
Journal of Humanistic Mathematics Journal of Humanistic Mathematics

Volume 11 | Issue 2 July 2021

Markov Chains for Computer Music Generation Markov Chains for Computer Music Generation

Ilana Shapiro
Pomona College

Mark Huber
Claremont McKenna College

Follow this and additional works at: https://scholarship.claremont.edu/jhm

 Part of the Mathematics Commons, Music Commons, and the Statistics and Probability Commons

Recommended Citation Recommended Citation
Shapiro, I. and Huber, M. "Markov Chains for Computer Music Generation," Journal of Humanistic
Mathematics, Volume 11 Issue 2 (July 2021), pages 167-195. . Available at:
https://scholarship.claremont.edu/jhm/vol11/iss2/8

©2021 by the authors. This work is licensed under a Creative Commons License.
JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and
published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/

The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds
professional ethical guidelines. However the views and opinions expressed in each published manuscript belong
exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for
them. See https://scholarship.claremont.edu/jhm/policies.html for more information.

https://scholarship.claremont.edu/jhm
https://scholarship.claremont.edu/jhm/vol11
https://scholarship.claremont.edu/jhm/vol11/iss2
https://scholarship.claremont.edu/jhm/vol11/iss2
https://scholarship.claremont.edu/jhm/vol11/iss2/8
https://scholarship.claremont.edu/jhm?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol11%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol11%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/518?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol11%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol11%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/jhm/policies.html

Markov Chains for Computer Music Generation

Ilana Shapiro

Pomona College, California, USA

issa2018@mymail.pomona.edu

Mark Huber

Department of Mathematical Sciences, Claremont McKenna College, California, USA
mhuber@cmc.edu

Abstract

Random generation of music goes back at least to the 1700s with the introduction
of Musical Dice Games. More recently, Markov chain models have been used as
a way of extracting information from a piece of music and generating new music.
We explain this approach and give Python code for using it to first draw out a
model of the music and then create new music with that model.

Keywords: randomized algorithms, musical dice games, music composition,
Markov chains

1. Introduction

Randomness has long been used in the generation of music. One of the first
methods for randomized music composition, called Musikalisches Würfelspiel
(Musical Dice Games), arose in the 18th century. These games were based
off the observation that in any piece of music, individual notes of music are
combined into measures (or bars), each of which has a fixed length. They
work by deciding what an entire bar will sound like at once.

The initial musical dice game was created in 1757 by Johann Philipp Kirn-
berger, who published a method [2] for composing a polonaise in minuet and
trio form. This is an example of a musical form called ternary because it
consists of three parts. The first and third parts are the same eight bars,

Journal of Humanistic Mathematics Volume 11 Number 2 (July 2021)

http://scholarship.claremont.edu/jhm/

168 Markov Chains for Computer Music Generation

called the minuet. The middle part is called the trio. A simple way to rep-
resent this structure is to write ABA, where section A is the minuet and
section B is the trio. Each section is eight bars long.

So to create such a musical piece, it was necessary to write down the minuet
part (section A) and the trio part (section B). Rather than generate one
section at a time, in Kirnberger’s game the first measures of both section A
and B were generated, then the second measures, and so on until all eight
measures were complete.

For a particular measure, the procedure for generating the corresponding
minuet measure and the trio measure worked as follows. One would roll
two fair six-sided dice, and label the results X1 and X2. X1 was then used
in a look-up table to determine the content of that measure of the minuet,
and X2 was used in a different look-up table to determine the content of
that measure of the trio. Figure 1 shows a table from a 1767 edition [3] of
Kirnberger’s work. “Premiere partie” indicates the minuet, and “seconde
partie” indicates the trio.

For instance, if bar 4 of the minuet were under construction, and the first roll
were a 4, then based on Kirnberger’s encoding, bar 4 of the minuet (section
A) would use piece 74. Similarly, if the second roll were a 2, then bar 4 of
the trio (i.e., section B) would use piece 39.

Figure 1: Table for using die rolls to construct bars of a minuet and trio. Scan from https:

//imslp.org/wiki/File:PMLP243537-kirnberger_allezeit_fertiger_usw.pdf.

https://imslp.org/wiki/File:PMLP243537-kirnberger_allezeit_fertiger_usw.pdf
https://imslp.org/wiki/File:PMLP243537-kirnberger_allezeit_fertiger_usw.pdf

Ilana Shapiro and Mark Huber 169

Each roll of the dice for each bar of the result determines a different piece.
There are sixteen distinct bars in total in sections A and B, and each bar
has six possibilities (since one die is rolled per bar); hence, this game can
theoretically produce 616 = 2.82110991×1012 different musical compositions.

However, these dice games are greatly restricted in that they rely on a com-
poser that has already created the possible bars to be put together. In other
words, the player is merely piecing together already composed music in new
ways.

That leaves open the following question: how does one randomly create the
individual notes that comprise the bars?

One such approach is to model music using Markov chains, which opens
doors to computationally composing arbitrarily long and fully-fledged com-
positions.

1.1. Using Markov chains

In the musical dice game, the bar choices were independent. However, this
is a bad idea for note generation. If the notes are changing too rapidly, and
each note is independent of the preceding note, the result is more likely to
be cacophony than music.

A solution comes with the use of Markov chains. A Markov chain is a se-
quence of random variables X1, X2, X3, . . . such that the distribution of Xt+1

conditioned on X1, . . . , Xt only depends on Xt, and not on the values of
X1, . . . , Xt−1. Markov chains were introduced in 1906 by Andrey Markov [5]
as a way of understanding which letters follow others in a typical text.

In this paper, Markov chains are used to determine the sequence of notes
(both in pitch and duration). The distribution of the type of the next note
will only depend on the current note, and not on any of the notes that came
before.

The first use of Markov chains to compose music came in 1957, when the
ILLIAC I computer was used to compose the Illiac Suite by Hiller and Isaac-
son [7]. Since then, Markov chains have been a simple tool for automatically
generating a new piece of music. The Markov chains employed by Hiller and
Isaacson dealt purely with horizontal melody; in this paper, we endeavor to
incorporate harmony and rhythm as well.

170 Markov Chains for Computer Music Generation

In the past sixty years since Hiller and Isaacson, Markov chains have become
increasingly popular as a means of music generation. Ramanto and Maulidevi
(2017) [6] employed Markov chains for procedural content generation of mu-
sic, in which music is randomly generated in response to a user-inputted
mood. Rather than generating music in the style of an existing piece as this
paper seeks to, they sought to generate music in the style of a certain mood.
Linskens (2014) [4] also employed Markov chains for algorithmic music im-
provisation, rather than composition. The Markov chains were trained on
an existing piece, like they are in this paper, but then the algorithm was
given a certain amount of freedom to vary between the notes of a designated
chord or even an unspecified pitch lying somewhere in the bounds of a chord
in order to achieve the improvisation quality. This paper does not explore
improvisation, though this is certainly an interesting avenue.

Others, such as Yanchenko and Mukherjee (2018) [8] have used more complex
statistical models such as time series models, which are variations on Hidden
Markov Models (HMMs). With the Hidden Markov Model, instead of gen-
erating a sequence of states, each state omits an observable, and the states
themselves are hidden. The idea here is to use techniques such as dynamic
programming to backtrack from the generated observables in order to deter-
mine the optimal sequence of hidden states that generated these observables.
Kathiresan (2015) [1] also employs HMMs to generate music against a variety
of constraints with the goal of making it sound as subjectively “musical” as
possible. This paper does not delve into HMMs, as the aim is to experiment
with the musical capabilities of simple Markov chains, but this may certainly
be an interesting avenue for future exploration.

The rest of the paper is organized as follows. In the next section (§2), we
describe the terminology of Markov chains in more detail. The subsequent
sections show how to estimate the parameters of the chain (§3-§4), and then
finally a new piece of music is built from an existing piece using these esti-
mates (§5). §6 contains the results of our work and §7 concludes this paper.

2. Theoretical Foundations of Markov Chains

Consider a sequence of random variables X1, X2, X3, Such a set of ran-
dom variables {Xi} forms a stochastic process. The index i in Xi is often
called the time. For a fixed time i, Xi is called the state of the chain.

Ilana Shapiro and Mark Huber 171

A Markov chain is a stochastic process such that for all i, it holds that

[Xi | X1, . . . , Xi−1] ∼ [Xi | Xi−1].

Here the ∼ symbol means that the left hand side and the right hand side
have the same distribution. In words, this says that the distribution of the
ith state in the sequence, given the values of all the states that came before,
will depend purely on the previous state. The most common type of Markov
chain is also time homogeneous, which means that for all i it holds that
[Xi | Xi−1] ∼ [X2 | X1]. In other words, the random way in which the state
evolves does not change as the time changes.

A Markov chain is also called a memoryless process, since the next state
depends purely on the current state, and not on the memory of the notes
that came before. In order to describe a time homegeneous Markov chain, it
is necessary to know what values the random variables Xi can take on, and
what the probabilities are for moving to the next state.

2.1. Representing Markov chains

Markov chains can be represented in a variety of ways. One helpful way
is to represent them graphically with a directed graph. This is a collection
of nodes and edges, in which each edge has a direction from one node to
another. Each node represents a state in the Markov chain, and each edge
has a probability associated with it that represents the probability the source
node will transition to the destination node (the source and destination node
can be the same, which means the process remains in the same state). All the
probabilities associated with the edges extending from a node must sum to
one (if any edges are omitted, it is assumed that they represent a transition
with probability zero).

An example of a graphical representation of a simple Markov chain is shown
in Figure 2. The states {Sunny,Windy,Rainy} represent weather, and the
probabilities of moving between the three states are above the arrows.

An alternate way of encoding the Markov chain is with the transition matrix,
where the (a, b)th entry of the matrix is the probability of moving from state
a to state b.

172 Markov Chains for Computer Music Generation

Sunny Windy

Rainy

0.1

0.5

0.6

0.3

0.2

0.3

0.7

0.3

Figure 2: Markov Chain graph example.

The transition matrix for the Markov chain from Figure 2 is as follows.

Sunny Windy Rainy

Sunny 0.6 0.3 0.1
Windy 0.7 0 0.3
Rainy 0.5 0.2 0.3

Note that all rows in the transition matrix (or equivalently the probabilities
on all outgoing edges) must sum to 1.

3. Using Markov Chains to Generate Music

Now consider a given piece of music, which we will call the training data. This
data will be used to estimate the probabilities for our Markov chain. This
chain can then be used to generate music in the same style as the original
piece.

In order to generate music, we want the nodes in the Markov chain, or the set
of states, to represent sound objects. These are entities that represent a single
note or chord and contain information about its pitch(es), octave(s), and
duration. Thus, each node will contain data about the single note name or
collection of notes in the chord, using note names A through G; the accidental

Ilana Shapiro and Mark Huber 173

(sharp, flat, or natural) for each note, represented by #, b, or no symbol,
respectively; the octave for each note, represented by an integer from 0-8;
and the duration of the sound object, denoted by a whole note, half note,
quarter note, or some shorter value.

One additional special case will be accounted for: the rest, where no sound
is played. A rest will be indicated by R. Rests also have a duration.

The set of states will be determined by parsing the piece of music. This
process will be discussed shortly, in §4.

We can define our transition matrix by determining the probability for each
pair of sound objects s1 and s2, i.e., the chance of moving from s1 to s2 in the
chain. In addition, we would also like to define an initial probability vector
I. This vector gives us the probability that for each state si, the initial state
in the chain X1 will be equal to si.

For example, consider the Markov chain represented graphically in Figure 3
that consists of only three sound objects. Note that C represents a quarter
note, and

�
� represents an eighth note.

(C#4, E4, A4)C F4
�
�

R
�
�

0.1176

0.6234

0.2590

0.5123

0.4877

0.9995

0.0005

Figure 3: Musical Markov Chain example using graphical representation.

174 Markov Chains for Computer Music Generation

The set of states in the example is S = {(C#4, E4, A4)C, F4
�
� , RC}. The

first state is a chord that consists of three notes — C#, E4, and A4 — and
lasts for a duration of one quarter note. The second state is a single note —
F4 — with a duration of one eighth note, and the final state is a rest with a
duration of one quarter note.

The transition matrix M representation of this chain is shown in Figure 4.

Figure 4: Musical Markov Chain example using a transition matrix.

In order to generate a new piece of music, it is necessary to choose a sound
object to start with in our generation. We could simply pick the first sound
object in the training data, or we could create an initial probability vector
that tells us the probability that each sound object is encountered. We will
choose to do the latter and determine our initial probability vector by finding
how many total sound objects there are in the piece (including repetitions)
and the number of times each individual sound object appears.

To see how this works, suppose that in the training data, (C#4, E4, A4)C

appears twice, F4
�
� appears three times, and RC appears once. Then the

resulting initial probability vector I is shown in Figure 5.

Figure 5: Musical Markov Chain Example

We now have the tools to generate music from the Markov chain in the same
style as the training data.

4. Parsing the Training Data

Now we move from theory to practice: using a computer, how can we find
the probabilities for our Markov chain, and then simulate a musical score
using this chain? The Python language will be used for this exploration.

Ilana Shapiro and Mark Huber 175

Throughout this section, please refer to the file parse_musicxml.py in Ap-
pendix A.1 for the full Python code. Alternatively, the code as well as the
examples are available at the following link:

https://github.com/ilanashapiro/Markov-Model-Music-Generation

There are additional examples included in the GitHub repository; the ones
discussed in this paper are in the files named “Cantabile flute excerpt”
and “Cantabile piano excerpt” (.musicxml extension for the original ver-
sion and .mid extension for the generated version).

The training data (the input musical piece) is given in a symbolic form called
MusicXML. It is a file format that encodes musical notation based on exten-
sible markup language (hence the xml ending of MusicXML).

We will use Python’s ElementTree library to parse the MusicXML file and the
NumPy library to build and manipulate matrices in a class called Parser.
This class will be used later in the runner file generate.py to parse the
input MusicXML files. Parser’s constructor initializes some important in-
formation, such as filename, transition matrix, initial probability vector, and
states (the sound objects we will obtain from the input piece).

We initially obtain the data that allows us to build our transition matrix.
All sound objects (whether they are chords or individual notes) are extracted
sequentially from the MusicXML file and stored in an ordered dictionary
alongside the number of times each one appears in the piece. A sound object
is uniquely identified by its note(s), accidental, octave, and duration. At
this time, we also simultaneously save each sound object in an ordered list
(the set of states) in the order it appears. Note that this ordered list, as it
represents a set, does not contain repetitions. This process ensures that the
sound object dictionary and the list of states contain the same data in the
same order, which will allow us to successfully create our transition matrix.

From the dictionary, the transition matrix is created using NumPy. If the
length of the list of states (i.e. the number of sound objects) is n, then the
transition matrix has dimensions n × n. Both the row and column order
correspond to the order of the state dictionary and the list of states. The
transition matrix is built as follows:

1. Using NumPy, the matrix is initialized to the known dimensions n×n.
Next, the matrix is built row by row.

https://github.com/ilanashapiro/Markov-Model-Music-Generation

176 Markov Chains for Computer Music Generation

2. Each entry i, j in the matrix is initialized to represent the number of
times the ith sound object transitions to the jth sound object in the list
of states. At this point, the matrix is symmetric.

3. Once all n2 entries have been initialized, NumPy is used to divide all
the elements in each row by the row sum.

4. Finally, for each row, each entry is replaced with the sum of all the
previous entries using NumPy’s cumsum function. This means that
the first element in each row will retain the value from the previous
step, and all subsequent values will be sequentially greater. Note that
because of what we did in the previous step, by applying cumsum we
ensure that the final value in each row is now 1.

Imagine the ith row representing a line, and each i, j entry representing a
segment on that line. The i, j entry that corresponds to the longest line
segment is the entry corresponding to some sound object (i.e. state) j that
sound object i has the highest probability of transitioning to. This process to
transform the data into the line analogy is also known as inverse transform
sampling.

The initial probability vector is built in a similar way. This vector has di-
mensions 1×n, since we simply want to know the probability that each of n
sound objects is chosen at random. We therefore build the initial probability
vector as follows:

1. Using NumPy, a matrix is initialized to the known size of 1 × n (i.e.
one row of length n).

2. The ith entry in the matrix (i.e. the initial probability vector) is initial-
ized to represent the number of times the ith note in the list of states
appears in the piece.

3. Once all n entries have been initialized, NumPy is used to divide all
the elements in each row by the row sum.

4. Finally, NumPy’s cumsum function is used to replace each entry in the
single row of this matrix with the sum of all the previous entries. This
means that the first element will retain the value from the previous
step, and all subsequent values will be sequentially greater. Note that
because of what we did in the previous step, by applying cumsum we
ensure that the final (i.e. nth) value is now 1.

The line segment analogy applies here exactly the same way as before.

Ilana Shapiro and Mark Huber 177

A final thing to note is that the last note in the piece is assigned a transition
to a quarter rest, and a transition is then added from the quarter rest to
the first note in the piece. This ensures that the Markov model contains no
absorbing states, or states that once entered, cannot be exited.

5. Generating New Music

[Throughout this section, please refer to the file generate.py in Appendix
A.2.]

Now that we have a working parser that initializes all the elements we need
for our Markov chain, we are ready to generate new music in the style of the
training data.

We now a create file called generate.py and import our parser file
(parse_musicxml.py). We can instantiate the Parser class to create Parser
objects (i.e., create Markov chains) for however many songs we want, so
long as we have the corresponding MusicXML files. In the code attached
here, four parsers are created in a list. This allows us to loop through the
Parser objects in the list and generate music for the Markov chain that each
represents.

In order to generate music from a Markov chain, we start by using NumPy to
generate a random number from 0 to 1 inclusive. This is known as a standard
uniform random variable. Now consider the initial probability vector. To
use our generated standard uniform to draw from this vector, think of the
generated random number as being a point on the line segment that is the
result of inverse transform sampling having been applied to this vector. This
can be visualized in Figure 6.

(C#4, E4, A4)C

0.1176

F4
�
�

0.7410

R
�
�

1.00000.3443

Figure 6: Inverse Transform Sampling example: the blue dot is a uniform draw from 0
to 1, the value of 0.3443 indicates that the draw is F4C since that is the next label to the
right of the dot.

We will choose the next highest state (i.e., sound object) compared to the
randomly chosen point we generated. In this example, our randomly gener-
ated point would give us the sound object C3

�
� . This allows us to choose the

initial state of the Markov model.

178 Markov Chains for Computer Music Generation

We then generate a sequence of states (i.e., our generated music) from the
model starting at this initial state. We follow the same method as above for
choosing the next state to transition to, except we now use the transition
matrix instead of the initial probability vector. The length of the sequence
is determined by the user’s input. In the code in the Appendix, the length
chosen is 100 notes.

After generating the sequence of sound objects, the sequence is written out to
a MIDI file, which is then loaded into the symbolic music software MuseScore
for viewing and playing.

6. Results of the Music Generation

The generated music in this paper results from Markov chains trained on
excerpts from Shapiro’s composition Cantabile for flute and piano. In order
to obtain these excerpts, the flute and piano parts were separated, and a
short passage was taken from each in order to demonstrate a monophonic
example (i.e., the solo flute part), and an example with harmony/chords (i.e.,
the piano part). The results of the music generated from these parts using
their respective Markov chains are as follows:

Figure 7 below contains the original flute part (that is, the training data),
and Figure 8 on the next page contains the generated flute part.

Figure 7: Original flute part [excerpt from Cantabile by Ilana Shapiro]

Ilana Shapiro and Mark Huber 179

Figure 8: Generated flute part

Notice that the generated flute part does not have the same number of mea-
sures as the original flute part. When running the program, the user must
specify how many measures the generated part will be. This number does not
have to match that of the training data, since the training data is only used
to create the Markov chain. Once this is complete, arbitrarily long pieces
can be generated from the chain.

The generated flute part in Figure 8 contains marked similarities to the
original. The rhythm in measure 1 of the generated part is quite similar
to the rhythm in measure 4 of the original, and the harmony throughout
centers around the key of A major, just like the original, even though the
key signature indicates D minor. Additionally, notice the behavior of the C
in measures 3-4: it is sometimes flat and sometimes sharp, a behavior picked
up from measures 6-7 of the original score. Some notes, such as the first
two eighth notes of measure 6 in the generated score, are a direct quote (in
this case, of measure 1) from the original. The last beat of measure 2 in the
generated score also appears to be an incomplete F# minor scale inspired by
measure 4 of the original.

180 Markov Chains for Computer Music Generation

Figure 9 below contains the original piano part (i.e., the training data for
piano) and Figure 10 on the next page contains the generated piano part.
They also do not have the same number of measures, as was specified by the
user before running the program.

Figure 9: Original Piano Part [excerpt from Cantabile by Ilana Shapiro]

Ilana Shapiro and Mark Huber 181

Figure 10: Generated Piano Part

(Note that because of the way the MIDI file was generated, the generated
piano part gets compressed into a single staff. This is not a result of the
Markov chain, it is simply due to the MIDI formatting).

The generated piano part in Figure 10 demonstrates melodic, harmonic, and
rhythmic qualities from the training piece. The parallel octaves from the
original score are frequent throughout the generated part, and harmonic
structures (like the augmented C chord (C-E-G#) in the final measure and
the A major scale in measure 9) have made their way through as well.

182 Markov Chains for Computer Music Generation

In addition, notice the rhythmic similarity of the scores, particularly the
common patterns of sixteenth notes tied over into the next beat and the pat-
tern of four sixteenths, one eighth and two sixteenths, and two eighths that
appears in both measure 3 of the original and measure 1 of the generated
score.

7. Conclusions

Using a simple Markov chain, music can be successfully generated in the style
of the training piece. Rhythm, octave, pitch, and accidentals are accounted
for. However, there are limitations to the current setup as well as many other
avenues to be explored. Currently, the parser does not handle pieces with
multiple voices within a single part, or a piece with multiple instruments
considered simultaneously, due to difficulty parsing the data from the cur-
rent musicXML format. In addition, dynamics are not taken into account.
Other statistical models, such as the Hidden Markov Model (HMM) men-
tioned earlier in the paper, may provide interesting avenues of exploration.
Using HMMs and dynamic programming, we could, for instance, generate
observable notes/chords, and use dynamic programming to uncover the opti-
mal sequence of rhythms, or perhaps dynamics (whatever we choose to be the
hidden states) based on the observables. It may also be an interesting avenue
to explore the power of simple as well as hidden Markov models in creating
less tonal music, and even jazz. It is evident that statistical modeling opens
a multitude of creative avenues for computer music generation.

References

[1] Thayabaran Kathiresan, Automatic Melody Generation, PhD thesis,
KTH Royal Institute of Technology School of Electrical Engineering, June
2015.

[2] Johann Philipp Kirnberger, Der allezeit fertige Polonaisen- und Menuet-
tencomponist, Werner Icking, 1757.

[3] Johann Philipp Kirnberger, Der allezeit fertige Polonaisen- und Menuet-
tencomponist, George Ludewig Winter, 1767.

[4] Erlijn J Linskens, Music Improvisation using Markov Chains, PhD thesis,
Maastricht University, June 2014.

Ilana Shapiro and Mark Huber 183

[5] Andrey Andreevich Markov, In Yu. V. Linnik, editor, Selected Works,
Classics of Science, Academy of Sciences of the USSR, 1951.

[6] Adhika Sigit Ramanto and Nur Ulfa Maulidevi, “Markov chain based
procedural music generator with user chosen mood compatibility”, Inter-
national Journal of Asia Digital Art & Design, Volume 21 Issue 1 (March
2017), pages 19–24.

[7] Örjan Sandred, Mikael Laurson, and Mika Kuuskankare, “Revisiting
the illiac suite—a rule based approach to stochastic processes”, Sonic
Ideas/Ideas Sonicas, Volume 2 (2009), pages 42–46.

[8] Anna K Yanchenko and Sayan Mukherjee, Classical Music Composition
Using State Space Model, PhD thesis, Duke University, September 2018.

A. Appendix

The following code can also be accessed at
https://github.com/ilanashapiro/Markov-Model-Music-Generation

A.1. parse MusicXML.py

1 import xml.etree.ElementTree as ET

2 import collections

3 import numpy as np

4

5 class Parser:

6 def __init__(self , filename):

7 self.filename = filename

8 self.root = ET.parse(filename).getroot ()

9

10 self.initial_transition_dict = collections.

OrderedDict ()

11 self.normalized_initial_probability_vector =

None

12

13 self.transition_probability_dict = collections.

OrderedDict ()

https://github.com/ilanashapiro/Markov-Model-Music-Generation

184 Markov Chains for Computer Music Generation

14 self.normalized_transition_probability_matrix =

None

15

16 self.states = []

17

18 self.smallest_note_value = None

19 self.tempo = None

20

21 self.order_of_sharps = [’F’, ’C’, ’G’, ’D’, ’A’,

’E’, ’B’]

22 self.key_sig_dict = {’C’:’’, ’D’:’’, ’E’:’’, ’F’

:’’, ’G’:’’, ’A’:’’, ’B’:’’}

23 self.parse()

24

25 def parse(self):

26 prev_note = None # the prev note (it may be part

of a chord). but this variable itself NEVER

stores a chord

27 sound_object_to_insert = None # either note or

chord

28 prev_sound_object = None # either note or chord

29 in_chord = False

30 note = None

31 chord = None

32 prev_duration = None

33 first_sound_object = None

34

35 direction_blocks = self.root.find(’part’).find(’

measure ’).findall(’direction ’)

36 for direction_block in direction_blocks:

37 if self.tempo is None and direction_block.find

(’sound ’) is not None and ’tempo’ in

direction_block.find(’sound ’).attrib:

38 self.tempo = int(direction_block.find(’sound

’).attrib[’tempo’])

39 self.instrument = self.root.find(’part -list’).

find(’score -part’).find(’part -name’).text

40 if self.instrument == ’Piano’:

Ilana Shapiro and Mark Huber 185

41 self.instrument = ’Acoustic Grand Piano’

42 self.name = self.root.find(’credit ’).find(’

credit -words’).text

43

44 for i, part in enumerate(self.root.findall(’part

’)):

45 for j, measure in enumerate(part.findall(’

measure ’)):

46 measure_accidentals = {}

47 self.set_key_sig_from_measure(measure)

48

49 for k, note_info in enumerate(measure.

findall(’note’)):

50 duration = note_info.find(’type’).text

51 note = None

52

53 if note_info.find(’pitch’) is not None:

54 value = note_info.find(’pitch’).find(’

step’).text if note_info.find(’pitch’

).find(’step’) is not None else ’’

55 octave = note_info.find(’pitch ’).find(’

octave ’).text if note_info.find(’

pitch’).find(’octave ’) is not None

else ’’

56

57 accidental_info = note_info.find(’

accidental ’).text if note_info.find(’

accidental ’) is not None else None

58 accidental = ’’ if accidental_info is

None else (’#’ if accidental_info ==

’sharp’ else ’b’)

59 note_for_accidental = value+octave

60 if accidental_info == ’sharp’:

61 accidental = ’#’

62 measure_accidentals[

note_for_accidental] = ’#’

63 elif accidental_info == ’flat’:

64 accidental = ’b’

186 Markov Chains for Computer Music Generation

65 measure_accidentals[

note_for_accidental] = ’b’

66 elif accidental_info == ’natural ’:

67 accidental = ’’

68 measure_accidentals[

note_for_accidental] = ’n’

69 elif accidental_info is None and

note_for_accidental in

measure_accidentals:

70 accidental = ’’ if measure_accidentals

[note_for_accidental] == ’n’ else

measure_accidentals[

note_for_accidental]

71 else:

72 accidental = self.key_sig_dict[value]

73

74 note = value + accidental + octave

75 elif note_info.find(’chord’) is None:

76 # means that note_info.find(’rest ’) is

not None ----> so we are in a rest

77 note = ’R’

78

79 if note is not None:

80 is_last_iteration = i == len(self.root.

findall(’part’)) - 1 and j == len(

part.findall(’measure ’)) - 1 and k ==

len(measure.findall(’note’)) - 1

81

82 if note_info.find(’chord’) is not None:

83 # currently , the duration is just

going to be that of the last note

in the chord (can go back to change

this later...)

84 if in_chord:

85 chord.append(note)

86 else:

87 chord = [prev_note , note]

88 in_chord = True

Ilana Shapiro and Mark Huber 187

89 else:

90 prev_sound_object =

sound_object_to_insert

91 if in_chord and note_info.find(’chord’

) is None:

92 in_chord = False

93 sound_object_to_insert = (tuple(

sorted(chord)), prev_duration)

94 else:

95 sound_object_to_insert = (prev_note ,

prev_duration)

96

97 self.handle_insertion(

prev_sound_object ,

sound_object_to_insert)

98 if first_sound_object is None and

prev_sound_object is not None and

prev_sound_object [0] is not None:

99 first_sound_object =

prev_sound_object

100 if is_last_iteration:

101 # note that we’re NOT in a chord (i.

e. last sound object is NOT a

chord)

102 self.handle_insertion(

sound_object_to_insert , (note ,

duration))

103

104 prev_note = note

105 prev_duration = duration

106

107 if in_chord:

108 # handle the case where the last sound object

was a chord

109 final_chord = (tuple(sorted(chord)),

prev_duration)

110 self.handle_insertion(sound_object_to_insert ,

(final_chord , prev_duration))

188 Markov Chains for Computer Music Generation

111 else:

112 # final sound object was NOT a chord , it was a

note

113 # set the last note/chord to transition to a

quarter rest , rather than nothing

114 # then add a transition from the rest back to

the first sound object

115 # this ensure that everything has a transition

defined for it

116 self.handle_insertion ((note , duration), (’R’,

"quarter"))

117 self.handle_insertion ((’R’, "quarter"),

first_sound_object)

118

119 self.build_matrices ()

120

121 def set_key_sig_from_measure(self , measure_object)

:

122 key_sig_value = measure_object.find(’attributes ’

)

123 if key_sig_value is not None:

124 key_sig_value = key_sig_value.find(’key’)

125 if key_sig_value is not None:

126 key_sig_value = int(key_sig_value.find(’

fifths ’).text)

127

128 for note in self.key_sig_dict:

129 self.key_sig_dict[note] = ’’

130 if key_sig_value == 0:

131 return

132 elif key_sig_value < 0:

133 for i in range(len(self.order_of_sharps) -

1, len(self.order_of_sharps)-

key_sig_value , -1):

134 self.key_sig_dict[self.order_of_sharps[i

]] = ’b’

135 else:

Ilana Shapiro and Mark Huber 189

136 for i in range(key_sig_value , len(self.

order_of_sharps)):

137 self.key_sig_dict[self.order_of_sharps[i

]] = ’#’

138

139 def build_matrices(self):

140 self.

build_normalized_transition_probability_matrix

()

141 self.build_normalized_initial_probability_vector

()

142

143 def build_normalized_initial_probability_vector(

self):

144 self.normalized_initial_probability_vector = np.

array(list(init_prob for init_prob in self.

initial_transition_dict.values ()))

145 # convert to probabilities

146 self.normalized_initial_probability_vector =

self.normalized_initial_probability_vector/

self.normalized_initial_probability_vector.

sum(keepdims=True)

147 # multinomial dist

148 self.normalized_initial_probability_vector = np.

cumsum(self.

normalized_initial_probability_vector)

149

150 def build_normalized_transition_probability_matrix

(self):

151 # initialize matrix to known size

152 list_dimension = len(self.states)

153 self.normalized_transition_probability_matrix =

np.zeros((list_dimension ,list_dimension),

dtype=float)

154

155 for i, sound_object in enumerate(self.states):

156 for j, transition_sound_object in enumerate(

self.states):

190 Markov Chains for Computer Music Generation

157 if transition_sound_object in self.

transition_probability_dict[sound_object

]:

158 self.

normalized_transition_probability_matrix

[i][j] = self.

transition_probability_dict[

sound_object][transition_sound_object]

159 self.normalized_transition_probability_matrix =

self.normalized_transition_probability_matrix

/self.

normalized_transition_probability_matrix.sum(

axis=1,keepdims=True)

160 self.normalized_transition_probability_matrix =

np.cumsum(self.

normalized_transition_probability_matrix ,axis

=1)

161

162 def handle_insertion(self , prev_sound_object ,

sound_object_to_insert):

163 if sound_object_to_insert is not None and

sound_object_to_insert [0] is not None:

164 if prev_sound_object is not None and

prev_sound_object [0] is not None:

165 self.insert(self.transition_probability_dict

, prev_sound_object ,

sound_object_to_insert)

166 if sound_object_to_insert not in self.states:

167 self.states.append(sound_object_to_insert)

168

169 if sound_object_to_insert in self.

initial_transition_dict:

170 self.initial_transition_dict[

sound_object_to_insert] = self.

initial_transition_dict[

sound_object_to_insert] + 1

171 else:

Ilana Shapiro and Mark Huber 191

172 self.initial_transition_dict[

sound_object_to_insert] = 1

173

174 def insert(self , dict , value1 , value2):

175 if value1 in dict:

176 if value2 in dict[value1]:

177 dict[value1][value2] = dict[value1][value2]

+ 1

178 else:

179 dict[value1][value2] = 1

180 else:

181 dict[value1] = {}

182 dict[value1][value2] = 1

183

184 def print_dict(self , dict):

185 for key in dict:

186 print(key , ":", dict[key])

187

188 def rhythm_to_float(self , duration):

189 switcher = {

190 "whole": 4,

191 "half": 2,

192 "quarter": 1,

193 "eighth": 1/2,

194 "16th": 1/4,

195 "32nd": 1/8,

196 "64th": 1/16,

197 "128th": 1/32

198 }

199 return switcher.get(duration , None)

A.2. generate.py

1 import parse_MusicXML

2 import random

3 import numpy as np

4 import midi_numbers

192 Markov Chains for Computer Music Generation

5 from midiutil import MIDIFile

6 import sys

7 import re

8

9 # I did not write this function. Credit: Akavall on

StackOverflow

10 # https://stackoverflow.com/questions /17118350/how-

to-find -nearest -value -that -is-greater -in-numpy -

array

11 def find_nearest_above(my_array , target):

12 diff = my_array - target

13 mask = np.ma.less(diff , 0)

14 # We need to mask the negative differences and

zero

15 # since we are looking for values above

16 if np.all(mask):

17 return None # returns None if target is greater

than any value

18 masked_diff = np.ma.masked_array(diff , mask)

19 return masked_diff.argmin ()

20

21 def generate(seq_len , parser):

22 sequence = [None] * seq_len

23

24 # comment in for same start note as training data

25 note_prob = random.uniform(0, 1)

26 rhythm_prob = random.uniform(0, 1)

27 note_index = find_nearest_above(parser.

normalized_initial_probability_vector ,

note_prob)

28 check_null_index(note_index , "ERROR getting note

index in initial probability vector")

29 curr_index = 0

30

31 # comment in for seed

32 # sequence[0] = parser.states[0]

33 # note_index = 0

34 # curr_index = 1

Ilana Shapiro and Mark Huber 193

35

36 while (curr_index < seq_len):

37 note_prob = random.uniform(0, 1)

38 rhythm_prob = random.uniform(0, 1)

39

40 note_index = find_nearest_above(parser.

normalized_transition_probability_matrix[

note_index], note_prob)

41 check_null_index(note_index , "ERROR getting note

index in probability transition matrix")

42

43 sequence[curr_index] = parser.states[note_index]

44 curr_index += 1

45

46 return sequence

47

48 def check_null_index(index , error_message):

49 if(index == None):

50 print(error_message)

51 sys.exit (1)

52

53 def get_note_offset_midi_val(note):

54 switcher = {

55 "C": 0,

56 "C#": 1,

57 "Db": 1,

58 "D": 2,

59 "D#": 3,

60 "Eb": 3,

61 "E": 4,

62 "Fb": 4,

63 "E#": 5,

64 "F": 5,

65 "F#": 6,

66 "Gb": 6,

67 "G": 7,

68 "G#": 8,

69 "Ab": 8,

194 Markov Chains for Computer Music Generation

70 "A": 9,

71 "A#": 10,

72 "Bb": 10,

73 "B": 11,

74 "Cb": 11

75 }

76 return switcher.get(note , 0)

77

78 def get_pitch(note):

79 octave_info = re.findall(’\d+’, note)

80 if len(octave_info) > 0:

81 octave = int(octave_info [0])

82 note = ’’.join([i for i in note if not i.isdigit

()])

83 base_octave_val = 12* octave + 24

84 note_val = base_octave_val +

get_note_offset_midi_val(note)

85 return note_val

86 return None # this is a rest

87

88 if __name__ == "__main__":

89 parsers = [parse_MusicXML.Parser(’

Cantabile_flute_excerpt.musicxml ’),

parse_musicxml.Parser(’Cantabile_piano_excerpt.

musicxml ’)]

90

91 for parser in parsers:

92 sequence = generate (100, parser)

93 track = 0

94 channel = 0

95 time = 0.0 # In beats

96 duration = 1.0 # In beats

97 tempo = parser.tempo if parser.tempo is not

None else 80 # In BPM

98 volume = 100 # 0-127, as per the MIDI

standard

99

Ilana Shapiro and Mark Huber 195

100 output_midi = MIDIFile (1) # One track , defaults

to format 1 (tempo track is created

automatically)

101 output_midi.addTempo(track , time , tempo)

102 output_midi.addProgramChange(track , channel ,

time , midi_numbers.instrument_to_program(

parser.instrument))

103

104 time = 0.0

105 for sound_obj in sequence:

106 duration = float(parser.rhythm_to_float(

sound_obj [1]))

107 sound_info = sound_obj [0]

108 if type(sound_info) is str:

109 pitch = get_pitch(sound_info)

110 if pitch is not None: # i.e. if this is not

a rest

111 output_midi.addNote(track , channel , pitch ,

time , duration , volume)

112 else: # type(sound_info) is tuple

113 for note in sound_info:

114 pitch = get_pitch(note)

115 output_midi.addNote(track , channel , pitch ,

time , duration , volume)

116 time += duration

117 with open(parser.filename + ".mid", "wb") as

output_file:

118 output_midi.writeFile(output_file)

	Markov Chains for Computer Music Generation
	Recommended Citation

	Introduction
	Using Markov chains

	Theoretical Foundations of Markov Chains
	Representing Markov chains

	Using Markov Chains to Generate Music
	Parsing the Training Data
	Generating New Music
	Results of the Music Generation
	Conclusions
	Appendix
	parse_MusicXML.py
	generate.py

