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Abstract. Phase transitions are often associated with the breaking of a symmetry in the low-temperature phase described by non-
vanishing values of certain order parameters. However, in finite-size systems the correlated equilibrium configuration preserves
the symmetries of the underlying Hamiltonian. We discuss a method to calculate the statistical distribution of the order parameters
without breaking the corresponding symmetries. The maxima of these statistical distributions mimic the phase transitions that are
found in a mean-field approximation. We demonstrate the method for the case of shape transitions in atomic nuclei.

INTRODUCTION

Phase transitions in bulk systems are often associated with the spontaneous breaking of certain symmetries. Such
symmetry breaking is typical in a thermal mean-field approximation below a certain critical temperature. In Landau
theory [1], the system is described by a set of order parameters that do not all vanish in the symmetry-breaking phase.

Strictly speaking, phase transitions do not occur in a finite-size system. Fluctuations in the order parameters
smooth the singularities that characterize the phase transition. The exact equilibrium configuration of such a system
possesses the same symmetries of the underlying Hamiltonian. Here we discuss a method to calculate the exact
statistical distribution of the order parameters in a finite-size system within a symmetry-conserving framework. The
main idea is based on a Landau-like expansion of the logarithm of this distribution in combinations of the order
parameters that are invariant under the symmetries of the system. We demonstrate the method for the case of shape
transitions in an isotopic chain of even-mass samarium nuclei 148−154Sm [2, 3, 4]. In the interacting boson model [5],
the chain of samarium isotopes describes a shape transition between the spherical U(5) and the axially deformed
S U(3) limits [6]. In a classification of critical symmetries of shape transitions, introduced by Iachello, 152Sm is known
as an X(5) nucleus [7, 8], describing the critical point of the spherical to axially deformed transition.

MEAN-FIELD THEORY OF PHASE TRANSITIONS

The grand-canonical ensemble, describing the equilibrium density of a system at fixed temperature and chemical po-
tential, is obtained from a variational principle in which the grand potential is minimized with respect to a variation of
a general many-particle density operator. In a mean-field theory, such as the finite-temperature Hartree-Fock (HF) and
the Hartree-Fock-Bogoliubov (HFB) approximations, the grand potential is minimized with respect to an uncorrelated
trial density.

Landau theory is a mean-field theory in which the free energy a a given temperature is minimized with respect
to a set of variables known as the order parameters. This theory describes a symmetry-breaking phase transition
where the low-temperature phase is characterized by non-vanishing values of the order parameters. The free energy is
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invariant under the corresponding symmetries and can therefore be expanded in combinations of the order parameters
that are invariants of the corresponding symmetries. Usually the expansion is carried out to the lowest order necessary
to describe the phase transition of interest.

Landau theory of Shape Transitions
As an example, we briefly discuss a Landau theory of shape transitions in nuclei [9, 10].

Order Parameters

The order parameters are taken to be the mass quadrupole tensor q2µ, a second-rank tensor. Alternatively, we can use
the quadrupole deformation parameters α2µ as the order parameters. They are related to q2µ via the liquid drop relation
q2µ = 3

√
5π

r2
0A5/3α2µ, where A is the mass number of the nucleus and r0 = 1.2 fm.

The transition from a spherical to a deformed nucleus breaks rotational symmetry. The higher symmetry phase
describes a spherical nucleus α2µ = 0, while the lower symmetry phase describes a deformed nucleus with α2µ , 0.
We define intrinsic quadrupole deformation parameters α̃2µ by a rotation to an intrinsic frame in which α̃21 = α̃2−1 = 0
and α̃22 = α̃2−2 = real. The intrinsic deformation parameters β, γ are then defined by the standard relations

α̃20 = β cos γ ; α̃22 = α̃2,−2 =
1
√

2
β sin γ . (1)

The three rotation angles Ω together with β, γ characterize the intrinsic-frame variables. The free energy is a scalar
and therefore is a function only of β, γ, i.e., F(T, α2µ) = F(T, β, γ).

Quadrupole Invariants

The free energy at temperature T can be expanded in invariant combinations of α2µ, known as quadrupole invari-
ants [11, 12]. There are two basic quadrupole invariants

α · α = β2 ; [α × α]2 · α = −

√
2
7
β3 cos(3γ) , (2)

and all other invariants are of the form (β2)m[β3 cos(3γ)]n, where m, n ≥ 0 are integers.

Landau Expansion

In the Landau theory of shape transitions, we expand the free energy F(T, β, γ) to fourth order in deformation [9, 10].
There are only three invariants β2, β3 cos(3γ), and β4 to fourth order, and the free energy is given by

F(T, β, γ) = F0(T ) + A(T )β2 + B(T )β3 cos(3γ) + C(T )β4 , (3)

where F0, A, B,C are temperature-dependent constants.
The equilibrium shape at temperature T is determined by minimizing F with respect to β, γ. The topography of

the free energy surface in the β − γ plane depends on a single parameter τ = AC/B2 [9]. As a function of increasing
τ, we find a first-order phase shape transition from a deformed nucleus for τ < 0 to a spherical nucleus for τ > 9/32.
The region 0 < τ < 9/32 is a coexistence region with a first-order transition occurring for τ = 1/4.

LANDAU-LIKE THEORY IN A SYMMETRY-CONSERVING FRAMEWORK

The Landau theory of shape transitions discussed in the previous section is valid in the thermodynamic limit. Ro-
tational symmetry is spontaneously broken in the equilibrium configuration which is described by a non-vanishing
deformation below a certain critical temperature. However, the nucleus is a finite-size system and the underlying sym-
metries are preserved in the exact equilibrium configuration. Here we describe a theory of deformation in which the
underlying rotational symmetry is preserved.

We consider the distribution P(T, α2µ) of the order parameters at temperature T . This distribution is invari-
ant under rotations, and therefore depends only on the intrinsic shape parameters β, γ, i.e., P(T, α2µ) = P(T, β, γ).
The volume element

∏
µ dα2µ in the laboratory frame can be written in terms of the intrinsic parameters Ω, β, γ as∏

µ dα2µ = 1
2β

4| sin(3γ)| dβ dγ dΩ. Iintegrating over Ω, the distribution in β, γ is given by 4π2β4| sin(3γ)|P(T, β, γ).
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Landau-like Theory
The distribution P(T, α2µ) is invariant under rotations, and therefore depends only on the quadrupole invariants. We
expand the logarithm of P(T, β, γ) in the quadrupole invariants to fourth order, leading to a distribution of the form [4]

P(T, β, γ) = N(T )e−a(T )β2−b(T )β3 cos(3γ)−c(T )β4
, (4)

where a, b, c are temperature-dependent coefficients and N is a normalization constant.
The constants a, b, c can be determined from the expectation values of the three lowest-order invariants. Each of

these invariants is unique at a given order and its expectation value can be related to corresponding moments of the
axial quadrupole operator Q̂20 in the laboratory frame [2, 3]

χ2〈β2〉L = 5〈Q̂2
20〉 ; χ3〈β3 cos(3γ)〉L =

35
2
〈Q̂3

20〉 ; χ4〈β4〉L =
35
3
〈Q̂4

20〉 . (5)

where χ = 3
√

5π
r2

0A5/3, and the expectation values

〈 f (β, γ)〉L ≡ 4π2
∫

dβ dγ β4| sin(3γ)| f (β, γ)P(T, β, γ) . (6)

are defined with respect to the Landau-like distribution P(T, β, γ) in Eq. (4).
The coefficients a, b, c in Eq. (4) are determined from the moments 〈Q̂n

20〉 for n = 2, 3, 4 by solving Eqs. (5).

Distribution of the Axial Quadrupole in the Laboratory Frame
The axial quadrupole distribution P(T, q20) of a nucleus with Hamiltonian Ĥ at temperature T is defined by

P(T, q20) =
1
Z

Tr [δ(Q̂20 − q20)e−Ĥ/T] , (7)

where Z = Tr e−Ĥ/T is the partition function.
The distribution in (7) can be calculated [2, 3] in the auxiliary-field quantum Monte Carlo (AFMC) method [13,

14, 15] using a discrete Fourier representation of the projection on the mass axial quadrupole operator Q̂20 =
∑

i[2ẑ2
i −

(x̂2
i + ŷ2

i )] (the sum is over all nucleons), and a Hubbard-Stratonovich representation [16] of the Gibbs operator e−Ĥ/T

in Eq. (7).
We present results for the chain of even-mass samarium isotopes 148−154Sm using the framework of the

configuration-interaction (CI) shell model. We assume a single-particle Woods-Saxon central potential with spin-
orbit interaction and a two-body interactions with a monopole pairing term and multipole-multipole interaction that
includes quadrupole, octupole and hexadecupole terms [17]. The single-particle model space and the various coupling
parameters in the CI shell model Hamiltonian are given in Ref. [18].

In Fig. 1 we show distributions P(T, q20) vs. the axial quadrupole deformation q20 for a chain of even-mass
samarium isotopes 148−154Sm at several temperatures. For the nuclei that are deformed in their ground state in the
HFB mean-field approximation, we find a skewed distribution at low temperatures with a crossover to a Gaussian-like
distribution at high temperatures. For the nucleus 148Sm whose HFB ground state is spherical, we find an almost
Gaussian-like distribution already at low temperatures. The solid lines in the bottom row describe the lab-frame
distribution of a rigid rotor whose intrinsic quadrupole moment is taken to be the ground state HFB quadrupole
moment. They are qualitatively similar to the exact AFMC distributions. We conclude that the distribution of the
axial quadrupole is a model-independent signature of deformation using a CI shell model framework that conserves
rotational symmetry.

Validation of the Fourth-Order Landau-like Expansion
In deriving Eq. (4), the expansion of ln P in the quadrupole invariants was truncated in fourth order. To determine the
validity of this assumption, we rewrite the distribution (4) in terms of the lab-frame components α2µ

P(T, α2µ) = N(T )e−a(T )α·α+b(T )
√

7
2 [α×α]2·α−c(T )(α·α)2

, (8)
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FIGURE 1. Axial quadrupole distributions P(T, q20) for a chain of even-mass samarium isotopes 148−154Sm at several temperatures
T = 0.1 MeV (bottom row), T = 0.8 MeV (middle row), and T = 4 MeV (top row). The distributions calculated with AFMC
(open circles) are in excellent agreement with the marginal distributions calculated from the Landau-like distributions (4) (solid red
lines). The solid black lines in the bottom row are the lab-frame distributions of a rigid rotor with an intrinsic quadrupole moment
determined in the HFB approximation. Adapted from Ref. [3].

where we have used Eqs. (2). By integrating over α2µ for all four components with µ , 0, we can find the marginal
distribution P(T, α20), and compare it with the distribution of q20 calculated directly in AFMC. In Fig. 1, we compare
the marginal distribution derived from the Landau-like distribution (4) (solid lines) with the distribution calculated
directly in AFMC (solid circles). The excellent agreement confirms the validity of the fourth-order Landau expansion
of ln P(T, α2µ).

QUADRUPOLE SHAPE DISTRIBUTIONS IN THE INTRINSIC FRAME

We used the AFMC axial quadrupole distributions to calculate the moments 〈Qn
20〉 =

∫
dq20qn

20P(T, q20) for n = 2, 3, 4
and solved Eqs. (5) to determine the Landau coefficients a, b, c as a function of temperature. In Fig. 2, we show the
distributions P(T, β, γ) (using a logarithmic scale) in the β − γ plane for the even-mass samarium isotopes 148−154Sm
at the same temperatures as in Fig. 1.

The maxima of the distributions P(T, β, γ) mimic the shape transitions that are usually observed in a mean-field
approximation (e.g., HFB) but within the framework of the CI shell model that includes full correlations and preserves
rotational symmetry. In the samarium isotopes for which these maxima at low temperatures is deformed, we observe
as a function of increasing temperature a thermal shape transition from a deformed to a spherical configuration.

At the low temperature of T = 0.1 MeV (i.e., near the ground state), we observe shape transition from a spherical
to a deformed configuration as the number of valence neutrons increases towards mid shell. Such ground-state transi-
tion occurring as a function a control parameter (here the number of neutrons) is known as a quantum shape transition.
These transitions are qualitatively similar to what we find in the T = 0 HFB approximation: 148Sm is spherical, 150Sm
has a small deformation while 154Sm is strongly deformed. 152Sm is known as an X(5) nucleus [7, 8], at a critical point
of a first-order shape transition from a spherical to an axially deformed nucleus.

As in the mean-field Landau theory, the topography of the distributions P(T, β, γ) are determined by a single
parameter τ = ac/b2. In Fig. 3 we show τ as a function of temperature for the four even-mass samarium isotopes.
The maxima of these distributions describe a thermal shape transition at τ = 1/4. This corresponds to transition
temperatures of T = 0.81 MeV, T = 1.03 MeV, and T = 1.29 MeV in 150Sm, 152Sm and 154Sm, respectively. The
corresponding transition temperatures in HFB calculations are T = 0.74 MeV, T = 0.94 MeV, and T = 1.10 MeV [3].
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FIGURE 2. Quadrupole shape distributions P(T, β, γ) in the β−γ plane for the even-mass samarium isotopes 148−154Sm at the same
temperatures as in Fig. 1. The maxima of these distributions mimic the thermal and quantum shape transitions that are usually found
in a mean-field approximation. Adapted from Ref. [4].
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ture for the four even-mass samarium isotopes 148−154Sm. Taken from Ref. [4].
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For 148Sm, the parameter τ has a minimum as a function of temperature. This nucleus almost undergoes a shape
transition around T ∼ 0.5 MeV as the temperature decreases but this is prevented by the pairing interaction which
favors a spherical configuration at lower temperatures.

CONCLUSION

We discussed a method to calculate the distribution of the order parameters in a finite-size system that undergoes a
symmetry-breaking phase transition in the thermodynamic limit. Such a phase transition is usually found in a mean-
field approximation, for which the equilibrium configuration breaks certain symmetries of the underlying Hamiltonian.
Our method works in a framework that preserves the underlying symmetries. We demonstrated the method in the
context of nuclear shape transitions. In particular, we calculated the quadrupole shape distributions in the intrinsic
frame using the CI shell model approach without a mean-field approximation that breaks rotational symmetry. The
results presented here are based on the AFMC approach for the CI shell model, but in principle our method can be
used in the context of other approaches to the CI shell model or in other models that preserve rotational symmetry.
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