
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

KGI Theses and Dissertations KGI Student Scholarship

Winter 12-18-2020

Modeling Residence Time Distribution of Chromatographic Modeling Residence Time Distribution of Chromatographic

Perfusion Resin for Large Biopharmaceutical Molecules: A Perfusion Resin for Large Biopharmaceutical Molecules: A

Computational Fluid Dynamic Study Computational Fluid Dynamic Study

Kevin Vehar

Follow this and additional works at: https://scholarship.claremont.edu/kgi__theses

 Part of the Biotechnology Commons, Complex Fluids Commons, Fluid Dynamics Commons, Geometry

and Topology Commons, and the Other Biomedical Engineering and Bioengineering Commons

Recommended Citation Recommended Citation
Vehar, Kevin. (2020). Modeling Residence Time Distribution of Chromatographic Perfusion Resin for Large
Biopharmaceutical Molecules: A Computational Fluid Dynamic Study. KGI Theses and Dissertations, 18.
https://scholarship.claremont.edu/kgi__theses/18.

This Restricted to Claremont Colleges Dissertation is brought to you for free and open access by the KGI Student
Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in KGI Theses and Dissertations by an
authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/kgi__theses
https://scholarship.claremont.edu/kgi_student
https://scholarship.claremont.edu/kgi__theses?utm_source=scholarship.claremont.edu%2Fkgi__theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/111?utm_source=scholarship.claremont.edu%2Fkgi__theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/243?utm_source=scholarship.claremont.edu%2Fkgi__theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=scholarship.claremont.edu%2Fkgi__theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=scholarship.claremont.edu%2Fkgi__theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=scholarship.claremont.edu%2Fkgi__theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/239?utm_source=scholarship.claremont.edu%2Fkgi__theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

Modeling Residence Time Distribution
of Chromatographic Perfusion Resin

For Large Biopharmaceutical
Molecules: A Computational Fluid

Dynamic Study

Author:
Kevin Vehar

Supervisor:
Dr. Cameron Bardliving

A Dissertation submitted to the Faculty of Keck Graduate Institute in
partial fulfillment of the requirements for the degree of Doctor of Philosophy

in Applied Life Sciences

Claremont, California
2020

http://www.kgi.edu

OFFICE OF THE REGISTRAR

PhD Dissertation
Completion Form
We, the undersigned, certify that we have read this dissertation of

Name and ID#
and approve it as adequate in scope and quality for the degree of Doctor of Philosophy.

Dissertation Committee:

(Typed name of Chair), Chair

(Typed name), Member

(Typed name), Member

(Typed name), Visiting Examiner

(Typed name), PhD Program Director

Updated September 2018

Signature

Signature

Signature

Signature

Signature

Kevin Vehar, 97202357

DocuSign Envelope ID: C9EDCC8A-5BA0-4437-BCEB-70B7718B2114

Cameron Bardliving, PhD

Erno Pungor, PhD

Hu Zhang, PhD

Jim Sterling, PhD

Parviz Shamlou, PhD

ii

Abstract

Modeling Residence Time Distribution of

Chromatographic Perfusion Resin For Large

Biopharmaceutical Molecules: A Computational Fluid

Dynamic Study

by Kevin Vehar

The need for production processes of large biotherapeutic particles, such as virus-

based particles and extracellular vesicles, has risen due to increased demand in the devel-

opment of vaccinations, gene therapies, and cancer treatments. Liquid chromatography

plays a significant role in the purification process and is routinely used with therapeutic

protein production. However, performance with larger macromolecules is often incon-

sistent, and parameter estimation for process development can be extremely time- and

resource-intensive. This thesis aimed to utilize advances in computational fluid dynamic

(CFD) modeling to generate a first-principle model of the chromatographic process while

minimizing model parameter estimation’s physical resource demand. Specifically, I uti-

lized explicit geometric rendering to develop a CFD steady-state model to simulate fluid

flow through and around a perfusive porous resin in a pseudo packed bed flow-cell to

predicted fluid velocities and shear stress. I generated different explicit geometries, and

iii

compared the velocity profiles of steady-state simulations against reported literature val-

ues of commercially available resin’s intraparticle convective flow. I then developed a

two-part transient CFD discrete phase model to model a tracer protein’s capture and

release from a resin. Particle age distribution functions were calculated to characterize

the macromixing in the model and compared them with existing single parameter models.

These models exhibited similar distribution profiles and provided additional information

about the shear forces acting on the particles. These preliminary studies revealed that

shear is relatively low shear at process operating conditions, and the low yield of large

biotherapeutic particles in chromatography is likely not due to shear forces.

iv

Acknowledgments

I want to thank my PI, Dr. Cameron Bardliving, for guiding and motivating me

throughout this journey. As both a mentor and a friend, our talks got me through many

challenging times during my PhD. I would also like to thank Dr. Parviz Shamlou, Dr.

Hu Zhang, and Dr. Erno Pungor for their constant support and guidance as my doctoral

committee members.

I would also like to thank all the incredibly supportive people I’ve met over the

years at KGI. Lynn Svay played a key role during my time at KGI and was indeed one of

the best lab instructors, mentors, and friends anyone could have asked for, and I wouldn’t

be where I am today if it wasn’t for her. I would also like to thank Dr. Stephanie Parker

for her guidance and good humor. Additionally, I would like to thank Dr. Sue Behrens

for her continued support during my final year. I am also very grateful for my peers and

friends that I have made throughout my time at KGI: Dr. Andrew Burns, Dr. Corinna

Doris, Dr. Flaka Radoniqi, Aster Escalante, Payam Amiri, Christine Urrea, and David

Kent.

Finally, I would like to thank my family for their love and support in all aspects

of my life. My parents, Gordon and Janet, have been incredibly supportive forces in my

life. Despite being dyslexic, they always believed in me and never let my dyslexia be a

crutch. The fact that I can read, let alone wrote this thesis, is a testament to them. I’d

v

also like to thank my younger sister, Julia, for her love and support. And finally, I would

like to thank Jack for his constant love, support, and patience despite the vague nature

of scientific research. I would not have been able to complete this without him.

vi

Contents

Abstract ii

Acknowledgments iv

Contents vi

List of Figures x

List of Tables xvi

1 Introduction 1

1.1 Biotherapeutic Particles . 1

1.2 Manufacturing Process . 3

1.3 This Work . 6

2 Background/Literature Review 9

2.1 Gene Therapy . 9

2.1.1 Types of Viral Vectors . 11

2.1.2 Manufacturing Process Overview 13

vii

2.2 Physics of Flow and Traditional Definitions 15

2.2.1 Packed Beds and Packing Regimes 15

2.2.2 Fluid Flow Definitions . 16

2.2.3 Aspect Ratio . 17

2.2.4 Wall Regions . 19

2.2.5 Empirical Equations and Models 21

2.2.5.1 Distributions of Residence Times 22

2.3 Computational Fluid Dynamics (CFD) . 25

2.3.1 Computational methods . 25

2.3.2 Meshing and Contact Point Modifications 26

2.3.3 Porous Media Rendering . 28

2.4 Discrete Phase Modeling Equations . 29

2.4.1 Saffman Lift Force . 31

2.4.2 Stokes-Cunningham Drag Law and Brownian Motion 31

2.4.3 Brownian Random Force . 32

2.4.4 Particle Tracking with Eulerian-Lagrangian Method 33

2.4.5 Coupling between continuous and discrete phases 33

2.4.6 Shear Stress Integral . 34

3 Methodology 37

3.1 Packed Bed Generation . 37

3.1.1 Geometry Software: Blender . 38

3.1.2 Physics Engine and Rigid Body Dynamics 38

3.1.3 Blender . 43

viii

3.1.4 Python Scripts . 44

3.1.4.1 Packed Bed Generator Script 44

3.1.4.2 Contact Point Modifier Script 46

3.1.5 CFD Modeling of Packed Bed . 48

3.2 Porosity and Explicit Geometry Rendering 52

3.2.1 Case Setup for Different Porosity Settings (Geometry) 57

3.2.2 Meshing . 59

3.2.3 CFD Setup . 60

3.3 DPM Flow Cell . 61

3.3.1 Geometry . 61

3.3.2 Mesh . 62

3.3.3 CFD Setup . 63

4 Results and Discussion 69

4.1 Steady State Models . 69

4.1.1 Pore Lattice Exploration . 83

4.2 DPM Models . 88

4.2.1 Capture Simulation . 89

4.2.2 Release Simulation . 106

5 Conclusions 116

A References for Figure 1.2 118

B Contact Modification Python Script 128

ix

C UDF Codes 135

C.1 Interpolate . 135

C.2 Shear Integral UDF . 136

C.3 Monitor Points in Fluent UDF . 141

Bibliography 149

x

List of Figures

1.1 Historical data on vectors used in gene therapy clinical trials adapted from

(Ginn et al., 2018) . 3

1.2 Chromatography yields for viral vectors as reported in literature 5

2.1 Viral vector structure, (Taylor, 2010) . 12

2.2 Virus purification for large-scale operations, adapted from Merten et al.

(2014) . 14

2.3 Two different aspect ratios . 18

2.4 Radial porosity variance, (De Klerk, 2003) 20

2.5 Computational fluid dynamics process work flow. 26

2.6 Diagram of the types of contact point modification methods: (a) Gaps; (b)

Overlaps; (c) Caps and (d) Bridges; adapted from Dixon, Nijemeisland,

and Stitt (2013) . 28

2.7 Integration using the Trapezoidal Rule . 35

3.1 Overview of Bullet Physics engine simulation loop for Rigid Body Dynamics

(RBD) adapted from Coumans (2015). 40

xi

3.2 Contact modification based on proximity. The top picture shows the source

object is colored by proximity, red indicates close proximity to the target,

blue indicates low face proximity to the target object. The bottom shows

the applied simple deformation on the source object with the previous

proximity coloring. 49

3.3 Results of bed packings for different beads shapes with different ratios of

bed to particle diameters. 51

3.4 Depiction of the thickness and length lattice parameters for the Shell tool

at different possible slices in the lattice. The blue shaded area represents

the solid porous structure, while the white space represents the fluid void

space. 56

3.5 Flow cell geometry . 57

4.1 Shear stress distribution of mesh. (a) shows location of two volume probes,

red corresponds to the BOI resin volume and blue corresponds to the packed

bed region bounded to the , colors correspond to chart line colors in (b-h). 71

4.2 Velocity Vectors in YZ-plane at X = 0. 73

4.3 Close up view of velocity vectors form Figure 4.2 YZ-plane at X = 0. . . . 74

4.4 Closer view of velocity vectors between beads form Figure 4.2 YZ-plane at

X = 0. 75

4.5 Velocity vectors with contours of the velocity magnitude form Figure 4.2

YZ-plane at X = 0. 76

4.6 Closer view of velocity vectors between beads along with the contours of

the velocity magnitude on YZ-plane at X = 0. 77

xii

4.7 Volume rendering of shear stress in the fluid domain for steady-state sim-

ulations with inlet velocities of 50, 100, 150, 200, 250, 300 and 1000 cm h−1. 78

4.8 Contours of shear stress on YZ-plane at X = 0 for steady-state simulations

with inlet velocities of 50, 100, 150, 200, 250, 300 and 1000 cm h−1. 79

4.9 Contours of wall shear on the surrounding beads as well as on the explicit

geometry of the Bead Of Interest (BOI). 80

4.10 Closeup of contours of wall shear stress on explicit geometry of the BOI

with velocity vectors in black. 81

4.11 Sliced view of contours of wall shear stress on explicit geometry of the BOI

with velocity vectors in black. 82

4.12 The relationship of the cell Péclet number distribution for IgG vs the radial

coordinate of the BOI resin for pore lattice structures of 3.5 µm, 3.0 µm,

2.0 µm and 1.5 µm. The diffusion coefficient used was for IgG protein in

dilute solution at 25 °C where D =40 µm2 s−1. 85

4.13 The relationship of the AAV cell Péclet number distribution vs the radial

coordinate of the BOI resin for pore lattice structures of 3.5 µm, 3.0 µm,

2.0 µm and 1.5 µm with an inlet velocity of 1000 cm h−1. (a) The diffusion

coefficient used was based on the Stokes Einstein equation D =11 µm2 s−1

for AAV assuming a spherical particle with radius of 13 nm.(b) The diffu-

sion coefficient used was based on the Seisenberger et al. (2001) observed

diffusion coefficient D =7.5 µm2 s−1. 87

4.14 Distribution of particle residence time for the capture simulation trapped

on BOI rendered as (a) a histogram and (b) a boxplot. 91

xiii

4.15 Histograms of Residence Time Distribution of Discrete Phase Model (DPM)

simulations separated by particle fate location (i.e., particles captured on

resin or particles that flowed through to outlet). 92

4.16 Age distribution functions of DPM particles captured on the BOI resin

during the the capture simulation at 5 inlet velocities. (a,c,e,g) are the

plots for the exit age, cumulative distribution, internal age distribution, and

intensity functions, respectively.(b,d,f,h) are the dimensionless plots of the

exit age, cumulative distribution, internal age distribution, and intensity

functions, respectively. 94

4.17 Age distribution functions of DPM particles that escaped through the out-

let during the capture simulation at 5 inlet velocities. (a,c,e,g) are the plots

for the exit age, cumulative distribution, internal age distribution, and in-

tensity functions, respectively.(b,d,f,h) are the dimensionless plots of the

exit age, cumulative distribution, internal age distribution, and intensity

functions, respectively. 95

4.18 Relationship of the mean residence time (tm) of outlet particles with vol-

umetric flow rate (Q). The black error bars represent the variance of the

residence time distribution. 96

4.19 The results of the tanks in series RTD model (solid orange curve) fit to the

particles trapped at the resin during the capture DPM simulations (solid

blue curve) at various inlet velocities. The blue vertical dash line indicates

the mean residence time of the DPM simulation; the orange vertical dash

line indicates mean residence time of the tanks in series RTD model. . . . 99

xiv

4.20 The results of the tanks in series RTD model (solid orange curve) fit to the

particles that escape through the outlet during the capture DPM simula-

tions (solid blue curve) at various inlet velocities. The blue vertical dash

line indicates the mean residence time of the DPM simulation; the orange

vertical dash line indicates mean residence time of the tanks in series RTD

model. 100

4.21 Kernel Density Estimate of Residence Time Distribution of DPM simula-

tions separated by particle fate location. (i.e., particles captured on resin

or particles that flowed through to outlet). 101

4.22 Percent of trapped particles captured on BOI categorized by inner and

outer regions (dark blue and light blue respectively). 102

4.23 Boxplot showing the Residence Time Distribution of particles separated

out by surface. 103

4.24 Residence Time of particles vs the particle capture location normalized to

the particle’s radius. Points are colored by the capture surface of the BOI. 104

4.25 (a)Particle Shear Stress Distribution in Terms of Percent Bound to Resin.

(b) Particle Shear Stress integral Distribution 105

4.26 Individual chromatograms from Figure 4.27 107

4.27 Stacked release chromatograms, see Table 4.3 for particle statistics 108

xv

4.28 Age distribution functions of DPM particles that escaped through the out-

let during the release simulation for 5 inlet velocities; (a,c,e,g) are the plots

for the exit age, cumulative distribution, internal age distribution, and in-

tensity functions, respectively.(b,d,f,h) are the dimensionless plots of the

exit age, cumulative distribution, internal age distribution, and intensity

functions, respectively. 109

4.29 Contours of the Z-velocity of in an XY-plane cross section through the

center of the BOI. Negative velocity values point towards the outlet. . . . 112

4.30 Distribution of the cell Péclet number within a 50 micron radius of the

center of the BOI. 113

4.31 Contours of the Péclet number in an XY-plane cross section through the

center of the BOI. 114

4.32 Levenspiel and Smith’s (1957) axial dispersion model with open-open

boundary condition Residence Time Distribution (RTD) fit to the DPM

release simulation RTDs using the open-source rtdpy python package

(Flamm, 2019). 115

xvi

List of Tables

3.1 Different particle shapes for bed packing 50

3.2 Explicit pattern geometries considered for porous rendering. Geometries

were generated using ANSYS SpaceClaim shell infill tool except for the

Sphere/Ring Clustering, which was generated using Blender. 53

3.3 Different BOI lattice geometries with their corresponding 2D slice and 3D

renderings considered for explicit porous geometry rendering. 59

3.4 Temporal parameters used for the transient DPM particle loading simula-

tions for the 5 different inlet velocities. 66

4.1 Mesh Independence . 70

4.2 Different BOI lattice geometries with their corresponding 2D slice and 3D

renderings considered for explicit porous geometry rendering. 84

4.3 DPM Particle exit statistics for release simulations 106

4.4 Curve fitting results for the release simulation 111

xvii

Acronyms

AAV adeno-associated virus. 2, 3, 15, 85, 86

BOI Bead Of Interest. xii, xiv–xvi, 57–64, 67, 69, 70, 72, 80–82, 84, 88–91, 102, 104,

106, 110, 112–114

CFD Computational Fluid Dynamics. 6–8, 25–28, 48, 52, 57, 60, 62, 63, 69, 83, 86, 88,

116, 117

DEM Discrete Element Method. 39

DPM Discrete Phase Model. xiii–xv, 8, 29, 34, 64, 65, 67, 68, 88, 89, 92, 97, 98, 101,

106, 108, 115, 117

KDE Kernel Density Estimation. 90

PBG Packed Bed Generator. 44

RBD Rigid Body Dynamics. x, 39, 40, 43

RTD Residence Time Distribution. xv, 22–24, 90, 93, 97, 98, 108, 115

UDF User Defined Function. 34, 65–67

xviii

VLPs Virus-Like Particles. 2, 3

VWP Vertex Weight Proximity. 47, 48

xix

Dedicated to Jack

1

Chapter 1

Introduction

1.1 Biotherapeutic Particles

Demand for improved production processes of biotherapeutic particles has risen

due to increased interest in the development of gene therapies, vaccines, and cancer treat-

ments. These fields have successfully utilized large and complex molecules, such as virus-

based particles and extracellular vesicles (EVs), in various medical applications (Ginn

et al., 2018; Effio and Hubbuch, 2015). Even though these macromolecules are inherently

different particles, they possess similarities in addition to their size range.

EVs are nanometer-sized particles secreted from most cells that act as important

mediators of intercellular communications. They are enclosed in a bilipid membrane and

often contain lipids, proteins, and various nucleic acids from the source cell that can be

transferred and regulate the biological functions of the target cell. These particles are

very similar to an enveloped virus in structure, using similar mechanism routes to enter

cells by binding to a cell’s plasma membrane and entering via fusion or endocytosis (van

Dongen et al., 2016; Nolte-‘t Hoen et al., 2016).

Chapter 1. Introduction 2

Vaccination remains one of the most effective ways to prevent viral diseases. It

traditionally used either dead, inactivated, or attenuated samples of a virus to train the

immune system to recognize and combat the harmful pathogen without being exposed to

the disease (Moleirinho et al., 2020; Roldão et al., 2010). Initially, while this method of

using “whole” viral particles was successful for a variety of viruses, some of these early

vaccines actually caused actual virus outbreaks, most notably with the foot-and-mouth

disease virus (FMDV). An alternative vaccination method was developed using Virus-Like

Particles (VLPs), a multiprotein structure that conformationally mimics the native virus

but lacks the replication genome. While they no longer possess the genetic information

required to replicate, VLPs can be safer and cheaper vaccine candidates. However, they

still possess the manufacturing challenges faced by these larger biotherapeutic particles

(Roldão et al., 2010).

While viruses are used to protect against various infectious diseases, researchers

have also developed ways to reprogram viral particles to deliver a therapeutic gene instead

of the viral genome into target cells. This type of viral gene therapy treatment has

been applied to a variety of clinical applications, from oncolytic treatments to hemophilia

(Merten et al., 2014; Ginn et al., 2018). To date, many of the gene therapy clinical trials

rely on a variety of viral vectors to deliver the therapeutic gene, which includes adenovirus,

retrovirus, lentivirus, adeno-associated virus (AAV), vaccinia virus, herpes simplex virus,

and pox virus. Figure 1.1 shows the breakdown of vectors used to date in clinical trials,

as reported by Ginn et al. (2018). While there have been several gene therapy clinical

trials to date, the majority of products are still in phase I and phase I/II (BioCentury

Inc., 2019). This bottleneck of gene therapy products in early phases of clinical trials

highlights a need for improvements in high volume clinical-grade vector production.

Chapter 1. Introduction 3

Figure 1.1: Historical data on vectors used in gene therapy clinical trials
adapted from (Ginn et al., 2018)

1.2 Manufacturing Process

As with most biologic manufacturing processes, the complexity of the molecules’

physical and chemical properties dictates the complexity of the purification strategies.

These larger biotherapeutic particles can range in size from 20 nm for AAV to 1000 nm

for the measles virus (Moleirinho et al., 2020). Additionally, the particles’ shape can

compound the complexity. Some particles, like influenza, VLPs, and the measles virus,

have a pleomorphic shape, while other particles have a ridged icosahedral geometry aden-

ovirus and AAVs. Such complexities among particles prevent the generation of a generic

purification process like those used for protein therapeutics. The entire production and

purification process required additional efforts to ensure gentle conditions and aseptic

processing in the before-mentioned viral cases. Obviously, each step and method used in

the production process must be tailored to the specific biotherapeutic particle to ensure

Chapter 1. Introduction 4

that the particle’s structure and integrity are maintained throughout the process. Other-

wise, these particles could lose their ability to generate the desired immune response for

vaccines or their infectivity for gene therapy viral vectors.

Generally speaking, the purification strategies for viral vectors can be broken

down generally into common steps. After generating particles with either mammalian

or insect cell culture, the downstream purification process begins with harvest and clar-

ification steps. This is followed by intermediate purification steps using concentration

techniques and chromatography methods. Finally, particles undergo a polishing and for-

mulation step. The process can include a sterile filtration step. These downstream purifi-

cation steps account for most of the overall manufacturing cost for viral vector production

and are critical for a successful product (Fuerstenau-Sharp et al., 2017).

One of the unit operations that take up a significant portion of the downstream

process is chromatography. This unit operation is routinely used with therapeutic protein

production due to its scalability; however, this is not the case with larger molecules

such as DNA and viruses. Figure 1.2 shows the variability of purification yields for viral

vectors as reported in literature (adapted from Walker (2011)). Moreover, due to a packed

bed’s inherent complexity, characterizing a chromatography unit operation and accurately

modeling the process can be extremely time and resource-intensive.

Chapter 1. Introduction 5

Figure 1.2: Chromatography yields for viral vectors as reported in litera-
ture. Adapted from (Walker, 2011), references can be found in Appendix A.

Chapter 1. Introduction 6

1.3 This Work

This research aims to utilize advances in Computational Fluid Dynamics (CFD)

modeling to generate a first-principles model of the chromatographic process while min-

imizing the demand for physical resources. Such a model would help further process

understanding in therapeutic protein production and be utilized to select appropriate

gene therapy purification strategies while minimizing material operational costs.

Aim 1 was to identify the best geometries required for capturing the fluid flow

during the chromatographic process at the bead level using CFD. Bioprocess liquid chro-

matography columns consist of a bed of randomly packed beads with two levels of porosity

to improve mass transfer issues associated with larger molecules. These porous beads have

throughpores that enable fractions of the convective fluid flow to assist with the diffusive

flow by pushing large molecules into the bead’s inner region, made up of smaller diffusive

pores. This indicated four levels of porous geometric resolutions to consider when model-

ing a chromatography column, that of the packed bed, bead, throughpore, and diffusive

pore level. Current commercial CFD software packages offer porous media zones; how-

ever, they are designed to model pressure gradient using momentum sinks and not the

chaotic nature of fluid flow that could result in shear and eddy formation that can arise

with the flow around closely packed spheres. Different particle arrangements were inves-

tigated to capture the porosity structure of a packed bed geometry for CFD modeling.

Different explicit porous renderings of bead geometries were also examined to capture the

convective nature of the throughpores with perfusion resin. Because I was mainly focused

on looking at shear within the chromatography columns, these two levels (packed bed

and throughpore) were deemed to have a sufficient level of resolution for CFD modeling.

Additionally, to minimize the influence of the fluid flow’s boundary conditions, the inlet

Chapter 1. Introduction 7

and outlet were extruded out from the interest region by four bead diameters.

Aim 2 was devoted to mesh these complex, explicit geometries of packed beds

and porous particles effectively and efficiently. Accurate grid generation is critical to CFD

modeling; thus, meshing methods need to consider geometric fidelity and grid density to

capture all relevant flow fields while balancing demand on computational resources. In-

creasing geometric complexity can increase the mesh complexity required for an accurate

CFD simulation. File type compatibility with meshing software was also factored in due

to the constraints brought on by the packed bed generating software platform’s output

files. Issues can arise with the meshing of packed beds for CFD modeling at contact point

regions, so contact point modification methods and their implementation of geometry

modification were also investigated. For explicit renderings of porosity for chromatogra-

phy beads, features considered include the number of subdomains, sharp corners/edges,

continuity of the fluid region, and geometry pattern density. Additionally, typical CFD

mesh quality metrics were considered for generating the computational grid before con-

duction mesh independence studies. These factors led to a pseudo-flow-cell model with

14 spheres surrounding a bead with explicit porous geometry to mimic fluid flow around

a perfusion resin in a packed bed.

Aim 3 was to develop a CFD steady-state model that simulates fluid flow

through and around a perfusion resin in a pseudo packed bed flow cell by modifying

the shape and density of the porous geometry patterns. Mesh independence studies for

the different explicit geometries were performed as steady-state simulations. The fluid

flow ratio through and around particles was compared with commercial resin’s literature

values to identify the appropriate explicit porous geometry rendering before assessing

shear and eddy formation within the packed bed. These preliminary studies show that

Chapter 1. Introduction 8

shear is relatively low at process operating conditions and that the low yield of large

biotherapeutic particles in chromatography is likely, not due to shear forces.

Aim 4 was to develop a transient model of protein binding and eluting from the

explicit geometric resin. The model was split into a two-part transient CFD DPM where

tracer particles with IgG properties injected into the fluid domain using the steady-state

model’s velocity profile to initialize the simulation. DPM particle fates were tracked, and

age distribution functions were calculated for particles captured on the resin with explicit

geometry (also referred to as the bead of interest) and the outlet to characterize the

macromixing in the model. I then compared this model with existing single parameter

models. My models show similar distribution profiles as previous models and provide

additional information about the shear forces acting on the particles.

9

Chapter 2

Background/Literature Review

2.1 Gene Therapy

Gene therapy is a novel therapeutic technique, which utilizes genetic methods to

treat various human diseases. Gene therapy can be used to silence a mutated gene, replace

the non-functioning gene with a functional one, or to introduce a new gene into the body

to help fight a disease. For these genes to be effective in fighting the disease, they need

to be inserted into the correct cell types/tissues, in addition to being expressed within

those cells. A wide variety of vectors and gene delivery techniques have been developed

to transfer the genetic material to targeted cells. While nonviral approaches have been

increasingly trendy in recent years, viral vectors remain by far the most popular approach,

making up two-thirds of the trials performed to date (Ginn et al., 2018) , see Figure 1.1

for a breakdown of vectors used in clinical trials.

Broadly, gene therapy can be categorized into two types based on the cells it

targets: germline gene therapy and somatic gene therapy. In somatic gene therapy, the

genetic material is inserted into some targeted cells, but the change is not passed down

Chapter 2. Background/Literature Review 10

to the next generation. In contrast, germline gene therapy, the therapeutic gene will

be passed along to the next generation. This difference is significant because current

legislation only allows gene therapy to target somatic cells (Wirth, Parker, and Ylä-

Herttuala, 2013). The first authorized gene transfer study, which used a retroviral vector,

took place in 1989 at the National Institutes of Health (NIH) (Rosenberg et al., 1990).

Since then, a wide variety of vectors and gene delivery techniques have been employed in

clinical trials, with the majority being viral vectors (Rosenberg et al., 1990; Ginn et al.,

2018).

Viral vectors were initially chosen because they insert genetic material into the

host cells as part of their replication cycle. Usually, this genetic material contains the

building blocks to create more viruses by hijacking the cells’ production machinery, cre-

ating more viral particles, and infecting more cells. Some of these viruses can physically

incorporate their genes into the host’s genome and can be expressed throughout the life

span of that cell. Scientists have commandeered this process by replacing the genes coding

for replication with those of genes that, when expressed, encode for a therapeutic effect.

Harnessing this ability would allow viral vectors to genetically modify cells and provide a

therapeutic benefit to people struggling with lifelong diseases.

There are, however, multiple ways to use these vectors for therapeutic benefit.

The three general methods are gene silencing, gene replacement, and gene augmenta-

tion. In gene silencing, RNA interference inactivates or “knocks out” a mutated gene

that is not functioning correctly. Another way to use gene therapy is by gene addi-

tion/replacement/correction, where one adds or replaces the mutated (nonfunctioning)

gene that caused disease with a healthy copy of the gene. For example, BioMarin was

developing a gene therapy that inserts a working copy of factor VIII for people with

Chapter 2. Background/Literature Review 11

Hemophilia A who are missing or have low levels of clotting factor VIII (BioMarin Phar-

maceutical Inc., 2019). Finally, in gene augmentation, a new gene into the body to help

fight a disease such as with CAR T cell therapyDecision Resources Group (2019). Uti-

lizing these viral vectors as genetic tools could provide a permanent solutions to many

lifelong diseases.

To date, many of the gene therapy clinical trials rely on a variety of viral vectors

to deliver the therapeutic gene, which includes adenovirus, retrovirus, lentivirus, adeno-

associated virus, vaccinia virus, herpes simplex virus, and pox virus. Figure 1.1 shows

the breakdown of vectors used to date in clinical trials, as reported by Ginn et al. (2018).

While there have been several clinical trials to date, the majority of products are still in

phase I and phase I/II (BioCentury Inc., 2019). This bottleneck of gene therapy products

in early phases of clinical trials highlights a need for improvements in high volume clinical-

grade vector production.

2.1.1 Types of Viral Vectors

Each viral vector has its advantages and disadvantages, often stemming from

their anatomy, see Figure 2.1. The relative merits of different viral vectors stem from how

they store their genome, the makeup of their capsid proteins, and whether or not they

have an envelope.

Viral vectors use either DNA or RNA to store genes and regulatory sequences,

often referred to as an expression cassette, that are then used to direct the host cell’s

machinery into making viral RNA and proteins. These expression cassettes are comprised

of a promoter sequence, open reading frame and a 3’ untranslated region

Chapter 2. Background/Literature Review 12

Figure 2.1: Viral vector structure, (Taylor, 2010)

Viruses that keep their genetic material in the form of RNA require expression of

additional enzymes, such as reverse transcriptase and integrase, to reverse transcribe the

RNA molecule into a DNA molecule and then integrated it into a semi-random location

in the host cell genome (Poletti and Mavilio, 2018).These additional enzymes are often

packed into the viral particle with the nucleic acids. Additionally, depending on the virus

selected, transfection of the genetic material can be either stable (i.e. DNA successfully

integrated into the cellular genome) or episomal (i.e. left free in the nucleus and not

integrated into the cellular genome).

The capsid, or the protein coat enclosing the nucleic acids of the virion, also plays

an essential role in shaping the properties of the viral vector. This shell is made up of

numerous copies of one or a few protein subunits that self-assemble to form a symmetric

shell that protects the genome and constrains the genome length. Additionally, these

Chapter 2. Background/Literature Review 13

capsid proteins are usually positively charged for counteracting the negatively charged

nucleic acids of the genome. Some viral vectors also have a phospholipid envelope derived

from the host cell membrane, covering their protective protein capsid. This viral envelope

has glycoproteins from the host as well as the viral genome, which allows the virus to hide

from the immune system, as well as identify and bind to host receptor sites, fuse with the

host’s membrane, and allow the capsid and genome to enter and further proliferate in a

new host cell. These surface proteins, whether on an envelope or as part of a capsid, can

vary even among different types of vectors and dictate the surface characteristics and the

specificity of the viral vector.

2.1.2 Manufacturing Process Overview

For the clinical implementation of gene therapy, large-scale production processes

need to be in place to generate highly pure and biologically active vectors. Such processes

need to fulfill regulatory chemistry, manufacturing, and controls (CMC) requirements, in

addition to being cost-effective, robust, and scalable. Moreover, these processes would

ideally apply to a large variety of viral vectors(Morenweiser, 2005). Figure 2.2 shows a

generic multi-step vector production process with upstream and downstream components

that can vary depending on the properties of the viral vector.

The upstream component of viral vector production for gene therapy involves

the growth and harvesting of viruses, while downstream focuses on vector purification. It

should be noted that downstream purification accounts for a bulk of the overall manufac-

turing cost and is often the processing bottleneck (Lyddiatt and O’Sullivan, 1998). The

harvesting step, or primary recovery, can vary depending on whether vector production is

Chapter 2. Background/Literature Review 14

Figure 2.2: Virus purification for large-scale operations, adapted from
Merten et al. (2014)

Chapter 2. Background/Literature Review 15

intracellular or extracellular for nonenveloped and enveloped vectors, respectively. For in-

tracellular vector expression (e.g., adenoviral and AAV vectors), cells need first to be sepa-

rated from the cell culture before undergoing a cell disruption step. The downstream steps

generally include clarification, capture, purification, polishing, and formulation (Merten

et al., 2014). The clarification and formulation steps concentrate and exchange buffers

using ultrafiltration and diafiltration unit operations. Capture, purification, and polishing

are often executed using different types of chromatography. Each of these processes must

be customized to the specific biochemical and physical properties of the gene-therapy

vector to preserve the viral infectivity and maximize product recovery (Fuerstenau-Sharp

et al., 2017). Considering characteristics, such as virus particle size, stability, and charge

at neutral pH, is critical for selecting purification methods and identifying possible steps

that affect the final-product quality (de las Mercedes Segura, Kamen, and Garnier, 2006;

Fuerstenau-Sharp et al., 2017).

2.2 Physics of Flow and Traditional Definitions

2.2.1 Packed Beds and Packing Regimes

Despite extensive use of packed beds process engineering, fluid flow in packed

beds is complex and exceedingly difficult to study because of the media’s inherently ran-

dom and disordered characteristics. Process engineers use packed beds in a multitude

of unit operations, such as filtration, distillation, and chromatography, to name a few.

These packed beds can generally be thought of as a matrix-like structure formed by par-

ticles deposited into a container. These packed particles form pores or voids which fluid

Chapter 2. Background/Literature Review 16

is free to percolate through. When the packed bed is confined inside a cylindrical tube,

it is referred to as a packed column, and it can either be fixed or fluidized. As the name

implies, a fixed bed is comprised of particles that are static and fixed in place, and unable

to move. In contrast, a fluidized bed is a physical phenomenon where particles are carried

randomly in the container by fluid flow. This work is mainly concerned with the study of

fixed beds and their influence on the flow.

2.2.2 Fluid Flow Definitions

The transport of flow through porous media follows the same relationships as

those in basic fluid mechanics. The fluid flux through the packed bed is expressed by the

volumetric flow rate, Q (m3 s−1). The superficial (or empty tube) velocity, U , is related

to the volumetric flow rate by the following expression:

U =
Q

A
(2.1)

Where A is the cross-sectional area (m2) of the tube. Superficial velocity is referred to as

“superficial” because it is what the fluid’s velocity would be if there were no porous media,

i.e., an empty tube. But because the presence of solid particles within the bed reduces

the available fluid flow area, the fluid squeezed through the pores at a velocity greater

than the superficial velocity to preserve the fluid’s continuity. This velocity is referred

to as the interstitial velocity (or the velocity within the bed, Uo), and is related to the

superficial velocity by the following expression:

Uo =
U

ε
(2.2)

Chapter 2. Background/Literature Review 17

Where ε is the global property of average porosity. Resistance to fluid flow through porous

media is determined the void volume in the bed (Vv) and governed by the area available

for the flow to pass. Volume concentration (C) is the ratio of volume solids in bed to

the total bed volume and the remaining volume fraction of the bed is a dimensionless

term called the void fraction or porosity (ε). Equation 2.2 forms the average pore velocity

since there is no guarantee that pores are homogeneous in a disordered bed (Baker, 2011;

Holdich, 2002).

ε =
Vv
V

(2.3)

ε+ C = 1 (2.4)

It follows that at one extreme, when porosity is zero, the bed is full of solids,

and there is nowhere for the fluid to flow; thus, the resistance is infinite. At the other

extreme, when porosity is unity, and there are no solids present, the interstitial velocity

of the fluid is the same as the superficial velocity.

2.2.3 Aspect Ratio

Packed beds are characterized as particles packed into a pipe where they interact

with a fluid. Still, the dimensions of the pipe and the particles influence the flow and

can vary dramatically. To characterize and compare different packed bed scenarios, it

is often desirable to use a dimensionless property called the aspect ratio (Aratio). This

dimensionless property is the packed bed’s ratio between the equivalent diameter (dp) of

Chapter 2. Background/Literature Review 18

Figure 2.3: Left: high aspect ratio. Right: low aspect ratio

the particle and the container’s diameter (D), given as:

Aratio =
D

dp
(2.5)

Packed beds are described as having either low or high aspect ratios, which influ-

ences the packing structure (ordered vs. disordered) and the velocity profile. For packed

beds with high aspect ratios (such as a tube filled with sand), the velocity profile would

be relatively uniform throughout the column due to the pseudo-homogeneous network of

pores formed by the small solid particles. On the other hand, low aspect ratio packed

beds are usually highly disordered with inhomogeneous packing, leading to variation in

local porosity and thus velocity profiles. Refer to Figure 2.3 for an example of different

aspect ratios. The exact value that dictates whether a bed has a high or low aspect ratio

is not well defined, but Aratio = 50 is a reasonable distinguishing value (Baker, 2011).

(De Wilde et al., 2009)

Chapter 2. Background/Literature Review 19

2.2.4 Wall Regions

When particles are packed into a container, they usually orient themselves in

a random disordered fashion. Those that are in close contact with the walls are not as

efficiently packed as those closer to the center of the bed because of the container’s flat

surface. Such radial variations in packing result in an increased porosity next to the wall

in comparison to the bed’s core. This higher porosity region is often referred to as the

wall region, and the region unaffected by the confining wall is called the core region.

Many researchers have conducted experiments to determine packing structures

and voidage variations of packed beds (Roblee, Baird, and Tierney, 1958; Benenati and

Brosilow, 1962; Goodling et al., 1983; Di Felice and Gibilaro, 2004). The first investigators

to do this were Roblee, Baird, and Tierney (1958) who measured radial variation by

packing cardboard cylinders with cork spheres, filling the void space with molten wax,

and slicing it into sections once the wax had solidified. The authors found that the bed

porosity showed attenuating oscillations in the near-wall region until it reached a constant

value of around 4 to 5 particle diameters from the wall. Benenati and Brosilow (1962)

found similar results when they filled a container with lead spheres (shot) of uniform size

and epoxy resin. After the authors cured the container, they machined it into sections

and used the average density of each annular ring to determine the average voidage of that

part. They found that the porosity behaved similarly to the findings of Roblee, Baird,

and Tierney (1958).

Another paper published by Goodling et al. (1983) reported similar findings of

bed porosity behavior. They filled a cylinder with polystyrene spheres (for the packing)

and an epoxy mixed with finely ground iron (for the void space). Once cured, the authors

cut the column into thin annular rings and determined the radial porosity for each ring

Chapter 2. Background/Literature Review 20

Figure 2.4: Radial porosity variance, (De Klerk, 2003)

by calculating the change in mass and volume between cuts. Goodling et al. (1983) found

that at the cylinder wall, the radial porosity reached unity but oscillated with a damped

magnitude towards the mean build porosity near the bed core. Moreover, the experiments

showed that the wall effects could be detected up to a distance of 5 sphere diameters,

similar to Roblee, Baird, and Tierney (1958), and Benenati and Brosilow (1962). De

Klerk (2003) compiled the variation in radial porosity determined by these and various

other authors, refer to Figure 2.4.

For most bioprocessing manufacturing applications, such as liquid chromatogra-

phy, packed beds have a high aspect ratio. Thus, the wall region has little impact on the

fluid flow at large scale, but may become more important at smaller scales, such as in

high throughput experiments.

Chapter 2. Background/Literature Review 21

2.2.5 Empirical Equations and Models

Liquid chromatography remains one of the main pillars of the purification pro-

cess for manufacturing therapeutic proteins, despite being the process bottleneck and most

expensive unit operation(Kelley, 2007). Process development and optimization strategies

in the biotech industry often utilize modeling to understand the process and product

effectively, efficiently, and economically. These models help identify the critical qual-

ity attributes (CQAs) of the product and the critical process parameters (CPPs) of the

process (Rathore, 2014)

There are two types of modeling approaches used in bioprocessing, empirical

modeling, and mechanistic modeling. Empirical modeling treats the system as a black

box by relying heavily on a statistical analysis of experimental data from a design of

experiments (DOE) to find relationships between output responses and input variables.

While this approach does provide sufficient process knowledge for creating a design space,

it is limited in its accuracy and robustness (Rathore and Kumar, 2017). In contrast,

mechanistic modeling employs functional relationships derived from natural laws govern-

ing the physical and biochemical effects. While the empirical approach has dominated the

industry’s process development and optimization methods, properly calibrated mechanis-

tic models can better predict process performance inside the calibration conditions and

extrapolate performance to outside these conditions.

Many mechanistic models have been developed over the years for liquid chro-

matography, each with their assumptions, but they are primarily based on mass conser-

vation equations. According to Shekhawat and Rathore (2019), liquid chromatography

has three levels where a mass transfer of solute molecules occur in a packed bed column:

“(i) interstitial bulk volume to the external stagnant film around the adsorbent particles

Chapter 2. Background/Literature Review 22

through convection and axial dispersion, (ii) external film to interior mobile phase of the

adsorbent particles through film diffusion, and (iii) interior mobile phase to the stationary

phase of the adsorbent particles through pore diffusion” (Shekhawat and Rathore, 2019).

Additionally, surface diffusion of the adsorbed solute molecules on the stationary phase

can also occur; however, for low-affinity solutes, this is usually neglected because it is one

to two orders of magnitude lower than pore diffusion (Suzuki, 1990).

These mass transport models available in the literature can be broken into three

broad categories: (i) equilibrium theory, (ii) plate theory, and (iii) rate models (Glueckauf,

1955; Ruthven, 1984). Refer to (Shekhawat and Rathore, 2019) for an excellent review of

the different models.

2.2.5.1 Distributions of Residence Times

First proposed by MacMullin and Weber Jr (1935), the distribution of residence

times for analysis of chemical reactor performance has been widely used in chemical

engineering since Prof. Danckwerts (1953) characterized most of the distributions of

interest. Residence time is defined as the time the atoms have spent in the reactor, and

engineers often look at the distribution since some molecules leave reactors immediately

while others linger. This RTD of a reactor is a characteristic of mixing in the reactor and

can give distinctive clues about the type of mixing and information about the reactor’s

features (Fogler, 2006).

RTDs are measured experimentally by injecting a tracer (i.e., inert chemical,

molecule, or atom) at some time and then measuring the tracer’s concentration at the

outlet stream as a function of time. There are two types of injection methods, pulse

input, and step input.For pulse input experiments, a known amount of tracer, N0, is

Chapter 2. Background/Literature Review 23

quickly injected into the inlet, or feed stream, of the reactor for as short of a time as

possible. The outlet-concentration is then measured as a function of time and this curve

is referred to as the C-curve, or C(t), in RTD analysis. The amount of tracer, ∆N , leaving

the reactor between t and t+ ∆t is defined as:

∆N = C(t) υ ∆t (2.6)

where υ is the the outlet volumetric flow rate. If we divide by the total amount of tracer

material injected, N0 into the reactor we obtain the following equation which represents

the fraction of material that has a residence time in the reactor between time t and t+∆t:

∆N

N0

=
υ C(t)

N0

(2.7)

Where for pulse injection we define

E(t) =
υ C(t)

N0

(2.8)

so that
∆N

N0

= E(t) ∆t (2.9)

This quantity, E(t), is essentially the exit-age distribution function often referred to as

the E-curve in chemical engineering (Fogler, 2006). This function describes quantitatively

how much time fluid elements have spent in the reactor. When the volumetric flow rate

Chapter 2. Background/Literature Review 24

υ is constant, E(t) is defined as:

E(t) =
C(t)∫ ∞

0

C(t) dt

(2.10)

Since the fraction of material that has been in the reactor from t = 0 to t =∞ is one, it

follows that: ∫ ∞
0

E(t) dt = 1 (2.11)

Using these E-curves engineers often compare RTDs by using their moments instead of

comparing the entire distribution(Wen, Fan, and others, 1975). The mean residence time

(tm) is calculated using the first moment of the RTD function, E(t), and for constant

volumetric flow, space time (τ = V/υ) is equal to the mean residence time (see Fogler

(2006) for proof):

τ = tm =

∫ ∞
0

tE(t) dt∫ ∞
0

E(t) dt

=

∫ ∞
0

tE(t) dt (2.12)

The second moment of E(t) that engineers often use is the variance, which measures the

“spread” of the distribution, and is the square of the standard deviation:

σ2 =

∫ ∞
0

(t− tm)2 E(t) dt (2.13)

Additonally, RTD curves are often normalized using the parameter Θ which is defined as:

Θ ≡ t

τ
(2.14)

Chapter 2. Background/Literature Review 25

so that the dimensionless function E(Θ) is defined as:

E(Θ) = τE(t) (2.15)

The normalized functions allow engineers to compare RTD functions of identical reactors

across different flow rates.

2.3 Computational Fluid Dynamics (CFD)

CFD combines the fields of fluid mechanics and computer science in a way that

allows us to predict information about the ways fluid flows for a given situation. CFD

allows engineers to approximately predict the fluid flow fields using numerical analysis and

algorithms to solve the Navier-Stokes equations for mass and momentum. These models

provide insight into product/process performance that would otherwise be difficult to

attain experimentally, in addition to minimizing resource investment.

2.3.1 Computational methods

The CFD modeling process can be divided into three stages: pre-processing, so-

lution, and post-processing (see Figure 2.5). During pre-processing, the geometry of the

fluid region is first digitally rendered using computer-aided design (CAD) software. This

fluid geometry is then divided into smaller discrete control volumes, also called elements

or cells. The domain containing all of these elements is referred to as the computational

grid or mesh. After generating the mesh, pre-processing software allows users to set the

governing equations, material properties, and boundary conditions appropriate for the

Chapter 2. Background/Literature Review 26

Figure 2.5: Computational fluid dynamics process work flow.

simulation. Then, during the solution phase, the solver incorporates the model informa-

tion, discretizes the governing equations, and iteratively solves the flow variables for each

cell in the mesh. Once the error between successive iterations of the solution variables

has reached a specified level, referred to as residuals, the solution is considered converged.

The results are then extracted and analyzed during the post-processing stage. The post-

processing software gives engineers tools to generate high-end graphical visualization of

quantitative measures (Horner, Joshi, and Waghmare, 2017).

2.3.2 Meshing and Contact Point Modifications

For CFD simulations using the finite-volume method, the fluid domain is sub-

divided into small control volumes, or computational cells, during mesh generation. For

Chapter 2. Background/Literature Review 27

CFD models of fixed bed reactors, automatic meshing algorithms have difficulty gen-

erating quality mesh near the particle-particle and particle-wall contact points. These

regions around the contact points can be very narrow, resulting in computational cells

with extremely poor quality (i.e., low aspect ratio, large skewness, etc.), which often re-

sults in convergence problems. Such cell quality problems can be overcome by highly

refining the mesh in this region. However, this increase in the number of cells increases

the computational cost and the calculation time to solution.

The drawback to these methods dealing with low mesh quality at contact points

led to four alternative methods presented in the literature: gaps, overlaps, bridges, and

caps (Dixon, Nijemeisland, and Stitt, 2013)(see Figure 2.6). These methods can be sepa-

rated into two classes of methods based on how they manipulate the geometry.

Global modification methods (gaps and overlaps) affect the entire bed structure

by either shrinking or enlarging particles, respectively, by a specified value. In contrast,

local methods (bridges and caps) modify only the contact point and its immediate neigh-

borhood. The “bridges” method, presented by Ookawara et al. (2007), involves inserting a

cylinder between the two objects in contact or within a specified tolerance of each other.

In their study, Ookawara et al. oriented these cylinders so that the cylinder axis was

aligned with the vector connecting the particle centers. The cylinders encapsulated the

contact point and narrow region surrounding it, which avoids drastically changing the

bed void fraction. The counterpart to the bridges method is the caps method, proposed

by Eppinger, Seidler, and Kraume (2011), where particles are locally flattened at contact

points, so the vertices of the surface elements maintain a specified minimum distance.

This method is the equivalent to removing the spherical caps at the contact points, and

the derivation of the method’s name. This type of local mesh modification leads to a

Chapter 2. Background/Literature Review 28

Figure 2.6: Diagram of the types of contact point modification methods:
(a) Gaps; (b) Overlaps; (c) Caps and (d) Bridges; adapted from Dixon,

Nijemeisland, and Stitt (2013)

small gap between the particles, which can be filled with cells of good quality by meshing

algorithms. These local mesh modification methods for contact points have a smaller

impact on the bed void fraction than the global methods, which can affect the accuracy

of CFD drag coefficient and pressure drop calculations (Dixon, Nijemeisland, and Stitt,

2013).

2.3.3 Porous Media Rendering

Traditionally, CFD used continuum modeling of porous media, where porous

structures are represented as a volume average continuum without resolving the microscale

features. While this method of modeling is mathematically rigorous, it still has practical

shortcomings when it comes to porous material modeling. Such challenges arise with

multiphase modeling because discrete pore-scale phenomena and events are lost, and

only the volume-averaged amount of fluid phase for the computational node is known.

Chapter 2. Background/Literature Review 29

Moreover, these models utilize macroscopic transport properties that rely on constitutive

relationships derived from experiments, such as permeability coefficient or effective diffu-

sivity. Often these continuum models rely on simple extensions of Darcy’s law, such as

the Blake-Kozeny equation, to characterize the heat and fluid flow inside porous media.

Such macroscopic properties can lose their predictive utility when the porous media is not

perfectly uniform since the actual distribution is lost in the formulation (Gostick et al.,

2016).

Some of these issues of macroscopic representation can be overcome through

more of a microscopic approach to modeling porosity. Instead of using single-domain-

based model, porosity can be directly modeled with explicit geometry, such as a cluster

of spheres (Wittig, Richter, and Nikrityuk, 2012; Smits, Nakanishi, and Desmet, 2016) or

as a network of pipes (Gostick et al., 2016). Such explicit porous renderings also allow

better capture of flow around complex particle shapes. Additionally, combining both the

microscopic and macroscopic approach allows accurate capture of the fluid flow for resins

with a bimodal pore size distribution, i.e., the flow-through particles of perfusion resins

(Smits, Nakanishi, and Desmet, 2016).

2.4 Discrete Phase Modeling Equations

The DPM in ANSYS Fluent uses the Lagrangian reference frame to calculate

particle trajectories through the integration of the force balance on the particle (ANSYS

Inc., 2019b). Such a force balance equates the particle inertia with forces acting on the

Chapter 2. Background/Literature Review 30

particle and is written in the following form:

mp
d ~up
dt

= ~FD +mp
~g(ρp − ρ)

ρp
+ ~F (2.16)

Where mp is the particle mass, ~up is the particle velocity, t is time, ρ is the fluid density,

ρp is the density of the particle, ~F is any additional forces, and ~FD is the drag force on

the particle calculated by:

~FD = mp
~u− ~up
τr

(2.17)

Where ~u is the fluid phase velocity, ~up is the particle velocity, and τr is the

particle relaxation time calculated using the following formula (Gosman and Loannides,

1983):

τp =
ρpd

2
p

18µ

24

CdRe
(2.18)

Where µ is molecular viscosity of the fluid, dp is the particle diameter and Re is the

relative Reynolds number, defined as(ANSYS Inc., 2019b; ANSYS Inc., 2019a)

Re ≡ ρdp|~up − ~u|
µ

(2.19)

In Equation 2.16, the term ~F allows additional forces to be incorporated into

the force balance, which can be significant for specific conditions. For this application

the Saffman lift force and Brownian motion used and the following sections will go into

further detail of their calculations.

Chapter 2. Background/Literature Review 31

2.4.1 Saffman Lift Force

Particles in the presence of a shear stress field often experience a lift force.

This usually occurs when particles are near a wall, which pushes the particles away from

the wall. ANSYS Fluent uses the lift force from Li and Ahmadi (1992), which is the

generalized form of Saffman’s expression (Saffman, 1965):

~Flift = mp
2Kv0.5ρdij

ρpdp(dlkdkl)0.25
(~u− ~up) (2.20)

Where K = 2.594 and dij is the deformation tensor(ANSYS Inc., 2019c). This equation

is mainly intended for low Reynolds numbers and sub-micron particles.

2.4.2 Stokes-Cunningham Drag Law and Brownian Motion

Normally, the drag function FD is expressed as:

FD(u− up) =
µ

ρpd2
p

18CDRe
24

(u− up) (2.21)

However, the drag function FD takes the following form for sub-micron particles in laminar

flow:

FD =
18µ

d2
pρpCc

(2.22)

Where

Cc = 1 +
2λ

dp

(
1.257 + 0.4−(1.1dp/2λ)

)
(2.23)

Chapter 2. Background/Literature Review 32

Often referred to as the Stokes-Cunningham Drag Law, it is a modified form of the Stokes’

drag law and uses the Cunningham correction factor (Cc) defined in Equation 2.23 (Ounis,

Ahmadi, and Mclaughlin, 1991). Additionally, µ is the viscosity, ρp is the particle density,

dp is the particle diameter and λ is the molecular mean free path. The Cunningham

correction factor also plays a role in calculating the effect of Brownian motion on the

particle trajectories; see Section 3.3.7 below for further details.

2.4.3 Brownian Random Force

The random motion that sub-micron particles move in when suspended in a

fluid is referred to as Brownian motion. This motion can be included in the model as an

additional force term using a Gaussian white noise process with spectral intensity (Sn,i,j)

(Li and Ahmadi, 1992).

Sn,i,j = S0δij (2.24)

S0 =
216vkBT

π2ρd5
p

(
ρp
ρ

)2

Cc

(2.25)

Where δij is the Kronecker delta function, T is the absolute temperature of the fluid,

v is the kinematic viscosity, kB is the Boltzmann constant and Cc is the Cunningham

correction from Equation 2.23. The amplitude of the Brownian force is defined as:

Fbi = mpζi

√
πSo
∆t

(2.26)

The force amplitude is evaluated at each time step, where ζi are the zero-mean,

Chapter 2. Background/Literature Review 33

unit-variance-independent Gaussian random numbers. Brownian force is used when sim-

ulations are laminar and requires the energy equation to be solved.

2.4.4 Particle Tracking with Eulerian-Lagrangian Method

In the Eulerian-Lagrangian approach to flow modeling, the primary fluid is

treated as a continuum using the Eulerian reference frame. This main fluid phase uses nu-

merical methods to solve the Navier-Stokes equations while the discrete phase tracks the

dispersed particles, droplets, or bubbles using the Lagrangian description. These particles

can exchange momentum, mass, and energy with the continuum of the main fluid phase

as long as the discrete phase has a low volume fraction. Particle-particle interactions can

be included or neglected in the simulation. These interactions can increase the complexity

of the model and lengthen the computational time.

2.4.5 Coupling between continuous and discrete phases

In ANSYS Fluent, “coupling” refers to calculating the solution of the Eulerian

and Lagrangian fields simultaneously. In the discrete phase model, ANSYS Fluent keeps

track of the heat, mass, and momentum gained or lost by the particle trajectory, which can

be incorporated into the subsequent continuous phase calculations. While the continuous

phase always impacts the discrete phase (one-way coupling), the discrete phase may or

may not be set up so that it also affects the continuum (two-way coupling).

Two-way coupling is achieved first by solving the continuous phase flow field

calculations in the Eulerian reference frame, then computing the trajectories of the par-

ticles/droplets in the Lagrangian reference frame, and finally, updating the continuous

Chapter 2. Background/Literature Review 34

phase source terms (mass, momentum, and energy) for the next continuous flow field cal-

culation. This whole process is repeated until the solution in both phases stops changing.

The interphase exchange for the momentum and energy terms are as follows:

Fs
∑(

18µCDRe
ρpd2

p24
(up − u) + Fother

)
ṁ∆t (2.27)

Qs = ṁpcp(Tpin−cell − Tpout−cell) (2.28)

These source terms embody the effects of the particles on the fluid by appear-

ing on the right-hand side of the main fluid’s momentum and energy equations. The

Tpin−cell and Tpout−cell stand for the particle temperature going entering and leaving a cell,

respectively, and are calculated in relation to the time of tracking the particles (Mahdavi,

Sharifpur, and Meyer, 2018; ANSYS Inc., 2019c)

2.4.6 Shear Stress Integral

Because shear stress can have a negative impact on product quality, a User

Defined Function (UDF) was written to compare the amount of shear stress experienced

by the particle as it passes through the cells in the fluid domain. This custom UDF uses

two DPM User Defined Scalars (UDS) to obtain the time-integrated value of the shear

rate along the particle path using the trapezoidal rule. Equation 2.29 depicts a generic

formula where S can be any of the fluid flow variables, and a diagram of the integral

Chapter 2. Background/Literature Review 35

Figure 2.7: Integration using the Trapezoidal Rule

calculation is presented in Figure 2.7.

dt · (Si + Si−1)/2 (2.29)

Where Si is the fluid variable value from the cell the particle is currently in, Si−1 is the

fluid variable value from the previous time step, dt is the time step size, t is the time with

subscripts denoting the time step number. Using assignment addition, the integrated value

at each step is added to TP_USER_REAL(tp,0), and then TP_USER_REAL(tp,1) is

then defined as the new fluid variable value for the current cell that will be used as the

past value for the next time step. Because shear stress is not a variable directly calculated

in fluent, the product of the strain rate magnitude and molecular viscosity is used instead,

and is defined in Equation 2.30 as:

S = µ · γ̇ (2.30)

Chapter 2. Background/Literature Review 36

Where µ is the molecular viscosity (kg/m·s) and γ̇ is the strain rate (1/s), both variable

derivations can be found in the Ansys Fluent Theory Guide (ANSYS Inc., 2019c).

37

Chapter 3

Methodology

3.1 Packed Bed Generation

In order to model a liquid chromatography column, a randomly packed bed was

generated using rigid body dynamics available in the open-source code program Blender

(Blender Foundation, 2019). I first investigated packing a column with spheres with

methods adapted from (Partopour and Dixon, 2017). Because of updates to Blender’s

API, scripts from Partopour and Dixon had to be updated from 2.77 to 2.80 to handle

the new features, and adapt to changes that make the API more consistent and reliable

(Blender Developer Wiki, 2019). Besides spheres, other shapes such as cylinders, rashig

rings, cubes, and hollow cubes were also considered for this investigation. Additional

Python scripts were written to handle particle-particle contact point modification for any

desired particle shape.

Chapter 3. Methodology 38

3.1.1 Geometry Software: Blender

Geometry setup and packing are done in the free, open-source software envi-

ronment Blender 2.80, a free professional 3D modeling software that started initially as

a proprietary program developed by the Dutch animation studio NeoGeo in 1995 until

1998, where it was released online as SGI freeware. Finally, in 2002, the non-profit Blender

Foundation raised enough funds to release the Blender source code online (Roosendaal,

2019). Since then, Blender has primarily been developed voluntarily by its community of

users/programmers. It now has a wide range of functionalities that include video edit-

ing, animation tools, sophisticated texture mapping, game logic, sculpting, path tracing

rendering, real-time physics simulation etc. Moreover, it also has a scripting language

program interface (python, (Python, 2018)) that allows users to create customized scripts

and extensions to automate any part of the 3D modeling process.

Blender defines objects using surface meshes made up of nodes, edges, and faces

represented by either quads, triangles, or other polygon meshes. These shapes can be

defined using Bezier or other predefined 2D-curves that can be extruded into 3D objects,

in addition to merely importing existing mesh files. These surface mesh properties can

be easily modified, moved, or imported through Blender’s GUI or with Python scripting.

Such features allow precise and rapid construction complex geometries.

3.1.2 Physics Engine and Rigid Body Dynamics

Real-time physics simulations in Blender are generated using a “physics engines,”

which is a computer program that provide fast approximations of simulations for specific

physical systems, such as rigid bodies, soft bodies, and fluids, using an adapted version

Chapter 3. Methodology 39

of the Discrete Element Method (DEM). Many of these engines (e.g., Open Dynamics

Engine (Open Dynamics Engine), PhysX (PhysX), True Axis (True Axis), and Bullet

Physics (Coumans, 2005), to name a few) are designed to provide set of standard features

to support generation approximate physics-based animations that look as realistic as

possible for a wide range of application areas. Computer games, animation software

for digital production, including special effects in film and animation movies, robotics

validation, virtual prototyping, and training simulators, are some of the industries which

utilize physics engines for real-time playback (Hummel et al., 2012; Bender, Erleben, and

Trinkle, 2014).

These designers, engineers, modelers, and animators often use a specific subtype

of modeling called interactive RBD simulation (Bender et al., 2012). The term “inter-

active” indicates that the engine delivers plausible simulation results instantaneously, so

the user interacts steadily with updated results, at the cost of decreased accuracy and

simplified calculations (Bender, Erleben, and Trinkle, 2014). In contrast, “off-line” RBD

physics engines require hours and days to solve a specific simulation but deliver highly

accurate solutions but are decoupled from user interaction (Bender et al., 2012). In RBD

simulations, objects are only considered to be rigid bodies, this simplifies the calcula-

tion because internal stresses and strain were ignored and the only dissipative mechanism

calculated in the simulation was the friction between bodies.

What distinguishes RBD from classical DEM is that penetration of colliding bod-

ies in RBD is prohibited, but calculation of contact forces and changes in velocities occur

instantaneously, while for DEM such as the standard spring-dashpot model forces are de-

termined gradually and are dependent on small penetrations (Baraff, 1997; Cleary, 1998).

The major advantage to the RBD is the computational efficiency since the computational

Chapter 3. Methodology 40

Figure 3.1: Overview of Bullet Physics engine simulation loop for RBD
adapted from Coumans (2015). Geometry and properties of the system
are defined before the rigid body simulation loop begins. The loop has 3
stages: (1) the collision detection stage, where I compute if, when and where
contact between rigid bodies happen; contact point information includes a
contact normal (n), pointing from Shape B towards Shape A, a distance
(d) and two witness points, one on each object (a and b respectively).
(2) The forward dynamics stage, which is when the computation of forces,
inertia, and accelerations occur. And finally, (3) there is the numerical
time integration, where the velocity and position of objects are updated by

approximating the areas under the acceleration and velocity curve.

cost of contact handling is dramatically reduced (Williams and O’Connor, 1999).

The Bullet Physics engine’s rigid body simulation loop can be broken down into 3

steps: collision detection, forward dynamics, and time integration. Refer to Figure 3.1 for

a diagram of the rigid body simulation loop. The collision detection step is where Bullet

computes if, when, and where contact between rigid bodies happen. The information

calculated for contact points includes a contact normal (n), pointing from Shape B towards

Shape A, a distance, and (d) two witness points, one on each object (a and b, respectively).

Chapter 3. Methodology 41

The distance in the contact point information also accounts for object overlap; negative

closest distance values indicate that objects are overlapping while positive values indicate

objects are not overlapping. The surface points (a and b) are also used to compute

contact and friction forces for each object. In the forward dynamics step, Bullet calculates

forces, inertia, and accelerations. The forces considered can be split into sub-types: (1)

external forces, such as gravity, wind force field or other user forces, (2) constraint forces,

such as contact (Newton’s 2nd law), friction, and joints, (3) velocity-dependent forces

(gyroscopic), and (4) position dependent forces (spring). The following equation in its

simplified form is used to compute the correction impulse; see reference (Coumans, 2015,

slides 38-41) for the derivation of equations:

pcorrection = Meffective∆vdesired · n (3.1)

Where Meffective is the effective mass inverse, which is the change in velocity due to

an impulse, projected onto the contact normal, and ∆vdesired is the change in (relative)

velocity for both objects for Equation 3.1. The inverse effective mass is defined as:

Minv.effective =
dot(∆uab, n)

|Impulse|
(3.2)

Where ∆uab is defined as:

∆uab =
n

ma

− −n
mb

+

(
ra × n
Ia

)
× ra −

(
rb × n
Ib

)
× rb (3.3)

Substituting the ∆v and the effective mass formula, the full equation for a single collision

between two objects becomes the collision impulse formula Equation 9 (Coumans, 2015;

Chapter 3. Methodology 42

Hecker, 1997):

pcorrection =
−∆vab · n

n · n
(

1
Ma

+ 1
Ma

)
+
(
ra×n
Ia

)
× ra −

(
rb×n
Ib

)
× rb

(3.4)

Where ∆vab is the change in relative velocity for both objects, M is the effective mass, r

is the relative position vector of the contact point to the center of mass, n is the normal

vector, I is the moment of inertia, and subscripts a and b denote the corresponding object

(shape A and shape B respectively). For a full derivation of equations and calculations,

please refer to references (Coumans, 2015; Hecker, 1997).

For the final step of the rigid body simulation loop, the bullet physics engine

calculates the numerical time integration. The velocity and position of objects are up-

dated by approximating the areas under the acceleration and velocity curve. Bullet uses

the symplectic Euler algorithm, also known as semi-implicit Euler or semi-explicit Euler,

to perform time integration of velocity because of its stability and preservation of energy

without introducing artificial damping. Using Newton’s and Euler’s 2nd law to essen-

tially describe the motion in rigid body dynamics, the symplectic Euler method updates

the velocity and position of objects using Equation 3.5 and Equation 3.6, respectively

(Coumans, 2015).

vt+∆t = vt + a∆t = vt +
Fext + Fc

m
∆t

= vt +
Fext
m

∆t+
Impulsec

m

(3.5)

xt+∆t = xt + vt+∆t∆t (3.6)

Chapter 3. Methodology 43

Where v is the velocity, a is the acceleration, Fext is the external forces, Fc is the constraint

forces, Impulsec is the contact impulse, m is the mass of the object, ∆t is the time step,

and t is the current time.

3.1.3 Blender

The Bullet Physics engine (Coumans, 2005) is linked to Blender’s modeling space

so users can control and activate features of the engine directly from Blender’s main

toolbar to model RBD. For RBD, Blender classifies objects as either passive or static

objects. When an object is designated as passive, they become solid objects fixed in place,

while active objects are affected dynamically by collisions and gravity. Blender can handle

a large number of objects for a simulation that can be either independent or interconnected

with basic constraints. Rigid body physics can be applied to any geometry, and the

physical simulation is directly played back in the Blender’s viewport (van Gumster, 2015).

Collisions and contacts in rigid body simulations are calculated using a collision

surface mesh. This means that creating a composite spherical representation of the surface

is no longer required, which is not the case for some DEM simulations (Bai et al., 2009;

Kodam et al., 2010). Instead, the collision shape can be defined as either primitive shapes

(such as a sphere or cylinder) or mesh-based shapes, such as convex hull or mesh. For

convex hulls, the collision surface is calculated based on the geometry of the object, where

a surface is created that encompasses all of the object’s vertices and forms a convex repre-

sentation of the object. This convex approximation of the object has good computational

performance and stability in rigid body simulations. For objects that have hollow regions,

such as a Raschig ring or the container used to hold the particles for packing, the convex

hull method provides an unrealistic solution. Instead, “Mesh” type shapes should be used

Chapter 3. Methodology 44

because they can handle both concave and convex geometries. Blender also allows users

the ability to define collision margins that set a gap between the objects. This margin

can have the shape of any of the primitive objects or convex hulls. It is important to note

that a zero margin makes the calculations slower and less stable, but it is necessary to

obtain a realistic packed bed (van Gumster, 2015).

3.1.4 Python Scripts

3.1.4.1 Packed Bed Generator Script

As previously stated, Blender allows users to utilize the python scripting lan-

guage to create customized scripts to automate the 3D modeling process. Two packages

were written to help with the generation of a packed bed. The first package was an adap-

tion of the python package developed by Partopour and Dixon (2017) to automate the

workflow of packed bed generation for v2.80 of Blender. The second python package is an

original script developed to automate contact point modification based on proximity for

any particle shape.

Partopour and Dixon (2017) python package “Packed Bed Generator (PBG)”

was designed for v2.77 of Blender to receive the rigid body simulation parameters as

inputs, generate the bed container, measure its properties, and export the geometry as

an STL file. These input parameters used in the script include: (1) particle type, (2)

particle and packed bed container dimensions, (3) number of particles, (4) friction factor,

(5) restitution factor, (6) collision margin [[(see section Geometry Software: Blender page

13)]], (7) linear and rotational damping, (8) steps per second or the time step for the

time loop and, (9) solver iteration. The types of particles the PBG can generate include

Chapter 3. Methodology 45

’sphere’, ’cylinder’, ’Raschig Ring’, ’f-point-star’, ’three-holes’, ’four-holes’, ’tri-lobes’,

’quadrilobes’, and ’four-hole-sphere’. The friction factor is the particle’s resistance to

change (aka the ratio of the friction force to the collision force between the colliding

objects). In contrast, the restitution factor is the particle’s tendency to bounce or the

collision elasticity. The linear and rotational damping is the amount of velocity the particle

loses over time.

Once these parameters are set in input files to the desired values, the package

randomly places and orients particles into a designated 3-dimensional region above the

container (tube) and drops them one at a time into the container for the initial time steps.

Once the defined number of particles is reached, the fulling procedure stops, but the rigid

body simulation continues until a steady-state is reached. When all the calculated particle

linear and rotational velocities become less than the desired tolerance [[0.005/frame]], the

system is then considered to be steady, and the simulation is terminated, and the bed

properties are calculated.

Partopour and Dixon (2017) provide a few modules to calculate different bed

properties. Particle angle distribution is calculated by finding the angle between the

normal vector of the particle’s top face and the vector of the Z-direction of the container,

storing values into a Python dictionary and returns the frequency of each angle interval.

Radial voidage is calculated by radially separating the 3-dimensional domain of the packed

bed into 100 cylindrical sub-surfaces, where each sub-surface is made up of hundreds of

tiny squares. By using a ray-casting algorithm (based on the Jordan Curve Theorem),

this method can quickly determine if the center of these squares are located inside or

outside of the packing (Partopour and Dixon, 2017). When a ray is cast in a Euclidian

space from a point in a fixed direction, if it intersects with a shape’s edge an even number

Chapter 3. Methodology 46

of times, the point is considered to be outside of the object. In contrast, an odd number

of intersections indicate that the point is inside the object. The radial voidage is then

calculated for each of the radial sub-surfaces by summing the areas of squares located

outside of the packing in that section, which is then divided by the surface area of that

cylindrical sub-surface. This method of radial voidage is a fast calculation that works

with all kinds of packing.

3.1.4.2 Contact Point Modifier Script

While the previous python script solved generating a packed bed, the following

section focuses on a script that preserves the geometry of a bed packed with unique

particles while preventing the formation of regions of low-quality mesh.

Initially, a python script was developed to detect and modify contact points

of cylinders, as presented by Wehinger, Füterer, and Kraume (2017). The authors use

equations, derived from Kodam et al. (2010), to define contact detection, contact location,

contact overlap, and normal contact direction between cylindrical objects. Unfortunately,

the python code was unable to accurately use the equations from Wehinger, Füterer, and

Kraume (2017) to implement the bridge/caps method with the required precision.

Instead, a new python script was developed that modifies the particles based on

their proximity to the other objects. One of Blender’s built-in functions, called Modifiers,

allows users to perform various automatic operations on an object’s geometry in a non-

destructive way that would otherwise be too tedious if executed manually. Essentially,

these operations influence how an object is displayed and rendered, without affecting

the base geometry until the modifier is applied, and the changes become permanent.

When multiple modifiers are added to geometry, they are calculated/applied in order of

Chapter 3. Methodology 47

the “modifier stack” from top to bottom. Modifiers can be categorized into four types:

modify, generate, deform, and simulate.

Two of the crucial functions used by my script are the “Vertex Weight Proximity

(VWP) Modifier” and the “Simple Deform Modifier,” which are part of the “modify” and

“deform” groups, respectively. The VWP Modifier modifies the weights of an object’s

vertex group based on the distance between the source object and the target object. This

modifier allows you to choose between two types of proximity modes. The First mode,

called the object distance, computes the distance between the source object’s vertices

and the target’s origin. The second mode is the geometry distance, where the modifier

calculates the distance between the source’s vertices and the target object’s geometry,

which can be its vertices, edges, or faces. Additionally, the user can control the upper

and lower bounds of the mapped distances as well as the type of mapping (e.g., linear,

custom curve, Sharp, Smooth, Root, Sphere, Random, or Median Step).For a full list of all

the parameters of the VWP Modifier and their descriptions, please see [Blender Manual:

Weight Proximity Modifier].

The Simple Deform Modifier can then use the object’s new weighted vertex

group to define the influence of the deformation in addition to the type and direction of

the deformation [For a full and list of all the parameters of the Simple Deform Modifier,

please see [Blender Manual: Simple Deform Modifier]. The direction of the deformation

is set by creating an object called an “Empty,” which is a single coordinate point with

an orientation axis, whose primary purpose is to serve as a reference for position and

orientation. The Empty’s z-axis can be constrained to track the origin of the target object

while its coordinate point is set to the location of the source object’s origin. Additionally,

the Simple Deform Modifier allows users to set the deformation factor, aka the amount of

https://docs.blender.org/manual/en/2.79/modeling/modifiers/modify/weight_proximity.html
https://docs.blender.org/manual/en/2.79/modeling/modifiers/modify/weight_proximity.html
https://docs.blender.org/manual/en/2.79/modeling/modifiers/deform/simple_deform.html

Chapter 3. Methodology 48

deformation.

The following steps can summarize the python script: (1) the setting for mesh

modification parameters; (2) compile a list of objects and their origins; (3) create list of

all combinations and compute the squared Euclidean distance between the origins using

scipy (Millman and Aivazis, 2011; Virtanen et al., 2020) and filter out distances that

are too large and the repeated combinations; (4) begin mesh modification loop over the

resulting list of objects; (5) the file is saved as a new file to avoid any loss of data.

The mesh modification loop entails: (i) defining the source object and the target

object; (ii) creating a vertex group with the name of the target object, adding a VWP

modifier using the previously created vertex group; (iii) create an Empty object by copying

location of the source object and constraining z-axis to ’Track To’ the target geometry

location; (iv) create a simple deform modifier that uses the VWP modifier and the Empty

object to deform the source object; (v) repeat steps (i-iv) but with the source and target

geometries switched, before going onto the next pair of objects. Figure 3.2 shows the

coloring based on proximity and the simple deformation transformation on the source

object relative to the target object.

3.1.5 CFD Modeling of Packed Bed

After implementing the previously described scripts to generate a packed bed

for CFD in Blender, bed geometry was imported into ANSYS SpaceClaim, where facets

were cleaned and repaired before transfer to ANSYS Fluent Meshing for mesh generation.

A variety of packed beds with different shapes were generated. Particle shapes were

calculated keeping the particle equivalent diameter equal across all shapes. Shapes were

also restricted to simple geometries that could be generated using Stop-Flow lithography

Chapter 3. Methodology 49

Figure 3.2: Contact modification based on proximity. The top picture
shows the source object is colored by proximity, red indicates close proximity
to the target, blue indicates low face proximity to the target object. The
bottom shows the applied simple deformation on the source object with the

previous proximity coloring.

Chapter 3. Methodology 50

fabrication technique (Panda et al., 2008). Refer to Table 3.1 for particle shape calculation

parameters.

Table 3.1: Different particle shapes for bed packing

Issues arose with both the geometry and meshing software due to the large

number of faces. Additionally, it was deemed more important to explore the flow at the

bead level with explicit bead porosity rather than a bed of particles. A packed bed that

included an explicit bead porosity could not be generated due to the extreme number of

faces as a result of combining both models.

Chapter 3. Methodology 51

Figure 3.3: Results of bed packings for different beads shapes with differ-
ent ratios of bed to particle diameters.

Chapter 3. Methodology 52

3.2 Porosity and Explicit Geometry Rendering

This study examined multiple porous geometries to determine the optimal ren-

dering of porosity for CFD modeling perfusion resin loading. Because these perfusion

resins have through-pores that capture part of the convective flow according to Afeyan

et al. (1990), explicit geometry was used to model the porosity of the bead for CFD

simulations.

One of the main factors in determining the porous rendering was the complexity

of the geometry and the difficulty of meshing it. Meshing becomes increasingly difficult

when microscopic renderings require multiple disconnected bodies or have sharp/right-

angled structures. Porous geometries investigated include sphere clusters and 3D lattice

infills generated using ANSYS SpaceClaim (ANSYS, Inc, 2019); see Table 3.2 for rendering

and description of infill geometries considered.

For the sphere cluster rendering, porosity is captured by varying the number

of small spherical particles (microparticles) distributed regularly inside a global sphere.

Cluster porosity was defined using Equation 2.3. The flow-through particle porosity de-

pends on the number of microparticles, the microparticle diameters, and the distance

between the centers of two microparticles. Due to a large number of separated bodies

required to mesh for the rendering of one porous bead, the clustered spheres approach

was not selected for the model.

Chapter 3. Methodology 53

Table 3.2: Explicit pattern geometries considered for porous rendering.
Geometries were generated using ANSYS SpaceClaim shell infill tool except

for the Sphere/Ring Clustering, which was generated using Blender.

Chapter 3. Methodology 54

Table 3.2 Continued: Explicit pattern geometries considered for porous
rendering.

Chapter 3. Methodology 55

Table 3.2 Continued: Explicit pattern geometries considered for porous
rendering.

Lattice structures provided a streamlined method of direct 3D porous rendering,

however, close attention has to be paid to the lattice joints, since sharp joints can cause

low mesh quality. The Shell tool in ANSYS SpaceClaim was originally intended for in-

creasing the strength of 3D-printed objects by adding infill structures to faceted bodies.

Refer to Table 3.2 for a detailed description of each of the lattice shell functions. Lattice

structures considered from the Shell tool include lattice, regular cube lattice, cube lattice

with center supports, cube lattice with side cross supports, cube lattice with side diago-

nal supports, cube lattice with bottom center, cube lattice with bottom center without

vertical supports, double pyramid lattice, double pyramid lattice with cross, diamond

lattice, double pyramid lattice and face diagonals, various octahedral configurations, and

tetrahedral faceted lattice. The other lattice functions were not considered because of

their adherence to the surface geometry and lack of internal structure that would mimic

porosity. Of the lattice patterns, only the simple 3D lattice was suitable for meshing due

to its rounded/ smoothed joints, since most of the other options were compromised with

hard to mesh connected tubes with sharp joints.

Once the lattice pattern was chosen, parameters governing the porosity needed

to be selected that captured a fluid flow similar to those of perfusion resins. The Thickness

Chapter 3. Methodology 56

Figure 3.4: Depiction of the thickness and length lattice parameters for
the Shell tool at different possible slices in the lattice. The blue shaded area
represents the solid porous structure, while the white space represents the

fluid void space.

and Length settings of the lattice function allow the user to set the diameter of the lattice

and the void distance between the lattice structures, respectively. See Figure 3.4 for how

the thickness and length parameters affect the lattice geometry. Thickness and Length

setting were set equal to each other, and the parameters used for each case explored can

be found in Table 3.3. Additionally, the Shell tool forms a thin wall, or shell, of specified

thickness on either the outside or inside of the original body it was operating on. To avoid

this undesired trait and open up the lattice structure to the fluid region, a shell of 0.1 cm

(scaled, actual unit: µm) was formed on the outside of a sphere with radius 24.75 cm (µm).

This shell was then removed using the Boolean intersection function of the previously

mentioned sphere, and the resulting geometry was modified to remove unnecessary sharp

edges or overhangs. Renderings of the geometry can be found in Table 3.3. the following

sections expand on the geometry, meshing, and simulation setup for each of the lattice

simulations.

Chapter 3. Methodology 57

Figure 3.5: Flow cell geometry. The geometry consists of a single bead
with explicit porous geometry surrounded (red bead) by 14 (white) non-
porous spheres in a face centered cubic pattern to mimic a resin in a packed
bed. The model is bounded by a rectangular prism with an inlet and outlet.

3.2.1 Case Setup for Different Porosity Settings (Geometry)

To simulate the flow around a perfusion resin particle with explicit geometric

rendering of the through-pores, a parametric study of different porous geometries was

conducted on a BOI to identify the best porous rendering for CFD modeling. Each

explicit geometric rendering was split into two regions (an inner and outer part of the

bead), and surrounded with 14 spheres to simulate flow in a packed bed and bounded

by a rectangular prism to mimic a flow cell with a velocity inlet and pressure outlet.

The following section goes into detail about how geometry and mesh were setup for CFD

simulations. Refer to Figure 3.5 for a rendering of the flow cell geometry.

Each lattice structure was split into two different regions (an inner and outer

Chapter 3. Methodology 58

part of the bead) and surrounded by 14 spheres with 50 µm diameters to simulate flow

in a packed bed. These geometries were bounded by a rectangular prism to mimic a flow

cell with a velocity inlet and pressure outlet. Additionally, the surrounding 17 beads were

arranged in a body-centered cubic orientation to allow the BOI with the explicit geometric

rendering to be at the center of the unit cell and fluid domain.

All geometries were created at 104 times the actual size to accurately capture

geometry and mesh and avoid possible resolution errors from geometry and meshing soft-

ware. The surrounding spheres and bounding flow-cell region were initially created using

the open-source 3D computer graphics software Blender 2.80 (Blender Foundation, 2019).

Contact points where two beads touch each other or where beads come into contact with

a wall need to be flattened or removed to avoid known meshing problems of low cell

quality as explained in Section 2.3.2. Beads were flattened locally at bead-bead contact

points using the custom python script in Appendix B, while bead-wall contact points were

merged with the flow-cell wall. See Section 3.1.4.2 for a description of the contact point

modification script. The geometry was then transferred using an STL file into ANSYS

SpaceClaim where facets were cleaned and repaired before generating the explicit pore

geometry.

Chapter 3. Methodology 59

Table 3.3: Different BOI lattice geometries with their corresponding 2D
slice and 3D renderings considered for explicit porous geometry rendering.

The explicit pore geometry for the BOI was created using SpaceClaim’s Shell

fill feature. A lattice pattern with using the "3D lattice" pattern (from Table 3.2) with

the length and thickness parameters in Table 3.3 was generated with a small outer shell.

This outer shell was then removed using a Boolean intersection operation with a sphere

of radius 25 µm and the shelled geometry. The resulting geometry with exposed lattice

structures was then smoothed and simplified to remove any unnecessary sharp overhangs.

Final 3D geometries and corresponding 2D slices can be seen in Table 3.3.

3.2.2 Meshing

The geometry was then imported into ANSYS Fluent Meshing because of its abil-

ity to handle triangular surface mesh and generate high-quality polyhedral mesh quickly.

Moreover, without compromising accuracy, polyhedral mesh requires less memory and

provide faster solutions as compared with hexahedral and tetrahedral mesh elements due

Chapter 3. Methodology 60

to fewer cells. The imported geometry was remeshed using a curvature sizing method

with a minimum size of 0.005, a maximum size of 0.1, a normal angle of 18°, and a growth

rate of 1.3. The geometry was separated into two cell volume zones: the inner fluid region

of the porous bead, and the outer region containing the inlet, outlet, and surrounding

beads. All surrounding beads and the solid porous geometry of the BOI were labeled as

empty or dead zones, with fixed positions to simplify the model and reduce the number

of cells and complexity of the model.

In order to create an inner fluid region of the porous bead, a sphere with radius

23.8 µm (95% of BOI’s radius) was created, and the pore geometry was subtracted from

the sphere. The polyhedral mesh was then generated and using the previously mentioned

sizing method. Cells and faces were automatically and manually smoothed and modified

to improve mesh quality measures such as inverse orthogonal quality, FLUENT aspect

ratio, size change, skewness, and warp. Once adequate values of the quality measures

were reached, the mesh was transferred to the ANSYS Fluent Solution mode for the CFD

simulations. See Table 4.2 for mesh statistics.

3.2.3 CFD Setup

For the CFD simulations, ANSYS Fluent 19R3 was used, which was a commercial

CFD software based on the finite volume method. The mesh was scaled uniformly by 10−4,

so that bead radii were 25 µm. The flow was assumed to be isothermal and incompressible

with the physical properties of water. The interface between the solid and fluid phases,

i.e., walls of the flow cell, surrounding beads, and BOI through-pore geometry were defined

as ‘no-slip’ wall conditions, and the outlet was defined as a ‘pressure-outlet’ (0 bar). At

the velocity-inlet, a constant velocity profile was set to 1000 cm h−1.

Chapter 3. Methodology 61

First, the velocity profile of the system was solved using Fluent’s pressure-

based solver. The solver used the Semi-Implicit Method for Pressure-Linked Equations

(SIMPLE) algorithm to couple pressure and velocity. Additionally, the other numerical

methods used to calculate the spatial discretization are: the standard scheme for pres-

sure interpolation, the 2nd order upwind scheme for the momentum equations, the least-

squares cell-based method for gradient evaluation, the Quadratic Upstream Interpolation

for Convective Kinematics (QUICK) scheme for the energy equation, and a warped-face

gradient-correction was enabled to improve the face gradient accuracy. The flow was

considered to be laminar and steady-state.

All simulations were run using 16 processes on a computer with Intel® Xeon®

Gold 6140 CPU at 2.30 GHz, 18 cores, and 32 GB of RAM. The steady-state calculations

took 3-5 minutes and were transferred to ANSYS CFD-Post for post-processing.

3.3 DPM Flow Cell

3.3.1 Geometry

In order to simulate flow around a bead with through-pore geometry, a square

flow cell with 14 spheres surrounding a bead with explicit pore geometry was created.

This bead with explicit pore geometry will be referred to as the BOI. The surrounding

beads have a radius of 25 µm and were arranged in a body-centered cubic orientation to

allow the BOI to be at the center of the unit cell. The flow cell was broken up into three

regions: the outer fluid region, an inner box region surrounding the bead of interest, and

an inner bead region with 95% of the BOI particle radius .

Chapter 3. Methodology 62

Spheres and the flow cell domain were created at 104 times the actual size in

order to accurately capture geometry and mesh and avoid possible rounding errors from

geometry and meshing software. These geometries were created in Blender, then ex-

ported as an STL file into ANSYS SpaceClaim, where facets were cleaned and repaired.

Beads were flattened locally at bead-bead contact points in order to avoid know meshing

problems, while bead-wall contact points were merged with the wall. The explicit pore

geometry for the BOI was created using the same methods described in Section 3.2.1. A

velocity inlet, and pressure outlet boundary conditions were placed 2.07 m(unscaled) from

the center of the BOI to minimize the influence of the boundary conditions on the region

of interest, i.e., the BOI and surrounding beads.

In order to create an inner fluid region of the porous bead, a sphere with radius

23.8 µm (95% of BOI’s radius) was created, and the pore geometry was subtracted from

the sphere. The polyhedral mesh was then generated and using the previously mentioned

sizing method. Cells and faces were automatically and manually smoothed and modified

to improve mesh quality measures such as inverse orthogonal quality, FLUENT aspect

ratio, size change, skewness, and warp. Once adequate values of the quality measures

were reached, the mesh was transferred to the ANSYS Fluent Solution mode for the CFD

simulations. See Table 4.2 for mesh statistics.

3.3.2 Mesh

The geometry was then imported into ANSYS Fluent Meshing because of its abil-

ity to handle triangular surface mesh and generate high-quality polyhedral mesh quickly.

Moreover, without compromising accuracy, polyhedral mesh requires less memory and

provide faster solutions as compared with hexahedral and tetrahedral mesh elements due

Chapter 3. Methodology 63

to fewer cells. The imported geometry was remeshed using a curvature sizing method with

a minimum size of 0.005; maximum size of 0.1; normal angle of 18°; and a growth rate of

1.3. The geometry was separated into three cell volume zones: (i) the inner fluid region of

the porous bead, (ii) the box region capturing the fluid flow around the bead, and (iii) the

outer region containing the inlet, outlet, and surrounding beads. All surrounding beads

and the solid porous geometry of the BOI were labeled as empty or dead zones, with fixed

positions to simplify the model and reduce the number of cells. In order to create an inner

fluid region of the porous bead, a sphere with radius 95% of the bead was made, and the

pore geometry was subtracted from the sphere. Polyhedral mesh was then generated and

using the previously mentioned sizing method. Cells and faces were automatically and

manually smoothed and modified to improve poor mesh quality measures such as inverse

orthogonal quality, Fluent aspect ratio, size change, skewness, and warp. Once adequate

values of the quality measures were reached, the mesh was transferred to the ANSYS

Fluent Solution mode for the CFD simulations. See Table 4.2 for mesh statistics.

3.3.3 CFD Setup

For the CFD simulations, the finite volume method commercial software ANSYS

Fluent® 19R3 was used (Inc., 2019b). The mesh was scaled uniformly by 10−4 , so that

bead radii were 25 µm. The flow was assumed to be isothermal and incompressible with

the physical properties of water. The interface between the solid and fluid (i.e., walls of the

flow cell, surrounding beads and BOI throughpore geometry) were defined as ‘no-slip’ wall

conditions, and the outlet was defined as a ‘pressure-outlet’. Multiple simulations were

run where the velocity-inlet was set to constant velocity profile of 50 cm h−1, 100 cm h−1,

150 cm h−1, 200 cm h−1 and 250 cm h−1.

Chapter 3. Methodology 64

To simulate the capture and release of a tracer to and from the BOI, the model

was broken up into three steps:

1. Calculation of the steady-state simulation for the velocity profile

2. Calculation of a transient simulation injecting a tracer from inlet using the DPM and

capture/trap any particles that come into contact with the BOI using steady-state

velocity profile, and

3. Calculation of a transient simulation releasing tracer from locations of the previous

simulation and determine escaped residence time. These steps were performed for

each of the inlet velocities.

First, the system’s velocity profile was solved with Fluent’s pressure-based solver

before modeling the transient simulation. Fluent’s solver used the Semi-Implicit Method

for Pressure-Linked Equations (SIMPLE) algorithm to couple pressure and velocity. Ad-

ditionally, the other numerical methods used to calculate the spatial discretization were:

the standard scheme for pressure interpolation, the 2nd order upwind scheme for the

momentum equations, the least-squares cell-based method for gradient evaluation, the

Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme for the

energy equation, and a warped-face gradient-correction was enabled to improve the face

gradient accuracy. The flow was considered to be laminar and steady-state.

The simulation of the tracer’s capture was subsequently performed by track-

ing transient transport of particles using the DPM, which follows an Euler-Lagrangian

approach. This transient simulation was initialized with the values from the previously

Chapter 3. Methodology 65

calculated steady-state simulation. This simulation also used the same numerical meth-

ods for pressure-velocity coupling and spatial discretization schemes as previously men-

tioned for the steady-state case, but with a first-order implicit scheme for the temporal

discretization. The DPM model solves energy and mass transfer equations with a point-

particle approach. Particles have physical properties similar to IgG, i.e., density (ρ) =

1.410 g mL−1 and particle diameter (dp) = 5.5 nm. Particles were injected from the inlet

with the same velocity magnitude as the set inlet velocity using the inlet’s normal di-

rection vector. For the injection duration, 300 particles were injected from 300 starting

points distributed randomly over the inlet boundary surface. Particles were injected over

33 particle time steps for a total of 10,000 particles injected into the domain. A UDF was

written to set the number of particles per parcel, so only one IgG particle was present

within a parcel. The model accounted for interaction with continuous phase by coupling

calculations of the continuous and discrete phase flow. The DPM particles were tracked,

and their sources were updated every 20 iterations of the continuous-phase calculation at

the end of each time step.

Moreover, because this simulation was transient, the model performed unsteady

particle tracking and updated the particle source term calculation every DPM iteration.

Particles were injected at a particle time step that was 10x smaller than the fluid flow

time step. The time step for the fluid flow was varied by inlet velocity and as seen in

Table 3.4. The maximum number of steps tracked for the solution was 3,000,000, with a

step length factor of 5.

The DPM in ANSYS Fluent uses a unique numerical and discretization scheme,

which was different from the other numerics used by the program. The automatic tracking

scheme, which switches between high order (trapezoidal) and low order (implicit) tracking

Chapter 3. Methodology 66

Table 3.4: Temporal parameters used for the transient DPM particle
loading simulations for the 5 different inlet velocities.

Inlet Velocity Particle Time Step (s) Fluid Flow Time Step (s) Injection length
50 1.000e-03 1.000e-01 3.330e-02
100 5.000e-04 5.000e-02 1.665e-02
150 3.333e-04 3.333e-02 1.110e-02
200 2.500e-04 2.500e-02 8.325e-03
250 2.000e-04 2.000e-02 6.660e-03

schemes based on the desired accuracy and stability range of each scheme, was selected.

Accuracy control was enabled with a tolerance of 1e-05 and a maximum number of 30

step size refinements in one single integration step. Further details on the definition can

be found in the Fluent User Guide (ANSYS Inc., 2019c). The source terms for discrete

phase momentum, energy, and species were linearized to allow the use of larger time steps.

Because IgG proteins are sub-micron, additional forces were incorporated into

the model to simulate proper particle behavior. The Saffman lift force was included in

the model as an extra force term because it accounts for the force that pushes sub-micron

particles away from walls due to the shear stress field’s presence (Li and Ahmadi, 1992).

Brownian motion was also included in the model as an additional force term for sub-

micron particles through the use of the Stokes-Cunningham drag law and Cunningham

Correction factor of Cc = 1.137129. Gravity was neglected because the gravitational force

acting on the particles was on the order of 10−22 kgm s−2 and thus does not affect the

particle’s trajectory. A UDF was written to monitor the amount of shear stress particles

experience along their trajectories based on the cells they passed through. The shear

stress was integrated using the trapezoidal rule. See Appendix C for a breakdown of the

code and calculation.

Chapter 3. Methodology 67

When DPMhave reached a physical boundary, the particle’s fate and its trajec-

tory are determined by the discrete phase boundary condition set by the model in Fluent.

The boundary can either reflect, pass through, escape or trap particles. Particles were

ideally reflected at the walls and inlet boundary conditions. For the internal boundary

conditions, particles passed through unimpeded. Particles were trapped on the inner and

outer surfaces of the BOI’s explicit porous geometry renderings. Particles that passed

through the outlet were designated as escaped. The surface of the BOI, as well as the

outlet, were monitored using Fluent’s sampling of trajectories discrete phase report. This

report allowed particle quantities to be written to a file for each of the boundary condi-

tions for later analysis. A UDF was written to customize values saved to the files and

macros were written to control the frequency at which these files were written. Values

recorded in the report for both the trapped and escaped particle include: coordinates of

trapped location (xyz), velocity vectors (uvw), diameter, temperature, parcel-mass, num-

ber of particles in parcel, residence time, flow time, injection time, and the shear stress

integral.

For the “release” step simulation, coordinate values from the DPM sampling

report were used to set the injection location of particles. Because of a slight rounding

error, a UDF was written to relocate particle injection sites to the closest cell centroid

of the mesh. Differences in location were on the order of 10−14 m. All particles were

injected into the domain in one-time step, and the maximum number of steps tracked for

the solution was 9,000,000 with a step length factor of 5. Transient simulations were then

run until all particles escaped through the outlet boundary, and particle quantities were

recorded using the previously mentioned discrete phase sampling report UDF and macros.

This model used the previously calculated steady-state to set the initial condition of the

Chapter 3. Methodology 68

fluid flow to reduce fluid flow calculation time.

All simulations were run using 16 processes on a computer with Intel® Xeon®

Gold 6140 CPU at 2.30 GHz, 18 cores, and 32 GB of RAM. The steady-state calculations

took 3-5 minutes, and the transient calculation took about 2-5 days for each part. The

Discrete Phase Model used a hybrid method for parallel DPM tracking that combines

message passing and OpenMP dynamic load balancing; further details can be found in

the Fluent User’s Guide (ANSYS Inc., 2019c)

69

Chapter 4

Results and Discussion

4.1 Steady State Models

A parametric study of steady-state flow simulations for flow around a perfusion

resin (BOI) with different explicit through-pores geometries was conducted to identify the

best porous rendering for CFD modeling. Each explicit geometric rendering BOI was split

into two regions (an inner and outer part of the bead) and surrounded with 14 spheres

(arranged in a body-centered cubic orientation with 50 µm diameters) to simulate flow in

a packed bed. These beads were bounded by a rectangular prism to mimic a flow cell’s

fluid domain with a velocity inlet and pressure outlet.

CFD steady-state simulations were meshed and solved using ANSYS Fluent

19R3. The polyhedral mesh was scaled uniformly by 10−4, so that bead radii are 25 µm.

The flow is assumed to be isothermal and incompressible with the physical properties of

water. The interface between the solid and fluid phases, i.e., walls of the flow cell, sur-

rounding beads, and BOI through-pore geometry, are defined as ’no-slip’ wall conditions,

Chapter 4. Results and Discussion 70

Table 4.1: Mesh Independence

Model number of cells resin number of cells fluid cell volume ave resin cell volume max resin cell volume min resin

Model 1 842506 682016 1.978× 10−1 µm3 8.738× 10−1 µm3 2.202× 10−5 µm3

Model 2 5512810 4220680 3.017× 10−2 µm3 1.780× 10−1 µm3 2.301× 10−5 µm3

and the outlet is defined as a ’pressure-outlet’ (0 bar). At the velocity-inlet bound-

ary, a constant velocity profile is set to 50 cm h−1, 100 cm h−1, 150 cm h−1, 200 cm h−1,

250 cm h−1, 300 cm h−1 and 1000 cm h−1. Results were post-processed with ANSYS CFD-

POST (Inc., 2019a).

Because biomolecules can be extremely shear sensitive, I investigated the shear

profiles within the model. Figure 4.1(a) shows the location of two CFD-Post volume

probes inserted in CFD-Post to look at the shear stress distribution inside the BOI region

(red) and the packed bed region (blue). Shear stress was calculated using Equation 2.30,

where µ is the molecular viscosity (kg/m·s) and γ̇ is the strain rate (1/s). Figures 4.1(b-h)

show charts of the shear stress profile along the (with the corresponding colors previously

mentioned) at inlet velocities of 50 cm h−1, 100 cm h−1, 150 cm h−1, 200 cm h−1, 250 cm h−1,

300 cm h−1 and 1000 cm h−1. These simulations confer that within practical operating con-

ditions of flow rate, the shear stresses present were low. Given that large, shear sensitive

bioparticles, such as the measles virus, begin to degrade around 0.25 Pa, chromatography

columns would have to operate at 250 cm h−1 or above before seeing that level of shear in

a packed bed (Grein et al., 2019).

Figure 4.2 shows the velocity vector profile in the YZ-plane at X = 0 across the

entire model for different inlet velocities (50, 100, 150, 200, 250, 300 and 1000 cm h−1).

Surrounding beads and the BOI’s explicit geometry are rendered as transparent surfaces

for X < 0 for contextual orientation and visualization. The sub-figures correspond to the

different set inlet velocity profiles. Figure 4.3 is the same velocity vector rendering as

Chapter 4. Results and Discussion 71

(a) Diagram of region volumes (b) 50 [cm/hr]

(c) 100 [cm/hr] (d) 150 [cm/hr]

(e) 200 [cm/hr] (f) 250 [cm/hr]

(g) 300 [cm/hr] (h) 1000 [cm/hr]

Figure 4.1: Shear stress distribution of mesh. (a) shows location of two
volume probes, red corresponds to the BOI resin volume and blue corre-
sponds to the packed bed region bounded to the , colors correspond to

chart line colors in (b-h).

Chapter 4. Results and Discussion 72

Figure 4.2 but zoomed in to the BOI and surrounding beads, and Figure 4.4 is zoomed

in even further to a fraction of the BOI and some of the surrounding beads.

Figure 4.5 and Figure 4.6 are the same viewpoints, geometry renderings and

vector profile renderings as Figure 4.3 and Figure 4.4 (respectively) but with the addition

of velocity magnitude contours in the YZ-plane at X = 0.

Figure 4.7 shows the volume rendering of shear stress in the fluid domain for inlet

velocities (50, 100, 150, 200, 250, 300 and 1000 cm h−1). This figure shows the location of

regions of high shear stress in the domain. Figure 4.8 shows the shear stress contours in

the YZ-plane at X = 0 at with a similar viewpoint and geometry rendering as Figure 4.3

for the inlet velocities (50, 100, 150, 200, 250, 300 and 1000 cm h−1). Figure 4.7 and

Figure 4.8 show the low range of shear stress in the fluid domain for the inlet velocities

(50, 100, 150, 200, 250, 300 and 1000 cm h−1).

In addition to looking at the shear stress in the fluid, I also looked at wall shear

stress. Figure 4.9 shows the wall shear stress profile on the walls of the 17 surrounding

beads and the BOI. The maximum value of wall shear stress is 1.558 Pa when the inlet

velocity is 1000 cm h−1. Figure 4.10 is a zoomed-in view of the wall shear contours with

black velocity vectors showing the direction of flow around the BOI. Figure 4.11 is the

same wall shear contours and velocity vectors, but with the point of view on the positive

X-axis looking at the origin with the contour surfaces and velocity vectors rendered for X

< 0.

Chapter 4. Results and Discussion 73

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.2: Velocity Vectors in YZ-plane at X = 0.

Chapter 4. Results and Discussion 74

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.3: Close up view of velocity vectors form Figure 4.2 YZ-plane at
X = 0.

Chapter 4. Results and Discussion 75

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.4: Closer view of velocity vectors between beads form Figure 4.2
YZ-plane at X = 0.

Chapter 4. Results and Discussion 76

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.5: Velocity vectors with contours of the velocity magnitude form
Figure 4.2 YZ-plane at X = 0.

Chapter 4. Results and Discussion 77

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.6: Closer view of velocity vectors between beads along with the
contours of the velocity magnitude on YZ-plane at X = 0.

Chapter 4. Results and Discussion 78

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.7: Volume rendering of shear stress in the fluid domain for
steady-state simulations with inlet velocities of 50, 100, 150, 200, 250, 300

and 1000 cmh−1.

Chapter 4. Results and Discussion 79

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.8: Contours of shear stress on YZ-plane at X = 0 for steady-
state simulations with inlet velocities of 50, 100, 150, 200, 250, 300 and

1000 cmh−1.

Chapter 4. Results and Discussion 80

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.9: Contours of wall shear on the surrounding beads as well as
on the explicit geometry of the BOI.

Chapter 4. Results and Discussion 81

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.10: Closeup of contours of wall shear stress on explicit geometry
of the BOI with velocity vectors in black.

Chapter 4. Results and Discussion 82

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.11: Sliced view of contours of wall shear stress on explicit geom-
etry of the BOI with velocity vectors in black.

Chapter 4. Results and Discussion 83

4.1.1 Pore Lattice Exploration

Afeyan et al. (1990) and Rodrigues et al. (1992) suggested that a flow-through

particle’s permeability could be used to estimate the ratio of intra-particle to outer particle

mobile phase velocity using the following relationship:

upart
ui

=
Kvpart

Kvbed

1− εbed
εpart

(4.1)

where upart is the is the velocity in the flow through region, ui is the interstitial pore

velocity, Kvpart is the permeability of the flow-through particle and Kvbed is the bed

permeability if the particles would be fully porous. Komiyama and Inoue (1974) suggested

a simpler equation for low Reynolds numbers.

upart
ui

=
Kvpart

Kvbed

(4.2)

Afeyan et al. (1990) estimated the intra-particle velocity of the commercially

available POROS ® particles to be about 5% of the superficial mobile phase velocity. The

use of CFD allows for modeling fluid flow through and around these beads without making

assumptions about the particle’s permeability. The ratio of intra-particle to outer particle

fluid velocity was calculated using the volume-weighted average of the bead’s inner fluid

velocity and the volume-weighted average of the interstitial velocity. Length/thickness of

the resin lattice was varied and the corresponding computational mesh size and density

can be found in Table 4.2. A lattice with a length/thickness between 3.0 µm and 3.5 µm

could achieve a similar percent of the superficial mobile phase velocity as estimated by

Afeyan et al. (1990).

Chapter 4. Results and Discussion 84

Table 4.2: Different BOI lattice geometries with their corresponding 2D
slice and 3D renderings considered for explicit porous geometry rendering.

Péclet cell numbers were also calculated for each of the lattice structures using the

approxamate kinematic viscosity of water (1× 106 µm2 s−1) and the diffusion coefficient of

IgG (40 µm2 s−1 in a dilute solution at 25 °C) (Wrzosek et al., 2013; Young, Carroad, and

Bell, 1980). In Figure 4.12, the relationship between the cell Péclet number distribution

and the radial coordinate can be seen for the various 3D pore lattice structures. Lattice

structures with length/thickness parameters 3.5 microns and below have Péclet numbers

. 1, which indicated the fluid flow for IgG particles were governed mainly by diffusion.

Chapter 4. Results and Discussion 85

Figure 4.12: The relationship of the cell Péclet number distribution for
IgG vs the radial coordinate of the BOI resin for pore lattice structures of
3.5 µm, 3.0 µm, 2.0µm and 1.5 µm. The diffusion coefficient used was for

IgG protein in dilute solution at 25 °C where D =40µm2 s−1.

This data opposes the manufacturer’s claims that the through-pores’ presence allowed

the convective fluid flow to enhance protein penetration into the bead. The more likely

reason for improved performance was that these through pores provided a larger pore

for the protein to diffuse into the bead. While this type of fluid flow works for proteins

that can diffuse quickly into the center of the porous bead, the same does not apply to

larger, slower bioparticles such as AAV. In Figure 4.13, relationship between the radial

coordinate of the resin and the distribution cell Péclet number’s distribution for AAV can

be seen. The Péclet number’s were calculated using both an observed diffusion coefficient(

D =7.5 µm2 s−1 (Seisenberger et al., 2001))) and the diffusion coefficient calculated from

the Stokes Einstein equation D =11 µm2 s−1 which assumed AAV was a spherical particle

Chapter 4. Results and Discussion 86

with radius of 13 nm. Clearly, the transport of AAV particles within the resin through-

pores would mainly be governed by convection.

Additionally, these results confirm that CFD models can successfully capture

the essential characteristic of flow-through macroporous resin effectively using reported

literature values. Moreover, these models provide insight into crucial bioprocess unit

operations that could not be characterized using traditional empirical experiments. The

low fluid shear within the packed bed, in addition to the relatively uniform and lack of

eddy formation fluid flow at typical operating conditions, suggest that mechanical stresses

are not the cause of low yields during chromatography unit operations. Instead, high salt

conditions and detergents are the more likely the cause of large bioparticle degradation.

Chapter 4. Results and Discussion 87

(a) Péclet number calculated from Seisenberger et al. (2001)

(b) Péclet number calculated with Stokes Diffusion Coefficient

Figure 4.13: The relationship of the AAV cell Péclet number distribu-
tion vs the radial coordinate of the BOI resin for pore lattice structures
of 3.5 µm, 3.0 µm, 2.0 µm and 1.5 µm with an inlet velocity of 1000 cmh−1.
(a) The diffusion coefficient used was based on the Stokes Einstein equa-
tion D =11 µm2 s−1 for AAV assuming a spherical particle with radius of
13 nm.(b) The diffusion coefficient used was based on the Seisenberger et al.

(2001) observed diffusion coefficient D =7.5 µm2 s−1.

Chapter 4. Results and Discussion 88

4.2 DPM Models

The CFD-DPM simulations were run using Ansys Fluent and with the previously

described geometry and mesh (see Figure 3.5 and Section 3.2.1). The mesh was scaled uni-

formly by 10−4 , so that bead radii are 25 µm. The flow was assumed to be isothermal and

incompressible with the physical properties of water. The interface between the solid and

fluid (i.e., walls of the flow cell, surrounding beads and BOI throughpore geometry) were

defined as ‘no-slip’ wall conditions, and the outlet was defined as a ‘pressure-outlet’. At

the velocity-inlet a constant velocity profile was set to 50 cm h−1, 100 cm h−1, 150 cm h−1,

200 cm h−1 and 250 cm h−1.

To simulate the capture and release of a tracer from the BOI, the model was

broken up into three parts and each part was performed for each of the inlet velocities:

(i) Use the converged steady-state velocity profile to initialize the transient model.

(ii) Capture Simulation: transient simulation where DPM tracer particles were injected

over 33 timesteps from the inlet using the DPM model. Particles had IgG properties.

Particles that came into contact with the BOI surfaces and with the outlet were

considered either be trapped or escaped (respectively), otherwise all walls reflected

particles and internal boundaries allowed particles to pass through.

(iii) Release Simulation: a transient simulation was initialized with the converged steady

state velocity profile, and DPM tracer particles were injected from the capture lo-

cations (on BOI) derived from the capture simulation. Particle fates were recorded

for particles that escaped through the outlet.

Chapter 4. Results and Discussion 89

4.2.1 Capture Simulation

For each of the inlet velocities (50 cm h−1, 100 cm h−1, 150 cm h−1, 200 cm h−1

and 250 cm h−1), the simulation was initialized using the converged steady state velocity

profile. Particles were injected into the transient simulation from the inlet over 33 time

steps, where 300 particles were injected each time step. These particles treated every

surface in the model as walls (where they were reflected) except for the BOI resin surfaces

and the outlet which were designated as trap surfaces. A custom DPM report for mon-

itoring surfaces was generated for tracking particles trapped on the BOI resin surfaces

and the outlet (see Appendix C for custom report code). Each surface report recorded

information about each particle as it hit the surface, which includes: time of injection,

xyz coordinates of location particle was trapped, uvw velocity coordinates of the particle,

the diameter of the particle, the mass of the particle, the particle ID, the flow time, the

residence time, shear stress integral, and the strain rate integral.

Figure 4.24 shows the radial location of particles captured on the resin BOI

normalized by the resin’s radius versus the particle’s residence time. Particles do not

make it to the center of the bead and a majority of them are captured on the outer 5% of

the resin BOI. This is clearly shown in Figure 4.22, where the Outer Region makes up the

outer 5% BOI’s radius and where 90% of particles are trapped on the resin are located.

To better understand and characterize the particle macromixing amount in the

model, the age distribution functions were calculated for both particles captured on the

resin and those exiting through the outlet. These functions include exit age distribution

function (E-curve, E(t)), cumulative distribution function (F-curve, F (t)), internal age

distribution function (I(t)), and intensity function (Λ(t)) and are related as defined by

the following equations:

Chapter 4. Results and Discussion 90

The E-curves were calculated using the python packages seaborn and SciPy to

estimate the Kernel Density Estimation (KDE) (Waskom and team, 2020; Virtanen et al.,

2020).

E (t), s−1 =
dF (t)

dt
(4.3)

F (t) =

∫ t

0

E(t) dt = 1− E(t) (4.4)

Λ(t) =
E (t)

t̄m I (t)
=

E (t)

1− F (t)
=

E (t)

W (t)
(4.5)

where t is the residence time and t̄m is the mean residence time. These functions can then

be converted to their dimensionless forms by substituting t = t̄mθ and multiplying the

whole equation by the mean residence time, t̄m, using the following equations:

E(t) dt = Eθ(θ) dθ ∴ (4.6)

Eθ(θ) =
E(t)

dθ
= t̄mE(t θ) (4.7)

Fθ(θ) = F (t̄m θ) (4.8)

Wθ(θ) = W (t̄m θ) (4.9)

Iθ(θ) = t̄m I(t̄m θ) (4.10)

Λθ(θ) = t̄mΛ(t̄m θ) (4.11)

In Figure 4.15, particle RTDs for each of the inlet velocities were represented

as histograms separated by particle fate (i.e., trapped on BOI resin or flow through to

outlet). The corresponding KDE (aka the E-curve) of these histograms can be seen in

Chapter 4. Results and Discussion 91

(a) Chromatogram of particles captured on resin

(b) Boxplot of captured particle residence times

Figure 4.14: Distribution of particle residence time for the capture simu-
lation trapped on BOI rendered as (a) a histogram and (b) a boxplot.

Chapter 4. Results and Discussion 92

(a) (b)

(c) (d)

(e)

Figure 4.15: Histograms of Residence Time Distribution of DPM simula-
tions separated by particle fate location (i.e., particles captured on resin or

particles that flowed through to outlet).

Chapter 4. Results and Discussion 93

Figure 4.21. Figure 4.16 and Figure 4.17 also show the E-curves at the different velocities,

in addition to, the other age distribution functions (E(t), F (t), W (t), I(t), and Λ(t)) and

the corresponding dimensionless functions (Eθ, Fθ, Wθ, Iθ, and Λθ) for particles captured

on the resin and outlet, respectively.

The first and second moments of the E-curve are often used to compare different

RTDs. The first moments of the E-curve calculates the mean residence time (t̄m) which is

equal to space time (τ) for constant volumetric flow. The mean residence time is defined

as:

τ = t̄m =

∫ ∞
0

tE(t)dt (4.12)

The second moment of the E-curve is called the variance, and is the square of the standard

deviation. The variance is defined as:

σ2 =

∫ ∞
0

(t− t̄m)2E(t)dt (4.13)

and describes the spread of the distribution. Using the E-curves and Equation 4.12, the

mean residence time was calculated for particles escaping through the outlet during the

capture simulation. Figure 4.18 shows the dependence of mean residence time on the

volumetric flow rate (Q) using the following equation:

tm = a Q−1 (4.14)

where a is the adjusted coefficient that represents the active volume of the system. This

adjusted coefficient was estimated by fitting Equation 4.14 to the outlet tm data using

Chapter 4. Results and Discussion 94

Figure 4.16: Age distribution functions of DPM particles captured on the
BOI resin during the the capture simulation at 5 inlet velocities. (a,c,e,g) are
the plots for the exit age, cumulative distribution, internal age distribution,
and intensity functions, respectively.(b,d,f,h) are the dimensionless plots of
the exit age, cumulative distribution, internal age distribution, and intensity

functions, respectively.

Chapter 4. Results and Discussion 95

Figure 4.17: Age distribution functions of DPM particles that escaped
through the outlet during the capture simulation at 5 inlet velocities.
(a,c,e,g) are the plots for the exit age, cumulative distribution, internal
age distribution, and intensity functions, respectively.(b,d,f,h) are the di-
mensionless plots of the exit age, cumulative distribution, internal age dis-

tribution, and intensity functions, respectively.

Chapter 4. Results and Discussion 96

the non-linear least squares scipy.optimize.curve_fit function (Virtanen et al., 2020).

The resulting active volume of the system was estimated to be 8.353× 10−3 µL with

an R2 = 0.991. While this estimate deviates from the nominal value of the model’s

fluid region volume, which is 1.0244× 10−2 µL, this estimate is still within 18.5% of the

modeled fluid volume.

Figure 4.18: Relationship of the mean residence time (tm) of outlet par-
ticles with volumetric flow rate (Q). The black error bars represent the

variance of the residence time distribution.

Chapter 4. Results and Discussion 97

After calculating the σ2 and the t̄m from the respective exit age distribution

curves, the dimensionless variance of the distribution is equal to:

σ2
θ =

σ2

t̄m
(4.15)

The Péclet number can be estimated and expressed according to van Gelder and

Westerterp (1990):

σθ =
2

Pe
− 2

Pe2

(
1− e−Pe

)
(4.16)

The DPM simulation E-curves were fit to two single-parameter RTD models to

characterize the fluid flow pattern within this packed bed flow-cell. The single-parameter

RTD models used are the axial dispersion modelwith open-open boundary conditions

described by Levenspiel and Smith (1957) and the N-CSTR (Continuously Stirred Tank

Reactor) or Tanks in Series model described by Levenspiel (1999). These models were

optimized using the scipy.optimize.curve_fit function to minimize the sum of squared

errors (SSE) on E using nonlinear regression to find optimal values of Pe and Dax. The

formula used to calculate the SSE is defined as:

SSE =
n∑
i=1

(Eθexp.i(θ)− Eθpred.i(θ))2 (4.17)

Chapter 4. Results and Discussion 98

For the Tanks in Series model, the Péclet number (Pe) was calculated using the

following equations:

Pe = 2(nT − 1), (4.18)

Eθ =
nnTT

(nT − 1)! · θn−1
t · e−nT ·θ

(4.19)

θ =
t

t̄m
(4.20)

where nT represents the number of tanks in series, θ is dimensionless time, t̄m is the mean

residence time and t is time. Figure 4.19 shows the results of the tanks in series RTD

model fit to the particles trapped on the resin during the capture DPM simulations at

under various inlet velocities. Figure 4.20 shows the corresponding model fits for particles

captured at the outlet in the capture DPM simulations with the same inlet velocities.

For the axial dispersion RTD model with open-open boundary conditions, Lev-

enspiel and Smith (1957) proposed the following analytical solution:

E(t) =

√
Pe

τ
√

4πθ
exp

[
−Pe(1− θ)2

4θ

]
, (4.21)

θ =
t

t̄m
(4.22)

where Pe is the dimensionless model parameter (Pe = L · U/Dax, (-)), L is the length

of the tube, U is the average interstitial velocity (L/t̄m), Dax is the axial flow dispersion

coefficient (m2 s−1), and θ is dimensionless time (-).

Chapter 4. Results and Discussion 99

Figure 4.19: The results of the tanks in series RTD model (solid orange
curve) fit to the particles trapped at the resin during the capture DPM
simulations (solid blue curve) at various inlet velocities. The blue vertical
dash line indicates the mean residence time of the DPM simulation; the
orange vertical dash line indicates mean residence time of the tanks in series

RTD model.

Chapter 4. Results and Discussion 100

Figure 4.20: The results of the tanks in series RTD model (solid orange
curve) fit to the particles that escape through the outlet during the capture
DPM simulations (solid blue curve) at various inlet velocities. The blue
vertical dash line indicates the mean residence time of the DPM simulation;
the orange vertical dash line indicates mean residence time of the tanks in

series RTD model.

Chapter 4. Results and Discussion 101

(a) (b)

(c) (d)

(e)

Figure 4.21: Kernel Density Estimate of Residence Time Distribution of
DPM simulations separated by particle fate location. (i.e., particles cap-

tured on resin or particles that flowed through to outlet).

Chapter 4. Results and Discussion 102

Figure 4.22: Percent of trapped particles captured on BOI categorized by
inner and outer regions (dark blue and light blue respectively).

Chapter 4. Results and Discussion 103

Figure 4.23: Boxplot showing the Residence Time Distribution of parti-
cles separated out by surface.

Chapter 4. Results and Discussion 104

(a) (b)

(c) (d)

(e)

Figure 4.24: Residence Time of particles vs the particle capture location
normalized to the particle’s radius. Points are colored by the capture surface

of the BOI.

Chapter 4. Results and Discussion 105

(a)

(b)

Figure 4.25: (a)Particle Shear Stress Distribution in Terms of Percent
Bound to Resin. (b) Particle Shear Stress integral Distribution

Chapter 4. Results and Discussion 106

4.2.2 Release Simulation

The second part of the model is the the transient “release” simulation that mimics

a tracer molecule eluting from a chromatography bead. The model was initialized with the

converged steady state velocity profiles for each of the five inlet velocities, and particles

were released into the transient simulation in a single time step from the BOI trap locations

recorded during the capture simulations. All surfaces were treated as walls except the

outlet which was designated as trap surface. A custom DPM report for monitoring surfaces

was generated for tracking particle fates (see Appendix C for custom report code). The

surface report recorded information about each particle as the particle came into contact

with the the outlet surface. The values of the report consist of: time of injection, xyz

coordinates of location particle was trapped, uvw velocity coordinates of the particle,

the diameter of the particle, the mass of the particle, the particle ID, the flow time, the

residence time, shear stress integral, and the strain rate integral. For general statistics of

the particles, refer to Figures 4.27 and Table 4.3. Figure 4.26 shows the plots of particle

distributions.

To better understand and characterize the particle macromixing in the model,

Table 4.3: DPM Particle exit statistics for release simulations

Inlet Velocity 50 cm h−1 100 cm h−1 150 cm h−1 200 cm h−1 250 cm h−1

Average 3.672 0.776 0.487 0.433 0.331
Min 0.078 0.093 0.089 0.069 0.095
Max 7.699 3.392 1.718 1.209 1.08
StdDev 2.032 0.401 0.254 0.183 0.144
Count 1805 2119 1566 2501 1069

Chapter 4. Results and Discussion 107

Figure 4.26: Individual chromatograms from Figure 4.27

Chapter 4. Results and Discussion 108

Figure 4.27: Stacked release chromatograms, see Table 4.3 for particle
statistics

the age distribution functions (E(t), F (t), I(t), and Λ(t)) and their corresponding dimen-

sionless function were calculated for the released particles exiting through the outlet using

Equations (4.3) and their plots can be seen in Figure 4.28.

The release DPM simulation E-curves were fit to the same two single-parameter

RTD models and methods described in Section 4.2.1 to characterize the fluid flow pattern

within this packed bed flow-cell. A summary of the fit parameters and the the resulting

τ and Pe numbers can be found in Table 4.4.

The E-curves of the DPM particles display typical characteristics of a packed-

bed reactor, such as increasing peak amplitudes and decreasing variance with increasing

velocities. The E-curve variance can be used as an evaluation factor to estimate the

flow inhomogeneity since smaller variance results in narrower E-curves and more uniform

flow. At 50 cm h−1 the E-curve has two peaks where the principal peak occured before

Chapter 4. Results and Discussion 109

Figure 4.28: Age distribution functions of DPM particles that escaped
through the outlet during the release simulation for 5 inlet velocities;
(a,c,e,g) are the plots for the exit age, cumulative distribution, internal
age distribution, and intensity functions, respectively.(b,d,f,h) are the di-
mensionless plots of the exit age, cumulative distribution, internal age dis-

tribution, and intensity functions, respectively.

Chapter 4. Results and Discussion 110

the mean residence time (t̄m) while a larger second peak occured after the mean residence

time. This double peak was indicative of a packed bed reactor with channeling and dead

zones. The dead zone was most likely due to flow resistance brought on by the bead’s

through-pore structure, and can be seen in the bead cross section contours of Z-velocity

profile of the steady-state solution (Figure 4.29(a)). Particles that were captured on resin’s

outer surface reached the outlet before those released in the throughpore channels because

of their proximity to regions with higher Péclet numbers and thus higher convective flow.

The Péclet cell number was calculated using the following equations:

Pe = Re Sc (4.23)

Sc =
ν

D
(4.24)

where Re is the cell Reynolds number, Sc is the Schmidt number,ν is the kinematic

viscosity with the value of 1× 10−6 m2 s−1 and D is the diffusion coefficient of IgG in

dilute aqueous solution at 25 °C is 4× 10−11 m2 s−1 (Wrzosek et al., 2013). Cell Reynolds

number was defined as:

Re ≡ ρud

µ
(4.25)

where ρ was the density, u was the velocity magnitude, µ was the effective viscosity

(laminar plus turbulent) and d was the Cell Volume1/3 for 3D simulations (Inc., 2019b).

In Figure 4.30(a), the contours of the cell Péclet number showed the spacial distribution

of the cell Péclet number for the BOI’s cross section. In Figure 4.31, the volume sampled

distribution of the cell Péclet number is plotted by the radial coordinate with respect to

the center of the BOI. The values of the cell Péclet numbers within the bead indicate that

Chapter 4. Results and Discussion 111

the flow is governed mainly by diffusion while in the bed region the flow is dominated by

convection.

Table 4.4: Curve fitting results for the release simulation

CFD DPM N-Tanks
Axial Dispersion

open-open

Inlet Velocity t̄m σ2 σ2
θ Peσθ τN -tanks PeN -tanks R2

N -tanks τ̄ooDax PeooDax R2
ooDax

50 cm h−1 3.672 4.33 0.321 5.218 5.723 4.962 0.491 4.29 4.602 0.419

100 cm h−1 0.776 0.168 0.28 6.274 0.933 10.597 0.996 0.822 10.913 0.986

150 cm h−1 0.487 0.068 0.286 6.129 0.544 9.991 0.991 0.476 10.356 0.997

200 cm h−1 0.399 0.035 0.221 8.386 0.456 9.948 0.993 0.398 10.375 0.997

250 cm h−1 0.331 0.022 0.201 9.397 0.333 9.853 0.994 0.291 10.232 0.999

Chapter 4. Results and Discussion 112

(a) 50 cmh−1 (b) 100 cmh−1

(c) 250 cmh−1

Figure 4.29: Contours of the Z-velocity of in an XY-plane cross section
through the center of the BOI. Negative velocity values point towards the

outlet.

Chapter 4. Results and Discussion 113

(a) 50 cmh−1 (b) 100 cmh−1

(c) 250 cmh−1

Figure 4.30: Distribution of the cell Péclet number within a 50 micron
radius of the center of the BOI.

Chapter 4. Results and Discussion 114

(a) 50 cmh−1 (b) 100 cmh−1

(c) 250 cmh−1

Figure 4.31: Contours of the Péclet number in an XY-plane cross section
through the center of the BOI.

Chapter 4. Results and Discussion 115

Figure 4.32: Levenspiel and Smith’s (1957) axial dispersion model with
open-open boundary condition RTD fit to the DPM release simulation RTDs

using the open-source rtdpy python package (Flamm, 2019).

116

Chapter 5

Conclusions

I addressed the objective of developing CFD modeling to generate a first-

principles model of the chromatographic process while minimizing model parameter

estimation’s physical resource demand. Specifically, I utilized explicit geometric ren-

dering to develop a CFD steady-state model that simulated fluid flow patterns through

and around a perfusion porous resin using a pseudo-packed bed flow cell to predict fluid

velocities and shear rates.

I utilized different methods of explicit porous geometry creation and generated

computational mesh for CFD simulations. Geometries with continuous lattice structures

were the most efficient shapes for mesh generation. Formation of packed-beds using rigid

body physics engines was investigated, and contact-point modification handling tools were

developed for subsequent CFD modeling steps. However, due to the computational load

and desired throughpore resolution, this avenue was ultimately abandoned, and the flow

cell model was investigated.

I created a pseudo-packed bed flow cell with a center bead with various explicit

porous geometry structures. I then compared the simulated particle permeability with

Chapter 5. Conclusions 117

reported literature values of a commercially available resin in addition to assessing shear

within the packed bed. Shear stresses were low within the operating ranges investigated.

Additionally, the velocity was relatively uniform, and there was little evidence of eddy

formation within the interstitial pores, suggesting that mechanical stresses are not the

cause of low yields during chromatography unit operations for large shear sensitive bio-

therapeutic particles.

I developed a two-part transient CFD DPM based on the aforementioned steady-

state model to simulate a tracer protein capture and release from a single bead. Age

distribution functions of particle fates were calculated to characterize the macromixing

in the model and compared with existing single parameter models. The DPM models

showed a packed-bed reactor’s distribution profile and provided additional information

about the shear forces acting on the particles.

Based on the results presented in this thesis, the following future work is sug-

gested:

i CFD DPM model development that uses particles with VPL properties to model the

transport of viral particles. This model would help assess and develop appropriate

unit operations for large biotherapeutic particles without the constraints of facility

or material requirements.

ii CFD DPM models that incorporate porous zones and reaction kinetics into the

model. Such an addition would allow modeling of a protein adsorption front and

factor in the resin’s binding site availability and capacity.

iii Use of CFD DPM models to explore alternative overall resin topologies and bed

packings.

118

Appendix A

References for Figure 1.2

[1] A. P. Green et al., “A New Scalable Method for the Purification of Recombinant

Adenovirus Vectors,” Human Gene Therapy, vol. 13, no. 16, pp. 1921–1934, Nov.

2002, doi: 10.1089/10430340260355338.

[2] A. Kamen and O. Henry, “Development and optimization of an adenovirus production

process,” The Journal of Gene Medicine, vol. 6, no. S1, pp. S184–S192, Feb. 2004,

doi: 10.1002/jgm.503.

[3] M. Lusky, “Good Manufacturing Practice Production of Adenoviral Vectors for Clin-

ical Trials,” Human Gene Therapy, vol. 16, no. 3, pp. 281–291, Mar. 2005, doi:

10.1089/hum.2005.16.281.

[4] F. Blanche et al., “An improved anion-exchange HPLC method for the detection and

purification of adenoviral particles,” Gene Therapy, vol. 7, no. 12, Art. no. 12, Jun.

2000, doi: 10.1038/sj.gt.3301190.

[5] J. O. Konz, A. L. Lee, J. A. Lewis, and S. L. Sagar, “Development of a Purification

Process for Adenovirus: Controlling Virus Aggregation to Improve the Clearance of

Appendix A. References for Figure 1.2 119

Host Cell DNA,” Biotechnology Progress, vol. 21, no. 2, pp. 466–472, 2005, doi:

10.1021/bp049644r.

[6] G. Vellekamp et al., “Empty Capsids in Column-Purified Recombinant Adenovirus

Preparations,” Human Gene Therapy, vol. 12, no. 15, pp. 1923–1936, Oct. 2001,

doi: 10.1089/104303401753153974.

[7] B. G. Huyghe et al., “Purification of a Type 5 Recombinant Adenovirus Encoding

Human p53 by Column Chromatography,” Human Gene Therapy, vol. 6, no. 11, pp.

1403–1416, Nov. 1995, doi: 10.1089/hum.1995.6.11-1403.

[8] C. Peixoto, T. B. Ferreira, M. J. T. Carrondo, P. E. Cruz, and P. M. Alves,

“Purification of adenoviral vectors using expanded bed chromatography,” Jour-

nal of Virological Methods, vol. 132, no. 1, pp. 121–126, Mar. 2006, doi:

10.1016/j.jviromet.2005.10.002.

[9] C. Peixoto, T. B. Ferreira, M. F. Q. Sousa, M. J. T. Carrondo, and P. M. Alves,

“Towards purification of adenoviral vectors based on membrane technology,” Biotech-

nology Progress, vol. 24, no. 6, pp. 1290–1296, 2008, doi: 10.1002/btpr.25.

[10] S. Zolotukhin et al., “Production and purification of serotype 1, 2, and 5 recombinant

adeno-associated viral vectors,” Methods, vol. 28, no. 2, pp. 158–167, Oct. 2002, doi:

10.1016/S1046-2023(02)00220-7.

[11] M. Urabe et al., “Removal of Empty Capsids from Type 1 Adeno-Associated Virus

Vector Stocks by Anion-Exchange Chromatography Potentiates Transgene Expres-

sion,” Molecular Therapy, vol. 13, no. 4, pp. 823–828, 2006, doi: 10.1016/j.ymthe.2005

.11.024.

Appendix A. References for Figure 1.2 120

[12] G. Qu et al., “Separation of adeno-associated virus type 2 empty particles from genome

containing vectors by anion-exchange column chromatography,” Journal of Virological

Methods, vol. 140, no. 1, pp. 183–192, 2007, doi: 10.1016/j.jviromet.2006.11.019.

[13] N. Kaludov, B. Handelman, and J. A. Chiorini, “Scalable Purification of Adeno-

Associated Virus Type 2, 4, or 5 Using Ion-Exchange Chromatography,” Human

Gene Therapy, vol. 13, pp. 1235–1243, 2002, doi: 10.1089/104303402320139014.

[14] G. Gao et al., “Purification of Recombinant Adeno-Associated Virus Vectors by Col-

umn Chromatography and Its Performance in Vivo,” Human Gene Therapy, vol. 11,

no. 15, pp. 2079–2091, Oct. 2000, doi: 10.1089/104303400750001390.

[15] C. R. O’Riordan, A. L. Lachapelle, K. A. Vincent, and S. C. Wadsworth, “Scaleable

chromatographic purification process for recombinant adeno-associated virus (rAAV),”

The Journal of Gene Medicine, vol. 2, no. 6, pp. 444–454, Nov. 2000, doi:

10.1002/1521-2254(200011/12)2:6<444::AID-JGM132>3.0.CO;2-1.

[16] N. Brument et al., “A Versatile and Scalable Two-Step Ion-Exchange Chromatogra-

phy Process for the Purification of Recombinant Adeno-associated Virus Serotypes-

2 and -5,” Molecular Therapy, vol. 6, no. 5, pp. 678–686, Nov. 2002, doi:

10.1006/mthe.2002.0719.

[17] A. M. Davidoff et al., “Purification of recombinant adeno-associated virus type

8 vectors by ion exchange chromatography generates clinical grade vector stock,”

Journal of Virological Methods, vol. 121, no. 2, pp. 209–215, Nov. 2004, doi:

10.1016/j.jviromet.2004.07.001.

Appendix A. References for Figure 1.2 121

[18] R. H. Smith, C. Ding, and R. M. Kotin, “Serum-free production and column purifica-

tion of adeno-associated virus type 5,” Journal of Virological Methods, vol. 114, no.

2, pp. 115–124, Dec. 2003, doi: 10.1016/j.jviromet.2003.09.002.

[19] T. Vicente, C. Peixoto, M. J. T. Carrondo, and P. M. Alves, “Purification of recombi-

nant baculoviruses for gene therapy using membrane processes,” Gene Therapy, vol.

16, no. 6, Art. no. 6, Jun. 2009, doi: 10.1038/gt.2009.33.

[20] M. Scherr et al., “Efficient gene transfer into the CNS by lentiviral vectors purified

by anion exchange chromatography,” Gene Therapy, vol. 9, no. 24, Art. no. 24, Dec.

2002, doi: 10.1038/sj.gt.3301848.

[21] K. Yamada, D. M. McCarty, V. J. Madden, and C. E. Walsh, “Lentivirus Vector Pu-

rification Using Anion Exchange HPLC Leads to Improved Gene Transfer,” BioTech-

niques, vol. 34, no. 5, pp. 1074–1080, May 2003, doi: 10.2144/03345dd04.

[22] V. Slepushkin et al., “Large-scale purification of a lentiviral vector by size exclusion

chromatography or Mustang Q ion exchange capsule. Bioproc. J. September,” Bio-

processing Journal, vol. 2, no. 5, pp. 89–95, 2003.

[23] R. H. Kutner, S. Puthli, M. P. Marino, and J. Reiser, “Simplified production and

concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion

exchange membrane chromatography,” BMC Biotechnol, vol. 9, no. 1, p. 10, Feb.

2009, doi: 10.1186/1472-6750-9-10.

[24] T. Rodrigues, A. Carvalho, M. Carmo, M. J. T. Carrondo, P. M. Alves, and P. E.

Cruz, “Scaleable purification process for gene therapy retroviral vectors,” The Journal

of Gene Medicine, vol. 9, no. 4, pp. 233–243, 2007, doi: 10.1002/jgm.1021.

Appendix A. References for Figure 1.2 122

[25] T. Rodrigues, A. Carvalho, A. Roldão, M. J. T. Carrondo, P. M. Alves, and P. E. Cruz,

“Screening anion-exchange chromatographic matrices for isolation of onco-retroviral

vectors,” Journal of Chromatography B, vol. 837, no. 1, pp. 59–68, Jun. 2006, doi:

10.1016/j.jchromb.2006.03.061.

[26] S. Zolotukhin et al., “Recombinant adeno-associated virus purification using novel

methods improves infectious titer and yield,” Gene Therapy, vol. 6, no. 6, Art. no.

6, Jun. 1999, doi: 10.1038/sj.gt.3300938.

[27] P. S. Chahal, M. G. Aucoin, and A. Kamen, “Primary recovery and chromatographic

purification of adeno-associated virus type 2 produced by baculovirus/insect cell sys-

tem,” Journal of Virological Methods, vol. 139, no. 1, pp. 61–70, Jan. 2007, doi:

10.1016/j.jviromet.2006.09.011.

[28] C. Wu, K. Y. Soh, and S. Wang, “Ion-Exchange Membrane Chromatography Method

for Rapid and Efficient Purification of Recombinant Baculovirus and Baculovirus

gp64 Protein,” Human Gene Therapy, vol. 18, no. 7, pp. 665–672, Jun. 2007, doi:

10.1089/hum.2007.020.

[29] M. Kuiper, R. M. Sanches, J. A. Walford, and N. K. H. Slater, “Purification of a

functional gene therapy vector derived from Moloney murine leukaemia virus using

membrane filtration and ceramic hydroxyapatite chromatography,” Biotechnology and

Bioengineering, vol. 80, no. 4, pp. 445–453, 2002, doi: 10.1002/bit.10388.

[30] R. H. Smith, J. R. Levy, and R. M. Kotin, “A Simplified Baculovirus-AAV Expression

Vector System Coupled With One-step Affinity Purification Yields High-titer rAAV

Appendix A. References for Figure 1.2 123

Stocks From Insect Cells,” Molecular Therapy, vol. 17, no. 11, pp. 1888–1896, Nov.

2009, doi: 10.1038/mt.2009.128.

[31] D. Grimm, A. Kern, K. Rittner, and J. A. Kleinschmidt, “Novel Tools for Produc-

tion and Purification of Recombinant Adenoassociated Virus Vectors,” Human Gene

Therapy, vol. 9, no. 18, pp. 2745–2760, Dec. 1998, doi: 10.1089/hum.1998.9.18-2745.

[32] R. Clark, X. Liu, J. Mcgrath, and P. Johnson, “Highly Purified Recombinant Adeno-

Associated Virus Vectors Are Biologically Active and Free of Detectable Helper and

Wild-Type Viruses,” Human gene therapy, vol. 10, pp. 1031–9, May 1999, doi:

10.1089/10430349950018427.

[33] R. Anderson, I. Macdonald, T. Corbett, A. Whiteway, and H. G. Prentice, “A method

for the preparation of highly purified adeno-associated virus using affinity column

chromatography, protease digestion and solvent extraction,” Journal of Virological

Methods, vol. 85, no. 1, pp. 23–34, 2000, doi: 10.1016/S0166-0934(99)00150-0.

[34] J. D. Harris, S. G. Beattie, and J. G. Dickson, “Novel Tools for Production and

Purification of Recombinant Adeno-Associated Viral Vectors,” in Viral Vectors for

Gene Therapy: Methods and Protocols, C. A. Machida, Ed. Totowa, NJ: Humana

Press, 2003, pp. 255–267.

[35] M. de las M. Segura, A. Kamen, P. Trudel, and A. Garnier, “A novel purifica-

tion strategy for retrovirus gene therapy vectors using heparin affinity chromatog-

raphy,” Biotechnology and Bioengineering, vol. 90, no. 4, pp. 391–404, 2005, doi:

10.1002/bit.20301.

Appendix A. References for Figure 1.2 124

[36] M. M. Segura, A. Garnier, Y. Durocher, H. Coelho, and A. Kamen, “Production

of lentiviral vectors by large-scale transient transfection of suspension cultures and

affinity chromatography purification,” Biotechnology and Bioengineering, vol. 98, no.

4, pp. 789–799, 2007, doi: 10.1002/bit.21467.

[37] M. W. Wolff et al., “Affinity chromatography of cell culture derived vaccinia virus,”

Salt Lake City, 2007.

[38] M. W. Wolff et al., “Capturing of cell culture derived vaccinia virus by membrane

adsorbers,” Philadelphia, 2008.

[39] M. Wolff, C. Siewert, S. Lehmann, S. P. Hansen, R. Faber, and U. Reichl, “Cellufine

Sulfate and heparin affinity chromatography to capture ce culture-derived Vaccinia

virus particles,” presented at the 21th ESACT Meeting, 2009, Accessed: Dec. 21,

2020.

[40] A. Auricchio, E. O’Connor, M. Hildinger, and J. M. Wilson, “A Single-Step Affinity

Column for Purification of Serotype-5 Based Adeno-associated Viral Vectors,” Molec-

ular Therapy, vol. 4, no. 4, pp. 372–374, Oct. 2001, doi: 10.1006/mthe.2001.0462.

[41] J. T. Koerber, J.-H. Jang, J. H. Yu, R. S. Kane, and D. V. Schaffer, “Engineering

Adeno-Associated Virus for One-Step Purification via Immobilized Metal Affinity

Chromatography,” Human Gene Therapy, vol. 18, no. 4, pp. 367–378, Apr. 2007,

doi: 10.1089/hum.2006.139.

[42] Y.-C. Hu, C.-T. Tsai, Y.-C. Chung, J.-T. Lu, and J. T.-A. Hsu, “Generation of

chimeric baculovirus with histidine-tags displayed on the envelope and its purification

Appendix A. References for Figure 1.2 125

using immobilized metal affinity chromatography,” Enzyme and Microbial Technol-

ogy, vol. 33, no. 4, pp. 445–452, Sep. 2003, doi: 10.1016/S0141-0229(03)00143-1.

[43] C. Jiang, J. C. Glorioso, and M. Ataai, “Presence of imidazole in loading buffer pre-

vents formation of free radical in immobilized metal affinity chromatography and

dramatically improves the recovery of herpes simplex virus type 1 gene therapy vec-

tors,” Journal of Chromatography A, vol. 1121, no. 1, pp. 40–45, Jul. 2006, doi:

10.1016/j.chroma.2006.04.071.

[44] C. Jiang et al., “Immobilized Cobalt Affinity Chromatography Provides a Novel, Ef-

ficient Method for Herpes Simplex Virus Type 1 Gene Vector Purification,” Journal

of Virology, vol. 78, no. 17, pp. 8994–9006, Sep. 2004, doi: 10.1128/JVI.78.17.8994-

9006.2004.

[45] K. Ye, S. Jin, M. M. Ataai, J. S. Schultz, and J. Ibeh, “Tagging Retrovirus Vec-

tors with a Metal Binding Peptide and One-Step Purification by Immobilized Metal

Affinity Chromatography,” JVI, vol. 78, no. 18, pp. 9820–9827, Sep. 2004, doi:

10.1128/JVI.78.18.9820-9827.2004.

[46] J. H. Yu and D. V. Schaffer, “Selection of Novel Vesicular Stomatitis Virus Gly-

coprotein Variants from a Peptide Insertion Library for Enhanced Purification of

Retroviral and Lentiviral Vectors,” JVI, vol. 80, no. 7, pp. 3285–3292, Apr. 2006,

doi: 10.1128/JVI.80.7.3285-3292.2006.

[47] M. C. Cheeks, N. Kamal, A. Sorrell, D. Darling, F. Farzaneh, and N. K. H. Slater,

“Immobilized metal affinity chromatography of histidine-tagged lentiviral vectors us-

ing monolithic adsorbents,” Journal of Chromatography A, vol. 1216, no. 13, pp.

Appendix A. References for Figure 1.2 126

2705–2711, Mar. 2009, doi: 10.1016/j.chroma.2008.08.029.

[48] M. D. Stachler and J. S. Bartlett, “Mosaic vectors comprised of modified AAV1 capsid

proteins for efficient vector purification and targeting to vascular endothelial cells,”

Gene Therapy, vol. 13, no. 11, Art. no. 11, Jun. 2006, doi: 10.1038/sj.gt.3302738.

[49] M. B. Parrott, K. E. Adams, G. T. Mercier, H. Mok, S. K. Campos, and M. A.

Barry, “Metabolically biotinylated adenovirus for cell targeting, ligand screening, and

vector purification,” Molecular Therapy, vol. 8, no. 4, pp. 688–700, Oct. 2003, doi:

10.1016/S1525-0016(03)00213-2.

[50] S. L. Williams, D. Nesbeth, D. C. Darling, F. Farzaneh, and N. K. H. Slater, “Affinity

recovery of Moloney Murine Leukaemia Virus,” Journal of Chromatography B, vol.

820, no. 1, pp. 111–119, Jun. 2005, doi: 10.1016/j.jchromb.2005.03.016.

[51] S. L. Williams, M. E. Eccleston, and N. K. H. Slater, “Affinity capture of a biotiny-

lated retrovirus on macroporous monolithic adsorbents: Towards a rapid single-step

purification process,” Biotechnology and Bioengineering, vol. 89, no. 7, pp. 783–787,

2005, doi: 10.1002/bit.20382.

[52] M. Potter, K. Chesnut, N. Muzyczka, T. Flotte, and S. Zolotukhin, “[24] Stream-

lined large-scale production of recombinant adeno-associated virus (rAAV) vectors,”

in Methods in Enzymology, vol. 346, Elsevier, 2002, pp. 413–430.

[53] J. Transfiguracion, H. Jorio, J. Meghrous, D. Jacob, and A. Kamen, “High yield

purification of functional baculovirus vectors by size exclusion chromatography,”

Journal of Virological Methods, vol. 142, no. 1, pp. 21–28, Jun. 2007, doi:

10.1016/j.jviromet.2007.01.002.

Appendix A. References for Figure 1.2 127

[54] J. Transfiguracion, D. E. Jaalouk, K. Ghani, J. Galipeau, and A. Kamen, “Size-

Exclusion Chromatography Purification of High-Titer Vesicular Stomatitis Virus

G Glycoprotein-Pseudotyped Retrovectors for Cell and Gene Therapy Applica-

tions,” Human Gene Therapy, vol. 14, no. 12, pp. 1139–1153, Aug. 2003, doi:

10.1089/104303403322167984.

128

Appendix B

Contact Modification Python Script

1 import bpy
2 import os
3 import sys
4 import mathutils
5 import math
6 import numpy as np
7 import time
8 from scipy.spatial.distance import cdist
9 os.system("cls")

10 filePath = bpy.data.filepath
11 fileDir = os.path.dirname(filePath)
12 particleD= 0.5
13

14 def RelFileNaming (directory, NewFileName):
15 newfile_name = os.path.join(directory , NewFileName)
16 return newfile_name
17 def nonrepeating(a):
18 a=a.reshape(a.shape[:2])
19 #print('combinations',a.shape)
20 #calculate the sqeuclidean distance of all combos
21 dists = cdist(a, a, 'sqeuclidean')
22 #print('cdist',dists)
23 #mask values by distance values that are too far or 0 distance
24 m=np.ma.masked_outside(dists,0.01,0.77).filled(888)
25 #get list of unique values(otherwise repeated)

Appendix B. Contact Modification Python Script 129

26 c,index=np.unique(m,return_index=True)
27 #make sure fill in value of mask is filtered out of the index list
28 mindex=np.ma.masked_where(c==888, index,copy=True)
29 #unravel_index=Converts a flat index or array of flat indices into a tuple of

coordinate arrays↪→

30 #use compressed() to remove masked values
31 b1,b2=np.unravel_index(mindex.compressed(),dists.shape)
32 #print('b1&2',b1,b2)
33 return(b1,b2,m)
34

35 def VertGroupAdd(TargetObj):
36 #make sure active object is selected and string
37 o= bpy.context.object
38 vg = o.vertex_groups.new(name=str('VG_'+TargetObj.name))
39 verts=[]
40 for vert in o.data.vertices:
41 verts.append(vert.index)
42 vg.add(verts, 1.0, 'ADD')
43 return
44

45 def EmptyEasies(obj,act_obj):
46 a_name=str(act_obj.name)
47 #Create Empty with 'Copy Location' and 'Track To' Constraints
48 e=bpy.data.objects.new(str(act_obj.name + '>'+obj.name), None)
49 e.empty_display_type = 'SINGLE_ARROW'
50 L_Constraint = e.constraints.new('COPY_LOCATION')
51 L_Constraint.target = act_obj
52 TT_Constraint = e.constraints.new('TRACK_TO')
53 TT_Constraint.target = obj
54 TT_Constraint.track_axis = 'TRACK_Z'
55 TT_Constraint.up_axis = 'UP_Y'
56 bpy.context.collection.objects.link(e)
57 bpy.context.view_layer.objects.active = bpy.data.objects[a_name]
58 e.select_set(False)
59 bpy.data.objects[a_name].select_set(True)
60 return str(act_obj.name + '>'+obj.name)
61

62 def MeshMods(Obj_1, Obj_2, mDist, DeformFactor, DisplayProxy):
63 Obj_1_name=str(Obj_1.name)
64 Obj_2_name=str(Obj_2.name)

Appendix B. Contact Modification Python Script 130

65 modi=bpy.data.objects[Obj_1_name].modifiers
66 #Select Obj_1
67

68 #bpy.ops.object.select_all(action='DESELECT')
69 bpy.context.view_layer.objects.active= Obj_1
70 bpy.data.objects[Obj_1_name].select_set(True)
71

72 VertGroupAdd(Obj_2) #target object
73

74

75 #Create, select and assign vertex group
76 #bpy.data.objects[Obj_1_name].vertex_groups.new(name=str('VG_'+Obj_2_name))
77 #bpy.ops.mesh.select_mode(type="VERT")
78 #bpy.ops.mesh.select_all(action='SELECT')
79 #bpy.ops.object.vertex_group_select()
80 #bpy.ops.object.vertex_group_assign()
81 #bpy.ops.object.vertex_group_set_active(group=str('VG_'+Obj_2_name))
82

83 #Make vertex weighted proximity modifier and settings
84 SmodiVWP = modi.new(str('VWP_'+Obj_2_name),'VERTEX_WEIGHT_PROXIMITY')
85

86 #bpy.ops.object.modifier_add(type='VERTEX_WEIGHT_PROXIMITY')
87 # SmodiVWP=modi['VertexWeightProximity']
88 SmodiVWP.vertex_group=str('VG_'+Obj_2_name)
89 SmodiVWP.show_in_editmode= True
90 SmodiVWP.show_on_cage=True
91 SmodiVWP.target = Obj_2
92 SmodiVWP.proximity_mode ='GEOMETRY'
93 SmodiVWP.proximity_geometry = {'FACE'}
94 SmodiVWP.max_dist = 0.0
95 SmodiVWP.min_dist = mDist
96 SmodiVWP.falloff_type =VWP_falloff_type1
97

98

99 #Make simple deform
100 EmptS=EmptyEasies(bpy.data.objects[Obj_2_name],bpy.data.objects[Obj_1_name])
101 #bpy.ops.object.modifier_add(type='SIMPLE_DEFORM')
102

103

104 SmodiSD=modi.new(str('SD_'+Obj_2_name),'SIMPLE_DEFORM')

Appendix B. Contact Modification Python Script 131

105 SmodiSD.vertex_group=str('VG_'+Obj_2_name)
106 SmodiSD.deform_method='STRETCH'
107 SmodiSD.factor = DeformFactor
108 SmodiSD.show_in_editmode= True
109 SmodiSD.show_on_cage=True
110 SmodiSD.lock_x=True
111 SmodiSD.lock_y=True
112 SmodiSD.origin = bpy.data.objects[EmptS]
113 #Add Second VWP Modifier
114 if DisplayProxy:
115 SmodiVWP=modi.new(str('VWP_'+Obj_2_name),'VertexWeightProximity')
116 SmodiVWP.vertex_group=str('VG_'+Obj_2_name)
117 SmodiVWP.show_in_editmode= True
118 SmodiVWP.show_on_cage=True
119 SmodiVWP.target=Obj_2
120 SmodiVWP.proximity_mode ='GEOMETRY'
121 SmodiVWP.proximity_geometry = {'FACE'}
122 SmodiVWP.max_dist = 0.0
123 SmodiVWP.min_dist = mDist
124 SmodiVWP.falloff_type = VWP_falloff_type2
125

126 #Switch back to Obj_2
127 ##bpy.ops.object.modifier_apply(apply_as='DATA', modifier=str('VWP_1'+Obj_2_name))
128 bpy.data.objects[Obj_1_name].select_set(False)
129

130 return
131 TotalStart=time.time()
132 #Mesh Mod Settings
133 VWP_falloff_type1= 'SMOOTH' #‘LINEAR’, ‘SHARP’, ‘SMOOTH’, ‘ROOT’,

‘ICON_SPHERECURVE’, ‘RANDOM’, ‘STEP’↪→

134 VWP_falloff_type2= 'STEP'
135 mDist= 0.06
136 DisplayProxy = False
137 DeformFactor = -0.01
138

139 #list of visible objects and distances
140 naming=[]
141 obj = bpy.context.visible_objects
142 size = len(obj)
143 a=0

Appendix B. Contact Modification Python Script 132

144 origin_xyz= np.ones([size,4,1])
145 for ob in obj:
146 naming+=[ob.name]
147 origin_xyz[a,:,:]=np.array(ob.matrix_world.translation.to_4d()).reshape((4,1))
148 a+=1
149 #print(np.transpose(np.where(np.linalg.norm(origin_xyz - origin_xyz[:,None],

axis=-1)<2.0)).shape)↪→

150 b1,b2,m=nonrepeating(origin_xyz[:,:3,:])
151 n_objects=b1.size
152 tracking=[]
153 for i in range(n_objects):
154 Obj1=bpy.data.objects[naming[b1[i]]]
155 Obj2=bpy.data.objects[naming[b2[i]]]
156 MeshMods(Obj1, Obj2, mDist, DeformFactor, DisplayProxy)
157 MeshMods(Obj2, Obj1, mDist, DeformFactor, DisplayProxy)
158 tracking+=[naming[b1[i]] +' '+ naming[b2[i]] +' '+ str(m[b1[i],b2[i]])]
159 TotalEnd=time.time()
160 print(*tracking, sep="\n")
161 #write time to modify file
162 timefile=RelFileNaming(fileDir,"timefile.txt")
163 fo = open(timefile, "w+")
164 fo.write(str("Took %f sec" % ((TotalEnd-TotalStart))))
165 fo.close()
166 bpy.ops.wm.save_as_mainfile(filepath =

RelFileNaming(fileDir,'Relative_MeshMod_bed_X.blend'))↪→

167 bpy.ops.export_mesh.stl(filepath =
RelFileNaming(fileDir,'Relative_MeshMod_bed_X.stl'), check_existing=True,
axis_forward='Y', axis_up='Z', filter_glob="*.stl", use_selection=False,
global_scale=1, use_scene_unit=False, ascii=False, use_mesh_modifiers=True,
batch_mode='OFF')

↪→

↪→

↪→

↪→

168

169

170 # import bpy
171

172 def delThisObj(obj):
173 #bpy.data.collection[0].objects.unlink(obj)
174 bpy.data.objects.remove(obj, do_unlink=True)
175 return
176 def FluentGeomPrep():
177 itm=bpy.data.objects.values()

Appendix B. Contact Modification Python Script 133

178 for obj in itm:
179 delThisObj(obj)
180

181 bpy.ops.import_mesh.stl(filepath=
RelFileNaming(fileDir,'Relative_MeshMod_bed_X.stl'), axis_forward='Y',
axis_up='Z', filter_glob="*.stl", global_scale=1.0, use_scene_unit=True,
use_facet_normal=False)

↪→

↪→

↪→

182

183 for ob in bpy.context.scene.objects:
184 if ob.type == 'MESH':
185 ob.select_set(True)
186 bpy.context.view_layer.objects.active = ob
187

188 for obj in bpy.data.objects:
189 obj.name = 'PackedBed'
190 obj = bpy.data.objects["PackedBed"]
191 bpy.ops.object.origin_set(type='ORIGIN_GEOMETRY')
192 obj.location=0,0,0
193 u = bpy.context.object.dimensions
194 cyl_depth= 13*particleD + u[2]
195 z_loc = -3*particleD
196

197 #bpy.ops.mesh.primitive_cylinder_add(location = (0,0,z_loc),
198 # vertices = 100,
199 # radius = 2.5,
200 # depth = cyl_depth)
201 bpy.ops.wm.save_as_mainfile(filepath =

RelFileNaming(fileDir,'FluentGeomPrep_MeshMod_bed_X.blend'))↪→

202

203 bpy.ops.export_mesh.stl(filepath = RelFileNaming(fileDir,'F_MeshMod_bed_X.stl'),
check_existing=True, axis_forward='Y', axis_up='Z', filter_glob="*.stl",
use_selection=False, global_scale=1, use_scene_unit=False, ascii=False,
use_mesh_modifiers=True, batch_mode='OBJECT')

↪→

↪→

↪→

204 for area in bpy.context.screen.areas:
205 if area.type == 'VIEW_3D':
206 ctx = bpy.context.copy()
207 ctx['area'] = area
208 ctx['region'] = area.regions[-1]
209 bpy.ops.view3d.view_selected(ctx)
210 return

Appendix B. Contact Modification Python Script 134

211 FluentGeomPrep()

135

Appendix C

UDF Codes

C.1 Interpolate

1 #include "udf.h"
2

3

4 DEFINE_EXECUTE_AT_END(particle_info)
5 {
6 Injection *I, *Ilist=Get_dpm_injections();
7 Particle *p;
8 FILE *fp;
9

10 fp = par_fopen("particle-location.dpm","w+",2,2);
11

12 par_fprintf_head(fp,"Here are the particle locations\n");
13

14 loop(I,Ilist)
15 {
16 loop(p,I->p)
17 {

Appendix C. UDF Codes 136

18 par_fprintf(fp,"%d %d ((%g %g %g %g %g %g %g %g %g)
my_injection_%d), %g, %g, %g \n", P_INJ_ID(P_INJECTION(p)),
p->part_id,P_POS(p)[0], P_POS(p)[1], P_POS(p)[2], P_VEL(p)[0],
P_VEL(p)[1], P_VEL(p)[2], P_DIAM(p), P_T(p), P_FLOW_RATE(p),
p->stream_index, p->time_of_birth, PP_TIME(p),
P_USER_REAL(p,4));

↪→

↪→

↪→

↪→

↪→

19 }
20 }
21 par_fclose(fp);
22 }

C.2 Shear Integral UDF

1 #include "udf.h"
2

3 /***/
4 /* Shear rate integral along the path of the particle
5 /* AnsysCustomerPortal/.../Knowledge+Resources/Solutions/FLUENT/2060920 */
6 /***/
7 DEFINE_DPM_SCALAR_UPDATE(srate_integral,cell,thread,initialize,tp)
8 {
9 if (initialize)

10 {
11 TP_USER_REAL(tp,0) = 0.0;
12 TP_USER_REAL(tp,1) = 0.0;
13 TP_USER_REAL(tp,2) = 0.0;
14 TP_USER_REAL(tp,3) = 0.0;
15 }
16

17 else
18 {
19 /*Strain Rate*/
20 TP_USER_REAL(tp,0) += TP_DT(tp) * (C_STRAIN_RATE_MAG(cell,thread) +

TP_USER_REAL(tp,1)) / 2.0;↪→

21 TP_USER_REAL(tp,1) = C_STRAIN_RATE_MAG(cell,thread);
22

Appendix C. UDF Codes 137

23 /*Shear Stress*/
24 TP_USER_REAL(tp,2) += TP_DT(tp) *

((C_STRAIN_RATE_MAG(cell,thread)*C_MU_L(cell, thread)) +
TP_USER_REAL(tp,3)) / 2.0;

↪→

↪→

25 TP_USER_REAL(tp,3) = C_STRAIN_RATE_MAG(cell,thread) * C_MU_L(cell, thread);
26

27 }
28 }
29

30 /***/
31 /* 2.5.8.4. Example 2 - Source Code Template modified for Shear rate*/
32 /* https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v195/flu c

_udf/flu_udf_sec_define_dpm_output.html%23flu_udf_dpm_output_ex2
*/

↪→

↪→

33 /***/
34

35 #define REMOVE_PARTICLES FALSE
36

37 DEFINE_DPM_OUTPUT(my_dpm_out, header, fp, tp, thread, plane)
38 {
39 if (header)
40 {
41 char *sort_name;
42 char sort_fn[4096];
43

44 if (NNULLP(thread))
45 sort_name = THREAD_HEAD(thread)->dpm_summary.sort_file_name;
46 else if (! NULLP(plane))
47 sort_name = plane->sort_file_name;
48 else /* This is not expected to happen for regular particle sampling.. */
49 {
50 if (dpm_par.unsteady_tracking)
51 sort_name = "parcels";
52 else
53 sort_name = "tracks";
54 }
55

56 /* sort_name may contain "/" (Linux)
57 * or ":" and "\" (Windows) --
58 * replace them all by "_":

Appendix C. UDF Codes 138

59 */
60 strcpy(sort_fn, sort_name);
61 replace_path_chars_in_string(sort_fn);
62 /* prints header of region at top of file*/
63 if (dpm_par.unsteady_tracking)
64 par_fprintf_head(fp, "(%s %d)\n", sort_fn, 13);
65 else
66 par_fprintf_head(fp, "(%s %d)\n", sort_fn, 12);
67

68 #if RP_2D
69 if (rp_axi_swirl)
70 par_fprintf_head(fp, "(x r theta u v w");
71 else
72 #endif
73 par_fprintf_head(fp, "(x y z u v w");
74

75 if (dpm_par.unsteady_tracking)
76 par_fprintf_head(fp, " diameter t parcel-mass "
77 " mass n-in-parcel residence_time flow-time

name),↪→

78 Integral_Strain_Rate, Integral_Shear_Stress,

Injection_Time[s], user_tp_id\n");↪→

79 else
80 par_fprintf_head(fp, " diameter t mass-flow "
81 " mass frequency time name)\n");
82 }
83 else if (! NULLP(tp))
84 {
85 /* Do some preparatory calculations for later use:
86 */
87 real flow_rate = 0.;
88 real V_vel = TP_VEL(tp)[1];
89 real W_vel = TP_VEL(tp)[2];
90 real Y = TP_POS(tp)[1];
91 real Z = TP_POS(tp)[2];
92 real strength = 0.;
93 real mass = 0.;
94

95 if (TP_INJECTION(tp)->type != DPM_TYPE_MASSLESS)

Appendix C. UDF Codes 139

96 {
97 mass = TP_MASS(tp);
98

99 if (dpm_par.unsteady_tracking)
100 strength = TP_N(tp);
101 else
102 {
103 strength = TP_FLOW_RATE(tp) / TP_INIT_MASS(tp);
104 if (TP_STOCHASTIC(tp))
105 strength /= (real)TP_STOCHASTIC_NTRIES(tp);
106 }
107

108 flow_rate = strength * mass;
109 }
110

111 #if RP_2D
112 if (rp_axi_swirl)
113 {
114 Y = MAX(sqrt(TP_POS(tp)[1] * TP_POS(tp)[1] + TP_POS(tp)[2] * TP_POS(tp)[2]),

DPM_SMALL);↪→

115 V_vel = (TP_VEL(tp)[1] * TP_POS(tp)[1] + TP_VEL(tp)[2] * TP_POS(tp)[2]) / Y;
116 W_vel = (TP_VEL(tp)[2] * TP_POS(tp)[1] - TP_VEL(tp)[1] * TP_POS(tp)[2]) / Y;
117 if (Y > 1.e-20) Z = LIMIT_ACOS(TP_POS(tp)[1] / Y);
118 }
119 #endif
120

121 if (! dpm_par.unsteady_tracking)
122 par_fprintf(fp,
123 "%d %d ((%e %e %e %e %e %e "
124 " %e %e %e %e %e %e %e) %s:%" int64_fmt "), %e, %e, %e, %e\n",
125 P_INJ_ID(TP_INJECTION(tp)), TP_ID(tp),
126 TP_POS(tp)[0],
127 Y,
128 Z,
129 TP_VEL(tp)[0],
130 V_vel,
131 W_vel,
132 TP_DIAM(tp),
133 TP_T(tp),
134 flow_rate,

Appendix C. UDF Codes 140

135 mass,
136 strength,
137 (TP_TIME(tp) -TP_TIME_OF_BIRTH(tp)) /*Residence time*/ ,
138 TP_TIME(tp)/* flow time */ ,
139 TP_INJECTION(tp)->name,
140 /*tp->part_id*/ TP_ID(tp),
141 TP_USER_REAL(tp,0) /* Integral_Strain_Rate */ ,
142 TP_USER_REAL(tp,2) /* Integral_Shear_Stress */ ,
143 TP_TIME_OF_BIRTH(tp),
144 TP_USER_REAL(tp,4));
145 else
146 par_fprintf(fp, /* Note: The first two arguments to par_fprintf are */
147 /* used internally and must not be changed, even */
148 /* though they do not appear in the final output.
149

150 /* The first two replacement variables in the format string */
151 /* must be the particle injection ID and particle ID,

respectively*/↪→

152 "%d %d ((%e %e %e %e %e %e "
153 " %e %e %e %e %e %e %e) %s:%" int64_fmt "), %e, %e, %e, %e\n",
154 P_INJ_ID(TP_INJECTION(tp)), TP_ID(tp),
155 TP_POS(tp)[0],
156 Y,
157 Z,
158 TP_VEL(tp)[0],
159 V_vel,
160 W_vel,
161 TP_DIAM(tp),
162 TP_T(tp),
163 flow_rate,
164 mass,
165 strength,
166 (TP_TIME(tp) -TP_TIME_OF_BIRTH(tp)) /*Residence time*/ ,
167 TP_TIME(tp)/* flow time */ ,
168 TP_INJECTION(tp)->name,
169 /*tp->part_id*/ TP_ID(tp),
170 TP_USER_REAL(tp,0) /* Integral_Strain_Rate */ ,
171 TP_USER_REAL(tp,2) /* Integral_Shear_Stress */ ,
172 TP_TIME_OF_BIRTH(tp),
173 TP_USER_REAL(tp,4));

Appendix C. UDF Codes 141

174

175 #if REMOVE_PARTICLES
176 MARK_TP(tp, P_FL_REMOVED);
177 #endif
178 }
179 }

C.3 Monitor Points in Fluent UDF

1 #include "udf.h"
2 #include "surf.h"
3

4 #define MAXPOINTS 3000
5

6 real coords[MAXPOINTS][ND_ND];
7 int total_count;
8 cxboolean interpolation_initialized=FALSE;
9

10 #if !RP_HOST
11

12 struct interpolation_point{
13 cell_t c;
14 Thread* t;
15 real distance;
16 cxboolean active;
17 real center[ND_ND];
18 };
19

20 struct interpolation_point point_list[MAXPOINTS];
21

22 #endif
23 /***/
24

25 DEFINE_ON_DEMAND(read_points)
26 {
27 #if !RP_HOST

Appendix C. UDF Codes 142

28 Domain* d = Get_Domain(1);
29 Thread* t;
30 cell_t c;
31 int point, i;
32 real dx,dy,dz=0.0;
33 real xc[ND_ND];
34 real distance;
35 #if PARALLEL
36 real smallestDistance;
37 #endif
38 #endif
39 #if !RP_NODE
40 float x,y,z;
41 FILE* input,fp;
42 int n, m;
43 #endif
44

45 #if !RP_NODE
46

47 for(n=0; n<MAXPOINTS; n++)
48 for(m=0; m<ND_ND; m++)
49 coords[n][m] = 0.0;
50

51 n = 0;
52

53 input = fopen("points.inp", "r");
54

55 while(!feof(input))
56 {
57 #if RP_3D
58 fscanf(input,"%g %g %g\n", &x, &y, &z);
59 coords[n][0]=x; coords[n][1]=y; coords[n][2]=z;
60 Message("x=%g y=%g z=%g\n",x,y,z);
61 #else
62 fscanf(input,"%g %g\n", &x, &y);
63 coords[n][0]=x; coords[n][1]=y;
64 Message("x=%g y=%g\n",x,y);
65 #endif
66

67 n++;

Appendix C. UDF Codes 143

68 if (n == MAXPOINTS)
69 {
70 Message("\n\nWARNING: Number of points in input file has exceeded

MAXPOINTS, which is set to %i\n",↪→

71 MAXPOINTS);
72 Message(" Recompile UDF with MAXPOINTS >= number of data

points in input file.\n");↪→

73 Message(" ... only %i points will be processed...\n\n",
MAXPOINTS);↪→

74 break;
75 }
76 }
77

78 total_count = n;
79 Message("\n\nThere are %i sets of coordinates read from input

file.\n",total_count);↪→

80

81 fclose(input);
82

83 #endif
84

85 /* Initialize coordinates on COMPUTE NODES */
86 host_to_node_int_1(total_count);
87 host_to_node_real(&coords[0][0],ND_ND*MAXPOINTS);
88

89 #if !RP_HOST
90 for(point=0; point<total_count; point++)
91 {
92 point_list[point].distance = 1.e+30;
93 point_list[point].active = TRUE;
94 for (i = 0; i < ND_ND; i++)
95 {
96 point_list[point].center[i] = 2.e+30;
97 }
98

99 }
100

101

102 /* Search over all cells */
103 thread_loop_c(t,d)

Appendix C. UDF Codes 144

104 {
105 begin_c_loop_int(c,t)
106 {
107 C_CENTROID(xc,c,t);
108 for(point=0; point<total_count; point++)
109 {
110 dx = xc[0]-coords[point][0];
111 dy = xc[1]-coords[point][1];
112 #if RP_3D
113 dz = xc[2]-coords[point][2];
114 #endif
115 distance=dx*dx+dy*dy+dz*dz;
116 if(point_list[point].distance > distance)
117 {
118 point_list[point].c = c;
119 point_list[point].t = t;
120 point_list[point].distance = distance;
121 for (i = 0; i < 3; i++)
122 {
123 point_list[point].center[i] = xc[i];
124 }
125

126 }
127 }
128 }
129 end_c_loop_int(c,t);
130 }
131

132 #if PARALLEL
133 for(point=0; point<total_count; point++)
134 {
135 distance = point_list[point].distance;
136 smallestDistance = PRF_GRLOW1(distance);
137 if(distance>smallestDistance)
138 {
139 point_list[point].active = FALSE;
140 }
141

142 }
143 #endif

Appendix C. UDF Codes 145

144

145 #endif
146 interpolation_initialized = TRUE;
147 }
148

149 /***/
150

151 DEFINE_ON_DEMAND(get_cell)
152 {
153 Domain *d = Get_Domain(1);
154 Thread *t = NULL; /* Lookup_Thread(d, 2); */
155 cell_t c=0;
156

157 CX_Cell_Id cx_cell;
158 real x[ND_ND]={-0.0020176121, 0.0054349047, 0.030792074}; /* coordinates of

the point of interest*/↪→

159

160 DPM_Init_Oct_Tree_Search(); /* this takes time -- only do once! */
161 /*start loop for multiple points here */
162

163

164 cx_cell.ct.c = c;
165 cx_cell.ct.t = t;
166 /*******/
167 DPM_Locate_Point(x, &cx_cell,0.0,0);
168 c = RP_CELL(&cx_cell);
169 t = RP_THREAD(&cx_cell);
170 Message("Start get_cell %s, %d \n x=%g, y=%g, z=%g", (NNULLP(cx_cell.ct.t))

? "true" : "false",RP_THREAD(&cx_cell),x[0],x[1],x[2]);↪→

171 if (NNULLP(cx_cell.ct.t))
172 {
173 c = RP_CELL(&cx_cell);
174 t = RP_THREAD(&cx_cell);
175 Message("\n");
176 Message("Thread_ID = %d\n",THREAD_ID(t));
177 #if PARALLEL
178 Message("Cell_ID = %d\n",C_ID(c,t));
179 #endif
180 Message("cell = %d\n",c);
181 Message("c centre = %f, %f, %f\n", C_CENTROID_CACHE(c, t)[0],

Appendix C. UDF Codes 146

182 C_CENTROID_CACHE(c, t)[1],
183 C_CENTROID_CACHE(c, t)[2]);
184 Message("My ID = %d\n",myid);
185 }
186

187 DPM_End_Oct_Tree_Search(); /* Free memory, only after all points have been
processed. */↪→

188 }
189 /***/
190

191 DEFINE_ON_DEMAND(monitor)
192 {
193 /* serial process or node processes calculate the values
194 serial or node0 process write the values
195 https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v c

195/flu_ug/flu_ug_sec_discrete_file_props.html?q=start%20flowtime%20in%20file
*/

↪→

↪→

196 #if !RP_HOST
197 Thread* t;
198 cell_t c;
199 int point, i, n;
200 real values[MAXPOINTS][7],flowtime;
201 #endif
202

203 if(!interpolation_initialized) read_points();
204

205 #if !RP_HOST
206 /* Initialize values */
207 for(i=0; i<MAXPOINTS; i++)
208 for(n=0; n<7; n++)
209 values[i][n] = 0.0;
210

211 for(point=0; point<total_count; point++)
212 {
213 if(point_list[point].active)
214 {
215 c = point_list[point].c;
216 t = point_list[point].t;
217 /* x, y, z values stored */
218 values[point][0] = point_list[point].center[0];

Appendix C. UDF Codes 147

219 values[point][1] = point_list[point].center[1];
220 values[point][2] = point_list[point].center[2];
221 /*distance value stored */
222 values[point][3] = point_list[point].distance;
223 /*u, v, w values stored */
224 values[point][4] = C_U(c,t);
225 values[point][5] = C_V(c,t);
226 values[point][6] = C_W(c,t);
227 }
228 values[point][0] = PRF_GRSUM1(values[point][0]);
229 values[point][1] = PRF_GRSUM1(values[point][1]);
230 values[point][2] = PRF_GRSUM1(values[point][2]);
231 values[point][3] = PRF_GRSUM1(values[point][3]);
232 values[point][4] = PRF_GRSUM1(values[point][4]);
233 values[point][5] = PRF_GRSUM1(values[point][5]);
234 values[point][6] = PRF_GRSUM1(values[point][6]);
235 }
236

237 #if PARALLEL
238 if (I_AM_NODE_ZERO_P)
239 #endif
240 {
241 FILE* output;
242 output = fopen("points.out","w");
243 if(!output)
244 {
245 Message("\n\nERROR: Could not open interpolation output file.\n");
246 return;
247 }
248

249 flowtime = RP_Get_Real("flow-time");
250 fprintf(output, "%g\n", flowtime);
251 fprintf(output, "x_c y_c z_c u v w, distance, x y z \n", flowtime);
252 for(point=0; point<total_count; point++)
253 {
254 fprintf(output,"%g %g %g %g %g %g, %g, %g %g %g \n",

values[point][0], values[point][1], values[point][2],↪→

255 values[point][4], values[point][5], values[point][6],
256 values[point][3],
257 coords[point][0], coords[point][1], coords[point][2]);

Appendix C. UDF Codes 148

258 }
259 fprintf(output,"\n");
260 fclose(output);
261 }
262 #endif
263 }

149

Bibliography

Afeyan, N. B. et al. (Oct. 1990). “Flow-through particles for the high-performance liquid

chromatographic separation of biomolecules: perfusion chromatography”. In: Journal

of Chromatography A 519.1, pp. 1–29. issn: 0021-9673. doi: 10.1016/0021-9673(90)

85132-F.

ANSYS Inc. (2019a). “16.2.1. Equations of Motion for Particles”. In: Fluent 2019 R3 -

Fluent Theory Guide. 2020-09-28 10:34:36.

— (2019b). 19.5, ANSYS Fluent Theory Guide. Publication Title: Online Documentation.

ANSYS, Inc.

— (2019c). 19.5, ANSYS Fluent User’s Guide. Publication Title: Online Documentation.

ANSYS, Inc.

ANSYS, Inc (2019). 19.5, ANSYS SpaceClaim. Version 19.5. Publication Title: Online

Documentation.

Bai, Hua et al. (2009). “A coupled DEM and CFD simulation of flow field and pressure

drop in fixed bed reactor with randomly packed catalyst particles”. In: Industrial and

Engineering Chemistry Research 48.8, pp. 4060–4074. doi: 10.1021/ie801548h.

https://doi.org/10.1016/0021-9673(90)85132-F
https://doi.org/10.1016/0021-9673(90)85132-F
https://doi.org/10.1021/ie801548h

Bibliography 150

Baker, Matthew John (2011). “CFD simulation of flow through packed beds using the finite

volume technique”. Pages: 208 Publication Title: University of Exeter. PhD thesis.

208 pp.

Baraff, David (1997). “An introduction to physically based modeling: Rigid body simula-

tion II — Nonpenetration Constraints”. In: SIGGRAPH ’97 Course Notes. Robotics

Institute Carnegie Mellon University, pp. D31–D68. isbn: 0-201-50933-4. doi: 10.

1145/97880.97881.

Bender, Jan, Kenny Erleben, and Jeff Trinkle (Feb. 2014). “Interactive simulation of rigid

body dynamics in computer graphics”. In: Computer Graphics Forum 33.1. Publisher:

Blackwell Publishing Ltd, pp. 246–270. doi: 10.1111/cgf.12272.

Bender, Jan et al. (2012). “Interactive Simulation of Rigid Body Dynamics in Computer

Graphics”. In: Eurographics 2012 - State of the Art Reports. Ed. by Marie-Paule Cani

and Fabio Ganovelli. tex.ids: bender_interactive_2012. The Eurographics Association.

doi: 10.2312/conf/EG2012/stars/095-134.

Benenati, R. F. and C. B. Brosilow (June 1962). “Void fraction distribution in beds of

spheres”. In: AIChE Journal 8.3. Publisher: John Wiley & Sons, Ltd, pp. 359–361.

doi: 10.1002/aic.690080319.

BioCentury Inc. (2019). Product Profiles. BCIQ. url: https://bciq.biocentury.com/

products (visited on 12/03/2019).

https://doi.org/10.1145/97880.97881
https://doi.org/10.1145/97880.97881
https://doi.org/10.1111/cgf.12272
https://doi.org/10.2312/conf/EG2012/stars/095-134
https://doi.org/10.1002/aic.690080319
https://bciq.biocentury.com/products
https://bciq.biocentury.com/products

Bibliography 151

BioMarin Pharmaceutical Inc. (Dec. 23, 2019). BioMarin Submits Biologics License Ap-

plication to U.S. Food and Drug Administration for Valoctocogene Roxaparvovec to

Treat Hemophilia A. BioMarin InvestorRoom. url: https://investors.biomarin.

com/2019-12-23-BioMarin-Submits-Biologics-License-Application-to-U-S-

Food-and-Drug-Administration-for-Valoctocogene-Roxaparvovec-to-Treat-

Hemophilia-A.

Blender Developer Wiki (June 2019). Reference/Release Notes/2.80/Python API. url:

https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API.

Blender Foundation (2019). Blender - a 3D modelling and rendering package. http://www.blender.org.

Blender Institute, Amsterdam.

Cleary, Paul W. (1998). “Discrete element modelling of industrial granular flow applica-

tions”. In: TASK. Quarterly-Scientific Bulletin 2.3, pp. 385–416.

Coumans, Erwin (2005). Bullet Physics Engine. Open Source, https://pybullet.org/wordpress/.

— (2015). “Bullet-Physics Simulation”. In: Course at Special Interest Group on Computer

Graphics and Interactive Techniques (SIGGRAPH) Conference, August 11, 2015. Los

Angeles, CA, USA: ACM SIGGRAPH 2015 Conference.

Danckwerts, P.V. (Feb. 1953). “Continuous flow systems”. In: Chemical Engineering Sci-

ence 2.1, pp. 1–13. issn: 00092509. doi: 10.1016/0009-2509(53)80001-1.

https://investors.biomarin.com/2019-12-23-BioMarin-Submits-Biologics-License-Application-to-U-S-Food-and-Drug-Administration-for-Valoctocogene-Roxaparvovec-to-Treat-Hemophilia-A
https://investors.biomarin.com/2019-12-23-BioMarin-Submits-Biologics-License-Application-to-U-S-Food-and-Drug-Administration-for-Valoctocogene-Roxaparvovec-to-Treat-Hemophilia-A
https://investors.biomarin.com/2019-12-23-BioMarin-Submits-Biologics-License-Application-to-U-S-Food-and-Drug-Administration-for-Valoctocogene-Roxaparvovec-to-Treat-Hemophilia-A
https://investors.biomarin.com/2019-12-23-BioMarin-Submits-Biologics-License-Application-to-U-S-Food-and-Drug-Administration-for-Valoctocogene-Roxaparvovec-to-Treat-Hemophilia-A
https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API
https://doi.org/10.1016/0009-2509(53)80001-1

Bibliography 152

De Klerk, Arno (Aug. 2003). “Voidage variation in packed beds at small column to particle

diameter ratio”. In: AIChE Journal 49.8. Publisher: John Wiley & Sons, Ltd, pp. 2022–

2029. doi: 10.1002/aic.690490812.

De las Mercedes Segura, María, Amine Kamen, and Alain Garnier (May 1, 2006). “Down-

stream processing of oncoretroviral and lentiviral gene therapy vectors”. In: Biotech-

nology Advances 24.3, pp. 321–337. issn: 0734-9750. doi: 10.1016/j.biotechadv.

2005.12.001.

De Wilde, Daan et al. (Dec. 2009). “Modelling the relation between the species reten-

tion factor and the C-term band broadening in pressure-driven and electrically driven

flows through perfectly ordered 2-D chromatographic media”. In: Journal of Separa-

tion Science 32.23. Publisher: Wiley-Blackwell, pp. 4077–4088. issn: 1615-9314. doi:

10.1002/jssc.200900458.

Decision Resources Group (Sept. 2019). Top 10 players in the CAR T-cell therapy devel-

opment field. DRG. url: https://decisionresourcesgroup.com/downloads/car-

t-cell-therapy-pipeline-forecast-snapshot/ (visited on 12/03/2020).

Di Felice, R. and L. G. Gibilaro (2004). “Wall effects for the pressure drop in fixed beds”.

In: Chemical Engineering Science 59.14, pp. 3037–3040. doi: 10.1016/j.ces.2004.

03.030.

https://doi.org/10.1002/aic.690490812
https://doi.org/10.1016/j.biotechadv.2005.12.001
https://doi.org/10.1016/j.biotechadv.2005.12.001
https://doi.org/10.1002/jssc.200900458
https://decisionresourcesgroup.com/downloads/car-t-cell-therapy-pipeline-forecast-snapshot/
https://decisionresourcesgroup.com/downloads/car-t-cell-therapy-pipeline-forecast-snapshot/
https://doi.org/10.1016/j.ces.2004.03.030
https://doi.org/10.1016/j.ces.2004.03.030

Bibliography 153

Dixon, Anthony G., Michiel Nijemeisland, and E. Hugh Stitt (2013). “Systematic mesh

development for 3D CFD simulation of fixed beds: Contact points study”. In: Com-

puters and Chemical Engineering 48, pp. 135–153. issn: 0098-1354. doi: 10.1016/j.

compchemeng.2012.08.011.

Effio, Christopher Ladd and Jürgen Hubbuch (2015). “Next generation vaccines and vec-

tors: Designing downstream processes for recombinant protein-based virus-like parti-

cles”. In: Biotechnology Journal 10.5, pp. 715–727. issn: 1860-7314. doi: 10.1002/

biot.201400392.

Eppinger, T., K. Seidler, and M. Kraume (2011). “DEM-CFD simulations of fixed bed

reactors with small tube to particle diameter ratios”. In: Chemical Engineering Journal

166.1, pp. 324–331. doi: 10.1016/j.cej.2010.10.053.

Flamm, Matthew H. (Aug. 20, 2019). “rtdpy: A python package for residence time dis-

tributions”. In: Journal of Open Source Software 4.40, p. 1621. issn: 2475-9066. doi:

10.21105/joss.01621.

Fogler, H. Scott (2006). Elements of Chemical Reaction Engineering. 4th. Hoboken, NJ:

Prentice Hall PTR. 1080 pp. isbn: 978-0-13-047394-3.

Fuerstenau-Sharp, Maya et al. (2017). “Scalable Purification of Viral Vectors for Gene

Therapy: An Appraisal of Downstream Processing Approaches”. In: BioProcess Inter-

national 15.2, pp. 12–17.

https://doi.org/10.1016/j.compchemeng.2012.08.011
https://doi.org/10.1016/j.compchemeng.2012.08.011
https://doi.org/10.1002/biot.201400392
https://doi.org/10.1002/biot.201400392
https://doi.org/10.1016/j.cej.2010.10.053
https://doi.org/10.21105/joss.01621

Bibliography 154

Ginn, Samantha L. et al. (May 2018). “Gene therapy clinical trials worldwide to 2017: An

update”. In: The Journal of Gene Medicine 20.5. Publisher: John Wiley & Sons, Ltd,

e3015–e3015. doi: 10.1002/jgm.3015.

Glueckauf, E. (Jan. 1, 1955). “Theory of chromatography. Part 9. The “theoretical plate”

concept in column separations”. In: Transactions of the Faraday Society 51.0. tex.ids:

glueckauf_theory_1955, glueckauf_theory_1955-1, glueckauf_theory_1955-2 pub-

lisher: The Royal Society of Chemistry, pp. 34–44. issn: 0014-7672. doi: 10.1039/

TF9555100034.

Goodling, J. S. et al. (1983). “Radial porosity distribution in cylindrical beds packed with

spheres”. In: Powder Technology 35.1, pp. 23–29. doi: 10.1016/0032-5910(83)85022-

0.

Gosman, A D and E Loannides (Jan. 1983). “Aspects of Computer Simulation of Liquid-

Fueled Combustors”. In: Journal of Energy 7.6. Place: Reston, Virigina Publisher:

American Institute of Aeronautics and Astronautics, pp. 482–490. doi: 10.2514/3.

62687.

Gostick, Jeff et al. (July 2016). “OpenPNM: A Pore Network Modeling Package”. In:

Computing in Science & Engineering 18.4. tex.ids: gostick_openpnm_2016, pp. 60–

74. doi: 10.1109/MCSE.2016.49.

https://doi.org/10.1002/jgm.3015
https://doi.org/10.1039/TF9555100034
https://doi.org/10.1039/TF9555100034
https://doi.org/10.1016/0032-5910(83)85022-0
https://doi.org/10.1016/0032-5910(83)85022-0
https://doi.org/10.2514/3.62687
https://doi.org/10.2514/3.62687
https://doi.org/10.1109/MCSE.2016.49

Bibliography 155

Grein, Tanja A. et al. (Apr. 2019). “Aeration and Shear Stress Are Critical Process Param-

eters for the Production of Oncolytic Measles Virus”. In: Frontiers in Bioengineering

and Biotechnology 7. doi: 10.3389/fbioe.2019.00078.

Hecker, Chris (Mar. 1997). “Physics, part 3: Collision Response”. In: Game Developer

Magazine, pp. 11–18.

Holdich, Richard G. (2002). “Fluid flow in porous media”. In: Fundamentals of Particle

Technology. tex.ids: holdich_fluid_2002. Midland Information Technology & Publish-

ing, pp. 21–28. isbn: 0-9543881-0-0. doi: 10.1039/df9480300061.

Horner, M., S. Joshi, and Y. Waghmare (2017). “Process modeling in the biopharmaceuti-

cal industry”. In: Predictive Modeling of Pharmaceutical Unit Operations. Elsevier Ltd,

pp. 383–425. isbn: 978-0-08-100154-7. doi: 10.1016/B978-0-08-100154-7.00014-4.

Hummel, Johannes et al. (2012). “An evaluation of open source physics engines for use in

virtual reality assembly simulations”. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Vol. 7432 LNCS. Issue: PART 2, pp. 346–357. isbn: 978-3-642-33190-9. doi: 10.1007/

978-3-642-33191-6_34.

Inc., ANSYS (2019a). 19.5, ANSYS CFD-POST. Publication Title: Online Doc.

— (2019b). 19.5, ANSYS Fluent. Publication Title: Online Doc.

https://doi.org/10.3389/fbioe.2019.00078
https://doi.org/10.1039/df9480300061
https://doi.org/10.1016/B978-0-08-100154-7.00014-4
https://doi.org/10.1007/978-3-642-33191-6_34
https://doi.org/10.1007/978-3-642-33191-6_34

Bibliography 156

Kelley, Brian (2007). “Very Large Scale Monoclonal Antibody Purification: The Case for

Conventional Unit Operations”. In: Biotechnology Progress 23.5, pp. 995–1008. issn:

1520-6033. doi: 10.1021/bp070117s.

Kodam, Madhusudhan et al. (2010). “Cylindrical object contact detection for use in dis-

crete element method simulations. Part I – Contact detection algorithms”. In: Chemical

Engineering Science 65.22. Publisher: Elsevier, pp. 5852–5862. doi: 10.1016/j.ces.

2010.08.006.

Komiyama, Hiroshi and Hakuai Inoue (1974). “Effects of Intraparticle Flow on Catalytic

Reactions”. In: Journal of Chemical Engineering of Japan 7.4, pp. 281–286. doi: 10.

1252/jcej.7.281.

Levenspiel, Octave (Nov. 1999). “Chemical Reaction Engineering”. In: Industrial & En-

gineering Chemistry Research 38.11, pp. 4140–4143. issn: 0888-5885, 1520-5045. doi:

10.1021/ie990488g.

Levenspiel, Octave and W. K. Smith (Apr. 1, 1957). “Notes on the diffusion-type model

for the longitudinal mixing of fluids in flow”. In: Chemical Engineering Science 6.4,

pp. 227–235. issn: 0009-2509. doi: 10.1016/0009-2509(57)85021-0.

Li, Amy and Goodarz Ahmadi (Jan. 1992). “Dispersion and Deposition of Spherical Par-

ticles from Point Sources in a Turbulent Channel Flow”. In: Aerosol Science and Tech-

nology 16.4, pp. 209–226. doi: 10.1080/02786829208959550.

https://doi.org/10.1021/bp070117s
https://doi.org/10.1016/j.ces.2010.08.006
https://doi.org/10.1016/j.ces.2010.08.006
https://doi.org/10.1252/jcej.7.281
https://doi.org/10.1252/jcej.7.281
https://doi.org/10.1021/ie990488g
https://doi.org/10.1016/0009-2509(57)85021-0
https://doi.org/10.1080/02786829208959550

Bibliography 157

Lyddiatt, Andrew and Deirdre A O’Sullivan (Apr. 1, 1998). “Biochemical recovery and pu-

rification of gene therapy vectors”. In: Current Opinion in Biotechnology 9.2, pp. 177–

185. issn: 0958-1669. doi: 10.1016/S0958-1669(98)80112-2.

MacMullin, R.B. and M. Weber Jr (1935). “Concept of residence time distribution”. In:

AIChE Journal 31, p. 409.

Mahdavi, M., M. Sharifpur, and J. P. Meyer (2018). “Discrete modelling of nanoparticles in

mixed convection flows”. In: Powder Technology 338. Publisher: Elsevier B.V., pp. 243–

252. doi: 10.1016/j.powtec.2018.07.025.

Merten, Otto-Wilhelm et al. (2014). “Manufacturing of viral vectors: part II. Downstream

processing and safety aspects”. In: Pharmaceutical Bioprocessing 2.3, pp. 237–251. doi:

10.4155/pbp.14.15.

Millman, K. Jarrod and Michael Aivazis (Mar. 2011). “Python for Scientists and Engi-

neers”. In: Computing in Science & Engineering 13.2, pp. 9–12. issn: 1521-9615. doi:

10.1109/MCSE.2011.36.

Moleirinho, Mafalda G. et al. (May 3, 2020). “Current challenges in biotherapeutic par-

ticles manufacturing”. In: Expert Opinion on Biological Therapy 20.5, pp. 451–465.

issn: 1471-2598. doi: 10.1080/14712598.2020.1693541.

Morenweiser, R. (Oct. 2005). “Downstream processing of viral vectors and vaccines”. In:

Gene Therapy 12.1. Number: 1 Publisher: Nature Publishing Group, S103–S110. issn:

1476-5462. doi: 10.1038/sj.gt.3302624.

https://doi.org/10.1016/S0958-1669(98)80112-2
https://doi.org/10.1016/j.powtec.2018.07.025
https://doi.org/10.4155/pbp.14.15
https://doi.org/10.1109/MCSE.2011.36
https://doi.org/10.1080/14712598.2020.1693541
https://doi.org/10.1038/sj.gt.3302624

Bibliography 158

Nolte-‘t Hoen, Esther et al. (Aug. 16, 2016). “Extracellular vesicles and viruses: Are they

close relatives?” In: Proceedings of the National Academy of Sciences 113.33, pp. 9155–

9161. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.1605146113.

Nvidia Corporation, Ageia, and NovodeX AG. PhysX. https://developer.nvidia.com/gameworks-

physx-overview.

Ookawara, Shinichi et al. (Sept. 16, 2007). “High-fidelity DEM-CFD modeling of packed

bed reactors for process intensification”. In: European Congress of Chemical Engineer-

ing (ECCE-6). Copenhagen, p. 11.

Ounis, Hadj, Goodarz Ahmadi, and John B Mclaughlin (1991). Brownian Diffusion of

Submicrometer Particles in the Viscous Sublayer.

Panda, Priyadarshi et al. (2008). “Stop-flow lithography to generate cell-laden microgel

particles”. In: Lab on a Chip 8.7. Publisher: Royal Society of Chemistry, pp. 1056–

1061. doi: 10.1039/b804234a.

Partopour, Behnam and Anthony G. Dixon (2017). “An integrated workflow for resolved-

particle packed bed models with complex particle shapes”. In: Powder Technology 322.

Publisher: Elsevier B.V., pp. 258–272. doi: 10.1016/j.powtec.2017.09.009.

Poletti, Valentina and Fulvio Mavilio (Mar. 2018). “Interactions between Retroviruses and

the Host Cell Genome”. In: Molecular Therapy - Methods and Clinical Development 8.

Publisher: Cell Press, pp. 31–41. doi: 10.1016/j.omtm.2017.10.001.

Python (2018). Python 3.7.0. https://www.python.org/. [Online].

https://doi.org/10.1073/pnas.1605146113
https://doi.org/10.1039/b804234a
https://doi.org/10.1016/j.powtec.2017.09.009
https://doi.org/10.1016/j.omtm.2017.10.001

Bibliography 159

Rathore, Anurag S (Nov. 1, 2014). “QbD/PAT for bioprocessing: moving from theory to

implementation”. In: Current Opinion in Chemical Engineering. Biotechnology and

bioprocess engineering • Process systems engineering 6, pp. 1–8. issn: 2211-3398. doi:

10.1016/j.coche.2014.05.006.

Rathore, Anurag S and Vijesh Kumar (Apr. 2017). “Mechanistic Modeling of Preparative

Ion-Exchange Chromatography”. In: 30.4, pp. 41–45.

Roblee, L. H.S., R. M. Baird, and J. W. Tierney (Dec. 1958). “Radial porosity variations

in packed beds”. In: AIChE Journal 4.4. Publisher: John Wiley & Sons, Ltd, pp. 460–

464. doi: 10.1002/aic.690040415.

Rodrigues, Alírio E. et al. (Jan. 24, 1992). “Importance of intraparticle convection in the

performance of chromatographic processes”. In: Journal of Chromatography A. Eight

International Symposium on Preparative Chromatography 590.1, pp. 93–100. issn:

0021-9673. doi: 10.1016/0021-9673(92)87009-W.

Roldão, António et al. (Oct. 1, 2010). “Virus-like particles in vaccine development”. In:

Expert Review of Vaccines 9.10. tex.ids: roldao_virus-like_2010 publisher: Taylor &

Francis, pp. 1149–1176. issn: 1476-0584. doi: 10.1586/erv.10.115.

Roosendaal, Ton (Jan. 2019). Blender’s 25th birthday! Publication Title: blender.org.

url: https://www.blender.org/press/blenders-25th-birthday/.

https://doi.org/10.1016/j.coche.2014.05.006
https://doi.org/10.1002/aic.690040415
https://doi.org/10.1016/0021-9673(92)87009-W
https://doi.org/10.1586/erv.10.115
https://www.blender.org/press/blenders-25th-birthday/

Bibliography 160

Rosenberg, Steven A. et al. (Aug. 1990). “Gene Transfer into Humans — Immunotherapy

of Patients with Advanced Melanoma, Using Tumor-Infiltrating Lymphocytes Modi-

fied by Retroviral Gene Transduction”. In: New England Journal of Medicine 323.9,

pp. 570–578. doi: 10.1056/NEJM199008303230904.

Ruthven, Douglas M (1984). Principles of Adsorption and Adsorption Processes. 1st.

tex.ids: ruthven_principles_1984, ruthven_principles_1984-2 pages: 464. Ney York:

John Wiley & Sons, Inc. 464 pp. isbn: 978-0-471-86606-0 0-471-86606-7.

Saffman, P G (June 1965). “The lift on a small sphere in a slow shear flow”. In: Journal

of Fluid Mechanics 22.2, pp. 385–400. doi: 10.1017/S0022112065000824.

Seisenberger, Georg et al. (2001). “Real-Time Single-Molecule Imaging of the Infection

Pathway of an Adeno-Associated Virus”. In: 294 (November). tex.ids: seisenberger_real-

time_2001-1, pp. 1929–1932. issn: 0036-8075 (Print)\n0036-8075 (Linking). doi:

10.1126/science.1064103.

Shekhawat, Lalita K. and Anurag S. Rathore (July 2019). “An overview of mechanistic

modeling of liquid chromatography”. In: Preparative Biochemistry and Biotechnology

49.6. Publisher: Taylor and Francis Inc., pp. 623–638. doi: 10.1080/10826068.2019.

1615504.

Smith, Russ. Open Dynamics Engine. url: http://www.ode.org/.

https://doi.org/10.1056/NEJM199008303230904
https://doi.org/10.1017/S0022112065000824
https://doi.org/10.1126/science.1064103
https://doi.org/10.1080/10826068.2019.1615504
https://doi.org/10.1080/10826068.2019.1615504
http://www.ode.org/

Bibliography 161

Smits, Wim, Kazuki Nakanishi, and Gert Desmet (2016). “The chromatographic perfor-

mance of flow-through particles: A computational fluid dynamics study”. In: Journal

of Chromatography A 1429, pp. 166–174. doi: 10.1016/j.chroma.2015.12.019.

Suzuki, Motoyuki (1990). In: Adsorption engineering. Chemical engineering monographs

vol. 25. 97-99. Tokyo : Amsterdam ; New York: Kodansha ; Elsevier, pp 97–99. isbn:

978-0-444-98802-7.

T. A. P. Ltd. True Axis. https://trueaxis.com/.

Taylor, Ben (June 12, 2010). Viral Tegument. Publication Title: Wikimedia Commons.

url: https://commons.wikimedia.org/wiki/File:Viral_Tegument.svg.

Van Dongen, Helena M. et al. (June 2016). “Extracellular Vesicles Exploit Viral Entry

Routes for Cargo Delivery”. In: Microbiology and Molecular Biology Reviews 80.2,

pp. 369–386. issn: 1092-2172, 1098-5557. doi: 10.1128/MMBR.00063-15.

Van Gelder, Klaas B. and K. Roel Westerterp (1990). “Residence time distribution and

hold-up in a cocurrent upflow packed bed reactor at elevated pressure”. In: Chemical

Engineering & Technology 13.1, pp. 27–40. doi: 10.1002/ceat.270130106.

Van Gumster, J. (2015). Blender For Dummies. For Dummies. Pages: 528. Wiley. 528 pp.

isbn: 978-1-119-03953-2.

Virtanen, Pauli et al. (2020). “SciPy 1.0: fundamental algorithms for scientific com-

puting in Python”. In: Nature Methods 17.3. tex.ids: 2020SciPy-NMeth tex.adsurl:

https://doi.org/10.1016/j.chroma.2015.12.019
https://commons.wikimedia.org/wiki/File:Viral_Tegument.svg
https://doi.org/10.1128/MMBR.00063-15
https://doi.org/10.1002/ceat.270130106

Bibliography 162

https://rdcu.be/b08Wh number: 3 publisher: Nature Publishing Group, pp. 261–272.

issn: 1548-7105. doi: 10.1038/s41592-019-0686-2.

Walker, John M. (2011). Viral Vectors for Gene Therapy. Ed. by Otto-Wilhelm Merten

and Mohamed Al-Rubeai. Vol. 737. Methods in Molecular Biology. Issue: 10 Pages:

2015. Totowa, NJ: Humana Press. 2013 pp. isbn: 978-1-61779-094-2. doi: 10.1007/

978-1-61779-095-9.

Waskom, Michael and the seaborn development team (Sept. 2020). mwaskom/seaborn.

Version latest. doi: 10.5281/zenodo.592845.

Wehinger, Gregor D, Carsten Füterer, and Matthias Kraume (2017). “Contact modifica-

tions for CFD simulations of fixed-bed reactors: Cylindrical particles”. In: Industrial

and Engineering Chemistry Research 56.1, pp. 87–99. doi: 10 . 1021 / acs . iecr .

6b03596.

Wen, Chin-Yung, Liang-tseng Fan, and others (1975). Models for flow systems and chem-

ical reactors. M. Dekker.

Williams, J R and R O’Connor (1999). Archives of Computational Methods in Engineering

Discrete Element Simulation and the Contact Problem. Volume: 6, pp. 279–304.

Wirth, Thomas, Nigel Parker, and Seppo Ylä-Herttuala (2013). “History of gene therapy”.

In: Gene 525.2. Publisher: Elsevier B.V., pp. 162–169. issn: 1879-0038. doi: 10.1016/

j.gene.2013.03.137.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-1-61779-095-9
https://doi.org/10.1007/978-1-61779-095-9
https://doi.org/10.5281/zenodo.592845
https://doi.org/10.1021/acs.iecr.6b03596
https://doi.org/10.1021/acs.iecr.6b03596
https://doi.org/10.1016/j.gene.2013.03.137
https://doi.org/10.1016/j.gene.2013.03.137

Bibliography 163

Wittig, Kay, Andreas Richter, and Petr A. Nikrityuk (2012). “Numerical Study of Heat

and Fluid Flow Past a Cubical Particle At Subcritical Reynolds Numbers”. In: Com-

putational Thermal Sciences 4.4, pp. 283–296. doi: 10.1615/ComputThermalScien.

2012005098.

Wrzosek, Katarzyna et al. (2013). “Modeling of equilibrium and kinetics of human poly-

clonal immunoglobulin G adsorption on a tentacle cation exchanger”. In: Chemical

Papers, p. 11.

Young, M. E., P. A. Carroad, and R. L. Bell (1980). “Estimation of diffusion coefficients

of proteins”. In: Biotechnology and Bioengineering 22.5, pp. 947–955. issn: 1097-0290.

doi: 10.1002/bit.260220504.

https://doi.org/10.1615/ComputThermalScien.2012005098
https://doi.org/10.1615/ComputThermalScien.2012005098
https://doi.org/10.1002/bit.260220504

	Modeling Residence Time Distribution of Chromatographic Perfusion Resin for Large Biopharmaceutical Molecules: A Computational Fluid Dynamic Study
	Recommended Citation

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Biotherapeutic Particles
	Manufacturing Process
	This Work

	Background/Literature Review
	Gene Therapy
	Types of Viral Vectors
	Manufacturing Process Overview

	Physics of Flow and Traditional Definitions
	Packed Beds and Packing Regimes
	Fluid Flow Definitions
	Aspect Ratio
	Wall Regions
	Empirical Equations and Models
	Distributions of Residence Times

	Computational Fluid Dynamics (CFD)
	Computational methods
	Meshing and Contact Point Modifications
	Porous Media Rendering

	Discrete Phase Modeling Equations
	Saffman Lift Force
	Stokes-Cunningham Drag Law and Brownian Motion
	Brownian Random Force
	Particle Tracking with Eulerian-Lagrangian Method
	Coupling between continuous and discrete phases
	Shear Stress Integral

	Methodology
	Packed Bed Generation
	Geometry Software: Blender
	Physics Engine and Rigid Body Dynamics
	Blender
	Python Scripts
	Packed Bed Generator Script
	Contact Point Modifier Script

	CFD Modeling of Packed Bed

	Porosity and Explicit Geometry Rendering
	Case Setup for Different Porosity Settings (Geometry)
	Meshing
	CFD Setup

	DPM Flow Cell
	Geometry
	Mesh
	CFD Setup

	Results and Discussion
	Steady State Models
	Pore Lattice Exploration

	DPM Models
	Capture Simulation
	Release Simulation

	Conclusions
	References for Figure 1.2
	Contact Modification Python Script
	UDF Codes
	Interpolate
	Shear Integral UDF
	Monitor Points in Fluent UDF

	Bibliography

