
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-23-2021 10:00 AM 

In-clinic Functional Measurement and Analysis of Knee In-clinic Functional Measurement and Analysis of Knee 

Osteoarthritis Patients Undergoing Total Knee Replacement Osteoarthritis Patients Undergoing Total Knee Replacement 

Riley A. Bloomfield, The University of Western Ontario 

Supervisor: Teeter, Matthew G., The University of Western Ontario 

Joint Supervisor: McIsaac, Kenneth A., The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Electrical and Computer Engineering 

© Riley A. Bloomfield 2021 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biomedical Devices and Instrumentation Commons 

Recommended Citation Recommended Citation 
Bloomfield, Riley A., "In-clinic Functional Measurement and Analysis of Knee Osteoarthritis Patients 
Undergoing Total Knee Replacement" (2021). Electronic Thesis and Dissertation Repository. 7808. 
https://ir.lib.uwo.ca/etd/7808 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7808&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=ir.lib.uwo.ca%2Fetd%2F7808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7808?utm_source=ir.lib.uwo.ca%2Fetd%2F7808&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

Prevalence of osteoarthritis is increasing as individuals are remaining active later in life.

Since the knee is one of the most commonly affected joints and is involved in almost all daily

activities, functional impairment has a substantial impact on overall health. Despite this in-

crease, there currently exists no disease modifying drugs or treatments. Mild cases are managed

with physiotherapeutic exercises and common anti-inflammatories but surgical intervention is

required for more severe disease progression.

Total knee replacement as a treatment for osteoarthritis is a highly successful surgery that

is effective at restoring knee function and reducing pain but still requires further refinement.

Over 70,000 of these surgeries are performed annually in Canada with 99% for the treatment of

degenerative arthritis. Despite improvements to surgical technique and implant designs, studies

report up to 20% of patients remain dissatisfied with their knee replacement up to the point of

not undergoing the surgery again if it were an option. A singular cause for this dissatisfaction

has not been pinpointed but strong influencers are pain, low functional improvement, and unmet

expectations.

Early detection of functional problems permits further intervention through targeted phys-

iotherapy or additional surgeries before problems escalate and cause patient dissatisfaction or

implant revision. Current methods of patient evaluation rely on self-reported measures, which

suffer from ceiling and floor effects often masking inter-patient differences. These measures

are also influenced from patient expectations and what a patient reports they “can” do, is not

always representative of their true functional ability.

Wearable sensors permit objective functional measurement of the knee as a supplement

to patient-reported measures. Instrumented performance tests can measure patient function

and compare to similar recoveries to highlight deficiencies or positive recovery traits. This
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Abstract iv

thesis outlines the development of such a wearable system for in-clinic measurement and the

extraction of functional parameters to predict future outcomes and give surgeons the earli-

est indications for intervention. This information can also help surgeons realistically adjust

patient expectations for recovery, even before undergoing surgery. It is expected that these in-

dividualized assessments to set expectations before surgical intervention will help address the

persistently high patient dissatisfaction.

Keywords: Total knee replacement, Wearable sensors, Machine learning, Patient out-

comes, Functional testing



Summary

Total knee replacement is a commonly performed surgery where the knee is replaced by

an artificial joint. In Canada, 99% of these surgeries are performed as a treatment to knee os-

teoarthritis (OA): a disease that causes breakdown of cartilage, pain, and loss of joint function.

Although exercise and medications are often prescribed for mild cases, this currently remains

the only treatment available for late-stage knee OA.

Unfortunately given total joint replacement is the only solution to restore function and

improve the quality of life of affected patients, up to one in five patients self-reports they are

dissatisfied with their surgery and many indicating they would not undergo it again if it were

an option. A variety of reasons for this dissatisfaction have been uncovered such as persisting

pain, low joint function improvement, and expectations of how a new knee would perform not

being met.

When undergoing knee replacement, evaluation tools to measure patients and track the

joint recovery are limited. Complex equipment is not accessible for many clinics and physical

space restrictions limit equipment that can be used. Questionnaires which instruct patients

to self-report their abilities, pain, expectations, and satisfaction are most commonly used to

get patient feedback. Unfortunately these can be unreliable when patients cannot distinguish

subtle changes in their own health. Furthermore, perceived impairments could be caused by

other joints (such as the hip) or conditions external to the knee which may unfairly influence

answers.

The work presented in this thesis focuses on the development of a knee measurement tool

that can be used in the clinic by patients and surgeons to get instant feedback on knee function.

These measurements will be free of patient or surgeon bias, which permits results to be com-

pared to previous visits or other patients. Later work describes the use of these measurements
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to predict how much function a patient may regain even before their surgery, which can help

the surgeon set realistic expectations for the patient, which in turn, is expected to help manage

patient satisfaction.
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Chapter 1

Introduction

Total knee replacement (TKR) is a highly successful elective procedure consisting of re-

placing the articulating surfaces of the knee with artificial components. In Canada, over 70,000

knees are replaced annually with 99% of these surgeries performed as a treatment for end-stage

knee osteoarthritis (OA) [1]. General goals of this surgery include reducing pain, restoring joint

function, and increasing joint stability to improve patient quality of life.

Annual knee replacement surgeries have increased by 17% in the last five years, rising

alongside increasing rates of comorbidities such as obesity. The number of older individuals

remaining active later in life is also increasing, straining joints with more vigorous activities

[1]. A growing number of joint replacement surgeries is placing a burden on our health care

systems, contributing to long wait times during which the patient’s health often declines further

due to decreased mobility and limited daily activity. Despite being a comparably successful

surgery, there are several important motivators for additional research and investigation:

• There is a high 7% rate for knee revision. This process involves the removal of an

existing implant and a second, more complicated surgery is performed to insert another.

Healthcare costs of a revision surgery alone (not including increased recovery support)

are 80% higher than a primary implant and patients stay in the hospital twice as long on

average (8.9 days vs. 4.2 days) [1]. Additional days in the hospital are associated with

increased risk of infection and other complications.

• Knee OA affects a wide age demographic including both aged and younger populations.

1
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In the United States there are 14 million people suffering from symptomatic knee OA; six

million who are under age 65, and two million under age 45 [2]. Younger patients tend

to be more active and are more likely to be in the workforce and to have more demanding

joint requirements for their livelihood. A 65 year old patient has a 7% lifetime risk of

requiring a knee replacement revision but this substantially increases for younger patients

who are more commonly active and require increased implant longevity [3]. Implants

must be continuously evaluated to ensure they are performing as expected for extended

periods in all patient groups.

• Since this elective, highly successful surgery is the only option to improve the quality-

of-life of afflicted patients, it is especially troubling that a 20% self-reported surgical

dissatisfaction rate persists in many studies and across jurisdictions, with many patients

reporting they would not undergo the surgery again given it were an option [4–8].

After decades of knee replacement research and optimization, this high patient dissatisfac-

tion rate persists across many jurisdictions. Furthermore, dissatisfied patients draw healthcare

resources away from other individuals waiting for surgery. They may seek additional appoint-

ments or calls to their surgeon for inquiries and spend longer at their appointments getting their

concerns addressed and although a vague measure, satisfaction is of increasing interest to health

payers [9, 10]. Satisfaction has been linked to preoperative function and functional improve-

ment after surgery with more advanced OA patients being more satisfied with the procedure,

however, the greatest risk factor for dissatisfaction is unmet patient expectations [4, 5, 11–14].

Bourne et al. found that low postoperative outcome scores, high preoperative pain, or postop-

erative complications requiring rehospitalization were all associated with a 2-3× greater risk of

dissatisfaction whereas patients with unmet expectations were at 11× greater risk [4]. Connor-

Spady et al. have identified that expectations concerning joint function and physical activity are

least often met, suggesting many patients expect more functional recovery than is reasonably

likely, and patients were significantly more satisfied when more of their expectations were met

[15]. Managing and appropriately adjusting patient expectations before surgery, with empha-

sis on functional improvement, has been identified as one of the most influential methods of

improving satisfaction post-TKR but this has remained impractical with traditional methods of
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patient evaluation [6, 15].

1.1 Motivation

Due to time constraints on patient clinical exam visits and the complexity of available

evaluation equipment, in-clinic patient evaluation has shifted to self-reported measures. De-

spite care providers becoming increasingly pressured to demonstrate benefits of TKR using

tangable, objective measures, patient reported outcome measures (PROMs) have become in-

creasingly common tools for patient evaluation [3,16]. They are an important population-level

assessment tool for investigating general best practices and have been considered the gold stan-

dard for assessing surgical outcomes [17–20]. Unfortunately these subjective, self-reported

measures are not without limitations: they fluctuate with patient moods, are biased by cur-

rent experiences and expectations, and self-reported functional ability has been shown to differ

from objectively measured performance, highlighting the need for more granular and accu-

rate measurement of function [21, 22]. They also experience floor and ceiling effects, which

makes it difficult to distinguish subtle differences in patient status, and limits the effectiveness

of individualized assessments [23,24]. As a research tool, these patient-completed surveys are

inefficient when administered in the traditional hard-copy medium. Long paper questionnaires

are filled by patients and often are not entirely completed, rendering the partial data unusable.

Even when surveys are filled correctly, responses must be logged, accumulated, and tallied

which requires additional time by the researcher.

Tools for obtaining objective metrics to evaluate patient function exist such as motion cap-

ture and gait assessment labs. Current methods for measuring knee angles and usage such

as instrumented gait analysis or camera-based measurements are expensive and must occur in

testing environments that may not be easily accessible to patients. Since these traditional op-

tions require trained staff to operate, only limited data collection is feasible. Additionally, it

has been indicated that a Hawthorne effect sometimes influences measurement accuracy when

patients are being closely observed by an evaluator, which produces more ideal and less natural

patient data than would normally be recorded if unsupervised [25, 26].

Continuous instrumentation of knee angles and other functional parameters without con-
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straining measurements to a specific environment would allow acquisition of quantitative joint

metrics during activity without complex and obtrusive instrumentation. Information provided

could accurately determine how individual patients use their joint by monitoring angles over

time, pre/post-surgery, and how this correlates to their satisfaction to identify key joint charac-

teristics or functional activities that correlate to patient satisfaction using quantifiable metrics

on a per-patient basis. With this knowledge, more individualized care can be provided to help

promote satisfaction and identify any functional deficiencies along recovery.

1.2 General Problem Statement

Ideally, every patient should be functionally assessed before and after undergoing TKR at

all their clinical appointments to measure baseline functional performance and check for sub-

sequent functional improvement following surgery. This assessment provides surgeons and

clinicians with a measure of patient function but also provides patients with information con-

cerning their improvement, which can be used to adjust their personal expectations or change

their recovery habits to give them the best chance at regaining the function they expect. Cur-

rently, this is impractical due to limited equipment availability and clinical appointment times.

The current standard of care relies on patients to communicate any perceived or potential prob-

lems. Patients may not notice any subtle decline in function, and it is even less likely that these

observations would propagate through self-reported measures. The current standard of care

relies on surgeons and clinicians to determine if there are any problems at checkups, but it may

be possible to go further and not only determine problems, but identify positive traits indicative

of positive outcomes further through recovery.

With increasing surgeries being performed in increasingly busy clinics, surgeons will not

have more time available to perform additional observation and measurement of patients with

the current standard of care. This work seeks to provide a portable method of instrumentation

that can be used by surgeons and other healthcare staff to obtain granular, objective measure-

ments and clinically relevant information that can help better provide individualized care plans

and suggestions.
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1.3 Research Objectives

The overall goal of this thesis is to investigate the utility of performing granular, objective

functional measurement of patients undergoing total knee replacement. This was achieved

through the following breakdown of objectives:

• Determine an appropriate sensor technology to acquire functional performance measure-

ments of patients in restricted environments, such as orthopaedic clinics and examination

rooms where space is limited and complex equipment is not practical.

• Develop and validate a software system using an algorithm to extract granular joint-

specific metrics to objectively measure knee performance from raw sensor outputs.

• Investigate the utility of repeatable functional tests for patients to complete in a clinical

setting using minimal additional equipment to measure joint performance across multiple

instrumentation sessions and patients.

• Investigate applications of derived joint performance metrics to predict patient functional

recovery outcomes following their surgery using information from before their operation.

• Investigate the capability of performing activity recognition using only a knee measure-

ment system for the extension of this work to less rigid functional testing that make take

place in varying unscripted environments.

1.4 Scope

The scope of this work includes the design considerations and development of an appropri-

ate instrumentation system to measure patients’ knee function in the clinic. Algorithms were

developed to parse recorded sessions of activity to extract both clinically relevant parameters

and abstract metrics to analyze patient motion. Further research into the assessment of patients

using the developed system is demonstrated, primarily using machine learning, for the trans-

lation of this work into clinical practice. The work includes several novel proof-of-concept

developments that are intended as a starting point for further patient analysis.
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1.5 Thesis Structure and Contributions

The remainder of this thesis is divided into the following chapters:

Chapter 2 Background: provides relevant background in the areas of current joint replace-

ment, current outcome assessment, wearable sensors, inertial sensors and raw

data representations, functional testing, and machine learning.

Chapter 3 Literature review: summarizes the state of the art in knee instrumentation using

wearable sensors, machine learning to predict functional recovery outcomes in

joint replacement, and human activity recognition using wearable sensors.

Chapter 4 Wearable sensor system development: details the selection of appropriate wear-

able sensors to instrument patients in the clinic and the development of a soft-

ware strategy to extract objective joint parameters from raw sensor data.

Chapter 5 Deriving performance test measures: presents the selection of an appropriate

functional test for patients to perform while instrumented with the developed

wearable system and the extraction of clinically relevant joint metrics to eval-

uate patient function.

Chapter 6 Predicting functional recovery: describes the application of unsupervised ma-

chine learning to discover parameters that influence patient functional recovery

and the development and training of a classifier to predict short term functional

recovery using only preoperative patient functional metrics.

Chapter 7 Activity recognition: presents an application of the developed wearable knee

measurement system to recognize daily activities performed.

Chapter 8 Conclusions and future work: highlights the contributions presented in this

thesis and proposes areas for future continuation of this work.



Chapter 2

Background

2.1 Introduction

This chapter will provide an overview into topics explored and developed in the remainder

of the work. Topics concerning the clinical background of osteoarthritis and its treatments are

covered before moving on to current standards and methods for patient evaluation. Material

on existing methods of knee instrumentation will follow, leading into a background of relevant

wearable technologies. Due to the use of extensive raw orientation measurement in the fol-

lowing chapters, a summary of orientation representations will be presented. Lastly, an outline

of applicable machine learning techniques will be introduced with further details on specific

models and methods presented where they are used in future chapters.

2.2 Knee Osteoarthritis

Osteoarthritis (OA) is the most common joint disease in the world and is one of the most

frequent causes of pain, disability and loss of function [27]. It is a disease of the entire joint,

caused by the degeneration of articular cartilage and the underlying bone. Traditionally OA

was considered a result of joint “wear and tear” but occurs in joints with various workloads

or traumas and is influenced by genetics [28]. The most commonly affected joints include

knees and hips, with the incidence of knee OA being more common. It can be diagnosed

clinically if patients report joint pain or impairments such as morning stiffness by palpating

7
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for bony enlargement or audible indicators through joint motion [29]. OA is confirmed with

radiographs mainly using the Kellgren and Lawrence score which is a grading based on the

narrowing of the joint gap and other visual indications [30].

2.2.1 Prevalence, Risk Factors, and Impact

In 2010, the global prevalence of radiographically diagnosed symptomatic knee OA was

nearly 4% and is one of the top 25 most globally prevalent sequelae [30,31]. Developed coun-

tries have increased prevalence compared to developing and the incidence is expected to rise

with an aging population that is remaining increasingly active later in life [30, 32, 33]. Preva-

lence of knee OA peaked around age 50 and was most prevalent in Asia Pacific region but

lowest in South and Southeast Asia [32]. In the United States, there are over 14 million indi-

viduals living with symptomatic knee OA; 8 million that are under the age of 64 [2]. According

to the Arthritis Society, OA affects nearly one in six Canadians and is expected to grow to one

in four by 2035. Primary risk factors for developing knee OA are age, gender, obesity and ge-

netics [30]. Lower extremities are crucial for completing day-to-day tasks and daily activities

and impairments make it difficult to remain active. Loss of joint function and reduced activity

levels increase the risk of cardiovascular disease, diabetes, and cancer [34, 35].

Functional impairment due to OA is impactful to our health system. In Canada alone,

productivity costs due to work loss associated with OA are expected to reach $17.5B CAD by

2031 [36].

2.2.2 Treatments

Early stages of knee OA can be treated with physiotherapy or increased exercise since

these have been shown to provide short-term functional improvement and pain reduction. It

is suggested that land and water-based exercises, weight management, and strength training

are among the most effective non-invasive treatments. Walking aids such as a cane are rec-

ommended for patients with single knee OA however the redistributed stress from the aid may

cause discomfort in other affected joints [37]. Strengthening the muscles surrounding the joint

can increase support, stability, and improve joint function but does not prevent further worsen-
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ing of the articulating surfaces.

As the disease progresses and degeneration continues to occur, these methods may fail to

improve patient functional performance and typically medications are prescribed to alleviate

pain. This is a non-sustainable solution as the disease will continue to progress and further loss

of function is inevitable: there are currently no disease-modifying drugs available to prevent

or reverse the progression of OA. Although the advancement of biological methods to enhance

cartilage reproduction seem promising, it may be many years before they are widely available

and currently, surgical intervention is most common solution [38].

Injections and regenerative medicines have been suggested to offer pain relief and have

the potential to treat knee OA however their effectiveness and therapy progression limit their

suitability as a long-term solution. Corticosteroids have been injected into the affected joint for

decades as method of prolonging surgical intervention but their usefulness concerning slowing

or stopping disease progression is still debated [36].

2.3 Total Knee Replacement

Total knee replacement (TKR) is a highly successful surgery performed as a solution for

end-stage knee OA. It is an elective, quality-of-life improving surgery with the goal of reducing

joint pain and improving function, permitting patients to complete daily activities and stay

mobile and active.

In the United States, more than 700,000 knees are replaced are annually and conservative

estimates show this number increasing despite economic downturn [3]. In Canada, with our

smaller population, approximately 70,000 replacements are performed annually which has in-

creased 17% over the last five years and is expected to continue to grow. The mean acute

length of stay (LOS) in hospital was three days with only 0.4% of patients returning home

the day of their surgery [1]. The average age of patients undergoing this surgery is 65 years

with progressively more surgeries being performed on younger patients [3]. Almost all knee

replacements in Canada are performed as an end-stage treatment for OA (99%) with few others

to treat injuries or joint trauma [1].

The knee consists of bone structures, cartilage, ligaments and a synovial membrane which
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contains synovial fluid that is used to lubricate the joint. During a TKR, the articulating sur-

faces of the knee are replaced with metal or ceramic prostheses and these are separated by a

polyethylene liner.

The surgical process generally follows bone preparation, insertion of the artificial compo-

nents, then the plastic spacer though replacements can be performed differently at the surgeon’s

discretion. A variety of implant designs can be used with variable-length stems (both cemented

and cement-less) inserted with standard or patient-specific tools. When deciding surgery con-

figurations, reproducing the best outcomes across patient populations and restoring functional

ability are highly influential as reported by orthopaedic surgeons [39]. Once an implant has

been inserted, there are further choices concerning balancing the knee; a process to ensure

the joint will function without excessive or unbalanced implant contact during motion. Some

surgeons believe a joint gap-balancing technique will provide a more stable joint while others

insist a measured resection is more effective (components are aligned based on bone landmarks)

[40].

2.4 Patient Evaluation

Since TKR is an elective, quality-of-life improving surgery, it remains practical to collect

patient reported outcome measures (PROMs) for surgical evaluation. However, due to the

limitations mentioned in Chapter 1, self-reported measures alone are not sufficient to properly

assess patients and should be supplemented with objective measurements [24]. Patient specific

evaluation is motivated by studies indicating a large difference in outcomes measured by a

clinician over patient-specific measures [4].

PROMs are widely used tools for obtaining qualitative feedback pre- and post-surgery.

Measurements of health are obtained from patients’ perspectives through surveys and question-

naires. A common example for hips and knees is the WOMAC patient questionnaire (West-

ern Ontario and McMaster Universities Arthritis Index) [41]. This assessment method has

been proven valid when administered over the phone, electronically, and through hard-copy

in person, which greatly facilitates information retrieval [42]. PROMs have been praised for

their ability to capture quality of life metrics through patients’ perspectives but are not without
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faults. Minor changes in health may not be noted in self-evaluations while small improvements

to function or pain may be over-amplified, resulting in ceiling effects [43]. WOMAC may also

be less effective for patient measurement shortly following surgery and may be more effective

at further time points [44]. Activity levels and functional performance have been shown to

differ when self-reported compared to measurements from instrumented sessions, especially in

overweight and obese patients [21, 22]. Similarly, self-evaluated improvement in performance

of activities does not correlate with objectively measured function in OA patients following

joint replacement which emphasizes the need for quantitative instrumentation [22]. While use-

ful for registering patient qualitative data, this evaluation method fails to provide quantitative

joint measurements or objective measurement of the joint free of patient bias.

2.5 Knee Instrumentation

More objective methods of patient evaluation currently exist although they are not com-

monly deployed for practical reasons. Viable options include complex camera-based motion

capture systems relying on depth cameras, reflective markers, or recognized object tracking.

Unfortunately it is unrealistic to expect the standard of care to include use of motion capture

laboratories for all patients at multiple time points along their surgery and recovery.

Time required to transport patients to and from these types of facilities can be extensive,

if the technology is accessible at all. Patients may also become fatigued before the instru-

mentation sessions which will influence their results. In addition to the cost of acquiring the

mo-cap system, an operator must be employed to run the capture software during patient test-

ing. Lastly, the field of view is often limited in all but the best of systems so that any functional

testing will have to be constrained to the confines of the testing setup. To avoid the dedicated

laboratory constraint, research has investigated low cost depth cameras for tracking lower ex-

tremities and removes the dependence on reflective markers, mainly for gait cycle detection

[25]. Similar systems have also been investigated involving normal RGB video cameras as

well with the same limitations; there is a limited field of view for instrumentation and patients

cannot venture far from the camera’s range. Additionally there can not be any obstructions

interfering with camera contact so testing in a home or ambulatory setting with obstacles or
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uncalibrated cameras is not an option. Additionally with more cumbersome instrumentation, it

has been indicated that a Hawthorne effect sometimes influences measurement accuracy when

patients are being closely observed by an evaluator or if they can feel instrumentation equip-

ment, which produces more ideal and less natural patient data than would normally be recorded

if unsupervised [25, 26].

A more appropriate system to instrument patients to observe their knee joint function must

be portable, unobtrusive, low-cost, and easily deployable with few constaints on the environ-

ment. Continuous instrumentation of knee angles without constraining measurements to a spe-

cific environment would allow acquisition of quantitative joint metrics during usage without

complex and obtrusive instrumentation. Information provided could accurately determine how

individual patients use their joint by monitoring angles over time, potentially pre/post-surgery,

and how this correlates to their satisfaction. This could identify key joint characteristics or

functional activities that correlate to patient satisfaction using quantifiable metrics on a per-

patient basis. Several technologies have been explored as portable instrumentation solutions to

measure patient function in varying settings.

2.6 Wearable Sensors

Wearable sensors are currently used in many industries including film animation, video

game development, motion capture and medical instrumentation. Wearable systems can be

small-sized and provide a viable method of instrumenting patients to assess surgical outcomes

and detect movement disorders without constraining their environment [45]. A variety of wear-

able sensor types exist and can be split into two main categories: flexible materials and inertial

units.

Flexible Materials

If tight fitting fabric can be worn by patients, flexible sensing materials provide an ex-

cellent option for obtaining joint angles. Multiple sensing fibres can be placed around body

joints to accurately measure joint angles in multiple dimensions [46, 47]. These small fibres

are lightweight but are limited by the physical length of the fibre; they cannot be separated. To
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measure joint angles, these devices must be mounted proximal to the affected joint and held in

place, often with tight fitting materials or adhesives to prevent movement as the fibres stretch.

Measurement accuracy could vary with the alignment of these devices in the joint coordinate

frame. This could cause discomfort for post-operative patients with joint swelling or pain. De-

vices placed near or surrounding an incision could increase the risk of infection, a devastating

complication that must be avoided. Similarly, digital goniometers have been used to determine

joint angles with similar usage constraints [48,49]. Goniometers produce low-noise and precise

measurements but can be obtrusive for patients when combined to measure multiple degrees of

freedom and their accuracy is dependent on correct sensor placement [45].

Inertial Units

An inertial measurement unit (IMU) is a micro-electromechanical system (MEMS) com-

prised of a gyroscope and an accelerometer. Most modern IMUs contain tri-axial components,

allowing operation in three dimensions. Data extracted from these devices can be raw compo-

nents readings or an estimate of the devices orientation in space computed using a combination

of the raw component readings. Orientations are expressed about a coordinate frame and when

discussing coordinate frames, it is also important to distinguish between a local frame and a

global one. A local frame can be assigned to an object rather arbitrarily however, it is important

that the frame remain fixed to the object and that it rotates along with changes in the moving

body’s rotation. A global frame will remain fixed about a world axis such that changes in rota-

tion to bodies moving in the world do not alter the world frame. This represents a fixed global

frame that objects can be measured relative to. The assignment of a global frame can also be

arbitrary but this frame must be considered a fixed reference, relative to any other rotating bod-

ies. A depiction of a local frame relative to a fixed global world frame can be seen in Figure 2.1.

Gyroscopes: A modern gyroscope measures a change in angular velocity, measured in (deg /s).

A tri-axial component will measure this change of angular velocity about each of three orthog-

onal axes independently (Figure 2.2). Given a fixed amount of time t, a previous orientation

estimation of O0, and a tri-axial gyroscope reading of Rgyro in deg
t , the current orientation O1

can be estimated as:
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Figure 2.1: A global reference frame is shown on the left, which will not change due to rotations
in the local body on the right. The local frame on the moving body will remain fixed to the
object and change with rotations on the body.

O1 = O0 + (Rgyro × t) (2.1)

Accelerometers: An accelerometer measures external accelerations acting on the device. If the

sensor is at rest, it would be expected that the only acceleration detected would be gravity at 9.8

m/s2. At rest, there are no other external accelerations however, during motion, many external

forces will be acting on the device and it is less convenient to obtain the direction of gravity to

aid in obtaining an orientation estimate.

Magnetometer: Magnetic angular rate and gyroscope (MARG) sensors are similar to IMUs,

but incorporate magnetometers. The purpose of this additional sensing component is to locate

magnetic north using Earth’s magnetic field. An additional absolute reference can be used

to adjust gyroscope and accelerometer readings through extended motions affected by abrupt

changes in motion and gyroscope drift.

Sensor Fusion

Sensor fusion algorithms take raw gyroscope (deg /s) and accelerometer (m/s2) readings

and output an orientation estimation with respect to a calibrated coordinate system. This cali-

brated coordinate frame is referred to as the global, or fixed frame because it does not change
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(a) A right-handed tri-axial coordinate frame.
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(b) A left-handed tri-axial coordinate frame.

Figure 2.2: Coordinate frames for both left and right handed coordinate systems. A positive
rotation is indicated by the arrows for each figure. In a right-handed frame, a counterclockwise
rotation about an axis is positive while a clockwise rotation is positive in a left-handed frame.

with the moving body being measured. If measurements were not with respect to this global

frame, it would be impossible to compute changes in body orientation, or compare the orienta-

tions of multiple local bodies, unless they are measured with respect to the same global frame

(Figure 2.1).

Often the raw values of sensor fusion components (gyroscope and accelerometer) can be

queried independently to implement custom algorithms or set a transformed local coordinate

frame, such as the joint convention when coupled to a body segment. Generally, IMUs pro-

duce drift over extended use if they do not return to rest allowing a true reading of gravity to

be obtained. In this scenario, a magnetometer can be used to find magnetic north. When IMUs

incorporate a compass, they are also referred to as magnetic, angular rate, and gravity (MARG)

sensors. This additional reading is used to obtain the direction of Earth’s magnetic field to help

orient the sensor when external accelerations contribute to false accelerometer-based correc-

tions. This hardware can generally obtain more accurate orientation estimates, but may be

influenced by external magnetic interference [50, 51]. MARG sensors are also referred to as

attitude and heading reference systems (AHRS) as they are used in aircraft and autonomous

flight applications as a replacement for traditional mechanical attitude and heading devices

[52].
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Y

Figure 2.3: A rotation θ about the vertical axis (protruding from image) orthogonal to the xy
plane shown.

2.6.1 Orientation Representations

Orientation estimations with respect to a reference point, or fixed global frame, can be

expressed in several ways: most commonly as rotational matrices; cardan (Tait-Bryan) and

Euler angles; and quaternions.

Rotation Matrices

A three-dimensional rotation matrix is a 3x3 matrix used to describe the rotation of a point

in a three-dimensional Cartesian coordinate system. In a right-handed system (most common),

a counterclockwise rotation about an axis is considered positive.

A more simple 2D rotation of a point θ in two dimensions on an xy plane (Figure 2.3) can

be expressed as:

Rotxy(θ) =


cos (θ) − sin (θ)

sin (θ) cos (θ)



where θ is a rotation about the axis orthogonal to this xy plane (Figure 2.3).

Considering a three dimensional frame (Figure 2.2a), this same rotation is expressed as:

Rotz(θ) =



cos (θ) − sin (θ) 0

sin (θ) cos (θ) 0

0 0 1


(2.2)

where the matrix has been expanded to a 3x3 form, but with no additional rotation about either

the x or y axes. By observing different axes of a 3D frame, it can be seen that independent

rotations about either the x or y axes are expressed as:
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Rotx(θ) =



1 0 0

0 cos (θ) − sin (θ)

0 sin (θ) cos (θ)


(2.3)

and

Roty(θ) =



cos (θ) 0 sin (θ)

0 1 0

− sin (θ) 0 cos (θ)


(2.4)

Since a rotation or the change in orientation of a body relative to a global reference frame

is rarely only a change about one axis, rotations about multiple axes must be considered. Any

change in orientation of a body about multiple axes can be described as a series of three in-

dependent rotations about independent axes, each compounding on the previous. It must be

noted that the order each of these three rotations is performed is relevant since matrix multipli-

cation is not commutative, and will result in a different final body orientation if performed in

an alternate order. Therefore, when orientation is described using a combination of rotations,

the rotation sequence must also be known. Given that before any rotations are performed on

a moving body, the local frame of the body can be considered aligned with the global frame.

If each of the three rotations in a sequence are performed about the global world frame, this

change is described as an extrinsic rotation.

Alternatively in an intrinsic sequence, each independent rotation is performed on the trans-

formed local body frame that was altered in the previous rotation stage. As long as the three

rotation magnitudes are equivalent, an intrinsic sequence results in the same change in orienta-

tion as an extrinsic sequence when the order of rotations are reversed. For example, an extrinsic

sequence ZθYψXρ is equal to an intrinsic rotation sequence of XρYψZθ.

Since rotations are performed in three stages about each body frame axis independently,

and sequential rotations about the same axis are equivalent to a single rotation of a different

magnitude

Rotx(θ1) + Rotx(θ2) = Rotx(θ1 + θ2),

there are 3 × 2 × 2 = 12 possible rotation sequences. As an example, the sequence XYZ
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describes a rotation about x first, a second rotation about y, and a final rotation about z. When

computing the combined rotation of this sequence from each independent rotation, rotations

are postmultiplied for extrinsic rotations (rotations about the global frame), and premultiplied

for intrinsic rotations (compounding rotations about the transformed local frame).

A change in orientation of a local body Rotxyz(φ) rotating by ρ about the global x axis, then

θ about the global y axis, and finally ψ about the global z axis (extrinsic) is shown as:

Rotxyz = Rotx(ρ) Roty�(θ) Rotz��(ψ)

=



1 0 0

0 cos (ρ) − sin (ρ)

0 sin (ρ) cos (ρ)





cos (θ) 0 sin (θ)

0 1 0

− sin (θ) 0 cos (θ)





cos (ψ) − sin (ψ) 0

sin (ψ) cos (ψ) 0

0 0 1



=



cos (ψ) cos (θ) − cos (θ) sin (ψ) sin (θ)

cos (ρ) sin (ψ) + cos (ψ) sin (ρ) sin (θ) cos (ψ) cos (ρ) − sin (ψ) sin (ρ) sin (θ) − cos (θ) sin (ρ)

sin (ψ) sin (ρ) − cos (ψ) cos (ρ) sin (θ) cos (ψ) sin (ρ) + cos (ρ) sin (ψ) sin (θ) cos (ρ) cos (θ)



(2.5)

Rotation matrices contain nine elements to represent a change in orientation in 3D space.

It can be seen through Equation (2.5) that some of these elements are dependent. Only three

parameters are required for a minimal representation of these rotations.

Cardan Angles

When a rotation is performed about all three axes of a body frame, the minimal represen-

tation of the rotation sequence is known as a set of cardan angles or also as Bryan-Tait angles.

These possible rotation sequences are XYZ, XZY , YXZ, YZX, ZXY , and ZYX. By first impos-

ing a general rotation matrix structure for a 3x3 matrix with i rows and j columns to indicate

each element:
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R =



r11 r12 r13

r21 r22 r23

r31 r32 r33


(2.6)

three cardan angles can be solved as an inverse solution to Equation (2.6). Given the result of

Equation (2.5), the angles ρ, θ, and ψ can be found as:

ρ = atan2
�
r23

r33

�

= atan2
�− cos (θ) sin (ρ)

cos (ρ) cos (θ)

�

= − atan2
�

sin (ρ)
cos (ρ)

�
, ρ �

π

2
,
−π
2

θ = asin(r13)

= asin(sin(θ)), −π
2
≤ θ ≤ π

2

ψ = atan2
�
r12

r11

�

= atan2
�
− sin (ψ)

cos (ψ)

�

= − atan2
�

sin (ρ)
cos (ρ)

�
, ρ �

π

2
,
−π
2

One common sequence of cardan angles is the roll − pitch − yaw, or ZYX set of rota-

tions performed as an intrinsic sequence (Figure 2.4). This is a common representation in the

aeronautical field and can be used to explain the changes in attitude of an aircraft.

The roll − pitch − yaw angles of a body rotating with respect to a fixed frame can also

be computed by combining basic rotation matrices. The change in orientation of a local body

Rotxyz(φ) rotating by ρ about the local x axis, then θ about the body’s transformed local y axis,
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Roll

Pitch

Yaw

Figure 2.4: A roll − pitch − yaw rotation frame.

and finally ψ about the body’s twice transformed z axis (intrinsic) is shown as:

Rotzyx = Rz(ρ)Ry(θ)Rx(ψ)

=



cos (ψ) − sin (ψ) 0

sin (ψ) cos (ψ) 0

0 0 1





cos (θ) 0 sin (θ)

0 1 0

− sin (θ) 0 cos (θ)





1 0 0

0 cos (ρ) − sin (ρ)

0 sin (ρ) cos (ρ)



=



cos (ψ) cos (θ) cos (ψ) sin (ρ) sin (θ) − cos (ρ) sin (ψ) sin (ψ) sin (ρ) + cos (ψ) cos (ρ) sin (θ)

cos (θ) sin (ψ) cos (ψ) cos (ρ) + sin (ψ) sin (ρ) sin (θ) cos (ρ) sin (ψ) sin (θ) − cos (ψ) sin (ρ)

− sin (θ) cos (θ) sin (ρ) cos (ρ) cos (θ)



(2.7)

Solving the inverse solution of the format shown in Equation (2.6), the three independent

angles ρ, θ, and ψ can be found as:
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ρ = atan2 (r21, r11)

θ = atan2
�
−r31,

�
r2

32 + r2
33

�

ψ = atan2 (−r32,−r33) (2.8)

Euler Angles

Proper Euler angles or Euler sequences require the first and last axis of rotation to be the

same. An easily seen benefit to this is that extrinsic and intrinsic rotation sequences are both

formed using the same combination of basic rotations. It is important to note that this does

not necessarily mean intrinsic and extrinsic Euler rotations are equivalent since different mag-

nitudes of rotations can be performed even if the axis of rotation is the same. The possible

Euler angle sequences are XYX, XZX, YXY , YZY , ZXZ, and ZYZ. Rotations can be computed

similarly to methods shown in Equation (2.5) or Equation (2.7).

Direction Cosine Matrix

A direction cosine matrix (DCM) is a rotation matrix that describes the rotation from one

three-dimensional frame to another as a single rotation, partially rotating about any of the axes

instead of three independent rotations about each axis of the body’s local frame. This can also

be used to describe the rotation from a global frame to a rigid body’s local frame to indicate its

orientation relative to the global frame.

The columns of a DCM represent unit vectors of an axis of the moving body frame projected

on the global reference frame and each of the three rows represents the x, y and z dimensions.

RotDCM =



c1x c2x c3x

c1y c2y c3y

c1z c2z c3z


(2.9)
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Figure 2.5: Given a global reference frame with axes xyz and local frame with axes 123, the
elements c1x, c1y, c1z of the direction cosine matrix shown in Equation (2.9) are found to be
the cosine of angles a1x, a1y and a1z respectfully. Elements of the remaining two columns are
cosines of angles between axes 2 and 3 and the x, y and z axes of the global frame.

Quaternions

A quaternion is a minimal and unique representation of a body’s orientation in three di-

mensional space. It is commonly used in graphics and computer applications because of its

avoidance to singular configurations and efficiency performing multiple rotations as linear com-

binations. A quaternion consists of only four numeric components, making it computationally

and memory efficient.

A quaternion q representing a rotation A with respect to a global coordinate system G is

defined as: G
A
q = [q0, q1, q2, q3] = a + bî + c ĵ + dk̂, where a, b, c, d are real scalar components

and î, ĵ, k̂ are orthogonal quaternion units. Each of the four numeric components q0, q1, q2, q3

are in the range [−1, 1].

The conjugate of a quaternion q describing a rotation A with respect to G is equivalent to

its inverse and is defined as:

G
A
q∗ = A

G
q = [q0, −q1, −q2, −q3] (2.10)
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We can define quaternion multiplication as a combination of two rotations q and r as:

q ⊗ r =



(r0q0 − r1q1 − r2q2 − r3q3)

(r0q1 + r1q0 − r2q3 + r3q2)

(r0q2 + r1q3 + r2q0 − r3q1)

(r0q3 − r1q2 + r2q1 + r3q0)



T

(2.11)

This combination of two quaternion rotations shown in (2.11) is non-commutative. A local

rotation r can be applied to a quaternion q to rotate it around its local frame as follows

qlocal = r ⊗ q (2.12)

while q is rotated globally by a rotation r as

qglobal = q ⊗ r (2.13)

The rotational difference between two quaternions A
G
q and B

G
q can be found as:

B
A
q = A

G
q∗ ⊗ B

G
q = G

A
q ⊗ B

G
q (2.14)

For the current work, unit quaternions will be used exclusively which have been normalized

as:

q =
q
�q� =

q0, q1, q2, q3�
q2

0 + q2
1 + q2

2 + q2
3

2.6.2 Anatomical Knee Angles

Often times the knee is considered to move as a hinge with rotation restricted about a single

axis. In reality, the knee rotates in three axes during motion. As shown in Section 2.6.1, there

are several ways to note rotations in three dimensions. The joint axes of the knee are commonly

described using methods presented by Grood and Suntay where the femoral (thigh) and tibial

(shin) segments are first located using their local coordinate frames [53].
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Figure 2.6: Anatomical knee rotations showing flexion/extension about the femur horizontal
axis, internal/external (axial) rotation about the tibial vertical axis, and adduction/abduction
about a floating axis between two segments [54].

Three anatomical rotations are defined as:

1. flexion/extension: rotation about the fixed horizontal femur axis,

2. internal/external: rotation about the fixed vertical tibia axis,

3. and abduction/adduction: rotation about a floating axis. (Figure 2.6).

In the current thesis, abduction/adduction rotation will also be noted as a change in varus/-

valgus angle.
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2.7 Functional Testing

Specific functional tests are effective for evaluating hip and knee OA: the stair climb, chair-

stand, six-minute walk, and timed-up-and-go (TUG) tests [22]. Executing these constrained

tests is beneficial for patient-patient comparison to determine normal test patterns. Traditional

execution of these tests provides a start to end measurement (time taken, distance travelled,

number of repetitions) but fails to identify information about joint usage intermediately. By

using only a complete execution test measurement, there is no insight offered into how the

specific test was completed. A patient hopping on their dominate limb or heavily compensating

for an injury may record similar test measurements despite completing the tests vastly different

than someone considered to be healthy and these tests would be indistinguishable from the

test data alone. Additionally, parameters such as active flexion range are important indicators

of knee OA whereas hyper-extension has been associated with negative outcome measures and

these are not currently measured with the traditional metrics [23]. The TUG test is of additional

interest because it combines the chair-stand and walking activities and also includes a turning

action (or pivot). Patients begin the test seated and must rise from a chair, walk three meters,

and return to their initial position. Execution time is much shorter than the six-minute walk

test as it typically takes between 10-30 seconds and requires only a three meter stretch of space

and a chair to implement. A recent study has revealed that TUG performance before surgical

intervention can be used to predict patient length of stay (LOS) following total hip replacement

(THR) or TKR and short-term functional recovery as well [24]. Upon visual observation it

can be seen that patients execute this test differently by using many different strategies. To

accurately measure the test, patients must be instrumented with a system capable of producing

the described measurements for appropriate evaluation of knee patients.

Functional performance tests permit structured methods of assessing patients. After con-

sulting 138 clinicians and researchers across 16 countries, three tests have been suggested by

OARSI to assess the functional performance of hip and knee OA patients that can also be easily

deployed in the clinic with little additional equipment [55].
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2.7.1 Thirty Second Chair Stand

The chair stand test involves timing a patient while they repeatedly rise and sit from a chair.

A transition from the sit to stand pose places strain on both knees and the number of repetitions

can be indicative of balance and function while stressing the joints.

2.7.2 Six Minute Walk

A six minute walking test requires the patient to continuously walk for an extended period.

The amount of distance travelled is the traditional test metric. A limitation of this test is that

the person being studied must be able to walk continuously without being interrupted by the

environment. This can sometimes be difficult in a clinic or hospital setting where there are

other obstacles such as people and equipment moving about the halls.

2.7.3 Timed-up-and-go

The timed-up-and-go test combines several joint stressing activities and can be completed

in a more confined location. On instruction of the observer, patients must rise from a starting

seated position into a standing pose before walking three metres to a goal. Once reaching the

goal, they must perform a turn or pivot before walking an additional three metres to return to a

seated position in the initial starting chair.

Patients who improve on functional tests from before to after TKR are 6-8 times more

likely to be satisfied with the surgery [56]. The traditional measures of these tests are number

of repetitions or time to complete. While these metrics have been shown to correlate to positive

outcomes following OA interventions, these remain very limited. For example, if a patient

has knee OA in their left knee and has undergone a TKR, it would be expected that they

may have a slower test time while healing. However, test time alone does not indicate how

their operative knee is functioning, and a slow test time could be a result of an additional

surgery, contralateral knee/hip OA or other mobility impairments. Using time or repetitions

alone cannot distinguish a patient who may execute the tests quickly but with little mobility

compared to patients who exhibit a large joint range of motion but may move more slowly.

When completing tests, patients should be instructed to move at their fastest comfortable and
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safe pace as to not encourage injury or falls but this also can permit some patients to push

themselves more than others, despite possibly being able to perform better than demonstrated.

2.8 Machine Learning

As abundant subject data becomes available, it becomes increasingly difficult to observe

patterns to make predictions or draw conclusions about future subjects. Machine learning is

an application of artificial intelligence used to parse and uncover patterns in data. In general,

a computer algorithm finds optimal methods of fitting or separating data. These algorithms

are becoming increasingly popular in many fields including sales, marketing, and almost all

other data analysis fields. Relevant advertisements can be targeted to consumers based on

individualized data collected such as purchase histories and online browsing. As an abundance

of digital data are available, parsing and analyzing becomes more difficult and machine learning

has been shown effective when dealing with large data sets. Before applying a machine learning

algorithm to help solve data problems, individual observations (or samples) must be described

appropriately. Traditionally these samples are described using a number of features.

2.8.1 Features

A feature is a measurable characteristic or property of the entities under examination by

machine learning models. Each sample or occurrence of data must be able to be described

using the same features to use the data most effectively. Features must be numerical but there

are many methods of encoding categorical data into a single value. Features can be selected

manually by observing the data but in tasks such as signal or image recognition, more complex

strategies can be used to automatically select useful descriptive features from data without

human intervention.

In order to develop machine learning models, samples are used to create rules for classifi-

cation and prediction by adjusting feature importance and developing a relation to the output

class. These techniques can be broadly split into two primary categories: supervised and unsu-

pervised.
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2.8.2 Unsupervised Machine Learning

Unsupervised machine learning techniques do not require labelled data to identify patterns

in data. Labels are assigned to samples as ground truth values representing the correct classi-

fication or solution when they are known, but there are instances when it is not known what

a data sample represents, even if it can be described using a series of features. With unsuper-

vised machine learning, data are interpreted as classless entities without known labels that are

organically separated and grouped based on their features without defining any group mem-

bership criteria. This is useful when the significance or label of samples is not known and can

reveal similarities and complex patterns, especially in samples with a large number of features

where patterns are not easily interpreted manually. Following unsupervised machine learning,

cluster analysis can be performed to evaluate and give meaning to separated groups for further

analysis. In unsupervised learning algorithms, data are partitioned such that similar items are

clustered together.

K-means Algorithm

A common example of unsupervised clustering that is used in Chapter 6 of the current

thesis is the K-means algorithm. First, a fixed number of clusters are chosen (k) before data are

iteratively sorted into each of the k groups. No two clusters can contain the same sample, and

the algorithm repeats until no more (or a tolerance of a few) change group membership and the

maximum separation between the samples has been found. Each group has a cluster centroid

and features of all other samples are individually compared to find the most similar centroid

before assigning membership. As clusters grow in samples, the centroids are recomputed to

reflect the new group centroid. The separation effectiveness can be measured by computing

the total distance of all samples to their respective clusters where the total distance should be

minimized.

A silhouette plot can also be used to find an appropriate number of clusters and to examine

cluster separation (Figure 2.7).

The algorithm can be outlined as follows:

1. Choose the k number of clusters and randomly select that many data points to be the
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clusters.

2. Compute the distance from every point to each of the K clusters and assign all samples

to the group who’s centroid is closest.

3. Recompute each of the cluster centroids by computing a mean of each feature, taking

into account all new members.

4. Loop to #2 until no more clusters change group membership.

Many distance metrics can be computed to establish the distance from samples to centroids.

In the current work, the Euclidean distance computation has been used. It is important to

note that features should be standardized before clustering to ensure features vary on the same

scale, otherwise features with drastic changes in measures will more heavily influence distance

computations.
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Figure 2.7: A silhouette plot showing the separation of objects into two clusters. Bars ex-
tending positively on the x-axis indicate more separation and negative bars indicate more close
proximity of the samples to the incorrect clusters. A larger mean bar width indicates better
separation.
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2.8.3 Supervised Machine Learning

Supervised machine learning relies on a set of labelled data to develop a machine learning

model. To develop and evaluate these models, data sets are split into training and testing

sub-sets. Training data are used to set model parameters to find the optimal linear or non-

linear combination of features that are most likely to dictate the correct output class while the

training set is used at a second stage in order to test and verify the success of the trained model.

An example of a supervised model used in Chapter 6 is the support vector machine (SVM).

SVMs are very effective linear classifiers that work by finding the most effective separation

line (hyperplane) between samples to segment sample classes. It can be seen in Figure 2.8 that

there are many separation lines that can be drawn to separate classes of type ”+” and class ”o”.

An optimal hyperplane found using the training data that is separated from the class bounds

will likely perform better on the testing set and future unseen data.

Figure 2.8: Support vectors are found to create the best hyperplane to separate classes of
data [57]. Note that most machine learning problems involve many features, so the developed
hyperplane will extend in many dimensions.

Although the SVM is a linear classifier, a kernel function can be applied to transform non-

linear sample features into a linear space.



2.8. Machine Learning 31

Naı̈ve Bayes

This probabilistic algorithm is based on Bayes Theorem which states that the probability

of A occurring can be found given B has already occurred while knowing the probability of

B given A, and the probabilities of both A and B occurring Equation (2.15). To apply this

equation to a classification problem, we can substitute A for the class label y, and B for the

feature set X = (x1, x2, ..., xn).

P(A|B) =
P(B|A)P(A)

P(B)
, or P(y|X) =

P(X|y)P(y)
P(X)

(2.15)

= P(y|x1, x2, ..., xn) =
P(x1|y)P(x2|y)...P(xn|y)P(y)

P(x1)P(x2)...P(xn)

A strong assumption of feature independence is made in Equation (2.15) when substituting

in the feature set. Despite this assumption, the Naı̈ve Bayes (NB) classifier has been shown

effective in applications such as spam filtering where features such as word counts cannot be

considered independent [58].

Decision Trees and Random Forests

A decision tree (DT) classifier is type of model capable of distinguishing classes that are

not linearly separable. The flow of a tree begins at the top root node and branches downward as

conditions are satisfied (Figure 2.9). At each step, samples are further refined until they reach

an end node with the an appropriate class label.

Overfitting is a common problem with DTs, as many branches can be developed to per-

fectly fit all branching scenarios in the training data. This can be avoided by restricting the

depth and of branches. These decisions are not usually optimized by the algorithm and must

be decided before training. These fixed parameters are called hyperparameters. Often, the

training data is further split into two separate training and validation sets. The validation set

is used to determine the correct hyperparameters by first training model parameters and eval-

uating model performance using the validation set. After changing the hyperparameters, the

model is retained and performance is compared using the validation set. Once the optimal set
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Figure 2.9: A decision tree first branching on the variable X with two future branches on
variables Y and Z [57]. Parameters T1, T2, and T3 are adjusted during model training using
the training set.

of hyperparameters have been chosen, the final model is trained and tested using the testing set

to obtain a measure of how the model will perform on future unseen data. Hyperparameters are

not unique to DTs and this strategy is used for other models with tunable hyperparameters. Val-

idation and training sets are often shuffled as well to ensure the validation data is representative

of the training set.

A random forest (RF) model is an assortment of decision trees. Often a single tree cannot

properly model data without overfitting becoming too specific. An alternative method is to

generate many smaller trees and take a polling approach where the most commonly classified

label among all trees becomes the prediction.

Artificial Neural Networks and Deep Learning

An artificial neural network is a non-linear classification model that provides a mapping

from feature inputs to outputs through hidden layers of nodes (named neurons after the human

brain). In Figure 2.10, the left-most input layer matches the number of features in a sample and

the right-most layer matches the number of output classes.

Arrows connecting layers indicate data travelling through from inputs to outputs that are

combined at arrow intersecting nodes. Each arrow has a weight parameter that is trained to

optimize the previous node’s influence on the next combination. Each node also has a trainable
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Figure 2.10: A simple artificial neural network consisting of one input layer, one hidden layer,
and a final output layer. Arrows indicate that all nodes are fully connected. [57].

bias parameter. The linear combination of all inputs and their weights, and the node bias, is

passed to an activation function to clamp the node’s output. Several activation functions have

been proposed but the Sigmoid and Rectified Linear (ReLu) functions are common choices.

Deep learning is a topic extending from ANNs. Networks are considered deep as many

hidden layers are added. Additionally, each hidden layer can contain large numbers of nodes.

The number of hidden layers and nodes in each layer are hyperparameters that must be manu-

ally tuned using validation sets. Training deep networks also requires significantly more data.

As networks increase in the number of layers and nodes in each layer, the number of trainable

parameters increases exponentially.

Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specific application of deep learning focused

on classification and recognition of signals or images. Face and object detection, medical

diagnosis, and self-driving cars are some areas of computer vision that are rapidly advancing

due to CNNs and image classification. Chapter 7 explores the use of a CNN for human activity

recognition using methods similar to imaging tasks.
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A CNN is a type of neural network that permits the extraction of abstracted information

from images. Contrary to the models previously outlined in this section, CNN’s automati-

cally extract features of images that are useful for classification. As inputs, they take two-

dimensional pixel information but these inputs can be expanded across many channels, such

as in colour images where three channels of pixels can be used as inputs with each channel

representing red, green, and blue pixel brightness.

A convolutional layer consists of correlating a two-dimensional filter across an image chan-

nel. Filter sizes can range depending on the resolution and level of detail of the image, but 3x3

is a common first choice. At each step of the correlation, the dot product of the filter elements

and the underlying image pixels is computed. After correlating every pixel in the image chan-

nel, a new two-dimensional image is the result. Since filters are larger than a single pixel and

they are correlated about the edges and corners of an image, maintaining the original image

dimensions is often accomplished by padding the filter overhang with zeros. This is a design

choice and non-padded, smaller images can be maintained and fed into future network layers if

desired. Correlations can also be performed sequentially but non-consecutively by increasing

a stride length to correlate every second, or third pixel for example. Increasing stride length

will also decrease the output image size as fewer correlations are performed.

Each element of filters are tunable parameters which are optimized to best extract infor-

mation from image channels that aid in successfully classifying the image. A single filter

will often not provide sufficient information to classify an image and often many filters will be

trained simultaneously which will also generate an increased number of output channels. Since

even a small 3x3 filter contains nine trainable parameters, as the number of filters and chan-

nels increases, the number of parameters grows exponentially as well. Because of the large

number of parameters, a very large number of input images are needed to train CNNs in most

applications. The number of convolutional layers and number of filters varies greatly upon the

intended application and detail of input images.

Techniques such as pooling can be used to reduce the dimensionality of image layers to

help reduce the number of parameters. Max pooling can be included between convolutional

layers to reduce a small array of pixels into a single maximum value. Average pooling operates

similarly but uses the mean average of an image channel slice. The inclusion of pooling layers
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and their effective width and height are additional hyperparameters that must be optimized

using validation sets.

Following automatic feature extraction, resulting image layers are flattened into a single

one-dimensional feature vector and are joined into a shallow artificial neural network. Often

this classification network is one or two fully connected layers but the design can also vary

with the application.



Chapter 3

Literature Review

This chapter contains a review of relevant works building to the work presented in this

thesis. The first section explores advances in wearable technologies associated with knee mea-

surement and proceeds into works concerning patient instrumentation and functional testing.

Prediction of patient outcomes is explored next before discussing existing work on human

activity recognition using wearable sensors for functional analysis in more unscripted environ-

ments.

3.1 Wearable Sensor Instrumentation

Methods of functional evaluation vary, and can include specific measurement tools to target

areas of the body or more general measurements of activity. Activity monitors have become

easily and readily available to the general public in many varieties. These devices include

pedometers, accelerometers or full wearable systems designed to provide user feedback on

exercise and activity levels.

A previously compiled report compared many common activity monitors used to monitor

patients suffering with hip or knee OA [59]. The devices are shown to vary greatly in cost,

hardware configuration, sample rate, interfaces, and data format. It was speculated that a sam-

ple rate as low as 25Hz can be used to capture the movement of lower extremities [59]. Most

interestingly, the devices are mounted to patients in many different ways: from ankle fixtures

to wrist mounted sensors. Of the 14 devices specified in the report, none benefit from mount-

36
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ing a sensor above and below a patient’s knee; the primary joint of interest. Systems are most

commonly accelerometer based, using known acceleration pattern matching. Without estimat-

ing the orientation of each shank independently, certain metrics such as the amount of flexion

in the knee while a patient is in an unexpected orientation such as laying on their back, for

example, are not seen. Such movements may be common during physical therapy exercises

and instrumentation of these sessions may be beneficial. Implementations with a single sensor

do not provide sufficient information to identify knee asymmetries or changes in joint angles

crucial to identifying knee-specific metrics.

In addition, IMU gait analysis solutions have been marketed to instrument functional testing

of patients in a clinical setting [60]. These products fail to accurately measure knee flexion for

unconstrained movements in patients with knee OA, which has been identified as a major usage

characteristic contributing to patient satisfaction. It can be expected that accelerometer-only

based systems using pattern matching techniques without recording independent orientations

will fail to capture constant joint motion during slow activities or range of motion (ROM)

exercises.

Systems specifically deriving joint angles from inertial units by combining accelerometer

and gyroscope data currently exist [61–68]. The existing standard approach is to calibrate raw

accelerometer and gyroscope data by performing procedures that require the patient to perform

movements constrained to a single degree of freedom. During the constrained movements,

the sensor frames are aligned to the attached body segment. It has also been shown that a

known kinematic model of the joint can be used to measure angles between segments at high

speeds by solving a non-linear observer problem. [68]. This method only requires that the

sensors be at rest for alignment using a gravity vector. El-Gohary et al. show that this method

is accurate (given several user specified parameters) through robotic testing. By contrast, the

current work introduces a system which is not dependent on the attitude estimation algorithms

used but relies only on quaternion sensor outputs without needing a kinematic model, reducing

system computation drastically. Additionally, the world-coordinate readings readily provide

information of a segment’s position in the world to identify laying, standing or body turn

directions during functional activity without more complex computation of body kinematics

in future implementations. It should be noted that many existing systems are only tested on



3.2. Performance Testing with Knee OA Patients 38

healthy subjects, mostly because they are early in development, and results could vary when

testing on unhealthy subjects [45]. Patients recovering from surgery may find these calibration

procedures difficult. Many systems require the calibrations to be performed before every data

collection session, every time the sensors are removed and replaced, or as frequently as possible

[61–63, 66].

The proposed method of using independent attitude estimations from MARG sensors with

respect to a global coordinate systems allows the sensors to be placed without any additional

calibration before measurements can be obtained. Since each sensor is responsible for its own

attitude estimation, computing the difference in orientation is efficient and can be implemented

using low-cost hardware.

3.2 Performance Testing with Knee OA Patients

To obtain consistent performance measures under comparable conditions, scripted activities

or performance tests can be used. By having subjects perform the same joint stressing activities

across multiple instrumentation sessions, it is easy to observe areas of improvement or decline

opposed to evaluating on different criteria at each observation. Furthermore, this strategy of

scripted evaluation permits the comparison of different subjects since they are performing the

same activities.

Specifically to the knee OA population, activities stressing the knee are preferential such

as ascending/descending steps, sitting and standing, turning/pivoting, or walking/running. The

degree to which these can be completed will vary drastically depending on the advancement of

the OA or stage of recovery following treatment or intervention. Some patients with severe OA

are unlikely to be able to climb or descend more than a few steps before becoming fatigued or

experiencing pain.

The Osteoarthritis Research Society International (OARSI) have identified the utility of

a core set of physical performance tests for selection of the most feasible and useful tests

in hip and knee OA populations [55] Further considerations into the additional environment

requirements for evaluation must also be considered. Portable steps are cumbersome and may

be difficult to implement in small clinics or exam rooms while the use of full stairs may increase
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the risk for injury during testing if subjects are very unstable due to mobility issues.

The timed-up-and-go (TUG) test is an easy-to-execute test with standardized guidelines; it

only requires a chair, a three-meter space, and a timer. Instructions for this test are few and can

usually be explained easily. Despite its simplicity, the TUG test combines many activities such

as sitting, standing, turning, and walking to evaluate accumulate performance on a selection of

activities. While originally developed to obtain a measure of balance in elderly subjects, the

test has been shown to correlate with other important parameters of health.

The TUG test has been shown to be particularly useful for assessing the knee, especially in

patients with osteoarthritis (OA) and has been included by Osteoarthritis Society International

(OARSI) in a list of five recommended performance-based knee and hip functional tests [69].

The reliability of the TUG test for patients with varying severity of knee OA has been examined

in literature, indicating excellent re-test reliability for both mild and moderate disease stages

and a minimal detectable change (MDC) as low as 1.10s when timing sequential tests with the

same evaluator [70,71]. It was also shown that subjects with confirmed OA performed worse on

average than undiagnosed, potentially new cases (14.3s versus 8.5s) indicating results reflect

progression.

Furthermore, a recent study has revealed that TUG performance before surgical interven-

tion can be used to predict patient length of stay (LOS) following total hip replacement (THR)

or total knee replacement (TKR) and short-term functional recovery [72]. The ability to predict

cases of increased LOS could help plan post-operative resources appropriately or offer insight

into realistic post-surgical expectations. It has been shown that the TUG test is more effective

at predicting outcomes of high-risk patients than gait speed (walking) alone, indicating poor

outcomes may be better predicted using the TUG [73].

Despite many useful correlations between traditional timed measurements of the TUG test

and knee surgery/disease parameters, a start-to-end time measurement does not reflect how

patients complete the test. Visual observation of different patients with knee OA completing

the test reveals an abundance of different strategies. Timing of the entire test is not sufficient

to identify effort expended, execution method, gait asymmetry, turn direction, or more specific

temporal metrics derived from each individual test component. This information could be

obtain by completing these functional tests in a gait analysis or motion tracking environment,
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however, these systems are not commonly available and are inaccessible most patients.

Quantitative measurements are favoured over qualitative but can be difficult to obtain ef-

ficiently with these traditional measurement techniques. Recent wearable systems have been

shown to provide reliable patient measurements and can be deployed in ambulatory environ-

ments without significant set-up time to instrument patients during functional testing. Since

the TUG has already been identified as an important test to capture the overall function of an

OA patient, applying wearable sensors to obtain more granular and objective metrics should

help reveal positive or negative functional traits.

Previous work has explored the instrumentation of this test to detect functional differences

in other health areas. Mariani et al. show that a single inertial sensor mounted on the shoe

recording accelerometer and gyroscope data can be used to derive gait information during the

TUG test. Gait cycles were detected as a positive peak angular velocity and were then classified

as either transition or steady cycles by examining the system response time as well as turning

cycles by reaching exceeding a turning angle threshold of 20◦. Stride length and velocity were

computed as well from the detected cycles [74]. Greene et al. have also used inertial sensors

attached to the left and right shin to determine angular velocity of the medio-lateral shank and

used this information to increase the accuracy of fall prediction [75].

Salarian et al. propose a TUG system comprised of seven inertial measurement units

(IMUs) recording angular velocity of body limb segments and the trunk [76]. A novel mathe-

matical model for detecting turning during the test using the trunk twist as opposed to angular

velocity is proposed. This is useful because slow or fast turns can be detected irrespective of

local noise or sharp changes in velocity. Additionally, range of motion and acceleration of

the trunk were used along with limb angular velocities to segment the test into: sit-to-stand,

steady-state gait, turning, and returning to sit segments. It was found that gait was the most re-

liable sub-component with high intra-class correlation coefficient (ICC) for cadence and stride

velocity. Extending this work, Nguyen et al. propose a 17 sensor system capable off segment-

ing the TUG test for Parkinson’s patients with very high accuracy using sensor angular velocity

and acceleration.

TUG tests have been used to assess an assortment of impairments and to evaluate function

in elderly populations. Total test completion time has been shown to predict fall risk and can
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provide an overall measure of function, however, more recent instrumented iterations of the

test have proven more useful. Lightweight and unobtrusive wearable sensors have permitted

many sensor configurations to be applied to instrument different body segments as applicable.

Furthermore, different strategies have been explored to extract relevant data from the test. Com-

monly, the entirety of the recording is split into test sub-components, and from these individual

sections, separate metrics are extracted. This segmentation is helped by the test’s scripted

structure, where the series of activities to be completed during the test is always known. Even

with a rigid script, different motion thresholds can be used for the detection of the start and end

of each sub-activity.

TUG tests are commonly segmented into the six sub-activities that compose the test: sit

to stand, walking to the goal, turning 180 degrees about the goal, walking back to the start

position, turning again, and a stand to sit. Traditionally these could be determined by a trained

observer however variation between individuals makes them difficult to distinguish. For exam-

ple, some subjects begin to turn to sit while they appear to be walking and combine activities

into transitions. Similarly, some subjects make very wide turns while others pivot more quickly

about one leg. There is no generally accepted definition for the start and end of each subactivity

which makes it difficult to validate segmentation and data extraction algorithms. Results can be

verified against human observers however these are often far from ground truth labels. Existing

literature from other applications of instrumented TUG tests provides a base to expand on.

A common sensor mounting location is the torso where the sensor can measure the body’s

centre of mass. Higashi et al. instrumented ten subjects with a torso and thigh sensor con-

figuration and segmented their TUG tests into six sub-components. The standing activity was

detected when the thigh sensor pitch (axis outward from hip laterally) exceeded a change of 10

deg from the seated pose, walking detected when the pitch exceeds 10 deg/s, turning detected

with a large angular velocity signal from the waist sensor (determined experimentally), an ad-

ditional walk period before turning once more, and sitting when the thigh pitch becomes less

than 10 deg from the test start pitch [77]. Segment times as well as acceleration of the trunk

and thigh were used to further analyze subject motion.

Nguyen et al. confirmed that automatic detection of individual segments of an instrumented

TUG test was more reliable than independent observers by instrumenting 16 healthy subjects



3.2. Performance Testing with Knee OA Patients 42

while completing a modified 5m and 10m TUG test [78]. Sensing equipment consisted of a

full-body suit containing 17 inertial units. Tests were divided into six segments of activity:

stand up, walk-out, turn, walk-in, turn, and sit down using motion thresholds of applicable

sensor locations. Transitions were also identified by detecting points before and after each

activity. Raw accelerations from sensors were used in addition to orientation measurements

output from a sensor fusion algorithm. These data were retrieved as quaternions which were

used to compute relative motion between two sequential timepoints from which absolute range

of motion metrics were extracted. This segmentation accuracy was confirmed by two observers

by comparing an animated avatar reconstructed from subject motion to test video footage.

While a full body-worn configuration has been shown very effective for analyzing the TUG,

it is not practical for standard of care use in the clinic for instrumenting many patients in a

limited time. More minimal solutions have been explored including work by Ortega-Bastidas

et al. which uses only a single torso-mounted inertial sensor. In this work, a stand activity is

detected by a change in pitch between the subject’s torso and the backrest of the starting chair.

Turn starts and ends are detected by observing the maximum and minimum rate of change

of normalized yaw angles of the torso (about the longitudinal anatomical body axis) [79].

Results of test segmentation are verified against visual inspection recorded with a camera-

based motion capture system and shows strong agreement. Errors are small when detecting

a sit-to-stand to walking transition near the beginning of the test (mean 0.07s) but errors are

larger when detecting the walking to stand-to-sit transition near the end of the test (mean 0.29s)

[79]. Authors of the current work suggest that this could be in part due to the varying turn-to-sit

strategies observed when subjects complete the TUG which makes it difficult to determine an

exact transition point with visual observation.

Subject turning identification presents a challenge in both scripted and unscripted instru-

mentation sessions. Especially in subjects with movement impairments, a turn may be com-

prised of several small and segmented turns or single turns at varying speeds. Turning is a

major element of mobility and difficulties are a major contributor to falls and reduced quality

of life in elderly populations and for people with movement disorders [80]. With unscripted

monitoring, algorithms must differentiate between a series of small turns and continuous large

turns without additional information concerning the attempted task. This is simplified greatly
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through instrumentation of the TUG since the activities attempted by subjects are already estab-

lished. El-Gohary et al. have used a similar torso-mounted inertial unit to instrument healthy

subjects and those with Parkinson’s disease while analyzing their turns. Using rotation of the

torso (measured by angular velocity of the sensor) they were able to segment turns with a high

degree of accuracy but it was discussed that some disagreement between sensor segments and

observer ground truths could be due to conflicting definitions of turns. Observers watching

video of the turns were instructed to note a turn as the heel strike prior to a turn and at the

end while it is noted that subjects often turn their pelvis ahead of their feet when turning nat-

urally, highlighting the unreliability of ground truth comparisons [80]. It was also noted that

movement impaired subjects had slower turning velocities as would be expected for the study

population and also that these patients appear to walk better when examined in the clinic op-

posed to caregivers’ reports about daily activity, demonstrating an observer effect. The authors

were able to derive metrics that could differentiate between healthy subjects and those with

impaired movements. Compared to the control group, patients with Parkinson’s disease took

shorter turns with sharper angles but required more steps to accomplish turns.

3.3 Predicting Patient Outcomes

A variety of outcomes following total knee replacement (TKR) are possible. Entering the

surgery, patients may be drastically different ages, have varying BMI, functional abilities, and

outcome expectations. The ability to observe pre-surgery information and predict possible out-

comes such as length of hospital stay, number of physiotherapy sessions to be required, chance

of infection, or satisfaction would be very useful to appropriately allocate resources needed

to ensure the best surgical outcomes possible on an individual level. At the very least, pro-

viding surgeons with more information concerning how the patient’s joint performs may help

influence surgical decisions and implant choices. It has been thought that parameters such

as age and BMI may indicate surgical success chances, however, recent literature shows that

functional performance may be a truer indicator. Research has demonstrated that traditional

timed-up-and-go (TUG) test results can be used to predict length of hospital stay post-surgery

[72]. With significantly more information available with the TUG test extensions described in
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the previous chapter, there may be more opportunities to predict outcomes following surgery

based on the functional performance measured pre-surgery or in the follow-up appointments

shortly after. Identifying parameters or milestones important to successful recovery will help

clinicians identify and treat problematic recoveries. Preoperative range of motion (ROM) mea-

sured passively is known to predict postoperative ROM. It is expected that ROM during weight-

bearing activities may also indicate postoperative ROM so extraction of this information will

be further explored in Chapter 5.

Previous work has investigated predicting pain one year after TKR by evaluating patients

pre-surgery and at important time points following surgery using patient questionnaires and

functional tests [81]. It was shown that preoperative pain was an indicator of postoperative

pain and suggested that pain reduction in the weeks following surgery may indicate pain will

continue to be reduced continuing through recovery. Early detection of patients without this

improvement could be beneficial for recommending physiotherapy programs designed to help

reduce future pain.

Total knee revision is a costly surgery involving the removal and re-insertion of an im-

plant. Certain PROMs have been identified to help predict the likelihood of revision following

some types of TKR. It was also discussed that although preoperative PROMs can be used to

predict postoperative measures, patients with severe impairment preoperatively seem no less

satisfied following surgery [82]. Additionally, patients with less severe disease progression be-

fore surgery are at a higher risk for dissatisfaction following the joint replacement since their

functional improvement is less substantial. Generally, when a surgery is performed on patients

with progressed stages of knee OA and severe impairment has occurred, it is expected that

functional improvement expectations following surgery should be lower [83]. If more quanti-

tative functional data is acquired from patients pre- and post-surgery, there may be a chance to

identify important parameters that can predict patient outcomes, or indicate the best opportu-

nities for intervention to improve these outcomes along the recovery path.

Machine learning for predicting outcomes has been used in other areas of the health care in-

dustry, particularly where disease outcome is the most difficult to predict on an individual case

by surgeons. While algorithms can be used to help health professionals make more informed

decisions, ultimately individuals are unique and must require diagnosis validations from clin-
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icians. For example, a variety of personal and derived features have been used with support

vector machines (SVMs), artificial neural networks (ANNs), and decision trees to aid cancer

prognosis [57]. A comparison of learning algorithms to predict severe complications (sepsis

and acute kidney injury) following major surgery has been compiled [84]. The data set of pre/-

postoperative data had 285 features extracted and outcomes were determined using standard

medical evaluations. Four learning models were tested: Naı̈ve Bayes, generalized additive

model (GAM), logistic regression, and SVM with the logistic regression and GAM performing

best on the data used. Machine learning has also been applied to the prediction of subjective

patient outcomes. Preoperative outcome subjective measures combined with demographics

and medical history were used to predict post-surgical satisfaction using several models but

it was found a Random Forest (RF) model performed the best [85]. One-year post-surgical

outcomes of sensor-measured gait parameters have also been predicted using information from

a single foot-worn sensor [86]. It was found that high functioning patients were more likely to

see functional performance decreasing after one year of recovery.

3.4 Human Activity Recognition

Wearable inertial sensors have permitted extensive human data collection beneficial for

both personal health monitoring and research tools. Accelerometers and gyroscopes are being

manufactured with lower cost and smaller physical size which permits their inclusion in many

consumer products. The availability of this hardware combined with the prevalence of mobile

devices for data collection have fuelled a new industry for personalized health and activity

monitors allowing individuals to track their fitness levels, measure functional performance, and

set goals for better health. For unconstrained subject evaluation, wearable systems have been

favourable over camera-based alternatives which either require tethering to an environment, or

involve extensive home monitoring setup.

Patients have reported to prefer lightweight and non-detectable systems attaching with a

band for easy attachment and removal instead of more permanent solutions [87]. Inertial-based

wearables commonly consisting of one or more accelerometer(s), gyroscope(s), or magnetome-

ter(s) have previously been investigated and determined appropriate for patient instrumentation
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[88].

Minimal systems for long-term, energy efficient activity surveillance have been used to

monitor subjects remotely using wrist, torso, thigh or chest mounted devices [89–92]. Data

recorded using only accelerometers can be analyzed to identify periods of rest/activity and in

some cases can be used to distinguish the activities performed by the instrumented subjects

[89]. Tri-axial accelerometers can be used to obtain better estimation of subject postures or

instrumented body segment orientation than their uni-axial alternatives. Accelerometry devices

can also be used to accurately detect intensity of activities by evaluating the magnitudes of

acceleration signals which may be useful for assessing overall levels of health, but does not give

any performance information for specific activities unless further classifications are performed

[91].

Alternatively, mobile phones containing accelerometers have been used for activity classifi-

cation to distinguish activities including walking, running, ascending/descending stairs, sitting

and standing [93–95]. Kwapisz et al. windowed samples into 10s intervals and six signal fea-

tures were manually extracted prior to classification. Logistic regression (LR), artificial neural

network (ANN) and decision tree (DT) classifiers were compared. Validation was performed

using a ten-fold (n-fold) scheme where all recorded samples are combined and a testing set

is withheld for algorithm evaluation. The ANN outperformed both the LR and DT classi-

fiers. Since the number of samples varied greatly across each class, a weighted average of

classification accuracy was used with an overall measure of around 92%. The accuracy when

classifying ascending (61.5%) and descending (44.3%) stairs was substantially lower than the

average across all classes. Voicu et al. used similar sized windows of smartphone measured

motion and manually extracted five features for classification. An ANN was deployed with

similar accuracies. The most misclassified samples were ascending/descending stairs and it

was discussed that because the window was 10s, these samples also included flat-level walking

where participants bridged two flights of steps which may account for some of the confusion.

Wrist-worn wearables provide little information concerning the lower extremities, how-

ever, arm activity can estimate walking distance or distinguish physiotherapy exercises [96,97].

They have been explored for classifying daily living activities of lying, standing, sitting, walk-

ing, running, washing windows, cleaning, stacking shelves and sweeping into four potential
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classes: sedentary, household, walking and running [89]. Windows of activity samples were

set to 12.8s and eight time and frequency domain features were manually extracted. Support

vector machine (SVM), ANN and DT classifiers were compared. Performance was evaluated

with multiple iterations of a leave-one-subject-out (LOSO) scheme where a classifier is trained

on samples from n − 1 subjects and the remaining subject is used for testing. A best overall

accuracy of 97% was achieved using a DT, however, many activities were classified into only

few categories and the chosen classes could encompass a large variety of activities with little

evidence that distinction could be made between the sub-activities (ex. cleaning vs. stacking

shelves). It is expected that shorter windows of activity would cause accuracy to drop as well.

Another study using a commercial torso mounted accelerometer (MoveMonitor - McRoberts,

NL) has differentiate similar activities of daily living including navigating stairs and biking into

classes of: shuffling, locomotion, standing, sitting or lying [98]. Walking and ascending/de-

scending stairs were perfectly classified as locomotion but with no separation of the individual

activities performed. Lying and sitting were 93-96% correctly classified but standing was mis-

classified as sitting 82% of the time. Cycling activities were almost entirely classified as sitting

or shuffling depending on the cycle speed and not as locomotion [98].

It remains difficult to compare human activity recognition (HAR) accuracy throughout lit-

erature since implementations vary across: subject health or functional impairment, number of

sensors and their placement locations on the body, activities performed, number and type of

classes to distinguish, and technique validation. Additionally, various sensors may record with

different measurement accuracies and this information is not often reported. When validating

results of trained models or classification strategies, some papers use an n-fold process where

samples from all subjects are blended and a portion is withheld from training to serve as a test

set [98]. An alternate scheme involves leaving one subject out (LOSO) so that the test set pro-

vides an estimate of the classification strategy effectiveness when used on an unseen subject

[89]. It is expected that the LOSO process is a more conservative evaluation technique and

should be used for algorithm assessment since the end deployment will assess unseen subjects

during future instrumentation sessions.

A more recent review by Fawaz et al. discusses the state-of-the-art of the more generalized

problem of multivariate time series classification (TSC). It is suggested that any classification
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problem using naturally ordered samples (accumulated over time, for example) can be framed

as a TSC problem [99]. In addition to human activity recognition, temporal ordering of sam-

ples is present in human cognitive processes, electronic health record analysis, acoustic scene

classification, and cybersecurity or intruder detection. A traditionally effective approach of

comparing time series was a nearest neighbour classifier using the Dynamic Time Warping

distance function. It has been shown that ensembles of classifiers can increase accuracy at a

cost of computational resources [100].

Deep learning is quickly becoming effective in numerous machine learning applications

and can offer an end-to-end machine learning solution free of bias induced from manual feature

extraction [101]. Automatic extraction of class-discriminating features can be preferable over

manual features because it is not known if an optimal set of features has been selected to

differentiate specific classes. Convolutional neural networks (CNNs) and ANNs are widely

adopted for TSC problems [99]. One limitation of ANNs is they exhibit spatial invariance

since all sample elements (and their trained relations) are treated as a non-linear combination

of independent features, regardless of where they are ordered spatially in a sample’s set of

features. Motivated by successes in image analysis and natural language processing CNNs

offer automatic feature extraction while maintaining spatial relevance through the order of the

feature set.

When applied to a univariate time series, a convolution can be seen as correlating a filter

across a discrete signal. This correlation produces a transformation of the series across only the

time dimension [99]. Applying several filters to a series will produce a multivariate time series

intended to distinguish different features for classification success. Networks are trained using

backpropogation such that filter values are adjusted so correlating filters create responses that

distinguish classes of samples. Two dimensional CNNs used for image recognition employ 2D

filters which have the capability of producing responses to features in both height and width

dimensions of an image. This is especially useful for detecting localized features in an image,

or pattern of pixel values that represent distinguishing elements. Previous literature has demon-

strated a 2D CNN using raw accelerometer inputs can accurately classify hand gestures [102].

The CNN outperformed SVM, k-nearest neighbour (KNN), and deep belief network (DBN)

classifiers on several benchmark datasets and demonstrates the utility of detecting responses



3.5. Summary 49

across the time and spatial domains of raw sensor data.

Methods of encoding time series data into images have been proposed. Wang et al. presents

a Gramian Angular Field (GAF) method where univariate time series data are normalized on

a scale of [-1,1] and transformed to polar coordinates instead of typical Cartesian coordinates

[103]. Yang et al. extend this work for multivariate applications by aggregating each GAF

image generated for each univariate signal [12]. Each grayscale GAF image is treated like

an independent input data channel, similar to how a coloured image occupies multiple input

channels in traditional usages of CNNs for image classification.

Given the expectation that the average human observer could classify many daily activities

based only on observation of a subject’s legs, the current work will employ a more direct

multivariate time series encoding which maintains (and does not abstract) the spatial relation

given by the raw sensor orientation readings, similar to the work of Bo Yang et al.. If sensor

readings were to be split between separate input channels, developed filters would not respond

to patterns across separate input time series.

3.5 Summary

This chapter has outlined several topics pertaining to the work that will be presented in fu-

ture chapters. An overview of wearable sensor systems appropriate for subject instrumentation

has been presented first. While other sensor systems exist, they are often too complex or con-

straining for efficient use in the clinic. Systems consisting of many sensors can also become

expensive and would not be practical for mass patient deployment. As previously mentioned,

complex motion capture (such as marker or camera-based systems) can also require specific en-

vironmental setups that do not translate well to existing clinic hallways or waiting rooms. The

system development in the following chapter has focused on developing a knee measurement

system that could be efficiently integrated into clinical workflows to quickly provide useful

knee information.

The next topic concerned functionally measuring patients. Traditional outcome assessment

relies on patient feedback through validated questionnaires but it has been highlighted that

these subjective measures make it difficult to distinguish more subtle changes in health. They
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are also influenced by patient bias making it difficult to make direct patient-to-patient com-

parisons. This chapter has outlined several appropriate functional tests that could benefit from

instrumentation to obtain objective feedback. The timed-up-and-go test has been highlighted as

it combines many knee stressing activities and can be completed by subjects relatively quickly.

Following functional testing, this chapter explored the possibility of predicting future pa-

tient outcomes after undergoing total knee replacement. Existing literature has mostly con-

sidered subjective measure predictions although sensor-instrumented measures such as gait

parameters. By incorporating a well-known functional test such as the timed-up-and-go into

instrumentation sessions, the current work will explore the prediction of functional improve-

ment likelihood using traditional test measures as a proxy for functional capability.

Lastly, this chapter discussed some challenges with sensor instrumentation outside of the

clinic and offered human activity recognition solutions. Extensive literature has explored the

possibility of classifying well-defined sets of activities using inertial sensors but was lacking

indications that these classifications could be performed using only an inertial sensor mounted

above and below each knee. The current work will attempt to answer if daily activities could be

classified by only observing a subjects legs. A shortfall of more traditional machine learning

for human activity recognition requires manual extraction of parameters to input to to machine

learning models. It was discussed that automatic feature extraction can offer better performance

so the current work describes a novel strategy to encode raw sensor data into images to leverage

previously successful convolutional neural networks for automatic feature extraction.



Chapter 4

Wearable Sensor System Development

4.1 Introduction

The current chapter describes the development and validation of a wearable sensor system

appropriate for in-clinic instrumentation of patients following total knee replacement (TKR).

A strategy for sensor placement is presented and validated using a robotic manipulator and leg

phantom placed inside a 3D motion capture environment. Joint angles are compared to the

gold standard measurement device through several trials while removing and replacing sensors

on the robot phantom.

4.2 Wearable Sensor Considerations

Investigation began into possible wearable system types that would function best for mea-

suring joint angles in patients with knee OA. Wearable systems consisting of tight fitting appa-

ratus were discouraged since it was thought that irritation could occur if mounted close to an

incision. Additionally, if the patient is experiencing any pain or inflammation of the joint, it

would not be ideal to attach anything conforming to the area. Stretchable fabric, or smart mate-

rials, were eliminated as a useful option for these reasons. Similarly, it was a concern that using

digital goniometers could cause the same discomfort attached in proximity to the incision. Ad-

ditional adhesives would be required to attach the goniometers and they must remain affixed

to report results of any significant accuracy. A major limitation of these devices is that they
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cannot be separated and attached proximal and distal to the joint effectively because they are

limited in physical stretch of the measurement wire. Despite the devices being manufactured

in many possible lengths, as the length of wire increases, as does its tendency to be influenced

by external forces. For example, during activity when the knee is flexing and extending, the

internal measurement wire will become tensed and lax, and may be influenced by the motion

of the body while performing activities. Clothing and skin motion may also cause artificial

readings of joint motion in practical use.

Inertial sensors were then examined as a possibility for instrumenting patients since these

devices are becoming small in physical size and more energy efficient. Wireless sensors could

be attached at variable lengths from the affected joint without causing discomfort. These de-

vices have been previously used to track joint angles. It has also been noted that non-negligible

error can be introduced using previous methods of measuring joint angles with inertial sensors

if no frame alignment procedure is done. These procedures require movements to be per-

formed constricted to known rotations in order to align the local sensor coordinate frames with

the attached joint segment frame. After observation of patients before and shortly after knee

replacement, it was determined that the removal of these calibration procedures would be ideal.

If the correct execution of calibration procedures would be dependent on the sensor system ac-

curacy, there could be a mixed success rate using this method as patients had vastly different

functional abilities. In literature proposing these methods, the procedures were all completed

by healthy individuals and it was apparent when observing knee OA or TKR patients that some

individuals would have a great deal of difficulty with these.

A strategy of tracking joint angles was explored by independently estimating an orientation

with respect to an absolute reference by each sensor. The motivation for this method would

be to allow the sensors to calibrate to an absolute reference and then when attached to a body

segment, the body segment would have the same frame as the sensor. With a sensor attached

above and below each knee, a difference in limb segment orientation could be used to de-

rive joint angles in three dimensions. In addition to being able to derive these measurements

instantaneously without any patient calibrations, this method would also give absolute world

body orientations without the need for a kinematic model. Additionally, since each sensor

implements an algorithm taking raw component measurements and computing an attitude esti-
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mation, the method of extracting joint angles and analyzing the patients would be completely

decoupled from the algorithms implemented on the sensors. This would allow sensors from

different manufacturers to be used and as attitude estimation algorithms improve, the high

level system can remain unchanged except for interfacing with the new sensors. Many atti-

tude estimation sensors output their absolute orientations in quaternions as well, which makes

computing changes in orientations efficient using linear combinations.

4.2.1 Implementation

As an input, the proposed strategy requires sensors capable of transferring or streaming

quaternion attitude estimations wirelessly. MARG development boards (MetaMotionR, MBi-

entLab, San Francisco, CA, USA) capable of estimating orientations using a self-contained

sensor fusion algorithm at a rate of 25 Hz were obtained. It has been previously suggested

that this recording frequency should be sufficient to monitor lower extremities outside of high-

speed activities [104]. Orientations are measured relative to a global left-handed frame defined

identically for all manufactured sensors with the positive z axis downward, the positive x axis

towards magnetic north and the negative y axis orthogonal to the two former axes, calibrated in

San Francisco, CA, USA. The boards and a rechargeable lithium-polymer battery were placed

inside a custom PLA 3D-printed case (visible in Figures 4.1 and 4.2) approximately 1.2 cm

thick, 3.0 cm wide, and 4.0 cm long.

An iPod application written in Swift 3 was created to facilitate the initialization and syn-

chronization of each of the four sensors during recording sessions. The application permits

users to first select an existing subject ID or generate a new one. Subject IDs are generated

as universally unique identifiers (UUIDs). Since these identifiers are guaranteed to be unique,

they are used to identify sessions but also as subject identifiers in future system use.

Once a subject or session has been chosen, the application first instructs a user to attach the

sensors using stretchable fabric hook and latch straps to their limbs as indicated in Figure 4.1a.

The system then connects to four sensors (two on each limb of a patient) and once connected,

indicates that they press the momentary push-button on each sensor in a specific order to local-

ize the sensors to a body segment. Once pressed, the system will internally identify the sensor
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(a) (b)

Figure 4.1: (a) Sensor attachment instruction for patients and clinicians; (b) Instrumented phan-
tom leg (Sawbones Fully Encased Leg, Pacific Research Laboratories, Vashon, WA) with pos-
terior and lateral placements and local sensor frame.

(a) (b) (c)

Figure 4.2: (a) CAD model of open case; (b) MetamotionR development board; (c) Final
printed case assembly.

location for output and angle calculations. This interaction differs from a sensor calibration

procedure because no constrained patient joint movement is required.

As joint motion is computed using the algorithm below, data are simultaneously logged to

the connected portable device and synchronized. The system recognizes a disconnect or com-

munication failure with any of the attached sensors. In order to prevent data loss in this event,

quaternions are simultaneously stored to the on-board sensor memory to be retrieved by the

application upon re-connection if a data synchronization error occurs from a lost connection.

All data stored on-board or transferred to the portable device wirelessly are timestamped to

allow merging of these two data storage methods to create a single synchronized data set.
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Motion Extraction Algorithm

Once the sensors are connected to the system wirelessly and their locations have been

labelled internally, the user may begin recording. The joint angles of each leg are calculated

identically, but independently.

Recall from Chapter 2 that the quaternion orientation estimation read by the lower sensor

with respect to its global coordinate system. It can be defined as:

G
L
q = [ql0 ql1 ql2 ql3]

and similarly we can define the orientation of the upper sensor with respect to the same global

coordinate system as:
G
U
q = [qu0 qu1 qu2 qu3]

The difference in orientation of the upper sensor with respect to the local coordinate frame

of the lower sensor (chosen as a reference) can be found using Equation (2.14) as:

L
U
q = G

L
q∗ ⊗ G

U
q (4.1)

using the lower conjugate as defined in Equation (2.10) and the linear combination defined in

Equation (2.11).

The difference in orientation L
U
q is now the single combined rotation from one segment’s

local frame to the other, with respect to the reference. To maximize this experiment’s clinical

relevancy and present results comparably to knee literature, L
U
q was transformed into flexion/ex-

tension (rotation in sagittal plane), internal/external (rotation in vertical plane), and varus/-

valgus (rotation in coronal plane) clinical angles using a Z-Y-X Euler sequence for lateral

sensor measurements and a Y-Z-X Euler sequence for posterior sensor measurements. These

sequences were motivated by performing the flexion rotation first because the majority of mo-

tion occurs about this sensor axis, varus/valgus second because the knee physically cannot

reach ±90 deg varus/valgus (rendering the rotation singular), and then the third remaining in-

ternal/external rotation about this transformed frame as has been done previously in literature

[105]. Different sequences are required for each sensor placement despite calculating L
U
q iden-
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Figure 4.3: The robotic manipulator testing apparatus complete with wearable sensors and 3D
motion capture markers.

tically since each sensor has a fixed local frame (visible in Figure 4.1b) and when sensors are

mounted differently about the knee, motions are reflected about different sensor axes.

4.3 Methods

To validate readings obtained by the proposed system, a robot phantom study was per-

formed. A robotic manipulator was fitted with a mannequin leg (Figure 4.1b) and was pro-

grammed to flex the leg starting completely extended (0 deg) through a linear path to approxi-

mately 120 deg for ten cycles with near-constant velocity. The manipulator apparatus holding

the phantom limb can be seen in Section 4.2.1. The upper limb was secured to a stationary ap-

paratus and the manipulator end effector was attached to the ankle. The manipulator and limb

were placed inside a marker-based 3D motion gait lab (Cortex 2, Motion Analysis Corporation,

Santa Rosa, USA) and fitted with reflective markers to provide a ground truth measurement for

angles recorded during testing. Three independent tests were performed at two different speeds;

slow (≈ 15 deg /s) and fast (≈ 25 deg /s). These testing speeds were limited by the maximum

manipulator velocity at the end-effector. Two sensor pairs were attached in lateral and poste-

rior positions on phantom limb as indicated in Figure 4.1b. The two simultaneous placements

simulate two convenient placement options for sensors in patients with knee OA. Testing an

anterior placement was not possible due to the anterior upper limb being blocked by the fixture
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apparatus. Between each of the three tests, all MARG sensors were completely removed from

the phantom, shuffled randomly, re-positioned on the leg, and re-localized using the application

specific push-button procedure. The placement and re-placement of the MARG units between

tests simulates the removal and reattachment of sensors from patients. No calibration of the

system was performed between tests or trials.

4.3.1 Data Collection

Data were collected using the custom developed mobile application. For this experiment,

the synchronized data files were downloaded from the iPod and post-processed using Mat-

lab (MathWorks, Natick, MA, USA). The analysis procedure from the proposed system was

implemented using a Matlab script in addition to the original mobile Swift 3.0 implementation.

4.3.2 Analysis

Clinical angles were extracted from the sensor data using the proposed algorithm. Angles

for the gold standard were found as an X-Z-Y Euler sequence that labels rotations in the same

order with flexion as the first stage, then varus/valgus, and internal/external rotation as the final

stage. Initial offsets were subtracted from data sets to align all tests to a common start for

test-to-test comparison. No further filtering was performed on the data.

A cross correlation was used to determine if the posterior or lateral sensor placements

provided the most repeatable path across multiple tests with device replacement. Tests were

interpolated using the Matlab interp1 function to normalize timestamped test data from the

same axis to the longest test set. This is necessary because sensor data streaming rates varied

slightly when transferring across the wireless connection and data could not be exactly com-

pared sample-to-sample. Correlation matrices comparing all three tests were computed using

the Matlab function f () = corrcoe f (A, B) and the correlation coefficient was taken as the ma-

trix diagonal d( f (A, B)). A mean measure of correlation c for each sensor placement option

and the gold standard, for each degree of freedom was found using:

caxis =
d( f (t1, t2)) + d( f (t2, t3)) + d( f (t1, t3))

3
(4.2)
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where tn is the nth test at the same trial speed.

Since test correlations only compare the retest reliability and similarity of each placement,

an average amplitude for all cycles of each test was computed as amptest = mean(peaks) to

compare ranges in each axis of both placements to the gold standard, where peaks is a set of

all cycle amplitudes from complete extension to the cycle peak. A mean average of all tests at

a single trial speed for each axis degree of freedom is found as:

ampaxis =
�3

test=1 amptest

3 (4.3)

To provide additional comparison of sensor placements to the gold standard, a value of root

mean square error (RMSE) of each sensor test compared to its respective motion capture test

was computed using the following equation:

RMS E(x, y) =
�

1
N

�N
n=1(x(n) − y(n))2 (4.4)

where x, y are sensor data and gold standard data sets respectively, and N is the number of

samples recorded. Note that all sensor test data sets were interpolated to gold standard tests

for direct comparison using the Matlab interp1 function as done previously when computing

cross correlations.

Finally, a measure of drift dtest was found by computing the change in amplitude between

each successive cycle in a single test. The following Matlab equation was used: dtest =

mean(diff (peaks)), where peaks is a set of all cycle amplitudes from start to the cycle peak. A

single mean value of drift for each placement option and the gold standard was found for each

axis of rotation as the mean of all three test values.

4.4 Results

4.4.1 Path Correlation

Path correlations for each placement option and the gold standard through all tests can

be seen in Figures 4.4 to 4.6. The mean values calculated with Equation (4.2) are shown in
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Test 1

Test 2

Test 3

(a) Slow Speed

Test 1

Test 2

Test 3

(b) Fast Speed

Figure 4.4: Angles computed during motion paths as the phantom limb travelled through 10
cycles using a posterior sensor placement.

Table 4.1 along with their standard deviations. It can be seen that most paths were highly

correlated, with less strong results showing a large standard deviation indicating that a single

test may be lowering the mean. Flexion angle path correlations were the highest (1.00 ± 0.00

rounded to two decimal places) through both placements and speeds. Rotation angles have

shown the lowest correlation, however, it should be noted that the overall amplitude of these

rotations is low compared to other axes (mean of all placements ≈ 3.5 deg) as seen in Table 4.2,

so any small differences or noise in the signal have a higher impact on correlation. Similarly,

flexion amplitudes are large (≈ 120.0 deg) so noise and errors have a less significant effect on

these path correlations.
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Test 1

Test 2

Test 3

(a) Slow Speed

Test 1

Test 2

Test 3

(b) Fast Speed

Figure 4.5: Angles computed during motion paths as the phantom limb travelled through 10
cycles using a lateral sensor placement.
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Test 1

Test 2

Test 3

(a) Slow Speed

Test 1

Test 2

Test 3

(b) Fast Speed

Figure 4.6: Angles computed during motion paths as the phantom limb travelled through 10
cycles using the gold standard motion capture system.
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Table 4.1: Multi-Test Path Correlation

Slow Lateral Posterior Gold Standard
Flexion 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Rotation 0.47 ± 0.34 0.68 ± 0.23 0.81 ± 0.08
Varus/Valgus 0.52 ± 0.31 0.92 ± 0.04 0.98 ± 0.01

Fast Lateral Posterior Gold Standard
Flexion 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Rotation 0.45 ± 0.25 0.60 ± 0.35 0.83 ± 0.03
Varus/Valgus 0.67 ± 0.24 0.74 ± 0.14 0.98 ± 0.00

4.4.2 Path Amplitudes

Table 4.2 shows the mean sensor path amplitudes compared to the gold standard and their

standard deviations computed with Equation (4.3). Flexion angles were shown to most ac-

curately reach peak amplitudes in comparison to the gold standard for both trial speeds with

a mean difference in degrees of (lateral-slow: 1.39, posterior-slow: 1.23, lateral-fast: 0.40,

posterior-fast: 2.24). Amplitudes of rotation and varus/valgus paths have shown large standard

deviations (ranging from 2.51 deg to 5.48 deg) which indicates that sensor-body alignment

could introduce non-negligible error in these axes during patient usage.

Table 4.2: Multi-Test Mean Path Amplitudes

Slow Lateral (deg) Posterior (deg) Gold Std. (deg)
Flexion 121.11 ± 2.92 118.49 ± 0.97 119.72 ± 0.33
Rotation 4.45 ± 5.48 4.04 ± 2.55 1.39 ± 0.76
Varus/Valgus 5.44 ± 2.63 4.92 ± 2.51 6.47 ± 0.43

Fast Lateral (deg) Posterior (deg) Gold Std. (deg)
Flexion 120.39 ± 3.39 117.75 ± 1.92 119.99 ± 0.29
Rotation 4.41 ± 5.34 4.73 ± 3.23 2.14 ± 0.22
Varus/Valgus 5.63 ± 3.67 4.36 ± 2.75 7.70 ± 1.18

4.4.3 Root Mean Square Error

Table 4.3 shows the RMSE of each sensor test axis compared to the equivalent gold standard

result calculated as shown in Equation (4.4). The mean error of flexion tests was shown to be
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the largest (ranging from 3.29 deg to 3.52 deg), however, the range of motion in this axis was

much larger. Varus/valgus showed low mean errors over three tests for both speeds (ranging

from 1.42 deg to 2.30 deg). Mean errors of rotation varied more significantly between tests

with a highest lateral error on Test 3 (4.39 deg) and a highest posterior error on Test 2 (4.03 deg)

indicating rotation accuracy may be more influenced by placement when using the proposed

rotation sequences.

Table 4.3: Root Mean Square Error to Gold Standard

Slow Lateral (deg) Posterior (deg)
Flex Rot Var Flex Rot Var

Test 1 3.24 1.09 1.42 3.20 0.84 0.75
Test 2 3.66 1.80 2.08 3.68 2.71 1.49
Test 3 3.65 4.39 1.75 3.28 1.99 2.14
Mean 3.52 2.43 1.75 3.39 1.85 1.46

Fast Lateral (deg) Posterior (deg)
Flex Rot Var Flex Rot Var

Test 1 4.43 1.37 2.75 4.02 0.97 0.78
Test 2 2.64 1.56 2.57 2.47 4.03 1.50
Test 3 3.41 4.24 1.58 3.38 2.49 1.98
Mean 3.50 2.39 2.30 3.29 2.50 1.42

4.4.4 Sensor Drift

The MARG sensors used in this study were in motion for ≈ 90s at slow and ≈ 50s at fast

speeds without resting and in all tests there were only two occurrences of mean drift over 1 deg

per ten-cycle test (slow-lat-var: 0.14 deg/cycle, fast-lat-var: 0.13 deg/cycle). It is expected that

OA patients will pause intermittently within this time frame (allowing a gravity vector to be

found) so sensor accelerometer correction is expected to help accuracy. Magnetic disturbances

were assumed to be minimal during this experiment but error could accumulate in real-world

situations due to non-uniform magnetic interference.
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4.5 Discussion

Although the robot was programmed to flex through a linear path, non-negligible inter-

nal/external and varus/valgus rotation was observed in all tests due to the simulated motion of

the artificial limb through flexion and extension. These additional motions are partly a result of

the mannequin limb moving as a naturally constrained human leg, as well as soft tissue artifacts

which are expected to be present during patient use (varying with leg size and muscle tone).

Skin motion is a source of error in all external joint monitoring methods including gold stan-

dard gait systems and cannot be avoided using externally mounted sensors [106]. Despite some

literature suggesting that additional motions can be ignored [61, 107, 108], knee motions such

as varus/valgus thrust are important indicators in OA patients, indicating multi-dimensional

measurement of the knee is significant [109].

Interpreting a quaternion as clinical angles is not trivial. Angle labels are assigned to ro-

tations differently among literature, but they are often directly translated from three stages of

independent local rotations constituting a traditional Euler representation [105, 107, 110–112].

There are many three-stage, non-unique, and correct decompositions that can be found which

makes the extraction of clinical angles dependent on the sequence. Interpretation is further

dependent on the chosen reference segment. For example, when the knee is flexed, internal/ex-

ternal rotation occurring about the lower segment with an upper limb reference is a change in

varus/valgus of the upper segment with a lower reference. For this study, the authors chose

to use the upper limb as a reference for clinical angle extraction. Since motion capture mea-

surements were made with respect to a stationary frame aligned with the upper limb, the upper

segment was chosen as a reference for sensor computations because it moved less than 3 deg

in all axes during testing for more equal comparison.

A consequence of computing the change in rotation with respect to a reference segment is

that accuracy will vary with alignment of the reference sensor to its body frame. An assumption

of this system suggests that one of the sensors (reference) can be placed on a patient with

correct alignment to the limb frame. Visual alignment has been previously tested with less

than 5 deg error in a different wearable system [111]. Since the change of rotation is with

respect to the reference frame, a misalignment of the non-reference sensor should not introduce
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error (kinematic crosstalk [113]) associated with knee motion occurring around a misaligned

reference. Based on testing results, it is expected that poor alignment of the reference sensor

will introduce this error. The authors suggest that correct placement is aided by the custom

sensor case design used, which is elongated along the limb length, concave to conform and

deter twisting, and held in-place using stretchable straps to prevent sensor liftoff. Further

testing should take place concerning the correct attachment of a reference sensor to patients

for improvement of rotation accuracy. Case design could be improved to accommodate wider

straps to prevent the twisting of sensors against the skin. It can be seen in Figure 4.1b that the

straps used are more narrow than the 3D-printed slots on the red sensor cases. It is expected that

at some placements, the sensors were able to rotate slightly independent of the straps during

placement which should be avoided. Sensor fixation could be improved during patient usage

by adding medical grade two-sided adhesive tape under the hook and latch straps.

In addition, further experimentation should consider an anterior sensor placement on pa-

tients for two reasons: the anterior lower limb could provide the better reference placement

in patients since there is typically less soft tissue on the front of the shin, and this placement

option would prevent patients from sitting on the sensors during activity.

The current work explored the reliability of extracting joint angles with the placement and

replacement of sensors on a phantom limb. As an area of extension for future work, further

analysis could focus on deliberate misplacement of sensors to examine the measurement error.

If data are collected in a repeatable fashion, sensors could possibly be virtually rotated about

their local frame in small increments to further understand the system sensitivity. A small

virtual rotation about a sensor’s z frame would simulate placement errors in the varus/valgus

measurement while local rotations about a sensor’s local x frame would simulate misalign-

ment in the internal/external rotation parameters. Since skin motion is problematic with ex-

ternally mounted hardware, skin motion could also be introduced artificially by incorporating

non-constant rotation augmentations about local sensor frames while examining measurement

accuracy.

Literature indicates that the standard error of measurement (SEM) in post-TKR patient

flexion measured manually by experts is 4.1 deg while patient flexion has been shown to fluc-

tuate up to 9.6 deg between measurements so system errors ≈ 4 deg can be declared clinically
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insignificant [114]. Wearable systems implemented using goniometers have been shown to

produce ≈ 3 − 4 deg of error during usage and previous inertial systems have reported RMSE

of ≈ 2 − 4 deg [45]. The experiment performed has shown that the three clinical angles can be

extracted within these ranges of error.

Joint velocities of OA patients monitored may exceed the speeds tested in this study. The

method of joint angle extraction was tested primarily, and similar accuracy at higher joint

velocities will depend on the inertial sensors used, which have previously been shown capable

of operating at more realistic velocities [45, 68].

4.6 Contributions

The proposed system using independent attitude estimations meets many of the desired

qualities reported to be desirable in wearable systems for patients with OA, such as unobtru-

siveness, small size, and low cost [87]. Minimal calibration facilitates usage for patients with

limited mobility, making this tool appropriate for home, ambulatory, or clinical use as a re-

placement for more expensive instrumentation. All clinical angles have shown a low RMSE in

degrees for both placements (flex: ≤ 3.52, rot: ≤ 2.50, var: ≤ 2.30) and low degree difference

in mean cycle peaks (flex: 1.32, rot: 3.71, var: 2.00) compared to a gold standard, however, it

has been mentioned that poor visual placement of the sensors could introduce larger error in

practical use.

From these data, joint velocities and accelerations can be computed as well, potentially al-

lowing for discovery of important knee parameters during patient usage. This proposed method

of computing joint angles using absolute attitude estimations can be used in any body orien-

tation free of singularities, allowing knee joint monitoring through any scripted or unscripted

activity. The proposal of this system and validation has been published in IEEE Transactions

on Biomedical Engineering [115].



Chapter 5

Deriving Knee Performance Measures

from the Timed-up-and-go Test

5.1 Introduction

A valid tool is important for functionally evaluating patients, however, an appropriate pro-

tocol for instrumentation is crucial for repeatable measurement across repeated visits or patient

populations. As previously detailed in Chapter 3, scripted performance tests offer the ability

for direct comparison instead of performing independent observations on subjects while they

complete different tasks. The timed-up-and-go (TUG) test is a favourable test to evaluate knee

function since it combines several joint stressing activities and requires no additional equip-

ment to complete. This chapter details the implementation of a strategy to extract relevant

knee joint parameters from instrumented timed-up-and-go tests that can be used to evaluate

patient function post-surgery.

The contents of this chapter begin with a preliminary experiment to ensure the practicality

of the instrumentation strategy and if it will be effective when deployed in the clinic. Patients

were instrumented in the clinic by Megan Fennema as a method of functional evaluation for

her work assessing patient outcomes. All information was de-identified before being used for

the analyses presented in this chapter.

Inter-patient functional differences are examined in healthy subjects completing instru-

mented TUG tests. The remainder of the chapter focuses on extracting more granular knee-

67
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specific joint parameters that can be used to differentiate positive and negative functional out-

comes in knee replacment populations. Extracted metrics are validated through correlating to

self-reported outcomes at one-year post-operation.

5.2 Instrumentation Validity for Timed-up-and-go test

Before investigating the timed-up-and-go in total knee replacement patients, a primary ex-

periment was used to determine the suitability of the developed instrumentation methods for

the TUG test. This primary investigation had two objectives: 1) Subjectively ensure appropri-

ate flow for deployment in the orthopaedic clinic, and 2) Verify that the minimal instrumen-

tation strategy detailed in Chapter 4 is sufficient to measure functional differences in subjects

executing the TUG test.

For this initial experiment, high precision data logging inertial sensors were used (YEI 3-

Space Data Logger, Yost Labs) in place of the Mbientlab sensors used in Chapter 4. Since the

knee instrumentation strategy depends on raw orientation outputs, any sensor capable of out-

putting attitude estimations can be used. These sensors were readily available and advertised

highly accurate estimations (±2 deg error in all axes). The internal sensor fusion algorithm

used a Kalman filter to integrate the raw gyroscope, magnetometer, and accelerometer data

into usable attitude estimations. A large limitation of these sensors was their wired interface:

they were capable of logging timestamped data but these logs must be transferred over a serial

cable connection. A custom Matlab script was created to enable sensor streaming and perform

data analysis. A polling technique was used to obtain soft real-time synchronization at approx-

imately 25 Hz. Once sensors were connected to a laptop running the Matlab script, sensors

were affixed to subjects and a 30 second recording session. This limitation was overcome by

using a very long USB cable which permitted subjects to hold the cable elevated in the air

while they completed the tests and were able to turn without difficulty. Unfortunately due to

the limitations of the tethered cables, only a single knee was instrumented at a time but the

methods below have been extended to both knees, which will be applied further in the chapter

for knee replacement patients. For each healthy participant, five TUG trials were recorded.
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5.3 Performance Test Segmentation

As discussed in Chapter 3, the total test completion time is a valid measure that has been

used to evaluate impairments and even predict falls in elderly populations. However, sensor

instrumentation can be used to extract more granular measures. Since total completion time

has been proven relevant to outcomes following TKR, it was expected that test segmentation

into all sub-activities could also reveal important information [116].

Since sensor data were recorded as raw quaternion orientation information relative to a

common global frame, raw quaternion rotation thresholds could be used to indicate segmen-

tation points. Where more context was required, left and right knee flexion angles were used.

To derive a series of joint flexion angles for the duration of the test, matched timestamped unit

quaternions of the form

q = [w x y z]

where w, x, y, z ∈ R and 0 ≤ w, x, y, z ≤ 1, with unit magnitude as:

|q| =
�

w2 + x2 + y2 + z2 = 1 (5.1)

from the upper and lower leg were used to compute a difference in rotation qΔ between the two

segments as:

qΔ = q−1
re f ∗ qrel (5.2)

similarly to the range of motion calculations of the hip and knee Nguyen et al. presented [78].

This qΔ represents a minimal difference in rotation between the two upper and lower sensors.

Knee flexion was further extracted as the rotation about the primary axis using the methods

presented in our previous sensor system validation work [88]. Similarly, the lower shin sensor

was used as a reference due to reduce skin motion compared to the upper thigh mounting

location. An overview of segmented test sub-activities alongside series of left and right flexion

angles can be seen in Figure 5.1.

To provide more detailed metrics from a recorded TUG test, the total recording was seg-
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(a) Overview of segmenta-
tion process. (b) Recorded test segmented with a Matlab script.

Figure 5.1: TUG segmentation and left/right knee flexion angles (degrees) from a recorded
test.

mented into five segments: sit to stand, walk to goal, turn at goal, walk to start, and stand to sit.

It is expected that each of these segments should be analyzed independently as they roughly

are indicative of each combined activity evaluated in the test. The proposed segmentation al-

gorithm relies on the detection of key test indices (Table 5.1) that separate the activities of

standing, walking, turning, and returning to sit in the starting position.

Test Recording Trimming

Before segmentation of the TUG test, the total data recording is first trimmed to remove

observer influence. It was noted that on the “go” command, some participants hesitated before

beginning to move and others began the test early even though the instructions were explained

clearly (especially on the first trial) and the beginning could be missed. Existing work has used

a change in pitch of the torso for a test start detection however from observation it was seen

that some participants moved forward and backward in their chair before the test start and this

should not indicate the beginning of a test in our population even if instrumentation extended

to the torso.

Beginning from the first recorded sample, the total test recording is trimmed to the first

motionless state which prevents unintentional motion at the start of the test that could trigger a
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Table 5.1: Summary of segmentation indices used to separate the test into sub-activities for
further analysis and metric extraction.

Index Name Description
recordingStartIndex Trim the recording to the point where the subject’s legs are still. Re-

moves false test starts if the recording is started before the subject is
motionless.

testStartIndex The start of the TUG test as determined by the first signs of leg motion.
Indicates the subject is preparing to stand.

chairLiftoffIndex The subject’s thighs have exceeded a vertical threshold indicating they
have lifted off the chair at the start of a stand action.

standEndIndex A large change in extension of the left or right knee is used to detect the
end of the standing activity.

turnStartIndex A mean index between the left and right legs reaching a rotation about
the world vertical axis indicates the start of a turn.

turnEndIndex A second mean index of the time when both legs are nearly facing the
starting chair position indicates the end of a turn.

sitStartIndex The sit start is detected when the subject finishes turning to face the
direction of the floor-marked goal.

testEndIndex The sitting task is expected to fill the remainder of the test and the end
is detected when either leg is flexed and mostly still. This accounts for
subjects who sit with a single leg extended in front of them.
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false start. For this task, a change in knee flexion fΔ at time t is computed as

fΔ = ft+1 − ft (5.3)

and the recording start is first trimmed so fΔ of both left and right knees is less than 0.25

deg/t where t is also the sampling period of the sensor system. This removes any unnecessary

movement from the subject if the recording is begun before becoming stationary in the chair.

The recordingStartIndex is determined to be the first instance with no motion after recording

is started by the tester.

Detecting the TUG Start

Following the detection of a motionless state that marks the beginning of a valid recording,

the next step is to detect when a patient actively intends to begin their test. While Higashi et al.

showed a single thigh sensor exceeding a motion threshold about the pitch axis could determine

this start index, it was observed that some of our subjects exhibited a “preloading effect” where

they flexed one or both knees in anticipation of standing while others rose straight to a stand

more fluidly. The first indication of motion was determined by observing flexion angles and

for the current work an absolute change of only 3deg over a period of 0.25s was sufficient

to detect the first signs of motion before a stand activity. This fΔ was computed over five

samples to reduce the likelihood of a false trigger due to low-magnitude sensor noise. This low

motion threshold and other values expressed in the remaining segmentation steps were chosen

based on observation of animated avatars recreated by raw sensor readings using a leg mesh

model created with Blender 2.8. Since there is no generally accepted threshold for the TUG

segmentation it is expected that consistency across subjects is of most importance. An example

of these avatars used to detect motion thresholds can be seen in Figure 5.2.

Sit-to-Stand

After detecting the test start as the first registration of motion, the standing activity is the

only possible transition from sitting to walking. This was chosen to begin at chair liftoff, which

was found by computing the quaternion rotations of each upper leg sensor relative to their
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(a) Subject at test start
in seated position.

(b) Subject nearing
the end of a stand.

(c) Subject taking
the first step after
standing.

(d) Taking a full
step during the
walking segment.

Figure 5.2: Animated avatar recreating a subject’s TUG test based on recorded sensor readings.
Ankle flexion is held at a right angle since no foot motion is recorded by the system. Figure 5.2d
contains sketches indicating sensor placements and local coordinate frames.

measure at the test start index. By re-purposing Equation (5.2), we can find a qΔ independently

for left and right upper sensors with qre f being the past reading at the test start index and qrel as

the present measure. Due to the order of multiplication in Equation (5.2), qΔ is the rotational

difference between past and future locations of the same sensor measured about the sensor local

frame at the test start index. Because the upper sensor is on the top of the thigh, the y axis of the

local frame is of interest to detect liftoff (Figure 5.2d). Furthermore, it would be expected that

skin and clothing motion will introduce rotation in the x and z axes of the local frame. Using

the unit quaternion property in Equation (5.1), nullifying the x and z components of qΔ will

emulate a rotation needed to bridge the past and present sensor locations as if no rotation took

place in those axes. With a zero value for x and z, qΔ can be normalized using Equation (5.1)

to get a compensated unit rotation. It was found that a value of 0.05 in the y component of this

compensated difference was sufficient to detect chair liftoff. Through an extension of Euler’s

formula:

q = e
θ
2 (ux i+uy j+uz k) (5.4)

= cos
θ

2
+
�
uxi + uy j + uz k

�
sin
θ

2



5.3. Performance Test Segmentation 74

the angle θ about any of the imaginary quaternion axes can be found as:

θ = 2 × arcsin (u) (5.5)

It can be seen that this threshold corresponds to 0.10 rad or approximately 6 deg of rotation

about the y axis.

The end of the stand was detected when this same y value exceeds a magnitude of 0.6

(approximately 75 deg using Equation (5.5)) on either left or right legs. It should be noted that

often times the leg taking the first step does not meet this threshold as subjects elevate into their

first step with the dominant knee remaining flexed into the first step.

Turning

In unscripted tasks, turning is a difficult activity to detect. During daily motion, many small

turns are executed as subjects navigate their environment and these cannot be distinguished

from larger turns. During the TUG, it is known that patients must execute a 180 deg turn at the

end of the walking phase. Since the test is scripted, turn detection is simplified. Starting from

the stand end index found in the previous step, the turn start index is found similarly to the

chair liftoff index by computing a series of qΔ and nullifying unwanted components for the left

and right legs but instead of the y axis of the upper sensor, the x axis of the lower sensor is used

representing the vertical world axis of the lower leg frame. A turn marker for each leg is set

when the absolute value of x reaches 0.1. Once both left and right leg turn markers are set, the

turn start index is found to be a mean of both markers. The turn direction is found by examining

the sign of the change. Due to the left handed coordinate frame of the sensors used and the

positive x axis pointing opposite of the floor, the “left hand rule” dictates a negative value is

turning left. The end of the turn is detected similarly with the magnitude of the compensated x

value being 0.9.

Walking

Walking phases of the test were simply extracted as the filling sections between detected

sit-to-stand and turning activities as well as the end of turning at goal to turning to a seated end
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position. This strategy is effective since turns can be identified confidently and walking is the

only activity patients will be completing during these sections.

Stand-to-Sit

The sitting activity is challenging to segment since it was observed that the start of a turn

was often indistinguishable from a sit. Many subjects turned while sitting and others first com-

pleted their turn entirely. It is expected that a combined turn and sit indicates more confidence

in sitting ability than an individual who must turn and align themselves with the chair before

starting an independent sit. For the current work, a hybrid strategy was used to group these

together. The start was detected as the start of a second turn using the same criteria as the pre-

vious turn detection. The sit activity was expected to take the remaining time and was ended

on the test end detection. This was found to be when both left and right flexion angles were

greater than 45 deg and both legs returned to a motionless state.

Segmentation Evaluation

Due to difficulties establishing ground truths to test the accuracy of automatic segmentation

thresholds and the lack of accepted sub-activity definitions, the current work has not used

external human evaluators to confirm segmented indices [80]. Since tests were recorded as

absolute attitude estimations of each of the four leg segments, animations using a leg mesh

model (Figure 5.2) were used to recreate patient tests and verify segmentation was successful.

5.4 Healthy Participant Inter-subject Functional Differences

During test recording of the healthy participants it was observed that the sit-to-stand and

turning activities seemed to vary the most between individuals. It was also noted that the num-

ber of steps and overall range of knee flexion would vary between participants. Unfortunately

for this study subject leg-length and height was not recorded. It was also previously noted

that some subjects demonstrated a preloading effect where knee flexion was increased from the

natural sitting position before chair liftoff in an attempt to build momentum for the stand. Due
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to these observations, a comparison of these noted differences was performed between all par-

ticipants. Since each subject executed the test in five trials, the inter-subject deviation could be

computed and compared to the intra-subject deviation to hint at the ability to detect functional

differences between subjects. For comparison, sit-to-stand and turning completion times were

computed as the time difference between chairLiftoff-standEnd and turnStart-turnEnd indices,

respectively (Table 5.1). The number of steps was counted manually by examining animated

avatars of subject tests and recording complete cycles of heel strike, mid-stance, and heel liftoff

cycles. Preload flexion was computed as a sum of wavelength (or the total absolute length of

signal) of flexion angles from the testStart to the chairLiftoff index. The percentage difference

was computed between inter-subject and intra-subject differences for a rough indication of

functional differences between subjects. The following computation was used for percentage

difference:

% Difference = 100 × �Inter-subject Mean − Intra-subject Mean�
(Inter-subject Mean + Intra-subject Mean)/2

(5.6)

5.4.1 Results

The segmentation was successful in segmenting all 28 trials for all subjects (2/30 did not

record correctly due to loss of communication with the sensors) confirmed with visual inspec-

tion of the angular data recorded.

Time taken during sit-to-stand activities was found to vary on average ±0.23s per person

and ±0.36s between subjects (Table 5.2). Time to rotate around the goal was found to be on av-

erage 1.2s with ±0.3s deviation between subjects. The average number of steps taken with the

instrumented leg was found to be 5.8, varying ±0.4 steps between subjects (Table 5.3). Max-

imum range of motion during walking stages was found to be 62.9 deg deviating on average

±4 deg per person and ±6 deg between subjects. On 5 of 6 subjects, an observable preloading

effect was captured during initiation of the sit-to-stand stage with a mean flexion angle increase

of 2deg ± 1 deg between subjects with the observed effect.
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Table 5.2: Inter vs. intra subject differences for the derived metrics

Metric Inter-subject deviation Average intra-subject deviation Percent diff.
Sit to stand time (s) 0.36 0.23 44.07
Turning time (s) 0.28 0.24 15.38
Preload flexion (deg) 1.15 1.51 27.07
Steps taken 0.39 1.37 111.36
Range of motion (deg) 5.95 4.02 38.72

Table 5.3: Values of primitive metrics derived from the timed-up-and-go test from a set of six
healthy participants.

Subject Sit to stand (s) Turning (s) Preload flexion Mean steps taken Range of motion
1 1.57 ± 0.47 1.07 ± 0.12 1.20 ± 0.99 5.80 ± 0.75 67.84 ± 3.03
2 1.92 ± 0.14 1.33 ± 0.40 1.63 ± 1.53 5.80 ± 0.98 69.85 ± 1.57
3 1.77 ± 0.29 1.45 ± 0.29 3.09 ± 2.63 5.40 ± 0.49 53.71 ± 2.98
4 1.11 ± 0.26 0.68 ± 0.05 3.10 ± 1.90 5.20 ± 5.20 57.82 ± 3.25
5 1.24 ± 0.15 1.41 ± 0.15 0.73 ± 0.53 6.00 ± 0.00 67.69 ± 1.13
6 0.94 ± 0.09 1.48 ± 0.45 0.00 ± 0.00 6.40 ± 0.80 60.34 ± 12.15

5.4.2 Discussion

Analysis of time taken during the sit-to-stand stage and range of motion shows there was

a 44% and 39% difference in deviation between test subjects over deviation between sequen-

tial trials from the same subject. Large intra-subject deviation was observed for the number

of steps however Subject 4 could be considered an outlier. After removal, a more expected

deviation of 0.60 exists for the five remaining subjects. This suggests measurable performance

differences between subjects exist despite a healthy sample. Additionally, notable differences

are present in range of motion between subjects indicating an individual difference in joint us-

age while walking. The presence (or lack of) the observed preloading feature could indicate a

physiological characteristic or strategy for standing. This initial test has used very few partici-

pants so no further statistical analysis has been performed. Intra-subject deviation did not seem

to observably increase with the number of tests performed sequentially by the same subject,

which could have indicated fatigue.

The results of this experiment showed that the absolute body orientation data were reliable

for segmenting activities on scripted tests, and that differences in individual test execution

could be discriminated despite a healthy sample of volunteers. Several limitations of this study
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were identified however, such as testing requiring subjects to be connected to a wired laptop.

Additionally, testing was performed on a small sample of healthy individuals, whereas the

target demographic was intended to be patients with knee OA. A major component missing

from this testing was confirming with a ground truth measurement technique that the angles

being measured were sufficiently accurate to provide useful measurements of the knee. It

was noted that for testing to take place safely in the clinic with knee replacement patients,

lightweight and unobtrusive sensors would be mandatory. The wired sensors used in this small

study were not practical and all future work will proceed with the portable wireless sensor

packages described and used in Chapter 4.

The results of this experiment were presented in a talk at the 2017 Imaging Network Ontario

Symposium under the development of novel therapies for bone and joint diseases category.

5.5 Granular Knee Evaluation Parameters

Although the use of this sensor instrumentation system has allowed for segment time ex-

traction free of human introduced error during test segmentation, the goal of observing func-

tional performance of the knee joint has not been entirely fulfilled. Test completion times still

do not offer granular information as to how the test was completed or provide any measure of

joint function. Patients may be able to quickly navigate the test by favouring an uninjured leg

or by other compensation. This section details the extraction of more specific joint metrics, in

addition to completion times, by category.

A total of 55 metrics have been used to evaluate patient function in the current work. Since

left and right labels for metrics are not helpful to compare patient populations and the operative

side was known, any left and right differentiation was replaced with operative (op) or non-

operative (non-op) prefaces as applicable.

5.5.1 Temporal

Firstly, the completion time for each segment of the TUG was found in addition to the

total test completion time using the temporal difference between each of the transition indices



5.5. Granular Knee Evaluation Parameters 79

determined. These six times include: total completion, sit to stand, walking to the goal, turning

about the goal, walking to the chair, and stand to sit (Table 5.4).

Table 5.4: Descriptions of temporal metrics extracted from TUG test segmentation indices.

Total Time The total time taken to complete the test from the test start index to the
test end index

Sit To Stand Duration beginning from the chair liftoff index to the stand end index
Walking To Goal Time spent walking from the stand end index to the beginning of the

turn at the turn start index
Turning At Goal Duration of turning action from turn start index to turn end index
Walking To Chair All time spent from the turn end index to the sit start index
Stand To Sit The remainder of the test starting from the sit start index to the test end

index

5.5.2 Sitting Position

The instantaneous knee flexion of both left and right knees is recorded at the test start index

to obtain a measure of sitting position. This is also measured at the test end index. Additionally

the asymmetry of the left and right knees at this point is found to be the absolute difference in

flexion between the two legs (Table 5.5).

Table 5.5: Descriptions of instantaneous sitting flexion metrics from the test start and end
indices.

Operative Start Flexion Operative leg instantaneous flexion recorded at the test start in-
dex

Non-operative Start Flexion Non-operative leg instantaneous flexion recorded at the test
start index

Operative End Flexion Operative leg instantaneous flexion recorded at the test end in-
dex

Non-operative End Flexion Non-operative leg instantaneous flexion recorded at the test end
index

Start Flexion Asymmetry Difference in starting flexion angle betweeen the operative and
non-operative legs

End Flexion Asymmetry Difference in ending flexion angle betweeen the operative and
non-operative legs
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5.5.3 Total Accumulated Motion

For each of the four leg-mounted sensors, a total accumulated motion metric was computed

to obtain a measure of total leg segment motion (Table 5.6). For each sensor s, this measure

is found by computing a series of qΔ iteratively from the test start index to the end of the test

and summing the angle extracted from the scalar w component of all qΔ rotations. It can be

expressed as:

stotal motion =

testEndIndex−1�

n=testS tartIndex

|2 × arccos(�wn�)|, (5.7)

�wn, xn, yn, zn� = qΔn = q−1
n ∗ qn+1

Table 5.6: Descriptions of total accumulated sensor motion.

Operative Accumulated Thigh Summation of the overall change in angle of the
operative upper sensor for the entire test

Non-operative Accumulated Thigh Summation of the overall change in angle of the
non- operative upper sensor for the entire test

Operative Accumulated Shin Summation of the overall change in angle of the
operative lower sensor for the entire test

Non-operative Accumulated Shin Summation of the overall change in angle of the
non-operative lower sensor for the entire test

5.5.4 Accumulated Clinical Angles

Additional accumulated parameters were extracted with clinical interpretation in mind to

approximate anatomical angles used to describe the knee [53]. Series of medial/lateral rotation,

and varus/valgus offset angles were computed for each leg in addition to the flexion angles

computed in Section 5.3 with fΔ computed in Equation (5.3). The total accumulated flexion

metric for a single leg is computed in Equation (5.8) but can be extended to the other two

anatomical degrees of freedom (Table 5.7).

testEndIndex−1�

n=testS tartIndex

| fΔn | (5.8)
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Table 5.7: Descriptions of accumulated extracted clinical angles.

Operative Accumulated Flexion Summation of extracted operative flexion/extension
changes in the primary knee axis from the test start
index to the test end index

Operative Accumulated Rotation Summation of extracted operative internal/external
rotation changes in the secondary knee axis from the
test start index to the test end index

Operative Accumulated Varus Summation of extracted operative varus/valgus
changes in the tertiary knee axis from the test start
index to the test end index

Non-operative Accumulated Flexion Summation of extracted non-operative flexion/ex-
tension changes in the primary knee axis from the
test start index to the test end index

Non-operative Accumulated Rotation Summation of extracted non-operative internal/ex-
ternal rotation changes in the secondary knee axis
from the test start index to the test end index

Non-operative Accumulated Varus Summation of extracted non-operative varus/valgus
changes in the tertiary knee axis from the test start
index to the test end index

5.5.5 Step Detection and Evaluation (33)

Gait analysis has been used to evaluate function on many occasions with success. With

the current instrumentation system, traditional gait parameters are difficult to extract without

further information such as leg length and the sensor distance from the knee joint. Since this

information was not collected from the study population, a primitive step detection method was

implemented and more specific stepping parameters were extracted from detected steps.

A step template was first generated by manually selecting series of step flexion angles

from subject flexion charts generated from the TUG test (Figure 5.3) using custom developed

software. Subjects from initial testing were first used but the created template was updated with

total knee replacement patient data after obtaining data from subjects undergoing total knee

replacement. Steps were selected based on flexion angles starting at heel strike and moving

through mid-stance to toe-off and all steps were verified using the animated leg mesh to ensure

validity. The step template was trimmed to the mean length of all selected steps to obtain an

average step pattern. This mean step pattern was then correlated over all segmented walking

portions of patient tests and large responses of 0.8 or greater indicated a step.
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Figure 5.3: Left and right knee flexion/extension angles (degrees) during the TUG test with
segmentation indices using the specified motion thresholds.

For each step, 11 metrics were computed for each left and right leg. The minimum and

maximum flexion angle observed was recorded and used to determine a flexion range as well.

The maximum and minimum flexion velocities were obtained using delta changes in the step

flexion series and likewise, maximum and minimum flexion acceleration were obtained as a

delta change in flexion velocity. Similar to previous accumulated motion metrics, this was

obtained for the upper and lower sensor independently for only a detected step instead of the

entire test. Since the quality of steps varies during the short walking portions of the TUG

as patients rise from a stand and complete their turn, mean values for all step metrics were

computed by averaging each step metric over all detected steps. An asymmetry value was

computed using the absolute difference for each of the 11 metrics bringing the total stepping

parameters to 33 (Table 5.8).

5.6 Metric Validation with Total Knee Replacement Patients

The remainder of this chapter will employ similar methods of automatic segmentation of

the TUG test using the minimal wearable system detailed in Chapter 4. The goal will be

to determine if the proposed metrics can differentiate positive and negative knee replacement

outcomes as measured using the current standard of care evaluation techniques (self-reported

questionnaires). It is expected that these relevant parameters can be used to provide individu-

alized evaluations for patients undergoing total knee replacement in hopes that early problems
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Table 5.8: Descriptions of step metrics for a single leg. All metrics are computed for both
operative and non-operative sides and asymmetries of each metric are found to be the absolute
difference in op/non-operative values.

Step Maximum Flexion A mean value of the maximum observed flexion an-
gle during a detected step, averaged over all steps.

Step Maximum Flexion Range A mean value of the observed flexion range during
a detected step, averaged over all steps.

Step Maximum Flexion Velocity A mean value of the maximum observed flexion ve-
locity during a detected step, averaged over all steps.

Step Maximum Extension Velocity A mean value of the maximum observed extension
velocity during a detected step, averaged over all
steps.

Step Maximum Flexion Acceleration A mean value of the maximum observed flexion ac-
celeration during a detected step, averaged over all
steps.

Step Maximum Extension Acceleration A mean value of the maximum observed extension
acceleration during a detected step, averaged over
all steps.

Step Accumulated Thigh A mean value of the summations of the overall
change in angle of the upper sensor for the duration
of a step, averaged over all steps

Step Accumulated Shin A mean value of the summations of the overall
change in angle of the lower sensor for the duration
of a step, averaged over all steps

Step Accumulated Flexion A mean value of the summations of extracted flex-
ion/extension changes over the duration of a de-
tected step, averaged over all steps

Step Accumulated Rotation A mean value of the summations of extracted inter-
nal/external rotation changes over the duration of a
detected step, averaged over all steps

Step Accumulated Varus A mean value of the summations of extracted varus/-
valgus offset changes over the duration of a detected
step, averaged over all steps

can be detected for further intervention to help improve overall outcomes.

5.6.1 Data Collection

To evaluate the effectiveness of extracted parameters in differentiating patients with pos-

itive and negative recovery outcomes, IRB approval was obtained to recruit and instrument

primary TKR patients coming into the clinic for their one or two year follow-up appointment
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(Appendix A). Individuals were excluded if they had language or cognitive barriers, a neuro-

muscular disease, a TKR on the contralateral leg within one year of participating, or underwent

a revision surgery on their primary TKR. Each patient was instructed to complete three trials

of the TUG test in the clinic using a standard hospital chair and the sensor system. There was

no further test standardization and patients completed tests wearing their choice of footwear.

Subjects began seated in a standard exam room chair with both feet planted on the floor while

sensors were attached by an observer and the measurement application was initialized. They

were then instructed to begin the test on the command ”go”, walk to a goal three metres away

(marked on the floor using tape), turn about the goal, walk back to the starting position and sit

back down with their back against the rest. Subjects were also instructed to complete the test

safely and to move at a comfortable but swift pace.

In addition to sensor instrumentation, patients completed a series of standard PROMs as a

gold standard measure of surgical success. These included the: Short Form 12 (SF-12), West-

ern Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Society Score

(KSS), and University of California Los Angeles (UCLA) activity score questionnaires. Patient

satisfaction was extracted as sub-components of the KSS survey with the satisfied group cor-

responding to approximated answers of ”very satisfied” or ”satisfied” and dissatisfied patients

labelled as those responding ”neutral”, ”dissatisfied”, or ”very dissatisfied”.

5.6.2 Methods

All metrics detailed in section Section 5.5 were computed for all tests executed by patients.

Independent unpaired t-tests were computed on each metric to identify significant differences

between both satisfaction groups to highlight their effectiveness to distinguish satisfied and dis-

satisfied patients. Multiple t-tests were chosen over one-way ANOVA to observe differences

in each metric independently opposed to considering all group differences together. In addi-

tion, Pearson correlation coefficients were computed for all metrics to examine the strength of

their linear relation to patient satisfaction, which was evaluated using the Knee Society Score

satisfaction sub-score. In the current work correlations were identified as very strong (> 0.80),

moderate (> 0.60), fair (> 0.3), and weak (> 0.20) [117]. Correlations with less strength are
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not considered notable.

Principal component analysis (PCA) was performed on extracted functional metrics to ex-

amine the feature variance between patients. All features were first standardized to have zero

mean and unit standard deviation across the entire sample.

5.6.3 Results

Recruited patients (n=82) were instrumented on the day of their clinical appointment and

performed the TUG test in the orthopaedic clinic hall. Despite participating in the functional

testing, some patients (n=10) did not correctly complete their PROMs and omitted their sat-

isfaction score. The remaining study population was mostly satisfied with 17% self-reporting

dissatisfaction according to the study separation criteria. Patients that did not complete their

satisfaction score measure were excluded from future analysis.

Dissatisfied patients were younger (57 vs. 68 years) and had a higher mean BMI (36 vs. 31

kg/m2). All individual PROM measures recorded were also found to be significantly different

between satisfaction groups (Table 5.9).

Table 5.9: Mean ± standard deviation of PROMs and demographics between satisfied and
dissatisfied patients.

Mean ± Std. Dev. Satisfied Dissatisfied P
Age (yrs) 68.18 ± 9.25 57.00 ± 9.55 <.001
BMI (kg/m2) 31.23 ± 6.04 36.42 ± 10.00 0.019
UCLA Activity Score 6.07 ± 1.45 4.25 ± 1.96 <.001
SF-12 Mental 55.98 ± 7.47 45.93 ± 12.65 <.001
SF-12 Physical 43.49 ± 9.66 32.17 ± 8.61 <.001
WOMAC Pain 82.2 ± 16.38 53.75 ± 22.68 <.001
WOMAC Stiffness 72.03 ± 16.79 43.75 ± 30.39 <.001
WOMAC Function 78.94 ± 16.47 50.98 ± 21.33 <.001
WOMAC Total 78.86 ± 15.02 50.62 ± 19.71 <.001
KSS Symptoms 22.42 ± 3.80 17.58 ± 4.48 <.001
KSS Expectations 10.10 ± 2.83 4.91 ± 1.64 <.001
KSS Functional Activities 72.38 ± 16.07 41.88 ± 19.42 <.001

The step detection template was updated to reflect steps taken by patients following TKR.

Still using the custom developed software, 135 left and right step patterns were manually se-

lected from random recorded patient tests. The updated template was used in the generation of
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the following step metrics.

After computing independent unpaired t-tests it was found that 17 of the developed metrics

were significantly different between satisfaction groups (Table 5.10). The only metric with

a moderate correlation to satisfaction was the total test time (-0.60). All additional segment

times show fair correlations except the time taken to turn about the goal, which was only

weakly correlated (-0.26) (Table 5.10).

Table 5.10: All metrics that have at least a fair correlation (> 0.20) or were significantly
different between satisfied and dissatisfied patient groups. Negative correlations indicate lower
metric values are more related to positive satisfaction scores.

Metric Name Metric Description Satisfied Mean ± Std. Dev. Dissatisfied Mean ± Std. Dev. P Value Satisfaction Correlation

Sit To Stand (s) Section 5.5.1 1.03 ± 0.53 1.8 ± 1.22 .001 -0.49
Stand To Sit (s) Section 5.5.1 1.81 ± 0.59 2.51 ± 1.11 .002 -0.45
Total Time (s) Section 5.5.1 12.24 ± 3.5 16.96 ± 6.65 .001 -0.60
Turning At Goal (s) Section 5.5.1 0.59 ± 0.24 0.71 ± 0.23 .114 -0.26
Walking To Chair (s) Section 5.5.1 4.58 ± 1.55 6.14 ± 2.82 .008 -0.50
Walking To Goal (s) Section 5.5.1 3.49 ± 1.04 4.60 ± 1.57 .003 -0.58
Non-op End Flexion (deg) Section 5.5.2 84.15 ± 12.01 75.43 ± 13.15 .027 0.12
Non-op Accumulated Flexion (deg) Section 5.5.4 774.21 ± 131.94 836.59 ± 177.47 .164 -0.33
Non-op Accumulated Shin (deg) Section 5.5.3 1167.64 ± 116.91 1252.20 ± 167.56 .038 -0.39
Non-op Accumulated Rotation (deg) Section 5.5.4 443.23 ± 108.95 562.86 ± 203.45 .004 -0.40
Non-op Accumulated Thigh (deg) Section 5.5.3 1045.77 ± 106.52 1100.95 ± 132.52 .121 -0.32
Op Accumulated Flexion (deg) Section 5.5.4 742.8 ± 118.73 810.94 ± 142.65 .084 -0.36
Op Accumulated Rotation (deg) Section 5.5.4 419.87 ± 134.97 505.06 ± 150.35 .054 -0.25
Op Accumulated Varus (deg) Section 5.5.4 243.52 ± 61.15 309.10 ± 120.36 .006 -0.23
Op Accumulated Shin (deg) Section 5.5.3 1158.68 ± 119.01 1241.48 ± 168.82 .045 -0.39
Op Accumulated Thigh (deg) Section 5.5.3 1028.61 ± 100.47 1083.63 ± 117.11 .096 -0.33
Non-op Step Accumulated Flexion (deg) Section 5.5.5 92.05 ± 18.04 83.01 ± 18.93 .120 0.24
Non-op Step Accumulated Shin (deg) Section 5.5.5 132.08 ± 21.20 113.12 ± 20.03 .006 0.45
Non-op Step Accumulated Thigh (deg) Section 5.5.5 93.82 ± 20.27 77.06 ± 12.23 .007 0.43
Non-op Step Max Flexion Velocity (deg) Section 5.5.5 297.32 ± 76.69 247.62 ± 61.87 .039 0.25
Op Step Accumulated Flexion (deg) Section 5.5.5 87.57 ± 14.88 78.20 ± 16.08 .054 0.30
Op Step Accumulated Shin (deg) Section 5.5.5 131.09 ± 20.88 112.73 ± 23.50 .008 0.45
Op Step Accumulated Thigh (deg) Section 5.5.5 92.51 ± 18.83 76.20 ± 17.14 .007 0.46
Op Step Max Flexion Velocity (deg) Section 5.5.5 286.31 ± 68.38 238.12 ± 63.58 .027 0.26

Performing PCA indicated 20 principal axes were needed to explain 95% of the variance

in patient function.

5.6.4 Discussion

Test segmentation and the thresholds used in the current work were sufficient to segment

all patient tests and were verified using visual recreation of the tests using the leg mesh avatar

(Figure 5.2). Further extraction of functional parameters that can be used to evaluate patients

following total knee replacement revealed many parameters that were different between sat-

isfied and dissatisfied groups. From Table 5.9 it can be seen that all self-reported measures

were also significantly different between satisfaction groups which supports previous work

indicating PROMs are likely to suffer from ceiling and floor effects, where if a patient is dis-

satisfied they are likely to approach the remainder of the measures with more negative bias.
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Self-reported functional evaluation may not be capable of distinguishing any specific deficien-

cies that may be leading to functional dissatisfaction, the extracted measures show promise to

aid in diagnosing joint problems.

Many metrics indicating the efficiency of test execution have been shown to correlate with

satisfaction. From Table 5.10 it can be seen that the traditional total time metric is most corre-

lated which represents a general measure of test function. Because of further metrics extraction,

we can see that accumulated metrics from the Section 5.5.3 and Section 5.5.4 categories show

weak to fair negative correlations in operative and non-operative legs. Lower overall amounts

of motion in the shin and thigh sensors could indicate more efficient test execution with less

unnecessary effort expended. When examining step metrics described in Section 5.5.5, positive

weak to fair correlations are observed in accumulated motion metrics for both operative and

non-operative legs. From other literature, an increased range of joint motion correlates with

satisfaction post-surgery and this is reflected with these positive correlations for separated step

activities. Maximum flexion metrics during walking segments did not correlate to satisfaction

in the current work and there is little evidence to show that large maximum flexion ranges dur-

ing walking indicate positive function. It is likely that patients have a larger maximum flexion

capability than they traverse during normal walking.

The PCA revealed that 20 principle axes were required to describe 95% of the variance in

metrics among the patient population. Due to the trend of lower test times and lower overall

motion metrics indicating more satisfied patients, it may be expected that metrics are linearly

dependent. Since the variance in patient performance could not be explained with a small num-

ber of axes, this is not the case. This indicates instead that there are many functional differences

in test execution that were measured by many parameters and dimensionality reduction would

not be overly successful. It should also be noted that single metrics should not be expected to

be highly correlated to patient outcomes. If there were only a few functional parameters that

could be observed by all patients that would indicated positive or negative outcomes, it would

be expected that these could be found with simple observation and further sensor instrumenta-

tion would not be required. It is instead expected that a combination of metrics in conjunction

with patient demographics would be most useful for outcome evaluation. For example, an el-

derly or obese patient will likely expect different functional performance to be satisfied with
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their surgery than a young person who may have a much more active lifestyle. Future work

should examine sensor-measured functional performance in larger populations to investigate

acceptable functional states for surgical recovery in stratified groups [118].

It is also expected that instantaneous function may correlate roughly to satisfaction but a

very relevant portion of a patient’s satisfaction may come from the amount of improvement they

have shown. It would be expected that a patient with extremely poor function that has improved

to lower than average would still be satisfied and patients that experienced little improvement

but show good function may be dissatisfied at the current timepoint of examination. The self-

reported satisfaction score is inherently tied to past patient experiences and will suffer this bias.

Future work should examine changes in the derived metrics across patient recovery, or changes

from before surgery to more appropriately indicate patient improvement and incorporate the

amount of recovery into parameters used to evaluate surgical success or indicate undesirable

outcomes along the patient’s recovery path. This idea is backed by other work indicating

patient reported acceptable function state varied across patient baseline scores much more than

across age, disease duration, or sex [119]. Future extensions of this analysis could include

metric sensitivity testing by instrumenting the same patients for multiple tests to identify more

granular intra-subject variation of test completion. This analysis could help reveal parameters

that may be clinically important and could also identify some that tend to vary greatly even

between the same subject in sequential tests.

As an early stage of processing, the start and end point of tests are automatically detected.

In the current work this has been leveraged to remove observer bias and remove any cognitive

delays between when the tester indicates ”go” and when the subjects begin their test. This

could also offer the ability for subjects to self-test, without an external observer for objective

self-evaluation and assessment. Given that subjects can easily attach and remove the hook and

latch straps themselves from a seated position, it could be expected that they could complete

tests remotely, possibly with less need for in-clinic visits to ensure function is as expected and

still maintain low-bias measurements.

Although recreated animations were effective for evaluating test segmentation success,

there are limitations with the assumptions made about the start position. Due to the slight

errors in the shape of subjects’ thighs (some morbidly obese), this assumption that their thigh
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sensors would be approximately parallel to the floor did not always hold true. The effect of

this is a visual tilt in the remainder of the test as if the subject was walking on a slight in-

cline. Since the animation was for visual confirmation only, it was not a result that negatively

impacted evaluation.

During segmentation of the TUG, tests were first trimmed to a motionless state to ensure

participants are ready to begin the test and have not started recording before becoming seated

in the starting chair. The true test start is determined as the first signs of motion following

this to capture starting strategies such as flexing a single leg to pre-load standing momentum

however, the current analysis has focused on activity starting at the stand. Future work should

examine the effect of increasing flexion before standing in the operative and non-operative leg

to look for patterns in more stiff knee joints to determine if this could be an important parameter

indicating poorer function.

5.7 Contribution

The motivation for this work includes real time test segmentation and data extraction for

use in the clinic although the current analysis has been done during post-processing of the

subject data. Future improvements on this work will include deploying these algorithms to the

portable system so that the information can be available to clinicians directly following patient

testing so they can provide appropriate suggestions in real-time. Contributions of the current

chapter consist of novel methods to extract functional joint parameters from easy-to-complete

functional tests. The metrics developed have shown early indications that they can separate

patient function but further utility of the metrics will be explored in upcoming chapters. The

majority of this content is currently under review for publication in Medical Engineering and

Physics.



Chapter 6

Predicting Functional Recovery

6.1 Introduction

Following the derivation of many granular metrics to describe patient functional capability

measured during the TUG test, further analysis was required to determine the clinical relevance

of these additional measures. The joint measurements and test metrics derived in Chapter 5 us-

ing the developed wearable sensor system in Chapter 4 offer abundant data with numerous

parameters and without further interpretation, their utility is limited. Due to the complexity

these measures, patterns of desirable functional traits across patient performance and recovery

are not easily identifiable but machine learning offers the ability to identify complex multi-

variate patterns in data and can group similar patient populations together without pre-defining

group labels or membership criteria. Previous work in Chapter 5 has looked at correlations

between PROMs and patient outcomes at a single post-surgery follow-up timepoint. By instru-

menting patients at several time points pre/post surgery there is an abundance of data available

which previously were not practical to acquire. It is expected that the additional TUG informa-

tion paired with traditional PROMs will permit more accurate prediction models to be trained.

Ultimately it is hoped that outcome models can be used clinically to group patients into various

risk categories and will allow post-surgical resources to be planned more accordingly to ensure

the best care is provided to patients.

The purpose of the work demonstrated in this chapter was to refine and filter sensor-derived

measures by continuing to instrument TKA patients before and during their short-term recov-

90
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ery period and apply machine learning to help parse recovery patterns. Firstly, unsupervised

machine learning was used to organically separate patients into different functional clusters

without defining any group membership criteria. These patient groups were analyzed by com-

paring the functional status and recovery between groups to determine traits common among

patients with desirable recovery paths. Patients were instrumented and examined at several

longitudinal timepoints through their recovery. All clinical instrumentation was completed

by Harley Williams and Jordan Broberg as a method of functional evaluation in their studies

concerning patient outcomes following knee replacement.

Analysis considered the first three months of recovery, known as the early recovery period.

This time is clinically relevant for correcting undesirable recovery traits through early surgeon

intervention and physiotherapy, but also for health economics and information provided in

this time can have significant impact on patient health throughout the remainder of recovery.

Additionally, preoperative test results will be primarily examined since the prediction of patient

recovery based on functional performance is most purposeful for appropriately allocating knee

replacement resources to deal with potentially troubling cases. PROMs will be collected in

addition as the standard of care tool for evaluating patients and their recovery success.

Following linking preoperative function as measured by derived metrics to future patient

recovery, the remainder of the chapter details the implementation of machine learning mod-

els to accurately predict if a patient will experience a clinically relevant improvement through

functional testing. Knowing if a patient will or will not exhibit substantial improvements be-

fore undergoing surgery can help set realistic preoperative expectations, which are a major

contributing factor to low satisfaction post-surgery [4].

6.2 Unsupervised Preoperative Clustering

6.2.1 Patient Population

Patients undergoing unilateral TKR as a treatment for OA were pooled from two separate,

ongoing studies that included instrumentation and measurement procedures using the devel-

oped wearable sensor system as secondary objective method of functional evaluation. Both
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studies were approved by the institutional ethics review board and informed consent was col-

lected from all patients prior to participation at their pre-admission clinical appointment (Ap-

pendix A). All surgeries were performed at LHSC Rorabeck Bourne Joint Replacement Clinic

at University Hospital. Before being approached for enrolment, all patients were pre-screened

using an orthopaedic database to obtain demographics and ensure they did not have inflamma-

tory arthritis, neuromuscular diseases, alcoholism, or language and/or cognitive barriers. Study

A excluded patients older than 75 years of age while study B excluded patients with a BMI of

over 40 kg/m2 or a varus/valgus knee alignment offset greater than 15 deg. By pooling patients

from studies A and B, a study population was obtained ranging in age, BMI, and function.

6.2.2 Instrumentation Procedure

At preoperative clinical appointments, all patients completed three trials of the TUG test

while instrumented with the developed wearable sensor system to measure joint performance

of both operative and non-operative knees. To efficiently integrate testing into the standard of

care, tests were recorded in pre-admission or orthopaedic clinic hallways using a standardized

waiting room chair, a 3m tape mark on the floor, our minimal sensor system, with no additional

equipment. In addition, facility-standard PROMs were collected which included: The Short

Form 12 (SF-12), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC),

Knee Society Score (KSS), and University of California Los Angeles (UCLA) Activity Score.

Patients followed the same protocol at their two and six week, three and six month, and one

year clinical follow-up appointments. Data were transferred wirelessly (Bluetooth 4.0) from

the inertial sensors to an Apple iPod Touch 5G (CA, USA) as raw orientation measurements at

a rate of 25 Hz, which has been shown to be of sufficient rate to capture lower extremities [104].

The orientations of the upper and lower leg segments and their respective differences were used

to compute 55 joint-specific and spatiotemporal metrics to objectively measure the TUG test

as detailed in Chapter 5 and all tests were autonomously segmented into TUG sub-activities

using patient spatial information and the known test structure. Tester bias was removed from

recordings by automatically detecting the test start and end times during post-processing using

motion thresholds.
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6.2.3 Methods

The homogeneity of the combined study population from studies A and B was confirmed by

performing multiple Mann-Whitney tests (Prism 8, GraphPad) on preoperative PROMs, age,

and BMI, to independently identify baseline differences in each measure between included

study groups A and B and a Fisher’s exact test was used to detect a difference in sex. These

tests were used to ensure both study populations had comparable PROMs and differed only in

their study exclusion criteria.

Extracted functional and spatiotemporal metrics from patient preoperative tests were com-

bined into feature rows with one row indicating a preoperative patient sample. These samples

were stacked to create a dataset of preoperative metrics from patients with varying functional

ability. Each feature column was standardized to have zero mean and unit standard deviation,

so all features varied on a similar scale.

Since it was not initially known which metrics were indicative of positive or negative func-

tional traits, unsupervised machine learning was chosen to separate groups of patients. All

preoperative samples were fed into an unsupervised K-means clustering algorithm which sep-

arated patients into two groups. Binary groups were not decided initially but this ideal number

of groups was validated by observing a minimal Calinski-Harabasz index (with k=2, tested on

a range of 2-6).

Cluster Analysis

A one-way multivariate ANOVA was used to find PROM differences between the two sep-

arated clusters and Anderson-Darlington tests were used to successfully confirm the normality

of all preoperative PROM distributions (p <0.05). One-way ANOVA was also used to find

significant differences in the derived spatiotemporal and functional metrics between groups.

Additionally, Cohen’s D was computed for each feature to determine which of the derived

metrics had the largest effect size and contributed the most to differentiating the two clusters.

The preoperative functional clusters were tracked forwards to their twelve-week appoint-

ments and a mixed-effects ANOVA with repeated measures test was performed on TUG total

completion times of both groups at the preoperative, two, six, and twelve-week timepoints.
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Since the same subjects were analyze at multiple timepoints, each timepoint was a factor of

the repeated measures analysis. Derived metrics that remained significantly different between

groups at both preoperative and twelve-week timepoints with the largest effect sizes were ob-

served as the most important persistent functional differences and were also analyzed using a

mixed-effects ANOVA with repeated measures to compare improvement between preoperative

and twelve-week trials.

6.2.4 Results

A total of 94 patients were eligible to participate in this study but 26 were excluded because

they missed/rescheduled their preoperative appointment or did not remain in the study up to

their twelve-week appointment. The remaining 68 patients (M:F = 34:34) were included in the

study aged 67.5 ± 9.8 years with a BMI of 33.5 ± 6.0. Clustering feature rows for all preop-

erative TUG trials (three per patient) partitioned patients into two groups with sizes 46 and 22

(M:F=20:26 and M:F=14:8). Seven patients had at least one TUG trial sorted into each group

but were separated into the group with majority membership. Comparison of spatiotemporal

metrics revealed the mean total TUG completion time (the only traditionally recorded TUG

metric) of the larger group’s trials was significantly faster than the smaller group (12.6s vs.

21.6s, p<.001) but there was a large overlap in trial times between groups (Figure 6.1).
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Figure 6.1: Box and whisker plot of total TUG completion time of both groups preoperatively
showing a large overlap in times between groups.

Despite the large group containing slow trials and the small group containing fast trials,
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these two groups were labelled “high function” and “low function” respectively due to their

mean total TUG time. The high function group was younger, scored higher in UCLA, KSS

Functional Activities, Office Knee Evaluation Function (surgeon reported), and Office Knee

Evaluation Total (surgeon reported) questionnaires and had slightly higher (KSS) expectations

(Table 6.1).

Table 6.1: Mean ± standard deviation values of patient characteristics and questionnaire out-
comes of high and low function preoperative clusters. Asterisk (*) indicates surgeon reported
measures and plus (+) indicates differences above MCID.

Mean ± SD High Function Low Function P Value
Age (years) 65.6 ± 9.1 71.5 ± 10.3 p = 0.018
BMI (kg/m2) 32.8 ± 5.8 34.9 ± 6.3 p = 0.180
UCLA Activity Score+ 4.9 ± 2.1 3.8 ± 1.6 p = 0.001
SF-12 Mental 53.3 ± 11.0 51.7 ± 9.8 p = 0.493
SF-12 Physical 33.1 ± 8.3 29.7 ± 8.9 p = 0.079
WOMAC Pain 46.6 ± 17.3 45.5 ± 17.9 p = 0.682
WOMAC Stiffness 41.2 ± 19.0 46.2 ± 24.3 p = 0.123
WOMAC Function 49.3 ± 18.7 49.8 ± 11.0 p = 0.838
WOMAC Total 46.1 ± 15.8 47.2 ± 13.8 p = 0.620
KSS Symptoms 16.0 ± 4.1 15.3 ± 3.8 p = 0.246
KSS Satisfaction 13.7 ± 7.6 14.5 ± 7.1 p = 0.506
KSS Expectations 14.0 ± 1.3 13.0 ± 2.0 p <0.001
KSS Functional Activities 37.9 ± 16.7 32.3 ± 12.5 p = 0.029
KSS Knee Objective Indicators∗ 34.4 ± 18.5 33.8 ± 17.8 p = 0.813
Knee Evaluation Function∗ 50.7 ± 13.6 41.8 ± 23.1 p = 0.007
Knee Evaluation Total Knee∗ 43.0 ± 15.3 39.3 ± 16.1 p = 0.201
Knee Evaluation Total∗ 93.7 ± 25.4 78.1 ± 33.0 p = 0.003

Most of the novel derived measures (48/55) were also significantly different between groups

(p<0.05) including all spatiotemporal metrics (Table 6.2) which is expected since the k-means

algorithm separates clusters to achieve a maximum separation across all features equally. The

ten derived metrics with the largest effect size can be seen in Table 6.3.

The mean total TUG time for sorted patients was not only different between groups preoper-

atively, but also at the six (5.4s, p=0.01) and twelve (4.2s, p=0.02) week follow-ups. Total time

was not significantly different between groups at the two-week timepoint (p=0.55) where the

mean patient time increased for both high and low function groups (by 9.2s and 7.6s, respec-

tively). Mean total time of the high function group improved 0.87s (p=0.07) from preoperative
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Table 6.2: Mean ± standard deviation of spatiotemporal metrics differences between preopera-
tive patient clusters.

Mean ± SD High Function Low Function P Value
Total Time 12.7 ± 2.4 21.6 ± 5.7 p<0.0001
Sit to Stand 1.1 ± 0.5 2.2 ± 1.3 p<0.0001
Walking to Goal 3.8 ± 0.8 6.6 ± 2.0 p<0.0001
Turning at Goal 0.6 ± 0.3 0.4 ± 0.5 p<0.0001
Walking to Chair 4.8 ± 1.0 8.1 ± 2.0 p<0.0001
Stand to Sit 1.8 ± 0.5 2.8 ± 1.5 p<0.0001

Table 6.3: Mean ± standard deviation of top distinguishable functional and spatiotemporal
metrics between groups at pre-operation and their effect size (Cohen’s D). All features are
significantly different between groups (p<0.001).

Metric Description High Function Low Function D
Time taken walking back to test start
after turning (s)

4.8 ± 1.0 8.1 ± 2.0 1.604

Mean additive operative lower leg
motion during steps

124.5 ± 14.4 92.1± 12.0 1.601

Total test time (s) 12.6 ± 2.4 21.6 ± 5.7 1.591
Mean additive non-operative lower
leg motion during steps

128.7 ± 15.4 96.0 ± 11.2 1.571

Time taken walking from initial stand
to begin of turn (s)

3.8 ± 0.8 6.6 ± 2.0 1.510

Mean additive operative upper leg
motion during steps

90.0 ± 14.7 63.4 ± 9.8 1.470

Mean additive non-operative upper
leg motion during steps

91.1 ± 14.9 65.1 ± 7.6 1.468

Mean non-operative step peak flexion
velocity (deg/s2)

289.9 ± 57.2 196.2 ± 22.0 1.428

Mean non-operative step peak exten-
sion velocity (deg/s2)

282.3 ± 59.5 197.8 ± 37.6 1.271

Mean non-operative step peak flexion
acceleration (deg/s2)

5412.1 ± 1692.7 3129.9 ± 895.6 1.247

to twelve weeks (Table 6.4) while the low function group improved by 4.94s (p=0.005). Of

the patients in the high function group, 26% (12) had meaningfully improved function (com-

pletion time decreased by >2.27 s from pre-operation to twelve weeks post-operation), 63%

(29) maintained function, and 11% (5) had worsened function (completion time increased by

>2.27 s). This threshold of 2.27s has been found to represent a clinically meaningful change

in overal TUG test completion time in patients recovering from knee replacement [116]. Note
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that since the instrumentation used in this work records measurements at only 25 Hz, this level

of precision will not be reached during automatic segmentation of tests. For comparison of

this work to other work in the field, this threshold of 2.27s will be used in the remaining work

under the assumption that the current system can reach approximate this target. Of the patients

in the low function group, 64% (14) had improved function, 27% (6) maintained function, and

9% (2) had worsened function. A comparison of individual TUG segment times for all trials

of both groups at each time point can be seen in Figure 6.2.

Table 6.4: Mean functional group TUG total completion time changes and confidence interval
between preoperative performance and each recovery point (negative values indicate a total
time improvement).

Maintainers (High Function) Responders (Low Function)
Timepoint Comparison Mean 95% CI P Value Mean 95% CI P Value
Preoperative to 2 Weeks +9.2 s +5.1 to +13.3 <.001 +7.6 s +6.1 to +21.4 .400
Preoperative to 6 Weeks +0.4 s -1.0 to +1.8 .472 -2.9 s -7.9 to +2.1 .373
Preoperative to 3 Months -0.9 s -1.8 to +0.1 .076 -4.9 s -8.5 to -1.3 .005
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Figure 6.2: Mean TUG segment times for each functional group over their early recovery
period.

The most distinguishable features between the two groups at twelve weeks and their effect

sizes can be seen in Table 6.5. The top three most distinguishable features at the twelve-week
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timepoint (top of Table 6.5) have been plotted alongside the same dimensions of the two cluster

centroids found using all 55 metrics to visualize their strong influence on the preoperative group

separation (Figure 6.3). Improvement of key metrics for both groups can be seen in Table 6.6.

Table 6.5: Mean ± standard deviation of top distinguishable functional and spatiotemporal
metrics between groups at twelve weeks post-operation and their effect size (Cohen’s D). All
features were significantly different between groups (p<0.001). Bold indicates features that
were also distinguished in the preoperative timepoint analysis.

Metric Description High Function Low Function D
Mean additive operative upper leg motion during
steps

96.1 ± 15.0 76.8 ± 18.9 1.043

Mean additive non-operative lower leg motion
during steps

135.0 ± 15.4 114.8 ± 22.2 1.004

Mean additive operative lower leg motion during
steps

131.2 ± 16.3 109.5 ± 27.1 0.961

Time taken walking from initial stand to begin of
turn (s)

3.4 ± 0.7 4.7 ± 2.0 0.933

Mean additive non-operative upper leg motion
during steps

97.5 ± 15.1 81.6 ± 16.8 0.919

Total test time (s) 11.8 ± 2.7 16.0 ± 6.5 0.893
Time taken walking back to test start after turn-
ing (s)

4.5 ± 1.2 6.1 ± 2.5 0.868

Time taken to stand from the seated start position (s) 1.7 ± 0.7 2.1 ± 0.9 0.800
Mean additive operative flexion during steps (deg) 87.0 16.1 73.9 ± 15.2 0.774
Mean operative flexion range during steps (deg) 42.4 ± 7.9 36.5 ± 7.5 0.714

Table 6.6: Operative and non-operative improvement of top persisting motion metrics between
preoperative and twelve-week follow-ups for each group.

High Function Low Function
Metric Description Mean 95% CI P Value Mean 95% CI P Value
Mean additive operative upper
leg motion during steps

6.1 10.2 to 2.0 p=0.002 13.3 19.5 to 7.1 <0.0001

Mean additive non-operative
lower leg motion during steps

6.3 10.7 to 1.9 p=0.003 18.8 25.3 to 12.4 <0.0001

Mean additive operative lower
leg motion during steps

6.6 11.4 to 1.8 p=0.004 17.4 24.6 to 10.2 <0.0001

Mean additive non-operative up-
per leg motion during steps

6.4 10.3 to 2.4 p=0.001 16.5 22.3 to 10.7 <0.0001
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Figure 6.3: Z-scores of the top three most distinguished metrics persisting to the twelve-week
follow-up appointments for each trial and their influence on initial preoperative clustering.
Solid crosses (x) represent group centroids found using all 55 derived metrics. Red triangles
and blue squares indicate high and low function group trials respectively.

6.2.5 Discussion

The unsupervised clustering performed in this study successfully separated wearable sen-

sor instrumented performance tests based on derived functional metrics into clinically relevant

groups. Literature has previously linked preoperative functional performance to postoperative

functional improvement, however, this study has highlighted functional parameters that differ-

entiate between patients that are more likely to show functional improvement [83, 120].

The objective measures extracted from the short and easy-to-implement TUG test have been

able to distinguish function preoperatively with many significant differences between groups

whereas there are few differences in PROMs and overlapping TUG completion times. It can be

seen in Table 6.1 that despite several PROMs being significantly different between groups, only

the UCLA Activity Score varied more than its minimal clinically important difference (MCID)

of 0.92 [121, 122]. This presents evidence that there are functional performance differences

that cannot be distinguished using subjective self-reported measures when comparing patients

with different expectations.

Tracking the two functionally separated groups through to three months revealed that one
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group was much more likely to improve relative to the other. Test results for new patients can

be compared to the two groups clustered in this study to determine the most similar expected

recovery path, and this information can be used to provide realistic recovery expectations for

patients. The analysis performed has relied on total TUG time as a relatable overall perfor-

mance metric and tool for labelling groups but it should be highlighted that other derived met-

rics had larger effect sizes between groups and were determined to be more relevant parameters

influencing the resulting group memberships (Table 6.3, Table 6.5). Identified features distin-

guishing the functional groups at twelve weeks included both operative and non-operative leg

metrics which suggests test completion and movement compensation strategies were captured.

The high improvement group had larger improvements in all relevant additive motion metrics

(Table 6.6) but these values never exceeded those of the faster group. Increased ROM has been

previously linked to better outcomes but the results of this study indicate that the total additive

amount of motion expended during activities by both op- and non-operative legs is also func-

tionally important [14,123]. Both groups improved these metrics significantly during recovery

which supports that the metrics are influencing shorter TUG times, which did decrease for both

groups but not by a meaningful difference for the high function group.

Although it may be thought that higher functioning preoperative patients have less possible

function to regain and will likely show less functional improvement, there is still a benefit of

including the instrumented TUG test at preoperative visits since this functional differentiation

was possible with the derived metrics and the current work has shown that PROMs alone

cannot reliably report function to this granularity. Additionally, it is important to note in the

preoperative groups that seven patients in the “low” function group had mean total TUG times

faster than the worst “high” function time. Similarly, there were seven patients in the “high”

function group with times slower than the best “low” function group time, indicating that total

TUG time alone would not be enough to sort the groups in this way. Of the seven patients in

the “low” function group with favourable times that have been labelled likely to improve, five

of them have improved their total time above the TUG MCID of 2.27s [116]. Of the seven

patients in the “high” function group with less favourable times labelled not likely to improve,

only three of them have improved above the same threshold. These patients that were sorted

into the low function group who had more favourable times have still shown improvement
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despite a smaller possible improvement range while patients sorted into the high function group

who had less favourable times have not improved despite a larger possible improvement range.

These special cases suggest the cluster separation better indicates likelihood of improvement

than overall functional level.

Some limitations were noted with the study performed. During data collection, seven pa-

tients repeated one of their trials sufficiently different from the others that the samples were

split between both groups. Although a single patient cannot belong to multiple functional

groups, the separation of tests may be a valid result since repetitions of the same test can be

slightly different due to fatigue, test familiarity, confusion, or perhaps a stumble or stiffness.

During clustering it was decided to keep each trial as a separate sample to best separate func-

tional groups but when future data are compared to find the most relatable path, it may be more

practical to take an average across multiple trials for more generalized predictability.

The follow-up time analyzed was limited to the early recovery period of twelve weeks.

Despite recovery following TKA usually lasting one to two years, the authors believe valuable

information can be obtained during the early recovery phase, and this time period can be im-

portant for health economics [124]. As alternative joint replacement payment models such as

Medicare’s Bundled Payments for Care Improvement Program (BPCIP) are introduced, early

outcome prediction becomes valuable for allocating care costs. Under model 2 of the BPCIP,

hospitals will be reimbursed for costs saved in the first 90-days following surgery and patients

with early improvement will likely require less frequent early care [125]. Fast functional im-

provement and early ambulation reduces hospital length of stay (LOS) which also reduces

the likelihood of costly readmissions due to infection [126–128]. A longer follow-up will be

necessary to determine how function changes in each group until patients are fully healed.

The current work has shown that preoperative functional assessment can benefit from the

use of wearable sensor instrumentation and machine learning techniques can identify multi-

variate patterns that would be otherwise difficult to see by an observer. Groups of patients

following similar short-term recovery paths have been identified and future test data can be

compared to similar path prediction to influence better patient expectations. There was little

evidence that the PROMs collected in this study related to the results found using the derived

functional and spatiotemporal metrics. Obtaining PROMs proved much more time consuming
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for patients and the process was more cumbersome when it became time to store and digi-

tize the measures, further motivating the use of an automated sensor system that can record

performance tests in only a few minutes and provide instantaneous analysis.

6.3 Functional Recovery Classification

The work presented in Section 6.2 showed that sensor-measured performance metrics could

distinguish function in preoperative knee patients where self-reported measures could not. The

current work examines the use of supervised machine learning to use sensor-derived features to

train and test a classifier to predict functional recovery during the early recovery period follow-

ing surgery. A successful method of predicting the expected recovery of patients undergoing

total knee replacement for knee osteoarthritis is beneficial for health economics, detection of

functional impairment, and appropriately setting patient expectations before surgery, lowering

the risk of patient dissatisfaction. Although the functionally clustered groups were roughly

indicative of early recovery likelihood, it is expected that some parameters are of more impor-

tance while others are unrelated to the amount of functional recovery to be expected. An aggre-

gate of these features can be refined to better predict functional improvement using supervised

machine learning, a branch of techniques that can simply be considered as the optimization of

feature combinations and scaling factors to best fit a set of labelled samples. Models developed

are then tested on a withheld, unseen dataset to obtain realistic estimates of performance on

new samples.

The primary outcome of this work was to refine and validate a recovery prediction strategy

using preoperative functional performance to predict if a patient is likely to improve in the

early recovery period or maintain their objective preoperative function, giving insight into their

expected recovery trajectory. Other outcomes included determining the effect of including

PROMs, age, sex, and BMI demographic information on short-term recovery predictions and

if recovery trends in responders and maintainers continued to their one year follow-up, giving

an estimate of long-term functional improvement.
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6.3.1 Methods

Unsupervised clustering was initially chosen to separate patients organically without defin-

ing group membership criteria because it was not initially known how each metric contributed

to functional distinctions. All patients available at the time of performing experiments were

used and cluster analysis revealed many patients in one cluster improved their total TUG times

in the early recovery period of three months (above a minimal detectable change of 2.27s)

while many in the other cluster maintained their preoperative ability. Since this previous work

and up to the current work, all initial study patients have completed up to their one year clinical

follow-up appointment and the last of recruited study patients have completed their three month

appointments. The more recently recruited patients completing their three month appointment

after initial clustering (n=14) have been withheld as a test set to verify developed prediction

models. Preoperative PROMs of test patients were compared to the initial clustered training

set using independent Mann-Whitney tests to verify the test set had comparable baseline mea-

sures. True functional responder or maintainer labels were assigned to all patients using total

TUG time as a generalized measure of function and patients with >2.27s of improvement in

time were labelled as true positive responders.

To examine the recovery trend for true labelled responder and maintainer patients and de-

termine if early recovery indicated long-term recovery, Prism 8 (Graphpad, CA, USA) was

used to compute a mixed-effects model with the Geisser-Greenhouse correction and Sidak’s

multiple comparison tests to compare mean patient TUG times across each time point and,

once again, to compare the row means of each group independently across time.

Model Development

Using the labelled patient data split into training and testing sets, three types of supervised

classifiers were trained and evaluated for comparison: support vector machine (SVM), naı̈ve

Bayes (NB), and random forest (RF). Each model examined was trained and evaluated three

times, first with no feature selection and two additional repetitions with a different selection

scheme. The first scheme was formed by comparing the Cohen’s D effect size of all features

between the true labelled responders and maintainers from the training set. All features were
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ranked and those with an absolute value of >0.6 were chosen for inclusion. Secondly, the

genetic algorithm used by Babatunde et al. was used as a method for feature selection [129].

The training and testing of all models was repeated three additional times while expand-

ing the feature set for patient tests to first include only sensor-derived functional metrics, then

also combining age, sex, and BMI demographics, and finally also including collected PROM

scores. A summary of schemes evaluated can be seen in Figure 6.4. For all models, predic-

tion scores were extracted during evaluation to obtain a measure of classification confidence

and additionally, test set classification accuracy, sensitivity, and specificity as well as the mean

incorrect prediction score (where a lower value indicates less confidence), and area under the

curve (AUC) of the corresponding receiver-operator curve (ROC) measures were used to mea-

sure classifier performance. AUC provides a beneficial overall measure of accuracy, especially

when classes are imbalanced [130]. Although patients recently recruited into the study after

the initial training set represent a valid test set, 10-fold cross validation was also performed to

obtain evidence of proper model generalization on a variety of unseen patients and ensure the

original test set did not represent optimistic performance. This additional validation consisted

of ten iterations of randomly withholding a set of test patients from the total study population

to be withheld for evaluation and using the remainder to train model parameters.

Cummulative feature set

1. Sensor-derived functional metrics
2. Patient demographics
3. PROMs

Feature selection methods

1. None
2. Effect sizes
3. Genetic algorithm

Classifier models

1. Support vector machine (SVM)
2. Naïve Bayes (NB)
3. Random forest (RF)

Figure 6.4: Chart describing the variables examined during training and testing of the recovery
prediction classifier.

6.3.2 Results

Combining all patients from studies A and B (Figure 6.5), 119 eligible patients were re-

cruited to participate and provided informed consent but 7 cancelled their surgeries, 5 withdrew

their consent, and the surgeon deviated intraoperatively from the planned intervention for 12

patients. Of the remaining 95 patients, 82 completed both their preoperative and three month
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tests.

523 assessed for eligibility

330 ineligible

(85) BMI > 40 kg/m2

(66) Inflammatory arthritis
(7) Alcoholism
(15) Language barrier
(5) Cognitive or neuromuscular disorder
(75) Other study recruitment
(36) Allergy or incompatibility with planned
intervention
(17) Cancelled clinical appointment
(15) Missed contact due to scheduling
(3) Not able to safely ambulate 

193 approached at pre-admission

(122) Declined participation

71 recruited to the study

(5) Withdrew consent
(5) Surgery cancelled
(5) Surgeon deviated intraoperatively from
the planned intervention

Pre-op (93)

2 missed to malfunctioning sensor

Two-week (80)

6 missed or rescheduled appointment
9 declined due to excessive pain

Six-week (87)

8  missed or rescheduled appointment

Three-month (85)

10 missed or rescheduled appointment

Six-month (82)

13 missed or rescheduled appointment

One-year (62)

15 missed or rescheduled appointment
18 excluded due to contralateral knee
surgery

Study B

261 assessed for eligibility

Study A

173 ineligible

(67) Age > 75 years
(16) Inflammatory arthritis
(4) Alcoholism
(6) Language barrier
(3) Cognitive impairment
(59) Other study recruitment
(16) Cancelled clinical appointment
(1) Missed contact due to scheduling
(15) Previous joint surgery
(3) Not able to safely ambulate 

71 approached at pre-admission

(23) Declined participation

48 recruited to the study

(2) Surgery cancelled
(7) Surgeon deviated intraoperatively from
the planned intervention

Figure 6.5: CONSORT study flow diagram including patients from the previous study with
their inclusion criteria specified.

Patients from study B were older (p=.001) and had more preoperative pain (p=.023) but

there were no baseline self-reported functional differences (Table 6.7). All patients who at-

tended their scheduled clinical follow-ups were highly compliant to perform instrumented tests

while they would otherwise be waiting to see their clinician with the exception of the two-week
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time point where nine patients refused due to post-surgical joint pain. The 68 patients (F:M =

34:34, age = 67.5 ± 9.8 years, BMI = 33.5 ± 6.0) from our previously published work represent

the original clustering and classifier training set. The additional 14 patients (F:M = 9:5, age

= 68.4 ± 10.1 years, BMI = 33.5 ± 5.8) that had completed up to their three month follow-up

appointment after the previous work have been withheld as a testing set. The results of Mann-

Whitney and Fisher’s exact tests showed no statistically significant differences in any PROMs

between training and testing groups, indicating similar self-reported baseline characteristics

(Table 6.8). Several patients (n=18) underwent an additional joint replacement between their

six-month and one-year appointments and therefore had their one-year result excluded from

the longitudinal repeated-measures analysis.

Table 6.7: Mean ± standard deviation of demographics and preoperative PROMS between both
combined study groups.

Mean ± SD Study A Study B P Value
Sex (F : M) 19:14 14:20 .225
Age (years) 63.2 ± 7.2 70.9 ± 10.8 .001
BMI (kg/m2) 34.4 ± 5.9 32.2 ± 5.3 .102
UCLA Activity Score 4.7 ± 2.3 4.5 ± 1.9 .699
SF-12 Mental 52.0 ± 11.3 52.8 ± 11.3 .759
SF-12 Physical 33.0 ± 8.4 32.9 ± 8.4 .948
WOMAC Pain 40.76 ± 17.7 50.4 ± 16.4 .023
WOMAC Stiffness 41.7 ± 23.7 41.3 ± 17.5 .947
WOMAC Function 49.1 ± 19.0 49.7 ± 15.9 .883
WOMAC Total 44.0 ± 17.2 47.7 ± 13.1 .322
KSS Symptoms 15.8 ± 4.6 16.1 ± 3.5 .748
KSS Satisfaction 12.7 ± 7.7 14.6 ± 7.1 .292
KSS Expectations 13.9 ± 1.6 13.5 ± 1.5 .277
KSS Functional Activities 35.7 ± 18.5 40.0 ± 12.9 .747
KSS Knee Objective Indicators 30.5 ± 17.4 36.6 ± 19.9 .192

Clustering the 68 initial patients from the previous work resulted in two functionally distin-

guished groups; one predicted maintainer group (F:M = 26:20), and one predicted responder

group (F:M = 8:14). Predicted responders had a significantly higher mean TUG time of 21.6s

compared to the predicted maintainers time of 12.6s (p<.001) and an additional 47/55 de-

rived functional metrics were also significantly different between groups (p<.05) [88]. There-

fore, “responders” exhibited a greater functional deficit and had the potential for greater func-
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Table 6.8: Mean ± standard deviation values of patient characteristics and questionnaire out-
comes of initial clustered training patients and the newly included testing set.

Mean ± SD Training Set Testing Set P Value
Sex (F : M) 34:34 9:5 .389
Age (years) 67.5 ± 9.8 68. 4 ± 10.1 .772
BMI (kg/m2) 33.5 ± 6.0 33.50 ± 5.8 .992
UCLA Activity Score 4.5 ± 2.1 4.5 ± 2.0 .911
SF-12 Mental 53.0 ± 10.6 53.0 ± 7.8 .982
SF-12 Physical 32.6 ± 8.4 36.2 ± 10.4 .271
WOMAC Pain 46.5 ± 17.6 55.0 ± 15.7 .139
WOMAC Stiffness 42.5 ± 20.6 51.1 ± 23.4 .211
WOMAC Function 49.5 ± 16.5 53.4 ± 16.5 .495
WOMAC Total 46.6 ± 15.1 53.4 ± 16.8 .190
KSS Symptoms 15.8 ± 4.0 16.4 ± 4.3 .690
KSS Satisfaction 14.1 ± 7.3 18.0 ± 7.1 .115
KSS Expectations 13.6 ± 1.6 14.1 ± 1.2 .398
KSS Functional Activities 36.5 ± 15.3 45.9 ± 18.0 .112
KSS Knee Objective Indicators 34.4 ± 18.9 36.9 ± 13.4 .692

tional gains by undergoing TKA. After assigning true group labels to patients, true responders

had a mean TUG time of 17.8s compared to the true maintainer group mean time of 13.3s

(p=.002). The preoperative timepoint was the only one where the group mean times were dif-

ferent (p=.002). Beginning at the two week follow-up and persisting through to one-year, both

groups had no difference in times (p>.856) and group mean differences were less than the TUG

MCID of 2.27s (Table 6.9). Table 6.10 shows the results from Sidak’s multiple comparisons

tests for the originally clustered functional groups in the previous work up to three months

compared to the true labelled responder and maintainer groups total TUG times. True respon-

ders show a clinically relevant improvement in time of 4.0s (p=.003) as early as six weeks

post-operation. True maintainers were worse performing at six weeks than pre-operation on

average (although the magnitude was less than the MCID of 2.27s) and did not show any mean-

ingful time improvement even at one year post-operation (1.1s, p=.018). Only the maintainer

group had significantly worse times between preoperation and two weeks (p=.001) with the

maintainer group showing 67% more decline than the responders (9.5s vs. 5.7s).

Table 6.11 shows the performance of all responder classification schemes using only sensor-

derived functional metrics as features when tested on the original set of newly recruited test
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Table 6.9: Sidak’s multiple comparison test comparing group means of total TUG times be-
tween true labelled maintainers and responders.

Timepoint Comparison Main. Resp. Mean Diff. 95% CI P Value
Preoperation 13.4 s 17.8 s -4.4 s -7.4 to -1.3 .002
2 Week 23.0 s 23.5 s +0.4 s -10.5 to +9.3 >.999
6 Weeks 14.5 s 13.8 s +1.0 s -2.0 to +3.4 .981
3 Months 12.5 s 12.0 s +0.9 s -1.6 to +2.6 .987
6 Months 11.9 s 12.0 s +0.3 s -2.1 to +2.0 >.999
1 Year 12.3 s 11.9 s +0.5 s -2.3 to +3.0 >.999

Table 6.10: Mean functional group TUG total completion time changes and confidence inter-
val between true labelled responders and maintainers at each recovery point (negative values
indicate a total time improvement). Results of the current work are shown alongside previous
work.

Timepoint Comparison Maintainers 95% CI P Value Responders 95% CI P Value
Clustered Responders and
Maintainers [88]
Preoperative to 2 Weeks +9.2 s +5.1 to +13.3 <.001 +7.6 s +6.1 to +21.4 .400
Preoperative to 6 Weeks +0.4 s -1.0 to +1.8 .472 -2.9 s -7.9 to +2.1 .373
Preoperative to 3 Months -0.9 s -1.8 to +0.1 .076 -4.9 s -8.5 to -1.3 .005
True Labelled Responders
and Maintainers
Preoperative to 2 Weeks +9.5 s +3.2 to +15.8 .001 +5.7 s -1.9 to +13.3 .218
Preoperative to 6 Weeks +1.1 s -0.3 to 2.4 .199 -4.0 s -6.9 to -1.2 .003
Preoperative to 3 Months -0.9 s -1.6 to -0.1 .011 -5.8 s -8.4 to -3.1 <.001
Preoperative to 6 Months -1.5 s -2.5 to -0.4 .002 -5.8 s -8.9 to -2.7 <.001
Preoperative to 1 Year -1.1 s -2.1 to 0.1 .018 -5.9 s -9.4 to -2.3 <.001



6.3. Functional Recovery Classification 109

patients. It was found that an RF classifier without any method of feature selection had the

highest overall classification accuracy (0.93), sensitivity (1.00), specificity (0.75), and a very

high AUC of 0.94. Using the genetic algorithm selection produced a model with an optimal

AUC of 0.95, sensitivity of 0.80 and specificity of 1.00 but with a lower accuracy of 0.86. NB

models were improved similarly by performing both methods of feature selection, increasing

accuracy from 0.64 to 0.86, sensitivity from 0.60 to 1.00, and AUC from 0.83 to 0.88. Effect

size selection was more effective for improving accuracy (0.79 to 0.86) and sensitivity (0.80

to 1.00) of the SVM models but a maximum AUC of 0.85 was observed using the genetic

algorithm.

Table 6.11: Classifier performance on the valid test set of new patients withheld from model
testing.

Feature Selection Model Acc. Sens. Spec. AUC Error Score

None
SVM 0.79 0.80 0.75 0.75 0.43 ± 0.47
NB 0.64 0.60 0.75 0.83 0.68 ± 0.41
RF 0.93 1.00 0.75 0.94 0.49 ± 0.00

Effect
Size

SVM 0.86 1.00 0.50 0.78 0.59 ± 0.63
NB 0.86 1.00 0.50 0.88 0.41 ± 0.10
RF 0.71 0.80 0.50 0.83 0.55 ± 0.06

Genetic
Algorithm

SVM 0.79 0.80 0.75 0.85 0.37 ± 0.23
NB 0.86 1.00 0.50 0.88 0.42 ± 0.08
RF 0.86 0.80 1.00 0.95 0.62 ± 0.00

Evaluation by performing 10-fold cross validation resulted in lower performance measures

overall (Table 6.12), indicating this additional validation is likely more representable of deploy-

ment of these models on future populations. RF models showed the highest accuracy and AUC

and using genetic algorithm selection slightly outperformed those without selection in accuracy

(0.76 to 0.75), specificity (0.60 to 0.53), and AUC (0.82 to 0.80) but had reduced sensitivity

(0.85 to 0.89). NB models using an effect size feature selection had the highest sensitivity of

0.92, but all SVM and NB variants were outperformed by RF in all other measures.

Continuing with 10-fold cross validated measures as a conservative estimate of perfor-

mance, Table 6.13 demonstrates the benefit of including age, sex, and BMI measures into

predictive models. RF models using no feature selection schemes showed the best accuracy

(0.78), specificity (0.64), and AUC (0.82). NB models benefited most from effect size feature
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Table 6.12: Classifier results from 10-fold cross validation using only sensor-derived functional
metrics as features.

Feature Selection Model Accuracy Sensitivity Specificity AUC Error Score

None
SVM 0.72 ± 0.11 0.89 ± 0.09 0.44 ± 0.19 0.67 ± 0.15 0.59 ± 0.39
NB 0.68 ± 0.10 0.79 ± 0.16 0.55 ± 0.23 0.67 ± 0.13 0.51 ± 0.42
RF 0.75 ± 0.09 0.89 ± 0.13 0.53 ± 0.14 0.80 ± 0.14 0.43 ± 0.23

Effect Size
SVM 0.71 ± 0.08 0.90 ± 0.10 0.40 ± 0.19 0.74 ± 0.09 0.42 ± 0.33
NB 0.69 ± 0.07 0.92 ± 0.15 0.33 ± 0.22 0.78 ± 0.09 0.45 ± 0.18
RF 0.73 ± 0.11 0.83 ± 0.13 0.58 ± 0.27 0.75 ± 0.10 0.41 ± 0.23

Genetic Algorithm
SVM 0.70 ± 0.08 0.83 ± 0.12 0.51 ± 0.22 0.71 ± 0.14 0.69 ± 0.58
NB 0.71 ± 0.11 0.88 ± 0.16 0.43 ± 0.26 0.79 ± 0.09 0.45 ± 0.29
RF 0.76 ± 0.12 0.85 ± 0.11 0.60 ± 0.24 0.82 ± 0.11 0.45 ± 0.19

selection and had an accuracy of 0.73, a top sensitivity of 0.98, and AUC of 0.80 but lower

specificity of 0.32. Expanding the feature set to include PROMs further increased maximum

observed performance measures with the exception of sensitivity (Table 6.14). RF models us-

ing genetic algorithm feature selection showed a maximum accuracy (0.81) and AUC (0.86)

with a high sensitivity of 0.93. Both SVM with no feature selection and NB using effect size

selection had the highest sensitivity values (0.96) but both were outperformed by RF models

in the remaining measures. While no feature selection included all PROMs in the feature set,

effect size filtering removing all features with <0.60 effect size was responsible for filtering all

PROMs except for the KSS functional activities and KSS satisfaction sub-scores with effect

sizes of 0.66 and 0.65 respectively. The genetic algorithm selection included three PROMs

with indicated effect sizes: SF12 Mental Component Score (0.30), WOMAC total (0.41), and

UCLA Activity Score (0.34).

6.3.3 Discussion

Analyzing the long-term functional recovery in true responder and maintainer groups re-

vealed only the responders observed meaningful TUG time improvements even as far as one

year into recovery. While TUG times are a useful label of function, preoperative TUG times

of the two true labelled groups were close together with substantial overlap in the times of in-

dividual patients, indicating TUG time is ineffective as the sole metric for separating patients.

Instead, this classification must include more granular functional metrics. Despite responders
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Table 6.13: Classifier results from 10-fold cross validation using sensor-derived functional
metrics and patient demographics only as features. Bold indicates the most desirable value per
column.

Feature Selection Model Accuracy Sensitivity Specificity AUC Error Score

None
SVM 0.72 ± 0.07 0.89 ± 0.08 0.43 ± 0.18 0.70 ± 0.14 0.42 ± 0.34
NB 0.69 ± 0.09 0.83 ± 0.13 0.52 ± 0.26 0.72 ± 0.15 0.49 ± 0.38
RF 0.78 ± 0.11 0.88 ± 0.22 0.64 ± 0.20 0.82 ± 0.11 0.43 ± 0.24

Effect Size
SVM 0.71 ± 0.10 0.91 ± 0.16 0.39 ± 0.22 0.76 ± 0.11 0.50 ± 0.37
NB 0.73 ± 0.08 0.98 ± 0.08 0.32 ± 0.20 0.80 ± 0.07 0.40 ± 0.07
RF 0.72 ± 0.11 0.85 ± 0.14 0.53 ± 0.22 0.74 ± 0.10 0.44 ± 0.25

Genetic Algorithm
SVM 0.73 ± 0.12 0.90 ± 0.10 0.44 ± 0.25 0.74 ± 0.13 0.41 ± 0.31
NB 0.71 ± 0.09 0.88 ± 0.17 0.42 ± 0.26 0.77 ± 0.09 0.40 ± 0.35
RF 0.74 ± 0.09 0.86 ± 0.09 0.54 ± 0.28 0.81 ± 0.09 0.41 ± 0.21

Table 6.14: Classifier results from 10-fold cross validation using sensor-derived functional
metrics, patient demographics, and PROMs. Bold indicates the most desirable value per col-
umn.

Feature Selection Model Accuracy Sensitivity Specificity AUC Error Score

None
SVM 0.77 ± 0.14 0.96 ± 0.08 0.44 ± 0.29 0.76 ± 0.14 0.44 ± 0.36
NB 0.73 ± 0.14 0.90 ± 0.13 0.45 ± 0.24 0.74 ± 0.15 0.41± 0.31
RF 0.75 ± 0.14 0.85 ± 0.22 0.59 ± 0.30 0.78 ± 0.11 0.42 ± 0.25

Effect Size
SVM 0.78 ± 0.14 0.93 ± 0.16 0.53 ± 0.24 0.80 ± 0.11 0.73 ± 0.45
NB 0.76 ± 0.09 0.96 ± 0.08 0.41 ± 0.18 0.81 ± 0.07 0.32 ± 0.27
RF 0.77 ± 0.13 0.86 ± 0.14 0.66 ± 0.27 0.82 ± 0.10 0.45 ± 0.24

Genetic Algorithm
SVM 0.71 ± 0.08 0.83 ± 0.10 0.53 ± 0.32 0.73 ± 0.13 0.74 ± 0.96
NB 0.73 ± 0.10 0.87 ± 0.17 0.45 ± 0.24 0.73 ± 0.09 0.45 ± 0.31
RF 0.81 ± 0.10 0.93 ± 0.09 0.61 ± 0.24 0.86 ± 0.09 0.37 ± 0.20

being labelled at the three month timepoint, significant improvement was noted as early as

six weeks post-operation. Neither group demonstrated functional changes above the MCID of

2.27s from three months on to one year. This indicates functional changes observed during

the TUG test should be realised by this point, especially if the patient was predicted to be a

functional responder.

The three month clinical follow-up remains an important milestone of recovery. Early

identification of functional joint deficiencies provides an opportunity for alternative interven-

tion before problems progress and require revision surgery. For example, a common treatment

to restore joint range of motion after persisting joint stiffness following TKR is manipulation

under anesthesia. This procedure involves forcing the knee to flex, breaking scar tissue, al-
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lowing the joint to move more freely. It has been shown that this procedure is most effective

when performed in the first three months following surgery [131]. If expected functional im-

provement has not been attained as predicted from preoperative classifications, and the physical

exam and patient complaints are consistent with joint stiffness, this could be found sufficiently

early that there is still an option to remedy with a relatively minor procedure. Secondly, the

three months following surgery are important for health economics in new bundled care pro-

grams being deployed in the United States and Canada [132]. Under these models, the cost of

surgery is bundled with all patient expenses for 90 days following surgery. This is in effort for

hospitals and clinicians to provide more effective, efficient care to patients. Recovery predic-

tions that can be made for this period could be used to effectively plan health resources to deal

with varying cases of patients.

Using 10-fold validation, it was observed that testing only using our withheld test set (Ta-

ble 6.11) presented an optimistic measure of performance. It is expected that the cross val-

idated results represent a more generalized measure of performance when deployed to make

predictions for future patients. Classification accuracy was found to be high in top performing

models: 0.76 using only functional metrics, 0.78 after incorporating demographics, and 0.81

with the inclusion of PROMs. With the high degree of classification accuracy presented in

the current work, the functional recovery predictions made using these preoperative TUG tests

could be used to appropriately adjust patient expectations of postoperative functional abilities

before they undergo surgery. Considering the adjustment of patient expectations, the sensi-

tivity metric should be important since responders were labelled using a positive label, and

incorrect positive labels could have a negative effect on expectations. It would be expected

that a patient predicted to be a responder that did not see functional improvement in the TUG

test would have unmet expectations, and thus be dissatisfied with their surgical outcome. A

high sensitivity to detect true responders is important for surgeons as well, since a patient not

attaining their expected recovery may require additional attention. Alternatively, a maintainer

labelled patient that exhibits strong functional improvement may feel that they have exceeded

expectations, with a potentially positive effect despite an incorrect prediction. For this reason,

an optimal classifier will favour a high sensitivity value over specificity.

There was only a small drop in classifier performance when excluding patient reported out-
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come measures. It is very time consuming for patients to complete these lengthy questionnaires

and many times they are filled in incorrectly, rendering the computed measures inconclusive.

Both methods of feature selection performed removed most PROMs, indicating that if they

were to be included in a deployed model, it may be more practical to only collect the specific

measures used for classification. Moving forward with future work predicting responders or

maintainers with only sensor-system derived metrics could benefit best from a random forest

model.

Several limitations could be noted with this study and analysis, including the selection of

classifier algorithms. Three common classifiers were chosen for testing due to their previous

success in orthopaedic research [133–135]. Artificial neural networks have not been tested for

classification success since the number of patient samples is relatively low to learn complex

non-linear relations using many parameters. It is expected that as more patients are instru-

mented by the system, stratified groups will emerge, producing more refined clusters beyond

simply “responders” or “maintainers”. An example of stratification in our groups could be

patients with severe bilateral OA versus healthy contralateral joints. Several patients in this

study (n=18) were excluded from one-year analysis due to receiving another joint replacement

on the contralateral leg. With more patients, further investigation could involve separating pa-

tients who undergo their first joint replacement opposed to those with existing contralateral

implants to see if recovery differs. This could also involve hip replacements, as the hip is also

highly relevant to the mobility of the lower extremities, and hip impairments may be reflected

in sensor-derived TUG measures.

6.4 Contribution

This study has demonstrated that the substantial additional data derived from preoperative

sensor-derived metrics recorded while patients participate in the TUG test can be used to ac-

curately predict if a patient is going to improve their test time in the early recovery period

following TKR. Although only test time improvements are predicted, the total TUG time is

used as an accepted measure of function in patients with knee OA [23,24]. Additional granular

sensor-measured metrics were shown to be more effective to localize and distinguish patient
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function predictive of early recovery compared to the overall test time measure traditionally

used. This work has also shown that the future deployment of a recovery prediction classifier

could benefit slightly from the inclusion of subjective measures but the performance gain may

be negligible when considering logistics of collecting full PROMs from patients and combin-

ing them with test results before making real-time recovery predictions in the clinic. Excluding

PROMs also removes subjectivity, making this the first entirely objective tool to predict patient

function after TKR. Much of the unsupervised clustering work in this chapter has been pub-

lished in the Journal of Arthroplasty and the model development and testing was published as

additional work in Medical Engineering and Physics [136, 137].



Chapter 7

Activity Recognition

Instrumenting patients with the system detailed in Chapter 4 has shown great support for in-

clinic measurement of patient function to accompany standard self-reported assessment mea-

sures. Evidence for easy-to-deploy functional instrumentation in the clinic has been present in

Chapter 5 and Chapter 6. Due to many recent challenges associated with in-person clinical vis-

its, an additional ideal application of wearable sensors would be to help remotely assess patient

function when in-person visits are not possible. Although it is not expected that sensor inte-

gration will ever completely replace valuable feedback from surgeons or clinicians, it could

be that functional assessment will provide patients with individualized feedback concerning

their expected function. Similarly, surgeons or clinicians may be able to stay updated on their

patients’ health more distantly or to check if an in-person appointment will be required.

Furthermore, a limitation of in-clinic functional testing is that patients are being tested

outside of their normal environments. The function that is demonstrated under observation

may not be what patients are capable of during daily activity. Extending instrumentation to

more long-term sessions would promote natural measurement and provide a realistic day-to-

day depiction of functional ability opposed to short term capability demonstrated in the lab.

Unfortunately, during unscripted monitoring, further analysis of individual activities and

comparison of activity-specific performance metrics across multiple subjects is not possible

since it is not known what activities are being performed or attempted. More challenging

tasks such as ascending or descending stairs should be analyzed differently than level-ground

walking or less joint-stressing functions. Recording sessions can be given context by apply-

115
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ing activity recognition or classification techniques which if successful, can then be used for

subject-to-subject or subject-to-population comparisons for specific activities. Patient mea-

surement from the previous chapters has relied on rigid structured tests so knee performance

during similar activities could be compared between patients.

The ability to classify activities performed by an instrumented subject during extended un-

scripted monitoring sessions would give context to acquired measurements and will permit

appropriate comparison of functional performance across subjects in many remote health as-

sessment or evaluation applications. The configuration of four sensors to be used (one mounted

above and below each knee) has been shown effective for deriving knee specific objective mea-

sures but the current work will explore the capability to extend this to more unscripted ac-

tivities. Recall from Chapter 3 that recent literature has shown automatic feature extraction

methods can often out-perform classification tasks using manually engineered features. This

motivates the inclusion of strategies to automatically extract features from raw sensor data,

such as the use of a convolutional neural network (CNN).

The objectives of the current chapter are to: 1) develop a method of encoding raw orienta-

tion data such that a CNN could be leveraged for automatic feature extraction in both time and

spatial domains of multivariate sensor data and, 2) accurately classify activities of daily living

performed by subjects instrumented with only knee wearable sensors with focus on activities

influencing satisfaction in patients following total knee replacement.

7.1 Methods

Methods for human activity recognition (HAR) presented in the current chapter will be

demonstrated using the system in Chapter 4. Recall, each sensing unit independently estimates

its orientation in space with respect to a global reference frame by fusing raw accelerometer,

gyroscope, and magnetometer readings.

The instantaneous output of this system is a time-synchronized set of four quaternion rota-

tions, each corresponding to a sensor’s orientation. Data are logged at of 25 Hz, which has been

shown sufficient to measure the lower extremities [59]. When measured across time, logged

quaternions can be observed more generally as a discrete multivariate time series.
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Given a single signal sampled at a frequency f for a time of s, the univariate discrete time

series U would have the format U = [t1, t2, ... t f×s] where tx are time-ordered sample values.

Given n signals, or a multivariate signal with n dimensions, the corresponding multivariate time

series M would have the format M = [u1, u2, ... un] where each ux is a univariate discrete time

series.

7.1.1 Data Collection

Twenty healthy subjects (age: 24 ± 3 years, M:F=11:9) were instrumented with a pre-

viously developed wearable sensor system designed to monitor the legs during activity [88].

All subjects participated voluntarily, informed consent was collected, and ethics approval was

obtained from the University of Western Ontario Research and Ethics board prior to testing

(Appendix A). Each subject performed 11 activities of daily living (described in Table 7.1)

to be classified by machine learned models. A combination of static and dynamic activities

were chosen to encompass a majority of daily living. High knee flexion activities selected such

as deep/left/right kneeling as well as navigating stairs correspond to influences of satisfaction

following joint replacement in Western and non-Western cultures. Subjects executed activities

at their own regulated pace and were not instructed to adjust posture or task execution during

recording. All data acquisition was performed in the same recreational facility on multiple days

in a cardiovascular training area with a treadmill, stair-climbing machine, recumbent bicycle,

and floor mats. Approximately thirty seconds of each activity was recorded for each subject

and data were manually trimmed to remove any transitions from one activity to another.

7.1.2 Windowing

The discrete multivariate time series of quaternions recorded by the wearable system were

first windowed to classify more instantaneous sections of activity. More frequent predictions

can be made using a shorter window but available activity context is lowered and accuracy

may drop. A window size of 64 samples was chosen which corresponds to approximately 3.2

seconds with a data logging frequency of 25Hz.

Periods of activity (30s) per subject were windowed by shifting only a single sample to
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Table 7.1: Description of activities performed by subjects

Activity Activities performed
Walking Both slow and fast walking on a treadmill
Running Both slow and fast running on a treadmill
Stairs Ascending stair-climbing machine, ascending and descending a

staircase
Cycling Cycling on a stationary machine
Standing Upright, motionless standing
Sitting Chair sit with feet on the floor
Single Kneel Left knee on ground, right knee on ground
Deep Kneel Both knees on ground with back straight and sitting on upper legs
Laying Flat against the ground in a sleeping position

maximize the amount of windows per session and to include samples beginning at all stages

of the activity performed to contain windows starting and ending at various points along the

performed activity. Although a final deployment of the trained classification model could also

use highly overlapped windows, it is impractical to perform classifications several times a

second, or on every new sample acquired.

These windows are shorter than those used by Kwapisz et al. and Voicu et al. since Patel

et al. found optimal windows to between 1s to 4s [138]. The sample size of 64 was chosen as

a nearest multiple of eight as is common for CNN image input sizes.

7.1.3 Activity Tiles

Since windowed data are structured as ordered sets of vectors, it was a natural choice to

stack these multivariate time series sets to form a matrix. For each time sample from the wear-

able system, each of the four individual sensor readings consists of four quaternion elements

such that a 16 element vector feature set is exhibited. A system with more sensors could be used

with the additional sensor readings concatenated. Since it is expected that relations between

sensors are important (in addition to the raw readings) for discriminating different recorded

activities, windows were augmented with this additional information. This stacking maintains

the spatial relevance that exists between the sensors are mounted on a subject, with one above

and below each knee.

A quaternion difference between the upper and lower sensors for each leg was computed
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(a) Concatenated quaternion components.
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(b) Quaternions rearranged so similar components are spatially near.

Figure 7.1: Single row of an activity tile formed by horizontally concatenating sensor readings.

using eq. (2.14) and concatenated to the existing 16 elements to form a sample 24 elements

wide. Additionally, the rotational difference between both upper sensors and both lower sensors

was computed and concatenated, extending the feature set to 32 elements. This 32px × 64px

image will further be referred to as an activity tile.

It was previously highlighted that spatial relations between image pixels are expected to be

important in this classification task. To maximize benefits of automatic feature extraction using

a CNN, quaternion rows were rearranged to place contextually similar quaternion components

adjacent to one another. The initial activity tile row structure formed through concatenation

or each raw sensor reading and their rotational differences can be seen in Figure 7.1a while

the transformed version grouping similar quaternion components can be seen in Figure 7.1b.

To further increase the dimensionality of activity tiles, grayscale (single channel) pixel values

between -1 and 1 were encoded to red-green-blue (RGB) values using a heatmap scheme.

A grayscale pixel value PGray was converted to a three-channel RGB pixel PRGB using the

following criteria:

R(PGray) = clamp[0,1](2 − |2PGray − 2|)
G(PGray) = clamp[0,1](2 − |2PGray|)
B(PGray) = clamp[0,1](2 − |2PGray + 2|)

(7.1)

where clamp[0,1](x) is defined as 0 if x<0, x if 0 ≤ x ≤ 1, and 1 if x>1. This scheme is similar

to the hot-cold colour encoding that can be found in Matlab (Mathworks, Natick, USA). An

example of an RGB encoded activity tile for several activities can be seen in Figure 7.2.
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(a) Walking (b) Running (c) Cycling

(d) Ascending stairs (e) Descend stairs (f) Standing

(g) Left kneel (h) Right Kneel (i) Chair sit

Figure 7.2: Sample activity tiles formed by vertically concatenating rows of grouped quater-
nion components. The vertical axis of each tile demonstrates changes in sensor readings over
time and the horizontal axis is the set of arranged quaternion components from the sensor out-
puts (Figure 7.1b). Gradients in the vertical axis of dynamic tiles (Figures 7.2a to 7.2e) indicate
the subject is moving, which contrasts the static tiles (Figures 7.2f to 7.2i) that remain relatively
consistent over time.
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This transformation separates strong positive values onto the red channel, neutral values to

the green channel, and strong negative values to the blue channel. Although no additional infor-

mation is added to the images by separating the input channels, it is expected that information

distinguishing the activity performed will not be equally dispersed among each channel. This

method expands the number of parameters trained early in the network and permits different

filters than if the image was input as a single channel.

7.1.4 Data Augmentation

A caveat of measuring orientations with respect to a global frame is the existence of an

inherited similarity among quaternions for all activities performed while facing the same com-

pass direction. To remove this similarity, each tile in the data set was duplicated, and duplicates

were virtually rotated about the global vertical axis using (2.13). Each tile in the original data

was duplicated ten times, with each duplication globally rotated an additional random incre-

ment between 0 and 72 deg of vertical axis rotation. By performing these increments, the data

set is expanded to include tiles with the same activity profile but as if activities were performed

facing alternate compass directions. Varying the rotation between 0 and 72 deg for 10 duplica-

tions introduces tiles varying randomly between 0-720 deg from the subject’s initial direction.

In addition, to compensate for variations in the placement of sensors on subjects and su-

perficial sensor motion during movement, slight variations in sensor outputs were virtually

imposed on the upper limb mounted sensors on both legs. It is expected that soft tissue arti-

facts will be more prevalent on the upper limbs due to increased soft tissue compared to the

lower legs. For each tile, upper sensor readings were locally rotated about their local frame

randomly ±10deg along the axis aligned with the upper leg using (2.12). This augmentation is

performed for increased generalization between subjects who may demonstrate more variation

in upper leg sensor placement due to skin motion artifacts during activities.

By performing both of these augmentations the data set should be more generalized to

activities performed by different subjects and inter-subject variability will be minimized.
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7.1.5 Network Design

A shallow CNN structure with only three fully convolutional layers was used. This was

motivated by the popular LeNet model, which has been proven to perform well on relatively

small images (≈28x28px) in tasks such as written digit recognition [139]. A similar shallow

network was expected to produce sufficient abstraction to differentiate the activity tiles formed.

Images input to the network after colour encoding had height of 64px, width of 32px, and depth

of three for all RGB colour channels.

To assist in developing a model to classify activities executed at variable speeds and to

decrease time variance across samples, a vertical filter with a height of three and width of one

was used for the first convolutional layer. Layers with square filter sizes are more common and

have the capability of learning filters with responses to both horizontally and vertically oriented

features in images. By using a vertical filter, it is expected that the first layer (least abstract)

will develop filters responding to features across the time domain only. The height of this filter

was chosen to be the smallest odd filter size because of the small input image dimensions. To

maintain the granularity of activity features across time, a stride of one was chosen for similar

reasons and a valid padding scheme was chosen to avoid padding edges with zero values and

losing clarity of edge samples.

After the first convolutional layer, a batch normalization layer was added to decrease train-

ing time [139]. Following a ReLu activation function, an average pooling layer was added with

a pool size of 2x2. Average pooling was chosen over max pooling and other alternatives to

compliment the organization of quaternion components in activity tiles and to maintain a dis-

tinction between two adjacent pixels that may both have high magnitude values and a pair that

may only have a single high value. If two adjacent pixels have values P1 = 0.05, P2 = 0.8,

averaging the two values would give a response of 0.43 while the maximum would give 0.8

without consideration of the low value pixel. Features in the activity tiles are expected to be

small and localized, so a small pool size and averaging are expected to maintain features. Pool-

ing layers were included to slightly increase the variability of feature locations in activity tiles.

Dropout layers were avoided due to the shallow structure of the model.

A second and third convolutional layer were added in the same structure with square 3x3 fil-
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ters intended to form further abstraction and respond to relations in the time-domain responses

of previous layers. Resulting layers were flattened, fully connected, and passed through a soft-

max activation function. A summary of the chosen network structure can be seen in Figure 7.3.

Figure 7.3: A summary of the CNN structure described in Section 7.1.5

7.1.6 Convolutional Neural Network Training and Testing

Activity tiles were saved to disk as PNG image files and were separated into labelled direc-

tories using a custom program written in Swift 5.0. A Python (v3.6.8) script was created using

Keras (v2.2.4) and Tensorflow (GPU v1.9.0) to train the classification models. All organized

and labelled directories were batch-streamed into memory using a Keras library ImageData-

Generator object. Samples were shuffled every epoch and the network was permitted to train

a maximum of five epochs. Early stopping was implemented to interrupt training when the

validation loss did not decrease, and the maximum epoch count was only reached a single

time during training. A categorical cross-entropy loss function was employed and models were

optimized using the Adam optimizer, which uses a momentum term when adjusting the learn-

ing rate and can converge faster than the more traditional stochastic gradient descent [140].

Batches of 256 samples were used to maximize the utility of the Nvidia GTX 1080ti used for

training since images were small (32px × 64px) and larger batches could be loaded into the

available video memory. On each iteration, a validation split of 0.2 was used to optimize the

training parameters. Hyperparameters such as the network depth were tuned using manual se-

lection to get the best performance on both training and validation sets while observing low

validation loss to minimize model overfitting.

For testing the developed models, a bash script was used to iteratively create training activ-
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ity tiles for 19 subjects and a separate test set from the remaining subject to ensure no samples

from the testing patient were contained in the training set. At the end of each iteration, all test

and training data were removed from disk storage and activity tiles were re-created using a dif-

ferent test subject. Each time activity tiles were parsed from the raw motion data, randomness

was introduced through the global quaternion rotations and upper sensor noise additions so

this process is expected to further improve the generalization of these results to future unseen

subjects. This process was repeated for the training and testing of four models. Each indepen-

dent model was trained to perform a different classification in a short hierarchical structure,

motivated by previous improvements using ensembles of classifiers to improve accuracy [99].

All classes

A CNN model with the described structure was trained to first distinguish all 11 classes of

activities. This classifier will provide a baseline for the other models to evaluate hierarchical

structure improvements.

Static vs. Dynamic

To train this model, all samples were sorted into two directories: static and dynamic. It was

expected that a primary classifier could be trained with a high degree of accuracy to distinguish

static and dynamic activities.

Static

Given a sample is known to be a static activity, this model will be trained to distinguish one

of the six classes: sitting in a chair, standing, left/right/deep kneeling, or laying.

Dynamic

If it is known a sample is a dynamic activity, this model will classify it into one of the

following five classes: cycling, running, ascending/descending stairs, or walking.
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7.1.7 Evaluation

On each iteration of training each model with structure as described above, a LOSO vali-

dation was used. A single subject was left out on each iteration as a test subject. Classification

accuracy was recorded as well as the F-score for each class.

Accuracy and F-score was computed for each activity as follows:

Accuracy =
T P + T N

T P + T N + FP + FN

Precision =
T P

T P + FP
, Recall =

T P
T P + FN

F-S core = 2 × Precision × Recall
Precision + Recall

(7.2)

Through 20 iterations, a mean and standard deviation was used to detect final values inter-

subject differences.

7.2 Results

Activities of daily living (Table 7.1) were performed by all subjects but during data pro-

cessing it was found that the body-worn sensors had slipped substantially on the legs of two

subjects during the cycling activity and running from one subject. These trials were withheld

from model training and evaluation since it was visibly obvious that data were not correct and

these distorted samples would be expected to introduce error into developed models.

Classification accuracy performed by a single model for all activities and the F-score for

each individual activity can be seen in Table 7.2. Activities with the lowest F-score are cycling

(0.72), ascending (0.79), and descending (0.68) stairs. It can also be seen that static tasks in

general were classified more successfully than the dynamic tasks with the lowest classification

accuracy on the chair sit activity (0.90).

A second model to distinguish static activities from dynamic was evaluated and results can

be seen in Table 7.3. This classifier was able to almost perfectly distinguish tasks (acc.: 1.00)

involving motion from those that are stationary.

Finally, given the success of Model 2 to distinguish static and dynamic activities, the two

additional models were evaluated separately to distinguish individual static and dynamic activ-
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Table 7.2: Classification of all activities in a single model: total accuracy for all tasks and
F-score for each activity.

Mean Std Dev Mean Std Dev
Accuracy 0.91 0.10 Right Kneel 1.00 0.00
Cycle 0.72 0.40 Run 0.93 0.11
Chair Sit 0.90 0.30 Stair Ascend 0.79 0.30
Deep Kneel 1.00 0.00 Stair Descend 0.68 0.33
Laying 1.00 0.00 Stand 0.99 0.02
Left Kneel 0.94 0.18 Walk 0.93 0.19

Table 7.3: Static vs. Dynamic Activities

Accuracy Static F Dynamic F
Mean 1.00 1.00 1.00
Std. Dev 0.01 0.01 0.01

ities (Table 7.4). It was found that the accuracy of classifying static activities was nearly perfect

(acc.: 0.99) with the most confused activity being the chair sit task (acc.: 0.97). Low standard

deviation values when evaluating across all subjects indicates consistently high accuracy was

observed and it would be expected that similar results would be observed when deployed on

unseen future subjects.

Table 7.4: Mean total classification accuracy for all activities and F-score of each activity for
two independent models, one for static and the other for dynamic tasks.

Static Dynamic
Mean Std Dev Mean Std Dev

Accuracy 0.99 0.03 Accuracy 0.91 0.09
Chair Sit 0.97 0.12 Cycle 0.84 0.24
Deep Kneel 0.98 0.07 Run 0.98 0.04
Laying 1.00 0.00 Stair Ascend 0.86 0.25
Left Kneel 0.99 0.02 Stair Descend 0.78 0.22
Right Kneel 0.99 0.03 Walk 0.95 0.10
Standing 0.99 0.02

Dynamic classification accuracy remained similar to the combined model however, F-

scores improved for all static tasks. Activities classified with the lowest F-score in the previous

combined model have improved (cycle: 0.84, ascending: 0.86, descend: 0.78) but still remain

the lowest of all tasks.
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Two confusion matrices were generated by averaging the mean classification success rate

for each activity over all iterations. The confusion matrix for static activities is seen in Fig-

ure 7.4a while the dynamic is shown in Figure 7.4b.
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Figure 7.4: Confusion matrices for static and dynamic classification models.

Few static activities were misclassified and no definite pattern presented across all itera-

tions, however, it was evident from Figure 7.4b that cycling (acc. 0.83) and descending stairs

(acc. 0.86) were more frequently misclassified. A large portion (7%) of stair ascend activities

were also classified as stair descend. Some walking samples (4%) were incorrectly predicted

to be running.

7.3 Discussion

Large standard deviations in F-scores for dynamic activities shown in Table 7.2 and Ta-

ble 7.4 suggest that there were inter-subject differences in task execution and classification was

more successful for some subjects than others. This was especially true for cycling and as-

cending/descending stairs, which were most commonly confused in the current work as well

as previous publications [93, 98]. Future work could benefit from incorporating an altimeter

which could potentially distinguish these activities based on an increasing, decreasing, or con-

stant altitudes. Future work in this area could also introduce a calibration step where subjects

perform each activity once to be included in the training set before performing additional in-
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(a) Walking (b) Running

Figure 7.5: Confused walking and running samples for a single subject.

strumentation sessions. In a deployment of this system to remotely monitor subjects, this is a

technique that could be used to minimize the inter-subject difference in movements.

It should be noted that execution speed was not dictated when subjects performed the spec-

ified activities. Subjects performed tasks at their own desired pace so the data recorded vary

in execution speeds. This was a conscious decision since it was desired to evaluate the work

presented in realistic deployment scenarios. A consequence of this variation in pace was an

increase in confused samples and classifications, seen most prominently for faster-moving ac-

tivities Figure 7.4b. On one iteration of validation for the dynamic activity classification model,

one subject’s walking samples were partially classified as running. It is expected that this sub-

ject simply walked at a faster pace that may have been close to the pace of some subjects when

running. A walking activity tile of this subject compared to a running tile from another subject

in the training set can be seen in Figure 7.5. Visual comparison of these two tiles reveals the

similarity in samples.

Recall the wearable sensor system deployed recorded quaternion components at a fre-

quency of 25Hz and trained networks used a filter size of 3x1 on the first convolutional layer

to accentuate features across the time domain only. If results were to be replicated using a sim-

ilar data structure recorded at a higher frequency, it is expected that a more rectangular filter,

such as 5x1, may be needed to proportionally respond to more data points of a similar length

of activity. Similarly, it is expected that increasing the height of formulated activity tiles to

encompass the same length of time would be beneficial for reproducing similar results.
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The current work leveraged a CNN to detect static vs. dynamic activities but this stage

could be replaced by thresholding motion variations. It was noted that subjects shifted their

weight and moved even during static activities so it is expected that the current method would

provide robust distinctions even when activities are not completely motionless.

Activities of subjects in the current work were stripped of all transition periods moving from

a one activity to another. Subjects were first asked to begin the specified activity and recording

was started by an observer. It is expected that accuracy of the model presented would drop if

transitions were included in the study since it was observed that subjects exhibited substantially

different strategies for their transitions.

Unfortunately three activities between two subjects were removed due to sensor straps slip-

ping on the users. It is expected that this was caused by mounting the sensors using the hook-

and-latch straps on the outside of fitness-type, loose-fitting material and the faster movements

of cycling and running caused the sensors to slip and record incorrect and un-classifiable data.

Future development to the wearable sensor system may be required to instrument patients while

performing fast-motion activities to prevent incorrect classifications.

Although the current work has shown the benefits of implementing the deployed four-

sensor wearable system for the improvement of activity classification, further investigation into

subject coherence with wearing the system outside of observation must be explored. Systems

with single sensor components are more convenient to attach/reattach to body segments. Some

systems using only an accelerometer are intended to be worn for very long periods of time (≈30

days) and can operate on a low-energy draw. Based on observations of the deployed sensor

system in this study, recording periods of this length will not be possible while maintaining

a logging rate of 25Hz on each sensor. Further refinements to the current hardware could be

made to improve battery life or subjects could dock the sensors in a charging station overnight

to recharge batteries for more extended wear.

7.4 Contribution

The current work encoding raw orientation data as images and training a CNN for classi-

fications has shown high accuracy for daily living activities. Distinctions can be very confi-
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dently made between static and dynamic activities and further refinement of the activities was

also demonstrated. This study has shown that minimal instrumentation of a subject’s knees can

provide a strong distinction of daily activities. Although a fixed number of activities have been

used for this classification task, it is expected that these could include the majority of activities

performed daily. The content and findings of this chapter have been published in the journal

IEEE Sensors [141].



Chapter 8

Conclusions and Future Work

The final remaining chapter of this thesis will summarize the contributions made in the cur-

rent work and discuss several areas of future work that could be further improved and expanded

with continuous research and development. This work presented in this thesis was aimed to

develop an appropriate tool to functionally instrument patients in the clinic. Objective measure-

ment is crucial for the early detection of joint performance issues as well as properly assessing

patients. Unfortunately due to limited time in the clinic, extensive functional assessment is

rarely performed and surgeons and clinicians must rely on subjective patient feedback for eval-

uation. It was shown that functional measurements should be incorporated into pre-surgical

evaluations and to accompany self-reported measures at clinical follow-ups to help address

traditional outcome evaluation shortfalls. The developed measurement tool has been shown

appropriate for use in the clinic following hundreds of instrumentation sessions with many

patients both before and after undergoing total knee replacement.

8.1 Contributions

The specific contributions of this thesis can be summarized as the following:

• The development of an instrumentation platform that can be easily deployed in the

clinic to obtain granular, objective functional measurements from patients with knee

osteoarthritis undergoing total knee replacement. The system has been validated using

131
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a robot phantom and a gold standard motion capture measurement system to ensure the

accuracy of joint angle measurements with visual sensor replacement. In addition to

this validation, the continued use of the system in the orthopaedic clinic at London’s

University Hospital through several research studies has shown continuous utility and

practicality of the tool.

• In order to measure patient function repeatably and appropriately for cross-patient com-

parisons, a novel instrumentation and measurement strategy was developed to obtain

useful joint performance metrics from the timed-up-and-go (TUG) performance test. Al-

though previous related work has instrumented this test with wearable sensors, no knee

specific tools were practical for deployment in a time-constrained clinical setting to ac-

complish this task. A novel test segmentation strategy was presented using the orien-

tations of the upper and lower segments of both legs to separate the TUG into distinct

joint-stressing activities. From these segments, joint metrics were specifically to measure

knee joint function. By instrumenting knee patients one year post surgery, these metrics

revealed some characteristics of joint performance common to patients who are satisfied

or dissatisfied following their surgery.

• Using TUG tests from preoperative patient visits, unsupervised machine learning was

used to determine that specific functional metrics could help predict if patients were

likely to experience measurable functional improvement following surgery. This ad-

vancement in the field of knee outcomes was highlighted by the Arthritis Society as a

top 10 advancement of the year. Unmet patient expectations following surgery is one of

the largest risk factors for patient dissatisfaction; a persisting problem experienced by

up to 1 in 5 patients. Cluster analysis revealed two groups of patients separated only

using derived functional metrics and each group experienced different recovery paths

with recovery responders generally having worse function preoperation but demonstrat-

ing nearly all of their recovery as early as three months post-surgery.

• Following the discovery of preoperative patient function indicating likelihood of func-

tional recovery, classifier models were explored to determine if a patient could be in-

dividually predicted to become a recovery responder or maintainer before undergoing
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surgery. It is expected that given this information, the surgeon could help realistically

adjust patient expectations. It was found that accurate and highly sensitive models could

be trained using only functional metrics as features. Model performance was improved

by adding additional patient information such as demographics and self-reported mea-

sures, however, obtaining this additional information is at the expense of time and effort

in the clinic.

• In the final chapter, a novel algorithm for performing human activity recognition was

developed. A convolutional network was leveraged by encoding raw orientation mea-

surements into images to perform automatic feature extraction. It was found that very

accurate models could be trained to recognize activities of daily living performed by

healthy subjects in a fitness centre setting. This work presented promising results for

future deployments of this sensor system for at-home monitoring free of observer bias.

8.2 Future Work

During the compilation of the completion of contained work, several areas for future work

and continuation have been noted:

• Skin motion artifacts have been noted as an issue with any surface-mounted wearable

sensor system. Further investigation into modelling skin motion could reveal compensa-

tion strategies to help relate measured leg segment orientations more closely to the femur

and tibia orientation less influenced by skin motion artifacts. One possible avenue is the

incorporation of a machine learning model to learn motion compensation if true ground

truth measurements can be obtained free of skin motion.

• In the current work a fixed set of functional metrics have been derived from the TUG

test. Although they have shown to be effective for predicting recovery and assessing

function, they are by no means expected to exhaustively represent function. Additional,

and perhaps, more useful metrics could still be derived from raw sensor data. As high-

lighted in Chapter 7, automatic feature extraction can often out-perform solutions using
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manually engineered features in classification tasks. As more patient data becomes avail-

able, it may be possible to apply similar automatic extraction to entire sessions of TUG

recordings opposed to the short activity samples explored in the current work.

• In addition to further functional metrics, more information is collected clinically at a

follow-up than is currently being used. It may be that a model using additional parame-

ters such as inflammatory markers, implant size and information, surgical technique and

even details extracted from preoperative clinical radiographs could reveal much more

about patient status’ for more individualized care suggestions and predictions.

• Lastly, this thesis has touched on remote instrumentation through human activity recog-

nition. Currently more research must take place to determine the effect of daily activ-

ity performance compared to in-clinic demonstrated performance. Recently visiting the

clinic for post-surgery follow-ups has been difficult or impossible for many patients and

the need for remote technologies to help surgeons assess their patients has been high-

lighted. Further work should assess the ability for patients to use this system without an

observer for more frequent instrumentation to develop a clearer picture of their recovery

path, and possibly alert surgeons of possible problems.
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• Permission statement from Elsevier for some of the content of Chapter 6.

• Permission statement from Elsevier for some of the content of Chapter 6.

• Permission statement from IEEE for some of the content of Chapter 7.

• Ethics approvals for the human activity recognition study in Chapter 7 involving human
subjects from the Human Subject Research Ethics Board at Western University.

• Information forms provided to subjects when personally recruiting subjects for partici-
pation in the Chapter 7 and obtaining informed consent.

• Ethics approval for the functional instrumentation of patients in the clinic using wearable
sensors for data collected by Megan Fennema in Chapter 5.

• Ethics approval for the functional instrumentation of patients in the clinic using wearable
sensors for data collected by Jordan Broberg in Chapter 6.

• Ethics approval for the functional instrumentation of patients in the clinic using wearable
sensors for data collected by Harley Williams in Chapter 6.
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Activity	recognition	based	on	lower	extremity	orientations	
	

Principal	Investigator:	 	 	
Dr.	Matthew	Teeter	
	
This	letter	of	information	describes	the	research	study	and	your	role	as	the	participant.	The	purpose	of	this	
letter	is	to	provide	you	with	information	required	for	you	to	make	an	informed	decision	regarding	
participation	in	this	research.	Please	read	this	form	carefully.	Do	not	hesitate	to	ask	anything	about	the	
information	provided.		
	
Study	Purpose	
Wearable	sensors	have	become	more	available,	smaller	in	size,	and	efficient	for	analyzing	movement.	Their	
components	are	located	in	most	personal	electronics	including	smart	watches	and	phones.		
	
Measurement	of	the	legs	can	be	used	to	evaluate	hip	and	knee	function	and	can	enable	researchers	and	
clinicians	to	monitor	levels	and	types	of	activities	before	or	after	surgical	procedures	such	as	hip	or	knee	
replacement.	The	amount	and	types	of	activities	performed	before	surgery	may	give	insight	into	expected	
outcomes	 after	 surgery.	 You	 are	 being	 invited	 to	 test	 these	 sensors	 as	 a	 healthy	 volunteer.	 By	 using	
wearable	sensors,	data	can	be	recorded	in	many	environments	which	will	make	data	collection	easier	for	
future	studies.	
	
The	purpose	of	this	study	is	to	determine	if	the	orientations	of	the	legs	measured	from	wearable	sensors	
can	be	used	to	correctly	classify	daily	activities	to	accurately	estimate	activity	levels.	
	
Procedure	
Twenty	healthy	volunteers	will	be	recruited	to	participate	in	this	study.	It	is	expected	to	take	approximately	
30	minutes	of	your	time.	If	you	agree	to	participate	you	will	meet	at	the	Western	University	Thompson	
Recreation	and	Athletic	Centre	and	be	asked	to	complete	the	following	activities:	
	
1. Walking	for	30	seconds	at	both	a	normal	and	slower	than	normal	pace	on	a	treadmill	
2. Walking	for	30	seconds	over-ground	
3. Running	or	jogging	for	45	seconds	at	both	a	normal	and	slower	than	normal	pace	on	a	treadmill	
4. Standing	vertically	for	45	seconds	facing	two	different	directions	
5. Sitting	in	a	chair	for	45	seconds	facing	two	different	directions	
6. Sitting	cross-legged	for	45	seconds	facing	two	different	directions	
7. Ascending	a	stair	climbing	machine	 for	45	seconds	at	both	a	normal	and	slower	 than	normal	pace,	

placing	each	arm	on	their	respective	handrails	for	stability	
8. Descending	a	set	of	stairs	for	90	seconds	using	a	single	arm	on	a	handrail	for	support	
9. Biking	on	a	stationary	bike	for	45	seconds	at	both	a	normal	and	slower	than	normal	pace	
10. Deep	squatting	for	30	seconds	with	knees	bent	as	much	as	possible	and	only	feet	touching	the	ground	
11. Kneeling	on	both	knees	for	30	seconds	with	back	straight	and	upright	(perpendicular	to	floor)	
12. Kneeling	on	both	knees	for	30	seconds	with	forehead	near	the	floor	and	arms	stretched	in	front	
13. Kneeling	on	a	single	knee	(simulating	tying	a	shoe)	for	45	seconds	on	each	knee.	
14. Laying	on	back,	left	side,	right	side	for	30	seconds	each	
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There	will	be	no	restrictions	on	the	pace	of	these	tests	so	long	as	they	are	executed	at	two	different	speeds.	You	
will	be	able	to	practice	completing	any	of	the	tasks	prior	to	undergoing	any	of	the	testing.	
While	completing	these	activities,	you	will	be	 instrumented	with	a	set	of	 four	 lightweight	wearable	sensors.	
There	will	be	one	sensors	mounted	above	and	below	each	knee,	attached	with	stretchable	hook	and	latch	straps.	
A	picture	of	the	sensor	with	its	strap	can	be	seen	below	as	well	as	a	with	a	quarter	for	size	reference:	
	

																			 	
	

An	observer	will	attach	the	wearable	sensors	using	elastic	hook	and	latch	straps	above	and	below	each	of	your	
knees.	The	observer	will	also	monitor	and	record	sensor	data	using	an	iPod	touch	during	activity	completion.		
	
Risks	
There	is	a	risk	of	falls	with	this	study,	however,	we	expect	this	risk	to	be	minimal	as	only	healthy	volunteers	
will	participate	in	this	study	and	all	participants	will	be	given	the	opportunity	to	practice	executing	the	
required	activities	prior	to	undergoing	any	of	the	testing.	
	
Benefits	
Participation	in	this	study	will	not	provide	any	known	benefit	to	you.	
	
Compensation	
There	will	be	no	compensation	provided	for	your	participation	in	this	study.	Parking	costs	associated	with	
participating	in	this	study	will	be	reimbursed.	

Voluntary	Participation	
Your	participation	in	this	study	is	voluntary.	You	may	leave	the	study	at	any	time.	If	you	decide	to	withdraw	
from	the	study,	the	information	that	was	collected	before	you	left	the	study	will	still	be	used	in	order	to	
help	answer	the	research	question.	No	new	information	will	be	collected	without	your	permission.	
	
Alternatives	to	Study	Participation	
An	alternative	to	the	study	procedures	described	above	is	to	not	participate	in	this	study.	
	
Confidentiality	
No	identifiable	information	will	be	collected	as	part	of	this	research	study.	In	any	publication,	presentation,	
or	report,	any	information	that	would	reveal	your	identify	will	not	be	published.	Study	data	will	be	kept	for	
a	minimum	of	7	years.	
	
You	will	be	given	a	copy	of	this	letter	of	information	and	consent	form	once	it	has	been	signed.	You	do	not	
waive	any	legal	rights	by	signing	the	consent	form.	Representatives	of	the	University	of	Western	Ontario	
Health	Sciences	Research	Ethics	Board	may	access	the	data	to	monitor	the	conduct	of	the	research.	
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Activity	recognition	based	on	lower	extremity	orientations	
	

Informed	Consent	
	

Agreement	of	Participating	Subject	
I	have	read	the	accompanying	letter	of	information,	have	had	the	nature	of	the	study	explained	to	me	and	
I	agree	to	participate.	All	questions	have	been	answered	to	my	satisfaction.	
	
	
	
																																																																																																																																																																											.	
	
Print	participant’s	full	name	
	
	
	
	
	
																																																																																																																																																																											.	
	
Participant’s	signature	 	 	 	 	 	 	 	 Date	
	
	
	
	
	
																																																																																																																																																																											.	
	
Name	of	person	obtaining	consent	
	
	
	
	
	
																																																																																																																																																																											.	
	
Signature	of	person	obtaining	consent	 	 	 	 	 	 Date	
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To: Matthew Teeter 

Project ID: 112091 
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Application Type: HSREB Initial Application 

Review Type: Delegated
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Date Approval Issued: 05/Jul/2018 11:47 

REB Approval Expiry Date: 05/Jul/2019 

                                                                                                                                     

Dear Matthew Teeter 

The Western University Health Science Research Ethics Board (HSREB) has reviewed and approved the above mentioned study as described in the WREM
application form, as of the HSREB Initial Approval Date noted above. This research study is to be conducted by the investigator noted above.  All other required
institutional approvals must also be obtained prior to the conduct of the study.
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