while in the case of the simulations carried out with Aspen Plus V9, a binary 

analysis was performed. In both cases, an air correction was applied.  

Figure 5-1 reports VLLE results for water/n-octane systems using SRKKD EoS in HYSYS V9, 

Aspen Plus and the model developed in Python for this work. Results are compared with 

experimental data reported previously by our research group [5,94,126]. One can notice 

when comparing the HYSYS V9, Aspen Plus V9 and Python results with Experimental data 

at 80°C, that the pressure differences at the Three Phase Region (TPR) are  6.91%, 7.0% 

and 4.2%, respectively. It can be observed that the result reported by Aspen Plus V9 and 

HYSYS V9 are close to the pressure calculated with the immiscible assumption. As 

presented in our previous work [5], this assumption is however, incorrect for water/n-

octane mixtures.  As well, one is not able to reproduce the results from HYSYS V9 and 

Aspen Plus V9 using Python. Simulation software calculations, a black-box model indeed. 

Thus, the Python model is adequate as a White Box methodology, given that it is far from 

the immiscibility assumption, and it provides results within the 95% confidence interval 

provided by the blue bands as shown in Figure 5-1.  Thus, as a result of this the Python-

SRKKD model was considered the most adequate for the upcoming phase stability tests.  
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Figure 5-1. Comparison of the SRKKD EoS in Python with HYSYS V9 and Aspen Plus V9 
Simulations, and experimental data for water/n-octane mixtures at 80°C.  

5.4. Phase Stability Test 

As stated previously, to perform flash calculations, it is important to be able to predict the 

number of phases at given operating conditions. In Chapter 4 , we used a Gibbs free 

energy minimization for the binary water/n-Octane mixture [5],  and this to analyze the 

number of phases. In the case of multicomponent mixtures, as it is the case of PASN, the 

use of the TPD* function, as explained in Section 5.2, was suggested instead.  

Furthermore and when considering the Tangent Plane Distance (TPD*) calculations as can 

be obtained using Equation 5.6,  there is a similarity between the calculated results for 

water/n-octane and those for water/PASN, when one considers the PASN relative 

compositions, which do not change within the hydrocarbon phase (pseudo-binary 

approach).  

Figure 5-2 to Figure 5-4 report TPD* results for the case of a mixture at 80°C, and with a 

P = 84.94 kPa (predicted TPR pressure for a 50 mole% water/PASN mixture as given by 

Python calculations). One can observe that for a water molar fraction of 0.5 when 
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considering the liquid phase (Figure 5-2a) or the vapour phase (Figure 5-2b), there are 

values of the TPD* that are located below the zero dotted line, this means that 2 or more 

phases may co-exist.  

Furthermore, in the case of Figure 5-3, for a water molar fraction of 10-3, all values of 

TPD* function are higher than 0, which means only one liquid phase is present (complete 

solubility). Finally, for Figure 5-4 with a molar fraction of 1-10-7, the negative values of 

TPD* show the presence of two liquid phases. 

 

(a) 

 

(b) 

Figure 5-2. TPD* at 80°C, zw = 0.50 and 87.45 kPa  – Trial Phase is a) Liquid b) vapour. Note: 
Dotted Red Line shows TPD*  zero value 

 

(a) 

 

(b) 

Figure 5-3. TPD* at 80°C, zw = 10-3 and 87.45 kPa  – Trial Phase is a) Liquid b) vapour. Note: 
Dotted Red Line shows TPD*  zero value 
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(a) 

 

(b) 

Figure 5-4. TPD* at 80°C, zhydrocarbon = 10-7 and 87.45 kPa  – Trial Phase is a) Liquid b) vapour. 
Note: Dotted Red Line shows TPD*  zero value 

Then, by representing the PASN to be a pseudo-binary system, the TPD* function can be 

minimized using a Sequential Least Squares Programming (SLSQP) Method, available in 

the SciPy package from Python, and with the constraint of 𝑌𝑖 > 0.   

Figure 5-5a reports the value of 𝑌𝑤 for which TPD* is minimum, while Figure 5-5b presents 

the minimum values of TPD*.  Thus, for very low concentrations of water, it is possible to 

notice minimum TPD* values, that are higher than zero, meaning one liquid phase is 

present only. One should notice that for low hydrocarbon values, this behaviour was not 

observed, with two liquid phases being found in these cases. 

 

(a) 

 

(b) 

Figure 5-5. Minimization of TPD* Function at 80°C and 87.45 kPa.   
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However, when considering multicomponent mixtures, the Yi individual molar fractions 

should be varied, and the TPD should, on this basis, be calculated. For instance, in the 

case of the PASN in water blends of this study, this means changing the water 

composition, as well as the composition of 5 out of the 6 hydrocarbons present in the 

blend.  This presents a significant computational challenge, in terms of computational 

time and convergence towards a global minimum. Given the above, in the upcoming 

sections, a Machine Learning alternate approach is proposed to identify the number of 

phases present in the PASN/water mixtures. 

5.4.1. Analysis of Experimental Results 

The obtained experimental results for water/n-octane and water/PASN mixtures were 

first compared as shown in  Figure 5-6. This figure reports the average vapour pressure, 

as measured in the CREC VL Cell, for 50/50 %wt mixtures and for pure components 

(results include air). It can be noticed that for the 50/50 %wt mixtures, the maximum 

difference in pressure is 10%, while for pure octane and PASN components it is 19.2%. 

Thus, n-octane can be considered a good pseudo component to represent as a first 

approximation naphtha/water systems, as stated previously by our group [5,94]. 

 

a) 

 

b) 

Figure 5-6. Comparison of Experimental Results for (a) 50%wt PASN/ 50%wt Water and 50%wt 
Octane/ 50%wt Water and b) 100%wt PASN and 100%wt Octane. Note: Results include air. 



92 

 

 

Figure 5-7 reports experimental data for water/n-octane and water/PASN obtained in the 

CREC VL Cell, as described in Section 2.2. In this figure, the “blue” and “green” horizontal 

lines represent a baseline for the VLL equilibrium at a given temperature, for water/n-

octane and water/PASN mixtures. The blue and green bands provide the 95% confidence 

interval for the pressure baseline.  In Figure 5-7, one can notice while comparing the VLLE 

pressure of water/n-octane and water/PASN mixtures, that the difference between PASN 

them is 7.9%, 8.9%, 9.4% and 9.9% at 80°C, 90°C, 100°C, 110°C, respectively. The observed 

behaviour is similar to the one described in our previous work [5], for the VLL and VL 

equilibrium domains. 

 

Figure 5-7. Comparison of Experimental Results with PASN/Water and Octane/Water Mixtures. 
Note: Experimental data for n-octane/water systems are from our previous work [5]. 
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As well, and while reviewing Python results (including air correction), used to predict the 

pressure at VLLE (Figure 5-8), similar trends were observed: a close to a trapezoidal 

change of the total pressure with hydrocarbon molar fractions. Air was included in the 

calculations consistent with air presence in the CREC VL Cell. The observed difference of 

the CREC VL Cell data for n-octane/water and PASN/water mixtures at the TPR was of 

9.87%, 10.69%, 11.17% and 11.29% at 80°C, 90°C, 100°C, 110°C, respectively. 

 

 

Figure 5-8. HYSYS V9 Results for Octane/Water and PASN/Water Blends. 

In this respect, one can remark that traditionally, hydrocarbon/water mixtures were 

assumed to be completely immiscible species and this to reduce the computational effort. 

However, as reported in Figure 5-9, the immiscible hydrocarbon assumption (red line in 

Figure 5-9) does not represent PASN/water mixtures properly. The immiscible 
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hydrocarbon assumption overestimates in fact, the total pressure, at the three-phase 

region where two liquid phases and one vapour phase are present. As well, this model 

assumes complete two liquid phases immiscibility for both highly diluted octane in water 

and water in octane blends. 

 

Figure 5-9. Pressure for Experiments in the CREC-VL Cell versus Pmix from Two Immiscible Liquid 
Phase Model for PASN/Water Mixtures.  

Furthermore, when comparing PASN/water (Figure 5-10) experimental results with the 

Python predictions, it is possible to observe a similar overestimated total pressure at the 

three-phase region. 
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Figure 5-10. Pressure from Experimental Results in the CREC-VL Cell versus SRKKD (Python) 
Results for PASN/Water Mixtures.   

As well, if one considers in more detail the highly diluted regions of water in PASN (Figure 

5-11 and Figure 5-12), it is possible to notice significant pressure differences, as stated in 

our previous work [5]. This behaviour is characteristic of the two-phase region, where the 

two liquids are highly miscible. As in the case of the n-octane/water system [5], for the 

PASN/water mixtures, the horizontal baseline indicates the presence of VLLE. On the 

other hand, the lower than the horizontal baseline pressures for highly diluted samples 

show two-phase region conditions. Thus, it is also possible to observe that the SRKKD 

equation does not accurately represent the thermodynamic behaviour in these highly 

diluted blends of either aqueous or hydrocarbon liquid phases. 
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Figure 5-11. Expanded View for the Pressure for Highly Diluted Water in the PASNPASN Region 
using Data from the CREC-VL Cell and SRKKD (Python) results. 
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Figure 5-12. Expanded View for the Pressure for Highly Diluted PASN in the Water using data 
from the CREC-VL Cell and SRKKD (Python) values. 

In summary and on the basis of the reported results, using the CREC VL Cell, one can argue 

that: a) at highly diluted hydrocarbon concentrations in water and highly diluted water 

concentrations in hydrocarbons, there are significant model deficiencies for assessing 

total pressure, b) at intermediate range molar concentrations, the fully immiscible model 

is deficient and requires some correction, accounting for partial solubility.  

5.4.2. T-Student Test 

As reported Chapter 4 and in a recent article by Lopez-Zamora et al. [5], a first step while 

developing the task of classifying the number of phases, is to determine if the mean value 

of the experimentally measured pressures is outside the 95% confidence interval of the 



98 

 

 

VLL equilibrium baseline level. To evaluate this, a t-student test can be considered. This 

approach allows one to establish under what conditions the mean of the baseline is 

different from the experimentally measured pressures, with a 95% confidence interval 

leading to a p-value smaller than 𝛼 = 0.05.  

Figure 5-13 reports the p-values from the experiments, which always remain below the 

p-values from the t-test. This points to two completely miscible liquid phases, with this 

being true for 0.1wt%, 0.25wt% and 0.5wt% of PASN in water, in the 80 to 100 °C range. 

Additionally, when the naphtha content in PASN-water surpasses 1wt%, it displays 

complete miscibility at 90°C and above, p-values from the CREC VL Cell data exceed in this 

case, the p-values with =0.05, with this being an indication of the two coexisting liquid 

phases.  

 

Figure 5-13. T-Student Test for Highly Diluted PASN in Water. Note: Reported lines represent the 

p-value from: a) the experimental data (blue line), b) the t-test with an = 0.05. 



99 

 

 

Figure 5-14 further considers the “transition” temperatures, when the three phases 

become two phases, and this for PASN-water blends. One can notice that these transition 

temperatures show a progressive increase with higher PASN concentrations.   

 

(a) 

 

(b) 

Figure 5-14. Transition Temperatures at which the Three Phases become Two Phases, for Highly 
Diluted PASN in Water Mixtures, as Calculated with T-Student Test: (a) PASN Mass Percentage, 

(b) PASN Molar Percentage.  

Figure 5-15 is obtained when calculating the TPD* representing an experimental mixture 

with 0.5%wt (0.0835%mole) PASN in water, at a temperature 80°C and 83.54 kPa. It is 

observed that the presence of negative values for TPD* suggests the presence of two 

liquid phases. However, and in disagreement with this, the experimental results from the 

CREC VL Cell show that there is only one single phase present (completely miscible 

mixture).  
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Figure 5-15. TPD* at 80°C, zPASN = 0.00835 and 83.54 kPa  – Trial Phase is Liquid. Note: Doted Red 
Line shows TPD*  zero value  

5.5. Classification of Phase Regions 

Although a Tangent Plane Distance (TPD*) analysis could in principle be used to predict 

the number of phases in PASN/water mixtures, the parameters available in the technical 

literature do not account for the higher miscibility observed, during the experimental runs 

in the CREC VL Cell.  

In this respect, and thanks to the large abundance of experimental data points obtained 

during runs with the CREC VL Cell, it is possible to establish more certain thermodynamics, 

and use this information as a powerful classification methodology to predict the number 

of phases. While this classification methodology was already proposed in our previous 

work, for a n-octane/water mixture [5], it is now being considered for the more complex 

PASN/water mixtures of this study.  

In this regard, data was labeled according to the t-test results. In this case, 42% of the 

data correspond to the two-phase region (6462 data points) and 58% of the data 

correspond to the three-phase region (8889 data points). This is shown in Figure 5-16.  
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Figure 5-16. Distribution of the Three-Phase (VLLE) and Two-Phase (VL) Data Available. 

This dataset can be considered balanced, as it is very near to the 50/50% perfect balanced 

dataset. Thus, the two best methods already proposed in Chapter 4 and  Lopez-Zamora 

et al. (2021) [5] were applied as reported in Table 5-4.  Additional descriptions of the K-

Neighbors Classifier and Support Vector Classifier (SVC) are also reported in Section 2.2. 

Table 5-4. Classification Models Implemented. 

Model # Type Parameters Class Weight option 

1 K-Neighbors Classifier Default No 

2 Support Vector Classifier 

(SVC) 

Default Yes 

 

To avoid overfitting, 20% of the temperature data was dropped from the training data 

using a random selection. It was then added to the testing dataset. The remaining data 

points were split as 20% test, 80% training, using a “train test split” function from the 

Sklearn library. The performance of these classification models was measured using 

Precision, Recall and F1-score, as reported by the following equations:  

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (5-7)  

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (5-8) 
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F1score =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

 
 (5-9) 

Figure 5-17 reports the Confusion Matrix for the KNN (Figure 5-17a) and SVC models 

(Figure 5-17b). In the case of KNN, only 0.46% of the 3-phase data points are 

mispredicted, while for the SVC, 98% of the 2-phase data are correctly predicted and only 

1.7% are classified incorrectly. 

 
Figure 5-17. Confusion Matrix for a) KNN Model (Model 1) and b) SVC Model (Model 2). Note: 

Calculated based on test dataset. 

Table 5-5 shows both the Precision and Recall for both the KNN and the SVC models. One 

can notice that the KNN model provides up to 99% Precision for the two phases, while 

the Recall for the SVC is up to 98% for the two-phase data. 

Table 5-5. Classification Report for KNN and SVC Models. 

K-Neighbors Classifier (KNN) 

 Precision Recall F1 score 

3-Phases 1.00 1.00 1.00 

2-Phases 0.99 1.00 1.00 

    

SVC 

 Precision Recall F1 score 

3-Phases 0.99 1.00 0.99 

2-Phases 1.00 0.98 0.99 
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Furthermore, and when considering the model calibrations, which are established if the 

predicted probabilities correspond to the expected probability distribution for each class, 

it can be noticed that the models are not as close to the perfectly calibrated line as shown 

in Figure 5-18. In this case, a recalibration is suggested to increase the confidence of the 

predictions. 

  

Figure 5-18. Initial Calibration of KNN and SVC Methods. Note: Calculated based on test dataset. 

In order to recalibrate the models, the Calibrated Classifier CV function from Sklearn 

library is used. Figure 5-19 reports the recalibrated plots. It is possible to observe, 

especially for the SVC that the recalibrated model it is quite close to the perfectly 

calibrated line. As a result, this model is selected.  
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Figure 5-19. Recalibration of KNN and SVC Methods. Note: Calculated based on test dataset. 

Although the measurements in the Confusion Matrix (Figure 5-20) and the Classification 

Report, as given in Table 5-6, are slightly lower than the ones desired, the recalibrated 

models give enhanced confidence. In this sense, it is considered that the SVC provides the 

best representation of the classification of two and three phases, under the conditions of 

interest of the PASN/water systems. 

 

Figure 5-20. Confusion Matrix for a) KNN Model (Model 1) and b) SVC (Model 2). Note: 
Calculated based on test dataset. 

 



105 

 

 

Table 5-6. Classification Report for KNN and SVC Models  after Recalibration. Note: Calculated 
based on test dataset. 

K-Neighbors Classifier (KNN) 

 Precision Recall F1 score 

3-Phases 1.00 0.99 1.00 

2-Phases 0.99 1.00 0.99 

    

SVC 

 Precision Recall F1 score 

3-Phases 0.99 0.99 0.99 

2-Phases 0.99 0.99 0.99 

 

 

5.6. Conclusions  

a) Significant differences were observed between experimentally determined total 

pressure obtained in a CREC VL Cell, and the VLLE results predicted using SRKKD 

(Python) for highly diluted PASN/water mixtures.  

b) Given the similar behaviour the thermodynamics of PASN/water and n-

Octane/water mixtures, it is proven that PASN/water mixtures can be treated as 

a pseudo-binary mixture.  

c) A TPD (The Tangent Plane Distance) methodology considered for n-octane/water 

and PASN/water mixtures, shows intrinsic shortcomings for prediction of the two 

phase and three phase regions. 

d) A classification methodology (Machine Learning) is proposed instead, to predict 

the number of phases in PASN/water blends. Several classification parameters are 

establish on this basis showing positive indicators, with a SVC Model being 

considered as the one providing better phase classification results. 
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6. Flash calculations for n-Octane/ Water and PASN/water 

Systems  

As stated in section  2.1.3, the phase equilibrium calculation problem deals with two main 

issues [10]: i) phase stability, and ii) phase-split. While the number of phases at 

thermodynamic equilibrium is an unknown  condition, as proposed in Chapter 4 and 5, 

experimental data in the CREC-VL Cell can provide the  two phases and three phases 

region information. This allows  “a priori” classification of the number of phases, reducing 

computational cost, and giving  better initial estimates for the phase split calculation once 

the model is trained.  

In this chapter, traditional flash calculations are compared with a Machine Learning (ML) 

approach. First, traditional calculations are reported explaining the challenges presented 

for the solution of the Rachford-Rice equations involved and the different approaches 

reported in the technical literature. A comparison of flash calculations between water/n-

octane and PASN/water mixtures using SRKKD EoS is also provided.  

Convergence calculations and their issue for water/n-octane and PASN/water systems are 

presented through the analysis of Rachford-Rice derived surfaces. This analysis highlights 

the value of an ML approach which can be developed on the basis of abundant 

experimental data available from the  CREC-VL experimental Cell experiments. 

6.1. Traditional Phase Split Calculations  

Traditionally, the phase split calculations are performed by solving Rachford-Rice (RR) 

equations as shown in Table 2-3, involving phase equilibrium constants. Rachford-Rice 

equations are nonlinear functions obtained from the equal chemical potentials combined 

with material balances [11].  

In the case of the three-phase flash, the main equations (Equations (6-1) to (6-6)) are 

reported below, with the hydrocarbon phase used as a as reference [11,127].   
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𝑓𝑉(𝛽) = 𝑅𝑅𝑦 = ∑(𝑦𝑖 − 𝑥𝑖
𝐿)

𝑁

𝑖=1

= ∑
𝑧𝑖(𝐾𝑖

𝑉 − 1)

𝐻𝑖

𝑁

𝑖=1

= 0 

(6-1) 

𝑓𝑊(𝛽) = 𝑅𝑅𝑊 = ∑(𝑥𝑖
𝑊 − 𝑥𝑖

𝐿)

𝑁

𝑖=1

= ∑
𝑧𝑖(𝐾𝑖

𝑊 − 1)

𝐻𝑖

𝑁

𝑖=1

= 0 

(6-2) 

𝐻𝑖 = 1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1) (6-3) 

Or 

𝑓𝑉(𝛽) = ∑
𝑧𝑖(1 − 𝐾𝑖

𝑉)

𝑡𝑖

𝑁

𝑖=1

= 0 

(6-4) 

𝑓𝑊(𝛽) = ∑
𝑧𝑖(1 − 𝐾𝑖

𝑊)

𝑡𝑖

𝑁

𝑖=1

= 0 

(6-5) 

𝑡𝑖 = 1 − 𝛽𝑉(1 − 𝐾𝑖
𝑉) − 𝛽𝑊(1 − 𝐾𝑖

𝑊) (6-6) 

 

In this respect, the root-finding solution process is complex given these equations present 

discontinuities at their extremes (division by zero), and may have an almost flat slope near 

their roots [128].  

Popular methods for phase split calculations are as follows: a) successive substitution, b) 

quasi-Newton, Newton, c) steepest-descend and d) modifications and combinations of 

them [11]. To solve Rachford-Rice equations, the numerical method's choice is influenced 

by the independent variables that are selected, such as component mole fractions, 

equilibrium ratios, or the logarithm of equilibrium ratios [7]. 

When equilibrium constant ratios or logarithms of equilibrium constants are considered, 

a Newton Raphson method is typically applied. In the case of the mole fractions, either a 

Newton’s method or a minimization of Gibbs free energy can be considered [129]. The 

logarithm of K-values is usually preferred given the use of mole fractions may create an 
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ill-defined Jacobian and, the natural logarithm stabilizes the Newton method when K-

values are of different orders of magnitude [7]. 

Typically, multiphase flash split calculations with 3 or more phases,  involve one outer 

loop where the equilibrium constants are solved and one inner loop where the mass 

balances (Rachford Rice equations) are evaluated. The end goal is to determine the phase 

mole fractions and the compositions for a given set of K-values [130]. This inner loop is 

known as “constant-K” flash [131].  

Given the above, a general algorithm to solve multiphase flash calculations is described 

in Figure 6-1. It can be observed that within each successive substitution step, the 

calculation of the Rachford-Rice equations, designated as “constant-K” flash are solved 

independently. 

One should note that the solution of the two-phases constant-K flash calculation is a 

relatively easy one. However, and in the case where one has to account for a three-phases 

flash , these  calculations may  become  extensive and challenging. This is due to the non-

linearity of the objective resulting functions [7].  

The “constant-K” flash is discussed in Section 6.2. In this respect, one could mention that 

in phase split calculations, good initial estimates increase the probability to find the global 

minimum Gibbs free energy, with an initial guess from stability testing or previous 

simulation timestep being an option [11]. To accomplish this, constraints for the initial 

estimates are usually needed, as suggested previously by Okuno et al. [130] or Leibovici 

& Neoschil [132]. 
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Figure 6-1. Traditional Algorithm for Three Phases Flash Calculations. Adapted from [77] 
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6.2. Constant-K flash solution 

The solution of the “constant-K flash” has been studied previously using two different 

approaches [133], which include: i) minimization techniques and ii) direct solution of the 

RR equations. Tranenstein (1985) [129] proposed a constrained minimization of the Gibbs 

free energy to solve the two phases problem, while Leibovicy and Jean (1995) [132] used 

a Newton procedure with a relaxation parameter to solve the multiphase problem. 

Furthermore, Okuno et al. (2010) [130] minimized the non-monotonic convex function 

using the independent phases mole fractions, Haugen et al. (2011) [133] used a two-

dimensional bisection method to provide good initial guesses for the Newton algorithm 

in the three phases case, Li & Firoozabadi (2012) [11] employed stability testing as an 

initial guess for phase split calculations with a two-dimensional bisection method for two 

and three phases; and Yan & Stenby (2014) [134] proposed Householder’s high order 

iteration method together with a method to improve the initial estimate for the two 

phases problem. More recently, Fernandez-Martinez et al. (2020) [128], applied an 

associated polynomial to obtain all the roots of a two-phases isothermal flash. 

One of the most popular  approaches to solve the “constant-K” flash problem is to use a 

Newton Raphson to solve Rachford-Rice equations (Eqs. (6-1) and (6-2)), getting values 

for 𝛽𝑉 and 𝛽𝑊. In thate case, the Newton Raphson method considered is given by 

Equations (6-7) to (6-11).  

 

𝛽𝑚,𝑛𝑒𝑤 = 𝛽𝑚,𝑜𝑙𝑑 − [∇𝑓(𝛽𝑚)𝑇]−1[𝑓(𝛽𝑚)] (6-7) 

𝛽𝑚,𝑛𝑒𝑤 = 𝛽𝑚,𝑜𝑙𝑑 − [𝐽(𝛽𝑚)]−1[𝑓(𝛽𝑚)] (6-8) 

𝛽𝑚 = [
𝛽𝑉

𝛽𝑊] 
(6-9) 

𝑓(𝛽𝑚) = [
𝑓𝑉(𝛽𝑚)

𝑓𝑊(𝛽𝑚)
] 

(6-10) 
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𝐽(𝛽𝑚)

=

[
 
 
 
 
 

∑
−𝑧𝑖(𝐾𝑖

𝑉 − 1)2

𝐻𝑖
2

𝑁

𝑖=1

∑
−𝑧𝑖(𝐾𝑖

𝑉 − 1)(𝐾𝑖
𝑊 − 1)

𝐻𝑖
2

𝑁

𝑖=1

∑
−𝑧𝑖(𝐾𝑖

𝑉 − 1)(𝐾𝑖
𝑊 − 1)

𝐻𝑖
2

𝑁

𝑖=1

∑
−𝑧𝑖(𝐾𝑖

𝑊 − 1)2

𝐻𝑖
2

𝑁

𝑖=1 ]
 
 
 
 
 

 

(6-11) 

Or 

𝐽(𝛽𝑚) =

[
 
 
 
 
 

∑
𝑧𝑖(1 − 𝐾𝑖

𝑉)2

𝑡𝑖
2

𝑁

𝑖=1

∑
𝑧𝑖(1 − 𝐾𝑖

𝑉)(1 − 𝐾𝑖
𝑊)

𝑡𝑖
2

𝑁

𝑖=1

∑
𝑧𝑖(1 − 𝐾𝑖

𝑉)(1 − 𝐾𝑖
𝑊)

𝑡𝑖
2

𝑁

𝑖=1

∑
𝑧𝑖(1 − 𝐾𝑖

𝑊)2

𝑡𝑖
2

𝑁

𝑖=1 ]
 
 
 
 
 

 

(6-12) 

One should note that the Newton Raphson method's solution can converge to a non-

desired root, with this being a function of the initial guest. It can lead as well, to numerical 

divergence, with this being an inherent characteristic of the non-linear equations being 

solved  [7]. As shown by Hinojosa-Gomez et al. (2012) [135],  Newton’s method fails to 

converge near the critical point and phase boundaries. Thus, good initial guesses are 

required for the phase fractions (𝛽) calculations, with poor initial estimates leading to 

incorrect roots or being unable to find a  numerical solution [133,135]. 

 In this respect, the initial guess for 𝛽𝑉, 𝛽𝑊 should be constrained within the proper 

solution domain. In this sense, while approaching the numerical solution of the constant-

K flash, it is advantageous to consider this as an iterative constrained minimization 

calculation, instead of being a root-finding problem as [130]:  

𝛽𝑚,𝑛𝑒𝑤 = 𝛽𝑚,𝑜𝑙𝑑 − [∇2F(𝛽𝑚)]−1[∇𝐹(𝛽𝑚)] (6-13) 

One should mention that the 𝐹(𝛽) refers to a convex function, as proven by Okuno et al. 

2010 [130], with N linear constrains, and with 𝑓  representing  the t  𝐹 gradient, with the 

condition of  having a symmetric Jacobian matrix [130,136]. If this is  the  case, the  𝐹(𝛽) 

scalar function involves a gradient vector which represent  the RR equations [130].  
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By integrating 𝑓𝑗  (Equation (6-4) and (6-5)) with respect to 𝛽𝑗  one can can obtain Equation 

(6-15), having the integration constant set to zero: 

𝐹(𝛽) = ∑𝑧𝑖 ln|𝐻𝑖|

𝑁

𝑖=1

 

(6-14) 

Or alternatively 

𝐹(𝛽) = ∑−𝑧𝑖 ln|𝑡𝑖|

𝑁

𝑖=1

 

(6-15) 

While examining the possible mathematical solutions for a multiphase system at 

equilibrium with the number of phases being larger than 2 ( Np > 2), one can notice that 

the range of these solutions is wider than the space of the physical solutions [132]. To 

address this matter, Leibovicy & Neoschil (1995) [132] proposed that numerical solutions 

should be limited by hyperplanes defined by: 

1 + ∑ (𝐾𝑙𝑖 − 1)𝛽𝑙

𝑙=𝑁𝑝

𝑙=2

= 0 

(6-16) 

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1) = 0 (6-17) 

In this respect, it is important to notice that, in Equation (6-14), if the region 𝑡𝑖 > 0 is 

unbounded and the following applies: a) the function is monotonic, b) it does not have a 

minimum, and b) there is no solution to the constant-K flash with Np phases [130].  

In that sense, Okuno et al. [130] proposed a feasible solution region based on the non-

negativity of phase component mole fractions in a given phase L (0 ≤ 𝑥𝑖
𝐿 ≤

1 (𝑖 = 1, 2, …𝑁𝑐)) such as :  

𝑥𝑖
𝐿 =

𝑧𝑖

𝐻𝑖
=

𝑧𝑖

𝑡𝑖
 (6-18) 

𝑥𝑖
𝑊 = 𝑥𝑖

𝐿𝐾𝑖
𝑊 (6-19) 
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𝑦𝑖 = 𝑥𝑖
𝐿𝐾𝑖

𝑉 (6-20) 

Then, from Equation (6-18) and with positive  phase component mole fractions in phase 

L, it results: 

0 ≤
𝑧𝑖

𝑡𝑖
≤ 1 (6-21) 

0 ≤ 𝑧𝑖 ≤ 𝑡𝑖 (6-22) 

0 ≤ 𝑧𝑖 ≤ 1 − 𝛽𝑉(1 − 𝐾𝑖
𝑉) − 𝛽𝑊(1 − 𝐾𝑖

𝑊) (6-23) 

0 ≤ 𝛽𝑉(1 − 𝐾𝑖
𝑉) + 𝛽𝑊(1 − 𝐾𝑖

𝑊) ≤ 1 − 𝑧𝑖 (6-24) 

 

And from Equations (6-19) and (6-20): 

0 ≤
𝑧𝑖

𝑡𝑖
𝐾𝑖

𝑊 ≤ 1 (6-25) 

0 ≤ 𝑧𝑖𝐾𝑖
𝑊 ≤ 𝑡𝑖 (6-26) 

0 ≤ 𝑧𝑖𝐾𝑖
𝑊 ≤ 1 − 𝛽𝑉(1 − 𝐾𝑖

𝑉) − 𝛽𝑊(1 − 𝐾𝑖
𝑊) (6-27) 

0 ≤ 𝛽𝑉(1 − 𝐾𝑖
𝑉) + 𝛽𝑊(1 − 𝐾𝑖

𝑊) ≤ 1 − 𝑧𝑖𝐾𝑖
𝑊 (6-28) 

0 ≤ 𝑧𝑖𝐾𝑖
𝑉 ≤ 𝑡𝑖 (6-29) 

0 ≤ 𝑧𝑖𝐾𝑖
𝑉 ≤ 1 − 𝛽𝑉(1 − 𝐾𝑖

𝑉) − 𝛽𝑊(1 − 𝐾𝑖
𝑊) (6-30) 

0 ≤ 𝛽𝑉(1 − 𝐾𝑖
𝑉) + 𝛽𝑊(1 − 𝐾𝑖

𝑊) ≤ 1 − 𝑧𝑖𝐾𝑖
𝑉 (6-31) 

 

Equations (6-24), (6-28) and (6-31) can be summarized as follows: 

𝛽𝑉(1 − 𝐾𝑖
𝑉) + 𝛽𝑊(1 − 𝐾𝑖

𝑊) ≤ 𝑚𝑖𝑛(1 − 𝑧𝑖 , 1 − 𝑧𝑖𝐾𝑖
𝑊, 1 − 𝑧𝑖𝐾𝑖

𝑉) 

For 𝑖 = 1, 2,…𝑁𝑐 

(6-32) 
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Okuno et al. [130] proposed further, a general definition of these thermodynamic 

parameters as: 𝑎𝑖
𝑇𝛽 ≤ 𝑏𝑖  with 𝑎𝑖 = 1 − 𝐾𝑖

𝑝
, 𝛽 = [𝛽𝑉 , 𝛽𝑊] and 𝑏𝑖 = 𝑚𝑖𝑛 (1 −

𝑧𝑖 ,𝑚𝑖𝑛(1 − 𝑧𝑖𝐾𝑖
𝑝)).  

With  the constant-K flash problem  solved by Equation (6-33). 

Minimize: 𝐹(𝛽) = ∑ −𝑧𝑖 ln|𝑡𝑖|
𝑁
𝑖=1  subject to 𝑎𝑖

𝑇𝛽 ≤ 𝑏𝑖 (6-33) 

In that sense, Equation (6-33) accounts for the “negative flash” case. One should note 

that when the iterative flash procedure yields  values in the  𝛽 < 0 or 𝛽 > 1 ranges, this 

leads to a  “negative flash” [137]. These “negative flashes” while  ”not physically 

acceptable” roots  can be preserved for the next calculation step. This is the case given 

the anticipated function continuity. It is interesting to mention that the Okuno et al.’s 

resulting algorithm performs better with initial negative roots than when the condition 

0 ≤ 𝛽 ≤ 1 is complied from the very beginning, in the first calculation step [137].  

6.3. Algorithm to Solve the Flash Unit for Water/PASN mixtures 

After discussing the solution of the constant-K flash problem, it is possible to complete 

the flash calculations as described in Figure 6-1. In this sense, the steps involved in the 

flash calculations are as follows: 

1. Input the operating and feed conditions: T, P, zi 

2. Provide an initial guess for the K-values.  

3. Solve Rachford-Rice equations as discussed in Section 6.4, minimizing Equation 

(6-33). 

4. Calculate 𝑥𝑖
𝐿, 𝑥𝑖

𝑤 and 𝑦𝑖  from Equations 2.41 to 2.43  

5. Calculate the fugacity coefficients from Equation 3.22 

6. Calculate Objective functions and compare with tolerance 
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𝐹𝑜𝑏𝑗
𝑉 = ln𝐾𝑖

𝑉 − ln𝜙𝑖
𝐿 + ln𝜙𝑖

𝑉  (6-34) 

𝐹𝑜𝑏𝑗
𝑊 = ln𝐾𝑖

𝑊 − ln𝜙𝑖
𝐿 + ln𝜙𝑖

𝑊 (6-35) 

7. Update K-values  

ln𝐾𝑖
𝑉 = ln𝜙𝑖

𝐿 − ln𝜙𝑖
𝑉 (6-36) 

ln𝐾𝑖
𝑊 = ln𝜙𝑖

𝐿 − ln𝜙𝑖
𝑊 (6-37) 

8. Check that ∑ 𝑥𝑖
𝐿𝑁

𝑖=1 = 1, ∑ 𝑥𝑖
𝑊𝑁

𝑖=1 = 1 and ∑ 𝑦𝑖
𝑁
𝑖=1 = 1 

One should note that the main problem with the proposed algorithm is that it may be 

computationally very expensive [10], with this being a function of the initial guesses 

chosen, as well as presenting both convergence and accuracy issues .  

When applying Newton Raphson Method (Equations (6-7) to (6-11)), using an initial 

estimate within the set boundaries (as presented in the following section) such as 𝛽𝑠𝑢𝑝
𝑉 =

0.4 and 𝛽𝑠𝑢𝑝
𝑊 = 0.2, for the water/PASN one gets, employing SRKKD EoS model and 

Python,  𝛽𝑉 = 0.10004025 and 𝛽𝑊 = 0.44494793 root with 4 iterations only. One 

should note that in this respect that HYSYS V9 result in this case were  𝛽𝑉 = 0.1 and 𝛽𝑊 =

0.4449395, with the difference being  much lower than 0.1%. In contrast and  as 

expected, for the water/n-octane system, the calculation  reaches the 10000 maximum 

number of iterations with the obtained results not having physical meaning : 𝛽𝑉 =

−10.9198 and 𝛽𝑊 = 2.6645 ∗ 10−15. 

Given the above, the function 𝐹(𝛽) (Equation (6-33)) for the water/PASN mixture was 

minimized using different methods within the minimize functions available in the  Python 

Optimize library. Tolerance was set  in the 10-8 range, with the percentage of difference 

for the calculated 𝛽 values being lower than 0.3% . Table 6-1 reports the various methods 

tested. Best results were obtained using the Constrained Optimization BY Linear 

Approximation (COBYLA) method.  
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Table 6-1. Results for water/ASN system using different methods for the minimize function of 
Scipy - Optimize package for Python 

Initial estimate Method Result %difference 

𝛽 = [0.4 0.2] Constrained Optimization BY 

Linear Approximation (COBYLA) 

𝛽 = [0.10004048 0.44494783] [0.04% 0.0019%] 

𝛽 = [0.4 0.2] Sequential Least Squares 

Programming (SLSQP) 

𝛽 = [0.10004144 0.44494715] [0.04% 0.0017%] 

𝛽 = [0.4 0.2] trust-constr 𝛽 = [0.09995574 0.44541656] [0.04% 0.1072%] 

𝛽 = [0.9 0.1] Constrained Optimization BY 

Linear Approximation (COBYLA) 

𝛽 = [0.1000405 0.44494781] [0.04% 0.0019%] 

𝛽 = [0.9 0.1] Sequential Least Squares 

Programming (SLSQP) 

𝛽 = [0.09993294 0.44500976] [0.07% 0.016%] 

𝛽 = [0.9 0.1] trust-constr 𝛽 = [0.09976697 0.44642034] [0.23% 0.32%] 

However, and in spite of this, none of the considered methods were able to get 

meaningful physical solutions for  water/n-octane blends, as reported in Table 6-2. Not 

even a genetic algorithm was able to solve this case, arriving at a result of  𝛽 =

[−20.7 14.2].  Reasons for this are described in Section 6.4 Figure 6-11.   

Table 6-2. Results for water/n-Octane system using different methods for the minimize function 
of Scipy - Optimize package for Python 

Initial estimate Method Result 

𝛽 = [0.4 0.2] Constrained Optimization BY Linear 
Approximation (COBYLA) 

𝛽 = [−0.1780 0.6150] 

𝛽 = [0.4 0.2] Sequential Least Squares Programming 
(SLSQP) 

𝛽 = [0.4146 0.2220] 

𝛽 = [0.4 0.2] trust-constr 𝛽 = [0.4150 0.2224] 

𝛽 = [0.9 0.1] Constrained Optimization BY Linear 

Approximation (COBYLA) 
𝛽 = [−0.0142 0.5063] 

𝛽 = [0.9 0.1] Sequential Least Squares Programming 

(SLSQP) 
𝛽 = [0.8080 −0.0388] 

𝛽 = [0.9 0.1] trust-constr 𝛽 = [0.8086 −0.0377] 
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In the same way, the VLLE for water/PASN can be calculated accordingly, as reported in 

Table 6-4. In this case, the bubble pressure (𝛽𝑉 = 0), which is of interest for this research, 

can be calculated using both Python and Hysis V9 as reported in Table 6-4,  

Table 6-3. Pressure Calculation Results for water/ASN system in VLLE region (no air) 

Conditions Python Results (kPa) 
HYSYS V9 results 

(kPa) 
Difference (%) 

T = 80°C 

Zw = 0.5 
86.10 91.53 6.31% 

T = 80°C 

Zw = 0.1 
86.10 91.53 6.31% 

T = 80°C 

Zw = 0.9 
86.10 91.53 6.31% 

T = 110°C 

Zw = 0.5 
242.55 254.41 4.89% 

T = 110°C 
Zw = 0.1 

242.55 254.41 4.89% 

T = 110°C 

Zw = 0.9 
242.55 254.41 4.89% 

One should note however, that the described Python algorithm for water/PASN works 

better with Python with Pressure results, as shown in Figures 6-2 and 6-3, being in better 

agreement with experimental data from a CRE-VL Cell .  

 

Figure 6-2. Comparison of VLLE results for water/ASN using Python and HYSYS V9 (no air) 
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Figure 6-3. Comparison of VLLE experimental results for water/PASN using Python and HYSYS V9 
at 80°C 

On the other hand, in the case of water/n-octane blends, the described algorithm 

presents convergence problems. To describe these issues, it is important to establish how 

the numerical Rachford-Rice equations (Equations 6.1 to 6.3) influence these type of 

iterative calculations for both water/n-octane and water/PASN mixtures. To address this 

matter, the following section evaluates the approach proposed by Li & Firoozabadi [138] 

and the boundaries set by Okuno et al. [130]. 

6.4. Issues with  Constant-K solution Calculations 

Li & Firoozabadi [138] reported some examples of how 𝑅𝑅𝑦 and 𝑅𝑅𝑤  surfaces (Rachford-

Rice surfaces) change while  𝛽𝑉 and 𝛽𝑤 are varied, with  𝛽𝑉 and 𝛽𝑤 parameters 

representing the vapor and water fraction respectively. A display of one of their examples 

reported by Li & Firoozabadi for a general case [138] are shown  in Figure 6-4, for  𝑅𝑅𝑦 

and 𝑅𝑅𝑤  intersecting the z=0 plane .  

One should note that the triangle defined in Figure 6-4 by the vertices (0,1), (0, 0) and (1, 

0) represents the solution domain [138], with the  solution at  𝑅𝑅𝑦 = 0 and 𝑅𝑅𝑤 = 0 

plane shown  with a  red dot. 
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(a) 

 

(b) 

Figure 6-4. (a)  𝑹𝑹𝒚 and 𝑹𝑹𝒘 surfaces intersecting the z=0 plane highlighted in grey (Adapted 

from [138]),  (b)  The 𝜷𝑽 and 𝜷𝒘 lines  at  z=0 plane. Note: The “red dot” represents the  
solution at  𝑅𝑅𝑦 = 0 and 𝑅𝑅𝑤 = 0 plane  

In this regard, and if one attempts to develop a similar based Python calculation for an 

octane/water blend  “constant-K” flash one can observe that it is not possible to obtain a 

converging iterative solution. One can notice as well that this is true, for a wide range of 

octane in water concentrations in the  0.5-99.75 wt% range.  

As a result, and to provide a sound explanation of the findings, the following steps were 

followed:  

First step. It involves the SRKKD EoS model and HYSYS V9 with “constant-K” flash 

simulations. Equilibrium constants are approximated on this basis and used later for 

a thorough analysis of Rachford-Rice equations.  

Second step. It considers a “constant-K” flash calculation using the equilibrium 

constant calculated in step 1. This helps to provide a good understanding of how the 

Rachford-Rice equations perform in this kind of hydrocarbon/water mixtures. 
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6.4.1. Octane-Water Blends  

For illustrating the calculation,  a 3-phase separator was specified in HYSYS V9 feeding a 

100 kgmol/h blend with a 50% mol water / 50% mol n-octane mixture was considered for 

the first step. Working conditions for this 3-phase separator were T = 80°C and a vapour 

fraction of 0.1. In this case, the presence of air was not considered. Results obtained are 

reported in Table 6-4. 

Table 6-4. HYSYS V9 results for 3 phases flash calculations at T=80°C using SRKKD  

  
Molar Fraction 

 

Molar Flow  
(kgmol/h) Water n-Octane 

Feed 100.00 0.5 0.5 

Hydrocarbon Phase 46.94 6.09*10-3 0.9939 

Aqueous Phase 43.06 ≈1.0 1.20E-06 

Vapor 10.00 0.6651 0.3349 

One could notice that while developing the second calculation step, with the Ki
V and Ki

W 

constants obtained from  HYSYS V9  and using  them now in Python,  the  RRy and RRw 

values were in a low level range as in Figure 6-5a . It was also possible  to further notice, 

as shown in Figure 6-5a, that the values of 𝛽𝑉 and 𝛽𝑤 changed in a  restricted domain. 

Furthermore it was also possible to see that if the 𝛽𝑉 value was higher than 0.63, or 

𝛽𝑤higher than 0.58, the solution for 𝑅𝑅𝑦 and 𝑅𝑅𝑤 will not converge . 
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Figure 6-5. 𝑹𝑹𝒚 and 𝑹𝑹𝒘 surfaces intersecting the z=0 plane for 50%mole water/n-octane at T = 

80°C a) 3D surface, b) top view 

Additionally  and when RRy and RRw were considered at z= 0, the obtained 𝛽𝑤 for different 

values of 𝛽𝑉 led to two parallel and z=0 plane superimposed RRy and RRw straight lines, 

as shown in Figure 6-6.  One should mention that, in contrast, a HYSYS V9 solution was 

obtained as  identified with a red dot in Figure 6-6. 

 

Figure 6-6. Lines for 𝑹𝑹𝒚 = 0 and 𝑹𝑹𝒘 = 0 𝑎𝑡 𝑧 = 0 at T = 80°C. Note: The red point represents 

HYSYS solution 
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Thus, and as a result of this and under those conditions, one can understand why the 

iterative calculations trying to find an intersection of the  RRy and RRw  lines fail and the 

“constant-K ” solution remain unknown. 

Regarding these results, Haugen & Firoozabadi [133], advanced that algorithms of this 

type, solving the RR equations can fail, when the lines at RRy = 0 and RRw = 0 are parallel 

in the domain of interest. In this respect, these authors designated these conditions as 

the result of a “bicritical point” where two of the phases have very similar compositions. 

They identified three different kinds of “bicritical regions” [133]: i) 𝐾𝑖
𝑉 ≈ 1, ii) 𝐾𝑖

𝑊 ≈ 1or 

iii) 𝐾𝑖
𝑉 ≈ 𝐾𝑖

𝑊. In this case, the K-values for water/n-Octane mixtures are as follows: 𝐾𝑖
𝑉 =

[1.0925102, 3.369210−1] and 𝐾𝑖
𝑊 = [1.6426102, 1.210510−6]. As a result and given 

the conditions considered involving 𝐾𝑖
𝑉 ≈ 𝐾𝑖

𝑊, they could be considered in partial 

agreement with case iii) from Haugen & Firoozabadi criteria [133].  

One should note as well that for different temperatures, in this case 110°C (Table 6-5), 

the behaviour of n-octane/water mixtures display similar calculation challenges, as it can 

be observed in Figure 6-7 and Figure 6-8.  

Table 6-5. HYSYS V9 results for 3 phases flash calculations at T=100°C using SRKKD 

  Molar Fraction 

 
Molar Flow 
(kgmol/h) 

Water n-Octane 

Feed 100.00 0.3 0.7 

Hydrocarbon Phase 61.38 1.60*10-2 0.9840 

Aqueous Phase 8.62 ≈1.0 2.06*10-6 

Vapor 30.00 0.6799 0.3201 
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Figure 6-7. 𝑹𝑹𝒚 and 𝑹𝑹𝒘 surfaces intersecting the z=0 plane for 30%mole water/n-octane at T = 

110°C 

  

Figure 6-8. Lines for 𝑹𝑹𝒚 = 𝟎 and 𝑹𝑹𝒘 = 𝟎 at T = 110°C. Note: red point represents HYSYS 

solution 
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Haugen et al. (2011) [133] described that the non-converging lines problem leads to a 

very large number of iterations with the numerical solution becoming unacceptably 

expensive.  

Thus one can conclude that the described shape of the   RRy and RRw surfaces make it 

very challenging for a proposed algorithm such as the SRKKD EoS model with Python 

algorithm to converge towards a  “Constant-K” flash solution.  

6.4.2. PASN/Water Blends 

In contrast with the “non-convergence” results described in Section 6.3 and 6.4.1 for n-

octane/water blends, in the case of PASN/Water mixtures, the SRKKD EoS model with 

Python can provide instead, a consistent “constant-K” flash convergent simulations. This 

is the case when performing flash calculations for a 50%mole water/PASN mixture. 

Results after convergence are presented in Table 6.6.   

Table 6-6. PASN/Water Mixture 3-phases flash calculations at T=80°C and P = 83.16 kPa using 
SRKKD model, the Rachford-Rice equations and the Python calculations of the present study  

  Molar Fraction 

 Molar Flow  
(kgmol/h) 

Water n-Hexane n-Heptane n-Octane n-Decane Toluene n-Dodecane 

Feed (Water) 50.00 1 0 0 0 0 0 0 
Feed (PASN) 50.00 0 0.11939808 0.2259054 0.540451 4.34*10-2 5.88*10-2 1.21E*10-2 
Hydrocarbon 

Phase 
45.51 5.48*10-3 0.0967 0.2171 0.5623 4.75*10-2 5.75*10-2 1.33*10-2 

Aqueous Phase 44.49 ≈1.00 5.80E*10-17 5.11*10-19 2.74*10-21 8.65*10-28 2.70*10-12 1.47*10-34 
Vapor 10.00 0.4951 0.1599 0.1481 0.1604 2.47*10-3 3.37*10-2 1.32 *10-4 

Figure 6-9 reports the calculated RRy and RRw using Ki
V and Ki

W from the SRKKD model and 

the Python calculations. In this case, values of 𝛽𝑉 and 𝛽𝑊 are smaller than 0.5, providing 

in all cases converging numerical solutions. 
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a) 

 

b) 

Figure 6-9. 𝑹𝑹𝒚 and 𝑹𝑹𝒘 surfaces intersecting the z=0 plane for 50 mol% water/PASN at T = 

80°C a) 3D surfaces, b) Top view 

Figure 6-10 further describes  the “constant-K” flash solution for the 𝑅𝑅𝑦 = 0 and 𝑅𝑅𝑤 =

0 lines displaying the numerical  𝛽𝑉 and 𝛽𝑊 solutions with convergence being assured.  

 

Figure 6-10. Lines for 𝑹𝑹𝒚 = 0 and 𝑹𝑹𝒘 = 0. Note: red point represents Python solution, blue 

line is related to 𝑹𝑹𝒘 = 0 and green line 𝑹𝑹𝒚 = 0 
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6.4.3. Boundary conditions 

Regarding the boundary conditions, if one considers the water/n-octane mixture  with Ki 

approximated by HYSYS V9 (Figure 6-8), the boundary conditions proposed by Okuno et 

al. [130] result in the Equations (6-38) and (6-39) with the hyperplanes being 

superimposed to the lines for 𝑹𝑹𝒚 = 0 and 𝑹𝑹𝒘 = 0 as presented in Figure 6-11.  

−108.2527𝛽𝑉 − 163.2577𝛽𝑊 ≤ −81.1289 (6-38) 

0.6631𝛽𝑉 + 𝛽𝑊 ≤ 0.5 (6-39) 

 

Figure 6-11. Boundaries for 𝛽𝑉  and 𝛽𝑊 as poposed by Okuno et al. [130] for water/n-Octane 
mixtures. Notes: a)  Reported  lines are  for 𝑹𝑹𝒚 = 0 and 𝑹𝑹𝒘 = 0, b) The two superimposed 

blue lines encompass  as well both Eq(6.35) and (6.36) lines 

Furthermore, while applying the boundary conditions proposed by Okuno et al. [130]  for 

the water/PASN blend, the hyperplanes related to Equations (6-40) to (6-46) can be 

represented as in Figure 6-12:  

−89.43 𝛽𝑉 − 181.62 𝛽𝑊 ≤ −90.31 (6-40) 

−0.6535 𝛽𝑉 + 𝛽𝑊 ≤ 0.9013 (6-41) 
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0.3178 𝛽𝑉 + 𝛽𝑊 ≤ 0.8870 (6-42) 

0.7147 𝛽𝑉 + 𝛽𝑊 ≤ 0.7297 (6-43) 

0.9479 𝛽𝑉 + 𝛽𝑊 ≤ 0.9783 (6-44) 

0.9901 𝛽𝑉 + 𝛽𝑊 ≤ 0.9940 (6-45) 

0.4134𝛽𝑉 + 𝛽𝑊 ≤ 0.9706 (6-46) 

 

Figure 6-12. Boundaries for 𝛽𝑉  and 𝛽𝑊 as poposed by Okuno et al. [130] for water/PASN 
mixtures. Notes: a) the blue solid lines are related to 𝑹𝑹𝒘 = 0, b) the green solid lines to 

𝑹𝑹𝒚 = 0, and c) the cyan broken lines represent the boundaries according to Equations (6.36) 

to (6.42)  

6.4.4. Remarks 

On the basis of results from “constant-K” flash calculations for n-octane/water and 

PASN/water blends, one can conclude that the composition of hydrocarbon/water blends 

is a key factor in allowing a viable numerical calculation using the Rachford-Rice 

equations. Thus, and to address possible calculation uncertainty and ambiguity resulting 

for some class of hydrocarbon/water  blends, a alternate methodology to calculate the 
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molar fractions and mixture pressure for the water/n-octane mixture is proposed in the 

upcoming  sections. 

6.5. Liquid phase K-values from experimental data for water/n-

Octane mixtures 

As discussed in the previous sections, the initial guess for K-values affects the 

convergence of the flash calculation algorithm (Figure 6-1). Usually, Wilson correlation 

[139] (Equation (6.47)) is used as a first approximation for the K-value in the hydrocarbon 

phase. For the K-values in the water phase, Connolly et al. [10] suggested values based on 

the initial feed as presented in Equation (6-48). 

ln𝐾𝑖
𝑊𝑖𝑙𝑠𝑜𝑛 = ln

𝑃𝑖
𝐶

𝑃
+ 5.373(1 − 𝜔𝑖) (1 −

𝑇𝑖
𝐶

𝑇
) 

(6-47) 

𝐾𝑖
𝐻2𝑂

=
0.999

𝑧𝑖
 

(6-48) 

In this sense, another advantage of the CREC VL Cell developed by CREC researchers is 

that it allows one to determine the solubility values based on the VLLE data obtained. The 

transition from the three-phases and two-phases regions defines the solubility limit. 

Figure 6-13 presents the solubility limit regions for a water/n-octane mixture at 110°C. 

This region is characterized by the transition from three phases to two phases.  
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Figure 6-13. Solubility limits regions for water/Octane at 110°C  

One should note that the applicability of the CREC-VL Cell for establishing solubility and 

solubility limits is not restricted to any type of hydrocarbon/water blend. Thus, the CREC-

VL Cell can be of special value while dealing with hydrocarbon/water blends involving 

intrinsic convergence uncertainties, observed by octane-water mixtures, while using the 

Rachford-Rice equations (refer to Section 6.4).   

Figure 6-14 shows that the solubility limit for an octane/water blend can be calculated 

from the intersection between the lines that define the three-phases and two-phases 

domain. The calculated solubilities at 110°C are 𝑥𝑤
𝐿 = 0.01810534 ± 2.5 ∗ 10−3 and 

𝑥𝑜𝑐𝑡
𝑊 = 0.00084875 ± 2.6 ∗ 10−4 considering the 95% confidence interval defined by the 

blue region. One should note that while the solubility of water in n-Octane is in close 

agreement with the 𝑥𝑤
𝐿 = 0.016,  calculated value using HYSYS V9 with  SRKKD EoS and 

Rachford-Rice equations,  yields a  solubility for n-Octane in water  two orders of 

magnitude higher compared with the  𝑥𝑜𝑐𝑡
𝑊 = 2.06 ∗ 10−6 Hysis V9 predicted value. 
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Figure 6-14. Calculated  Solubility Limit for water/Octane at 110°C Note: Magenta solid lines 
represent the two phase region, while the blue solid line the 3 phase region. Blue bands 

represent the 95% confidence interval 

As a result and once the solubility  values are obtained from the CREC-VL Cell, it is possible 

to calculate 𝐾𝑖
𝑊 =

𝑥𝑖
𝑊

𝑥𝑖
𝐿  water phase constants being  𝐾𝑖

𝑊 = [55.185 8.64 ∗ 10−4]. 

Furthermore and  for the vapour phase species at equilibrium, one can  obtain an  

approximative value using 𝑦𝑖 =

𝑥𝑖
𝐿𝜙𝑖

𝐿

𝜙𝑖
𝑉

∑
𝑥𝑖

𝐿𝜙𝑖
𝐿

𝜙𝑖
𝑉

𝑁
𝑖

⁄  and 𝐾𝑖
𝑉 =

𝑦𝑖

𝑥𝑖
𝐿. Assuming vapour phase 

behaves as an ideal gas, then 𝜙𝑖
𝑉  ≈ 1 and the obtained results are: 𝑦𝑤 ≈ 0.7347 ±

2.38 ∗ 10−2 and 𝐾𝑖
𝑉 = [40.5772 0.2702].  

One should note that the mean value obtained has a 16.04% difference from the value 

predicted by HYSYS V9 (𝑦𝑤 ≈ 0.6799); with; however, the HYSYS V9 value being within 

the range of 95% interval confidence. Figure 6-15 and Figure 6-16 reports the observed 

solubilities of water in n-octane and n-octane in water, respectively, as determined in the 

CREC VL Cell and compared with the Maczynski et al. (2004) [41] values for both water in 

n-octane and n-octane in water. 
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Figure 6-15. Solubility of water in n-octane in the temperature range of interest. Note: Blue 
bands represent the 95% confidence interval 

 

Figure 6-16. The solubility of n-octane in water in the temperature range of interest. Note: Blue 
bands represent the 95% confidence interval 
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Given the observed differences with the experimental points reported in Figure 6-3 and 

obtained in the CREC-VL Cell, it is important to provide a more precise methodology to 

calculate the VLLE values accounting for the uncertainties related to the experimental 

values, as will be discussed in Section 6.6.  

Furthermore, and on the basis of the experimental data obtained in the CREC-VL Cell a 

correlation to obtain the K-values for water/octane mixtures in the temperature range of 

interest and low pressure (1-3 atm) is proposed.  This correlation is given by the following  

Equation (6-49), with the constants involved reported in Table 6-7. A  comparison with 

calculated values from experimental results is also reported in Figure 6-17, showing the 

adequate fitting of the experimental values by this correlation. 

ln𝐾𝑖
𝑝

= 𝑚 ln𝑇 + 𝑏 (6-49) 

 

Table 6-7. Constants for K-values correlation water/n-octane system 

 Compound m b R2 

Ki
W Water 1.3366 -9.3022 0.9786 

Ki
W Octane 0.01390 -0.0483 0.9563 

Ki
V Water -1.3113 9.8849 0.9851 

Ki
V Octane 1.2099 -6.9870 0.9910 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-17. K-values calculated from experimental in the CREC VL Cell for water/n-octane 
mixtures:  a) K-value for water in W phase, b) K-value for octane in W phase, c) K-value for water 

in V phase, d) K-value for octane in V phase 

6.6. Machine Learning Approach  

As shown in the previous sections of this chapter (Sections 6.1 to 6.5), traditional 

thermodynamic models for multiphase systems based on Rachford-Rice equations over-

predict vapour pressure being in cases unable to provide converging and meaningful 

solutions.  

Thus, and to address this a  Machine Learning approach is considered proposed using 

linear regression, KNN, SVM and Decision Tree Regressor (DTR). To establish the 

prediction errors, coefficient of determination (R2), Mean Squared Error (MSE) and Mean 

Absolute Error (MAE) are determined.  
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In the case of KNN, SVM and DTR the parameters were tunned using a grid search with 

cross-validation (GridSearchCV). This method allows finding the best set of parameters in 

each model based on the coefficient of determination (R2). The training set was selected 

by randomly splitting the sample into 80% for training and 20% testing (train_test_split 

function). Results for the grid search are summarized in Table 6-8 showing the best 

parameters for each method calculated by the GridSearchCV function by comparing R2. 

Table 6-8. Models Selected for the Prediction of Pressure for water/n-octane 

Model 

# 

Type Tunned Hyper-parameters Best parameters 

1 Linear Regression N/A  

2 KNN n_neighbors: [2, 3, 4, 5, 10, 15, 20], 
weights: [uniform,distance'], 

algorithm: [auto, ball_tree, kd_tree, brute],                   

leaf_size: [10, 30, 50] 

 

n_neighbors: 10  
weights: distance 

algorithm: ball_tree 

leaf_size: 30 

3 SVR kernel: [linear, poly, rbf, sigmoid], 

degree: [2, 3], 

C: [1, 10, 100, 1000],  
epsilon:[0.1,  0.2] 

 

kernel: rbf 

degree: 2 

C: 1000 
epsilon: 0.2 

4 DTR max_depth: [2, 3, 5, 10],  
min_samples_split:[2, 5, 10], 

min_samples_leaf: [1, 2, 5, 10] 

max_depth: 10 
min_samples_split: 2 

min_samples_leaf: 5 

 

Table 6-9 reports the coefficient of determination (R2), Mean Squared Error (MSE) and 

Mean Absolute Error (MAE) for the selected models (best score) for octane/water using 

the abundant testing dataset obtained in the CREC VL cell. Figure 6-18 describes a 

comparison for the pressures measured and the predicted values showing that the KNN 

model provides the best approximation with a R2 value of 0.99, and the lowest MSE and 

MSE  at the 43.78 and 4.91 parameters. KNN method is selected as the best model to 

predict the pressure of water/n-octane mixtures in the range of interest.   

 

Table 6-9. Metrics for the selected models. Note: Calculated based on test dataset. 

 R2 MSE MAE 
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Linear Regression 0.7723 386.58 13.66 
KNN 0.9911 43.78 4.91 

SVR 0.8287 286.61 10.12 

DTR 0.9847 29.2887 4.22 

 

  

  

Figure 6-18.  Test pressure vs. calculated for the different models a) linear regression, b) KNN, c) 
SVC, d) Decision Tree Regressor. Note: red line represents a perfect prediction 

Thus and as a result, one can see that the best ML model to describe the behaviour of 

pressure for n-octane/water blends is the KNN, with this model overcoming the issues 

with the traditional thermodynamic models involving the Rachford-Rice equations. 

Furthermore, and as presented in Chapter 4, it is also possible to use ML with KNN or SVC 

to describe accurately the classification of the number of phases in a multiphase vapour-

liquid-liquid-vapour system reducing significantly the uncertainty of any theoretically 

thermodynamically based algorithm. 
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6.7. Conclusions 

a) Flash calculations for water/n-octane and water/PASN system can be described in 

principle, using the SRKKD EoS and Rachford-Rice equations.  

b) In the case of water/n-octane blends using the SRKKD EoS and Rachford-Rice 

equations, it is shown they involve convergence issues. These convergence issues 

were clarified considering the parallelism of the RRx and RRy (Rachford-Rice) 

planes.  

c) Flash calculations for naphtha/water (PASN/water) blends implemented using a 

Python based algorithm, showed numerical solutions free of converging issues, 

with however, numerical solutions showing a lack of accurate prediction of 

naphtha-water solubility.  

d) The CREC-VL Cell data was used to propose correlations for the calculation of 

solubility of n-octane in water and water in n-octane, as well as the equilibrium  

constants values. 

e) Using the developed ML approach and from  a number of alternatives, the ML with 

KNN model showed the best performance with a R2 = 0.9911,  predicting  the total 

pressure in water/n-octane mixtures accurately. 
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7. General Contributions and Perspectives 

7.1. General Contributions 

The main contribution of this thesis are summarized as follows: 

• It was shown that PASN/water mixtures follow a similar thermodynamic 

behaviour as n-octane/water mixtures, and as a result, n-octane/water can be 

used as a surrogate component for naphtha/water blends. 

• It was observed using phase stability analysis, based on the Gibbs Energy of 

Mixing,  that the calculation of the number of phases involves significant intrinsic 

uncertainty. 

• It was demonstrated on this basis, that viable determination of the number of 

phases in hydrocarbon/water blends, employing thermodynamic stability analysis 

is closely related to the hydrocarbon/water blends composition. 

• It was proven that there are significant total pressure and hydrocarbon solubilities 

differences between the experimental data obtained in a CREC VL Cell  and the  

VLLE results predicted using HYSYS V9 for both n-octane/water and PASN/water 

mixtures.  

• It was also shown that  Machine Learning (ML) models can be positively  used to 

predict multiphase water/n-octane and water/PASN mixtures, without the 

ambiguity of stability models based on fundamentally based thermodynamic 

equations, such as the Rachford-Rice equations.  

• It was also proven that Machine Learning (ML) models trained on big vapour-

liquid-liquid  data sets, obtained in a  CREC-VL Cell, can be successfully employed 

for the prediction of total pressure and solubility both for n-octane/water and 

PASN/water blends, with the KNN model and the weighted SVC model, identified 

as the ones with the best performance.  
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7.2. Recommendations for Future work 

The following future research is recommended on the basis of  the findings of the 

present Ph.D. dissertation: 

• To analyze in more detail,  the phase stability analysis's sensitivity, based on the 

Gibbs Energy of Mixing and flash split including the Rachford-Rice equations to 

various PASN synthetic naphthas compositions in the range of potential industrial 

interest. 

• The use of the proposed ML techniques to characterize industrial dilbit/water 

mixtures from the point of view of the number of phases, hydrocarbon solubility 

and total pressure using the CREC VL Cell. 
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8. Accomplishment of the Research Objectives  

The accomplishments of the research objectives of the present Ph. D. dissertation are 

reflected in the following technical contributions: 

8.1. Papers 

a) As leading author with results included in Chapters 4 and 5 of the present Ph.D. 

Dissertation  

• Lopez-Zamora, S.; Kong, J.; Escobedo, S.; de Lasa, H. Vapour-Liquid-Liquid and 

Vapour-Liquid Equilibrium of Paraffinic Aromatic Synthetic Naphtha/Water 

Blends: Prediction of The Number of Phases. 2021. Accepted in Canadian Journal 

of Chemical Engineering, April 6, 2021  

• Lopez-Zamora, S.; Kong, J.; Escobedo, S.; de Lasa, H. Thermodynamics and 

Machine Learning Based Approaches for Vapor-Liquid-Liquid Phase Equilibria in N-

Octane/Water Blends, as a Naphtha-Water Surrogate in Water Streams. Processes 

2021, 9, 1–31, https://doi.org/10.3390/pr9030413.  

b) As a co-author with results not included in the present Ph.D. Dissertation 

• Escobedo, S.; Kong, J.; Lopez-Zamora, S.; de Lasa, H. Synthetic Naphtha Recovery 

from Water Streams: Vapor-Liquid-Liquid Equilibrium (VLLE) Studies in a Dynamic 

VL-Cell Unit with High Intensity Mixing. The Canadian  Journal of Chemical 

Engineering 2021.  https://doi.org/10.1002/cjce.24120 

My contribution to this paper was related to the data analysis and thermodynamic 

modelling of the blends. 

• Kong, J.; Escobedo, S.; Lopez-Zamora, S.; de Lasa, H. Phase Equilibrium in N-

Octane/Water Separation Units: Vapor Pressures, Vapor and Liquid Molar 

https://doi.org/10.3390/pr9030413
https://doi.org/10.1002/cjce.24120
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Fractions. International Journal of Chemical Reactor Engineering 2021. 

https://doi.org/10.1515/ijcre-2021-0031 

My contribution to this paper was related to the data analysis and thermodynamic 

modelling of the blends. 

 

8.2. Conferences 

• Lopez-Zamora, S.; Kong, J.; Escobedo, S.; de Lasa, H. Thermodynamics of 

Hydrocarbon/Water Systems: Challenges and a Binary Interaction Parameter (BIP) 

Based Modelling Approach Using Experimental Data. Canadian Chemical 

Engineering Conference 2020. Ottawa, Canada, October 2020 (Virtual due to 

COVID-19) 

 

  

https://doi.org/10.1515/ijcre-2021-0031
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9. Appendices 

9.1. Appendix A: Gibbs Free Energy of Mixing derivation 

If the binary system results in a single phase: 

𝐺 = 𝐺𝑖𝑑 + 𝐺𝐸  (A 1) 

𝐺̅𝑖
𝐸

𝑅𝑇
= ln 𝛾𝑖  

(A 2) 

𝐺𝑖𝑑 = ∑𝑥𝑖𝐺𝑖

𝑖

+ 𝑅𝑇 ∑𝑥𝑖 ln 𝑥𝑖

𝑖

= 𝑥1𝐺1 + 𝑥2𝐺2 + 𝑅𝑇(𝑥1 ln 𝑥1 + 𝑥2 ln 𝑥2) 
(A 3) 

𝐺𝐸 = 𝑅𝑇 ∑𝑥𝑖 ln 𝛾𝑖

𝑖

= 𝑅𝑇(𝑥1 ln 𝛾1 + 𝑥2 ln 𝛾2) 
(A 4) 

𝐺 = 𝑥1𝐺1 + 𝑥2𝐺2 + 𝑅𝑇(𝑥1 ln 𝑥1 + 𝑥2 ln 𝑥2) + 𝑅𝑇(𝑥1 ln 𝛾1 + 𝑥2 ln 𝛾2)

= 𝑥1𝐺1 + 𝑥2𝐺2

+ 𝑅𝑇(𝑥1 ln 𝑥1 + 𝑥2 ln 𝑥2 + 𝑥1 ln 𝛾1 + 𝑥2 ln 𝛾2)

= 𝑥1𝐺1 + 𝑥2𝐺2 + 𝑅𝑇(𝑥1(ln𝑥1 ln 𝛾1) + 𝑥2(ln 𝑥2 ln 𝛾2))

= 𝑥1𝐺1 + 𝑥2𝐺2 + 𝑅𝑇(𝑥1 ln(𝑥1𝛾1) + 𝑥2 ln(𝑥2𝛾2)) 

(A 5) 

∆𝐺𝑚𝑖𝑥 = 𝑅𝑇(𝑥1 ln(𝑥1𝛾1) + 𝑥2 ln(𝑥2𝛾2)) (A 6) 

𝐺 = 𝑥1𝐺1 + 𝑥2𝐺2 + ∆𝐺𝑚𝑖𝑥  (A 7) 

If the reference state for 1 and 2 is the pure liquid, then 𝐺1 = 𝐺2 = 0 

𝐺 = ∆𝐺𝑚𝑖𝑥 = 𝑅𝑇(𝑥1 ln(𝑥1𝛾1) + 𝑥2 ln(𝑥2𝛾2)) (A 8) 

 

9.2. Appendix B: Two and Three phases flash equations 

9.2.1. Two phases flash equations 
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Figure 9-1. Schematic of a flash system dealing with two phases 

 

𝐹 = 𝐿 + 𝑉 (B 1) 

𝐹𝑧𝑖 = 𝐿𝑥𝑖
𝐿 + 𝑉𝑦𝑖 (B 2) 

∑𝑥𝑖
𝐿

𝑛

𝑖

= ∑𝑦𝑖

𝑛

𝑖

= 1 (B 3) 

From equilibrium: 

𝐾𝑖
𝑉 =

𝑦𝑖

𝑥𝑖
𝐿 =

𝜙𝑖
𝐿

𝜙𝑖
𝑉  (B 4) 

1 =
𝐿

𝐹
+

𝑉

𝐹
 (B 5) 

1 = 𝛽𝐿 + 𝛽𝑉 (B 6) 

𝛽𝐿 = 1 − 𝛽𝑉 (B 7) 

𝑧𝑖 = 𝛽𝐿𝑥𝑖
𝐿 + 𝛽𝑉𝑦𝑖  (B 8) 

𝑧𝑖 = (1 − 𝛽𝑉)𝑥𝑖
𝐿 + 𝛽𝑉𝑦𝑖  (B 9) 

𝑧𝑖 = (1 − 𝛽𝑉)𝑥𝑖
𝐿 + 𝛽𝑉𝑥𝑖

𝐿𝐾𝑖
𝑉 (B 10) 

𝑧𝑖 = 𝑥𝑖
𝐿 ((1 − 𝛽𝑉) + 𝛽𝑉𝐾𝑖

𝑉) (B 11) 
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𝑧𝑖 = 𝑥𝑖
𝐿 (1 + 𝛽𝑉(𝐾𝑖

𝑉 − 1)) (B 12) 

𝑥𝑖
𝐿 =

𝑧𝑖

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1)

 (B 13) 

𝑦𝑖 = 𝑥𝑖
𝐿𝐾𝑖

𝑉 =
𝑧𝑖𝐾𝑖

𝑉

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1)

 (B 14) 

 

Rachford-Rice equation is given below: 

𝑅𝑅𝑦 = ∑(𝑦𝑖 − 𝑥𝑖
𝐿)

𝐶

𝑖=1

=
𝑧𝑖(𝐾𝑖

𝑉 − 1)

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1)

= 0 (B 15) 

 

 

9.2.2. Three phases flash equations 

 

Figure 9-2. Schematic of a flash system dealing with three phases 

 

𝐹 = 𝐿 + 𝑊 + 𝑉 (B 16) 

𝐹𝑧𝑖 = 𝐿𝑥𝑖
𝐿 + 𝑊𝑥𝑖

𝑊 + 𝑉𝑦𝑖 (B 17) 
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∑𝑥𝑖
𝐿

𝑛

𝑖

= ∑𝑥𝑖
𝑊

𝑛

𝑖

= ∑𝑦𝑖

𝑛

𝑖

= 1 (B 18) 

From equilibrium: 

𝐾𝑖
𝑉 =

𝑦𝑖

𝑥𝑖
𝐿 =

𝜙𝑖
𝐿

𝜙𝑖
𝑉 (B 19) 

𝐾𝑖
𝑊 =

𝑥𝑖
𝑊

𝑥𝑖
𝐿 =

𝜙𝑖
𝑊

𝜙𝑖
𝑉  (B 20) 

 

 

1 =
𝐿

𝐹
+

𝑊

𝐹
+

𝑉

𝐹
 (B 21) 

1 = 𝛽𝐿 + 𝛽𝑊 + 𝛽𝑉 (B 22) 

𝛽𝐿 = 1 − 𝛽𝑊 − 𝛽𝑉 (B 23) 

𝑧𝑖 = 𝛽𝐿𝑥𝑖
𝐿 + 𝛽𝑊𝑥𝑖

𝑊 + 𝛽𝑉𝑦𝑖 (B 24) 

𝑧𝑖 = (1 − 𝛽𝑊 − 𝛽𝑉)𝑥𝑖
𝐿 + 𝛽𝑊𝑥𝑖

𝑊 + 𝛽𝑉𝑦𝑖  (B 25) 

𝑧𝑖 = (1 − 𝛽𝑊 − 𝛽𝑉)𝑥𝑖
𝐿 + 𝛽𝑊𝑥𝑖

𝐿𝐾𝑖
𝑊 + 𝛽𝑉𝑥𝑖

𝐿𝐾𝑖
𝑉 (B 26) 

𝑧𝑖 = 𝑥𝑖
𝐿 ((1 − 𝛽𝑊 − 𝛽𝑉) + 𝛽𝑊𝐾𝑖

𝑊 + 𝛽𝑉𝐾𝑖
𝑉) (B 27) 

𝑧𝑖 = 𝑥𝑖
𝐿 (1 + 𝛽𝑉(𝐾𝑖

𝑉 − 1) + 𝛽𝑊(𝐾𝑖
𝑊 − 1)) (B 28) 

𝑥𝑖
𝐿 =

𝑧𝑖

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)
 (B 29) 

𝑥𝑖
𝑊 = 𝑥𝑖

𝐿𝐾𝑖
𝑊 =

𝑧𝑖𝐾𝑖
𝑊

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)
 (B 30) 
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𝑦𝑖 = 𝑥𝑖
𝐿𝐾𝑖

𝑉 =
𝑧𝑖𝐾𝑖

𝑉

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)
 (B 31) 

 

Rachford-Rice equations are summarized as follows: 

𝑅𝑅𝑦 = ∑(𝑦𝑖 − 𝑥𝑖
𝐿)

𝑁

𝑖=1

= ∑
𝑧𝑖(𝐾𝑖

𝑉 − 1)

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)

𝑁

𝑖=1

= 0 

(B 32) 

𝑅𝑅𝑥𝑖
𝑤 = ∑(𝑥𝑖

𝑊 − 𝑥𝑖
𝐿)

𝑁

𝑖=1

= ∑
𝑧𝑖(𝐾𝑖

𝑊 − 1)

1 + 𝛽𝑉(𝐾𝑖
𝑉 − 1) + 𝛽𝑊(𝐾𝑖

𝑊 − 1)

𝑁

𝑖=1

= 0 

(B 33) 

 

9.3. Appendix C: Python Code 

• Activity Coefficient Models (ActivityCoefficientModels.py) 

import numpy as np 
from scipy.optimize import fsolve 
from scipy.interpolate import interp1d    # For interpolation 
from AntoineEquation import * 
 
# ========================================================================= 
# Functions hydrocarbon/water mixtures 
# 
def NRTL(parametersType, T,xi, a_ij, b_ij=None, c_ij=None, d_ij=None, e_ij=None, f_ij=None, alpha_ij = 
None, Rg =  None): 
    """ (str, float, np.array, np.array, np.array, np.array, np.array, np.array, int, int ) -> list of int 
 
   Returns the Gammas using NRTL model for different options: 
        1. Klauck 
        2. AspenPlus 
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        3. AspenHysys 
 
    Units are: 
        T       [K] 
        xi      [Molar fraction] 
 
    Example for Aspen Hysys: water(1)/ n-octane(2) parameters = 0 
    >>> NRTL('AspenHysys', 348, np.array([0.1, 1-0.1]), np.zeros((2, 2)), np.zeros((2, 2)), '','','','', 0.2, 
(101325*22.414/(1000*273.15))*(1000/4184)) 
    array([1., 1.]) 
 
    Example for Aspen Hysys: water(1)/ n-octane(2) 
    >>> NRTL('AspenHysys', 70+273.15, np.array([1e-9, 1-1e-9]), np.array([[0, 8114.72998046875], 
[604.739990234375, 0]]), np.array([[0, -18.2350006103516], [18.1609992980957, 0]]), '','','','', 0.2, 
(101325*22.414/(1000*273.15))*(1000/4184)) 
    array([1.09704181e+05, 1.00000000e+00]) 
 
    Example for Aspen Plus: water(1)/ n-octane(2) 
    >>> NRTL('AspenPlus', 70+273.15, np.array([1e-9, 1-1e-9]), np.array([[0, 1.2166], [-12.035, 0]]), 
np.array([[0, 2997.7], [5381.43, 0]]), np.array([[0, 0.2], [0.2, 0]]), np.zeros((2, 2)), np.zeros((2, 2)), 
np.zeros((2, 2))) 
    array([149.49048194,   1.        ]) 
 
    Example for Klauc: water(1)/ n-octane(2) 
    >>> NRTL('Klauck', 70+273.15, np.array([1e-9, 1-1e-9]), np.array([[0, -169.718], [4197.06, 0]]), 
np.array([[0, 12.5591], [-7.5243, 0]]), np.zeros((2, 2)),'','','', 0.2) 
    array([326.07095536,   1.        ]) 
 
    Example for Aspen Plus: water(1)/ n-octane(2) / dodecane(3) 
    >>> NRTL('AspenPlus', 70+273.15, np.array([0.0203048, 0.107552, 0.872144]), np.array([[0, 1.2166, 
23.4291], [-12.035, 0, 0], [-6.08871, 0, 0]]), np.array([[0, 2997.7, -2638.14], [5381.43, 0, 0], [3794.11, 0, 
0]]), 0.2, np.zeros((3, 3)), np.zeros((3, 3)), np.zeros((3, 3))) 
    array([156.79663005,   0.99052444,   1.00664997]) 
 
    """ 
    if parametersType == 'Klauck': 
        A_ij = a_ij + (b_ij*T) + (c_ij*(T**2)) 
        tao_ij = A_ij/T 
        G_ij = np.exp (-alpha_ij*tao_ij); 
 
    elif parametersType == 'AspenPlus': 
        tao_ij = a_ij + (b_ij/T) + (e_ij*np.log(T)) + (f_ij*T) 
        alpha_ij=c_ij+(d_ij*(T-273.15)); 
        G_ij = np.exp (-alpha_ij*tao_ij); 
 
    elif parametersType == 'AspenHysys': 
        tao_ij = (a_ij + (b_ij*T) )/(Rg*T) 
        G_ij = np.exp (-alpha_ij*tao_ij); 
 
 
    ln_Gamma = ln_Gamma_Equation(xi, tao_ij, G_ij) 
    Gamma = np.exp(ln_Gamma) 
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    return Gamma 
 
 
def ln_Gamma_Equation(xi, tao_ij, G_ij): 
    """ 
    Function to calculate the ln Gamma using NRTL model 
    (Equations as Aspen Plus and Aspen Hysys model) 
    """ 
 
    ln_Gamma = np.zeros((len(xi))) 
 
    for ii in range(len(xi)): 
        Term2_j = 0 
 
        for jj in range(len(xi)): 
            Term_k = sum(xi[:]*G_ij[:,jj]) 
            Term_m = sum(xi[:]*tao_ij[:, jj]*G_ij[:, jj]) 
 
            Term2_a = tao_ij[ii,jj] - (Term_m/Term_k) 
            Term2_b = (xi[jj]*G_ij[ii, jj])/Term_k 
 
            Term2_j = Term2_j + ( Term2_a * Term2_b) 
 
        Term2_k = sum(xi[:]*G_ij[:, ii]) 
        Term1_j = sum(xi[:]*tao_ij[:, ii]*G_ij[:, ii]) 
 
        ln_Gamma[ii] = (Term1_j/Term2_k) + Term2_j 
 
    return ln_Gamma 
 
 
 
def Solubility_NRTL( x1s, parametersType,  T, a_ij, b_ij, c_ij=None, d_ij=None, e_ij=None, f_ij=None, 
alpha_ij = None, Rg =  None): 
    """ 
    This scripts uses the NRTL model proposed by ASPEN PLUS 
    """ 
 
    Fobj = np.zeros(2) 
 
    x1_I=x1s[0]; 
    x1_II=x1s[1]; 
 
    xi_I=[x1_I, 1-x1_I]; 
    Gamma_I = NRTL(parametersType, T, xi_I, a_ij, b_ij, c_ij, d_ij, e_ij, f_ij, alpha_ij, Rg) 
 
    xi_II=[x1_II, 1-x1_II]; 
    Gamma_II = NRTL(parametersType, T,xi_II, a_ij, b_ij, c_ij, d_ij, e_ij, f_ij, alpha_ij, Rg) 
 
    Fobj[0]=np.sqrt(((xi_I[0]*Gamma_I[0])-(xi_II[0]*Gamma_II[0]))**2); 
    Fobj[1]=np.sqrt(((xi_I[1]*Gamma_I[1])-(xi_II[1]*Gamma_II[1]))**2); 
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    return Fobj 
 
def dGmix_NRTL(xi, Gammas): 
    dGmix_RT = (xi[0]*np.log(Gammas[0]*xi[0])) + (xi[1]*np.log(Gammas[1]*xi[1])) 
 
    return dGmix_RT 

 

• Soave Redlich Kwong Equation of State (SRK_EoS.py) 

import numpy as np 
import math 
from scipy.optimize import fsolve 
 
# Soave Redlich Kwong equation of state 
def  Roots_SRK(ai, bi, P, T, Rg): 
    """ 
    Returns the roots for Soave Redlich Kwong 
    Fundamentals of Chemical Engineering Thermodynamics with applications to 
    Chemical Processes - Themis Matsoukas - 2013 
    """ 
 
    # Parameters A' and B' definded by 2.3 for mixture 
    AA = ai*P/((Rg*T)**2); 
    BB = bi*P/(Rg*T); 
 
    # SRK in terms of Z - Eq. 2.44 
    CC = np.array([1, -1, (AA-BB-(BB**2)), -AA*BB ])[np.newaxis] 
 
    r = np.array([np.roots(item) for item in CC]) 
    r = r[np.isreal(r)] 
    r = r.real     
    r = r[r >= 0] 
         
    Roots_Z_SRK=r; 
    return r, CC, AA, BB 
 
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
def Parameters_SRK(Tc, Pc, ww, Rg, Tr): 
    """ 
        Parameters for SRK Equation - Ec. 2.41 to 2.43 
        Fundamentals of Chemical Engineering Thermodynamics with applications to 
        Chemical Processes - Themis Matsoukas - 2013 
 
    """ 
    omega_SRK = 0.480+(1.574*ww)-(0.176*(ww**2));  # Matsoukas 
    ai_SRK = (0.42748*(Rg**2)*(Tc**2)/Pc)*((1+(omega_SRK*(1-(Tr**(1/2)))))**2); # Matsoukas 
    bi_SRK = 0.08664*Rg*Tc/Pc; 
 
    return ai_SRK, bi_SRK 
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# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
def  a_b_mixture_SRK(xi, ai, bi, kij): 
    """ 
    This function calculates the parameters for mixtures - Eq. 9.38 and 9.39 
    Fundamentals of Chemical Engineering Thermodynamics with applications to 
    Chemical Processes - Themis Matsoukas - 2013 
    """ 
    b_mix = sum(xi*bi); 
    a_ij = np.zeros((len(xi), len(xi))) 
    ais = np.zeros(len(xi)) 
 
    for ii in range(len(xi)): 
        for jj in range(len(xi)): 
            a_ij[ii,jj]=xi[ii]*xi[jj]*(1-kij[ii,jj])*math.sqrt(ai[ii]*ai[jj]); 
        ais[ii]=sum(a_ij[ii,:]); 
    a_mix=sum(ais); 
 
    return a_mix, b_mix 
 
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
def  a_b_mixture_SRKKD(xi, ai, bi, kij, Gi, T, Tcw): 
    """ 
    This function calculates the parameters for mixtures - Eq. 9.38 and 9.39 
    Fundamentals of Chemical Engineering Thermodynamics with applications to 
    Chemical Processes - Themis Matsoukas - 2013 
 
    [1] V.N. Kabadi, R.P. Danner, A Modified Soave-Redlich-Kwong Equation of State 
    for Water-Hydrocarbon Phase Equilibria, Ind. Eng. Chem. Process Des. Dev. 
    24 (1985) 537–541. https://doi.org/10.1021/i200030a004. 
    """ 
 
    b_mix = sum(xi*bi); 
    a_ij = np.zeros((len(xi), len(xi))) 
    ais = np.zeros(len(xi)) 
 
    for ii in range(len(xi)): 
        for jj in range(len(xi)): 
            a_ij[ii,jj]=xi[ii]*xi[jj]*(1-kij[ii,jj])*math.sqrt(ai[ii]*ai[jj]); 
        ais[ii]=sum(a_ij[ii,:]); 
 
    a_mix=sum(ais); 
    a_wi = Gi*(1-((T/Tcw)**0.8)) 
 
    xw = xi[0]      # water mole fraction 
    a_KD = sum(a_wi*(xw**2)*xi) 
    a_mix = a_mix + a_KD 
 
    return a_mix, b_mix 
 
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
def FugacityCoeff_SRK(xs, ai, bi, amix, bmix, AA, BB, Z, kij = None ): 
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    """ 
    Fundamentals of Chemical Engineering Thermodynamics with applications to 
    Chemical Processes - Themis Matsoukas - 2013 
    Fugacity coefficient from Ec. 10.21 
    """ 
 
    # Initial zeros matrix and vector 
    SUMA1 = np.zeros(len(xs)) 
    try: 
        CCi = np.zeros((len(xs), (len(AA[0])))) 
    except: 
        CCi = np.zeros(len(xs)) 
 
    ln_Fug_i = np.zeros(len(xs)) 
    Fug_i = np.zeros(len(xs)) 
 
 
    for ii in range(len(xs)): 
        for jj in range(len(xs)): 
            try: 
                SUMA1[jj] = xs[jj]*np.sqrt(ai[ii]*ai[jj])*(1-kij[ii, jj]) 
            except: 
                SUMA1[jj] = xs[jj]*np.sqrt(ai[ii]*ai[jj]) 
 
        suma = SUMA1.sum() 
        CCi[ii] = (AA/BB) * (-(bi[ii]/bmix)+((2/amix)*suma)) 
 
        PartC = CCi[ii]*np.log((Z+BB)/Z) 
        sandra = ((bi[ii]/bmix)*(Z-1)) - (np.log(Z-BB)) - PartC 
        ln_Fug_i[ii] = sandra 
        Fug_i[ii] = np.exp(ln_Fug_i[ii]) 
 
    return Fug_i, ln_Fug_i 
 
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
def Solubility_SRK_ASN_atPsup( x_sup, Psup, T, Tc, Pc, ww, kij, Rg, molFrac_ASN=None, KD = False, Gi = 
None): 
    """ 
    This scripts uses the SRK EoS to calculate solubility at a given temperature 
    The order should be water as first element because Tcw = Tc[0] 
 
    x_sup  --> Initial stimated molar fractions for solubility calculations 
    Psup   --> Pressure [Pa] 
    T      --> Temperature [K] 
    Tc     --> Critical Temperatures [K] 
    Pc     --> Critical Pressures [Pa] 
    ww     --> accentric factor 
    kij    --> Binary interaction parameters 
    Rg     --> Universal gas constant [Pa*m2/ (mol*K)] 
    """ 
 
    Fobj = np.zeros(14) 



151 

 

 

 
    # Initial stimates 
    x1_I = x_sup[:7] 
    print(sum(x1_I)) 
    x1_II = x_sup[7:] 
    print(sum(x1_II)) 
     
    x1_I = x1_I/sum(x1_I) 
    print(x1_I) 
 
    # Calculating Peng Robinson Parameters per component 
    Tr=T/Tc 
    [ai, bi] = Parameters_SRK(Tc, Pc, ww, Rg, Tr) 
 
    # Calculations for the two phases 
    # Phase I 
    xi_I = x1_I #+ [1-sum(x1_I)] 
 
    if KD == True: 
        Tcw = Tc[0] 
        a_mix_I, b_mix_I = a_b_mixture_SRKKD(xi_I, ai, bi, kij, Gi, T, Tcw) 
    else: 
        a_mix_I, b_mix_I = a_b_mixture_SRK(xi_I, ai, bi, kij) 
 
    r_I, CC_I, AA_I, BB_I = Roots_SRK(a_mix_I, b_mix_I, Psup, T, Rg) 
    Z_I = min(r_I) 
    Fug_i_I, ln_Fug_i_I = FugacityCoeff_SRK(xi_I, ai, bi, a_mix_I, b_mix_I, AA_I, BB_I, Z_I, kij  ) 
 
    # Phase II 
    xi_II = x1_II #+ [1-sum(x1_II)] 
 
    if KD == True: 
        Tcw = Tc[0] 
        a_mix_II, b_mix_II = a_b_mixture_SRKKD(xi_II, ai, bi, kij, Gi, T, Tcw) 
    else: 
        a_mix_II, b_mix_II = a_b_mixture_SRK(xi_II, ai, bi, kij) 
 
    r_II, CC_II, AA_II, BB_II = Roots_SRK(a_mix_II, b_mix_II, Psup, T, Rg) 
    Z_II = min(r_II) 
    Fug_i_II, ln_Fug_i_II = FugacityCoeff_SRK(xi_II, ai, bi, a_mix_II, b_mix_II, AA_II, BB_II, Z_II, kij  ) 
 
    Fobj[0]=np.sqrt(((xi_I[0]*Fug_i_I[0])-(xi_II[0]*Fug_i_II[0]))**2); 
    Fobj[1]=np.sqrt(((xi_I[1]*Fug_i_I[1])-(xi_II[1]*Fug_i_II[1]))**2); 
    Fobj[2]=np.sqrt(((xi_I[2]*Fug_i_I[2])-(xi_II[2]*Fug_i_II[2]))**2); 
    Fobj[3]=np.sqrt(((xi_I[3]*Fug_i_I[3])-(xi_II[3]*Fug_i_II[3]))**2); 
    Fobj[4]=np.sqrt(((xi_I[4]*Fug_i_I[4])-(xi_II[4]*Fug_i_II[4]))**2); 
    Fobj[5]=np.sqrt(((xi_I[5]*Fug_i_I[5])-(xi_II[5]*Fug_i_II[5]))**2); 
    Fobj[6]=np.sqrt(((xi_I[6]*Fug_i_I[6])-(xi_II[6]*Fug_i_II[6]))**2); 
     
    Fobj[7]= np.sqrt( (1 - np.sum(xi_I))**2) 
    Fobj[8]= np.sqrt( (1 - np.sum(xi_II))**2 ) 
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    Fobj[9] = sum(Fobj[:9]) 
     
    Fobj[10] = Fobj[0] 
    Fobj[11] = Fobj[2] 
    Fobj[12] = Fobj[4] 
    Fobj[13] = Fobj[6] 
 
    return Fobj 
 
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
def VLLE_funct_SRK(Psup, T, Pair, xi_sup, Tc, Pc, ww, kij, Rg, KD = False, Gi = None, iter_max=10000, tol=1e-
9, printSteps=False): 
    """ 
    This scripts uses the PR EoS 
    This function calculates the Pressure and solubilities based on fsolve for 
    solubilities at a given P 
 
    P_sup  --> Initial stimated pressure [Pa] 
    T      --> Temperature [K] 
    Pair   --> Initial pressure of air in the cell [Pa] 
    ww     --> accentric factor 
    kij    --> Binary interaction parameters 
    Rg     --> Universal gas constant [Pa*m3/ (mol*K)] 
    """ 
    Fobj_P = 1000 
    iter_P = 0 
 
    # Peng Robinson Parameters 
    Tr=T/Tc 
    [ai, bi] = Parameters_SRK(Tc, Pc, ww, Rg, Tr) 
 
    # air correction 
    factor_air = (Pair*T/(20+273.15)) 
 
    while (Fobj_P > tol) and (iter_P <= iter_max): 
        iter_P += 1 
 
        # Solubility calculation at a given P sup 
        if KD == True: 
            Tcw = Tc[0] 
            x0_calc, info, ier, mesg  = fsolve(Solubility_SRK_atPsup, xi_sup, (Psup, T,  Tc, Pc, ww, kij, Rg, KD, Gi), 
xtol = 1e-9, full_output = True) 
        else: 
            x0_calc, info, ier, mesg  = fsolve(Solubility_SRK_atPsup, xi_sup, (Psup, T,  Tc, Pc, ww, kij, Rg), xtol = 
tol, full_output = True) 
 
        xw_1 = x0_calc[0] 
        xw_2 = x0_calc[1] 
 
        xi_I = [xw_1, 1-xw_1] 
        xi_II = [xw_2, 1-xw_2] 
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        # Calculate fugacity coefficient for phase 1 
        if KD == True: 
            Tcw = Tc[0] 
            a_mix_I, b_mix_I = a_b_mixture_SRKKD(xi_I, ai, bi, kij, Gi, T, Tcw) 
        else: 
            a_mix_I, b_mix_I = a_b_mixture_SRK(xi_I, ai, bi, kij) 
 
        r_I, CC_I, AA_I, BB_I = Roots_SRK(a_mix_I, b_mix_I, Psup, T, Rg) 
        Z_I = min(r_I) 
        Fug_i_I, ln_Fug_i_I = FugacityCoeff_SRK(xi_I, ai, bi, a_mix_I, b_mix_I, AA_I, BB_I, Z_I, kij ) 
 
        # Calculate fugacity coefficient for phase II 
        if KD == True: 
            Tcw = Tc[0] 
            a_mix_II, b_mix_II = a_b_mixture_SRKKD(xi_II, ai, bi, kij, Gi, T, Tcw) 
        else: 
            a_mix_II, b_mix_II = a_b_mixture_SRK(xi_II, ai, bi, kij) 
 
        r_II, CC_II, AA_II, BB_II = Roots_SRK(a_mix_II, b_mix_II, Psup, T, Rg) 
        Z_II = min(r_II) 
        Fug_i_II, ln_Fug_i_II = FugacityCoeff_SRK(xi_II, ai, bi, a_mix_II, b_mix_II, AA_II, BB_II, Z_II, kij ) 
 
        # Parcial pressures 
        Pi_w = (xi_I[0]*Fug_i_I[0]*Psup) 
        Pi_o = (xi_II[1]*Fug_i_II[1]*Psup) 
        Pi_tot_calc = Pi_w + Pi_o + factor_air 
 
        if printSteps: 
            print(f"{iter_P}) Fobj = {Fobj_P} --> Psup = {Psup}, Pcalc={Pi_tot_calc} xi = {x0_calc}") 
 
        Fobj_P = np.sqrt((Psup - Pi_tot_calc)**2) 
 
        Psup = Pi_tot_calc 
        xi_sup = x0_calc 
 
    if iter_P >= iter_max: 
        print("Maximum number of iterations was reached (VLLE_funct_PR)") 
 
    return Psup, x0_calc, iter_P, Fobj_P 
 
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
def P_bubble_SRKKD_3P(var_sup, zi, T, Pair, Tc, Pc, ww, Rg, kij, KD, Gi): 
    Psup = var_sup[0] 
    print(f"Psup = {Psup}") 
    betaL_sup = var_sup[1] 
    print(f"betaL = {betaL_sup} ") 
    xiL_sup = var_sup[2:] 
    print(f"xiL_sup = {xiL_sup} ") 
     
    xiL_sup = np.array(xiL_sup) 
    print(f"sum xiL = {sum(xiL_sup)}") 
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    nn = len(xiL_sup) 
    Fobj = np.zeros(nn + 2) 
     
    # Calculate compositions for aqueous phase 
    xiW = (zi - (xiL_sup*betaL_sup))/(1-betaL_sup) 
     
    # Calculate fugacity coefficients 
    # Calculating Peng Robinson Parameters per component 
    Tr=T/Tc 
    [ai, bi] = Parameters_SRK(Tc, Pc, ww, Rg, Tr) 
 
    # Calculations for the two phases 
    # Phase I: Hydrocarbon Phase 
     
    xi_I = xiL_sup 
    if KD == True: 
        Tcw = Tc[0] 
        a_mix_I, b_mix_I = a_b_mixture_SRKKD(xi_I, ai, bi, kij, Gi, T, Tcw) 
    else: 
        a_mix_I, b_mix_I = a_b_mixture_SRK(xi_I, ai, bi, kij) 
 
 
    r_I, CC_I, AA_I, BB_I = Roots_SRK(a_mix_I, b_mix_I, Psup, T, Rg) 
    Z_I = min(r_I) 
    Fug_i_I, ln_Fug_i_I = FugacityCoeff_SRK(xi_I, ai, bi, a_mix_I, b_mix_I, AA_I, BB_I, Z_I, kij  ) 
 
    # Phase II: Aquous phase 
    xi_II = xiW 
 
    if KD == True: 
        Tcw = Tc[0] 
        a_mix_II, b_mix_II = a_b_mixture_SRKKD(xi_II, ai, bi, kij, Gi, T, Tcw) 
    else: 
        a_mix_II, b_mix_II = a_b_mixture_SRK(xi_II, ai, bi, kij) 
 
    r_II, CC_II, AA_II, BB_II = Roots_SRK(a_mix_II, b_mix_II, Psup, T, Rg) 
    Z_II = min(r_II) 
    Fug_i_II, ln_Fug_i_II = FugacityCoeff_SRK(xi_II, ai, bi, a_mix_II, b_mix_II, AA_II, BB_II, Z_II, kij  ) 
     
    Fobj[:nn] = np.sqrt(((xi_I*Fug_i_I)-(xi_II*Fug_i_II))**2) 
     
    f_I = xi_I*Fug_i_I*Psup 
    f_II = xi_II*Fug_i_II*Psup 
     
    Pcalc1 = f_I.sum() + Pair 
    Pcalc2 = f_II.sum() + Pair 
     
    #Pcalc = (Pcalc1 + Pcalc2)/2 
    Fobj[(nn+1) - 1] = np.sqrt((Psup - Pcalc1)**2) 
    Fobj[(nn+2) - 1] = np.sqrt((Psup - Pcalc2)**2) 
     
    return Fobj.sum() 
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• Flash Calculatioins (FlashCalculations_SRKKD.py) 

try: 
    from Modules.SRK_EoS import * 
except: 
    from SRK_EoS import * 
 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.patches as mpatches 
 
from scipy.optimize import fsolve 
from scipy.optimize import minimize 
from scipy.optimize import Bounds 
from scipy.optimize import LinearConstraint 
 
""" 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
    Li Firoozabadi 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
""" 
def Fobj_RR_ii(beta_W, beta_V, zi, Ki, ii): 
    beta_k = np.asarray([beta_V , beta_W]) 
    beta_k = beta_k[:, np.newaxis] 
    RRs = flash_3P_RRs(zi, Ki, beta_k) 
    return RRs[ii] 
 
def Figure_liFiroozabadi_3d(zi, Kis, betaVs = [0, 1 ], betaWs = [0, 1], Z_lim = []): 
    Z_lim = np.array([Z_lim]) 
    betas_V = np.linspace(betaVs[0], betaVs[1], 100) 
    betas_W = np.linspace(betaWs[0], betaWs[1], 100) 
 
    RRs_y = [] 
    RRs_w = [] 
 
    for ii, beta_V in enumerate(betas_V): 
        for jj, beta_W in enumerate(betas_W): 
            beta_k = np.asarray([beta_V , beta_W]) 
            beta_k = beta_k[:, np.newaxis] 
 
            RRs = flash_3P_RRs(zi, Kis, beta_k) 
 
            RRs_y.append(RRs[0, 0]) 
            RRs_w.append(RRs[1, 0]) 
 
    fig = plt.figure() 
    ax = fig.add_subplot(111, projection='3d') 
 
    X, Y = np.meshgrid(betas_V, betas_W) 
    zs = np.array(RRs_y) 
    Z = zs.reshape(X.shape) 
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    ax.plot_surface(X, Y, Z, color='g') 
 
    zs2 = np.array(RRs_w) 
    Z2 = zs2.reshape(X.shape) 
    ax.plot_surface(X, Y, Z2, color='b') 
 
    xx, yy = np.meshgrid([0, 1], [0, 1]) 
    zz = yy*0 
    ax.plot_surface(xx, yy, zz, color='k', alpha=0.3) 
    plt.show() 
    ax.set_xlabel(r'$\beta^V$') 
    ax.set_ylabel(r'$\beta^W$') 
    ax.set_zlabel(r'$RRy$ (or $RR_w$)') 
 
    if len(Z_lim) > 0: 
        ax.set_zlim(-Z_lim, Z_lim) 
 
    # Add legend with proxy artists 
    col1_patch = mpatches.Patch(color='b', label=r'$RR_w$') 
    col2_patch = mpatches.Patch(color='g', label=r'$RR_y$') 
    plt.legend(handles=[col1_patch, col2_patch]) 
 
def Figure_liFiroozabadi_2d(zi, Ki, betasV_01 = [0, 0.84], betasV_02 = [0.27, 1.0],  betas_W_sup_in = [0.1, 
0.8] ): 
    betas_V_01 = np.linspace(betasV_01[0], betasV_01[1], 100) 
    betas_V_02 = np.linspace(betasV_02[0], betasV_02[1], 100) 
    beta_W_calc_RRy = [] 
    beta_W_calc_RRw = [] 
 
    betas_W_sup = betas_W_sup_in[0] 
    for beta_V in betas_V_01: 
        beta_k = np.asarray([beta_V , betas_W_sup]) 
        beta_k = beta_k[:, np.newaxis] 
 
        root_RRw, infodict, ier, mesg  = fsolve(Fobj_RR_ii, betas_W_sup, args=(beta_V, zi, Ki, 1), xtol = 1e-9, 
full_output=True, maxfev = 1000) 
        beta_W_calc_RRw.append(root_RRw[0]) 
        betas_W_sup = root_RRw[0] 
 
    betas_W_sup = betas_W_sup_in[1] 
    for beta_V in betas_V_02: 
        beta_k = np.asarray([beta_V , betas_W_sup]) 
        beta_k = beta_k[:, np.newaxis] 
 
        root_RRy, infodict, ier, mesg  = fsolve(Fobj_RR_ii, betas_W_sup, args=(beta_V, zi, Ki, 0), xtol = 1e-9, 
full_output=True, maxfev = 1000) 
        beta_W_calc_RRy.append(root_RRy[0]) 
        betas_W_sup = root_RRy[0] 
 
    plt.figure() 
    plt.plot(betas_V_01, beta_W_calc_RRw, 'b') 



157 

 

 

    plt.plot(betas_V_02[:-10], beta_W_calc_RRy[:-10], 'g') 
    plt.plot([0, 1, 0, 0], [0, 0, 1, 0], 'k') 
    plt.xlabel(r'$\beta^V$') 
    plt.ylabel(r'$\beta^W$') 
 
""" 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
    Three Phases flash calculations 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
""" 
 
def flash_3P_RachfordRice_values(beta_k, zi, Kis): 
 
    Ki_V = Kis[0, :] 
    Ki_W = Kis[1, :] 
 
    Hi = 1 + (beta_k[0]*(Ki_V-1)) + (beta_k[1]*(Ki_W-1)) 
 
    xi_L = zi/Hi 
    xi_W = xi_L*Ki_W 
    yi   = xi_L*Ki_V 
 
    return xi_L, xi_W, yi 
 
def min_RRs(beta_k, zi, Ki): 
    beta_k = np.asarray(beta_k) 
    beta_k = beta_k[:, np.newaxis] 
 
    zi = np.array(zi) 
    Hi = 1 + sum(beta_k*(Ki-1)) 
    Fobj = sum(-zi*np.log(Hi)) 
 
    return Fobj 
 
def flash_3P_RRs_fsolve(beta_k, zi, Ki): 
    beta_k = np.asarray(beta_k) 
    beta_k = beta_k[:, np.newaxis] 
 
    Hi = 1 + sum(beta_k*(Ki-1)) 
    RRs = np.zeros((2, 1)) 
 
    RRs[0] = sum(zi*(Ki[0, :] - 1)/(Hi)) 
    RRs[1] = sum(zi*(Ki[1, :] - 1)/(Hi)) 
 
    return sum(abs(RRs[:, 0])) 
 
def flash_3P_RRs(zi, Ki, beta_k): 
    Hi = 1 + sum(beta_k*(Ki-1)) 
    RRs = np.zeros((2, 1)) 
 
    RRs[0] = sum(zi*(Ki[0, :] - 1)/(Hi)) 
    RRs[1] = sum(zi*(Ki[1, :] - 1)/(Hi)) 
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    return RRs 
 
def flash_3P_Jacobian(zi, Ki, beta_k): 
 
    Hi = 1 + sum(beta_k*(Ki-1)) 
 
    Jacobian_3P = np.zeros((len(beta_k), len(beta_k))) 
    Jacobian_3P[0, 0] = sum(-(zi*((Ki[0, :] - 1)**2)/(Hi**2))) 
    Jacobian_3P[1, 1] = sum(-(zi*((Ki[1, :] - 1)**2)/(Hi**2))) 
    Jacobian_3P[0, 1] = sum(-(zi*((Ki[0, :] - 1)*(Ki[1, :] - 1))/(Hi**2))) 
    Jacobian_3P[1, 0] = Jacobian_3P[0, 1] 
 
    return Jacobian_3P 
 
def flash_3P_NewtonRaphson(beta_k, zi, Ki, iterMax=1000, tol=1e-6): 
    beta_old = np.asarray(beta_k) 
    beta_old = beta_old[:, np.newaxis] 
 
 
    iter_1 = 0; 
    Fobj = 1000 
 
    while ((abs(Fobj) > tol) & (iter_1 < iterMax)): 
        iter_1 = iter_1 + 1 
 
        RRs = flash_3P_RRs(zi, Ki, beta_old) 
        J = flash_3P_Jacobian(zi, Ki, beta_old) 
 
        try: 
            J_inv = np.linalg.inv(J) 
        except: 
            print('Convergence not reached') 
            return beta_new, RRs, Fobj, iter_1 
            break 
 
        change = J_inv.dot(RRs) 
        beta_new = beta_old -  change # (np.linalg.inv(J)*RRs ) 
 
        Fobj = (beta_new - beta_old).sum() 
        beta_old = beta_new 
 
    if iter_1 >= iterMax: 
        print("Maximum iteration number in flash_3P'") 
 
    return beta_new, RRs, Fobj, iter_1 
 
 
""" 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
    Okuno 2010 - 3 Phases flash calculations using SRKKD 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
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""" 
def minF_Okuno(beta_k, zi, Ki): 
    beta_k = np.asarray(beta_k) 
    beta_k = beta_k[:, np.newaxis] 
 
    #ti = 1 - sum(beta_k*(1-Ki)) 
    ti = 1 - (beta_k[0]*(1-Ki[0,:])) - (beta_k[1]*(1-Ki[1,:])) 
    F_beta = (-zi*np.log(abs(ti))).sum() 
 
    return F_beta 
 
def Okuno_RR(beta_sup, Ki_V, Ki_W, zi): 
    # Minimization method as proposed by Okuno 
    ai_V = 1-Ki_V 
    ai_W = 1-Ki_W 
 
    Kis = np.asarray([Ki_V, Ki_W] ) 
 
    ai_p = np.zeros((2, len(zi))) 
    ai_p[0, :] = ai_V 
    ai_p[1, :] = ai_W 
    aiT = ai_p.transpose() 
 
    bi_okuno = np.zeros(len(zi)) 
 
    for jj, z_j in enumerate(zi): 
        bis = [1-z_j, 1-(z_j*Ki_V[jj]), 1-(z_j*Ki_W[jj])] 
        bi_okuno[jj] = min(bis) 
 
    lb = len(zi)*[-np.inf] 
    linear_constraint = LinearConstraint(aiT, lb, bi_okuno) 
 
 
    results = minimize(minF_Okuno, beta_sup, args=(zi, Kis), method='COBYLA', tol=1e-8, 
constraints=[linear_constraint]) 
 
    beta_new = results.x 
 
    return beta_new 
 
def calc_3Phases(Ki_V, Ki_W, beta_new, zi,P, T, Tc, Pc, ww, Rg, kij, Gi, Tcw): 
    Kis = np.asarray([Ki_V, Ki_W] ) 
    xi_L, xi_W, yi = flash_3P_RachfordRice_values(beta_new, zi, Kis) 
 
    Fug_i_W, ln_Fug_i_W, Fug_i_L, ln_Fug_i_L, Fug_i_V, ln_Fug_i_V = VLLE_fugacities(P, T, xi_W, xi_L, yi, Tc, 
Pc, ww, Rg, kij, Gi, Tcw) 
 
    return xi_L, xi_W, yi, Fug_i_L, ln_Fug_i_L, Fug_i_W, ln_Fug_i_W, Fug_i_V, ln_Fug_i_V 
 
 
def VLLE_fugacities(P, T, xi_W, xi_L, yi, Tc, Pc, ww, Rg, kij, Gi, Tcw): 
    Tr=T/Tc 
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    [ai, bi] = Parameters_SRK(Tc, Pc, ww, Rg, Tr) 
 
    # 3. Calculate compresibiliti factors and fugacities 
    # Fase W 
    a_mix_W, b_mix_W = a_b_mixture_SRKKD(xi_W, ai, bi, kij, Gi, T, Tcw) 
    r_W, CC_W, AA_W, BB_W = Roots_SRK(a_mix_W, b_mix_W, P, T, Rg) 
    Z_W = min(r_W) 
    Fug_i_W, ln_Fug_i_W = FugacityCoeff_SRK(xi_W, ai, bi, a_mix_W, b_mix_W, AA_W, BB_W, Z_W, kij  ) 
 
    # Fase L 
    a_mix_L, b_mix_L = a_b_mixture_SRKKD(xi_L, ai, bi, kij, Gi, T, Tcw) 
    r_L, CC_L, AA_L, BB_L = Roots_SRK(a_mix_L, b_mix_L, P, T, Rg) 
    Z_L = min(r_L) 
    Fug_i_L, ln_Fug_i_L = FugacityCoeff_SRK(xi_L, ai, bi, a_mix_L, b_mix_L, AA_L, BB_L, Z_L, kij  ) 
 
    # Fase Vapor 
    a_mix_V, b_mix_V = a_b_mixture_SRKKD(yi, ai, bi, kij, Gi, T, Tcw) 
    r_V, CC_V, AA_V, BB_V = Roots_SRK(a_mix_V, b_mix_V, P, T, Rg) 
    Z_V = max(r_V) 
    Fug_i_V, ln_Fug_i_V = FugacityCoeff_SRK(yi, ai, bi, a_mix_V, b_mix_V, AA_V, BB_V, Z_V, kij  ) 
 
    return Fug_i_W, ln_Fug_i_W, Fug_i_L, ln_Fug_i_L, Fug_i_V, ln_Fug_i_V 
 
def Fobj_3Phases(Kis, beta_sup, P, T, zi, Tc, Pc, ww, Rg, kij, Gi, Tcw, iterMax = 10000, tol =  1e-6): 
    Ki_V_old = Kis[0, :] 
    Ki_W_old = Kis[1, :] 
 
    Fobj_V = 1000 
    Fobj_W = 1000 
 
    iter_2 = 0 
 
    while ((abs(Fobj_V)>tol) & (abs(Fobj_W)>tol) & (iter_2<iterMax)): 
        iter_2 += 1 
 
        beta_new = Okuno_RR(beta_sup, Ki_V_old, Ki_W_old, zi) 
        beta_new = beta_new[:, np.newaxis] 
 
        xi_L, xi_W, yi, Fug_i_L, ln_Fug_i_L, Fug_i_W, ln_Fug_i_W, Fug_i_V, ln_Fug_i_V = 
calc_3Phases(Ki_V_old, Ki_W_old, beta_new, zi, P, T, Tc, Pc, ww, Rg, kij, Gi, Tc[0]) 
 
        Fobj_V = sum(np.log(Ki_V_old) - ln_Fug_i_L + ln_Fug_i_V) 
        Fobj_W = sum(np.log(Ki_W_old) - ln_Fug_i_L + ln_Fug_i_W) 
 
        Ki_V_old = np.exp(ln_Fug_i_L - ln_Fug_i_V); 
        Ki_W_old = np.exp(ln_Fug_i_L - ln_Fug_i_W); 
 
        if (abs(1-sum(xi_L)) > tol ) | (abs(1-sum(xi_W)) > tol) | ( abs(1-sum(yi)) > 1): 
            Fobj_V = 1 
 
    Kis = np.asarray([Ki_V_old, Ki_W_old] ) 
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    beta_new = Okuno_RR(beta_sup, Ki_V_old, Ki_W_old, zi) 
    beta_new = beta_new[:, np.newaxis] 
 
    xi_L, xi_W, yi, Fug_i_L, ln_Fug_i_L, Fug_i_W, ln_Fug_i_W, Fug_i_V, ln_Fug_i_V = calc_3Phases(Ki_V_old, 
Ki_W_old, beta_new, zi, P, T, Tc, Pc, ww, Rg, kij, Gi, Tc[0]) 
    RRs = flash_3P_RRs(zi, Kis, beta_new) 
 
    if iter_2 > iterMax: 
        print("Maximum number of Iterations reached (Fobj_3Phases)") 
 
    return beta_new, xi_L, xi_W, yi, Fug_i_L, Fug_i_W, Fug_i_V, Ki_V_old, Ki_W_old, RRs, Fobj_V, Fobj_W, 
RRs, iter_2 
 
 
def Fobj_bubblePoint(Psup, betaV_required, Kis, beta_sup, T, zi, Tc, Pc, ww, Rg, kij, Gi_python, Tcw): 
    # For bubble point beta_V = 0 
    beta_new, xi_L, xi_W, yi, Fug_i_L, Fug_i_W, Fug_i_V, Ki_V, Ki_W, RRs, Fobj_V, Fobj_W, RRs, iter_2 = 
Fobj_3Phases(Kis, beta_sup, Psup, T, zi, Tc, Pc, ww, Rg, kij, Gi_python, Tcw) 
    beta_V = beta_new[0] 
 
    Fobj = np.sqrt((betaV_required - beta_V)**2) 
    return Fobj 
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