
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

CGU Theses & Dissertations CGU Student Scholarship 

Spring 2021 

Dual Mechanisms of Cognitive Control: A Hierarchical Bayesian Dual Mechanisms of Cognitive Control: A Hierarchical Bayesian 

Approach to Test-Retest Reliability Approach to Test-Retest Reliability 

Jean-Paul Snijder 
Claremont Graduate University 

Follow this and additional works at: https://scholarship.claremont.edu/cgu_etd 

Recommended Citation Recommended Citation 
Snijder, Jean-Paul. (2021). Dual Mechanisms of Cognitive Control: A Hierarchical Bayesian Approach to 
Test-Retest Reliability. CGU Theses & Dissertations, 226. https://scholarship.claremont.edu/cgu_etd/226. 
doi: 10.5642/cguetd/226 

This Open Access Dissertation is brought to you for free and open access by the CGU Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in CGU Theses & Dissertations by an authorized 
administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cgu_etd
https://scholarship.claremont.edu/cgu_student
https://scholarship.claremont.edu/cgu_etd?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu


 

 

 
 

 

 

 

 

 

 

 

 

Dual Mechanisms of Cognitive Control:  

A Hierarchical Bayesian Approach to Test-Retest Reliability 

By  

Jean-Paul Snijder 

 

 

 

 

Claremont Graduate University 

2021 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright Jean-Paul Snijder, 2021. 

All rights reserved 



 

 

 
 

Approval of the Dissertation Committee 

This dissertation has been duly read, reviewed, and critiqued by the Committee listed below, 

which herby approves the manuscript of Jean-Paul Snijder as fulfilling the scope and quality 

requirements for meriting the degree of Doctor of Philosophy in Psychology with a concentration 

in Cognitive Psychology. 

Andrew Conway, Chair 

Claremont Graduate University  

Professor of Psychology  

 

Gabriel Cook 

Claremont McKenna College 

Associate Professor of Psychology 

 

Megan Zirnstein 

Pomona College 

Assistant Professor of Linguistics and Cognitive Science 

 

Claudia von Bastian 

The University of Sheffield 

Lecturer 

 

  



 

 

 
 

Abstract 

Dual Mechanisms of Cognitive Control:  

A Hierarchical Bayesian Approach to Test-Retest Reliability 

by 

 Jean-Paul Snijder 

Claremont Graduate University: 2021 

Cognitive control, also known as attentional control or executive function, is a set of 

fundamental processes that are utilized in a wide range of cognitive functioning: including 

working memory, reasoning, problem solving, and decision making. Currently, no existing 

theory of cognitive control unifies experimental and individual differences approaches. Some 

even argue that cognitive control as a psychometric construct does not exist at all. These 

disparities may exist in part because individual differences research in cognitive control utilizes 

tasks optimized for experimental effects (i.e., Stroop effect). As a result, many cognitive control 

tasks do not have reliable individual differences despite robust experimental effects (Hedge, 

Powell, & Sumner, 2018). In the current study, we examine the efficacy of a new task battery 

based on the Dual Mechanisms of Cognitive Control theory (DMCC; Braver, 2012) to provide 

reliable estimates of individual differences in cognitive control. With two sets of analyses, the 

first traditional (e.g., split-half, ICC, and rho), and the second hierarchical Bayesian, we provide 

evidence that (1) reliable individual differences can be extracted from experimental tasks, and (2)  

weak correlations between tasks of cognitive control are not solely caused by the attenuation of 

unreliable estimates. The implications of our findings suggest that it is unlikely that poor 

measurement practices are the cause of the weak between-task correlations in cognitive control, 

and that a psychometric construct of cognitive control should be reconsidered.    
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1 Introduction 

Cognitive control is a construct used to refer to the set of processes involved in deliberate 

regulation of information processing to facilitate goal-directed behavior (Miller & Cohen, 2001; 

Posner & Snyder, 1979). Cognitive control is associated with several important real-world 

outcomes including psychopathology (Snyder et al., 2015), impulsivity (Sharma et al., 2014), 

addiction (Hester & Garavan, 2004), and age-related cognitive declines (Hasher et al., 1991). 

Also, the ability to engage cognitive control is a strong predictor of working memory capacity 

(WMC), which is associated with a broad range of outcomes, including academic achievement 

(Alloway & Alloway, 2010; Gathercole et al., 2003), reading comprehension (Daneman & 

Carpenter, 1980), mathematical ability (Ramirez et al., 2016), and multi-tasking (Redick et al., 

2016). Cognitive control also plays an important role in contemporary theories of 

intelligence. By many accounts, cognitive control is considered to be the primary source of 

variance in overall cognitive ability (Engle & Kane, 2004; Kovacs & Conway, 2016; Van Der 

Maas et al., 2006). The association between WMC and intelligence has been suggested to arise 

due to both processes’ reliance on the ability to regulate attention (e.g., cognitive control) in 

order to ignore distractors (Engle, 2002, 2018; Kane et al., 2007). Improvement in cognitive 

control ability therefore provides a boost to intelligence and allows for the differentiation of 

cognitive abilities (Kovacs & Conway, 2016). 

However, there are some problems with the construct validity of cognitive control. First 

of all, there is the inconsistency of definitions. Cognitive control is also referred to as executive 

function, executive control, controlled attention, and attentional control (Diamond, 2013). Even 

the postulated processes within the construct are referred to by different names (Rey-Mermet et 

al., 2018). Dempster (1993) refers to processes within inhibition as control of perceptual 
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interference, control of motor interference, and control of verbal-linguistic interference. In 

comparison, Friedman and Miyake (2004) refer to these processes as resistance to distracter 

interference, inhibition of prepotent responses, and resistance to proactive interference, and 

Hasher et al. (2007) use access, restraint, and deletion.  

Second, cognitive control research is plagued by inconsistencies in hypothesized latent 

variables and factor structure. Friedman and Miyake (2004) found that their postulated inhibition 

processes resistance to distractor interference (i.e., the ability to ignore distracting external 

information) and inhibition of prepotent responses (i.e., suppressing dominant responses) were 

highly correlated (r = .67). The authors found the strength of this relationship enough evidence to 

combine them into a single latent construct, namely, response-distractor inhibition. Pettigrew 

and Martin (2014) found support for this combined construct, however, in the same year Stahl et 

al. found support for the separability of distracter- and response-related interference. Some 

studies found that tasks often used to measure inhibition (e.g., Eriksen and Simon tasks) had no 

common variance, and thus, that the variance was task-specific (Keye et al., 2009; Wilhelm et 

al., 2013). Other studies were not able to extract an inhibition factor at all (Klauer et al., 2010; 

Krumm et al., 2009; van der Sluis et al., 2007).  

Another common issue with cognitive control is that correlations between measures of 

cognitive control are often weak. Considering that these tasks are assumed to tap the same 

psychometric construct, this is counterintuitive. Here is a non-exhaustive but representative 

sample of studies reporting correlations between tasks of cognitive control. Friedman and 

colleagues (2016): Stroop and Antisaccade, r = .17; Stroop and Stop-signal, r = .15; Antisaccade 

and Stop-signal, r = .26. Gustavson and colleagues (2018): Stroop and AX-CPT, r = .16; Stroop 

and Category Switch, r = .06; AX-CPT and Category Switch, r = .12. Paap and Greenberg 
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(2013): Antisaccade and Simon effect, r = -.12; Flanker effect and Simon effect, r = -.01. 

Antisaccade was not run in the same study as the Flanker test, hence no reported correlation. 

Finally, Rey-Mermet and colleagues (2019) reported 21 correlations between Number Stroop, 

Arrow Flanker, Letter Flanker, Simon, Antisaccade, and Stop-signal: ranging from r = -.16 to r = 

.15. Finally, in a large meta-analysis of 70 studies producing 2,114 between-task correlations, 

von Bastian et al., (2020) report a median correlation of .16, with most studies not surpassing 

between-task correlations of .30.  

Taken together, the inconsistencies in nomenclature and processes, and the weak 

between-measure correlations have a sparked a debate on whether a coherent psychometric 

construct of cognitive control even exists. One side argues that poor correlational results between 

these tasks indicate that cognitive control is perhaps not a coherent psychometric construct (Paap 

& Sawi, 2016; Rey-Mermet et al., 2018). Another side argues that many of these inconsistent 

and poor correlational results stem from measurement issues and poor operationalization of the 

construct (Draheim et al., 2020; Hedge, Powell, & Sumner, 2018). Given the practical and 

theoretical importance of cognitive control in clinical applications and in theories of working 

memory and intelligence outlined above, these measurement issues warrant further examination 

before discarding the construct as a whole. After an encapsulation of important theories that laid 

the groundwork for research in cognitive control, measurement of cognitive control will be 

discussed.    

2 Theories of Cognitive Control 

2.1 Norman and Shallice (1986) 

Early research on cognitive control focused on inhibition of automatic behavior in novel 

situations. In one of the first theories to venture outside of standard box models and into dynamic 
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neurocognitive models, Norman and Shallice proposed a cognitive control model of executive 

functioning (1986) (See Figure 1). In their seminal work, they outline how schemas are activated 

to instruct behavior. A schema, in this sense, is a collection of sequential thoughts and actions 

triggered by perceptual stimuli. Schemas can be subdivided into two groups; schemas for 

automated and for controlled processes. Automated, or routine, processes are defined here as 

processes that are engaged when performing a task or action that do not require attentional 

resources (Norman & Bobrow, 1975); for example, riding a bike after many years of practice. 

Controlled processes are tasks or actions that require deliberate and sustained attention. These 

are often employed when important situations, dangerous environments, or novel problems 

present themselves and navigating behavior successfully is paramount. For example, riding a 

bike for the first time in new city during rush hour in a country where they drive on the opposite 

side of the road.  

Figure 1  

Schematic model of the cognitive control model of executive function 

 

Norman and Shallice (1986) propose that schemas are activated by a process called 

contention scheduling (CS). CS ensures that the “optimal” schema is activated and inhibits 

incorrect, or less efficient, schemas from contending. Here, optimal is considered to be 
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subjective. If a schema is repeatedly activated given a certain event, its threshold for activation is 

lowered and considered optimal for similar future events. The CS mechanism is suggested to 

work relatively straightforward; it allows schemas to compete for activation and it activates a 

schema once it reaches its activation threshold. The main role of CS is to subconsciously monitor 

for automated and routine situations. When a situation requires a more controlled and conscious 

decision, for example when it is novel or complex, the supervisory attentional system (SAS) is 

engaged. When engaged, the SAS controls the CS by influencing schema activation thresholds 

and activating existing schemas to novel problems (e.g., using existing strategies in situations for 

which a schema does not exist). The SAS does not directly control action and decision making, 

but rather the thresholds for activation and inhibition of competing schemas.  

As the more controlled construct, the SAS is an early mechanism for what now is dubbed 

“cognitive control”. The account by Norman and Shallice was a frontrunner for future research 

on cognitive control, however, it was not yet specific enough. For one, it was too broad in its 

description of processes related to the SAS, which made distinguishing SAS from other 

constructs, such as intelligence, difficult. It is important to note that the failure to specify 

processes of cognitive control is a common theme throughout the lifespan of this research. 

2.2 Shallice and Burgess (1996) 

Shallice and Burgess were the first to explore whether the Norman and Shallice (SAS) is 

fractionable into different sub-processes (1996). For about two decades, scholars generally 

agreed that the prefrontal cortex housed an important central ability that influenced multiple 

domains, but this ability was mainly characterized as a single type of process. Some suggested 

that this singular process was what underlies general intelligence, or g, and most commonly were 

accounts of working memory add a Duncan reference here (Duncan et al., 1996; Engle et al., 
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1995; Kimberg & Farah, 1993). Other unitary accounts existed as well, but the idea that the 

prefrontal cortex carried only a single key process was the overarching school of thought. 

Alternatively, Shallice and Burgess suggested that even if the SAS was a single system, it was 

incorrect to view it as carrying out only a single process. The authors showed evidence for “the 

existence of a variety of processes carried out by different subsystems but operating together to 

have a globally integrated function”. They observed “very low correlations across patients on 

more than one measure…”, and argued for the separability of processes stemming from the 

prefrontal cortex. The hypothesis that a central attention system is a multi-process system is what 

eventually lead to contemporary theories of cognitive control. However, note that weak 

correlations between measures of cognitive control played an important role in advancing 

research of cognitive control, yet currently are also the reason for the suggestion that cognitive 

control might not be a valid construct.  

2.3 Miller and Cohen (2001) 

At the beginning of this century, Miller and Cohen published the important Integrative 

Theory of Prefrontal Cortex Function (2001). The authors argue that cognitive control is the 

main function of the prefrontal cortex (PFC) and consists of different processes such as selective 

attention, error monitoring, decision-making, and inhibitions of stimuli and response. They not 

only specified a set of cognitive control sub-processes, but also suggested mechanisms by which 

those sub-processes are executed, and provided a review of neurobiological evidence that 

supported their theory.  

The integrative theory of prefrontal cortex function states that the PFC is critical for 

carrying out processes that require top-down processing; that is, when behavior benefits greatly 

from being intentionally controlled based on internal representations, or mappings, of a goal. For 
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example, if one’s goal is to reach the other side of a busy road safely, then observing and timing 

bi-directional traffic, locating a pedestrian crossing, or alternatively, determining the presence or 

absence of law enforcement, are all behaviors that need to be actively controlled in order to 

complete the goal. Such processes are often aimed to be operationalized by cognitive-behavioral 

tasks. For example, in the Stroop task (Stroop, 1935) subjects are presented with words that are 

names of colors (e.g., the word “GREEN”) in different colored fonts (e.g., green, yellow, red). 

Here, correct performance, and hence the internalized goal, is based on the task rule to name the 

font-color rather than to verbalize the color-word. Generally, reading of a simple word is a 

bottom-up, automated, and a much practiced process and hence, has strong existing mappings 

between reading the word, semantic processing, and verbalizing it. According to Miller and 

Cohen’s theory, the PFC is not critical in such processes. However, in an incongruent trial, the 

Stroop task requires that subjects inhibit the tendency of such reading and then selectively attend 

to the color of the font. Inhibiting and selectively attending are considered processes with weaker 

existing mappings than the automated reading, and hence, are suggested by Miller and Cohen to 

require the PFC to control behavior for a correct performance of the task.  

The theory also describes how the PFC controls behavior. The theory builds on an earlier 

principle by Desimone and Duncan (1995) which states that multiple available behaviors exist 

simultaneously and compete to be executed. Neurobiologically, the executed behavior is the 

behavior downstream of the most excited neural pathway. According to Miller and Cohen, 

cognitive control is the voluntary biasing of pathway towards the behavior that best fits current 

task-goals. The PFC resolves competition by inhibiting pathways of alternative behaviors and 

exciting the pathways to the preferred behavior. This preferential activation establishes the 

mappings needed to execute the goal-appropriate behavior. Miller and Cohen’s description of 
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how the PFC controls behavior, can be viewed as the neural implementation of the internal and 

external rules and goals governing controlled behavior. 

Finally, Miller and Cohen review neurobiological evidence for the distinction between a 

system that regulates routine behavior (contention scheduling) and a system for deliberate 

conscious control (supervisory attentional system). Their strongest evidence relies on the notion 

that if the PFC is crucial in the SAS, but not in the CS, then damage to PFC would impact the 

ability to control behavior, but not routine behavior. In their manuscript, the authors present prior 

findings following that logic. First, it is generally known in clinical neuropsychology that 

damage to the prefrontal structures leave execution of basic skills unaffected (Walsh, 1978). 

Second, performance on WAIS subtests is also relatively unaffected by frontal lesions (McFie, 

1960). Third, contrasting evidence can be found in Lhermitte et al., (1972). This classic study 

showed that two patients with frontal lobe lesions were able to complete the verbal and 

performance WAIS tasks at normal levels. However, their performance on the WAIS Block 

Design or the reproduction of a complex figure (i.e., Figure of Rey) was extremely poor. These 

are tasks that require more controlled processes such as novel programming, planning, and 

problem solving. For more evidence, see Norman and Shallice (1986).  

2.4 Miyake et al. (2000) 

Miller and Cohen’s theory provided a framework based on neurobiological evidence that 

supported mechanistically explicit hypotheses about processes of cognitive control. Around the 

same time, Miyake and colleagues (2000) published their influential (~ 13,000 citations 

currently) unity/diversity framework of cognitive control, though their theory was based on 

cognitive-behavioral evidence. Their seminal work employed structural equation modeling on 

tasks of attention and found convergent validity for a model with multiple correlated first-order 
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constructs. More specifically, three latent factors emerged: shifting between task sets, updating 

and monitoring of information, and inhibition of prepotent responses. Their continued work 

(Friedman et al., 2008; Friedman & Miyake, 2017; Miyake & Friedman, 2012) has shown an 

additional higher-order common factor (i.e., cognitive control) that accounts for covariance 

across the latent factors. Friedman and Miyake (2017) suggest that this common factor reflects 

active goal maintenance and top-down biasing of attention. Yet, despite the popularity of this 

unity/diversity model, it seemingly has one weakness; the latent factor termed inhibition by 

Miyake and colleagues is not consistently evident.   

In addition to the problems with the inhibition factor that have already been mentioned in 

the introduction (e.g., no common variance between inhibition tasks; no inhibition latent factor 

found at all), there are some additional concerns with the unity/diversity framework worth 

mentioning here. One, a meta-analytic review showed that out of the studies that found support 

for these models, only a few tested other models (Karr et al., 2018). Two, the same meta-analytic 

review by Karr and colleagues reported that many studies based on this theory suffered from low 

rates of model acceptance and model selection. These issues were generally attributed to the 

small sample sizes, high model complexities, and poor reliability of the experiments. Three, even 

though the factor-loadings of updating and shifting are often found to be acceptable (Ecker et al., 

2010; Singh et al., 2018; von Bastian & Druey, 2017), they are found to be weak for the 

inhibition factor (Friedman & Miyake, 2004; Gustavson et al., 2018; Hedge, Powell, Bompas, et 

al., 2018; Paap & Greenberg, 2013; Rey-Mermet et al., 2019). And four, latent factors of 

inhibition are often dominated by a single task (typically, the anti-saccade task (Rey-Mermet et 

al., 2019)).  
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In conclusion, Miyake et al. (2000) promote a model of cognitive control with three 

emerging (latent) processes; shifting, updating, and inhibition. Like Miller and Cohen (2001), 

Miyake et al. present evidence that cognitive control consists of different processes underlying a 

central function. However, a wide-scale review of studies employing this unity/diversity model 

reveals mixed evidence for its construct validity. As previously mentioned, such inconsistent and 

weak individual differences results perhaps stem from measurement issues.  

3 Measurement of Cognitive Control 

3.1 Experimental Approach 

Cognitive-behavioral tasks are designed to measure whether theorized processes indeed 

manifest behaviorally. Often, existing tasks are adapted to find behavioral evidence of such 

processes. Cognitive control is often measured by tasks that through experimental manipulations 

create two or more trial types. A baseline trial generally presents the subject with low (or no) 

conflict and correct performance does not require much cognitive control. An experimental trial 

includes a manipulation which causes interference, and hence, requires cognitive control to 

resolve this interference, necessary for correct performance. A classic example of this is the 

Stroop task (Stroop, 1935). There are generally two types of trial in the Stroop task. In the non-

interference trial, more commonly known as a congruent trial in the Stroop task, the color-names 

match the font-color in which they are presented (e.g., “GREEN” in a green font-color). In 

contrast, in the interference trail, referred to as an incongruent trial, the color-names do not 

match the font-color (e.g., “GREEN” in a red font-color). Correct performance in an incongruent 

trial requires the subject to resolve the conflict that arises between the reading of the color-word 

and the naming font-color. The Stroop effect is considered the decrement in incongruent 
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performance (lower accuracy and slower reaction time) when compared to congruent 

performance. 

Experimental effects of cognitive control are numerous and varied, including the 

congruency or conflict effect (Stroop, 1935), response inhibition (Hallett, 1978), error-related 

slowing (Rabbitt, 1966), sequential congruency effects (Gratton et al., 1992), costs of switching 

between tasks or completing multiple tasks simultaneously (Koch et al., 2018), and monitoring 

and updating of information (Miyake et al., 2000). Each of these paradigms reveals robust and 

reliable experimental effects that are considered signatures of cognitive control. Together, these 

experimental effects and other “benchmark findings” in psychology and neuroscience help to 

establish and test theories and models of cognitive control, which in turn help to guide further 

investigation and research.  

Yet, models based on experimental evidence alone are limited; they provide an account 

of normative behavior but do not explain individual differences in cognitive control. A unified 

approach to the study of cognitive control would require a combination of experimental and 

correlational methods (Cronbach, 1957). Ideally, the experimental and correlational approaches 

inform each other, allowing for a theoretical framework that integrates different kinds of 

empirical evidence and accounts for inter-individual differences in terms of intra-individual 

psychological processes.  

3.2 Individual Differences Approach 

As mentioned in the introduction, the weak correlations between the measures of 

cognitive control indicate that the individual differences dimension has not been successfully 

integrated. One difference with other areas of individual differences research such as personality 

or intelligence, is that those areas use tasks that were designed to measure ability differences 
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between people. Correlational approaches in cognitive control research have mostly consisted of 

comparing effects from experimental measures. Because of the robustness of these effects, 

differences in the size of the effects were assumed to reflect a general cognitive control ability 

(von Bastian et al., 2020). This brings us to the main concern addressed in this paper; can 

measures of cognitive control derived from experimental tasks be used to explain individual 

differences in control ability? 

This is not an entirely new concern, in fact, it is based on a longstanding concern in 

Psychology. In 1957, Cronbach famously quipped, “Individual differences have been an 

annoyance rather than a challenge to the experimenter” (Cronbach, 1957, p. 674). Recently 

there seems to be an increased awareness of psychometric issues when employing experimental 

cognitive tasks to measure individual differences. Here, three of those issues are discussed: (a) 

the poor reliability of existing measures, (b) the use of difference scores in individual differences 

studies, and (c) the effect of reliability on correlations between measures.  

One popular account by Hedge, Powell, and Sumner (2018), aptly titled “[t]he reliability 

paradox…” examines the phenomenon that robust cognitive-behavioral tasks do not produce 

reliable individual differences measures. They report the test-retest reliabilities of 7 classic 

experimental effects (e.g., Stroop, flanker) used in cognitive psychology and neuroscience. To 

summarize their results, their reliabilities were generally weak with a median ICC = .40. Their 

investigation clearly illustrates that experimental effects in cognitive control tasks are robust, yet 

the test-retest reliabilities are weak and in many cases are not reliable or only moderately 

reliable.  

One explanation for this paradox is that the meaning of “reliable” is different in 

experimental vs. correlational psychology. An experimental manipulation is “reliable” when the 
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intended effect is replicated across multiple studies (in different labs, with different stimuli, etc.). 

In contrast, an individual differences measure is considered reliable when it ranks subjects 

consistently in terms of the effect size. Experimental reliability is best served by low between-

subject variance (e.g., homogeneous measures) and high within-subject variance (e.g., a large 

effect due to a manipulation). Contrarily, correlational reliability is best served by high between-

subject variance (e.g., heterogeneous measures), making it easier to tease apart performance 

which is preferable for finding individual differences. Critically, between-subject variance is 

considered measurement error in experimental designs and typically are designed to minimize 

this noise (Burgess, 1997). As a result, these tasks may be not be suitable as reliable measures in 

individual differences research (Hedge, Powell, & Sumner, 2018).  

Another measurement issue stems from the popular use of difference scores in cognitive-

behavioral tasks. Many classic effects (e.g., the Stroop effect) are a simple difference score based 

on the contrast between the two experimental task trial types (e.g., Stroop effect = incongruent – 

congruent trial performance). However, from a psychometric perspective, difference scores are 

notoriously problematic for reliability (Caruso, 2004; Cronbach & Furby, 1970; Lord, 1956). It is 

common knowledge that the reliability of a difference score is not as robust as the reliability of 

its components (Edwards, 2001; Rogosa, 1988, 1995; Willett, 1988; Zimmerman & Williams, 

1998; Zumbo, 1999). This is a purely psychometric phenomenon. Generally, when taking the 

difference between two measures, the amount of between-subject variance is lowered, but the 

measurement error is relatively unaffected. Hence, the ratio of measurement error to between-

subject variance increases. Lower between-subject variance increases experimental reliability 

(less error or “noise”). Critically however, it decreases the reliability of individual differences 

because lower between-subject variability makes it more difficult to separate the performance of 
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subjects when ranking them. Thus, difference scores are well suited in experimental, but not in 

individual differences research. For an applied illustration, see Rodebaugh et al., (2016). 

Finally, Spearman (1904) noted that measurement error attenuates the maximum 

attainable correlation between two measures. A “true” between-measure correlation of, for 

example, .80, can only be attained if both measures are free of measurement error. The reliability 

coefficient essentially reflects the measurement error in each measure individually, hence, a 

correlation between two measures is constrained by the average of their individual reliabilities 

(Hedge, Powell, & Sumner, 2018; Nunnally Jr., 1970; Spearman, 1904).  

To summarize three main issues with the measurement of cognitive control: (a) 

experimental tasks are used to research individual differences, but are designed to minimize 

between-subject variance, which oftentimes causes poor reliability of the measures; (b) the 

popular use of difference scores further accentuates the issue of poor reliability, because it 

increases the ratio of measurement error to between-subject error; and (c) a correlation between 

two measures is constrained by the reliability of each measure; if individual differences in 

cognitive control are not reliable, correlational results are difficult to interpret.  

4 Reliability 

These reliability issues are not just a problem in cognitive science (Parsons et al., 2019); 

so how is it possible that they have not been noticed on a grand scale? For one, reliability 

estimates are not always reported; this may lead to task reliability not being considered as one of 

the suspects of poor correlational results (Flake et al., 2017; Hussey & Hughes, 2018). 

Consequently, some results may have been erroneously reported as replicable and generalizable, 

perhaps propagating false standards in the field (e.g., the replication crisis). Furthermore, when 

reliabilities are reported it is not always accompanied by how they were calculated. Here, some 
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common pitfalls of calculating reliability are presented and a standard methodological approach 

in reporting individual differences reliability is discussed.   

4.1 Internal Consistency 

There are many ways to estimate reliability and currently there is no standardized 

procedure (Parsons et al., 2019). Additionally, the reliability methods offered in many statistical 

software packages assume that the data conforms to analysis-specific assumptions. For example, 

a common and well-known method for estimating reliability is Cronbach’s alpha, a measure of 

internal consistency. Alpha is most commonly derived by averaging the correlations between 

each item (trial) and the sum of the remaining items (trials). The default method offered in 

statistical software packages calculates alpha based on the assumption that the order of the items 

is identical for all subjects. Furthermore, it is assumed that each item measures the same 

underlying construct, to varying degrees, as a function of item difficulty and discriminability. In 

survey research, this is often the case. However, in cognitive-behavioral tasks, trial order is often 

randomized. More concerning, the cognitive processes involved in task performance may vary 

across trials, as a function of practice, fatigue, or strategy development/deployment, or even due 

to the experiment’s own manipulations. If these issues are ignored, which is typically the case, 

then alpha reliability estimates may not be accurate nor valid. Hence, standard Cronbach’s alpha 

is generally unsuitable as an index of reliability for tasks designed to measure individual 

differences in cognitive control.  

Alpha can also be calculated as the average of correlations between two halves of the 

data (e.g., split-half reliability). Most commonly, the data are split into the first and second half 

or even- and odd-numbered trials. However, it has been demonstrated that split-half reliabilities 

based on these kinds of simple split methods are unstable (Enock et al., 2014). It is recommend 
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to apply multiple random splits to the data to generate multiple split-half reliability estimates and 

then taking the average of all split-half estimates as the overall reliability estimate (Enock et al., 

2014; Parsons et al., 2019). Such permutation-based method for calculating split-half reliability 

approximates Cronbach’s alpha (Cronbach, 1951), while simultaneously avoiding the pitfalls 

described above. Importantly, splitting the number of observations in half leads to 

underestimation. The Spearman-Brown (prophecy) formula can be applied to correct for this 

(Equation 1).  

𝑟𝑠  =
2𝑟

1 + 𝑟
  (1) 

 

4.2 Test-Retest Reliability 

When repeated measures are available, it is possible to calculate test-retest reliability 

estimates. The Intraclass Correlation Coefficient (ICC) provides evidence for or against the 

measure’s stability over time. More specifically, ICC indicates how well two measurements 

consistently rank-order the subjects. Ten different forms of ICC have been developed (Mcgraw 

& Wong, 1996), resulting from a combination of three specified parameters; model selection, 

type, and the definition of the relationship.  

When selecting a model based on a research design, three models are available to choose 

from: (a) one-way random-effects model, in which each subject is rated by a different set of 

raters; (b) two-way random-effects model, in which random raters are chosen from a population 

of similar raters. This model is chosen when the reliability results are to be generalized across 

different raters (e.g., different clinicians). And (c) two-way mixed-effects model, in which the 

chosen rater is the only rater of interest (e.g., a computerized experiment).  
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Selecting a type is more straightforward. If the mean from multiple raters is used to 

calculate the measure of interest, the type “mean of k raters” should be selected. Alternatively, if 

the measure is based on a single rater, then “single rater” should be selected.  

In selecting the definition of the relationship, ICC is estimated based on either a 

consistency or absolute agreement between the two measurements (e.g., the relationship). A 

consistency relationship is not affected by systematic changes (e.g., practice effects, learning 

between measurements) and only the consistency of the rank-order is rated. Absolute agreement 

expects the two measurements to be identical in rank-order and in value (e.g., session mean), in 

other words, this relationship is affected by systematic differences. For example: these two 

measurements {1,2,3}, {4,5,6} would have a perfect consistent relationship (ICC = 1.00), but the 

measurements are not in absolute agreement (ICC = .09). This decision is important in 

calculating test-retest reliability; should ICC consider systematic differences? If one expects their 

data to have systematic differences between time one and time two (e.g., practice effects, 

differences in state), then a consistency relationship should be selected. Otherwise, absolute 

agreement should be selected. 

We suggest, as do others ( Koo & Li, 2016; Parsons et al., 2019), that when estimating 

test-retest reliability of measurements from computerized cognitive-behavioral tasks (e.g., single 

rater), the important decision is the specification of relationship definition. If systematic 

differences are expected between time one and time two, then the preferred form of ICC is a two-

way mixed-effects, consistency, with a single rater/measurement ((3,1) in Shrout and Fleiss 

(1979) convention). If one expects no such differences, then calculate ICC based on two-way 

random-effects, absolute agreement, with a single rater/measurement ((2,1) in Shrout and Fleiss 

convention). For a more in-depth discussion see Koo & Li (2016). 
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There are many methods to estimate reliability and it seems that not all researchers are 

aware of all the options or the assumptions underlying each method. Reliability is crucial when 

making inferences from correlational results, and hence, correctly estimating and reporting 

reliability should be a top priority in any individual differences research. Reliability estimates of 

internal consistency (i.e., permutation-based split-half) should always be reported. When 

possible test-retest reliability should be reported as well; ICC is robust and provides options for 

different research designs. 

5 Interim Summary 

In recent years a number of psychometric issues in the field of cognitive control have led 

to a debate regarding the construct’s validity. Commonly reported concerns include poor 

reliability of measures, especially of those derived from difference scores, and unexpected weak 

between-measure correlations. Based on this, a number of studies have suggested that cognitive 

control research, as is, should perhaps be abandoned (e.g., Paap & Sawi, 2016; Rey-Mermet et 

al., 2018). Yet, others advocate further examining these issues before taking such drastic 

measures (Draheim et al., 2020; Hedge, Powell, & Sumner, 2018). These issues are prevalent 

when approaching cognitive control from an individual differences perspective using established 

experimental tasks (e.g., the Stroop, flanker, etc.). Psychometrically, these tasks are created to 

produce a variance structure optimal for analyzing experimental effects, however, the same 

structure turns out to be unsuitable for individual differences (e.g., Rodebaugh et al., 2016). Such 

a divide between the two research traditions (e.g., experimental and correlational), is nothing 

new (Cronbach, 1957). The question on whether and how this divide can be bridged remains. 

Based on the seemingly pivotal role of reliability, future studies should investigate whether 

improving reliability can provide such a metaphorical bridge. Specifically, can existing 
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experimental tasks provide reliable individual differences estimates of cognitive control? And do 

the weak between-task correlations of cognitive control stem from reliability issues? 

Recent work suggests at least two possible approaches that could potentially answer these 

questions (von Bastian et al., 2020). A first approach is to introduce theoretically motivated task 

manipulations in order to increase between-subject variance, and hence, reliability. The Dual 

Mechanisms of Cognitive Control (DMC) account provides a theoretical framework that 

decomposes cognitive control into two qualitatively distinct mechanisms – proactive control and 

reactive control (Braver et al., 2007; Braver, 2012). Empirical findings provide compelling 

evidence in support of these two modes of control and suggest that an important source of 

variability in control function at both the individual- and group-level is the bias or preference to 

adopt one control mode over the other mode (Barch et al., 2001; Braver et al., 2001). Gonthier 

and colleagues (2016) have shown that task manipulations can indeed shift subjects toward either 

mode of control. Such added between-subject variance should produce more reliable measures of 

cognitive control.  

A second approach has been suggested by Rouder and Haaf (2019) and Haines et al. 

(2020). They propose that traditional aggregate statistics are not suitable for extracting individual 

differences estimates. There are many examples of how averaging across individuals while 

ignoring “uncertainty” (i.e., individual-level variation) leads to faulty inferences (e.g., Davis-

Stober et al., 2016; Estes, 1956; Heathcote et al., 2000; Liew et al., 2016; Pagan, 1984; 

Vandekerckhove, 2014). Additionally, Rouder and Haaf provide evidence that aggregation, or 

averaging subject-by-task, “greatly” attenuates measures of reliability, and hence, correlation. 

Traditional approaches assume the mean point-estimates (MPE) per subject represents their 

“true” ability, or in other words, is free of measurement error. Measurement error stems from 
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trial-level noise and it is suggested that reliable individual differences can be extracted through 

modeling this individual-level variability.  

This dissertation is a study with two sets of analyses aimed at investigating the viability 

of these two approaches in recovering reliable individual differences estimates from cognitive 

control tasks. With the first set of analyses, evidence is presented to show that theoretically 

motivated task manipulations alone do not improve reliability markedly. However, results and 

patterns that emerged are informative nonetheless. For instance, we show that poor reliability 

indeed bottlenecks, and hence, alters theoretical interpretations of between-task correlations. 

Furthermore, we show evidence that difference scores derived from experimental tasks with 

traditional statistics are not suitable for individual differences. The second set of analyses focuses 

on modeling trial-level variability through Hierarchical Bayesian Modeling (HBM) using the 

same data. At this stage there is promising preliminary evidence that HBM can extract reliable 

individual differences test-retest estimates (Haines et al., 2020). Although cautiously optimistic 

of the efficacy this approach, a null outcome would provide important evidence that individual 

differences research of cognitive control needs serious restructuring.  

6 Dual Mechanisms of Cognitive Control Task Battery 

The Dual Mechanisms of Cognitive Control (DMC) framework suggests that cognitive 

control operates in two qualitatively distinct modes; a proactive control mode and reactive 

control mode (Braver, 2012; Braver et al., 2007). Proactive control refers to a sustained and 

anticipatory mode of control that is goal-directed, allowing individuals to actively and optimally 

configure processing resources prior to the onset of task demands. Reactive control, by contrast, 

involves a transient mode of control that is stimulus-driven, which relies upon temporarily 

retrieving task goals and mobilizing processing resources only after the onset of a demanding 
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event (Braver, 2012; Braver et al., 2007). In other words, proactive control is planning ahead for 

alternate timelines, while reactive control is “I will deal with it when I need to”. Prior research 

has dissociated these two modes in both healthy and impaired populations (Braver et al., 2005; 

De Pisapia & Braver, 2006); based on behavioral signatures in young adults (Gonthier et al., 

2016); and among different age groups (Bugg, 2014; Paxton et al., 2008). 

In response to challenges with reliability of cognitive control paradigms, the DMC group 

created a cognitive control task battery including proactive and reactive variants of four well-

established cognitive tasks; Stroop, AX-CPT, Cued Task-Switching, and Sternberg Working 

Memory. These tasks are theorized to measure selective attention, context processing, multi-

tasking, and working memory, respectively. The variants were theoretically optimized to capture 

individual variability in proactive and reactive control. Specifically, there were three variants of 

each task representing different experimental conditions: (a) a baseline condition that maximizes 

within- and between-subject variability, which does not bias the adoption of proactive or reactive 

control; (b) a proactive condition that shifts individuals toward proactive control; (c) a reactive 

condition that independently engages the reactive mode of control. As will be detailed for each 

task in the method section, specifying a priori behavioral performance patterns across the three 

variants enabled us to examine whether proactive and reactive control variants did indeed 

produce the predicted shifts in control. Additionally, below we describe the method of the study 

and the rationale for the experimental manipulations underlying the theoretical-based variants of 

all four cognitive control tasks.  
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7 Method  

7.1 Subjects 

Subjects were recruited via the Amazon Mechanical Turk (MTurk) on-line platform. The 

TurkPrime interface was used to post study descriptions, manage recruitment and payment, send 

out reminder emails and handle all other communication with the subjects. After reading a 

description of the study that indicated its multi-session nature and time commitment, interested 

subjects accessed a link which allowed them to review and sign the consent form. After signing 

the consent, the web-links for the first session of the study were made available over MTurk. 

Subjects were not restricted with regard to age range, and as such a wide range were included in 

the sample (22-64, M=37.11, SD=9.90; 82 females, 47 males).  

7.2 Design and Procedure 

The study protocol consisted of 30 separate testing sessions that subjects completed in a 

sequential manner (15 for the test phase, and another 15 for retest). Subjects were asked to 

complete the sessions at a rate of 5 per week, i.e., 6 weeks to complete the full protocol. Each 

session lasted approximately 20-40 minutes in duration, with the exception of the first session, 

which was 1 hour in duration (and included a Stroop practice to validate operation of vocal 

response recording plus a battery of demographic and self-report questionnaires). To both 

incentivize and prorate study completion, completion of the first session of both test and retest 

phases resulted in a $4 payment, each subsequent session was paid $2, with the exception of 

session 6 and 11, which were paid $4 for each. Additional bonuses of $20 were paid for 

completion of the test phase and $30 for full study completion. Together, successful completion 

of the entire protocol resulted in a payment of $122. 
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A set of 5 sessions were posted at the beginning of each week through MTurk, and were 

also sent through emails to the subjects. Two reminder emails were also typically sent during the 

week to remind subjects of the completion deadline for the set (by the end of the week).  If 

subjects failed to complete the weeks’ sessions by the designated deadline, they were not invited 

back to participate in subsequent sessions. For each completed session, subjects would enter in a 

completion code and the experimenter would review each session results for completion and 

approve the payment within a week through TurkPrime. If subjects dropped from the study, they 

still received prorated payment for all sessions completed. 

For each completed session, the experimenter checked for overall accuracy and 

completion of each task and questionnaire to make sure that subjects were complying with 

instructions and maintaining sufficient attention to the task.  A criterion of 60% accuracy and 

response rate was used to determine whether the data would be included, and the subject invited 

to remain in the study. For each task or questionnaire that did not meet the criterion, the 

experimenter attempted to communicate with the subject first to determine if they had trouble 

understanding the instructions or had technical difficulties. If so, the subject was given a second 

chance to complete the task before a designated deadline. Within each of the test and retest 

phases, sessions were conducted in a fixed order for all subjects.  

7.3 Task Paradigms 

7.3.1 Stroop  

In this vocal Stroop task (see Figure 2), color words are presented in colored font and 

subjects name the font color out loud. For each trial, vocal response latencies were detected, and 

accuracy recorded using the computer’s built in voice recognition software. Subjects were given 

standard instructions to respond as quickly as possible (in a normal voice) while retaining 
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accuracy. Adequacy of the automated voice recognition was validated in previous pilot testing, 

and individually for each subject based on their first testing session, which contained a practice 

block of 25 standard Stroop trials. If responses could not be detected for most of the trials, the 

subject was not asked to continue with further testing.  

The current variants of the Stroop were based on the design of previously published work 

(Gonthier et al., 2016; Gourley et al., 2016) and constructed using two different sets of four 

colors, in which the relative proportion of congruent and incongruent trials were manipulated in 

different ways (details below). One set (black, green, pink, yellow) was unbiased, in that the 

proportion of congruent to incongruent stimuli was 50:50 (this set was termed PC-50). The other 

set of four colors (red, blue, purple, white) was biased in the proportion of congruent and 

incongruent trials, either mostly congruent or mostly incongruent, varied across conditions. The 

two sets of stimuli were nonoverlapping, such that on incongruent trials, the word name was one 

of the three remaining colors from that set (e.g., green font with “black”, “pink” or “yellow”; red 

font with “blue”, “purple” or “white”). All trials consisted of the following stimulus parameters: 

items were presented centrally on a gray screen for 5000 msec duration or until a response was 

detected, followed by a 250 msec inter-trial interval during which a blank screen was presented.  
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Figure 2 

Schematic representation of tasks used and their conditions 

 

Note. The trial proceedings pictured represent those of a typical baseline session. Slight 

variations from the baseline session might have been presented during the proactive or reactive 

sessions, but these are detailed in the methods section. The AX-CPT task is a simplified 

depiction for brevity. The font-to-screen ratio shown in this figure is not to scale. ITI = intra-trial 

interval. 
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Manipulation Rationale. A commonly used approach to manipulating cognitive control 

demands in the Stroop task is to vary list-wide proportion congruence (PC; Jacoby et al., 2003; 

Logan & Zbrodoff, 1979). Under high list-wide PC conditions, congruent trials are frequent and 

incongruent trials are rare within a block, such that control demands are on average low and 

intermittent. In contrast, under low list-wide PC conditions (rare congruent trials, frequent 

incongruent), there is a high probability of interference within a block, increasing anticipatory 

control demands.  

In the proactive condition, PC is decreased in a list-wide manner; we and others have 

hypothesized that the tendency to utilize proactive control will increase in low PC conditions 

(Bugg, 2014; Bugg & Chanani, 2011; Gonthier et al., 2016; Hutchison et al., 2013). In this case, 

proactive control is theoretically associated with sustained maintenance of the task goal to attend 

to the ink color and ignore the word, which should be present in a consistent (i.e., present on all 

trials) and preparatory manner (i.e., engaged even prior to stimulus onset). Thus, the key 

prediction is that the Stroop effect (average slowing or increase in errors on incongruent relative 

to congruent trials) should be reduced on all trials, relative to a baseline, high list-wide PC 

condition, reflecting improved performance on incongruent trials (see Gonthier et al., 2016).  

In the reactive condition, PC is also manipulated but in an item-specific, rather than list-

wide fashion. In this case, specific colors will occur with low PC (e.g., items appearing in green 

font will frequently be incongruent), while others may occur with high PC (e.g., items appearing 

in red font will frequently be congruent), and these items are randomly intermixed such that 

subjects cannot predict whether a low PC or high PC item will appear on a given trial. This type 

of item-specific PC manipulation is theoretically predicted to enhance the utilization of reactive 

control for low PC items (Bugg et al., 2011; Bugg & Dey, 2018; Bugg & Hutchison, 2013). For 
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these items, strong associations develop between a critical feature (a specific ink color) and 

increased control demands (i.e., high interference), leading to more effective goal retrieval and 

utilization upon presentation of a stimulus that includes this feature (e.g., a word printed in a 

green font). The engagement of reactive control is expected to be transient, present only after 

stimulus onset, and only engaged by low PC incongruent items.  

Baseline Session. In the baseline session the trials were manipulated in a list-wide, mostly 

congruent (LW-MC) manner. Subjects completed a total of 288 trials during the baseline session, 

in which there were 96 PC-50 trials (48 congruent, 48 incongruent), and 192 biased trials. The 

biased set had 75% congruent (144 trials) and 25% incongruent (48 trials) trials. Consequently, 

the list-wide proportion congruency for the baseline session was 66%. The session was divided 

into two blocks of 144 trials each, between which subjects were instructed to rest for one minute.    

Proactive Session. In the proactive session, the trials were manipulated in a list-wide, mostly 

incongruent (LW-MI) manner. Subjects completed a total of 288 trials during the proactive 

session, in which there were 96 trials PC-50 (48 congruent, 48 incongruent), and 192 biased 

trials. The biased set had 25% congruent (48 trials) and 75% incongruent (144 trials) trials.  

Consequently, the list-wide proportion congruency for the proactive session was 33%. The 

session was divided into two blocks of 144 trials each, between which subjects were instructed to 

rest for one minute.   

Reactive Session. In the reactive session the proportion congruency manipulation was at the 

item-level - item-specific proportion congruency (IS-PC). Specifically, blue and red color-font 

items were manipulated to be PC-100 (i.e., these font-color words were only presented on 

congruent trials; 192 trials). Purple and white color-font items were manipulated to be PC-25 

(i.e., 25% congruent, 48 trials; 75% incongruent, 144 trials).  Finally, as in the baseline and 
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proactive conditions, the remaining 96 trials were PC-50 (i.e., equal amount of congruent and 

incongruent trials). Thus, subjects completed a total of 480 trials during the reactive session. The 

session was divided into three blocks of 160 trials each, between which subjects were instructed 

to rest for one minute. 

Cognitive Control Measures. Average reaction times (RTs) on correct trials and error rates 

were calculated for both congruent and incongruent trials for each subject in each session. The 

Stroop interference effect (incongruent – congruent) in both RT and also error rate was 

calculated separately for biased items and PC-50 items.  

7.3.2 AX-CPT  

The AX-CPT (see Figure 2) has become increasingly utilized as a task of context 

processing and cognitive control, given its simplicity, flexibility, and applicability in a wide-range 

of populations. In these variants of the AX-CPT, subjects make button press responses to visually 

presented cue-probe pairs. A target key press (“/”) is made to the probe on AX trials; a non-target 

key press (“.”) is made to the probe on the other non-target (AY, BX, BY) trials, and to the cue on 

all trials. In addition to the four primary trial types, the task also includes no-go trials which require 

withholding response to the probe and are indicated by a digit (1-9) rather than letter probe. The 

task comprised 216 trials total, and included 72 AX trials, 72 BY trials, 18 AY trials, 18 BX trials 

and 36 no-go trials (18 following an A-cue, 18 following a B-cue). All trial types and no-go trials 

were presented in random order. The task was performed in three 72 trial blocks, between which 

subjects were instructed to take a minimum of 1-minute rest break. All trials consisted of the 

following parameters. The cue was presented centrally on a white screen for 500 msec duration. 

After a 4000 msec blank cue-probe interval, the target (in same size font) was presented for 500 

msec but immediately preceded by a 250 msec period during which a bounding box was presented. 
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A 1500 msec inter-trial interval ended the trial (indicated by a central triangle of fixation crosses). 

In all of the current AX-CPT variants tested in this battery, the task structure, trial types and 

frequencies are identical, except for the specific manipulations for proactive and reactive 

conditions described in the next section. 

Manipulation Rationale. First, all three variants include no-go trials, in which the probe is a digit 

rather than letter. Because of the increase in response uncertainty (i.e., three types of probe 

response are possible: target, non-target, no-go), the addition of no-go trials decreases the overall 

predictive utility of cue information for responding, and as a consequence was found to reduce 

overall proactive control bias typically observed in healthy young adults. As such the no-go trials 

result in a “low control” baseline, which can be contrasted and used to observe variant-related 

changes in control mode (Gonthier et al., 2016).  

The proactive condition replicates prior work using context strategy training to increase 

predictive preparation of responses following contextual cue information (Gonthier et al., 2016). 

Specifically, subjects are provided with explicit information regarding the ratios of these cue-

probe associations, and receive training and practice in utilizing them to prepare the dominant 

responses. In addition, during inter-trial intervals, subjects are provided with visual instructions 

to “remember to use the strategy”. The key prediction is that the increased utilization of 

contextual cue information will lead to a bias to prepare a target response following an A-cue 

(analyzed in terms of both AX and AY trials) and a non-target response following a B-cue, 

leading to reduced interference on BX trials, but a side effect of which will be increased errors 

and response interference on AY trials, which occur when the A-cue is not followed by an X-

probe. 
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The reactive condition involved a new manipulation which has not previously been 

examined. Specifically, the reactive condition utilizes item-specific probe cueing; for high 

control demand trials (i.e., AY, BX, no-go) the probe item appears in a distinct spatial location, 

and with a distinct border color surrounding it (presented briefly before the onset of the probe). 

Critically, because these featural associations only form at the time of probe onset, they were not 

hypothesized to modulate the utilization of proactive control strategies. Likewise, the probe 

features could not drive direct stimulus-response learning, since they did not directly indicate the 

appropriate response to be made (i.e., either a non-target or no-go response could be required). In 

contrast, the probe features can serve as cues signaling high control demand, and thus prompt 

more rapid and effective retrieval of contextual information to resolve the conflict. Because 

information about high-conflict probe features is not provided explicitly to subjects (in contrast 

to the proactive condition), it has to be learned implicitly through experience. The key prediction 

is that utilization of probe features should reduce the tendency to make BX errors, but could 

increase BX reaction time interference (due to the tendency to utilize the probe to drive context 

retrieval). 

Baseline Session. The baseline session identically followed the description above. After 

receiving task instructions, subjects performed a 12-trial practice block before beginning the 

actual task.   

Proactive Session. In the proactive condition, subjects received strategy training before 

completing the AX-CPT. The strategy training occurred during a practice block of 6 trials, 

during which an audio clip was played, which instructed subjects which button to prepare 

following the cue. After this first series of practice trials, subjects performed a second practice 

set (6 trials), during which they were asked to type which button they were preparing to press in 
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response to the second item. Subjects typed out “left” or “right” and the program told subjects if 

they were correct or not. If they were not correct, they were reminded what letter the first item 

was and asked to try again. This procedure was implemented to accommodate the on-line testing 

format, and deviated slightly from in-person versions, in which subjects responded verbally 

regarding the button they were preparing to press. Additionally, during the test phase, in the 

inter-trial interval periods, subjects were given the visual message to “Use the strategy!”.  

Otherwise, task structure was identical to the baseline session.   

Reactive Session. The occurrence of high conflict trials (AY, BX, no-go) was implicitly signaled 

by presenting the probe in a distinct spatial location and preceded by a distinct border color.  

Specifically, while cues were always presented centrally (as in the baseline and proactive 

conditions) the probe stimuli were either presented in the upper half (AX, BY) or lower half 

(AY, BX, no-go) of the visual display. Furthermore, probe stimuli were immediately preceded 

(250 msec before probe onset) by either a white border (AX, BY) or red border (AY, BX, no-

go). Otherwise, the task structure and trial proportions were identical to baseline and proactive 

sessions.   

Cognitive Control Measures. Average reaction times (RTs) on correct trials and error rates 

were calculated for each of the 4 primary trial types (AX, AY, BX, BY) for each subject in each 

session. Average error rates for no-go trials were calculated as well. Additional derived indices 

were also computed: A-cue bias, d’-context, the Proactive Behavioral Index (PBI), and BX probe 

Interference (Gonthier et al., 2016). The first two indices, A-cue bias, and d’-context are based 

on signal detection theory, (Stanislaw & Todorov, 1999) and reflect the use of proactive control. 

The A-cue bias measure was calculated by computing a c criterion from hits on AX trials and 

false alarms on AY trials as 1/2*(Z[H] + Z[F]), with H representing hits on AX trials and F 
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representing false alarms on AY trials (Richmond et al., 2015). The d’-context index was 

calculated by computing a d’ index from hits on AX trials and false alarms on BX trials as Z(H) 

– Z(F), with H representing hits on AX trials, F representing false alarms on BX trials, and Z 

representing the z-transform of a value. The third index was the PBI, calculated as (AY – 

BX)/(AY + BX) (Braver et al., 2009). This index reflects the relative balance of interference 

between AY and BX trials; a positive PBI reflects higher interference on AY trials, indicating 

proactive control, whereas a negative PBI reflects higher interference on BX trials, indicating 

reactive control. The PBI was computed separately for error rates (based on average error rates 

on AY and BX trials) and for RTs (based on average RTs on AY and BX trials). The fourth 

index was BX probe interference, calculated as (BX – BY) on both error rates and RTs, 

including a standardized RT computation. This index allows for examination of the interference 

that occurs when an “X” probe follows a non-target cue “A” and a target trial response must be 

inhibited. In order to correct for error rates that were equal to 0, a log-linear correction was 

applied to all error rate data prior to computing the d’-context, the A-cue bias, PBI, and BX 

interference (Braver et al., 2009; Hautus, 1995). This correction was applied as  

error + 0.5/N.obs. + 1 

7.3.3 Cued Task Switching  

In the current Cued-TS paradigm (see Figure 2), we used the letter-digit task, which 

involves bivalent target stimuli consisting of a letter and a digit (e.g., E3). On each trial the 

subject is cued to perform either a letter task – consonant/vowel discrimination – or a digit task – 

odd/even discrimination. For the letter task, consonants required right key press (“L”) and 

vowels required a left key press (“A”).  For the digit task, even numbers required a right (“L”) 

key press and odd numbers required a left (“A”) key press. At the start of every trial the task is 
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cued by an on-screen message that indicates either “ATTEND LETTER” or “ATTEND 

NUMBER”, indicating whether attention and responding should be based on the letter or digit, 

respectively. Critically, because of the response mappings, certain stimuli are congruent, in that 

they require the same key press irrespective of the relevant task rule (e.g., H6, E3), while other 

stimuli are incongruent, in that the two tasks were associated with different required responses to 

the same target (e.g., I6, D4).  

The target stimuli were constructed in terms of two distinct stimulus sets. One set of 

stimuli (A1, A2, B1, B2, 1A, 2A, 1B, 2B) were kept mostly congruent (80% congruent; 20% 

incongruent). The second set of stimuli (D4, E3, H5, I6, 4D, 3E, 5H, I6) were unbiased (50% 

congruent, 50% congruent). Trials randomly alternated between an equal number of “ATTEND 

LETTER” and “ATTEND NUMBER” trials. Due to the random presentation order of the cues, 

switch and repeat trials were on average equivalent, but deviated slightly in number across 

conditions and subjects. Each session consisted of 192 total trials, 96 mostly congruent (80 

congruent, 16 incongruent) and 96 unbiased (48 congruent, 48 incongruent) and also equally 

split between the two tasks (i.e., 96 letter, 96 digit). Trials were separated into three 64 trial 

blocks, between which subjects were required to take a minimum of 1-minute rest break. Prior to 

starting each session subjects learned (or refreshed their memory) of these response mappings 

through a set of 16 practice trials. All trials consisted of the following stimulus parameters: trial 

initiation with a 300 msec alerting cue (flashing cross), followed by the task cue presented on a 

gray screen for 500 msec duration. After a 3500 msec blank cue-target interval, the target was 

presented until a response was made. The response was followed by a 1250 msec feedback 

period, then a 1000 msec inter-trial interval (indicated by a central triangle of fixation crosses). 
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Manipulation Rationale. An important metric of cognitive control in task-switching paradigms 

is the task rule congruency effect (TRCE), which refers to the increased interference (both errors 

and reaction time) when the target response required for the current task is incongruent with the 

response that would be required to the same target stimulus if the alternative task had been cued. 

In the baseline condition, target stimuli are list-wide mostly congruent (67%), as prior work has 

found that mostly congruent conditions result in a large and robust TRCE (Bugg & Braver, 

2016). The proactive condition follows Bugg and Braver (2016) in keeping the same list-wide 

mostly congruent structure as the baseline condition, but adding reward incentives on a subset of 

trials. Specifically, on 33% of trials, reward cues are presented simultaneously with advance task 

cues (i.e., by presenting the task cue in green font), and indicate the opportunity to earn monetary 

bonuses if performance is accurate and fast (relative to baseline performance) on that trial. By 

only presenting reward cues on a subset of trials, the remaining subset of non-incentivized trials 

and target stimuli can be directly compared across the proactive and baseline conditions. The key 

prediction is that enhanced proactive control will lead to a global improvement of performance 

(i.e., faster RTs while maintaining accuracy). 

The reactive condition utilizes a new manipulation which has not previously been 

examined in prior work. Specifically, the reactive condition includes punishment (rather than 

reward) incentives, again on the same 33% subset of trials that were incentivized in the proactive 

condition. However, in the reactive condition the incentive cue is presented at the time of the 

target stimulus, rather than with the task cue, which prevents the use of incentive motivation in a 

preparatory fashion. Subjects are instructed that they will lose a component of their potential 

monetary bonus if they make an error on these incentivized trials. Critically, the incentivized 

trials occur preferentially (75%) with incongruent target stimuli. This manipulation is intended to 
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associate punishment-related motivation with these high-conflict items, potentially leading to 

increased response monitoring and caution when incongruence is detected. As such, the key 

prediction is that enhanced reactive control should reduce the TRCE, even on the non-

incentivized trials, when compared to baseline and proactive conditions. 

Baseline Session. In this condition, no manipulations were made to the unbiased stimuli.  

However, to maintain consistency with the proactive and reactive sessions described below, for 

these stimuli task cues and target stimuli could appear in either red or green font. However, this 

distinction was irrelevant with regard to the instructions given subjects.  

Proactive Session. The proactive variant of Cued-TS was identical to the baseline variant except 

for the addition of a reward-based motivational incentive. This motivational incentive provides 

subjects with a reward cue indicated during presentation of the task cue. When subjects 

responded to incentive trials faster than the baseline session’s median RT while maintaining 

accuracy (this information was stored in a look-up table database, and accessed at the beginning 

of each session), they received a monetary bonus for that trial added to their compensation 

amount. Before the start of the proactive sessions, subjects were given the following instructions: 

“from here to end, you can obtain more payment on top of regular compensation by responding 

faster than before and maintaining accuracy. A green cue will let you know if you are performing 

a trial where you can obtain a larger reward.” Non-incentive trials indicated by the task cue 

appearing in red font, while incentive trials were indicated by the task cue appearing in green 

font. Only the unbiased set of stimuli were incentivized (66% of unbiased, 33% of total, 64 

trials) and presentation order was random with respect to the task cue and target stimuli pre-

determined pairs.  Subjects received feedback on all trials. The word “Reward!” appeared on the 

screen for 1250 ms if the subject earned the reward. If subjects were too slow or made an 
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incorrect response, the words “Too Slow!” or “Incorrect!”, respectively, appeared on the screen. 

The non-incentive trials also included feedback, showing “Correct” or “Incorrect” after each 

trial. 

Reactive Session. The reactive variant of Cued-TS was identical to the baseline variant except 

for the addition of a punishment-based motivational incentive. This motivational incentive 

provides subjects with a punishment cue indicated during presentation of the target. When 

subjects made errors on incentive trials, they received a monetary penalty for that trial that was 

subtracted from their compensation amount. Before the start of the reactive sessions, subjects 

were given the following instructions: “from here to end, you can obtain lose money from your 

regular compensation by making errors. A green cue will let you know if you are performing a 

trial where you might receive a penalty.” Non-incentive trials indicated by the target stimulus 

appearing in red font, while incentive trials were indicated by the target stimulus appearing in 

green font. Only the unbiased set of stimuli were incentivized, and these were applied in an item-

specific manner such that all of the incongruent stimuli (H5, 6I, 5H, 6I; 48 trials) were 

incentivized while only 33% of the congruent stimuli were associated with incentives (D4, E3, 

3E, 4D; 16 trials). The sentence “Loss of 25 cents!” appeared on the screen for 1250 ms if the 

subject made an incorrect response. If subjects were correct or were too slow, or the words 

“Correct” or “Too Slow!” respectively, appeared on the screen. The non-incentive trials also 

included feedback, showing “Correct” or “Incorrect” after each trial. 

Cognitive Control Measures. Average reaction times (RTs) on correct trials and error rates 

were calculated separated by congruent/incongruent for the biased items, for each subject in each 

session. Additionally, these measures were also calculated for the unbiased/incentivized items. 
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TRCE (Task Rule Congruency Effect) is calculated as a difference score between incongruent 

and congruent trials and was computed for biased and incentive items separately.  

7.3.4 Sternberg  

In the current Sternberg item-recognition task (SIRT; see Figure 2), subjects are 

presented with a list of words on each trial that serves as a memory set (e.g., “WINE”, “SPLIT”, 

“GRILL”, “INTENT”). After an encoding period and a retention interval delay, a probe item is 

presented, which requires a judgment as to whether it was part of the current trial’s memory set 

(i.e., a positive probe) or not (i.e., a negative probe). Specifically, the probe could be: (a) a novel 

positive word (NP), (b) a novel negative word (NN), or (c) a recent negative word (RN). Where 

the novel condition indicates an “until-then” unpresented word and the recent condition an word 

that was presented in a previous set. The current variants of the SIRT were constructed using two 

distinct sets of memory items: critical items had a constant memory set of 5 words; and a 

variable-load set which consisted of either low-load items (memory sets of 2-4 words) or high-

load items (memory sets of 6-8 words).  

Each session consisted of 120 total trials, broken down into 48 critical items, and 72 

variable-load items. Trials were separated into three 40 trial blocks, between which subjects were 

required to take a minimum of 1-minute rest break. Prior to starting each session subjects learned 

(or refreshed their memory) of the task through a set of 10 practice trials. All trials consisted of 

the following stimulus parameters: visual presentation of the memory set across two encoding 

screens each of 2000 msec duration; in the first screen, were presented above a central fixation 

cross, and in the second screen, below the cross. Following memory set presentation, a retention 

interval of 4000 msec was presented (during which the fixation cross remained on screen), 

followed by 1500 msec presentation of the probe item, and then a 1000 msec inter-trial interval.   
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Manipulation Rationale. The Sternberg item-recognition task has been one of the most popular 

experimental paradigms used to assess short-term/working memory for over 50 years (Sternberg, 

1966) but more recently has been adapted particularly for the study of cognitive control with the 

“recent probes” version (Jonides & Nee, 2006). In recent probes versions, the key manipulation 

is that the probe item can also be a part of the memory set of the previous trial, but not the 

current trial, which is termed a “recent negative” (RN) probe. On these RN trials, the probe is 

associated with high familiarity, which can increase response interference and errors, unless 

cognitive control is utilized to successfully determine that the familiarity is a misleading cue 

regarding probe status (target or non-target). The current variants of the Sternberg WM included 

in the battery are adapted from Burgess & Braver (2010) in using manipulations of WM load 

expectancy and RN frequency.  

Specifically, in the baseline condition, most trials have high WM load (6-8 items; 60%) 

and RN frequency is low (20% of non-target probes), which should reduce tendencies to engage 

either proactive or reactive control strategies. However, in the proactive condition, most trials 

have low WM load (2-4 items; 60%), leading to the expectancy that active maintenance-focused 

and proactive attentional strategies will be effective, while RN frequency remains low (matched 

at 20% non-target probes), such that the utility of reactive control should be unchanged. The 5-

item set size occurs equivalently in all conditions (40% of trials), and thus can be used to 

compare performance across different control mode conditions. The key prediction is that use of 

proactive control strategies, will improve both RT and accuracy, primarily for the target probe 

items (termed novel positive, or NP, since they never overlap across trials).   

In the reactive condition, WM loads are identical to the baseline condition (i.e., high-load), while 

the frequency of RN trials is increased (80% of non-target probes). Thus, in the reactive 
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condition, it is familiarity-based interference expectancy that increases, rather than WM load 

expectancy. Based on the increased interference-expectancy, the theoretical hypothesis is that 

subjects will not rely on familiarity as a cue for responding, and will rather evaluate the match of 

the probe to items stored in WM. Consequently, the key prediction is that performance on RN (or 

rather the RN effect, the difference in performance between RN and NN trials) will be 

significantly improved relative to baseline. 

Baseline Session. The baseline session involved high-load variable-items and a low proportion 

of RN trials (20% of negative probes, 10% of total trials). Specifically, the variable-load set 

consisted of a mixture of high-load memory sets (12 6-item, 24 7-item, 36 8-item) and very few 

RN trials (4 RN, 32 NN, 36 NP).  For the critical 5-item set, the proportion was slightly adjusted, 

to increase the number of RN trials for analysis (8 RN, 16 NN, 24 NP). 

Proactive Session. In the proactive session, the variable-load items were instead a mixture of 

low-load memory sets (36 2-item, 24 3-item, 12 4-item). The proportion of RN, NN, and NP 

trials was identical to the baseline session for both variable-load (4 RN, 32 NN, 36 NP) and 

critical item sets (8 RN, 16 NN, 24 NP).  

Reactive Session. In the reactive session, the variable-load set used the identical mixture of 

high-load memory set items as the baseline session (12 6-item, 24 7-item, 36 8-item). However, 

the relative proportion of RN to NN trials was increased in both the variable-load (32 RN, 4 NN, 

36 NP) and critical items (16 RN, 8 NN, 24 NP).  

Cognitive Control Measures. Separate analyses were conducted for critical items (N = 5) and 

other variable-load items collapsing across load level. Average reaction times (RTs) on correct 

trials and error rates were calculated per trial type (i.e., NN, NP, RN trials) for critical items and 
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non-critical items. One additional index, the recency effect, was also calculated for both RTs and 

error rates as a difference score on negative trials as RN trials – NN trials.  

7.4 Data Pre-Processing 

To facilitate comparison of results across task paradigms, subjects who failed to complete 

all six sessions were not included in the analyses reported here; data from 128 subjects entered 

the pre-processing stage. The remaining data were conservatively pre-processed in two steps: (1) 

removal of extreme outliers, and (2) winsorization of remaining outliers. In step 1, all 128 

subjects were screened for abnormalities such as extremely slow RTs or high error rates. RT 

plots were examined and cutoff decisions were made for each task separately. Trials with RTs 

slower than the cutoff threshold were discarded. The threshold for Stroop was 4000 ms; no RTs 

on correct trials surpassed the threshold. The threshold for AX-CPT was 2000 ms; no RTs on 

correct trials surpassed the threshold. The threshold for Cued Task-Switching was 5000 ms and 

resulted in 0.3% of the task’s data discarded. The threshold for Sternberg was 3000 ms; no RTs 

on correct trials surpassed the threshold. After discarding trials with these RT outliers, the 

number of trials per condition remained sufficient for analyses. Finally, all subjects in all 

sessions had a subject-level error rate below 40%; this cutoff is based on Gonthier et al. (2016). 

No subjects were discarded based on this first step. 

In step 2, a winsorization procedure was conducted on RT data at the trial level (i.e., data 

split by phase, session, trial type, and subject). The winsorization parameters for RTs were as 

follows: RTs lower than 200 ms were replaced by RTs of 200 ms and RTs above the mean plus 3 

standard deviations were replaced by RTs of the mean plus 3 standard deviations. Across the 

four tasks 1.9% of RT observations were adjusted by the procedure. The adjustments did not 

vary considerably across tasks, sessions, or trial types. For error rate, the winzoration procedure 
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was conducted at the level of trial type (data split by phase, session, subject, and trial type), 

instead of at the subject level, which was examined in the first step of pre-processing. Following 

the cutoff used by Gonthier et al. (2016), error rates above 40% were replaced with error rates of 

40%. This resulted in nearly 5% of error rates being adjusted for the AX-CPT and Sternberg 

tasks (i.e., 4.78%, 4.69%, respectively). The Stroop and Cued Task-Switching adjustments were 

much lower at .07% and 1.69%, respectively. Examining this more carefully revealed repeated 

subpar performance for some subjects (e.g., consistently greater than 80% error rate, large 

proportion of observations without responses) which inflated the winsorization adjustment rates. 

Those subjects were excluded from the final sample. We retained 126 subjects for Stroop, 121 

for AX-CPT, 128 for Cued Task-Switching, and 126 for Sternberg. Subjects for the between-task 

correlations were selected pairwise and depending on the task pairing resulted in either a sample 

size of 120 or 122. 
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8 Results 

8.1 Traditional Analyses  

Broadly, the goal of the first set of analyses is to examine whether task manipulations 

based on a theory or framework that explains individual-level variability improves individual 

differences reliability. The DMC task battery was created to this end and here we report the 

individual differences reliability of the measures taken from its four tasks with its variants (e.g., 

baseline, proactive, reactive). Importantly, the following results only include the critical 

conditions of the tasks (i.e., Stroop biased condition, task-switching biased condition, Sternberg 

list-length 5 condition). The critical conditions were designed specifically to allow for 

comparison across tasks. Descriptive statistics and experimental results by session, task, and trial 

type are reported in Tang et al. (2021).  

8.1.1 Reliability Estimates 

Internal consistency estimates were calculated as permutation-based split-half 

correlations. The data were repeatedly (5000 permutations) and randomly split into halves, which 

were then correlated and a Spearman-Brown correction was applied. The estimates reported here 

are an average of those 5000 corrected correlations. Test-retest reliabilities were calculated as 

intraclass correlation coefficients (ICC) using a two-way random-effects model of the single-

rater type and absolute agreement (i.e., ICC2,1, Shrout and Fleiss (1979)). Because practice 

effects to are expected to occur from session to session and from test to retest, the ICC 

relationship parameter was set to absolute agreement. This form is sensitive to changes in the 

mean between repeated measures. For ease of interpretation, estimates of reliability below .50 

are considered poor; between .50 and .75 are considered moderate; between .75 and .90 are 

considered good; and above .90 are considered excellent (Koo & Li, 2016). However, these 
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thresholds are somewhat arbitrary; they are offered here as a guide. Of course, the qualitative 

description of reliability is not a substitute for understanding the numerical estimate in its 

context. 

Difference Score Estimates. Due to the large number of measures, all reliability 

estimates are presented in Appendix A (Tables A1-A6). There, a full report includes internal 

consistency and test-retest reliabilities for the aggregate measures (mean RT, error rate) for all 

trial types, across all tasks and sessions. The main focus here is whether the DMC battery, by 

introducing theoretically motivated task manipulations, yields reliable measures of cognitive 

control difference scores. Although the aggregate measures are briefly discussed, only the 

difference score results are presented here. Figure 3 shows both the split-half and test-retest 

reliability estimates across sessions (baseline, proactive, reactive) for each task paradigm (2x3x4 

= 24 estimates) for RT. The corresponding 24 estimates based on error rate are shown in Figure 

4. 
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Figure 3 

Reaction Time Split-half and Test-Retest Reliability Estimates of DMC Task Battery Difference Scores

 

Note. Split-half estimates are permutation-based split-half correlations, test-retest estimates are intraclass correlation coefficients 

(ICC(2,1)). Error bars are 95% confidence intervals.  
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Figure 4 

Error Rate Split-half and Test-Retest Reliability Estimates of DMC Task Battery Difference Scores 

 

Note. Split-half estimates are permutation-based split-half correlations, test-retest estimates are intraclass correlation coefficients 

(ICC(2,1)). Error bars are 95% confidence intervals.
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As expected, the reliabilities of difference score measures are weaker than the reliabilities 

of aggregate measures. For example, the split-half reliability for Stroop incongruent RT is .99, 

Stroop congruent RT is .99, but the reliability of the Stroop RT effect is .55. The same general 

pattern is observed for the test-retest reliability estimates; test-retest for Stroop incongruent RT is 

.90, Stroop congruent RT is .93, but the reliability of the Stroop RT effect is .32. This pattern is 

observed across all tasks, for both split-half and test-retest reliability estimates. Because most 

indices of cognitive control are based on difference scores, this is of serious concern.  

Furthermore, the Sternberg recency effect measure is unreliable across the board, for both 

RT and error rate. The poor reliability and high variability of the Sternberg estimates may stem 

from research design (i.e., low number of observations available to calculate a difference score). 

To induce proactive control, recent negative (RN) trials were presented infrequently in the 

baseline and proactive sessions, with only 8 RN trials per subject. Calculating a difference score 

from the current Sternberg paradigm for the use of individual differences research is therefore 

not advised.  

The results for Stroop, AX-CPT, and task-switching are mixed. The split-half estimates 

indicate moderate to good reliability, for both RT and error rate (.52 – .88; with the exception of 

3 weaker values). However, the test-retest estimates indicate poor reliability (.15 – .55; with a 

single .78 outlier). Unfortunately, the session level manipulations (proactive/reactive) did not 

produce demonstrative improvements in reliability. Although reliability was generally highest in 

the reactive session, the overlapping confidence intervals across sessions suggests that this is not 

a robust effect. 

Overall, the reliability results are somewhat disappointing. The DMC task battery was 

designed to produce reliable and robust effects for both experimental and correlational research. 
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The battery was largely a success with respect to the experimental manipulations; proactive and 

reactive shifts in cognitive control were observed and replicated in each task paradigm (Tang et 

al., 2021; see also Gonthier et al., 2016). However, the current results suggest that the DMC task 

battery is not as successful when it comes to reliable measurement of individual differences in 

cognitive control. That said, the difference between split-half and test-retest estimates of 

reliability is intriguing and may provide some insight into the measurement of cognitive control; 

we discuss this finding in more detail in the discussion section.   

AX-CPT Derived Indices Estimates. Four additional indices were derived for the AX-

CPT: the signal detection indices d′ and A-cue bias, and RT and error rate Proactive Behavioral 

Index (PBI). The reliability of these derived indices reveals a similar pattern as the difference 

score measures; the split-half reliability estimates are stronger than test-retest estimates (see 

Figure 5). In contrast, two novel and interesting patterns emerged. First, all four proactive 

session derived indices are internally consistent, with split-half estimates ranging from .78–.81. 

Second, split-half estimates for d′ exceeded .75 in all sessions and thus is considered to be 

internally consistent as well. This suggest that the reliability of the d′ and the proactive indices 

will not pose a bottleneck when used in between-task correlations. 
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Figure 5 

Split-half and Test-Retest Reliability Estimates of AX-CPT Derived Indices 

 

Note. Split-half estimates are permutation-based split-half correlations, test-retest estimates are intraclass correlation coefficients 

(ICC(2,1)). Error bars are 95% confidence intervals.
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Between-Task Correlations 

An important follow-up is the examination of how reliability affects correlations between 

the tasks. Theoretical conclusions are made from the magnitude of correlations, not from 

reliabilities. Of course, one should consider the latter when interpreting the former. For between-

task correlations it is important to choose the correct type of correlation coefficient. Pearson’s 

correlation coefficient has essentially become the default. However, for some designs other types 

of correlation coefficients are preferable.  

Pearson’s correlation coefficient, or Pearson’s r, assumes that the relationship between 

two variables is both monotonic and linear (among other assumptions). The relationship between 

RT and error rate indices of cognitive-behavioral tasks is often monotonic, but not necessarily 

linear (Hedge, Powell, Bompas, 2018). Hence, Spearman’s rho (ρ) is a good non-parametric 

substitute for the parametric Pearson’s r. In addition, Spearman developed the disattenuated 

correlation coefficient (ρdis; Spearman, 1904). This provides an estimation of the maximal 

attainable correlation by correcting for measurement noise. Hence, by comparing ρ and ρdis one 

can examine the influence of reliability on correlations.  

In total, we observed 198 between-task correlations. Most of the correlations are weak (ρ 

< .40; Dancey & Reidy, 2004), but some approached moderate strength (ρ => .40). In Table 1 we 

highlight 22 between-task Spearman’s rho correlations exceeding a magnitude of .20. For these 

analyses, the test and retest data were combined to address the low number of observations in 

some conditions, with the added benefit that it maximizes power. Complete correlation tables per 

session are available in Appendix B (Tables B1–B3). For comparison; the corresponding 

Pearson’s r correlation tables are provided in appendix B (Tables B4–B6). 
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Table 1  

Selected Between-Task Spearman Correlations with Magnitude Larger than .20.  

Index 1 Index 2 Session ρ ρdis 95% CI (ρ) n 

A-cue Bias Stroop Error Baseline -.27 -.54* [-.430, -.098] 120 

 Stroop Error Proactive -.32* -.53** [-.481, -.160] 120 

 Stroop Error Reactive -.24 -.35† [-.403, -.065] 120  
TRCE Error Baseline .24 .44† [.061, .398] 122 

 TRCE Error Reactive .23 .44† [.056, .393] 122 

BXI Error  Stroop Error Reactive -.32* -.40** [-.468, -.144] 120 

 Stroop RT Proactive -.31* -.51** [-.468, -.144] 120 

 Stroop RT Reactive -.26 -.33* [-.421, -.087] 120  
TRCE Error Reactive .23 .38† [.053, .390] 122 

BXI RT TRCE Error Reactive .20 .34 [.029, .370] 122 

d′ Stroop Error Baseline -.26 -.44* [-.430, -.098] 120 

 Stroop Error Proactive -.33* -.54** [-.480, -.160] 120 

 Stroop Error Reactive -.37** -.44*** [-.511, -.199] 120 

 Stroop RT Proactive -.28† -.41* [-.433, -.100] 120 

 Stroop RT Reactive -.28 -.34* [-.432, -.099] 120 

 TRCE Error Baseline .23 .36† [.060, .396] 122 

 TRCE Error Reactive .30* .47** [.136, .459] 122 

PBI Error Stroop Error Reactive .34** .45** [.167, .486] 120 

 Stroop RT Baseline .20 .28 [.020, .364] 120 

 Stroop RT Reactive .23 .31† [.058, .398] 120 

Stroop Error TRCE RT Baseline -.23 -.55† [-.393, -.053] 120 

Stroop RT TRCE RT Proactive .20 .32 [.019, .364] 120 

Note. CI = confidence interval; ρ = Spearman’s rank correlation coefficient; ρdis = Spearman’s rank 

disattenuated correlation coefficient; BXI = BX Interference; PBI = Proactive Behavioral Index; TRCE = 

Task Rule Congruency Effect; Recency = recency effect. Test and retest phase combined.  

*** p < .001; ** p < .01; * p < .05; † p < .10 

 

Out of the 22 moderate correlations, seven were statistically significant at the α = .05 

level, with magnitudes ranging between .30 – .37. Six of these were between indices of the AX-

CPT and the Stroop effect, with the remaining significant correlation being between AX-CPT d′ 

and TRCE error rate (ρ  = .30, p = .04). All of the seven significant correlations came from the 
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manipulated sessions (i.e., proactive and reactive sessions) but the low number (7 out of 198 total 

correlations) prevents us from drawing any meaningful conclusions from this result. Including 

the non-significant correlations, half of the highlighted correlations are between the Stroop effect 

and a second index (e.g., A-cue bias, BX interference, d′).  

Given that only seven out of 198 correlations exceeded .30, and given that these are all 

well- established tasks, it is understandable that some researchers have concluded that cognitive 

control is simply not a coherent psychometric construct (Rey-Mermet et al., 2018). In fact, the 

median correlation (r = .13) is on par with the so-called “crud factor” in differential psychology, 

which refers to the idea that correlations with magnitudes between 0 and .20 should be 

interpreted as nothing but noise (Lykken, 1968; Meehl, 1986; but see Orben & Lakens, 2020 for 

a recent critique).  

The current study focuses on the importance of reliability when interpreting these 

correlations. As noted previously, a correlation between two measures is attenuated by the 

reliability of those two measures. Correlations are negatively affected by measurement error, 

which distorts the signal with noise. Equation 2 shows Spearman’s correction for attenuation 

(1904), which uses each measurement’s reliability (𝑟𝑥𝑥,  𝑟𝑦𝑦) as an index of that noise which 

allows for an estimation of a maximum attainable or “true” correlation (𝑟𝑥′𝑦′) by dis-attenuating 

the measurement’s correlation (𝑟𝑥𝑦). For comparison with ρ, Spearman’s dis-attenuated rho 

correlations (ρdis) are presented in Table 1 as well. It is important to note that these estimates 

should not be used to make inferences to the tasks or as evidence of their supposed underlying 

construct (Muchinsky, 1996; Winne & Belfry, 1982). Rather, we present both estimates to 

examine the role of reliability on between-task correlations, and more importantly, the theoretical 

implications of the differing magnitudes.  
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𝑟𝑥′𝑦′  =
𝑟𝑥𝑦

√𝑟𝑥𝑥𝑟𝑦𝑦

  (2) 

The standard rho correlations in Table 1 are all considered of weak magnitude. 

Alternatively, the majority of disattenuated rho correlations reach moderate magnitude (median = 

.41). Importantly, all correlations now exceed the crud factor threshold. Furthermore, whereas 7 

out of 22 rho estimates were statistically significant, disattenuated rho revealed 12 significant 

correlations. One would be hard-pressed to interpret the magnitude of the rho correlations as 

evidence for a general underlying construct. However, the disattenuated rho correlations suggest 

that cognitive control might be a coherent psychometric construct albeit a difficult to measure 

one. 

8.1.2 Interim Discussion 

Because studies continue to use popular tasks and estimates optimized for producing 

experimental effects, individual differences research in cognitive control progresses only slowly. 

This perpetuates measurement issues as described here, and by others (see Hedge, Powell, & 

Sumner, 2018). To address these issues, we designed a new task-battery with variants of classic 

cognitive control tasks. These variants and task manipulations were based on the DMC 

framework and were hypothesized to create new sources of between-subject variance to improve 

individual differences. Seemingly, the task battery did not improve reliability or between-task 

correlations above and beyond previous studies. Yet, from the results of the current set of 

analyses we can draw some important conclusions. 

First, even though difference scores work well to show experimental (within-subject) 

effects (Tang et al., 2021), they are unsuitable to be used as individual differences predictors. 

Our findings, which are aligned with those from other studies, indicate that even with optimal 

methodology and theoretically based task manipulations, the reliability of cognitive control tasks 
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is a challenge to the field. As mentioned in the introduction, this is not a new phenomenon (e.g., 

Cronbach, 1957). Difference scores are consistently less reliable than its components (Appendix 

A), and nowhere near as robust as the experimental effects.  

Second, only 11.1% of the between-task correlations reported here surpassed the crud  

threshold (r = |.20|). More importantly, we show that correlations disattenuated from their 

reliability bottleneck do reach acceptable levels. Hence, conclusions, or even suggestions, based 

on correlational results stemming from unreliable indices are themselves unreliable and should 

be treated as such.  

Third, reliability is an important metric that needs to be estimated thoughtfully and 

reported routinely. There are many ways to estimate reliability, but only a few that are 

appropriate when taking task design and statistical assumptions in consideration. Our results 

show that split-half reliabilities are stronger than its respective test-retest reliabilities. This may 

indicate that cognitive-behavioral tasks are more sensitive to state-variability then is generally 

assumed.  
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8.2 Hierarchical Bayesian Analyses  

The goal of the second set of analyses is to further examine the test-retest reliability 

(TRR) of cognitive control tasks from a different statistical perspective. As shown in the first set 

of analyses, we were not able to extract reliable individual differences from experimental task 

difference score measures. Some research suggests that an alternative statistical approach is 

needed to address a large flaw with traditional approaches (e.g., those used in the first set of 

analyses), namely, that they do not model trial-to-trial variability but use mean point-estimates 

(MPE) as a representative indicator of performance (Haines et al., 2020; Lee & Webb, 2005; 

Rouder & Haaf, 2019; Rouder & Lu, 2005). In these studies, hierarchical modeling is proposed 

as an alternative to traditional methods (see also von Bastian et al., 2020). Hierarchical modeling 

is a statistical framework for modeling data that have a natural hierarchical structure. For 

example, cognitive-behavioral data that has trials within subjects and subjects within in groups 

(Gelman et al., 2013). Furthermore, some research (e.g., Rouder & Haaf, 2019; von Bastian et 

al., 2020) have presented evidence that aggregating performance across trials attenuates 

reliability, which can be resolved by implementing hierarchical methods that allow for the 

modeling of trial-to-trial variability (i.e., individual-level standard deviation), in addition to the 

traditional averaged group-level performance.  

There are other negative implications of the traditional MPE approach in analyzing 

cognitive-behavioral data. For example, Rouder and Haaf (2019) stress that the portability of a 

measurement instrument is “dramatically” overestimated in cognitive-behavioral tasks when 

using MPE. Portability indicates that measurement properties (e.g., reliability, effect size) of a 

testing instrument do not change drastically when measuring across varying samples sizes (e.g., 

number of subjects, number of trials). In other words, portability assumes that an instrument can 
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obtain an underlying population value that invariably emerges, regardless of experimental design 

and sample sizes. For example, one lab runs an experiment with 50 subjects each completing 50 

trials in x conditions. Another lab runs the “same” experiment with 100 subjects each completing 

25 trials in x conditions. If measurement properties (e.g., reliability, effect size) belong to the 

experiment, then we expect the measurement indices to be the same across labs (i.e., a portable 

experiment). If the measurement properties belong to the sample, then we expect measurement 

indices to differ.  

Rouder and Haaf (2019), and Haines et al., (2020), show through simulations that 

reliability and effect size have a positive relationship with both number of trials presented and 

sample size in three common cognitive-behavioral tasks (i.e., Stroop, flanker, implicit 

association task). Furthermore, it is common that researchers alter an existing experiment to fit 

their testing needs, such as decreasing number of trials presented per subject. Given that common 

cognitive-behavioral tasks are importable, the MPE approach falsely assumes portability of those 

tasks where it should not.  

Haines et al., (2020) focus on other important implications of using MPE. In the social 

sciences it is common practice to specify a behavioral model that tests a verbal or conceptual 

theory. For example, Stroop (1935) theorized that when two properties of a stimulus (e.g., 

physical (color ink) and semantic (color word)) are incongruent, there is a penalty in both 

reaction time and accuracy performance when compared to a stimulus with congruent properties. 

Equation 3 shows the behavioral model of the reaction time Stroop effect, indexed by i indicating 

the effect is calculated for each participant. The behavioral model is then tested through 

statistical inference with data from the task paradigm. Traditionally, inference involves two 

stages: (1) calculating MPE (e.g., average reaction times, average correct responses) as 



 

 

56 

 

components of an effect (e.g., a difference score), and (2)  statistical models (e.g., multiple 

regression, t-test) are fitted using these averaged effects. This two-stage approach is generally 

sufficient for detecting reliable experimental effects. However, the lack of information about 

individual-level response patterns by aggregating trial-level data into MPE, renders such an 

approach unsuitable for individual differences for two main reasons.  

Stroop𝑖 =  RT𝑖,𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 −  RT𝑖,𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 (3) 

First, the behavioral model in equation 3, which is among the most common, ignores 

individuals’ trial-to-trial variability. This variability reflects important behavioral information; a 

negative relationship has been found between reaction time variability and working memory 

capacity, and mind-wandering frequency influences this variability as well (McVay & Kane, 

2011). Second, the behavioral model in equation 3 does not consider what type of distribution 

this mean parameter belongs to. Researchers using this behavioral model implicitly assume a 

normal distribution, where the MPE is the most probable, and hence treated as a representative 

estimate of the underlying mental process (as a visual aid, see the normal distribution in Figure 

6). However, response distributions based on reaction time are rarely normal, but rather heavily 

right-skewed (Hockley & Corballis, 1982), or modeled as exponential Gaussian (Moscoso del 

Prado, 2008). Figure 6 shows five different possible distributions that generate an MPE value of 

3. Each distribution could imply a different behavioral mechanism generating the data, yet all 

produce the same MPE. A practical example of this using the Stroop: Heathcote and colleagues 

(1991) provide evidence that ignoring distribution shape in analyses can obscure behavioral 

mechanisms. In their study, modeling Stroop reaction time data using MPE-based difference 

scores revealed the Stroop interference effect, as expected. However, modeling the data with an 
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exponential Gaussian distribution revealed a facilitation effect on congruent trials in addition to 

the Stroop interference effect.  

To summarize, models solely described by a MPE limit possible inferences about 

processes underlying behavior that vary between individuals. Theoretically important aspects of 

behavior can be inferred from parameters like variance (Johnson & Busemeyer, 2005), 

bimodality distribution shapes (Kvam, 2019), or skewness of the distribution (Kvam & 

Busemeyer, 2020; Leth-Steensen et al., 2000). It logically follows that models should reflect not 

only the mechanisms behind intra-individual processes (i.e., modeling mean difference; equation 

3), but inter-individual differences in those processes as well (i.e., modeling individual-level 

variability).  

Among others, Haines et al., (2020) suggest that models should ultimately “simulate data 

consistent with true behavioral observations at the level of individual participants”, which they 

refer to as generative models. Hierarchical modeling (multilevel modeling, mixed effects 

modeling) is one framework that allows for such generative modeling. By restructuring a model 

hierarchically, it considers all subjects in two contexts; as an individual and as a contributing 

member of a group. This increases the number of available parameters from one (i.e., MPE) to 

many. The model can now distribute uncertainty that exist in the data (e.g., measurement error) 

over those multiple parameters, which results in more precise estimates at both the individual 

and group levels (Kupitz, 2020).  
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Figure 6 

A Non-exhaustive Collection of Distributions with a Mean Value of 3 

 

Note. The black dashed line indicates the mean of each distribution.  

 

Hierarchical Bayesian modeling (HBM) has two main advantages over its frequentist 

alternatives. One, a hierarchical Bayesian model is specified in a single model that jointly 

captures individual- and group-level uncertainty. While subjects perform a limited number of 

trials and provide data confounded with measurement error, HBM can provide reasonable 

estimates of performance based on infinite trials (Raudenbush & Bryk, 2002; Snijders & Bosker, 

1999). In turn, this solves issues of non-portability in cognitive-behavioral tasks (Rouder & Haaf, 

2019). Two, it allows for the specification of distributions and its parameters, which best fits a 

generative approach. This is not necessarily true for more traditional methods like structural 
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equation modeling or classical attenuation corrections (Kurdi et al., 2019; Westfall & Yarkoni, 

2016).  

8.2.1 Hierarchical Bayesian Model 

In the second set of analyses, HBM is used to generatively model the four reaction time 

difference score effects from the Dual Mechanisms of Cognitive Control (DMC) task battery. 

Specifically, the Stroop effect, the BX interference effect from the AX-CPT, Task Rule 

Congruency Effect (TRCE) from the cued task switching task, and the recency effect from the 

Sternberg task. Using these modeled estimates, the TRR and between-task correlations are 

examined. To facilitate the comparison across these different estimates, we limit the examination 

in the second set of analyses to a reaction time model only. This approach has the added benefit 

that a single model can be fit for all sessions within all tasks. A generative model can specified to 

encapsulate the shared assumptions among the tasks. First, reaction time cannot be negative. 

Second, reaction time responses vary around some central tendency (this is ignored with MPE). 

Third, the central tendency varies per subject. Fourth, individual-level variability varies per 

subject. And fifth, reaction time distributions from cognitive-behavioral tasks tend to be right-

skewed (Wagenmakers & Brown, 2007). Although the HBM approach works for accuracy 

measures as well, it would require a significantly different model, which is outside of the scope 

of the current project. 

As established in the previous paragraphs, it is key that the model considers trial 

variability at the individual-level, hence, the individual-level distribution is defined first, 

followed by the group-level distribution. Finally, this section will conclude with the specification 

of the test-retest reliability, model priors, and estimation procedure. All R scripts and the Stan 
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model file are available on https://osf.io/79jgs/. A graphical representation of the model is 

included as well (see Figure 7).  

 

Figure 7 

A Structured Schematic Representation of the Hierarchical Model 

 

Note. i = subject; c = condition; p = phase; sd = standard deviation; µi = individual-level 

mean parameter; σi = individual-level variability parameter. 

 

https://osf.io/79jgs/


1 Control corresponds to non-interference trial types (e.g., Stroop congruent, Sternberg novel negative). 

Interference corresponds to interference trial types (e.g., AX-CPT AY and BX, task-switching 

incongruent). 
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Individual-Level Parameter Model. Subject’s reaction time response distributions are 

here conceptualized as coming from a lognormal distribution, satisfying our skewed distribution 

assumption (assumption 5). The distribution is further shaped by mean and standard deviation 

parameters, which both vary per subject and between each condition (satisfying assumptions 2, 

3, and, 4). Theoretically, we do not expect the distribution parameters to vary much between the 

test and retest phase. However, for test retest reliability purposes, the model assumes unique 

distributions for each phase as well. 

RT𝑖,𝑐,𝑝 ~ Lognormal(𝜇𝑖,𝑐,𝑝 , exp(𝜎𝑖,𝑐,𝑝)) (4) 

Formally, in equation 4, RT𝑖,𝑐,𝑝 is the observed reaction time data for subject i = {1,…, 

N}, in condition c = {control, interference}1, during phase p = {test, retest}. 

~ Lognormal(𝜇𝑖,𝑐,𝑝 , exp(𝜎𝑖,𝑐,𝑝)) signifies that the data are drawn from a generative process 

producing a skewed distribution, shaped by a mean and standard deviation parameter for each 

subject, condition, and phase combination. A lognormal distribution has an asymmetrical spread; 

more variability is found on the right-side (i.e., slow reaction times) of the central tendency than 

the left-side (i.e., fast reaction time). Importantly, the lognormal distribution has a property that 

determines how the mean and standard deviation interact, allowing the model to fit the many 

different shapes of reaction time distributions produced by the ~ 120 subjects. Wagenmakers and 

Brown (2007) show that this property adheres to a law of [reaction] time, which states that in 

reaction time performance, the standard deviation increases linearly with the mean. In other 

words, the slower a subject’s mean reaction time, the more individual-level variability they 

show. Additionally, to ensure that the individual-level standard deviation parameters are greater 

than 0, they were exponentially transformed.  
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Group-Level Parameter Model. In a hierarchical model, individual-level parameters are 

informed by group-level parameters, and vice versa. Here, the hierarchy of the model is 

constructed so that the individual-level distribution parameters from Equation 4, denoted by 

𝜇𝑖,𝑐,𝑝 and 𝜎𝑖,𝑐,𝑝 , are drawn from group-level normal distributions (i.e., prior models), with 

unobserved (i.e., unknown) means and standard deviations (sd):  

𝜇𝑖,𝑐,𝑝 ~ Normal(𝜇mean,𝑐,𝑝, 𝜇sd,𝑐,𝑝)

𝜎𝑖,𝑐,𝑝 ~ Normal(𝜎mean,𝑐,𝑝, 𝜎sd,𝑐,𝑝) (5)
 

By defining these prior models, the group-level distribution allows for the pooling of 

information across subjects. Each individual-level parameters, 𝜇𝑖,𝑐,𝑝 and 𝜎𝑖,𝑐,𝑝 , inform the group-

level means and standard deviations, 𝜇mean,𝑐,𝑝, 𝜇sd,𝑐,𝑝 and 𝜎mean,𝑐,𝑝, 𝜎sd,𝑐,𝑝, which in turn inform 

all other individual-level parameters. This mutual interaction creates hierarchical pooling, 

regressing the individual-level parameters towards a group mean (also called shrinkage or 

regularization), and increases the precision of Bayesian estimation (Gelman et al., 2013). 

Bayesian modeling allows for such a “joint model” specification, in which the individual-level 

and group-level parameters are estimated simultaneously. This embodies the generative 

perspective (Haines et al., 2020).  

Keen observers might remark that the group-level distributions are both modeled as 

normal. Recall that the individual-level standard deviation parameter (Equation 4; exp(𝜎𝑖,𝑐,𝑝)) 

was exponentially transformed to force it to assume positive values only. Mathematically, when 

y has a normal distribution then the exponential function of y has a lognormal distribution. It 

follows then, that the group-level distribution modeled on the individual-level standard deviation 

parameter (exp(𝜎𝑖,𝑐,𝑝)) corresponds to a lognormal distribution.  
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Model Priors. One strength of Bayesian modeling is that we can define a prior 

probability distribution which expresses one’s prior belief about an underlying distribution of 

interest. In the sections above the reasoning for the priors have been explained. In the current 

project, the parameter estimation is rather robust to prior models, because the priors are rather 

diffuse and the sample sizes of observed data are relatively large. More about the influence of the 

priors on parameter estimation can be found in the “WAMBS” section below. 

The prior model for the group-level mean parameters were as specified as normal.  

𝜇𝑚𝑒𝑎𝑛,𝑐,𝑝 ~ Normal(0, 1)

𝜎𝑚𝑒𝑎𝑛,𝑐,𝑝 ~ Normal(0, 1) (6)
 

The prior model for the group-level standard deviations parameters were as specified as half-

normal (e.g., if y is a normal distribution, then | y | is a half-normal distribution, folded along the 

mean with the purpose of consisting of only positive values). Because the individual-level 

standard deviation parameter is exponentially transformed, the group-level distribution assumes 

only positive values. 

𝜇𝑠𝑑,𝑐,𝑝 ~ Half − Normal(0, 1)

𝜎𝑠𝑑,𝑐,𝑝 ~ Half − Normal(0, 1) (7)
 

Parameter Estimation. All model parameters were estimated with Stan (Stan 

Development Team, 2020c) through an interface in R, called RStan (Stan Development Team, 

2020b). Stan is a probabilistic programming language that includes inference algorithms for 

fitting models and making predictions. Bayesian inference for continuous variable models is 

achieved by Stan’s implementation of a more efficient and robust variant of a Markov chain 

Monte Carlo (MCMC) algorithm, the Hamiltonian Monte Carlo (HMC) (Carpenter et al., 2017). 

All models were fitted with 3 chains of 3000 iterations after 1000 warm-up iterations.  
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As is common, the levels within hierarchical models are strongly correlated by design 

because the group-level distributions are generated from individual-level parameters. This can 

lead to inefficient exploring of the distribution parameter space by the HMC sampler. The 

sampler still explores the entire parameter space, but extremely slowly, resulting in requiring 

many iterations for proper convergence of the models. A commonly used practice to counter this, 

is to use non-centered parameterizations (Betancourt & Girolami, 2013). Critically, these 

parameterizations do not change the model, its interpretation, nor the resulting parameter 

estimates. For computational efficiency, we followed Haines et al., (2020) in offsetting the 

individual-level parameters. For an overview of non-centered parameterization see Betancourt 

and Girolami, (2013) and Papaspiliopoulus et al., (2007); also see chapter 22.7 of the Stan User’s 

Guide (Stan Development Team, 2020a).  

Extracted Parameters. For each of the four tasks in the task battery, the model was fit 

three times (e.g., once for each session), resulting in 12 model fits. From the model fits we 

extracted three families of parameters; delta, mu, and sigma. After the parameters are estimated 

and extracted, it is straight forward to generate a difference score estimate, which shall be 

referred to as delta (i.e., ∆).  

∆𝑖,𝑡𝑒𝑠𝑡 =  𝜇𝑖,𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑡𝑒𝑠𝑡 −  𝜇𝑖,𝑐𝑜𝑛𝑡𝑟𝑜𝑙,𝑡𝑒𝑠𝑡

∆𝑖,𝑟𝑒𝑡𝑒𝑠𝑡 =  𝜇𝑖,𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑟𝑒𝑡𝑒𝑠𝑡 −  𝜇𝑖,𝑐𝑜𝑛𝑡𝑟𝑜𝑙,𝑟𝑒𝑡𝑒𝑠𝑡 (8)
 

Furthermore, the individual-level means (i.e., 𝜇𝑖,𝑐,𝑝; referred to as mu) and standard deviations 

(i.e., 𝜎𝑖,𝑐,𝑝; referred to as sigma) were extracted for each condition and phase. No group-level 

means or standard deviations were extracted due to the individual differences nature of this 

project. The extracted delta, mu, and sigma parameters for each task and session combination are 

available on https://osf.io/79jgs/. 

https://osf.io/79jgs/
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8.2.2 “WAMBS” 

Bayesian statistical approaches are becoming a popular method across different 

disciplines. The advantages of Bayesian statistics can be attractive, but naively applying 

Bayesian methods can be dangerous for interpretation of the results. Because of the additional 

complexity of the method, its programming, and the freedom of distribution and parameter 

specification, there is a list of considerations that must be made before interpreting the results. 

Fortunately, these considerations are collected in the “When to worry and how to Avoid the 

Misuse of Bayesian Statistics” checklist (WAMBS; Depaoli & van de Schoot, 2017). WAMBS 

describes potential issues that can come up before and after estimating the model, which are 

collected in a checklist format. The current project heeded the relevant warnings of the WAMBS 

checklist, which are succinctly reported next. 

There are two relevant items regarding the priors on the WAMBS checklist: do you 

understand the priors and is there a notable effect of the prior when compared with non-

informative priors. The choices for the priors are explained in the previous sections. In 

preparation for the parameter estimation, models with different theoretical plausible priors, and 

no priors at all, were run. When no priors are defined, Stan defaults all prior distribution models 

to a uniform distribution (i.e., a non-informative prior). However, because the effect of delta (i.e., 

the difference score) is small (see the Results section), and the relatively large sample size, the 

priors had a negligible impact on the results. The Stan model with no prior is included in the 

WAMBS folder on https://osf.io/79jgs/. 

A large section of the WAMBS concerns itself with the convergence of the model and 

parameter estimation. WAMBS contains two items that can be answered straight-forwardly: does 

convergence remain after doubling the number of iterations and does the posterior distribution 

https://osf.io/79jgs/
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make substantive sense. Yes, the models were run with different numbers of iterations and burn-

in phases, including twice the number of the currently used number of iterations; no convergence 

issues were found in these test runs. The posterior distribution makes substantive sense, as can be 

seen in the Results. Other convergence items are more easily answered with convergence plots; 

does the trace-plot exhibit convergence, does the histogram have enough information, and do the 

chains exhibit a strong degree of autocorrelation. All relevant convergence statistics have been 

extracted and are visually presented in the WAMBS folder on https://osf.io/79jgs/.  

8.2.3 Reliability Estimates 

Test-retest reliability (TRR) estimates for the delta parameter (i.e., difference score; 

∆𝑖,𝑡𝑒𝑠𝑡, ∆𝑖,𝑟𝑒𝑡𝑒𝑠𝑡) were calculated for each task and session combination and shown in Table 2. For 

a comparison between the traditional and HBM approach, corresponding mean point-estimates 

TRRs (rMPE) are provided as well in Table 2. Importantly, TRR is calculated as a Pearson r 

correlation between the test and retest phase estimates r(∆1, ∆2). Pearson r is chosen over an 

Intraclass Correlation Coefficient, because much of the variance has been modeled out by the 

sigma parameter.  

Difference Score Estimates. As expected, the MPE approach indicates a poor to 

moderate test-retest reliability (x̅ = .39; see the first set of analyses as well), which is consistent 

with previous studies (e.g., Hedge, Powell, and Sumner, (2018): x̅ = .55; Chen et al., (2021): x̅ = 

.49). In contrast, the TRR for the HBM delta parameters can be classified as good to excellent, 

with the reactive session recency effect being an exception (r = .52). These results are consistent 

with Haines et al., (2020), and Rouder and Haaf (2019). The delta TRR estimates indicate that 

HBM can indeed provide reliable individual differences from cognitive control tasks, even 

though the index is a difference score. An additional interesting pattern emerges when comparing 

https://osf.io/79jgs/
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TRR across session; the TRR is highest for the proactive session, as was the case with the 

intraclass correlation coefficients in the first set of analyses.  

Table 2 

Reaction Time Test-Retest Correlations of the Delta Parameter from the DMC Task Battery.  

Session Task Index r(∆1, ∆2) rMPE n 

Baseline Stroop Stroop Effect .92 .54 122 

Proactive   .98 .59 119 

Reactive   .88 .55 122 

Baseline AX-CPT BX Interference .79 .50 112 

Proactive   .93 .51 116 

Reactive   .86 .49 113 

Baseline Cued TS TRCE .81 .22 116 

Proactive   .94 .28 112 

Reactive   .90 .39 122 

Baseline Sternberg Recency Effect .77 .16 120 

Proactive   .89 .20 106 

Reactive   .52 .20 127 

Note. r(∆1, ∆2) = Pearson correlation coefficient of delta estimates obtained by Hierarchical Bayesian 

Modeling; rMPE = Pearson correlation coefficient obtained from traditional Mean Point Estimates 

approach; TS = task-switching; TRCE = Task Rule Congruency Effect; different n sample sizes due to 

additional multivariate outlier removal.  

 

8.2.4 Between-Task Correlations 

It has been suggested that the weak between-task correlations of cognitive control 

paradigms stem from the poor reliability of the measures (Hedge, Powell, & Sumner, 2018). 

Here this suggestion is tested. In Table 3 the between-task correlations of the delta parameter are 

presented. For each estimate pair, in each session, a correlation is calculated for the test phase 

and retest phase. Additionally, the test and retest phase were also combined to follow the first set 

of analyses.  
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Table 3 

Reaction Time Between-Task Correlations of the Delta Parameter from the DMC Task Battery. 

Session Index 1 Index 2 rtest rretest rcombined n 

Baseline Stroop Effect BX Interference .05 .17 .10 90 

Baseline  TRCE .02 .02 .02 90 

Baseline  Recency Effect -.01 -.02 -.02 90 

Baseline BX Interference TRCE -.01 .05 .03 90 

Baseline  Recency Effect -.12 -.12 -.13 90 

Baseline TRCE Recency Effect .11 -.04 .00 90 

Proactive Stroop Effect BX Interference .01 .01 .01 76 

Proactive  TRCE .00 .02 .01 76 

Proactive  Recency Effect -.06 -.07 -.07 76 

Proactive BX Interference TRCE -.09 -.16 -.13 76 

Proactive  Recency Effect -.03 -.04 -.04 76 

Proactive TRCE Recency Effect -.12 -.13 -.13 76 

Reactive Stroop Effect BX Interference .12 .01 .08 107 

Reactive  TRCE -.09 -.10 -.09 107 

Reactive  Recency Effect .06 -.10 -.05 107 

Reactive BX Interference TRCE -.04 -.01 -.02 107 

Reactive  Recency Effect .23 .15 .22 107 

Reactive TRCE Recency Effect -.10 .00 -.04 107 

Note. rtest = Pearson r correlation at test phase; rretest = Pearson r correlation at retest phase; rcombined = 

Pearson r correlation of combined phases; TRCE = Task Rule Congruency Effect. Variability in sample 

sizes due to between-task differences in acceptable performance. 

 

Despite the strong reliability of the delta parameter, the between-task correlations of the 

cognitive control measure are, yet again, on par with the so-called “crud factor” (i.e., correlations 

between -.20 and .20; see the first set of analyses). This is evidence against the suggestion that 

the weak between-task correlations of cognitive control are caused by poor reliability of its 

measures. The “strongest” between-task correlation, and the only that is not considered “crud”, 

contains the reactive session recency effect (r = .23). Interestingly, this estimate had the lowest 

reliability (r = .55) and was also the only moderately reliable estimate among good and 
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excellently reliable estimates. It is important to note that the delta parameter is calculated as a 

difference score. As elaborated in the first set of analyses, difference scores are notoriously 

problematic from a psychometric perspective (Caruso, 2004; Cronbach & Furby, 1970; Lord, 

1956). The finding that hierarchical Bayesian modeling cannot improve between-task 

correlations of difference score estimates is corroborated by Rouder and Haaf (2019). 

8.2.5 Sigma 

In psychology, measuring a subject’s level of ability is often done by an estimate that 

represents their average ability. Such a mean point-estimate (MPE) is simply derived from the 

average performance on a task (e.g., mean reaction time, mean accuracy), or the mean parameter 

(e.g., 𝜇𝑖) from a modeled distribution. However, some studies have focused on the variability of 

responses rather than a response average as index of cognitive ability (e.g., Der & Deary, 2006; 

Dykiert et al., 2012; Hultsch et al., 2008; MacDonald et al., 2006; Salthouse, 2007; Stuss et al., 

2003). Each of these studies show that intra-individual variability (IIV) can reveal an important 

aspect of task performance and its underlying mental processes, namely, its consistency. Two 

subjects can have identical average performances (e.g., 700ms on incongruent Stroop trials), but 

might differ in how much they deviate from this average on a given trial (Unsworth, 2015).   

Some research has suggested that increases in IIV are related to fluctuations in cognitive 

control which can lead to lapses of attention (Duchek et al., 2009; Jackson et al., 2012; Unsworth 

et al., 2010; West et al., 2002). Such lapses of attention would manifest in the data as sporadic 

slow reaction times due to task-unrelated thoughts or very fast errors due to failure to inhibit a 

prepotent response (Unsworth et al., 2004), in other words; an increase the IIV. This view is 

supported by studies that show that subjects with low cognitive ability (i.e., working memory 

capacity, fluid intelligence) demonstrate a larger number of very slow responses when compared 
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to subjects with high cognitive ability (McVay & Kane, 2011; Schmiedek et al., 2007; Unsworth 

et al., 2010, 2012). More importantly, this suggests IIV may be an important source of individual 

differences in cognitive control.  

We examine whether IIV is a general trait that manifests itself similarly across different 

tests of cognitive control. An estimate of individual-level standard deviation is a common 

dependent variable of IIV. The hierarchical Bayesian model in the current project includes such 

an estimate: 𝜎𝑖,𝑐,𝑝 (sigma). The between-task correlations of the sigma parameter for the DMC 

task battery interference (Table 4) and non-interference (Table 5) trial types are presented. 

Overall, the between-task correlations of the sigma parameter indicate that it is a better suited 

estimate of individual differences in cognitive control than the delta parameter. There are some 

intricate differences when examining the correlations across task, trial type (e.g., interference, 

non-interference), and session. To facilitate interpretation of these differences, the results are 

split between the trial type and session.  

Between-task correlations of the baseline session, interference trial type, sigma 

parameters (Table 4) are generally moderate to good (median = .49), with the exception of 

correlations that include the Stroop incongruent trial type; those are generally weak (median = 

.17). A similar pattern can be found for the proactive session sigma parameters; a median of .39, 

and .18, respectively. However, for the reactive session no such difference is found; a median of 

.25 for both correlations including and excluding the Stroop incongruent trial type. This may 

indicate that the Stroop task is too simple to pick up on individual differences in IIV; or that  it 

does not share a process that is required by the other tasks. Furthermore, there are some 

unexpected discrepancies when comparing the same correlations from the test phase to the retest 
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phase. However, no discernable pattern can be found; in some cases the correlations are near 

identical, in others they differ 15 points.  

Table 4 

Reaction Time Between-Task Correlations of the Interference Trial Sigma Parameter from the 

DMC Task Battery. 

Session Index 1 Index 2 rtest rretest rcombined n 

Baseline Stroop Incon. AX-CPT BX .17 .22 .20 90 

Baseline  TS Incon. .09 .23 .15 90 

Baseline  Sternberg RN .11 .12 .20 90 

Baseline AX-CPT BX TS Incon. .49 .48 .54 90 

Baseline  Sternberg RN .42 .33 .45 90 

Baseline TS Incon. Sternberg RN .34 .46 .48 90 

Proactive Stroop Incon. AX-CPT BX .12 .22 .18 76 

Proactive  TS Incon. .26 .32 .34 76 

Proactive  Sternberg RN -.01 .15 .10 76 

Proactive AX-CPT BX TS Incon. .39 .43 .48 76 

Proactive  Sternberg RN .33 .40 .45 76 

Proactive TS Incon. Sternberg RN .36 .18 .25 76 

Reactive Stroop Incon. AX-CPT BX .25 .24 .28 107 

Reactive  TS Incon. .29 .28 .35 107 

Reactive  Sternberg RN .01 .06 .05 107 

Reactive AX-CPT BX TS Incon. .31 .38 .40 107 

Reactive  Sternberg RN .26 .22 .24 107 

Reactive TS Incon. Sternberg RN .14 .25 .24 107 

Note. rtest = Pearson r correlation at test phase; rretest = Pearson r correlation at retest phase; rcombined = 

Pearson r correlation of combined phases; Stroop Incon. = Stroop incongruent trial type; Sternberg RN = 

Sternberg recent negative trial type; TS Incon.= Task-Switching incongruent trial type. Variability in 

sample sizes due to between-task differences in acceptable performance. 

 

The results of the non-interference trial type sigma parameters (Table 5) also reveal a 

difference in the between-task correlations of those including the Stroop, and those not including 

the Stroop estimates, but only in the baseline session; median = .28, and .40, respectively. For 

the proactive session (median = .31, and .31), and the reactive session (median = .29, and .31), 
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the correlations are more homogeneous across all tasks. Importantly, across all tasks, sessions, 

and phases, the non-interference sigma estimate has a median between-task correlation of .30. 

This is a meaningful difference when compared to the median between-task correlation of the 

delta estimate: -.01. 

Table 5 

Reaction Time Between-Task Correlations of the Non-Interference Trial Sigma Parameter from 

the DMC Task Battery. 

Session Index 1 Index 2 rtest rretest rcombined n 

Baseline Stroop Con. AX-CPT BY .21 .23 .30 90 

Baseline  TS Con. .13 .28 .22 90 

Baseline  Sternberg NN .41 .37 .44 90 

Baseline AX-CPT BY TS Con. .32 .39 .44 90 

Baseline  Sternberg NN .36 .26 .40 90 

Baseline TS Con. Sternberg NN .45 .44 .47 90 

Proactive Stroop Con. AX-CPT BY .15 .11 .14 76 

Proactive  TS Con. .32 .34 .39 76 

Proactive  Sternberg NN .20 .36 .31 76 

Proactive AX-CPT BY TS Con. .31 .31 .34 76 

Proactive  Sternberg NN .38 .34 .38 76 

Proactive TS Con. Sternberg NN .29 .25 .29 76 

Reactive Stroop Con. AX-CPT BY .29 .07 .18 107 

Reactive  TS Con. .28 .30 .34 107 

Reactive  Sternberg NN .21 .30 .34 107 

Reactive AX-CPT BY TS Con. .27 .34 .36 107 

Reactive  Sternberg NN .29 .22 .31 107 

Reactive TS Con. Sternberg NN .22 .36 .33 107 

Note. rtest = Pearson r correlation at test phase; rretest = Pearson r correlation at retest phase; rcombined = 

Pearson r correlation of combined phases; Stroop Con.= Stroop congruent trial type; TS Con.= Task-

Switching congruent trial type; Sternberg NN = Sternberg novel negative trial type. Variability in sample 

sizes due to between-task differences in acceptable performance. 
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9 Discussion 

The second set of analyses replicates previous findings (Chen et al., 2021; Haines et al., 

2020; Rouder & Haaf, 2019) showing that hierarchical Bayesian methods can produce reliable 

cognitive control indices, including difference score indices (Table 2). Our main research 

question was: can existing experimental tasks provide reliable individual differences estimates of 

cognitive control? We found that test-retest reliability (TRR) estimates for the delta parameters 

were found to be good or excellent. Compare this to the weak and moderate intraclass correlation 

coefficients (ICC) in the first set of analyses. This suggests, that accounting for individual-level 

variability and the type and shape of the distribution “rescues” the reliability estimation as 

formulated by Rouder and Haaf (2019). Additionally, in both sets of analyses, reliability 

estimates were highest in the proactive session tasks, indicating that theoretical motivated task 

manipulations may improve reliability as well.  

In contrast, the stellar increase in difference score reliability was not matched by the 

between-task correlations. It has been suggested that the weak between-task correlations of 

classic cognitive control measures stem from a bottleneck of its reliability (Hedge, Powell, & 

Sumner, 2018). Our findings provide clear-cut evidence to the contrary; although the delta 

parameter can be estimated reliably, there is no relationship across delta parameters drawn from 

different tasks of cognitive control. This could indicate that cognitive control, as currently 

conceptualized, is not unified. In other words, classic cognitive control tasks may measure task-

specific processes, rather than a single process (this follows Rey-Mermet et al., (2018)).  

Although with decreasing likeliness, a measurement explanation behind the weak 

between-task correlations can still not be counted out completely. Our findings suggest that a 

difference score of average performances (i.e., the Stroop effect) does not capture individual 
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differences in cognitive control. In addition to the delta parameter (i.e., a difference score of 

mean performance), we examined the sigma parameter extracted from the HBM. It seems quite 

plausible that individual differences in cognitive control are not captured by average 

performance, but rather by consistent performance as indexed by individual-level standard 

deviation and as suggested by Unsworth (2015) and others. Such view is corroborated by our 

findings (Tables C and D). The sigma parameter explains as much as 25% of the covariance 

within our task battery. Perhaps consistently controlling cognition is an important trait with 

substantial differences among individuals. Interestingly, the between-task correlations of the 

sigma parameter show that the Stroop incongruent trial variability does not correlate much with 

the other interference sigma parameters. Stroop is a mainstay of cognitive control, however, the 

task paradigm cannot seem to pick up on individual differences. Our results suggest that the 

Stroop does not belong in research that measures individual differences in cognitive control. 

9.1 Limitations and Future Directions 

One of the potential limitations of the current study design is the fully online format of 

data collection. However, at the time of writing, the worldwide pandemic has shifted most 

research to an online format. Yet, it is possible that potential distractions could occur while 

subjects complete these tasks at home or other non-laboratory settings, subsequently influencing 

the results of the study. However, the nature of this multi-session study made frequent laboratory 

visits less optimal and more time-consuming for data collection of a large sample size.  

Another limitation in the current study concerns the strategy training for the proactive 

condition of the AX-CPT task. As a refresher; subjects are provided with explicit information 

regarding the ratios of cue-probe associations, as well as receive training and practice in utilizing 

them to prepare the dominant responses. The main problem arises in conjunction with the test-
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retest design; the explicit strategy training carries over to the retest baseline session. In other 

words, the retest baseline session correlates more strongly with the test proactive session, than it 

does with the test baseline session. This indicates that the strategy training effects task 

performance in the other sessions as well. Ideally, the task manipulation in the proactive 

condition for the AX-CPT in the DMC task battery should be reconsidered.  

An important future direction is the examination of the intra-individual variability (IIV) 

as an individual differences index of cognitive control. For example, the relationship between 

IIV and important cognitive constructs could reveal more about the underlying nature the 

variability. At this point it is not clear whether IIV (or sigma, or standard deviation) indeed 

emerges as a result of some underlying cognitive processes shared between different cognitive 

control tasks. One specific avenue is to examine the relationship between cognitive control sigma 

parameters and indices of mind wandering. Theoretically, mind wandering could serve as one of 

many possible criterions for trial variability in cognitive control tasks (see also Unsworth, 2015). 

Another interesting avenue could be examination of ways to reduce this variability, through 

perhaps training.  

9.2 Conclusion 

By implementing theory-based task manipulations, we examined whether existing 

experimental tasks of cognitive control are a viable tool for measuring individual differences. 

The experimental effects and shifts toward proactive and reactive control were as hypothesized, 

but the current results indicate that it remains a challenge for experimental tasks to produce 

robust individual differences. It required hierarchical Bayesian modeling to bring out reliable 

estimates; traditional approaches did not render robust estimates as expected. However, the 

highly reliable difference score estimates did not correlate with the other cognitive control 
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estimates in the task battery. This indicates that reliability is not the cause of weak between-task 

correlations in the DMC task battery.  

We suggest that there are two methodological takeaways from the current study: One, 

needless to say, reliability is of great importance in scientific research. A field-breaking result is 

nothing but a statistical artifact if it cannot be reliably reproduced. Reporting the reliability of 

measures ought to be a standard procedure. Here we provide two approaches to calculating 

individual differences reliability that are suitable to be used on cognitive behavioral tasks data. 

These take in consideration some psychometric pitfalls that are often ignored in common 

statistical software packages. And two, statistical approaches should be used thoughtfully, taking 

in consideration the research design and assumptions of the method used. For example, some 

methods assume that the distribution of the underlying data is normal, while this is not always 

the case. Ignoring properties of the data (e.g., distribution shape, standard deviation) can lead to 

unreliable and inaccurate estimates of cognitive processes. Here, we make a case for hierarchical 

Bayesian analyses, which allowed us to model important properties of the data resulting in more 

precise parameter estimation.  

Through the implementation of different methods, we found that classic indices of 

cognitive control tasks can be estimated reliably. However, even though we addressed some 

prominent methodological issues, the underlying psychometric structure of cognitive control 

remains evasive. Finally, our results do suggest that intra-individual variability, rather than 

average performance difference scores, provides an exciting avenue of future research. 
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11 Appendix A 

Table A1 

Stroop (Biased) Reliability across Sessions 

Measure Split-half (95% CI) Test-Retest (95% CI) M Range 

Baseline     

Reaction Time     

Congruent  1.00 (1.00–1.00) .91 (.88–.94) 781 ms 431 – 2706 ms 

Incongruent .99 (.98–1.00) .93 (.90–.96) 918 ms 477 – 2851 ms 

Stroop Effect .73 (.57–.83) .32 (.16–.47) 137 ms -267 – 385 ms 

Error     

Congruent  .93 (.89–.96) .16 (-.01–.32) 2.2 % 0 – 24 % 

Incongruent .80 (.72–.86) .23 (.06–.38) 5.2 % 0 – 40 % 

Stroop Effect .45 (.22–.62) .26 (.10–.42) 3.0 % -5 – 26 % 

Proactive     

Reaction Time     

Congruent  .99 (.99–1.00) .85 (.80–.89) 798 ms 415 – 3387 ms 

Incongruent 1.00 (1.00–1.00) .87 (.82–.91) 880 ms 450 – 3596 ms 

Stroop Effect .59 (.31–.77) .34 (.18–.49) 83 ms -200 – 300 ms 

Error     

Congruent  .81 (.68–.90) .69 (.58–.77) 1.2 % 0 – 27 % 

Incongruent .91 (.87–.94) .79 (.71–.82) 2.9 % 0 – 29 % 

Stroop Effect .46 (.10–.68) .39 (.23–.53) 1.7 % -4 – 18 % 

Reactive     

Reaction Time     

Congruent  1.00 (1.00–1.00) .91 (.87–.93) 790 ms 428 – 3787 ms 

Incongruent 1.00 (1.00–1.00) .88 (.83–.91) 882 ms 451 – 3763 ms 

Stroop Effect .87 (.78–.92) .33 (.17–.48) 93 ms -480 – 479 ms 

Error     

Congruent  .98 (.98–1.00) .82 (.76–.84) 1.6 %  0 – 40 % 

Incongruent .94 (.92–.96) .53 (.39–.64) 3.9 % 0 – 42 % 

Stroop Effect .88 (.84–.92) .78 (.70–.84) 2.3 % -28 – 21 % 

Note. N = 126. CI = confidence interval. Split-half is an average of the test and retest phase split-half 

reliabilities. 
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Table A2 

Cued Task Switching (Non-Incentivized) Reliability across Sessions 

Measure Split-half (95% CI) Test-Retest (95% CI) M Range 

Baseline     

Reaction Time     

Congruent  .98 (.98–.99) .60 (.31–.76) 906 ms 448 – 2370 ms 

Incongruent .89 (.84–.93) .52 (.35–.65) 983 ms 458 – 2657 ms 

TRCE .39 (.10–.61) .30 (.13–.45) 77 ms -319 – 921 ms 

Error     

Congruent  .88 (.84–.92) .51 (.34–.64) 3.9 % 0 – 38 % 

Incongruent .66 (.54–.74) .46 (.31–.58) 11 % 0 – 60 % 

TRCE .52 (.38–.64) .33 (.17–.47) 7.1 % -12 – 56 % 

Proactive     

Reaction Time     

Congruent  .99 (.98–.99) .79 (.67–.86) 718 ms 421 – 2203 ms 

Incongruent .90 (.86–.94) .66 (.55–.75) 780 ms 425 – 2343 ms 

TRCE .52 (.28–.68) .38 (.22–.52) 62 ms -236 – 683 ms 

Error     

Congruent  .84 (.77–.88) .66 (.55–.75) 4.3 % 0 – 34 % 

Incongruent .57 (.45–.68) .52 (.38–.64) 14.9 % 0 – 56 % 

TRCE .52 (.38–.64) .51 (.37–.63) 10.7 % -14 – 56 % 

Reactive     

Reaction Time     

Congruent  .99 (.98–.99) .66 (.42–.79) 1003 ms 501 – 2802 ms 

Incongruent .90 (.86–.94) .60 (.39–.74) 1098 ms 510 – 3311 ms  

TRCE .55 (.38–.69) .46 (.31–.59) 94 ms -642 – 967 ms 

Error     

Congruent  .84 (.76–.90) .35 (.19–.49) 1.5 % 0 – 31 % 

Incongruent .59 (.44–.70) .41 (.26–.55) 6.7 % 0 – 56 % 

TRCE .52 (.36–.66) .35 (.19–.49) 5.1 % -11 – 54 % 

Note. N = 128. CI = confidence interval; TRCE = task rule congruency effect. Split-half is an average of the 

test and retest phase split-half reliabilities. 
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Table A3 

AX-Continuous Performance Task Baseline Session Reliability  

Measure Split-half (95% CI) Test-Retest (95% CI) M Range 
 

Reaction Time     

AX trials  .98 (.96–.98) .63 (.43–.76) 449 ms 295 – 827 ms 

AY trials .87 (.83–.90) .69 (.58–.78) 540 ms 376 – 835 ms 

BX trials .88 (.84–.92) .51 (.25–.68) 516 ms 267 – 1468 ms 

BY trials .98 (.97–.98) .63 (.19–.81) 441 ms 273 – 788 ms 

PBI .66 (.55–.75) .31 (.10–.48) .03 -.40 - .24 

BX Interference .68 (.56–.77) 

 

.36 (.20–.51) 75 ms -109 – 872 ms 

Error     

AX trials  .89 (.86–.92) .27 (.10–.43) 6.6 % 0 – 80 % 

AY trials .44 (.27–.60) .18 (.01–.34) 7 % 0 – 44 % 

BX trials .68 (.57–.76) .20 (.02–.37) 13.8 % 0 – 80 % 

BY trials .64 (.48–.78) .05 (-.12–.22) 1.1 % 0 – 19 % 

A no-go trials .65 (.54–.74) .25 (.08–.40) 11.1 % 0 – 72 % 

B no-go trials .73 (.66–.80) .43 (.28–.56) 22.3 % 0 – 80 % 

PBI .69 (.59–.77) .16 (-.01–.32) -.18 -.94 - .89 

d′ context .78 (.70–.84) .36 (.16–.52) 2.85 -.23 – 4.4 

A-cue bias .56 (.42–.67) .18 (.01–.34) .09 -1.14 - .87 

BX Interference .62 (.50–.72) .15 (-.01–.31) 1.08 -.52 – 2.83 

Note. N = 121. CI = confidence interval; PBI = proactive behavioral index. Split-half is an average of the test 

and retest phase split-half reliabilities. 
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Table A4 

AX-Continuous Performance Task Proactive Session Reliability  

Measure Split-half (95% CI) Test-Retest (95% CI) M Range 
 

Reaction Time     

AX trials  .98 (.97–.99) .70 (.60–.78) 415 ms 257 – 832 ms 

AY trials .86 (.80–.90) .68 (.57–.77) 541 ms 378 – 871 ms 

BX trials .92 (.89–.94) .73 (.63–.80) 460 ms 259 – 1010 ms 

BY trials .98 (.98–.99) .80 (.73–.86) 410 ms 253 – 710 ms 

PBI .78 (.70–.84) .61 (.49–.71) .09 -.26 - .32 

BX Interference .74 (.65–.82) .57 (.44–.69) 51 ms -91 – 493 ms 

Error     

AX trials  .92 (.88–.94) .59 (.46–.69) 5.7 % 0 – 80 % 

AY trials .81 (.76–.86) .60 (.47–.70) 18.6 % 0 – 80 % 

BX trials .67 (.56–.76) .43 (.27–.57) 10.7 % 0 – 56 % 

BY trials .59 (.40–.73) .35 (.18–.49) 1.1 % 0 – 15 % 

A no-go trials .83 (.78–.88) .66 (.55–.75) 17 % 0 – 80 % 

B no-go trials .82 (.78–.87) .70 (.59–.78) 32 % 0 – 80 % 

PBI .80 (.73–.86) .54 (.40–.65) .16 -.89 - .94 

d′ context .81 (.73–.86) .55 (.41–.66) 3.09 -.92 – 4.40 

A-cue bias .79 (.71–.85) .59 (.47–.70) .37 -1.99 – 1.47 

BX Interference .62 (.50–.72) .28 (.11–.44) .93 -.5 – 2.47 

Note. N = 121. CI = confidence interval; PBI = proactive behavioral index. Split-half is an average of the test 

and retest phase split-half reliabilities. 
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Table A5 

AX-Continuous Performance Task Reactive Session Reliability  

Measure Split-half (95% CI) Test-Retest (95% CI) M Range 
 

Reaction Time     

AX trials  .98 (.98–.99) .75 (.61–.84) 435 ms 259 – 923 ms 

AY trials .91 (.88–.93) .69 (.53–.79) 558 ms 373 – 905 ms 

BX trials .88 (.84–.91) .67 (.49–.78) 546 ms 336 – 993 ms 

BY trials .98 (.98–.99) .76 (.55–.86) 420 ms 258 – 783 ms 

PBI .52 (.37–.64) .44 (.29–.58) .02 -.3 - .21 

BX Interference .67 (.56–.76) .52 (.39–.64) 125 ms -52 – 510 ms 

Error     

AX trials  .84 (.78–.88) .55 (.41–.66) 7.2 % 0 – 47 % 

AY trials .44 (.26–.58) .28 (.11–.44) 7.0 % 0 – 33 % 

BX trials .75 (.66–.82) .56 (.39–.68) 11.2 % 0 – 78 % 

BY trials .73 (.60–.82) .19 (.01–.35) 1.2 % 0 – 29 % 

A no-go trials .45 (.29–.59) .41 (.25–.55) 8.4 % 0 – 50 % 

B no-go trials .59 (.46–.70) .46 (.30–.59) 12.8 % 0 – 56 % 

PBI .65 (.53–.74) .23 (.06–.39) -.09 -.93. - .86 

d′ context .79 (.72–.85) .66 (.54–.75) 2.93 .58 – 4.4 

A-cue bias .52 (.38–.64) .45 (.29–.58) .06 -.8 - .82 

BX Interference .72 (.62–.80) .39 (.20–.55) .93 -.27 – 3.18 

Note. N = 121. CI = confidence interval; PBI = proactive behavioral index. Split-half is an average of the test 

and retest phase split-half reliabilities. 
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Table A6 

Sternberg (Critical) Reliability across Sessions 

Measure Split-half (95% CI) Test-Retest (95% CI) M Range 
 

Baseline     

Reaction Time     

NN  .94 (.91–.96) .57 (.44–.68) 834 ms 466 – 1704 ms 

NP .92 (.90–.94) .58 (.45–.68) 878 ms 444 – 1615 ms 

RN .76 (.69–.82) .46 (.32–.59) 951 ms 492 – 1750 ms 

Recency Effect -.02 (-.26–.24) .20 (.02–.36) 117 ms -201 – 480 ms 

Error     

NN  .73 (.62–.81) .28 (.11–.43) 3.6 % 0 – 56 % 

NP .84 (.78–.88) .58 (.45–.68) 13.2 % 0 – 58 % 

RN -.04 (-.26–.22) .45 (.29–.58) 17.3 % 0 – 60 % 

Recency Effect .20 (-.02–.40) .33 (.16–.47) 13.8 % -12 – 60 % 

Proactive     

Reaction Time     

NN  .92 (.88–.94) .63 (.51–.73) 834 ms 445 – 1477 ms 

NP .92 (.88–.94) .62 (.50–.72) 845 ms 420 – 1505 ms 

RN .76 (.70–.83) .52 (.36–.64) 1003 ms 448 – 1958 ms 

Recency Effect .18 (-.05–.42) .19 (.02–.34) 169 ms -180 – 560 ms 

Error     

NN  .68 (.55–.78) .42 (.27–.55) 5 % 0 – 50 % 

NP .80 (.73–.86) .47 (.32–.60) 12.4 % 0 – 60 % 

RN .16 (-.09–.38) .52 (.38–.64) 25.6 % 0 – 60 % 

Recency Effect .32 (.11–.49) .39 (.23–.53) 20.6 % -25 – 60 % 

Reactive     

Reaction Time     

NN  .84 (.77–.88) .51 (.37–.63) 851 ms 460 – 1661 ms 

NP .92 (.88–.94) .58 (.45–.69) 856 ms 482 – 1400 ms 

RN .88 (.84–.91) .66 (.54–.75) 963 ms 491 – 1582 ms 

Recency Effect .12 (-.15–.38) .21 (.05–.37) 85 ms  -176 – 350 ms 

Error     

NN  .54 (.32–.70) .34 (.18–.49) 4.3 % 0 – 50 % 

NP .78 (.72–.84) .49 (.35–.61) 10.3 % 0 – 54 % 

RN .50 (.32–.65) .62 (.50–.71) 12.7 % 0 – 56 % 

Recency Effect .78 (.72–.84) .42 (.27–.55) 8.3 % -25 – 50 % 

Note. N = 126. CI = confidence interval; NN = novel negatives; NP = novel positives; RN = recent negatives. 

Split-half is an average of the test and retest phase split-half reliabilities.
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12 Appendix B 

Table B1  

Spearman Rho Correlations of Between-Task Selected Measures, Baseline Session. 

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 

1. A-Cue 3.16 0.68                       

2. BXI Error -0.13 0.12 .19*                     

3. BXI RT 67.47 71.71 .22* -.00                   

4. d′ 2.84 0.76 .57** .79** .00                 

5. PBI Error 0.05 0.09 .16 -.86** .14 -.63**               

6. PBI RT 0.04 0.07 -.25** .18* -.83** .14 -.34**             

7. Recency Error 0.13 0.10 -.01 -.25** -.06 -.12 .21* .05           

8. Recency RT 116.60 81.08 .13 -.04 -.00 .03 .08 -.10 .01         

9. Stroop Error 0.03 0.04 -.27** -.17 .01 -.27** .07 -.03 -.01 .04       

10. Stroop RT 138.21 65.84 .09 -.18* .10 -.12 .20* -.09 -.02 .08 .10     

11. TRCE Error -0.08 0.08 .24** .18 .03 .24** -.06 -.01 -.08 -.02 -.08 -.14   

12. TRCE RT 78.16 120.22 .15 .05 .12 .11 -.04 -.03 .01 .09 -.23* .03 -.26** 

Note. N = 120. M and SD are used to represent mean and standard deviation, respectively. BXI = BX Interference; d′ = d prime; PBI = 

Proactive Behavioral Index; Recency = recency effect; TRCE = Task Rule Congruency Effect. Test and retest phase combined.  

** p < .01; * p < .05 
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Table B2 

Spearman Rho Correlations of Between-Task Selected Measures, Proactive Session. 

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 

1. A-Cue 2.84 0.69                       

2. BXI Error -0.09 0.10 .21*                     

3. BXI RT 48.35 64.98 .36** -.22*                   

4. d′ 3.13 0.90 .53** .82** -.15                 

5. PBI Error -0.06 0.14 .34** -.66** .50** -.54**               

6. PBI RT 0.09 0.09 -.34** .37** -.78** .35** -.72**             

7. Recency Error 0.18 0.11 -.06 -.08 -.04 -.10 .06 -.07           

8. Recency RT 165.66 100.36 .02 .17 .11 .19* -.20* .02 -.00         

9. Stroop Error 0.02 0.02 -.33** -.15 -.02 -.33** .02 -.02 .05 -.05       

10. Stroop RT 82.81 53.41 -.10 -.31** .08 -.27** .19* -.17 -.11 .00 .29**     

11. TRCE Error -0.13 0.10 .06 .11 -.04 .09 -.03 .03 -.11 .03 -.01 -.16   

12. TRCE RT 32.96 64.87 .05 -.15 .08 -.13 .18* -.08 .08 -.03 -.12 .20* -.37** 

                         

Note. N = 120. M and SD are used to represent mean and standard deviation, respectively. BXI = BX Interference; d′ = d prime; PBI = 

Proactive Behavioral Index; Recency = recency effect; TRCE = Task Rule Congruency Effect. Test and retest phase combined.  

** p < .01; * p < .05 
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Table B3 

Spearman Rho Correlations of Between-Task Selected Measures, Reactive Session. 

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 

1. A-Cue 3.08 0.66                       

2. BXI Error -0.10 0.12 .29**                     

3. BXI RT 125.76 63.30 .22* .07                   

4. d′ 2.94 0.85 .57** .87** .13                 

5. PBI Error 0.03 0.08 .02 -.85** .01 -.76**               

6. PBI RT 0.02 0.05 -.15 .30** -.64** .25** -.40**             

7. Recency Error 0.08 0.09 -.05 -.24** -.02 -.26** .21* -.11           

8. Recency RT 87.80 75.81 .10 .12 .15 .19* -.10 -.04 -.10         

9. Stroop Error 0.02 0.05 -.24** -.32** -.09 -.37** .34** -.06 -.07 .08       

10. Stroop RT 91.29 64.23 -.07 -.26** .10 -.27** .24** -.19* .13 .00 .44**     

11. TRCE Error -0.05 0.05 .23* .23* .21* .31** -.19* -.10 -.08 .03 -.16 -.17   

12. TRCE RT 59.67 132.11 -.02 -.03 -.02 -.03 .06 -.01 .03 -.06 -.06 .06 -.16 

                         

Note. N = 120. M and SD are used to represent mean and standard deviation, respectively. BXI = BX Interference; d′ = d prime; PBI = 

Proactive Behavioral Index; Recency = recency effect; TRCE = Task Rule Congruency Effect. Test and retest phase combined.  

** p < .01; * p < .05 
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Table B4  

Pearson r Correlations of Between-Task Selected Measures, Baseline Session. 

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 

1. A-Cue 3.16 0.68            

2. BXI Error -0.13 0.12 .16           

3. BXI RT 67.47 71.71 .14 -.02          

4. d′ 2.84 0.76 .62** .66** -.04         

5. PBI Error 0.05 0.09 .11 -.92** .11 -.53**        

6. PBI RT 0.04 0.07 -.18* .19* -.87** .16 -.31**       

7. Recency Error 0.13 0.10 .02 -.23* -.00 -.13 .21* -.00      

8. Recency RT 116.60 81.08 .09 .02 .03 .03 .01 -.13 -.01     

9. Stroop Error 0.03 0.04 -.35** -.27** .10 -.29** .19* -.09 .02 .08    

10. Stroop RT 138.21 65.84 .08 -.13 .14 -.08 .15 -.15 -.01 .04 .11   

11. TRCE Error -0.08 0.08 .24** .13 -.00 .23* -.05 -.00 -.08 -.01 -.12 -.09  

12. TRCE RT 78.16 120.22 .14 -.01 .06 .05 .05 -.03 -.02 .07 -.23* .05 -.36** 

Note. N = 120. M and SD are used to represent mean and standard deviation, respectively. BXI = BX Interference; d′ = d prime; PBI = 

Proactive Behavioral Index; Recency = recency effect; TRCE = Task Rule Congruency Effect. Test and retest phase combined.  

** p < .01; * p < .05 
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Table B5 

Pearson’s r Correlations of Between-Task Selected Measures, Proactive Session. 

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 

1. A-Cue 2.84 0.69                       

2. BXI Error -0.09 0.10 .18*                     

3. BXI RT 48.35 64.98 .26** -.35**                   

4. d′ 3.13 0.90 .51** .78** -.22*                 

5. PBI Error -0.06 0.14 .37** -.57** .48** -.48**               

6. PBI RT 0.09 0.09 -.28** .45** -.79** .40** -.74**             

7. Recency Error 0.18 0.11 -.00 -.04 -.07 -.11 .08 -.07           

8. Recency RT 165.66 100.36 .06 .19* .04 .19* -.17 .03 .00         

9. Stroop Error 0.02 0.02 -.24** -.30** .09 -.30** .10 -.12 .07 -.12       

10. Stroop RT 82.81 53.41 -.05 -.32** .15 -.24** .18* -.19* -.10 .03 .19*     

11. TRCE Error -0.13 0.10 .05 .09 -.04 .08 -.04 .05 -.12 .03 -.04 -.18*   

12. TRCE RT 32.96 64.87 .00 -.15 .01 -.18 .18* -.05 .03 -.05 -.10 .19* -.34** 

Note. N = 120. M and SD are used to represent mean and standard deviation, respectively. BXI = BX Interference; d′ = d prime; PBI = 

Proactive Behavioral Index; Recency = recency effect; TRCE = Task Rule Congruency Effect. Test and retest phase combined.  

** p < .01; * p < .05 

 

 

 

 



 

 

109 

 

Table B6 

Pearson’s r Correlations of Between-Task Selected Measures, Reactive Session. 

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 

1. A-Cue 3.08 0.66            

2. BXI Error -0.10 0.12 .34**           

3. BXI RT 125.76 63.30 .22* -.04          

4. d′ 2.94 0.85 .64** .74** .08         

5. PBI Error 0.03 0.08 -.08 -.91** .16 -.68**        

6. PBI RT 0.02 0.05 -.13 .32** 
-

.70** 
.28** -.44**       

7. Recency Error 0.08 0.09 -.06 -.11 -.01 -.18* .09 -.10      

8. Recency RT 87.80 75.81 .11 .06 .13 .16 -.06 -.06 .02     

9. Stroop Error 0.02 0.05 -.13 -.24** -.02 -.21* .26** -.08 -.04 .14    

10. Stroop RT 91.29 64.23 -.07 -.15 .08 -.19* .15 -.14 .10 .02 .38**   

11. TRCE Error -0.05 0.05 .23* .23* .16 .30** -.22* -.08 .00 .06 -.10 -.12  

12. TRCE RT 59.67 132.11 .04 -.08 -.03 -.01 .10 -.01 .04 -.01 -.03 .00 -.17 

Note. N = 120. M and SD are used to represent mean and standard deviation, respectively. BXI = BX Interference; d′ = d prime; PBI = 

Proactive Behavioral Index; Recency = recency effect; TRCE = Task Rule Congruency Effect. Test and retest phase combined.  

** p < .01; * p < .05 
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