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Arithmetics, Interrupted

Matilde Lalín
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Synopsis

I share some of my adventures in mathematical research and homeschooling in
the time of COVID-19.

Keywords: elliptic curves, hyperbolic triangles, Mahler measure, function field
arithmetic, L-functions, homeschooling.

A positive integer n is said to be congruent if it is equal to the area of a right
triangle with rational sides. It is known that n is congruent if and only if the
equation

En : y2 = x3 − n2x

has a solution (x0, y0) ∈ Q2 with y0 6= 0. The equation En corresponds
to an elliptic curve, and having a solution with y0 6= 0 is equivalent to say
that there are infinitely many rational solutions or, more precisely, that the
elliptic curve has positive rank. The answer to this question is ultimately
related to the Birch and Swinnerton-Dyer conjecture. These ideas have been
extended to the study of various geometric objects such as Heron triangles
(see for example Goins and Maddox [6]).

A hyperbolic triangle with area A, angles α, β, γ and sides a, b, c is a hyper-
bolic Heron triangle if

ea, eb, ec ∈ Q and eiα, eiβ, eiγ, eiA ∈ Q(i).

In collaboration with Mila [10] we show that hyperbolic Heron triangles with
fixed area and a fixed angle are parametrized by an elliptic curve family of
the form

En,u : y2 = x(x− n)(x− n(u2 + 1)),
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where u depends on the angle and n depends on both the area and the angle.
This family has always a point of infinite order, which implies that we can
find infinitely many hyperbolic Heron triangles for most choices of the area
and angle. In particular, the congruent number problem has always infinitely
many solutions in this setting!

———o———0———o———

Oldest son wants to discuss the following problem: A “follower year” is a year
that is written as the juxtaposition of two consecutive numbers. For example,
78 and 2021 are follower years. Noélie sums the numbers that represent the
follower years between 12 and 2021 included. What is her result? [1]

———o———0———o———

The (logarithmic) Mahler measure of a non-zero polynomial P ∈ C[x1, . . . , xn]
is defined by

m(P ) =
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

log |P (eiθ1 , . . . , eiθn)|dθ1 . . . dθn.

For the one-variable case, this integral can be expressed in terms of the
roots of the polynomial that lie outside the unit circle. In favorable cases,
the Mahler measure of several-variable polynomials yields formulas involving
special values of arithmetically interesting formulas, such as the Riemann
zeta function or L-functions of elliptic curves.

Jointly with Gu [5] we prove a formula that expresses the Mahler measure
of xa+b + 1 + (xa + 1)y + (xb − 1)z ∈ C[x, y, z] in terms of the Riemann
zeta function value ζ(3) and a combination of Bloch–Wigner dilogarithms.
The proof involves some new ideas regarding the integration of the regulator.
This formula is a first on its kind for a three-variable family of polynomials,
and it leads to an interesting application of the Boyd–Lawton formula! [2, 9]

———o———0———o———

Youngest son wants to discuss the following problem: “Pablo needs a stick to
play his favorite sport. Karen needs a ball to play her favorite sport. Imad
needs a basket to practise his throws. Binesi is tall, it is easy for them to
send the ball to the other side. Lakeisha hates golf and gymnastics. Xinchun
doesn’t practise a team sports. Complete the following table with the favorite
sport of each kid.” [11].
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soccer wheelchair basketball golf baseball gymnastics volleyball
Binesi
Imad
Karen
Lakeisha
Pablo
Xinchun

———o———0———o———

A Dirichlet character modulo k is a multiplicative function χ : Z → C such
that χ(n) = χ(n+k) for all n, χ(n) = 0 iff (n, k) > 0, and χ(mn) = χ(m)χ(n)
for all integers m,n. The Dirichlet L-series corresponding to χ is given by

L(s, χ) =
∞∑
n=1

χ(n)

ns
,

where s is a complex variable. It converges for Re(s) > 1, and it has a mero-
morphic continuation to the whole complex plane, the Dirichlet L-function,
which satisfies a functional equation relating the value at s with the value at
1 − s. A famous conjecture of Chowla predicts that L(1

2
, χ) 6= 0. The value

s = 1
2
is special (and difficult to estimate) because is the central value of

the functional equation. The most studied case is the quadratic case, when
χ2(n) = 1 or 0 for all n. An important breakthrough came when Soundarara-
jan [12] proved that at least 87.5% of the quadratic Dirichlet L-functions do
not vanish at s = 1

2
. For cubic characters (when χ3(n) = 1 or 0 for all n) this

is harder to analyze. A variant of this problem consists of studying Dirich-
let L-functions over function fields, namely, constructed from the series that
sums over monic polynomials with coefficients in a finite field of q elements
Fq:

L(s, χ) =
∑

f∈Fq [T ]

χ(f)

qsdeg(f)
.

In this case Donepudi and Li [4] proved that there is some vanishing for cubic
L-functions, but the proportion that they found still goes to zero when the
number of characters goes to infinity. In [3], we prove jointly with David and
Florea that the proportion of nonvanishing is of at least 0.4718e−e

182 . Now,
this is a very small number, but positive!
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———o———0———o———

Oldest son needs help making a model of a paper plane for a big school project
due soon. He also needs to make a paper model of a turbine. And a model of
a wing. And he has to interview a pilot. I also got a contact of an aircraft
engineer whose son goes to the same school. Am I supposed to arrange the
zoom call? Will the teacher do it?

———o———0———o———

Over number fields, the k-th divisor function dk(n) gives the number of ways
of writing a positive integer as a product of k positive integers. It arises as
coefficients of the k-power of the Riemann zeta function

ζ(s)k =
∞∑
n=1

dk(n)

ns
, Re(s) > 1.

The sum of the divisor function up to a positive real x is asymptotic to a
polynomial in log x: ∑

n≤x

dk(n) ∼ xPk−1(log x),

where Pk−1(T ) is certain polynomial of degree k − 1 (see [13, Chapter XII]).
There is interest in studying the distribution of the error term ∆k(x) =∑

n≤x dk(n) − xPk−1(log x) and in particular its variance. In [8] Keating,
Rodgers, Rodity-Gershon, and Rudnick make conjectures on these distri-
butions by studying the analogue problems over the function field (again,
polynomials over Fq[T ]). When q → ∞, the distributions considered in [8]
can be expressed in terms of integrals in random matrix theory, in particular
over the set of unitary matrices. With Kuperberg [7] we are considering simi-
lar problems, where the distribution takes places over the symplectic unitary
matrices. It is exciting to compare these results with the already known
unitary case!

———o———0———o———
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Youngest son needs help with dictation, conjugating the French verb “aimer”:
J’aime, tu aimes, il/elle aime, nous aimons, vous aimez, ils/elles aiment...
je t’aime, je vous aime, même en pandémie! 1

Personal bio: I am an Argentinian-Canadian professor of mathematics and
a mother, who is passionate about research in number theory and related ar-
eas. I became a mathematician by participating in Mathematical Olympiads,
and I love solving problems and sharing my excitement with students and
with my children. COVID-19 has disrupted my life in many ways, and I am
looking forward to regaining my usual nerdy normalcy.
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