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Abstract 

Deep Learning for Early Detection, Identification, and Spatiotemporal Monitoring of 

Plant Diseases Using Multispectral Aerial Imagery 

By 

Joseph Kimani Mbugua 

Claremont Graduate University: 2021 

 

Production of food crops is hampered by the proliferation of crop diseases which cause 

huge harvest losses. Current crop-health monitoring programs involve the deployment 

of scouts and experts to detect and identify crop diseases through visual observation. 

These monitoring schemes are expensive and too slow to offer timely remedial 

recommendations for preventing the spread of these crop-damaging diseases. There is 

thus a need for the development of cheaper and faster methods for identifying and 

monitoring crop diseases.  

Recent advances in deep learning have enabled the development of automatic and 

accurate image classification systems. These advances coupled with the widespread 

availability of multispectral aerial imagery provide a cost-effective method for 

developing crop-diseases classification tools. However, large datasets are required to 

train deep learning models, which may be costly and difficult to obtain. Fortunately, 

models trained on one task can be repurposed for different tasks (with limited data) 

using transfer learning technique. The purpose of this research was to develop and 



implement an end-to-end deep learning framework for early detection and continuous 

monitoring of crop diseases using transfer learning and high resolution, multispectral 

aerial imagery. 

In the first study, the technique was used to compare the performance of five pre-

trained deep learning convolutional neural networks (VGG16, VGG19, ResNet50, 

Inception V3, and Xception) in classifying crop diseases for apples, grapes, and 

tomatoes. The results of the study show that the best performing crop-disease 

classification models were those trained on the VGG16 network, while those trained on 

the ResNet50 network had the worst performance.  

The other studies compared the performance of using transfer learning and different 

three-band color combinations to train single- and multiple-crop classification models.  

The results of these studies show that models combining red, near infrared, and blue 

bands performed better than models trained with the traditional visible spectral band 

combination of red, green, and blue. The worst performing models were those 

combining near infrared, green, and blue bands. 

This research recommends that further studies be undertaken to determine the best 

band combinations for training single- and multi-label classification models for both 

crops and plants and diseases that affect them. 
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Chapter 1: Introduction 

 

Various types of crop, plant, and fruit diseases can significantly reduce the quality and 

yield of produce. According to a report  by Food and Agriculture organization of the 

United Nations (F.A.O, 2019b), plants are crucial contributors to global food security 

and constitute 80% of the human diet. The essential contribution of plants to food 

security is however threatened by plant pests and diseases which damage crops and 

cause food shortages by, thereby reducing the amounts of food available and access to 

food. The damages caused by plant pests and diseases thus lead to increased food costs 

and they may also affect the palatability of the food.  The report also notes that plant 

pests and diseases cause losses of 20 to 40% of the food produced worldwide with an 

estimated value of more than $ 220 billion. In sub-Saharan Africa, for example,  cassava 

mosaic disease (CMD) and cassava brown streak disease (CBSD) are viral diseases 

responsible for cassava losses of more than 1 billion US dollars annually (Ramcharan et 

al., 2017).   

To detect and monitor plant health and other field conditions, developed countries 

employ expensive and time-consuming ground surveys and monitoring programs (Xiao 

& Mcpherson, 2005). For example, the detection and monitoring component of the US 

forest health monitoring program, which collects data on the prevailing conditions of 

the forest ecosystem, is conducted annually (Alexander & Palmer, 1999). The 

evaluation-monitoring component of the program is only activated if a problem or 

abnormality is observed after analyzing the detection monitoring data. This phase of 

monitoring involves the evaluation of the extent, severity, and probable causes of any of 
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the health abnormality observed. Such a monitoring program takes too long to identify 

the forest condition and may result in misplaced and costly application of remedial 

actions since the conditions are detected at very low spatial and temporal resolutions. 

Furthermore, this scouting approach and the use of experts to detect and identify plant 

diseases by visual observation is slow, expensive, and labor-intensive (Dubey & Jalal, 

2014). Moreover, poor countries lack the means and technical capacities to implement 

such monitoring programs. 

To meet the food requirements of the world’s increasing population, which the F.A.O 

estimates will be about 9.1 billion people by the year 2050 (F.A.O, 2019a), there is a 

need to increase food production by more than 70% of the current levels. To fulfil this 

increasing need, the agricultural industry uses chemicals such as bactericides, 

fungicides, and nematicides to control plant pests and diseases. The use of these 

chemicals causes adverse effect on the agro-ecosystem and the environment. To control 

and manage the spread of crop diseases and avert the food security crisis they portend, 

particularly in sub-Saharan Africa, there is thus a need to develop new environmental-

friendly methods for early detection and identification of the diseases.  

The proliferation of unmanned aerial vehicles (UAVs), public, and private satellites, has 

enabled the imaging of almost all locations on earth at high temporal, spectral, and 

spatial resolutions at relatively low cost. The availability of high-resolution multispectral 

aerial imagery provides an opportunity for the continuous monitoring of crop diseases 

and plant health globally at a relatively lower cost than would be incurred by deploying 

the more expensive traditional methods.  
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The development of novel tools for early detection, identification, and mapping of crop 

diseases will reduce the cost, damage, and time taken to monitor and control the 

diseases. Early detection of crop diseases improves productivity by enabling the early 

application of measures that prevent the spreading of the diseases. This is more effective 

than applying curative treatments because diseased plants may develop disease 

symptoms when it is too late for the such treatments to be effective (Fahrentrapp et al., 

2019).  Besides improving productivity, the tools will also enable the deployment of 

efficient management practices to control the diseases. Moreover, early detection of the 

diseases will eliminate the need to use excessive amounts of pesticides and chemicals to 

manage them, thus ensuring that the dangers of contaminating ground water and 

accumulating toxic residues in agricultural products due to excessive usage of pesticides 

and chemicals can be avoided (Dubey & Jalal, 2014; Mohanty et al., 2016).   

Whereas object detection and identification methods have been developed to detect and 

identify objects in traditional images, no documented methods for the automatic 

detection, identification, and mapping of crop diseases using high resolution 

multispectral aerial images of crop fields have been developed so far in sub-Saharan 

Africa. This research uses the deep learning approach to develop and implement a 

framework for the near-real time ingestion of multispectral aerial and satellite imagery 

to detect, identify, monitor, and map crop diseases in agricultural fields at regional 

levels.  

The main purpose of this research was to contribute to the understanding of how 

multispectral aerial imagery can be used to build deep learning models for early 
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detection and identification of crop diseases before their symptoms become visible to 

the naked eye.  The specific objectives of this study were: 

1. To develop a deep learning framework for early detection and continuous 

monitoring of crop diseases. 

2. To investigate the viability of using pre-trained deep learning networks to train 

crop disease classification models and evaluate the trained models’ performance to 

determine the best-suited network for training such models.  

3.  To evaluate the combination of spectral bands (natural and false-color composites) 

that are best suited for training classification models for detecting and identifying 

different crops jointly and severally.  

Deep learning models require the use of large datasets of imagery during training to 

ensure that the model developed can generalize to unseen data. One of the main data 

challenges experienced in undertaking this research was the unavailability of adequate 

labelled aerial imagery to train the deep learning models. To address this challenge, data 

augmentation techniques, which are analogous to synthetic generation of more data 

from the available training data, were used. Another technique that was used to address 

this problem was the implementation of transfer learning (Karpathy, 2017), where pre-

trained deep learning models were repurposed and used to train classification models 

for the studies undertaken in this research.   

Current research on the use of machine learning and imagery to monitor crop health has 

mostly relied on the use of leaf images of crops captured using smartphones and hand-

held digital cameras (Aduwo et al., 2010; Hughes & Salathé, 2015; Mwebaze & 
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Owomugisha, 2016). No known or published research has used whole crop canopy aerial 

imagery to detect and identify crop diseases in sub-Saharan Africa. While the use of leaf 

images is appropriate for the use case where farmers capture images of the diseased 

leaves and pass them to a phone application to diagnose the disease, the use of whole 

canopy images, which are investigated this research, will enable the development of an 

automated and smart-device accessible diagnosis monitoring system for large land areas 

that ingests new aerial images and processes them to detect, identify, and map crops 

and crop diseases at their early stages.  

Whereas the original idea of this research was to use whole canopy aerial images of 

healthy and diseased cassava images, this research was unable to acquire high 

resolution whole canopy cassava images during the duration of the study.  Thus, leaf 

images of apples, corn, grapes, and tomatoes were used instead to demonstrate how the 

workflow proposed in the developed framework could be implemented. However, for 

future implementation of the developed framework, this study suggests that whole 

canopy crop images be used instead of leaf images. 

This research is significant because it has developed a new algorithm for the early 

detection of crop diseases using high resolution multispectral imagery. Previous 

research on crop disease detection has concentrated on the use of imagery captured in 

the visible spectrum. Thus, the machine learning models developed so far can only be 

applied to identify diseases whose symptoms are already visible to the naked eye in the 

red, green, and blue (RGB) visible bands of the spectrum. Although only crop diseases 

images captured in RGB bands were used in this study, it is proposed that the developed 

framework be implemented using composite images derived from different band 
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combinations from all the available bands in the multispectral aerial imagery. One of the 

original goals of this research was to investigate whether a deep learning neural network 

model could be trained to detect and identify crops and crop diseases before they 

became visible to the naked eye by using composite imagery of bands in the visible and 

the invisible parts of the spectrum. However, this novel technique was only used to 

develop crop classification models in this research due to the unavailability of 

multispectral crop diseases imagery that incorporate bands in the invisible parts of the 

spectrum. In this regard, this research is also significant because the early disease 

detection and monitoring method it has developed will facilitate the mapping of crop 

diseases before they can be visually observed, hence enabling the deployment of efficient 

and environment-friendly crop disease management practices. 

The remainder of this dissertation is organized as follows. Chapter 2 presents a 

literature review of the advances made in the use of machine learning methods to 

monitor crop diseases and their limitations; Chapter 3 details the transfer learning 

methodology, deep learning model selection, data acquisition and processing, and the 

proposed data analysis methods; Chapter 4 presents the findings of the various studies 

undertaken in this research; and Chapter 5 offers detailed discussions, conclusions, 

limitations, applications of the research findings, and suggestions for future research.  
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Chapter 2: Literature Review 

 

To diagnose cassava diseases, crop disease experts visit cassava fields and identify the 

diseases by visually observing the leaves for symptoms of the diseases (Mwebaze & 

Owomugisha, 2016). In forest health monitoring, for example, the USDA Forest Service 

conducts an annual aerial survey using aerial observers who sketch maps of their 

observation showing the estimated number and species or genus of damaged trees, and 

the types of damages observed (United States Department of Agriculture, 2017). This 

method of visual identification of plant diseases is subjective and unreliable given that 

even experts do not always agree on their diagnoses. Moreover, the method is slow and 

is highly dependent on the availability of trained experts who may not be available in 

many developing countries. 

Although advances in machine learning have led to an increase in the automation of 

expert tasks in various domains, the application of machine learning in agriculture for 

monitoring crop and plant health is fledgling compared to other domains where the 

technique is widely applied for various computer vision tasks. Despite the limited 

application in agriculture, some research has nevertheless been undertaken to identify 

and classify diseases in cassava and other crops. Most of the research undertaken in this 

area has, however, treated the issue of crop disease detection as a binary classification 

problem, where low-level image features are hand-extracted and used to differentiate 

between healthy and diseased crops. Most of these studies have also used small samples 

of leaf images of healthy and diseased crops and plants that were captured mainly in 

controlled background and lighting conditions. Research on disease detection and 
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identification in cassava and other crops is mainly based on automated image 

recognition through low-level image feature extraction, whereas machine learning 

methods have demonstrated promising results as shown in the studies highlighted 

below. 

In a study aimed at detecting and identifying crop diseases, Aduwo et al. (2010) used 

standard classification methods and low-level image features (color and shape) 

extracted from cassava leaf images in Uganda to develop an automated and accurate 

method for diagnosing Cassava Mosaic Disease (CMD) on cluttered images captured in 

the field using a standard digital camera.  

In a similar study, Mwebaze and Owomugisha (2016) used cassava leaf images captured 

in situ in Uganda using smartphones to develop a smartphone-based diagnostic system 

for detecting and classifying four cassava diseases and five severity levels of the diseases 

(healthy to severely diseased plants). This study, unlike most of the other studies 

discussed here, used a large dataset of images (>7K images) that were captured with a 

smartphone in the field. The application enables farmers to capture cassava leaf images 

with their smartphones and upload them to a back-end remote server. A score 

indicating the disease and the severity level of the uploaded image is then returned to 

the farmer immediately.  Their study showed that using different feature extraction 

methods affected the accuracy of the classifier. 

Researchers have also conducted studies to detect and identify diseases in other crops. 

For example, Gibson et al. (2015) developed an automated and scalable classifier system 

for detecting major wheat diseases in noisy and cluttered field imagery. The system uses 

a high-dimensional texture image descriptor together with a randomized forest 
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approach for primary leaf recognition. Tests of the system using a dataset of standard 

smartphone-captured field imagery of wheat leaves showed that it could accurately 

detect and identify the type of the disease in a leaf image. In another study on wheat,  

Siricharoen et al. (2016) developed a lightweight mobile phone system for monitoring 

non-diseased leaves and five wheat diseases (brown rust, Septoria, yellow rust, powdery 

mildew, and tan spots). The standalone system uses the built-in smartphone capability 

to capture and pre-process the image of the main leaf of wheat for quality and 

consistency. Nine low-level image feature descriptors based on color, texture, and shape 

(including disease shapes) are extracted from the leaf image and used to classify the 

image on the mobile system within seconds after capturing the image, with an accuracy 

of about 88%.  

Other researchers have undertaken studies for monitoring and detection of diseases 

using shallow neural networks. In one such study, Abdullakasim et al. (2011) developed 

an image analysis technique for automated monitoring and detection of brown leaf spot 

(BLS) disease in cassava under field conditions. They trained a binary classifier with a 

fully connected, feed-forward Artificial Neural Network (ANN) with an input of 10 color 

indices (used as color descriptors) using cassava leaf images that were taken with a 

digital camera in Thailand.  They evaluated different network architectures of the ANN, 

which differed depending on the number neurons in the hidden layer. Using this 

technique, the best architectures attained classification accuracies of 79% and 90% for 

diseased and healthy plants, respectively. Though the image-analysis technique 

developed in this study was deemed to be feasible for in-field detection of visible 
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symptoms of BLS, the researchers suggested that it could be improved further by using 

better-illuminated and segmented images. 

Similar studies have also been conducted to identify diseases in fruits.  In one study, 

Dubey and Jalal (2014)  developed and evaluated a machine learning framework that 

uses images to identify fruit diseases. In this method, images of the diseased fruits are 

first segmented using K-Means clustering followed by extraction of color and texture 

features (statistical color and texture descriptors). Finally, a multi-class support vector 

machine (SVM) is used to classify the diseases. The researchers evaluated their 

approach by applying the framework in the identification of three apple diseases, 

namely: apple scab, apple blotch, and apple rot. Their results showed that the 

framework could be used to detect and identify the diseases tested with an accuracy of 

up to 93%. 

The application of machine learning in agriculture can also help farmers employ 

precision agriculture production systems, which enable the application of management 

practices that vary across a field based on differences in in-field conditions (Seelan et al., 

2003). Such management systems increase the productivity and returns of farms by 

enabling farmers to use reduced amounts of resources such as fertilizers, water, 

pesticides, etc. and apply them to only those sections of the field where they are needed.  

Monitoring of differences in crop vigor within fields can be achieved by using high-

resolution multi-spectral imagery. In wheat fields, for example,  Franke and Menz 

(2007) investigated the potential of using high-resolution, multi-spectral remote 

sensing imagery for a time series analysis of crop diseases aimed at detecting differences 

in crop vitality within the fields to enable site-specific application of fungicides based on 
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observed differences. They used three high-resolution remote sensing images to analyze 

the spatial-temporal infection dynamics of a wheat plot at various pathogen-infection 

stages of two wheat diseases, powdery mildew (Blumeria graminis) and leaf rust 

(Puccinia recondita). Using a decision-tree filtering method and the Normalized 

Difference Vegetation Index (NDVI), they were able to accurately classify different areas 

of the plot based on disease severity.   

Unmanned aerial vehicles (UAVs) are increasingly being used as platforms for acquiring 

multispectral aerial imagery for monitoring crop health in precision agriculture 

production systems. Puig et al. (2015), for example, explored the use of a combination of 

unmanned aerial vehicles (UAVs), remote sensing, and machine learning techniques to 

monitor, and assess near real-time crop damage caused by agricultural pests. The 

monitoring enables the application of optimal in-field site-specific treatments that 

reduce crop losses and pest management costs.  They used an orthoimage created from 

high-resolution RGB images of a sorghum crop that was severely damaged by white 

grubs (Coleoptera: Scarabaeidae) collected in Australia using an UAV platform. The 

authors used an unsupervised machine learning approach to classify the crop damage 

into three crop health levels, namely: bare soil with no plants, transition zones, and 

healthy canopy areas. Using Gaussian convolution kernels and K-means clustering, their 

study showed that it was possible to consistently classify the sorghum field into the three 

clusters of crop health, and to create class-membership maps that could be used to 

estimate the area of each crop health level based on the class membership of each 

individual pixel.  
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Training a deep learning model to solve problems for a specific domain requires a large 

amount of data. When such data is not readily available, alternative approaches, e.g., 

transfer learning, are used to address the problem. Using transfer learning, models 

trained on one task can be reused to solve different problems in the same domain or 

similar problems in a different domain. For example,  Ramcharan et al. (2017) applied 

transfer learning to train the GoogleNet Inception v3 deep convolutional neural network 

model (Christian Szegedy, Liu, et al., 2015b) to identify three cassava diseases and two 

pest damages using a dataset of healthy and diseased cassava leaf images taken in the 

field in Tanzania. They also analyzed the performance of three classifiers (SoftMax, 

SVM, and KNN) on the transfer learning model in identifying the presence or absence of 

the diseases in the images. Their results showed that transfer learning approach could 

successfully be used on the pre-trained GoogleNet model (as a featurizer/feature 

extractor) to achieve a high classification accuracy of cassava diseases without requiring 

a large dataset of cassava-leaf images taken in the field. They also observed that 

augmenting the image dataset by cropping the original leaf images into individual 

leaflets improved the detection accuracy. Their analysis also showed that the SVM 

classifier attained higher accuracies in identifying most of the diseases in the study 

compared to the other two classifiers. They concluded that the transfer learning 

approach can be successfully deployed as an accurate, fast, and affordable digital system 

for the in-field detection of plant diseases.  

Deep learning has also been used to identify crops and for crop health monitoring. 

Mohanty et al. (2016) trained a deep convolution neural network to identify 14 different 

crops species and 26 diseases or their absence using a public dataset of images from 
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PlantVillage (Hughes & Salathé, 2015) of diseased and healthy plant leaves that were 

taken under controlled conditions. They used the AlexNet (Krizhevsky et al., 2012) and 

GoogleNet(Christian Szegedy, Liu, et al., 2015a) deep convolutional neural networks 

models and the open-source Caffe deep learning framework (Jia et al., 2014) to train 

their model in two ways: using the two models’ architecture to train their model from 

scratch, and by using the transfer learning approach of reusing already pre-trained 

models of the two networks that had been trained on the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) dataset (Deng et al., 2009). Their best model was able 

to correctly identify crop-disease pairs with an accuracy of 99%. However, the models 

performed poorly on images captured under conditions that were different from the 

ones in the PlantVillage dataset, implying that the training dataset may have overfitted 

the model. According to the researchers, one of the main limitations of practical 

application of their model was the use of up-facing single-leaf images captured on a 

homogeneous background to train the model instead of using images of the diseases as 

they naturally appear on plants.  

Some of these limitations were addressed in this research by, for example, training crop 

classification models using aerial imagery that captured the whole crop canopies as they 

naturally appear rather than capturing isolated images of single leaves.  

2.1 Low-Level Image Descriptors 

Hand-engineered features extracted from images have traditionally been used with 

machine learning approaches for computer vision tasks such as image classification and 

detection of plant diseases. The hand-engineered image features are extracted  using 

methods such as SURF (Bay et al., 2008),   SIFT (Lowe, 2004), and HOG  (Dalal & 
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Triggs, 2005; Schmidhuber, 2015). Examples of other image processing techniques used 

to detect, quantify severity of, and classify plant diseases are documented in a survey by 

Barbedo (2013).  The hand-engineered process of feature extraction and image 

enhancement is complex, computationally expensive, time-consuming, difficult to 

optimize, and requires domain expert knowledge to engineer the best image features 

that differentiate one image class from another. The process also needs to be repeated 

each time there is a considerable change in the problem or the dataset being addressed 

(Mohanty et al., 2016). Furthermore, the quality of the results obtained through this 

approach varies depending on which predefined features are extracted. An example of 

the workflow of this classic approach is shown in Figure 2.1.  

 

Figure 2.1: Classic Machine Learning Classification for Cassava Mosaic Disease (CMD) 

(adapted from Goodfellow et al. 2016) 

 

 

2.2 Neural Networks 

Artificial neural networks (ANN) are inspired by the human brain which comprises a 

network of interconnected neurons. Simple neural networks typically consist of an input 
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layer, one or two hidden layers, and one output layer of neurons. For example, the ANN 

used by (Abdullakasim et al., 2011) to recognize brown leaf spot in cassava has only one 

hidden layer with a variable number of neurons. In this type of a neural network, every 

node in one layer is connected to every node in the next layer as shown in Figure 2.2.  

 

 

Figure 2.2: A simple Neural Network with One Hidden Layer 

 

Models trained on these simple networks usually have only a few layers because 

increasing the number of layers in such a network increases the number of weights that 

must be learned, making it arduous to train the network. This led to the development of 

deep learning. 

 

2.3 Deep Learning 

Advances in machine learning witnessed in recent years can be mainly attributed to the 

use of an approach known as deep learning. Deep learning is a field of machine learning 
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that transforms  the representation of the input data by leveraging the learning obtained 

from sequential layers of increasingly meaningful representation of the data (F Chollet, 

2017). A deep learning network is a type of an artificial neural network composed of an 

input layer, output layer, and many hidden layers of neurons. Thus, deep learning 

derives its name from the sequential layering of data representation and not the depth 

of understanding. The increase in computational power of hardware achieved in recent 

years, combined with the availability of large datasets and the use of robust training 

algorithms, have made it possible to train deep neural networks that outperform the 

earlier networks by orders of magnitude. The deep learning approach has been very 

successful recently, especially in image classification, speech recognition, and natural 

language processing tasks.  

Unlike the traditional approach of manual feature extraction, deep learning approaches 

do not need to be provided with hand-engineered features since they are able to learn 

the features from the large datasets provided during model training. The general 

differences in learning between the two systems are shown in Figure 2.3.  

 

Figure 2.3: Learning Differences Between Classic and Deep Learning Methods 

(Adapted from Goodfellow et al., 2016)  
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Deep learning has particularly been successful in solving computer vision tasks using a 

type of deep learning network called convolutional neural networks (ConvNet or CNN), 

which are described in detail in the following section.  

                

2.4 Convolutional Neural Networks (CNNs) 

Just like ordinary neural networks, convolutional neural networks (CNNs) consist of 

neurons with learnable weights and biases (Karpathy, 2017). Like other neural 

networks, CNNs receive an input of raw data (e.g., image pixels in an image 

classification task) and give an output of class scores at the end of the network. In 

convolutional neural networks, however, each layer has several filters where nodes in 

one layer are only connected to a few nodes in a small region of the next layer. The 

reduction of the number of connections makes it possible to train deeper networks, with 

each layer learning hierarchical concepts of the input data while maintaining the spatial 

cohesion of the input (Collins et al., 2017).  Additionally, unlike ordinary neural 

networks, CNNs assume that the spatial aspect of the input data, such as an image, is  

important (Karpathy, 2017). Each filter detects different features or parts of features (of 

the image) in the first layers of the CNN, but these features are usually combined in the 

deeper layers of the network. A convolution is defined as the element by element 

multiplication of the filter and the input image at each image position, while the output 

of the convolution is known as a feature map.  
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2.4.1 CNN Layers 

A CNN is made of different types of the layers, which are usually stacked together to 

form a full CNN architecture. The layers in a generic CNN are stacked such that the 

input layer is followed by a series of one or more convolutional layers which are followed 

by a pooling layer. The final pooling layer is connected to one or more fully connected 

layers, which are finally connected to a classifier, such as Softmax (Rosebrock, 2017) , 

which classifies the input image into the categories on which the network is trained, and   

outputs the probabilities for each category. The types of CNN layers are described 

below: 

1. Input layer: This network entry layer contains the input image which can be 

represented by the raw pixel values of the image. 

2. Convolutional layer: This layer consists of a set of spatially small learnable filters 

that extend through the depth (channels/bands) of the input volume. During the 

forward pass of the training process, each filter is moved as a sliding window 

across the width and height of the input image and the dot products of the filter’s 

values and the values of the small region of the input they are connected to 

(convolved) at every position are computed. The output of sliding each filter 

across the width and height of the input each image is a 2-dimensional feature 

map that represents the response of each filter at every spatial position. The 

convolutional layer has the following parameters: 

• Number of filters (depth) – Each filter learns to look for a different feature 

in the input  

• Kernel (filter) size –This controls the pixel dimensions of the filter 
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• Stride – This is the number of pixels the filter is moved during each slide 

• Padding – This determines the size of padding (with zeros) that is added 

around the borders of the input image to control the spatial size of the 

output from the layers. 

3. Activation layer: The activation layer applies an activation function such as the 

Rectified Linear Unit (ReLU) without changing the size of the previous layer.  

4. Pooling layer: A pooling layer is used to down-sample the output of the previous 

layer with the goal of reducing the number of operations in the following layers, 

but still passes the representative information from the previous layer. For 

example, in max pooling, the convolutional filter is run over an image and only 

the pixel with the highest value is taken as the output (Karpathy, 2017). 

5. Fully connected layer: This layer computes the class scores for all the classes the 

network has been trained to classify. Each node in this layer is connected to all 

the nodes in the previous layer. Figure 2.4 shows an example of a CNN 

architecture, AlexNet (Krizhevsky et al., 2012), which is composed of a 

convolutional base of five convolutional layers (Conv), followed by three fully 

connected layers (FC) .  

 

Fig 2.4: AlexNet Convolutional Neural Network Architecture 
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(Source: Krizhevsky et al., 2012) 

2.4.2 ImageNet  

The ImageNet project contains a dataset of more than 14 million images that are 

manually labelled and hierarchically organized into 22,000 object categories and 

released as open source content (ImageNet, 2018). The goal of developing and releasing 

the dataset was to promote research and development in computer vision. The 

ImageNet Large Scale Visual Recognition Challenge is based on imagery from this 

dataset. The purpose of the ILSVRC challenge is to train a model to accurately classify 

an input image into one of  1,000 different common-object classes (Geitgey, 2017). A 

subset of the ImageNet dataset containing about 1.2 million images for training, 

100,000 for testing, and 50,000 for validation was released for this challenge.  

The ImageNet challenge has recently become the standard platform for comparing 

computer vision classification algorithms. Since 2012, entries based on Convolutional 

Neural Network models, and other deep learning techniques, have dominated the 

leaderboard of the challenges.  The top-performing researchers and organizations who 

take part in these competitions often release their winning models as open source 

content for reuse by other researchers, who can download and integrate them into their 

own models and datasets. 

2.4.3 CNN Performance 

The performance of convolutional neural networks in image classification, object 

detection, and object identification tasks has improved tremendously in recent years 

(Krizhevsky et al., 2012; Long et al., 2015; Simonyan & Zisserman, 2014; Zeiler & 
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Fergus). As Figure 2.5 shows, the top-5 classification errors attained by models trained 

on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Deng et al., 2009) 

dataset improved from 28.2% in 2010 to 3.5% in 2015.   

 

 

Figure 2.5: Recent Improvements in ImageNet 

Classification Accuracy Using Deep Learning Models 

Source: (Deng et al., 2009) 

Recent research in the diagnosis and identification of plant diseases has taken 

advantage of the advances made in deep learning to detect and classify plant diseases 

from images. Deep convolutional neural networks (DCNN) have, for example, been 

deployed to identify and classify plant diseases using digital images of diseased plants to 

train machine learning models (Mohanty et al., 2016). Though most deep learning 

models require the use of more powerful computers and take more time to train due to 

model complexity, results from such studies have shown an improvement in the 

accuracy of the tasks studied. In a recent study,  Sladojevic et al. (2016) used leaf images 
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to develop a DCNN plant disease recognition model capable of distinguishing 13 

different plant diseases from healthy leaves with an average classification accuracy of 

about 96%.  

 

2.5 Transfer Learning 

Training a deep learning model to solve problems for a specific domain requires a large 

amount of data. It is usually very challenging to obtain the large datasets required to 

train such models (Brownlee, 2017) and costly to hire experts to label such large 

datasets (Pan & Yang, 2010). For example, the ImageNet dataset, a dataset that most 

researchers have used to make the recent advances in image classification, has, as stated 

earlier, more than 14 million images divided into 1000 categories ("Imagenet," 2018). 

Fortunately, models trained on one task can be reused to solve different problems in the 

same domain or similar problems in a different domain. The technique of reusing a 

model that has been pre-trained on a large dataset is known as transfer learning. Studies 

have shown that transfer learning is an effective means of transferring large amounts of 

visual knowledge already learned from the training performed on such large-scale image 

datasets to new image datasets (Mohanty et al., 2016).  

Using this technique, a model that is trained for one task is adapted (repurposed) for 

another related task (Brownlee, 2017), as shown in Figure 2.6 (Pan & Yang, 2010). What 

is learned from one task is thus utilized to improve generalization in another task. The 

transfer of knowledge from one task to another essentially acts as an optimization 

technique that leads to an improved performance in the modeling of the second task.  
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Transfer learning is widely used for deep training because it is computationally 

expensive to train deep learning models from scratch because the training process for 

large datasets can take weeks, even when implemented on powerful hardware 

configurations. Because of the transfer of knowledge, transfer learning has lower 

computational costs since learning does not start from scratch, but instead starts with 

already trained weights rather than the randomly initialized weights of a new base 

model. Furthermore, small-size datasets are not suited for training deep neural network 

architectures (which are known to perform better), thus limiting the performance of 

deep models trained on small datasets to the levels that can be attained using shallower-

network architectures. Transfer learning helps overcome this challenge by enabling, for 

example, the training of an image classifier on a small image dataset using the weights 

obtained in a network that has been trained on a larger image dataset. Transfer learning 

in deep learning, however, is only effective when the features learned in the first task are 

general (not specific to the task) and are also applicable to the second task.  
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Figure 2.6: Differences in Learning Processes 

Between Traditional Machine Learning and Transfer Learning 

Source: (Pan & Yang, 2010) 

 
Two main factors should be considered when choosing the type of transfer learning to 

perform on a new dataset. These factors are the size of the dataset and its similarity to 

the original datasets on which the repurposed models were trained (Karpathy, 2017). 

For small new datasets, the ConvNet should not be fine-tuned to avoid overfitting but 

large datasets can be fine-tuned without the risk of overfitting. The various scenarios for 

new datasets can be summarized as follows (Karpathy, 2017):  

a) A small new dataset that is similar to the pre-trained ConvNet dataset- Due 

to data similarity, the higher-level features in the ConvNet will be relevant to the 

new dataset. The best approach in this case would be to use the pre-trained 

ConvNet as a featurizer and only train a new linear classifier, i.e., freeze all the 

other trainable layers.     
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b) A large new dataset that is similar to the pre-trained ConvNet dataset- In 

this case the best approach would be to fine-tune the new dataset through a pre-

trained ConvNet.  

c) A small new dataset that is different from the pre-trained ConvNet dataset- 

Given that the dataset is small, it would be alright to use the pre-trained ConvNet 

as a featurizer, and only train a linear classifier. However, since the dataset is 

different, the best approach would be to fine-tune the linear classifier from earlier 

activation layers in the network instead of training the classifier from the top of 

the network which contains features that are more data specific.  

d) A large new dataset that is different from the pre-trained ConvNet dataset- 

With a large dataset, a ConvNet can be trained from scratch although in practice 

it is still better to initialize the network with weights from a pre-trained model 

and fine-tune through the whole network. With the large dataset, it is also 

possible to design a new network and train it from scratch.   

The size-similarity matrix and decision map scenarios described above are shown in 

figure 2.7.  
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Figure 2.7: Transfer Learning Data Size-Similarity Matrix and Decision Map 
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Chapter 3: Methodology 

 

The purpose of this chapter is to discuss the development of a deep learning framework 

for the early detection and continuous monitoring of crop diseases and its 

implementation using high-resolution multispectral imagery and the transfer learning 

methodology of deep learning. This approach enabled the use of small datasets to train 

deep learning models. The selection of the best performing pre-trained deep learning 

network for training crop and crop disease models for early detection and continuous 

monitoring of crop diseases is also discussed. 

The applicability and the rationale of using transfer learning for the studies undertaken 

in this research are described in detail in this chapter. The model selection, data 

collection, and data analysis methods are also described in this chapter.  

3.1 Proposed Framework for Crop Disease Monitoring 

Methods used in previous research to train crop and crop disease classification models 

have mostly depended on the use of leaf images taken using hand-held digital cameras 

and smartphones. Even though these types of images are easy to acquire, they are 

inconsistent due to differences in camera angle and image background. The 

development of models using leaf images is appropriate for the use-case where farmers 

will eventually ingest such images of their diseased crops into their smartphones and 

obtain an immediate diagnosis of the identified disease using a smartphone application. 

The approach proposed for this framework is to use high-resolution and multispectral 

whole canopy images of healthy and diseased crops taken from aerial platforms without 
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segmenting them into single-leaf images. The use of whole canopy images enables the 

development of an automated diagnosis system that ingests new images as soon as they 

are acquired (at the temporal resolution of the aerial imagery acquisition) and processes 

them to detect, identify, and monitor crop and crop diseases continuously without 

requiring the intervention of the farmer.  

3.1.1 Spectral Behavior of Leaves and Canopies 

Chlorophyll molecules in plants absorb up to 90% of incident sunlight in the blue and 

red region of the visible spectrum for photosynthesis. The plants, however, reflect most 

of the green light and only a small amount is absorbed in the visible region, hence the 

appearance of green as the color of living plants to a human observer (Campbell & 

Wynne, 2011). Although the reflectance of plant canopies is lower than that observed for 

individual leaves, the relative decrease of the reflectance is considerably lower in the 

infrared region than in the visible region of the spectrum. The spectral characteristics of 

plants may, however, be affected by age, moisture availability, and diseases. Although 

these changes occur in both the visible and the near infrared regions of the spectrum, 

they are more pronounced in the near infrared region, as shown in Figure 3.1. 

Reflectance changes in the near infrared region have been used to map the presence of 

crop diseases and insect infestations (Campbell &. Wynne, 2011) 

Given these differences in the spectral characteristics of healthy and diseased crops and 

plants in the visible and invisible regions of the spectrum, the implementation of this 

framework will enable the use of different reflectance characteristics of crop canopies 

combined with machine learning to discriminate between healthy and diseased plants 

even before the symptoms of the diseases become visually observable.  



29 
 

 

Figure 3.1: Spectral Reflectance from a Living Leaf 

Source: (Campbell & Wynne, 2011) 

 

3.1.2 Early Disease Detection 

For the early detection of the diseases, it is proposed that images captured days or weeks 

before crop diseases become visually observable would be acquired and used to train 

models to detect crop diseases in the early stages. In implementing this framework, a 

combination of different image bands, including bands beyond the visible spectrum that 

are available in multispectral aerial imagery, should be experimented with to determine 

the best band combinations that can be used to train deep learning models that can 

detect crop diseases even before they become visible to the naked eye. This is predicated 

on the assumption that the diseases can be detected before they become visually 

observable because the spectral reflectance of diseased leaves and canopies is known to 

be more pronounced in the invisible part of the spectrum (Campbell & Wynne, 2011). 

Indeed, results from a recent study show that gray mold leaf infection in tomatoes can 
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be detected as early as nine hours after infection (long before visual symptoms appear) 

using near infrared and red edge sensors (Fahrentrapp et al., 2019). The pre-disease 

imagery should be categorized according to the time steps (e.g., number of days) they 

were captured before the diseases became visually observable, as shown in Figure 3.2.  

The figure illustrates how the healthy and diseased crops would appear in natural color 

and possibly in a hypothetical false color composite of bands extracted from an aerial 

image. The first row (RGB View 1) shows images of a healthy crop, while the images in 

the second row (RGB View 2)  also show a healthy crop except the last image (TN) which 

shows an image of a diseased crop as it would appear in natural color (RGB). The third 

row (False Color View) is an example of how the second row would look like in a 

hypothetical false color band combination where a pre-disease class exists. In this view, 

the first three images (T0 to T2) represent the view of the healthy crop, the next three 

images (T3 to T5) represent a pre-disease class as it would appear in the false color, while 

the last image (TN) represents the same diseased crop shown in the second row as it 

would appear in this hypothetical false color view.  

Although only one pre-disease class is shown as an example here, many more classes 

may be identified during model experimentation and training. The trained disease 

classification models should be continuously updated to include any ‘newly-discovered’ 

early stage diseases classes. 
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Figure 3.2: Early Disease Detection: Collect Pre-Disease Training Data Task 

 

Figure 3.3 shows the main components of the proposed framework for early detection 

and continuous monitoring of crop health. The rounded rectangles denote common 

machine learning tasks and the connecting arrows denote the user workflow. The green 

rounded rectangles represent novel tasks for early disease detection developed by this 

study. 
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Figure 3.3: Framework for Early Detection and Continuous Monitoring of Crop Diseases 

 

This framework is intended for use by, for example, regional and national government 

agencies to monitor crop health in large areas. Such agencies are expected to monitor 

continuously the crop health of different crops during the crop-growing season for 

seasonal crops and annually for perennial crops. The agencies should use trained crop 

classification models at the beginning of the growing season to identify and map the 

areas where specific crops are sown, and then deploy trained crop diseases classification 

models to images covering only those areas planted with the identified crops. The 

detailed description of the major components of the framework are as follows. 

Collect Training Data. In order to train the crop and crop disease classification 

models, the user should first collect training data. The data should be curated and 

labeled by domain experts before training crop and crop disease classification models. 
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Train Models. The crop and crop disease classification models should be trained using 

the latest and the best performing deep learning networks and the best band 

combinations extracted from multispectral images as determined through continuous 

experimentations to compare their performances. 

Extract Crop Layers. The trained crop model is used to extract and map crop layers 

from high resolution multispectral aerial imagery to depict areas planted with specific 

crops. These crop areas should be continuously verified and updated to match ground-

truth data. 

Deploy Crop Disease Trained Model. This trained model is deployed on the 

extracted crop layers to predict the presence or absence of crop diseases in aerial 

images. The model should be run each time a new set of aerial imagery is acquired 

during the crop-growing season. 

Detect Crop Disease. The trained model is used to detect the presence of crop 

diseases. 

Take Remedial Action. Remedial action is taken as soon as a disease is detected to 

prevent crop damage and the spread of the disease. The mitigation actions taken should 

be guided by crop disease experts. 

Monitor/Improve Crop and Crop Disease Models. The models’ performance 

should be continuously improved by adding new training data gathered through the 

monitoring of the models’ predictions against the ground truth data. 

Collect Pre-Disease Training Data. Once a crop disease is detected in an area, the 

area’s imagery captured days or weeks prior to the time the disease was detected should 
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be used to train a pre-disease classification model. The pre-disease stage may exist in 

situations where a disease may be present but not visible to the naked eye, which detects 

the red, green, and blue bands (RGB). Since the original crop disease model was trained 

on images with observable diseases, it is important to experiment and test whether some 

diseases can be identified with band combinations other than RGB. An illustration of 

this process is shown in Figure 3.2. The pre-disease training data may be collected in 

time steps (T0 to TN as shown in Figures 3.2 and 3.3), where T0 occurs after the crop 

disease model is deployed and TN occurs just before the disease is detected. The time 

steps for collecting the data may vary from days to weeks based the frequency of 

acquisition of new imagery and on expert knowledge on how specific crop disease 

symptoms manifest themselves in the field. 

Create New Pre-Disease Class/Classes. The number of new pre-disease classes 

should be based on the time steps chosen for collecting pre-disease training data. These 

classes represent the time-periods for early detection of diseases. 

Train Pre-Disease Classification Model/Models. The number of models to train 

should be determined based on the number of pre-disease classes that were created. 

These models should be tested to determine whether the classes can be distinguished 

from the healthy crop class and from each other. The earliest pre-disease image class 

that could be distinguished from the healthy class should then be used as an indicator of 

the possible time to detect a disease before it is visible to the naked eye. 

Re-Train Crop Disease Classification Model to Include New Class/Classes. 

Only those models that are distinct from the healthy class and from each other should be 
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used in the re-training process and hence be incorporated into the future crop-disease 

classification model as new pre-disease class/classes. 

 

3.2 Transfer Learning Using the Keras Python Library  

The transfer learning technique of repurposing pre-trained deep convolutional neural 

networks for custom tasks was used to train classification models in the studies 

described in this chapter. The training of the deep learning networks was implemented 

using the Keras Python deep learning API running on top of the TensorFlow 

computational engine backend. Keras  is a Python-based high-level deep learning 

framework that provides an API to other deep learning frameworks to facilitate the 

building of deep neural networks (François Chollet, 2015). 

The architecture and weights of several pre-trained deep convolutional neural networks, 

some of which were selected from previous winners of the ILSVRC challenge, are 

integrated in the Keras library and new models are continuously added to the API. Most 

of the winning networks of the ILSVRC challenge have been shown to generalize well to 

images from outside the ImageNet dataset. These pre-trained networks can be used for 

custom tasks such as predicting, extracting features, and fine-tuning other imagery 

datasets (François Chollet, 2015).  

3.3 Model Selection 

Five convolutional neural networks, which were pre-trained on the ImageNet dataset 

and made available through the Keras library, were selected for this study. The 
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performances of these models on the task of classifying crop diseases were compared in 

the first study and the best performing network was selected and used in all the other 

studies described in this chapter.  The following is a brief description of the five selected 

networks.  

3.3.1 VGG16 and VGG19  

The VGG network, which took the second position in the 2014 ILSVRC competition, was 

developed by (Simonyan & Zisserman, 2014). The VGG network consists of 3x3 

convolutional filters placed on top of each other and increasing in depth from 64 to 512. 

The two VGG networks (VGG16 and VGG19) have very similar architectures that only 

differ in the number of weight layers, where the VGG16 network has 16 while the VGG19 

network has 19. Maximum pooling layers of size 2x2 are used to reduce the volume of 

the input image through the depth of the network. Each of the final two fully connected 

layers of the network has 4,096 nodes and the last one is finally connected to a Softmax 

classifier, which outputs the probabilities of each class label. Due to the depth of the two 

VGG networks and their many connected nodes, the models are relatively big in terms of 

disk size (533MB for VGG16 and 574MB for VGG19) making it slow to train and deploy. 

A visualization of the VGG16 network is shown in Figure 3.4. 
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Figure 3.4: Visualization of VGG Architecture 

Source: Frossard (2016) 

3.3.2  Inception V3   

The Inception v3 model, which was developed by (Christian Szegedy, Vanhoucke, et al., 

2015) as an upgrade of GoogleNet (C Szegedy et al., 2104) is trained to classify images 

into one of 1,000 classes using data from the 2012 ImageNet  ILSVRC challenge.  The 

Inception module computes 1×1, 3×3, and 5×5 convolutions within each network 

module and stacks the output of these filters along the channel (band) dimension, and 

then feeds them to the next layer of the network, thereby acting as a multi-layer feature. 

Although Inception v3 comprises 48 layers, it is designed for improved performance as 

well as to ease scaling up. For example, the computation cost of implementing the model 

is only 2.5 times higher than that of GoogleNet, which has a depth of 22 layers. The size 

of the model is 96MB.The architecture of the network is shown in Figure 3.5 

https://github.com/tensorflow/models/tree/master/inception


38 
 

 

Figure 3.5: Original Inception Module as used in GoogleNet 

                                               Source: (Christian Szegedy, Liu, et al., 2015b) 

 

3.3.3 ResNet50 

The ResNet (residual network) architecture was introduced by He et al. (2016) and it 

won the 2015 ILSVRC challenge. The network is made up of micro-architecture building 

block modules (residue learning) that are made of a combination of convolutional and 

pooling layers. This network has demonstrated that very deep networks can be easily 

trained using residue modules. The ResNet50 model in the Keras library has 50 weight 

layers and because it uses global average pooling instead of fully connected layers, the 

size of the model is small (102 Mb) compared to that of VGG16 and VGG19 even though 

ResNet50 is much deeper than the VGG networks. The architecture of the network is 

shown in Figure 3.6. 
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Figure 3.6: Residual Learning Building Block 

Source: He et al. (2016) 

3.3.4 Xception 

The Xception network, which was proposed by Chollet (2016), the developer of the 

Keras Python API, modifies the Inception architecture by replacing the standard 

inception modules with separable convolutions along the network depth. The size of the 

model is 91MB. The architecture of the network is shown in Figure 3.7. 
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Figure 3.7: The Xception Architecture. 

Source: Chollet (2016) 

3.3.5 Summary of Model Selection 

These five pre-trained deep learning networks were used to train crop disease 

classification models in the first study described in the following section. Model 

performance was compared based on several metrics, as described in the data analysis 

section later in this chapter, and the winning network was selected to train models for 

all the other studies conducted in this dissertation. 

The following is a description of the methods and procedures used to implement the 

developed deep learning framework. 
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3.4 Transfer Learning Workflow in Azure 

All the model trainings discussed in the following sections were conducted in a Geo 

Artificial Intelligence Virtual Machine (GeoAI VM) provisioned in the Microsoft Azure 

Cloud Computing Platform. The GeoAI VM was pre-packaged with all the necessary 

data science programming and ArcGIS Pro software for spatial analysis tools. Figure 3.8 

shows a representation of the transfer learning-model training workflow in Azure.  

 

Figure 3.8: Transfer Learning Workflow in Azure 

 

3.5 Comparing the Performance of Pre-Trained Deep Learning 
Models in Classifying Crop Diseases 

The objective of this study was to train crop disease classification models using the five 

selected pre-trained deep learning networks and to compare their performance to 

determine which of the pre-trained networks was best-suited for training disease 

classification models for each of the three crops selected for this study (apples, grapes, 
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and tomatoes) both individually and jointly. The best performing pre-trained model was 

then used in the other studies described later in this chapter. 

The crop diseases imagery dataset used for this study was curated by PlantVillage 

("Plantvillage," 2017)  and was downloaded from the CrowdAI data challenges platform 

("Plantvillage Disease Classification Challenge," 2016) which hosted a “PlantVillage 

Disease Classification Challenge” in 2016, whose goal was to use the plant disease 

images to develop algorithms for diagnosing plant diseases. The dataset contains images 

of crop leaves that were taken from leaves plucked from different experimental fields at 

research stations in several Land Grant Universities in the USA. The leaves were placed 

on gray or black paper backgrounds and positioned outside (Hughes & Salathé, 2015) 

where their images were taken under full light using a point and shoot camera (Sony 

DSC - Rx100/13 20.2 megapixels) set on automatic mode. Additional images of the 

leaves were taken under a range of outside conditions (sunny to cloudy) to mimic the 

conditions under which crop growers would normally take their images using a 

smartphone. The images are released under the Creative Commons license ("Creative 

Commons," 2018) which requires that algorithms developed using the data be freely 

shared.  

 

This study used only a subset of the PlantVillage imagery dataset to train models for 

classifying diseases of apples, grapes, and tomatoes. This subset dataset contained 

13,860 RGB color images of healthy and diseased leaves of the crops each measuring 

256 X 256 pixels. A sample of the images is shown in Figure 3.9. Although the pre-

trained deep learning networks selected for this study were originally trained using 
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images with different width and height dimensions, they can also take in input images of 

different dimensions when used for custom classification tasks ("Keras Applications," 

2017). Thus, in this study, the input shapes of the networks were specified as 256 X 256 

X 3 during model initialization to match the shape and color depth of the images from 

the PlantVillage dataset. In order to match the conditions under which the models 

would be deployed in production, the raw unsegmented images from the dataset were 

used to train the models. 

 

 

Figure 3.9: Sample Images of Healthy and Diseased Leaves from PlantVillage 

To train the networks, the dataset for each crop was first split into training and testing 

splits of 80% and 20%, respectively. The training split was then split further into 80% 

for training and 20% for validation. Thus, the final dataset splits were 60%: 20%: 20% 
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for training, validation, and testing, respectively for each crop. The summary of the total 

number of healthy and diseased leaf images and the number of training images per 

health/disease class for each of the three selected crops is shown in Table 3.1. 

Table 3.1: Crop Health/Disease Classes Labels and Training Data Summary 

 

 

As Table 3.1 shows, the health and disease classes were not equally represented in the 

dataset as some classes had more images than other classes. This class imbalance can 

lead to trained models that are biased toward overfitting into the classes that have more 

training data. For the studies carried out in this dissertation, the problem of class 

imbalance, and hence model bias, was addressed by computing class weights and 

apportioning proportionately more weight to the underrepresented classes during 

model training.   
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The fine-tuning method of transfer learning was selected to train the pre-trained 

networks in this study because the data available was considered small and dissimilar to 

the ImageNet dataset on which the pre-trained networks were trained. This is because 

the ImageNet dataset falls into the Quadrant 3 of the size-similarity matrix scenarios 

described in Section 2.5 and as shown in Figure 2.7 in Chapter 2. The fine-tuning 

process implemented for this study is described in the following section. 

3.5.1 The Fine-Tuning Process 

The fine-tuning of the pre-trained networks was implemented according to the following 

steps. 

1) Remove the fully connected (dense) layers at the top of the pre-trained network 

(classifier) and load the convolutional base of the network. 

2) Replace the removed network’s top with a new custom classifier of randomly 

initialized fully connected layers. 

3) Freeze the convolutional base of the network. Freezing ensures that the weights of the 

convolutional base of the pre-trained network do not change during the fine-tuning 

process. 

4) Train the newly added custom classifier layers using end-to-end training with a data 

augmentation method, where the images are augmented and passed through the 

whole network during training. 

 5) Unfreeze some top layers of the convolutional base of the network and perform a 

second end-to-end training pass until a satisfactory classification model is achieved. 
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This step ensures that the unfrozen convolutional base layers will now be jointly 

trained with the fully connected layers that were initially trained in step four. 

6) Save the trained model. In this final step, the trained model is saved and can then be 

used for inference to classify crop disease on new, previously unseen, imagery. 

The added custom classifier (step 2) for this study consisted of a dense layer with 256 

nodes, a rectified linear unit (ReLU) activation layer, and a dropout rate of 0.5. The 

specifications for this added classifier were a slight modification of the one proposed by 

(F Chollet, 2017).  The number of output classes was set to the number of disease and 

health classes for the crops in the dataset used in this study.  

Since the custom classifier layers added on top of the network are randomly initialized, 

it is crucial to freeze the convolutional base before training the custom classifier to 

prevent the propagation of large weights through the network, as this would destroy the 

data patterns that the base of the pre-trained network had previously learned. Thus, the 

purpose of freezing the convolutional base of the pre-trained network was to ensure that 

the weights that the layers in the base had previously learned were not updated during 

the process of fine-tuning the custom classifier added on top of the base.  

To ensure a fair comparison of the performances of the five pre-trained networks, the 

number of layers that were unfrozen in the convolution base of each pre-trained 

network were chosen such that they contained approximately the same total number of 

parameters. This was done to guarantee that an almost equal number of parameters 

were fine-tuned in each network. However, due to the differences in the pre-trained 

networks’ architecture, it was not possible to match layers in the different networks such 

that the number of parameters available for fine tuning in each network was exactly 
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equal. Therefore, the number of the unfrozen layers in each network was selected in 

such a manner as to minimize the differences in the number of parameters that were 

fine-tuned in each network. A summary of the unfrozen layers and the number of 

parameters that were fine-tuned in convolutional layers of each network is shown in 

Table 3.2.  

Table 3.2: Fine-Tuned Layers, Type and Number of Fine-Tuned Parameters for each 

Pre-Trained Network 

 

* Layer names based on the convention used by the Keras Python API 

 

 To train the disease classification models for this study, all six steps in the fine-tuning 

process described above were implemented. The training of the custom classifier that 

was added in step four was done for only five epochs (number of training iterations) 

with a high learning rate of 2e-5 and Adam optimizer to allow the newly added, fully 

connected, layers to “warm up” by learning patterns that had been previously learned by 

the convolutional base layers of the pre-trained deep learning network. The other steps 

in the procedure were then continued after the “warm up” training. This “warm up” 

training of the added layers was essential because the top layers of the convolutional 

base (i.e., the layers that were unfrozen in step 5) can only be fine-tuned when the 
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classifier on top of them has had some training (i.e., not randomly initialized). 

Otherwise the patterns that the layers had previously learned would be destroyed by the 

large error signal that would be propagated through the network by the un-trained 

classifier during the second training pass in step 5 (F Chollet, 2017).  

During this second training pass of the fine-tuning process, each network was trained 

for 15 epochs using a learning rate of 1e-5, which was lower than the learning rate that 

was used in step four. It was necessary to use a lower learning rate in this step to limit 

the size of the modifications made to the previously-learned weights of the layers that 

were being fine-tuned since large updates to those previously-learned representations 

would destroy them (F Chollet, 2017). Figure 3.10 represents the process of fine-tuning 

the pre-trained networks undertaken in this study using the VGG16 network as an 

example.  
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Figure 3.10: Fine-Tuning a Pre-Trained VGG16 Network 

Adapted from: (F Chollet, 2017). 

 

It is advisable to fine-tune only the top convolutional layers since these are the layers 

that encode features of the custom dataset that are more specialized, whereas the lower 

layers of the network encode features that are more generic. Moreover, not many layers 

of the pre-trained networks should be fine-tuned because fine-tuning more layers is 
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computationally costly and it also increases the risk of overfitting because it means more 

parameters would be trained with the small custom dataset (F Chollet, 2017).  

To further prevent the risk of overfitting during model training, considering that the 

datasets obtained for these studies were small, Keras data augmentation techniques 

were used to randomly transform the original training data on-the-fly during model 

training. Because of these random transformations, the network “sees” different 

variations of the original data at every epoch during model training. This type of data 

augmentation is analogous to generating additional training data to ensure that the 

network does not “see” the same images over and over, to the extent that it captures 

even spurious patterns of the training data but fails to generalize to unseen data,  thus 

leading to less accurate predictions (F Chollet, 2017). In this study, data augmentation 

was implemented by applying a range of the following random geometric 

transformations to the input images: rotation, shear, zoom, horizontal shift, width, and 

height shift. The Keras Image Data generator method was used to make these 

transformations yield batches of images from disk storage, eliminating the need for 

holding the entire dataset in memory, which is desirable, especially if the training 

computer has limited memory.  

 

3.6 Comparing the Performance of Crop Classification Models 
Trained on Different Three-Band Combination Images 

The purpose of this study was to train crop classification models using different three-

band combination training images extracted from four-band imagery and to compare 

their performances to determine which band-combination model was best suited for: 
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(i) Classifying each single crop (apples, corn, grapes, and tomatoes) separately, and 

(ii) Classifying three crops (corn, grapes, and tomatoes), and four crops (apples, corn, 

grapes, and tomatoes) together. 

The following is a description of the sources and the preparation processes for the data 

used in this study.  

3.6.1 Cropland Data Layer (CDL) 

The Cropland Data Layer (CDL) is a geo-referenced, raster layer that provides a crop-

specific land cover map for the continental USA. The data layer is created annually using 

moderate-resolution satellite imagery and is verified against the ground-truth through 

an extensive agricultural network of data collection agencies. The CDL data is hosted by 

the United States Department of Agriculture’s (USDA) National Agricultural Statistics 

Service at CropScape (United States Department of Agriculture, 2018).      

The CDLs by State (2007 – 2017) for California were downloaded from the USDA 

Geospatial Data Gateway ("Geospatial Data Gateway," 2018). The raster layers 

contained pixels for all the crops cultivated in the state for the years 2007 to 2017, but 

only the layers for years 2014 and 2016 were used in this study. The raster masks for 

each crop of interest in this study (apples, corn, grapes, and tomatoes) were extracted 

from the downloaded layer. Each crop’s raster layer was then visually examined and 

areas that had large acreages under each crop were randomly selected as Areas of 

Interest (AOI) for each crop, as shown in Figure 3.11. The 2016 CDL layers were used for 

corn, grapes, and tomatoes, while for apples, the 2014 layer was used because the 2016 

CDL layer for apples showed only very few areas under the crop during that year. 
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The selected Apples AOI is in Kern county; the corn AOI is in San Joaquin, Contra 

Costa, Solano, and Sacramento counties; the grapes AOI in San Joaquin county; and the 

tomatoes AOI is in Fresno county. 

 

 

 

Figure 3.11: California Cropland Data Layers (CDLs) Areas of Interest (AOI) 

 



53 
 

 3.6.2 National Agriculture Imagery Program (NAIP) Imagery 

The National Agriculture Imagery Program’s (NAIP) “leaf-on” aerial imagery is collected 

annually in the continental United States during the crop-growing season. Currently the 

highest spatial resolution of California NAIP imagery is 0.6 meters, while the highest 

spectral resolution is 4 bands.  These bands are Red, Green, Blue, and Near Infrared 

(RGBI). An individual NAIP image tile covers 3.75 x 3.75 minutes with an additional 

300-meter buffer on the sides (Farm Service Agent, 2018), which is approximately 7.5 

km X 6.5 km ground area. The selection of the NAIP imagery to download was guided by 

AOI as determined by the CDL layer. 

Data for training the classification models to compare the performance of the 3-band 

combination classification models were extracted from the NAIP imagery in ArcGIS 

Desktop 10.6.1 and ArcGIS Pro 2.4.1 according to the procedure in Section 3.6.3. All the 

NAIP images were downloaded from the ("California Natural Resources Agency," 2019). 

3.6.3 Procedure for Extracting Training Data for Each Crop  

1. Use the CDL layer to select and define an Area of Interest for each crop.  

2. Download the four-band NAIP imagery for the AOI and the year of interest (years 

2014 for apples, and 2016 for the other 3 crops NAIP images were downloaded for 

this study). 

3.  Create a four-band mosaic raster layer covering the AOI from the downloaded NAIP 

imagery.  
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4. Extract the four unique three-band color combinations (RGB, IGB, RGI, and RIB 

raster layers) from the four-band NAIP mosaic raster layer. 

5. Use the CDL for the crop and the extracted RGB mosaic layer to map and create a 

training samples layer representing polygons of randomly selected areas on the 

ground that are covered by the crop (the RGB layer represents the natural color layer 

and thus was used as a guide to identify the crop on the ground in the NAIP images). 

6. Use the training samples layer as a clip layer to extract training samples from each of 

the four three-band layers. 

7. Convert the training samples into training data (image chips) and extract the data for 

deep learning.  

8. Repeat the above process for the other crops in the study. 

Figure 3.12 shows the four-band mosaic layer that was created from NAIP images 

covering the selected AOI for grapes in this study, while the process of extracting grapes 

training samples using the procedure described above is shown in Figure 3.13. 
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Figure 3.12: Four-Band NAIP Mosaic for Grapes AOI 

 

The following are the four unique three-band color-combination raster layers that were 

extracted from the four-band NAIP mosaic raster layer in step 4 above. 

(i) IGB- Near Infrared, Green, and Blue 

(ii) RGB- Red, Green, and Blue 

(iii) RGI- Red, Green, and Near Infrared 

(iv) RIB- Red, Near Infrared, and Blue 
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Figure 3.13: Extracting Grapes Training Samples from Four 3-Band Raster Layers 

 

3.6.4 Training Single and Multi-Crop Classification Models  

To help make random selections of areas on the ground that were covered by a 

particular crop, the extracted RGB layer (natural color layer) and the CDL layer for that 

crop were zoomed-in and toggled on/off to reveal and match the ground-truth areas that 

were covered by the crop to the image in the RGB layer. Thus, the CDL layer was used in 

this process as the reference map, that is, the ground-truth to show the exact areas 

covered by the crop. To create a training samples map for each crop, only areas covered 

with mature canopies of the crop were selected and mapped on the RGB layer; areas 

with newly planted or pruned crops were avoided. 
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The images extracted from each of the 3-band raster layers were converted into smaller 

image chips with a resolution of 256 X 256 pixels to meet the shape requirements of the 

inputs to the pre-trained deep learning networks. After the chips for the RGB raster 

layer were extracted, the above procedure was repeated using the same training samples 

map for the crop to extract and convert the images for the other three-band raster 

layers. Since the chips were created using the same training samples map for each crop, 

the image for an area covered by any one chip was thus extracted four times with four 

different band combinations.  

After the chips were extracted, they were examined manually and those that contained 

extraneous material such as roads, pathways and fences were removed from the chip’s 

dataset. The extracted training data was then split into train, validation, and testing sets 

using the same ratios as those described in Section 3.4. A summary of the extracted data 

is shown in Table 3.3. 

  



58 
 

Table 3.3: Three-Band Combinations Classes Training Data Summary 

 

Note: Red (R), Green (G), Blue (B), and Near Infrared (I) 

Based on the number of training images per class, this dataset is also considered small. 

However, the data was deemed similar to the ImageNet dataset, which includes images 

of plant, flora, and plant-life categories. Thus, the dataset for this study lies in Quadrant 

4 of the size similarity matrix decision map shown in Figure 2.7 in Chapter 2. 

Accordingly, a fine-tuning method known as feature extraction with data augmentation 

(Chollet, 2017), was applied. Using this end-to-end training method, augmented data 

was passed through the entire pre-trained network (VGG16) but only the added top fully 

connected layers were fine-tuned. To achieve acceptable model accuracies, training of 

the added custom classifier was conducted for 10 epochs, instead of the 5 epochs in step 
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4 of the fine-tuning process in the previous study as described in Section 3.5.1. However, 

the same optimizer and learning rate (Adam optimizer, learning rate of 2e-5) were used. 

After the training in this stage was completed, the next step (5) of the fine-tuning 

process was skipped because only the custom classifier requires training in this fine-

tuning method. The trained model was then saved.  

Once all the training samples were extracted and converted, crop classification models 

were trained as follows: 

(i) Single crop classifiers – image chips from each of the four three-band 

combinations were treated as separate classes and used to train four single 

crop classification models, one for each of the four crops— apples, corn, 

grapes, and tomatoes. For example, the classification model for apples 

consisted of the four classes: Apples IGB, Apples RGB, Apples RGI, and 

Apples RIB.  

(ii) Multi-crop classifiers – image chips from each of the corresponding three-

band color combination for each crop were treated as separate classes and 

used to train multi-crop classification models for three crops (corn, grapes, 

and tomatoes), and four crops (apples, corn, grapes, and tomatoes). For 

example, the three classes for one of the four multi-crop classification models 

(for three crops) were: Corn RGB, Grapes RGB, and Tomatoes RGB as shown 

in Figure 3.14. This was repeated for the other remaining three-band 

combinations (IGB, RGI, and RIB) and for the classification models for four 

crops. 
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The performances of the separate classifiers were then compared to determine which 

three-band combination was best suited for classifying single and multiple crops, 

respectively. 

 

Figure 3.14: Extracted Training Data for the Three Crops RGB Classification Model 

 

The best-performing three-band combination model for the three crops multi-crop 

classifier (corn, grapes, and tomatoes) was then used to classify previously unseen NAIP 

images as described in the following section. 

 

3.7 Using the Best-Performing Multi-Crop Classification Model to 
Classify NAIP Imagery  

Using the 2016 California CDL layers for corn, grapes, and tomatoes, a separate AOI 

located in San Joaquin and Stanislaus counties (All 3 Crops AOI) containing the three 

crops (corn, grapes, and tomatoes) was selected. The NAIP images for this AOI were 

then downloaded. Next, the best-performing band combination layer for the three- 
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crops classification models, as determined from the study described in Section 3.6.4, 

was extracted from the four-band NAIP images by following steps 2 to 4 of the training 

data extraction procedure as described in Section 3.6.3. The model trained using this 

band combination was then used for inference to classify previously unseen NAIP 

images chips extracted from the area represented by the 3 crops AOI. 

Although the 3 crops AOI contains all the three crops (and other crops and land cover 

features that the multi-crop classification model was not trained on), the model 

performance was nevertheless evaluated based on how well it classified the three crops 

it was trained on by comparing the model’s classification with the ground truth as 

represented by the NAIP natural-color images from the All 3 crops AOI.  

The AOIs for the 3 crops (separately and combined) are shown in Figure 3.15, while a 

more detailed view of the combined 3 crops AOI is shown in Figure 3.16, where the CDL 

layers for the three crops are drawn over the NAIP mosaic layer. The selected corn AOI 

is in San Joaquin, Contra Costa, Solano, and Sacramento counties; the grapes AOI in 

San Joaquin county; and the tomatoes AOI is in Fresno county. 
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Figure 3.15: Map of Areas of Interest (AOIs) for Separate and Combined Crops 

 

 

Figure 3.16:  All 3 Crops AOI CDL layers over the NAIP Mosaic Layer 
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3.8 Data Analysis 

The performances of the networks were compared based on the performance metrics 

listed below. The models that displayed well-fit characteristics during training and 

achieved the highest scores in Precision, Recall, Accuracy, and F1 scores on the test 

datasets, were considered as the best performing. 

1) Precision – Measures the correctly classified images as a fraction of all the images 

predicted to belong to a specific class and is expressed mathematically as:  

Precision = True Positives / (True Positives + False Positives).  

2) Recall – Measures the correctly classified images as a fraction of all the images 

that belong to a specific class and is expressed mathematically as:  

Recall = True Positives/ (True Positives + False Negatives).     

3) Classification Accuracy – Measures the correctly classified images as a fraction of 

the total number of predictions made and is expressed mathematically as:  

Classification Accuracy = Number of Correct Predictions / Total Number of 

Predictions. 

4) F1 Score – Measures the harmonic mean of Precision and Recall and it can be 

used as a single score to summarize the model performance. The score is 

expressed mathematically as: 

F1 Score = (2 * Precision * Recall) / (Precision + Recall) 

5) Confusion Matrix – Confusion matrices show the number (or percentage for 

normalized confusion matrices) of correctly and incorrectly predicted labels for 

each class and they are used to show whether a classifier has a bias toward certain 

classes.  
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6) Training and Validation Curves – The training and validation accuracy and loss 

curves are used to diagnose whether trained models are under-fit, over-fit, or 

well-fit.  

Both precision (Type I error) and recall (Type II error) were considered equally 

important for all the models. As such, models with high precision values were desirable 

to minimize the misclassification of healthy crops as diseased (and thus would 

recommend the need to apply mitigation solutions to healthy crops) in the case of crop 

disease models, and to minimize misclassification of bands and crops in the case of crop 

classification models. Similarly, models with high recall values were desirable to 

minimize the misclassification of diseased crops as healthy (and thus fail to recommend 

the need to apply mitigation solutions to diseased crops) in the case of crop disease 

models, and to minimize misclassification of bands and crops in the case of crop 

classification models. 

3.9 Summary 

The purpose of this chapter was to outline the research methodology and methods used 

to investigate the research objectives. A framework for the continuous monitoring of 

crop diseases was developed and implemented using the transfer learning methodology 

of deep learning to train crop and crop diseases classification models. A description of 

methods and procedures for deep learning model selection, data acquisition, data pre-

processing, and models training gave the detailed specifics of how the studies in this 

dissertation were conducted. The goal of the following chapter is to present the results 



65 
 

of these studies and to demonstrate how the methodology and procedures described in 

this chapter were followed. 
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Chapter 4: Data Analysis and Results 

 

This chapter presents the results of the studies that were implemented following the 

proposed deep learning framework and using transfer learning methods to train deep 

learning classification models. The studies were conducted to answer the following 

research questions. 

1: Which of the five selected pre-trained deep learning models is best suited for training 

crop diseases classification models? 

2. Which three-band combination extracted from four-band multispectral images is best 

suited for classifying single crops? 

3. Which three-band combination extracted from four-band multispectral images is best 

suited for classifying multiple crops?  

4. How well does the best three-band combination multi-crop classifier generalize in 

classifying new imagery?  

For all the studies described here, the models were trained on a GPU powered by an 

NVIDIA Tesla K80 card and Intel Xeon E5-2690 v3 (Haswell) processor with 12 CPU 

cores and 24 vCPUs running on a Windows Virtual Machine (VM) instance in the 

Microsoft Azure cloud platform. The training was done with the Keras Python API 

running on top of a TensorFlow backend. All the models were trained using Adam 

Optimizer, a categorical cross-entropy loss function, and batch sizes of 30. The 

performance of the models was evaluated based on the performance metrics described 

in Section 3.7.  
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All the Cropland data and NAIP imagery processing were done using ArcGIS 10.6.1 

Desktop and ArcGIS Pro 2.4.1.  

Figure 4.1 shows a screen shot of the Jupyter Notebook Python code used to split the 

original datasets into training, validation, and testing datasets, while Figure 4.2 shows 

the screenshot for the code used for data augmentation and model training. The 

complete Jupyter Notebooks containing markup annotations and the computer code 

used to train the models for all the studies undertaken in this research can be accessed 

through the following GitHub link: https://github.com/kimanim/DissCode/. 

 

 

https://github.com/kimanim/DissCode/
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Figure 4.1: Screenshot Jupyter Notebook Python Code for Splitting Datasets 

(Inset shows the resultant directory structure after apples dataset split) 
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Figure 4.2: Screenshot Jupyter Notebook Python Code for Data Augmentation and 

                     Model Training 
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4.1 Comparing the Performance of Pre-Trained Deep Learning 
Networks   

 The fine-tuning method of transfer learning was used to compare performance of five 

pre-trained networks (VGG16, VGG19, ResNet50, InceptionV3, and Xception) in 

classifying crop diseases of apples, grapes, and tomatoes using the PlantVillage dataset. 

Using this method, the convolutional base of each pre-trained network was frozen, and a 

custom classifier of fully connected layers was added on top of the frozen base. The 

custom classifier was trained for 5 epochs with a learning rate of 2e-5. Some layers of 

the convolutional base were then unfrozen and fine-tuned together with the added 

classifier for 15 epochs with a lower learning rate of 1e-5. 

Based on the performance metrics results shown in Table 4.1, the models trained on the 

VGG16 network outperformed all the other models in classifying the diseases and health 

classes of all the three crops separately and jointly except in the testing accuracy for 

grapes where the VGG19 model achieved a testing accuracy (measured using the test 

dataset) of 99.11% compared to 98.98% for VGG16. However, the two models were tied 

on the other performance metrics where they each achieved values of 0.99 for each of 

the metrics. The worst performing network was ResNet50, which attained the lowest 

scores for all the metrics across all the trained models. 
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Table 4.1: Models Training Results 

 

 

Figure 4.3 shows the training/validation accuracies and losses curves against the 

number of training epochs (iterations) during model training for the VGG16 models, 

while Figure 4.4 shows the curves for the ResNet50 models, the best and worst 

performing pre-trained networks, respectively. As the curves show, the training and 

validation accuracies for all the VGG16 models increased smoothly, and stabilized at the 

end of model training, indicating that the models were a good fit and could generalize 

well to unseen data. Also, the training and validation losses for all the VGG16 models 

show a continuous decrease that eventually stabilizes toward the end of model training 

with a minimal gap between the two final loss values. This indicates that the model 
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learning went smoothly and that the model was a good fit with no underfitting or 

overfitting. 

 However, the training and validation accuracy curves for the ResNet50 models show a 

continuous increase in the training accuracy and a decrease in the validation accuracy. 

This indicates that the models were overfitting and could not generalize to unseen data. 

Additionally, the training losses for all the ResNet50 models continuously decreased 

during training while the validation losses increased slightly or remained generally flat. 

All these were indicators that all the ResNet50 models were overfitting by learning the 

training data too well, but they could not generalize to unseen data. 

The training and validation accuracies and losses curves for VGG19, Inception, and 

Xception models are shown in Figures 4.5, 4.6, and 4.7, respectively.  The curves for 

VGG19 models show a good-fit model’s characteristics like those of the VGG16 models, 

while those for Inception and Xception models depict an over-fit model’s characteristics 

similar to those of the ResNet50 models.  

 

Figure 4.3: Training and Validation Accuracies and Losses for VGG16 Models 
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Figure 4.4: Training and Validation Accuracies and Losses for ResNet50 Models 

 

 

Figure 4.5: Training and Validation Accuracies and Losses for VGG19 Models 
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Figure 4.6: Training and Validation Accuracies and Losses for Inception Models 

 

 

Figure 4.7: Training and Validation Accuracies and Losses for Xception Models 

 

A more detailed view of the models’ performance can be obtained by examining the 

confusion matrices that show, for example, the classes which were difficult for the 

trained models to confuse or distinguish from other classes. The rows in a confusion 

matrix correspond to the true labels (classes), while the columns show the predicted 
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labels. The diagonal cells show the percentage of the samples the trained model 

predicted correctly (percentage of samples in which true and predicted labels are equal).  

The confusion matrices for the VGG16 single-crop disease classification models are 

shown in Figure 4.8, while the matrix for VGG16 all crops disease classification model is 

shown in Figure 4.9. Figure 4.8 shows that the VGG16 model correctly identified (100%) 

all the healthy and black rot images in apples, and all the black rot and leaf blight 

images in grapes. The model was, however, only able to identify correctly 86% of all 

early blight leaf images in tomatoes and it tended to confuse that disease with late blight 

in 12% of the cases.  

 

Figure 4.8: Confusion Matrices for VGG16 Single Crop Disease Classification Models 

(See Table 3.1 for the full names of the labels) 

 

The VGG16 all crops disease classification model confusion matrix (Figure 4.9) shows 

only slight variations in classification accuracy from those attained by the single crop 

classification models. The figure also shows that this model (unlike some of the other 

all-crops models) did not confuse diseases across crops, with all the misclassifications 
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occurring only among diseases of the same crop as shown by the overlain colored 

rectangles.  

 

Figure 4.9: Confusion Matrix for VGG16 All Crops Disease Classification Model 

  

Some of the other network models (VGG19, Inception, and Xception) confused diseases 

across crops, while the ResNet50 model classifications were not established due to poor 

training performance as shown in the confusion matrices for the all the other networks’ 

single and all-crops disease classification models (see Appendix).  
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Figure 4.10 shows some examples of correct and incorrect predictions and the 

confidence levels of predictions made by the VGG16 single crop model on the test 

dataset.  

 

Figure 4. 10: VGG16 Model Predictions 

                                                                     Correct (Left) and Incorrect (Right) 

 

Overall, the VGG16 pre-trained network was selected as the best performing network for 

training separate and combined crop-disease classification models. Although this does 

not necessarily mean that the pre-trained VGG16 network would also perform better 

than the other networks in training models for other tasks, the network was, 
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nevertheless, selected for use in the all the other transfer learning studies undertaken in 

this research. Those results are presented in the following sections. 

4.2 Comparing the Performance of Different Band Combination 
Crop Classification Models  

The crop classification models in this study were trained using the four unique three-

band color combinations training images extracted from four-band NAIP imagery. Their 

performances were then compared to determine the band combination model was best 

suited for classifying single and multiple crops. The models in this study were trained 

using the VGG16 pre-trained network, the best-performing network in the training of 

crop-disease classification models as shown in the results presented in Section 4.1. 

Given that the NAIP images used in this study have four bands, and the images in the 

ImageNet dataset that were used to train the pre-trained networks have only three 

bands (RGB), it was necessary to investigate whether better-performing crop 

classification models could be achieved by fine-tuning the pre-trained network using 

images of other band combinations. The results would then be used to recommend the 

best band combinations for future training of crop classification models.   

4.2.1 Using Three-Band Combination Models to Classify Single Crops  

Table 4.2 shows the performance results of the three-band combination single crop 

classification models. The results show that RGI and RIB band combination models 

were the best performing for apples, grapes, and tomatoes with precision, recall, and F1 

scores of between 0.97 and 0.98 for apples, and 1.00 scores for grapes and tomatoes. All 
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band combination models performed equally well for corn (precision, recall, and F1 

scores of 1.00). 

The diagonal values of the confusion matrices (percentage of samples predicted 

correctly) in Figure 4.11 show the best band combination for apples was RGI (98%) and 

RGI & RIB (100%) for grapes, but the band combination did not matter for corn and 

tomatoes where all the different band combination models predicted the two crops with 

an accuracy of 100%, except for the IGB band combination model in tomatoes which 

achieved a prediction accuracy of 99%. The IGB model for grapes had the worst 

performance with a prediction accuracy of 89% followed by the IGB model for apples, 

which attained a prediction accuracy of 90%.  

Table 4.2: Training Results for Three-Band Combination Single Crop Models 
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Figure 4.11: Confusion Matrices for Single Crop Classification Models 

Using Different Band Combinations 

 

4.2.2 Using Three-Band Combination Models to Classify Three Crops 

The performance results of the three-band combination models for classifying three 

crops (corn, grapes, and tomatoes) are shown in Table 4.3. The results show that the 

models trained on the RGB and RIB band combinations performed better than the other 

band combinations achieving 98.48% accuracy, 0.99 average precision, and 0.98 for 

average recall and F1 for the RGB; and 98.48% accuracy, 0.98 average precision, and 

0.98 for average recall and F1 scores for the RIB model.  



81 
 

The confusion matrices shown in Figure 4.12 show that the most accurate models for 

corn were RGB, RGI, and RIB (98%); RGB and RIB for grapes (98%); RGB and RGI 

(100%) for tomatoes. The RGB and RIB models confused corn and grapes with tomatoes 

at (2%) or less, while the RGI model confused grapes with tomatoes in 4% of the cases. 

The worst performing model was the IGB model, which confused corn with tomatoes at 

7% and grapes with tomatoes in 4% of the cases. 

 

Table: 4.3: Training Results for Three-Band Combination Three Crops Models 
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Figure 4.12: Confusion Matrices for Three Crops Classification Models 

                                       Using Different Band Combinations 

 

The confusion matrices show that the best models for corn were RGB and RGI attaining 

a classification accuracy of 98%. For grapes, the best models were RGB and RIB with a 

classification accuracy of 98%, while RGB and RGI were the best-performing models for 

tomatoes with a classification accuracy of 100%. Overall, the RGB band combination 

model was selected as the best performing for classifying three crops (corn, grapes, and 

tomatoes). 
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4.2.3 Using Three-Band Combination Models to Classify Four Crops 

The model training results for classifying four crops (apples, corn, grapes, and 

tomatoes) are shown in Table 4.4. The results show that the model trained on the RIB 

band combination performed better than the other band combinations attaining 98.57% 

accuracy, and 0.99 for average precision, average recall, and F1, although it was slightly 

less accurate than the RGB model which achieved a classification accuracy of 99.0%. 

The IGB model attained the lowest classification accuracy of 97.62%.  

The confusion matrices shown in Figure 4.13 show that the most accurate model for 

apples was RIB (99%); RGB for corn (99%); RGB and RIB for grapes (98%); and RGB, 

RGI and RIB (100%) for tomatoes. The RIB had only a few challenges distinguishing 

between the different crops where it only confused apples with grapes, corn with apples 

and tomatoes, and grapes with tomatoes with an incorrect prediction in 1% of the cases.  

 

Table: 4.4: Training Results for Three-Band Combination Four Crops Models  
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Figure 4.13: Confusion Matrices for Four Crops Classification Models 

                                        Using Different Band Combinations 

 

The confusion matrices (Figure 4.13) also show that the RIB model mostly performed 

better for each crop (considered separately) than the other models, with its lowest 

classification accuracy of 98% for corn and grapes, and a 100% classification accuracy 

for tomatoes.  

4.4  Making Inferences from Unseen NAIP Imagery 

The RGB model, which was selected as the best performing three crops classifier in 

Section 4.2.2 was used to classify previously unseen NAIP imagery extracted from a 

study area containing three crops (corn, grapes, and tomatoes). A total of 856 inference 
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image chips were extracted and their labels were generated using the CDL layers as the 

ground-truth for the inference imagery area of interest. The RGB model achieved an 

inference accuracy of 98.55%. 

Figure 4.14 shows some examples of correct and incorrect predictions, and the 

confidence levels of predictions made by the RGB three crops classifier on the inference 

dataset.  

 

Figure 4.14:  RGB Three Crops Model Predictions  

                                                           Correct (Left) and Incorrect (Right) 

 

4.5 Summary 

This chapter presented the detailed findings of implementing the proposed deep 

learning framework for early detection and continuous monitoring of crop diseases. The 

use of the transfer learning approach in deep learning to train deep learning models 
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with limited data was demonstrated, with the results showing that the VGG16 pre-

trained network performed better in classifying crop diseases than the other pre-trained 

networks examined in this study. The results also show that using other bands outside 

the visible spectrum improved the single and multiple crop classification accuracies of 

deep learning models, with models incorporating the Near Infrared band generally 

performing better than models trained with the traditional visible spectrum band 

combination of RGB. Overall, the best performing models for single and multiple crops 

were those trained on RGB and RIB band combinations, and the worst were those 

trained on the IGB band combination. 
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Chapter 5: Discussion and Conclusions 

 

Advances made in deep learning have made it possible to train highly accurate image 

classification models using large datasets. Although recent studies have shown that deep 

models are more accurate and can be trained efficiently (Huang et al., 2016), they are 

costly and difficult to train because of challenges such as vanishing gradients and 

internal covariate shifts which emerge as the model depth increases (Nielsen, 2015). 

Some of the strategies that have been proposed for dealing with such challenges include 

batch normalization (Christian Szegedy et al., 2016),  skip connections (He et al., 2016), 

and optimization methods (Le et al., 2011). 

Training deep learning models is also challenging because they require large amounts of 

training data, which may be unavailable and/or costly to acquire. This challenge can be 

addressed by using a transfer learning strategy (Pan & Yang, 2010), which entails the re-

use of deep learning models which have been pre-trained on large datasets for a specific 

task (for example, classify plants), to transfer the knowledge gained by the models 

during the pre-training process to other tasks (for example, classify crop diseases) where 

large amounts of data may be unavailable. By using transfer learning, accurate crop 

disease classification models can be trained and deployed quickly thus enabling the 

monitoring and early application of mitigating factors to control crop diseases and avert 

food crises at regional and national levels.  

Various image processing methods such as low-level feature extraction (Aduwo et al. 

(2010), traditional machine learning (Dubey & Jalal, 2011), shallow neural networks 
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(Abdullakasim et al., 2011), and deep learning (Mohanty et al., 2016) have been applied 

over time to identify and classify crop diseases, with each new method achieving better 

performance than the previous ones. Deep learning crop-disease classification models 

have particularly attained high classification accuracies in recent studies (Mohanty et 

al., 2016). The application of transfer learning to train deep neural networks for crop 

disease classification has also been tried recently, and studies show that the strategy 

improves classification accuracy and reduces model training time (Ramcharan et al. 

(2017); (Too et al., 2019). 

The first study in this dissertation extends previous research on transfer learning by 

fine-tuning only a few layers of five state-of-the-art deep learning pre-trained networks 

(VGG16, VGG19, ResNet50, Inception, and Xception) instead of fine-tuning the entire 

network, as in previous studies, and comparing their performance in classifying crop 

diseases.  

The results show that the VGG16 pre-trained deep learning convolution neural network 

outperformed the other four pre-trained networks that were investigated in the study. 

This result was unexpected given that the VGG16 network was the shallowest of all the 

networks used in the study whereas studies have shown that deeper networks (He et al., 

2016) with sparser architectures and fewer parameters perform better than shallower 

networks (Christian Szegedy, Liu, et al., 2015b). In another study comparing the 

performance of pre-trained networks using the entire PlantVillage plant diseases 

dataset, Too et al., (2019) show that ResNet and Densenet (with 152 and 121 layers, 

respectively) performed better than VGG16, which has 16 layers. In their study, 

however, they implemented the transfer learning strategy of fine-tuning the entire 
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network, instead of fine-tuning only a few layers in the convolutional bases of the 

networks as was done in this study.  

One possibility why the deeper networks did not perform as expected in this study may 

be attributed to the decision to fine-tune an almost equal number of parameters in each 

pre-trained network. Perhaps a better strategy would be to fine-tune an equal 

percentage of the t0tal number of trainable parameters in each network’s convolutional 

base. The number of layers to fine-tune in each network would then be chosen based on 

this percentage instead of fine-tuning an equal number of parameters in each network. 

The percentages of trainable parameters fine-tuned in this study were approximately 

48.1%, 35.4%, 33.5%, 33.0%, and 35.2% for VGG16, VGG19, ResNet50, Inception, and 

Xception networks, respectively (as shown in Table 5.1). Thus, it is probable that the 

deeper networks did not perform well because a lower ratio of their trainable 

parameters were fine-tuned compared to those of the VGG16 model, implying this study 

was biased toward the VGG16 network and that the deeper networks were 

disadvantaged because their “depth benefits” were not exploited in full. This could have 

resulted from the fact that the number of layers selected for fine-tuning in the deeper 

networks were too shallow such that many deeper layers that had already learned 

specialized features of the original dataset (that the networks were pre-trained on) were 

left intact, hence preventing the networks from learning the full features of the new 

custom dataset during the fine-tuning process (F Chollet, 2017). 

Although the results of this study seem to be inconsistent with other studies cited above 

that show that deeper networks perform better than shallower networks, an apples-to-

apples comparison of these studies may be inappropriate because of the differences in 
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the fine-tuning strategies employed. Morever, even the performance of a given network 

may differ depending on when the comparative studies were conducted because the 

network developers ocassionally update and modify the original architectures of their 

pre-trained netwoks. 

 

Table 5.1: Fine-Tuned Parameters as a Percentage of Total Parameters 

 

Even though the VGG16 network performed better than the other pre-trained networks, 

it still made some crop-disease classification errors. These errors may be attributed to 

the visual similarities of the diseases. For example, while the VGG16 model correctly 

identified (100%) all the healthy and black rot images in apples, and all the black rot and 

leaf blight images in grapes (as shown by the VGG16 model confusion matrices in Figure 
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4. 8), it was only able to correctly identify 86% of all early blight leaf images in tomatoes. 

Furthermore, the model tended to confuse the disease with late blight disease in 12% of 

the cases. A visual examination of a random sample of leaf images of the two diseases 

(Figure 5.1) shows that the diseases appear very similar to the naked eye implying that 

an untrained observer may have difficulties distinguishing between the two diseases. 

Besides confusing the model, it can also be argued that this similarity may result in 

labelling errors, where leaf images of one disease may be incorrectly labelled as 

belonging to the other disease category thereby confusing the model during training.  

 

Figure 5.1: Visual Similarities of Early and Late Blight Tomato Diseases 
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Another reason that may have contributed to the confusion of the diseases is the fact 

that the images were not categorized according to disease severity levels. It may well be 

possible for one disease at a given severity level to be visually more similar to another 

disease than to the same disease at another severity level leading to classification errors.  

The findings of this study show that pre-trained convolutional networks can be 

repurposed by fine-tuning a few layers in their convolutional bases through transfer 

learning, to successfully train new image classification models with limited custom data 

that may be different from the original dataset on which the networks were trained. This 

is significant because it enables the fast training of models for new tasks and facilitates 

the quick deployment of such models for urgent needs, such as detection and mitigation 

of crop diseases.  

The results of the studies comparing the use of different band combinations to train 

crop classification models show that using the Near Infrared band improved the 

performance of single and multiple crop classification models, with models 

incorporating the band generally performing better than models trained with the 

traditional visible spectrum band combination of RGB. These results were expected 

given that plant canopies have brighter reflectance in the near infrared region than in 

the visible region of the spectrum (Campbell & Wynne, 2011). 

Whereas the predominant band combination of imagery used to train crop and plant 

classification models is RGB (Red, Green, and Blue), which is the natural color 

combination and the most common (and least expensive) of the available image-

capturing sensors, these results show that crop classification models can be improved by 

training them with images combining bands in the visible and the near infrared parts of 
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the spectrum. Models trained on the RIB (Red, Near Infrared, and Blue) band 

combination were found to be the best for classifying single and multiple crops, while 

those trained on the IGB (Near Infrared, Green, and Blue) band combination had the 

worst performance.    

These results imply that there is no need to train stand-alone single crop classifiers 

using the best band combination for each individual crop since one multiple crop 

classifier trained on the RIB band combination can achieve equally good classification 

results for all the crops. Thus, for the crops investigated in this study (apples, corn, 

grapes, and tomatoes), it would be less expensive and faster to train and deploy only one 

multiple crop classifier trained on the RIB band combination instead of extracting the 

best band combination for each crop.  

The development of crop and crop disease classification models using leaf images in 

previous studies by Ramcharan et al. (2017) and Mwebaze and Owomugisha (2016) was 

deemed appropriate for the use-case where crop health model training uses easy-to-

acquire leaf images and diseases are monitored by individual farmers using hand-held 

devices, such as cellphones, at the farm level. The approach taken by this research is to 

train the models using whole canopy aerial images and to monitor the diseases by 

ingesting imagery acquired through satellites and other aerial platforms for fast wide-

area diagnosis of crop health. This workflow will enable the development of an 

automated diagnosis system that ingests new images as soon as they are acquired (at the 

temporal resolution of the aerial imagery acquisition) and processes them to detect, 

identify, and monitor the diseases continuously without requiring the intervention of 

the farmer. 
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5.1 Conclusions   

The objectives of this research were to develop methods and workflows for using 

multispectral aerial imagery and different band combinations extracted from the 

multispectral imagery to build deep learning models for early detection and continuous 

monitoring of crop diseases. This research developed a framework for building the 

models and investigated how it could be implemented for the following specific 

purposes: to train crop disease classification models using transfer learning and natural 

color images, propose how false color images can be used to train deep learning models 

for early crop disease detection and classification, and to determine the best-suited 

spectral band combination for training deep learning models for detecting and 

classifying single and multiple crops jointly and separately using transfer learning.  

5.1.1 Crop Disease Classification  

While the initially proposed goal of this study was to determine the best band 

combinations for training deep learning models for early-detection and classification of 

cassava diseases, this goal could not be achieved due to unavailability of the required 

data. However, the overarching goal of the study was nevertheless achieved by 

developing methods and workflows using available data for other crops as a proxy for 

the originally proposed study as summarized below.  

In this study, five pre-trained deep learning convolutional neural networks were fine-

tuned and evaluated on their performance in classifying crop diseases using data from 
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PlantVillage. The networks evaluated were VGG16, VGG19, ResNet50, Inception, and 

Xception. The results of this study show that the model trained on the VGG16 network 

(the shallowest of the networks evaluated) was the best-performing for crop disease 

classification attaining scores as high as 99.01% for testing accuracy and 0.99 for 

average precision and recall in the apple diseases classification model. The VGG16 

models exhibited smooth-learning characteristics during training and displayed good fit 

model characteristics with no signs of underfitting or overfitting. These results show 

that transfer learning can be used with limited custom data to train successfully crop-

disease classification models, thus obviating the need of going through the costly and 

time-consuming process of acquiring a large corpus of custom data that is required to 

train deep learning models from scratch.  

5.1.2 Band Combination Classification Models   

Different crop classification models were trained using the four unique three-band 

combination color images extracted from four-band (Red, Green, Blue, and Near 

Infrared) imagery from the National Agriculture Imagery Program (NAIP). The trained 

models were compared to determine which three-band color combination was best 

suited for classifying single and multiple crops.  

The results show that models trained with RGI and RIB band combination images were 

the best performing classifiers for single crops (classification accuracy >=98%), while 

RGB and RIB models achieved the best performance in classifying three crops 

(classification accuracy = 98.48%). The RIB model achieved the best overall 

performance among the four-crop classification models (classification accuracy 

=98.57%). The IGB models had the worst performance in all the cases. The overall 
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results indicate that RIB is the best band combination for training single and multiple 

classification models for apples, corn, grapes, and tomatoes.  

The results of these studies show that the transfer learning strategy can also be applied 

to train highly accurate models for classifying single and multiple crops using three- 

color band combination imagery extracted from multispectral aerial imagery. 

As high spatial and spectral resolution aerial images become less expensive due to the 

proliferation of aerial imagery providers, this researcher anticipates that the proposed 

approach of using full canopy crop imagery (as opposed to using leaf images) to train 

crop disease models will become affordable and scalable enabling regional and state 

governments or other private providers in underserved regions to monitor crop health 

over large geographic regions and provide information to farmers as a service. This 

scalability will enable the detection of crop diseases over wider regions, which is an 

improvement of the currently available solutions that are geared toward enabling 

farmers to monitor crop diseases at the individual farm level. Moreover, monitoring 

crop disease over large geographic areas is a better approach for controlling crop 

diseases because it enables the application of mitigation factors over wide areas instead 

of putting the onus on single farmers to control crop diseases at individual farm 

holdings as that may not stop the diseases from spreading to other farms. 

5.2 Significance of Research Findings  

 
Prior research has shown that transfer learning can be used to fine-tune whole pre-

trained deep learning models for classifying crop diseases using natural color imagery. 

This research contributes to the previous research through the development of a deep 
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learning framework and workflows for determining the best band combinations of 

multispectral imagery for training crop and crop-disease classification models through 

transfer learning, i.e., by fine-tuning only a few layers of the pre-trained deep learning 

models. Further, this research introduces a novel method of using false color band 

combinations to detect and classify crop diseases before they become visible to the 

naked eye. This early detection of “invisible” crop diseases is expected to facilitate the 

application of crop-disease prevention measures at an early stage, and thus reduce the 

cost of treating diseases and increase crop yields. The framework and the workflow 

developed in this research can also be adapted and scaled for monitoring other 

situations such as, water stress in crops, crop yields, forest health, illegal logging, water 

levels, etc.  

5.3 Limitations of Research 

One of the initially proposed goals of this research was to determine the best band 

combinations (extracted from high resolution multispectral canopy imagery) for 

training classification models for early detection of cassava diseases in sub-Saharan 

Africa, where the crop is a major source of carbohydrates and income for smallholder 

farmers, especially women. This goal was not achieved due to unavailability of the 

required multispectral aerial cassava canopy imagery and the unavailability of crop 

disease calendars showing the dates when diseases were detected in the intended areas 

of study. Even low-resolution images could not be acquired because this research could 

not establish the dates when the crops in the chosen areas of study were affected by the 

diseases. Thus, this study was limited to using the available natural color leaf images of 
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other crops to test the viability of using transfer learning to train crop-disease 

classification models.  

Similarly, only four-band multispectral images (Red, Blue, Green, and Near Infrared) 

were available for the training of crop classification models. Due to this limitation of the 

number of spectral bands available, the studies were limited to only the investigation of 

the performance of three-band combination models. 

Lastly, the crop-classification training data were extracted from field crops with varying 

ages and development stages. Since crop reflectance varies with age and stage of 

development, it was not possible to determine how this variability affected the 

performance of the trained crop classification models.    

5.4 Recommendations for Future Research 

As multispectral imagery becomes readily available, this researcher recommends that 

the following further studies be undertaken as a follow-up of the findings of this 

research and to bridge some of the gaps identified herein. 

 

1. Using multispectral canopy imagery (rather than leaf images) to determine the 

best band combinations (three bands or more) for training models to classify 

crops and plants; and for early detection of crop and plant diseases.  

2. Train multi-label models for classifying crops and their age or stages of growth. 

These studies should be geared toward improving the crop classification models 

to enable the monitoring of other critical crop-age dependent variables such as 

moisture stress.  
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3. Determine the best band combinations (three bands or more) for training single- 

and multi-label classification models for crop disease stages prior to the visual 

appearance of symptoms, and crop-disease severity levels. 
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Figure A1: Confusion Matrices for VGG19 Single Crop Disease Classification Models 

  

 



108 
 

 

Figure A2: Confusion Matrix for VGG19 All Crops Disease Classification Model 

 

 

Figure A3: Confusion Matrices for ResNet50 Single Crop Disease Classification Models 
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Figure A4: Confusion Matrix for ResNet50 All Crops Disease Classification Model 

 

 

Figure A5: Confusion Matrices for Inception Single Crop Disease Classification Models 
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Figure A6: Confusion Matrix for Inception All Crops Disease Classification Model 
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Figure A7: Confusion Matrices for Xception Single Crop Disease Classification Models 
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Figure A8: Confusion Matrix for Xception All Crops Disease Classification Model 
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