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Abstract

One of the main goals of theoretical computer science is to prove limits on
how efficiently certain Boolean functions can be computed. The study of the
algebraic complexity of polynomials provides an indirect approach to explor-
ing these questions, which may prove fruitful since much is known about
polynomials already from the field of algebra. This paper explores current
research in establishing lower bounds on invariant rings and polynomial
families. It explains the construction by Garg et al. (2019) of an invariant
ring for whom a succinct encoding would imply NP ⊆ P/poly. It then states
the partial derivative complexity theorem of Baur and Strassen (1983) and its
implications for elementary symmetric function complexity, and proposes
potential implications for other classes of functions.
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Chapter 1

Introduction

Computers are called “computers,” so onemight ask, what do they compute?
And of course, there are many possible answers, but essentially all of them
are encapsulated by one answer: Boolean functions. The semiconductors
in a computer allow arbitrary information to be stored in the form of bits
(usually conceived as “0s and 1s,” though they could just as well be labelled
“cats and hamsters”). Any manipulation of this information is then a process
of converting bits into other bits, and any transformation of bits into bits
is a Boolean function. There are many questions about computation one
might want answered, including questions with important applications to
human existence, like “Can a computer simulate the structure and behavior
of enzymes efficiently enough to automate the process of curing diseases?”,
and all such questions are fundamentally questions about Boolean functions.

Given the central importance of Boolean functions, it may surprise you to
learn that this thesis is not actually about Boolean functions at all. It is about
polynomials. You are probably now sadly shaking your head and saying,
“How typical for a callow young mathematician to waste valuable time
mucking about with polynomials, when Boolean functions are sitting right
there, practically begging to be studied.” But wait! I can explain; hear me
out. Studying polynomials may in fact be more beneficial for understanding
Boolean functions than directly studying Boolean functions themselves. The
argument for this very counterintuitive statement is essentially two facts:
(1) polynomials and Boolean functions are very similar entities, and (2) it
is easier to prove facts about polynomials than Boolean functions. Before I
drag you with me down into the depths of the polynomial world, I’d like to
convince you of these two facts.
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x y f(x,y)
false false true
false true false
true false true
true true true

a. A truth table for f . b. A circuit computing f .

x y p(x,y)
0 0 1
0 1 0
1 0 1
1 1 1

c. p as a function overZ2. d. An arithmetic circuit computing p.

Figure 1.1 Two ways to express the Boolean function f (x , y) � x ∧ y ∨ ¬y,
and their equivalents for the polynomial p(x , y) � x y + y + 1.

1.1 Why polynomials?

First off, what have polynomials to do with Boolean functions? The two are
on their surface very different. A Boolean function is something that takes
parameters that are either true or false, and returns either true or false, such
as f (x , y) � (x and y) or (not y), which using standard logical symbols we
would represent as f (x , y) � x ∧ y ∨¬y. Boolean functions are fully defined
by their outputs, whichwe can represent by a table of values, as in Figure 1.1a.
Two functionswith the same table of values are considered the same function.
For example, the Boolean function f ′(x , y) � ¬(((¬x)∨ (¬y))∧ y) is precisely
the same function as f because it shares the same table of values, even
though we have defined it with a different formula.

Contrast this with polynomials, such as p(x , y) � x y + y + 1. p is not
defined by its outputs, but rather by the coefficients on its terms. Considered
over Z2 (the integers mod 2), p specifies a function from Z2 ×Z2 to Z2, as
shown in Figure 1.1c. But even though p′(x , y) � x2 y + y2 + 1 specifies the
same function over Z2 (since z2 � z for all z ∈ Z2), p′ and p are still distinct
polynomials. This is because polynomials are defined specifically by their
coefficients on each monomial: p has a coefficient of 1 on the monomials
x y � x1 y1, y � x0 y1, and 1 � x0 y0, and a coefficient of 0 on every other
monomial. p′ is a distinct polynomial from p since its coefficient on x y
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is 0 instead of 1, and its coefficient on x2 y is 1 instead of 0. However,
p′′(x , y) � 1 + y(1 + x) is the same polynomial as p, since expanding out the
expression for p′′ using the distributive property gives p′′(x , y) � 1+ y + x y,
which has precisely the same coefficient set as p. So the important takeaway
here is: Polynomials are coefficient sets and not functions, although they do
define functions.

Comparing Figures 1.1a and 1.1c, you may notice that a relabelling of
true to 1 and false to 0 renders the two tables identical. Stated another way,
as long as true is called 1 and false is called 0, the function specified by
the polynomial p over Z2 is precisely the Boolean function f . And this is
the key connection between Boolean functions and polynomials (as well
as the reason that the “cats/hamsters” labelling for bits did not catch on)
– every Boolean function is specified by a polynomial over Z2. This is a
consequence of the fact that all Boolean functions are computed by Boolean
circuits consisting of AND, OR, and NOT gates, such as the one for f in
Figure 1.1b. Since all of three of these gates have corresponding polynomials
overZ2 (NOT(x) � 1+x, AND(x , y) � x y, OR(x , y) � x+ y+x y), all circuits
built from them can be converted into arithmetic circuits with addition and
multiplication gates that compute polynomials, such as the one computing
p in Figure 1.1d. So every Boolean function is really “a polynomial at heart.”

This then leads us to the second fact, that polynomials are easier to study
than Boolean functions. More precisely, it is at least as difficult to prove that
a Boolean function is hard to compute, as to prove that a polynomial is hard
to compute. To see why, suppose a complexity theorist spends a long time
proving that you can’t compute a certain kind of Boolean function with a
circuit smaller than a certain size – a circuit lower bound on those Boolean
functions. Then they have also proven an arithmetic circuit lower bound on
the polynomials corresponding to those Boolean functions, because if one
could compute the polynomials efficiently, one could easily compute the
Boolean functions by just plugging values into the polynomials. So studying
Boolean functions is like lifting double weight – any lower bound results
have to hold for both Boolean functions and polynomials.

On the other hand, the reverse does not hold. That is, if you can prove
arithmetic circuit lower bounds on a family of polynomials, then that doesn’t
necessarily imply Boolean circuit lower bounds, because there is no way
to translate Boolean functions back into polynomials. For example, the
polynomial p′(x , y) � x2 y + y2 + 1 corresponds to the Boolean function
f (x , y) � x ∧ y ∨ ¬y. But if you could compute f extremely efficiently, then
this wouldn’t help you compute p′ since there is no way to translate f back
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into p′. There are many other polynomials that correspond to f , such as
p(x , y) � x y + y + 1. When we consider a polynomial as a function, we lose
information about which coefficients were associatedwithwhichmonomials,
and that information can’t always be recovered from the function alone. This
means that it might be very hard to compute a polynomial even if its Boolean
function is easy to compute. So in studying polynomials, it may be possible
to prove lower bounds that one couldn’t have found equivalents of in the
Boolean realm.

Now, youmaybe thinking, what is then the point of studyingpolynomials
if polynomial lower bounds don’t directly imply Boolean function lower
bounds? Aren’t Boolean functions what we really care about? And this is a
reasonable question. But the direct study of Boolean function lower bounds
is extremely difficult and very few concrete results have been found after
decades of study. Polynomial results may not directly imply Boolean results,
but they may be a stepping stone on the way, and they may inspire new
strategies of analysis. Besides which, there is an entire field of mathematics
called “algebra” which predates computer science by centuries, and is
full to the brim of results about polynomials. This provides a wealth of
knowledge about themwhichmaymake it easier to understand their inherent
complexity.

This thesis is concerned with using tools available from algebra to
understand the inherent complexity of polynomials. We are looking for
provable limits on how efficiently we can compute algebraic objects such
as families of polynomials. We will focus on two types of algebraic objects:
invariant rings and symmetric polynomials. We will first discuss conditional
results that show that there exist invariant rings which cannot be efficiently
represented, assuming commonly believed conjectures in complexity theory
hold. We will then discuss unconditional results that show explicit lower
bounds on certain families of symmetric polynomials.

1.2 Invariant rings

We will define invariant rings in more detail in Chapter 2, but informally,
they are sets of polynomials which are unchanged by a particular collection
of transformations, called a group action. For example, one transformation in
a group action might be to transform polynomials in the variables x, y, z by
replacing x with y, y with 2z, and z with 1

2 x. This would turn a polynomial
into another polynomial, but certain polynomials, like f (x , y , z) � x yz,
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would be unchanged. The set of all polynomials unchanged by a group
action is called an invariant ring. So you can think of invariant rings as being
polynomials that are defined by some kind of inherent symmetry.

An invariant ring is called a ring because this is the algebraic name for a
set of objects in which the objects can be added or multiplied and the result
will still be in the set (along with some other rules that enforce “expected
behavior” of the operations). Invariant rings usually contain infinitely many
polynomials, which may put some doubt in your mind that it makes sense
to talk about them as computable objects. And, indeed, a computer cannot
possibly hold infinitely many polynomials in memory. However, it was
proved by David Hilbert that for a large class of “well-behaved” group
actions, their invariant rings will have a finite set of generators (Hilbert
(1893)). This means that one could write down a finite list of polynomials
such that any polynomial in the invariant ring could be found by adding and
multiplying the polynomials on the list in some way. This provides some
hope that, even though the ring may be infinite, one could state precisely
what the invariant ring is, without requiring infinite space.

To quantify the complexity of an invariant ring, we want to know how
efficiently the list of generators can be expressed. This is often formalized as
the size of the optimal encoding, where an encoding is an arithmetic circuit
whose set of possible outputs forms a generating set for the invariant ring.
If we want to compute a given invariant ring, we might hope for a small
encoding. However, work by Garg et al. (2019) gives an explicit invariant
ring for whom a brief (polynomial-size) encoding would imply an unlikely
result in complexity theory (NP ⊆ P/poly). This then is an invariant ring
which likely has a high level of “inherent complexity,” since it probably
cannot be efficiently expressed. We show the construction of this invariant
ring and prove its implications in Chapter 3.

1.3 Symmetric polynomials

The symmetric group on n elements, Sn , is the algebraic structure containing
all possible permutations (or “reorderings”) of those elements. Sn has a
natural group action on n-variate polynomials, in which a permutation in
Sn permutes the variables of the polynomial. A symmetric polynomial is
any polynomial in the invariant ring of this action. Some natural symmetric
polynomials we might think of would include the sum of all the variables
and the product of all the variables. In fact, these are the 1st and n-th
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elementary symmetric polynomials, where the d-th symmetric polynomial is
the sum of all possible products of d distinct variables. It can be shown that
the elementary symmetric polynomials are a generating set for the full ring
of symmetric polynomials.

Elementary symmetric polynomials have a special place in the current
landscape of algebraic complexity theory, since they are some of the only
polynomials for which nontrivial lower bounds have been shown. It was
shown by Baur and Strassen (1983) that for d ≤ n

2 , the d-th n-variate
elementary symmetric polynomial requires an arithmetic circuit size of at
least Ω(n log d). We will discuss precisely what this means and how it is
shown in Chapter 4.

The proof is based on the interesting result that the circuit complexity
of the partial derivatives of a function is directly related to its own circuit
complexity. It is possible that this strategy may generalize, and that other
polynomial lower bounds can be obtained by analyzing the partial derivatives
of function. We explore this possibility in Chapter 5.

This thesis is intended as an introduction to the study of algebraic lower
bounds, to make the big questions and recent results in this area accessible
to a more general mathematical audience. I hope that it will help you, the
reader, understand and appreciate this field, and perhaps even inspire your
own inquiries. Let’s get into it!



Chapter 2

Background

The goal of this chapter is to formally define concepts like “arithmetic
circuits,” “invariant rings,” and “succinct encodings.” To give a clear overall
picture of the field of algebraic complexity theory, we will also discuss one of
its biggest open questions – the question of whether VP is equal to VNP. This
is the algebraic analog of the more famous P vs. NP question in “standard”
or language-based complexity theory, so to motivate our discussion, we will
begin with some background in language complexity. We will then see how
algebraic complexity is defined in analogy with language complexity, and
finally introduce the concept of invariant rings. The rest of the paper will not
directly involve the VP vs. VNP question, so readers who are for some reason
not interested in the context of the overall field of algebraic complexity may
wish to skim lightly over section 2.2.

2.1 Language complexity

First, a brief summary of “standard” (non-algebraic) complexity theory. This
concerns the complexity of languages, which are sets of finite-length binary
strings. For example, one such language would be the set of all possible
binary strings, and another would be the empty set. For a slightly more
interesting example, consider the language L1alt of all strings consisting of a
1 followed by 0 or more copies of the string 01. (Using the terminology of
regular expressions, which wewon’t define here, this is the language defined
by 1(01)∗). The strings in L1alt are 1, 101, 10101, 1010101, and so forth.

For a substantially more interesting language, assume a binary encoding
system that allows us to (a) uniquely describe a graph G as a binary string
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〈G〉, (b) represent any integer in the set Z of all integers, and (c) encode a
divider symbol “,”. Recall that graph G is said to be k-colorable if each of its
vertices can be assigned one of k colors in such a way that no two vertices of
the same color are connected by an edge. Then we can define a language:

Lkcolor �
{
〈G〉, k | G is a graph, k ∈ Z and k > 0, and G is k-colorable

}
.

We say that a language is computable if given a binary string, a Turing
machine can determine whether the string is in the language. A Turing
machine is an abstraction of computers with a finite number of states, an
unlimited memory “tape,” and a “head” which observes one tape cell at a
time. At each step of computation, it acts based on which state it is in and
what character it is reading from the memory tape. It can act by changing its
state, writing a character on the memory tape, and/or moving its head left
or right on the tape. It finishes a computation by entering the “accepting”
state or the “rejecting” state. A string s is in the language computing by
a Turing machine M if and only if, when M’s memory tape begins with s
written on it, M’s computation ends in the accepting state. We say that M
computes the set of strings it accepts. This is based on the process a human
being might go through when solving a problem with pencil and paper, and
in general, we usually expect this model of computation to be capable of
computing anything a human being could in principle figure out on paper
(given sufficient quantities of time and paper).

L1alt can be computed by a Turing machine that simply moves through
the input string once, checking that the string begins with a 1 and the
characters alternate between 0 and 1. Thus L1alt is computable. Lkcolor is
also computable, because there exists a Turing machine that can determine
whether any string is in Lkcolor in finite time. At a high level, this machine
first verifies the string is well-formatted (that it consists of a valid graph G
and a positive integer k), then lists all possible k-colorings of the vertices of
G, and checks if each is a valid k-coloring.

This fairly simple algorithm is sufficient to show that we can check
whether strings are in Lkcolor in finite time. However, for a graph with
N vertices, there are kN possible k-colorings of the vertices to check, an
exponential number of colorings. For graphs with on the order of thousands
of vertices, a computer might spend the better part of a human lifetime
running this algorithm. It is therefore safe to say that even though this
algorithm will always solve the problem eventually, most people interested
in the results of the computation would be dissatisfied with it. 1

1Perhaps this is an unfortunate consequence of the rapid pace of modern life, and the
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Complexity theory provides us with a way to distinguish between the
different kinds of “finite time” (a few seconds versus a few millenia), by
stratifying computable languages by how efficiently they can be computed.
A common measure of “efficient” is “polynomial time”: A language L is
computable in polynomial time if there exists some Turing machine m that
computes L, such that for every input of length n, M uses time no more
than p(n), where p is a polynomial. The class of all languages that are
polynomial-time computable is called P.

It is unknown whether Lkcolor is in P. Lkcolor is however known to be
in a class called NP. NP consists of all problems solvable in polynomial
time by a what is called a “non-deterministic Turing machine.” This is a
Turing machine which is allowed to make guesses on the way to its result. It
accepts an input if there is any sequence of guesses that leads it to accept,
and it rejects an input if every sequence of guesses leads it to reject. It runs
in polynomial time if its running time is polynomially bounded for every
possible sequence of guesses.

To get an intuitive understanding of NP, imagine the following scenario:
You are a student in a middle school class. The teacher has written a
particular statement on the blackboard, and has asked that, after precisely
one minute for consideration, everyone who believes the statement to be
true should raise their hand at the same time. Whether you raise your
hand will then count as your answer, and you will be graded on correctness.
Unfortunately, due to the wealth of non-academic concerns that characterize
your life as a middle school student, you don’t know how to figure out the
answer. You want to get a good grade, but above all you want to avoid
the embarassment of raising your hand when the statement is false, as this
would call the attention of the class directly to you and your mistake. In
these circumstances one might reasonably resign oneself to just not raising
one’s hand no matter what, but you have a glimmer of hope for getting
the right answer, in the form of your intelligent friend, Lyra. Lyra is sitting
right next to you, close enough that they can whisper to you without anyone
noticing. But you know quite well that Lyra can sometimes have a cruel

crisis of the ever-shortening attention span. In a less hasty and impatient culture, we might
be contented to simply wait this time out. The Ents of Fangorn Forest from J.R.R. Tolkien’s
The Two Towers are an extremely patient people, who don’t mind taking the time necessary to
really appreciate moments as they pass by. Even in their language of Old Entish, shares an
Ent named Treebeard, one does not say anything “unless it is worth taking a long time to
say, and to listen to” (Tolkien, 1954: p. 66). At no point in The Two Towers do the Ents ever
mention developing computational complexity theory, and this can hardly be a coincidence.
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sense of humor, so if they simply whisper “it’s true,” this won’t be enough
to convince you to risk raising your hand. Instead, Lyra will whisper to you
a hint with which you will try to convince yourself that the statement is
true. Note that both the hint and the checking process must be time-efficient,
since you only have a minute to answer. After the minute is up, you will
raise your hand only if their hint has fully convinced you that the statement
is true.

If you replace “one minute” with “polynomial time in the length of the
input,” then problems in NP are precisely those languages L such that the
statement on the board is in L if and only if there is some hint that Lyra can
give you that will convince you to write “true.”

To use the example of Lkcolor , imagine that the teacher has drawn a graph
G on the blackboard, and next to it written the statement “G is 5-colorable.”
Then if the graph really is 5-colorable, Lyra could whisper a valid 5-coloring
to you (as in “Vertex 1 red, vertex 2 blue, vertex 3 red, ...”), and you could
use your minute to verify that no edge connects same-colored vertices. If the
coloring checks out, you know for sure that G is 5-colorable, and can then
feel safe and secure in raising your hand. If the graph is not 5-colorable, then
no matter what 5-coloring Lyra whispers to you, you will notice a particular
edge connecting same-colored vertices somewhere in the graph, and you
won’t risk raising your hand. Note that if you fail to verify the statement
based on the hint, you can’t be sure whether the statement is really false, or
if the statement is true and it was just a bad hint. But if you do verify the
statement, you can be absolutely sure that the statement is true.

What does this scenario have to do with Turing machines that can guess?
Well, imagine that the teacher has discovered your illicit answer-swapping
with Lyra, and has moved you to opposite sides of the classroom, so you
can no longer whisper to each other. Are you now forced to give up on the
prospect of getting the answer right if the statement happens to be true? Not
quite! You can simulate having your friend Lyra next to you by simply taking
a guess as to a hint they might give. The odds may not be very good that
you will hit upon a helpful hint by chance, but nonetheless, if the statement
is true, there will exist some guess you can make that will match up with
what Lyra would have told you. This is the essence of what it means for a
non-deterministic Turing machine to guess.

Every problem in P is also in NP because the non-deterministic Turing
machine could simply not make use of its guessing ability (i.e. the problem
is so easy you don’t even need Lyra’s help). It is unknown, however, whether
P is strictly contained in NP, or whether the two classes are equal. It is
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generally suspected among complexity theorists that P , NP, but proving
this remains an open problem.

It turns out that Lkcolor ∈ P if and only if P � NP. This is because of the
somewhat magical fact that given any problem in NP, there is a polynomial-
time procedure for transforming instances of that problem into instances
of Lkcolor . If it were possible to solve Lkcolor in polynomial time, then we
could solve any problem in NP in polynomial time by converting it into an
instance of Lkcolor (that is, a graph G and integer k) with the same yes/no
answer as the original problem, and then find the original answer with our
Lkcolor algorithm. In the language of complexity theory, we say that any
language in NP is polynomial-time reducible to Lkcolor . We call a language in
NP to which all other languages are polynomial-time reducible NP-complete
under polynomial-time reductions. NP-complete languages can be thought
of as “the hardest languages in NP.”2

We can discuss completeness in P also, but polynomial-time reductions
are less useful in this context, since any problem A ∈ P can be trivially
polynomial-time reduced to another problem B by simply solving problem
A in polynomial time and then supplying a B instance that gives the same
answer. It is more helpful in this context to discuss log-space reductions, in
which the reduction must be doable by a Turing machine that can read the
input, but otherwise only has access to space of size logarithmic in the size of
the input. For example, the following problem, the Circuit Value Problem, is
P-complete under log-space reductions (Ladner (1975)): Given a description
of a Boolean circuit and its inputs, does it output True?

We introduce these ideas of P, NP, reduction, and completeness for
languages because they provide the framework for analyzing the complexity
of other structures – in particular, polynomials.

2.2 Algebraic complexity

In this section we will show how the ideas of complexity theory introduced
in the previous section have analogs in the study of polynomial complexity.
The majority of this section is based on an excellent survey paper byMahajan
(2014).

2Note thatwe have specifically defined Lkcolor to take an arbitary k as input. The 2-coloring
problem, the special case in which k is always 2, is not believed to be NP-complete, as it is
known to be in P. But in fact the 3-coloring problem is NP-complete, so as long as the k ≥ 3
case is allowed, k-coloring is NP-complete.
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Let ( fn) be a polynomial family, that is, a sequence of polynomials
f1 , f2 , f3 , ..., where each fn is a degree d(n) polynomial in s(n) variables. We
will call ( fn) tractable if d(n) ≤ poly(n) and s(n) ≤ poly(n). The notion of
tractability encodes the fact that we want the complexity of our polynomials
to increase at a reasonable rate. If our polynomial family were defined
by fn(x) � x22n

, so that the degree of fn grows doubly exponentially in n,
then it wouldn’t be particularly surprising to find that fn requires a lot of
computation relative to size of the index n. To avoid situations like this, we
will henceforth assume our polynomial families to be tractable.

One way we could measure the complexity of ( fn) is by asking for the
lengths of formulas that compute fn . What is a formula? Given a field k
(think of the complex numbers, k � C) and indeterminates x1 , ..., xn , we can
define a formula recursively as follows:

1. If c ∈ k, then “c′′ is a formula computing the constant polynomial c,
whose size is the number of bits needed to encode c.

2. If xi is an indeterminate, then “x′′i is a formula computing the polynomial
xi , of size 0.

3. If F1 and F2 are formulas computing polynomials f1 and f2, then F1 + F2
and F1 × F2 are formulas, each of size 1 + size(F1) + size(F2), computing
respectively f1 + f2 and f1 f2.

An example of a formula would be something like

“(x1 + 2) × ((2 × x2) + (−1))′′,

which computes the polynomial

(x1 + 2)(2x2 − 1) � 2x1x2 − x1 + 4x2 − 2.

Notice that we can think of a formula as a binary tree, with cases (1) and (2)
above representing leaves, and case (3) representing a tree with an operation
at its root, and F1 and F2 being its left and right subtrees.

We can define the following complexity class of polynomials based on
formulas:

Definition 1 (VF). VF is the class consisting of all tractable polynomial
families ( fn) that can be computed by a sequence of formulas (Fn) with
size(Fn) ≤ poly(n).



Algebraic complexity 13

Notice that formulas are a slightly artificial way of representing the
computation of polynomials: to compute the result of the formula

“(((x1 + x2) × x1) + 3) × (((x1 + x2) × x1) + 1)′′,

we are obligated to compute the subformula (x1+x2)×x1 twice, whereas if we
were human beings doing the computation, we could recognize that the two
were the same and reuse the same result. Formulas do not allow for the result
of a subformula to be used in multiple places in an expression. However,
formulas are a special case of another model for computing polynomials
where this is allowed:

Definition 2 (Algebraic circuit). An algebraic circuit (equivalently, arithmetic
circuit) over a field k is a directed acyclic graph, whichwe interpret in analogy
with Boolean circuits. Its leaves are either labelled as inputs x1 , ..., xn which
take on values from k, or labelled as constant values from k. Its internal
nodes are called gates and labelled with one of the operations {+,×}. We
restrict all gates to have at most two inputs, and we require that there is
only one root or output gate. Each gate can be considered as a polynomial
function of its children, and the circuit is said to compute the polynomial
function corresponding to its output gate. (Arora and Barak (2009))

We will frequently refer to the size of an algebraic circuit, by this we
simply mean the number of gates in the circuit, plus the number of bits
required to specify the constant value leaves (often excluding the constants
0 and 1). We write size(C) to mean the size of a circuit C, and if f is a
polynomial, we write S( f ) to mean the size of the smallest algebraic circuit
computing f .

A formula is simply an algebraic circuit whose underlying directed
acyclic graph is a tree. Since formulas are a special case of algebraic circuits,
VF is contained in another complexity class based on algebraic circuits:

Definition 3 (VP). VP is the class consisting of all tractable polynomial
families ( fn) that can be computed by a sequence of algebraic circuits (Cn)
with size(Cn) ≤ poly(n).

The V in VF and VP stands for Leslie Valiant, who first defined these
classes. VF stands for “Valiant’s Formulas,” while VP is so named because it is
“Valiant’s version of P”, the algebraic analog of the class of polynomial-time
computable languages.
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A good example of a polynomial family in VP is the family of determi-
nant polynomials, (Detn), where Detn is the following polynomial in n2

indeterminates:

Detn(x11 , x12 , ..., xnn) �

���������
x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn

��������� �
∑
σ∈Sn

(
sgn(σ) ·

n∏
i�1

xiσ(i)

)
.

When we write sgn(σ), we mean 1 is σ is composed of an even number of
transpositions, and −1 if it is composed of an odd number of transpositions.
(We can define this quantity because every permutation can be decomposed
into a unique number of two-element transpositions.)
(Detn) is known to be in VP. This result is particularly interesting since

circuits in VP cannot use division or conditional statements (i.e. something
equivalent to “if X then Y else Z”). A circuit with division and conditionals
could compute the determinant in polynomial size using something similar
to the Gaussian elimination strategy (much as a standard computer program
would). It has been shown that one can eliminate the need for division
and conditionals: Csanky (1975) shows that (Detn) can be computed using
polynomial-size algebraic circuits with division gates, and Berkowitz (1984)
shows it can be computed in polynomial size with only addition and
multiplication gates. Thus (Detn) ∈ VP. It is unknown whether (Detn) is in
VF.

Since we have an algebraic analog for P, it is natural to ask whether there
is an algebraic analog for NP. Such an analog is defined as follows:

Definition 4 (VNP). VNP is the class consisting of all tractable polynomial
families ( fn) such that there is some (gn) ∈ VP such that:

(i) If fn has s(n) variables x1 , ..., xs(n), then gn has s(n) + m(n) variables
x1 , ..., xs(n) , y1 , ..., ym(n).

(ii) For all n ∈ N,

fn(x1 , ..., xs(n)) �
∑

(y1 ,...,ym(n))∈{0,1}m(n)
gn(x1 , ..., xs(n) , y1 , ..., ym(n)).

It may not be immediately obvious that the above definition gives an
analog for non-determinism. However, we can frame non-deterministic
computation in Turing machines as the following process:
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1. A sequence of m(n) ≤ poly(n) coin flips is made, producing a guess
string y ∈ {0, 1}m(n).

2. For each of the 2m(n) possible values of y, a computational path is run,
leading to an answer of True or False.

3. The logical OR of all computational paths is taken.

The process for computing fn in Definition 4 is very similar to this
process, with (y1 , ..., ym(n)) playing the role of the guess string, evaluating
gn for each guess string playing the role of the separate computation paths,
and the sum of the results playing the role of the logical OR.

Just as (Detn) can be thought of as a “canonical” polynomial family for VP,
so can (Permn), the permanent family, be thought of as the canonical family
for VNP. The polynomial Permn is the permanent of the n × n symbolic
matrix:

Permn(x11 , x12 , ..., xnn) � Perm
©«

x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn


ª®®®®¬
�

∑
σ∈Sn

(
n∏

i�1
xiσ(i)

)
,

or simply the determinant but without the signs of the permutations.
Let us examine in detail why Permn is in VNP. Notice that we can encode

permutations on n elements as n × n matrices; for example, consider the
permutation on {1, 2, 3, 4, 5} given by σ � (13)(254). This notation means
that σ exchanges 3 and 1, and cycles 2 to 5, 5 to 4, and 4 to 2. That is, σ acts
as follows:

1 2 3 4 5
↓σ ↓σ ↓σ ↓σ ↓σ
3 5 1 2 4

We can encode σ as the following matrix Yσ:

Yσ
�


0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0


,

whichwe have defined by letting Yσ
iσ(i) � 1 for all i ∈ {1, 2, 3, 4, 5}, and letting

all other entries equal 0. All permutations on n items can be expressed by
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the same method as n × n matrices with exactly one 1 is every row and
column, and 0’s everywhere else.

We can define the monomials of Permn based on this matrix representa-
tion. The monomial in Perm5 corresponding to σ defined above is

5∏
i�1

xiσ(i) � x13x25x31x42x54.

An algebraic circuit cannot find thismonomial by “plugging i into σ and then
choosing the entry xiσ(i)” because it cannot perform this kind of conditional
behavior. However, given the matrix Yσ, it could find xiσ(i) by the following
expression:

5∑
j�1

Yσ
i j xi j .

Since the only entry of row i in Yσ that is 1 is the one in column σ(i), this
expression will yield simply xiσ(i). In this way, we could express Permn as
follows:

Permn(x11 , x12 , ..., xnn) �
∑

Y is an n × n permutation matrix


n∏

i�1

©«
n∑

j�1
Yi j xi j

ª®¬
 .

This is beginning to look like an expression for a polynomial family in VNP,
since it involves a sum of all possible polynomials produced by “guessing”
a permutation matrix Y. However, we cannot sum over specifically the set
of permutation matrices Y; the definition of VNP only allows us to specify
a sequence length and sum over all binary strings of that length. What we
can do instead is sum over all n × n matrices composed of 0’s and 1’s, and
multiply the terms by 0 if the matrix is not a permutation matrix. To do this,
we need a polynomial hn(Y) that serves as an indicator function for whether
Y is a permutation matrix. This can be defined as follows:

hn(Y) �
©«

n∏
i�1

n∑
j�1

Yi j
ª®¬ ·

©«
n∏

i�1

∏
j1 , j2∈[n]

j1< j2

(
1 − Yi j1Yi j2

)ª®®®¬ ·
©«

n∏
j�1

∏
i1 ,i2∈[n]

i1<i2

(
1 − Yi1 jYi2 j

)ª®®®¬ .
The above is a product of three factors, each being either 1 or 0 (assuming
the entries of Y are all 1 or 0). The first factor is nonzero if and only if Y has
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at least one 1 in each row, the second factor is 1 if and only if Y has has at
most one 1 in each row, and the third factor is 1 if and only if Y has at most
one 1 in each column. We do not need a factor that is 1 if and only if Y has
at least one 1 in each column, since it would be redundant – if some column
is only zeroes, then either there is some row with only zeroes, or there is a
column with more than one 1. Among the three factors that make up hn(Y),
the first can be computed within n2 gates (since there are n factors to be
multiplied, each of which is a sum of n constants). Similarly, the second and
third factors can each be computed within a constant multiple of n3 gates,
since they involve three index variables ranging from 1 to n. Thus hn(Y) can
be computed by an algebraic circuit with no more than a constant multiple
of n3 gates, which is polynomial in n.

Armed with hn(Y), we can now express Permn as:

Permn(x11 , x12 , ..., xnn) �
∑

Y ∈ {0, 1}n2

hn(Y) ·
n∏

i�1

©«
n∑

j�1
Yi j xi j

ª®¬
 .

This is now a form consistent with the definition of VNP! To see this, let
gn be a polynomial in 2n2 variables defined by

gn(x11 , x12 , ..., xnn ,Y) � hn(Y) ·
n∏

i�1

©«
n∑

j�1
Yi j xi j

ª®¬ .
Note that gn is a tractable polynomial family and can be computed with
polynomial-size circuits in n, so (gn) ∈ VP. Then Permn can be expressed as

Permn(x11 , x12 , ..., xnn) �
∑

Y ∈ {0, 1}n2

gn(x11 , ..., xnn ,Y),

so Permn ∈ VNP.
Thus far we have defined VP and VNP, and shown that Detn ∈ VP and

Permn ∈ VNP. It is clear that VP ⊆ VNP, since the definition of VP is just
the definition of VNP in the special case where m(n) � 0. Just like their
analogs P and NP, however, it is an open question whether VP � VNP. The
determinant and permanent are often thought of as key to answering this
question. This is because of an analog of reductions for polynomial families
called projections. We will not give a formal definition, but the essence of a
projection is that a polynomial family ( fn) is at least as hard to compute as a
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family (gn) if for all n, gn can be expressed by plugging some combination
of variables and constants into fm for some m. If m is polynomial in n, this
is called a p-projection, and if m is quasi-polynomial in n (meaning m is
bounded above by 2logc n for some c), this is called a qp-projection.

Leslie Valiant showed that every polynomial family in VNP is reducible
by p-projections to Permn , and every polynomial family in VP is reducible by
qp-projections to Detn (Valiant (1979)). So Permn is a “canonical complete
problem” for VNP is a nice and satisfying way, and Detn is almost that for
VP. The VNP-completeness of Permn implies that the question of whether
VP � VNP is equivalent to whether Permn is in VP. This provides much
of the motivation for the study of arithmetic circuit lower bounds – we
want to eventually be able to prove that Permn cannot be represented with
polynomial-size circuits, which would then show that VP , VNP. This
would be an important result for fields in which the permanent plays an
important role, such as graph theory, knot theory, and statistical mechanics
(Wigderson (2019)), and its proof might also provide insight into showing
that P , NP. In the remainder of the paper, we will explore known strategies
for lower-bounding arithmetic circuits which may eventually provide insight
into Permn .

2.3 Invariant rings

Readers who have been reading since the introduction (the long-time fans)
will know that the primary concern of this paper isn’t just the complexity
of any old polynomials, but particularly those which are defined by their
invariance under some kind of transformation. These polynomials are the
elements of invariant rings, and this section will clarify what exactly an
invariant ring is.

To begin with, we need to define the transformations under which the
polynomials are invariant. These will take the form of group actions. Note
that we will not formally define the notions of group, ring, field and vector
space; any good algebra textbook can provide these definitions for those
interested. For readers who want to know what they are but aren’t inclined
to go through the effort of looking them up, here is a lightning summary:
Groups, rings, and fields are all sets of elements on which operations can
be defined that follow specific rules; these rules ensure the operations
behave in the “nice” ways one would expect. In a group there is a single
operation (usually called addition or multiplication). In a ring there are two
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operations (both addition and multiplication). A field is a ring in which
multiplication is commutative, and one can divide by all elements except
0 (multiplication is invertible). A vector space is a set of elements together
with a field called its scalar field (it is said to be a vector space over its scalar
field), and its operations are (1) addition and (2) multiplication by elements
of the scalar field. (For a visualization of vector spaces, imagine arrows
in three-dimensional space which can be added tip-to-tail, or stretched by
constant factors.)

A homomorphism of a group (G,×) is a function ϕ from G to another
group (H, ·) such that for g1 , g2 ∈ G, ϕ(g1×g2) � ϕ(g1)·ϕ(g2). One can think
of homomorphisms as preserving the structure defined by the operations of
the respective groups. A similar definition holds for rings and fields, where
homomorphisms preserve the structure of both addition and multiplication.
On a vector space V , homomorphisms must preserve the structure of both
addition and scalar multiplication, and are also called linear transformations.
An isomporhism is an invertible homomorphism, and an automorphism is
an isomorphism from an algebraic structure to itself. The automorphisms of
a group, ring, etc. form a group under composition, which is denoted by ◦.

Definition5 (Groupaction). LetG be agroup, andV avector space. An action
of G on V is an association of each element g ∈ G with an automorphism
π(g) : V → V , such that for all g1 , g2 ∈ G, π(g1 g2) � π(g1) ◦ π(g2). That is,
π is a homomorphism from G to the group of automorphisms of V . We will
write g · v to mean π(g)[v].

We will assume for our purposes in this paper that we are dealing with
a finite-dimensional vector space V of dimension n over a field k. You
can use some linear algebra to show that this vector space can be taken
without loss of generality to be kn , or the set of n-tuples (x1 , x2 , ..., xn) with
every xi ∈ k. Automorphisms of V are then equivalent to invertible n × n
matrices with coefficients in k. Since we can naturally think of points in
V as settings of n variables, it is natural to speak of n-variate polynomials
over V . Define k[V] � k[x1 , ..., xn] as the set of polynomials over the
indeterminates x1 , ..., xn , with coefficients in k. If f ∈ k[V], then f can be
naturally interpreted as a function f : V → k by simply substituting the
coordinates of a vector v in for x1 , ..., xn . Then if G is a group acting onV , and
g ∈ G, we write g · f to mean the polynomial such that [g · f ](v) � f (g−1 · v)3.

3Youmay wonder why algebraists add in the irritating-looking inverse, rather than simply
defining [g · f ](v) � f (g · v). The choice is somewhat arbitrary, as as either definition would
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For example, let V � C2, and let G � Z/4Z. We can define an action
of G on V by associating with the element 1 ∈ G the linear transformation

encoded by the matrix π(1) �
[
0 −1
1 0

]
, so that

1 ·
[
x
y

]
�

[
0 −1
1 0

] [
x
y

]
�

[
−y
x

]
.

Since π must be a homomorphism, and 1 generates G, this fully determines
the group action:

π(1) �
[
0 −1
1 0

]
, π(2) � π(1 + 1) � π(1) · π(1) �

[
−1 0
0 −1

]
,

π(3) � π(1+2) � π(1)·π(2) �
[

0 1
−1 0

]
, π(0) � π(1+3) � π(1)·π(3) �

[
1 0
0 1

]
.

Intuitively, we can think of this group action of G on V as rotation, with the
element 1 rotating vectors counterclockwise by 90 degrees, the element 2
rotating vectors by 180 degrees, and so on.

To see the group acting on a polynomial, let f (x , y) � 2x + 3y. Then
[1· f ](x , y) � f (y ,−x) � 2y−3x. We can see that the group action transforms
f into a new polynomial distinct from f . However, for any group action,
there is a special class of polynomials that are unchanged by the action:

Definition 6 (Invariant polynomial). Let V be a finite-dimensional vector
space over a field k, and G a group acting on V . If f ∈ k[V] is a polynomial
over V , we say that f is invariant under G iff for all g ∈ G, g · f � f .

Note that if two polynomials f1 and f2 are invariant under G, then f1 + f2
and f1 f2 are also invariant polynomials under G. Therefore the invariant
polynomials in k[V] under G form a ring. We call this the invariant ring of G,
and denote it by k[V]G. Theorems due to David Hilbert, EmmyNoether, and
HermannWeyl guarantee that when G is a “well-behaved” group (including
the general linear group of matrices, any continuous subgroup, or any
finite subgroup), the invariant ring of G is finitely generated (Hilbert (1893),
Noether (1915), Weyl (1946)).

work, but to get a sense of why this way was chosen, imagine that the vectors v are points on
the real line, and g is the transformation that shifts v right by 1 (to v + 1). Then we want g to
shift the graph of the function f right by 1, which means that the output of g · f at v should
be the same as the output of f at v − 1.
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Continuing with our group action example, we may ask, what is the
invariant ring of G within the polynomial ring C[V] � C[x , y]? This should
consist of all polynomials in x and y of some degree D, represented by

f (x , y) �
∑

i , j∈Z+∪{0}
0≤i+ j≤D

ai j x i y j ,

which are invariant under the action of G � Z/4Z. A polynomial will be
invariant under all of G if and only if it is invariant under the generator 1,
since 1 generates G. Note that

1 · f (x , y) � f
(
1
−1 ·

[
x
y

] )
� f

(
3 ·

[
x
y

] )
� f

( [
0 1
−1 0

] [
x
y

] )
� f (y ,−x),

so f is invariant if and only if f (x , y) and f (y ,−x) are equal polynomials.
In other words,∑

i , j∈Z+∪{0}
0≤i+ j≤D

ai j x i y j
�

∑
i , j∈Z+∪{0}
0≤i+ j≤D

ai j y i(−x) j �
∑

i , j∈Z+∪{0}
0≤i+ j≤D

(−1) j ai j x j y i ,

where equality means that the coefficients of each x i y j term are equal on
both sides. For j even, we must have ai j � a ji , and for j odd, we must
have ai j � −a ji . This implies that ai j � 0 when i and j have opposite parity,
ai j � −a ji when i and j are both odd, and ai j � a ji when i and j are both
even. Therefore f can be expressed as

f (x , y) �
∑

i , j even
i< j

(
ai j ·

(
x i y j

+ x j y i
))
+

∑
i even

aii x i y i
+

∑
i , j odd

i< j

(
ai j ·

(
x i y j − x j y i

))
.

The set of possible polynomials produced by the first two sums is precisely
the set of symmetric polynomials in x2 and y2, which are generated by the
elementary symmetric polynomials {1, x2 + y2 , x2 y2}. It can be shown that
polynomials produced by the third sum are all generated by x3 y − x y3,
x2 y2, and x2 + y2. Therefore a full list of generators for the invariant ring
C[x , y]Z/4Z is {1, x2 + y2 , x2 y2 , x3 y − yx3}.

Listing the generators of an invariant ring allows us to fully specify
the ring using only finitely many polynomials. However, as has been seen
before in the case of finite time, complexity theorists are rarely satisfied with
“finite.” We want to specify invariant rings not just finitely, but as efficiently
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as possible. There are some invariant rings for which there may be no set
of generators smaller than, say, exponential in the dimension of the vector
space, but we would love a way to specify such invariant rings in less than
exponential space. This can be done if the invariant ring in question has a
succinct encoding.

Definition 7 (Succinct encoding of an invariant ring). Let G be a group
acting on an m-dimensional vector space V over a field k, with invariant ring
k[V]G. We say that an algebraic circuit C(x1 , ..., xm , y1 , ..., yr) is a succinct
encoding of F[V]G if the polynomials formed by different valuations of the
y-variables, {C(x1 , ..., xm , α1 , ..., αr)}α1 ,...,αr∈k , are a generating set for k[V]G.
Garg et al. (2019)

Suppose we want to find a succinct encoding of the invariant ring
C[x , y]Z/4Z we found above. It would have to take the form of an algebraic
circuit C(x , y , α, β) such that all possible circuit outputs are invariant poly-
nomials, and all the generators we found above, {1, x2 + y2 , x2 y2 , x3 y− yx3},
can be produced by as outputs (or sums and products of outputs) by different
settings of α and β. Such a circuit is shown in Figure 2.1.

Just we can use as the size of smallest algebraic circuit computing f ,
S( f ), as a way to measure the inherent complexity of a polynomial f , we
can use the size of the smallest succinct encoding to measure the inherent
complexity of an invariant ring k[V]G. One might expect that the inherent
complexity of the invariant ring depends mainly on the properties of the
group G, or on the complexity of the group action of G on V . However in the
next chapter, we will see the construction of an invariant ring which under
standard complexity theory assumptions has high inherent complexity, even
though the group G and its associated group action are easy to describe.
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Figure 2.1 An algebraic circuit computing the polynomial 1 + α(x2 + y2) +
βx2 y2 + αβ(x3 y − x y3). As α and β run over all values inC, this produces a
generating set for the invariant ringC[x , y]Z/4Z, making it a succinct encoding
for that invariant ring.





Chapter 3

Conditional Lower Bounds for
Invariant Rings

This chapter describes work in invariant theory by Garg et al. (2019), which
provides arithmetic circuit lower bounds for the succinct encoding of a
particular invariant ring, under the standard complexity theory assumption
that NP * P/poly. The authors construct a particular group action which
is “simple” in that it can be easily described in polynomial time, but whose
succinct encoding is “complex” meaning that if it were polynomially sized,
it would give a polynomial size circuit for all problems in NP. After reading
this chapter, if I have done my job correctly, you will understand precisely
what group action this is, and why a succinct encoding for its invariant ring
would have counterintuitive implications.

3.1 NP * P/poly, probably
First, what does NP ⊆ P/poly mean? We have described the complexity
class NP in Chapter 2. What is P/poly? It is the class of languages of binary
strings that can be computed by a sequence (Cn) of polynomial-size Boolean
circuits, with each circuit Cm being used to check inputs of size m. (We say
a Boolean circuit computes a language if its output bit is 1 precisely when its
input bits form a string in the language.) P/poly can be thought of as the
“Boolean circuit equivalent” of the Turing machine-based class P. P describes
languages computable in polynomial time by Turing machines, while P/poly
describes languages computable in polynomial size by Boolean circuits.

In fact, it is known that P ⊆ P/poly. The proof of this result involves
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forming a circuit that simulates the behavior of a Turing machine at every
point on its tape, and since the number of tape cells in a polynomial-time
computation is polynomial, a polynomial-size circuit suffices to simulate
a polynomial-time Turing machine. However, the opposite inclusion does
not hold. This is because a Turing machine must have the same transition
rules regardless of input length, but in a circuit sequence (Cn) there is a
different circuit for each input length. This gives P/poly to compute many
languages which are known to not be in P, since some of them may not even
be computable.

For example, if one chooses some binary representation of Turing ma-
chines, then the Halting Language Lhalt is defined as the language of strings
〈M〉,w, where 〈M〉 is a description of Turing machine M, w is an input to M,
and M eventually halts on the string w. Lhalt is known to not be computable
by Turing machines in finite time. Now define L to be a related language, the
unary language consisting of strings of n 0s, where n’s binary representation
〈n〉 is a member of Lhalt . L is not computable by Turing machines at all,
and certainly not in polynomial time. However, L ∈ P/poly, since one
could construct a circuit sequence (Cn) where if Cn always outputs false for
〈n〉 < Lhalt , and Cn outputs true when all inputs are 0 for 〈n〉 ∈ Lhalt .

In essence, P/poly is more powerful than P since there are infinitely many
circuits in (Cn), and so circuit sequences get an “extra piece of information”
(the structure of the particular circuit Cn) for each input length. This idea
leads to an equivalent formulation of P/poly as the class of problems that
can be solved in polynomial time by advised Turing machines – Turing
machines which on all inputs of length n, receive an “advice” string sn of
length polynomial in n. The advice levels the playing field between Turing
machines and circuit sequences by giving Turing machines an extra piece of
information for each input length as well, and this turns out to be enough to
make the two computational models equivalent.

It is possible, given results that are currently proven, that NP ⊆ P/poly,
even if P , NP. This would mean that all problems in NP, problems like
the graph k-coloring problem, can be solved by polynomial-size circuits.
However, after decades of study, NP-complete problems have resisted at-
tempts to solve them with polynomial-size circuits, just as stubbornly as
they have resisted polynomial-time algorithms, so it is often assumed that
NP * P/poly.
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3.2 3-way matching is NP-complete

The strategy of Garg et al. (2019) is to cleverly to turn a succinct encoding for
their group action into a Boolean circuit sequence that solves an NP-complete
problem. The NP-complete problem in question is the 3-way matching
problem, which we will now describe. A k-uniform hypergraph is a graph
whose edges are sets of k vertices – for example, an undirected graph is a
2-uniform hypergraph. A tripartite 3-uniform hypergraph is a 3-uniform
hypergraph whose vertices can be partitioned into three sets X, Y, and Z,
such that every edge in the hypergraph has exactly one vertex from each of
X, Y, and Z. The 3-way matching problem asks, given a tripartite 3-uniform
hypergraph G, does there exist a set of edges such that every vertex is
included in one of the edges, and no two edges share vertices?

The 3-matching problem can be shown to be NP-complete by a reduction
from the 3-satisfiability problem, a known NP-complete problem. Since it is
NP-complete, if we had some sequence Cn of polynomially-sized circuits that
accepted 3-matching, then given any language L ∈ NP, we could construct
circuits of polynomial size that first reduce L to 3-matching, and then use
the appropriate circuit Cn to find the solution. Therefore all problems in NP
would be solvable by polynomially sized circuits, meaning NP ⊆ P/poly.

3.3 The group action

We will now describe the particular group action for which a succinct
encoding would yield a circuit sequence solving 3-matching. We start with
the relevant group G. Let STn(C) represent the group of diagonal matrices
with determinant 1; for a ∈ STn(C), we will denote by ai the i-th entry
along the diagonal of a. Then G � STn(C) × STn(C) × STn(C) is the group
consisting of triples of determinant-1 diagonal matrices. The vector space G
acts on will be V � Cn ⊗ Cn ⊗ Cn , which for our purposes simply means the
space of three-dimensional “boxes” of complex numbers with dimensions
n × n × n. G will act on u ∈ V by (a, b, c) · u :� v such that vi jk � ai b j ck ui jk .
We will represent polynomials over V as complex polynomials in the n3

variables xi jk for 1 ≤ i , j, k ≤ n. We will refer to the “symbolic 3d box” of
these variables as x, so that a polynomial f ∈ C[V] can be written as f (x).

Let us now understand the connection between this choice of group
action, and the 3-matching problem. The action of G on V has invari-
ant monomials which correspond to possible matchings of a tripartite
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3-uniform hypergraph with disjoint vertex sets {α1 , ..., αn}, {β1 , ..., βn},
and {γ1 , ..., γn}. By a “possible matching” we mean a collection of triples
(α1 , βσ(1) , γτ(1)), (α2 , βσ(2) , γτ(2)), ..., (αn , βσ(n) , γτ(n)) such that σ and τ are
permutations of the integers from 1 to n; this matching is uniquely deter-
mined by σ and τ, so we will refer to it as Mστ. Mστ is a true matching in
the hypergraph if and only if (αi , βσ(i) , γτ(i)) is an edge in the hypergraph
for all i ∈ [n].

We associate with Mστ the degree-n monomial
∏n

i�1 xiσ(i)τ(i). An el-
ement (a, b, c) ∈ G acts on a single-variable polynomial f (x) � xi jk by[
(a, b, c) · f

]
(x) � f

(
(a, b, c)−1 · x

)
�

1
ai b j ck
·xi jk . Everymonomial

∏n
i�1 xiσ(i)τ(i)

is invariant under the group action, since

(a, b, c) ·
n∏

i�1
xiσ(i)τ(i) �

n∏
i�1

xiσ(i)τ(i)
ai bσ(i)cτ(i)

�

(
n∏

i�1

1
ai

) (
n∏

i�1

1
bσ(i)

) (
n∏

i�1

1
cτ(i)

)
n∏

i�1
xi jk �

n∏
i�1

xi jk .

Here we have used the fact that
∏n

i�1
1
ai
� 1 because the ai are the diagonal

entries of matrix a, whichmustmultiply to det(a) � 1. Likewise
∏n

i�1
1

bσ(i)
� 1

and
∏n

i�1
1

cτ(i)
� 1 since σ and τ are permutations, so bσ(i) and cτ(i) as i ranges

from 1 to n are exactly the diagonal entries of b and c.
No other degree-n monomial in x, nor any polynomial in x of degree

less than n, is invariant under the action. For if g is such a monomial g(x) �∏r
m�1 xim jm km , 1 ≤ r ≤ n, then the sets {im : 1 ≤ m ≤ r}, { jm : 1 ≤ m ≤ r},
{km : 1 ≤ m ≤ r} could not all contain all the integers from 1 to n (otherwise
g would correspond to a matching). Suppose without loss of generality
that {im : 1 ≤ m ≤ r} , [n], and that 1 < {im : 1 ≤ m ≤ r}. Then the action
of (a, b, c), with a � (2n−1 , 1

2 ,
1
2 , ...,

1
2 ) and b � c � (1, 1, 1, ..., 1), on g gives

(a, b, c) · g(x) � 1
2r g(x) , g(x), so g is not invariant.

It can be shown that given an algebraic circuit C computing a polynomial,
there exists another algebraic circuit Cn which computes only the terms in
that polynomial of degree less than n, with the size of Cn polynomial in n
and the size of C.

To sum up this section, we (1) defined a group action of G on V , (2)
showed that its invariant monomials of degree ≤ n correspond precisely to
the set of possible matchings of a tripartite hypergraph, and (3) mentioned
that we could efficiently pull these monomials of degree ≤ n out of a circuit
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computing a larger invariant polynomial. Let us now see how this leads us
to a Boolean circuit that solves 3-matching.

3.4 If we had a succinct encoding, we could solve 3-
matching

Recall that succinct encodings are circuits computing a set of generators
for invariant rings. Assume that there is a succinct encoding C(x, y) for
the invariant ring under the action of G on V (with the input y a set of
variables whose different settings produce the different generators). Then
there must also be a circuit Cn(x, y) that encodes a generating set for the
invariant polynomials of degree ≤ n. We will exploit this circuit Cn to check
whether a given tripartite hypergraph H contains a matching.

Given a tripartite hypergraph H with vertices {α1 , ..., αn}, {β1 , ..., βn},
and {γ1 , ..., γn}, construct an element v ∈ V by letting vi jk � 1 if the edge
(αi , β j , γk) is in H, and vi jk � 0 otherwise. Then note that for a possible
matching Mστ, the corresponding monomial

mστ(x) �
n∏

i�1
xiσ(i)τ(i)

vanishes on H precisely when Mστ is a valid matching in H. For if it is
a valid matching, then viσ(i)τ(i) � 1 for all i ∈ [n] and the monomial does
not vanish, and if it is not a valid matching, then there is some i ∈ [n] for
which viσ(i)τ(i) � 0, and the monomial does vanish. Therefore H has a valid
matching if and only if there is some nonzero monomial in the output of
Cn(v, y). Equivalently, H has a valid matching if and only if Cn(v, y) is a
non-zero polynomial in y.

What we have described is therefore a reduction of the 3-way matching
problem to the Polynomial Identity Testing problem, which asks, given
an algebraic circuit, whether that circuit computes the identically zero
polynomial. The goal is to show that 3-way matching is in P/poly, which is
the class of problems that can be solved by polynomial-sized Boolean circuit
sequences. Recall that P/poly is the class of problems that can be solved
in polynomial time with polynomial advice. It also happens that P/poly is
equal to BPP/poly, which means that if we relax the constraints on advised
Turing machines and allow them to use randomness and make errors with
some bounded probability, we can solve precisely the same set of problems.
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Therefore if we can use our reduction to construct a randomized, bounded-
error, polynomial-time algorithm by which an advised Turing machine can
solve the 3-way matching problem, this will show that NP ⊆ P/poly, under
the original assumption that our group action had a succinct encoding.
We will use the fact that that there exists a randomized, bounded-error,
polynomial-time algorithm for solving Polynomial Identity Testing (Zippel
(1979) and Schwartz (1980)).

The randomized algorithm is as follows: Let the advice string for input
of a tripartite graph H with 3n vertices be an encoding of the circuit Cn(x, y),
which we showed to exist if the group action had a succinct encoding.
Then convert H into a vector space element v ∈ V as described above, and
evaluate the circuit Cn(v, y) as a circuit in the y variables. Use the existing
randomized algorithm for Polynomial Identity Testing to check whether
Cn(v, y) is the zero polynomial. If it is not, then H has a matching, so return
“yes,” and otherwise, return “no.”

This algorithm is correct by our arguments above, and proves that if the
group action has a succinct encoding, then 3-way matching is in P/poly, and
thus NP ⊆ P/poly since 3-way matching is NP-complete.

3.5 Conclusion

We have described an invariant ring which, if NP/P/poly, has a high degree
of “inherent complexity.” Garg et al. (2019) also give an example of an
invariant ring for which a succinct encoding would imply VP � VNP. Their
work suggests that succinct encodings for reasonably simple group actions
can have many counterintuitive results for complexity theory. The general
takeaway is that the situation of a group acting on a vector space provides
a malicious complexity theorist, who is seeking to construct an invariant
ring that is hard to encode, with a great deal of leeway to encode hard
problems inside of the group action. This means that general efficient
algorithms for finding succinct encodings for invariant rings are unlikely
to exist. However, if the results are ever able to move from conditional to
unconditional, they may provide a starting point for proving lower bounds
on polynomials arising from invariant rings, which has proved a difficult
subject. In Chapter 4, we will explore one of the few known results in this
area, that being the lower bounds on elementary symmetric polynomials.



Chapter 4

Polynomial Lower Bounds

This chapter explores the known lower bound on elementary symmetric
polynomials, proved by Baur and Strassen (1983). Their proof is in two
parts, one relying on the partial derivative operator preserving properties
of arithmetic circuit complexity, and the other relying on lower bounds
from algebraic geometry obtained earlier by Strassen (1973a). We will
prove the former part in detail, and give a high-level overview of the latter.
Our explanation also draws extensively from chapter 12 of the survey text
Mathematics and Computation (Wigderson (2019)).

Given a polynomial f , recall that we write S( f ) to denote the size of the
smallest arithmetic circuit computing f . In this thesis thus far we have been
speaking loosely about it being “hard to prove lower bounds,” however,
what we really mean is that it is hard to prove nontrivial lower bounds, or
lower bounds which exploit the properties of the specific polynomial in
question and aren’t universally applicable to all functions. We do in fact
know a basic (“trivial”) circuit lower bound on any polynomial f , which is
the following:

S( f ) ≥ log2(deg f ).

Here deg( f ) represents the largest sum of exponents among the terms of f ;
for example, if f (x , y) � x2 y3 + x4 then deg( f ) � 5. This result can also be
expressed asymptotically, using “big-omega” notation:

S( f ) ≥ Ω(log(deg f )),

which means that for deg f above some threshold integer N, there exists
some constant C such that S( f ) ≥ C · log(deg f ).
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The reason that this lower bound is known is that to obtain a term of the
form xd , it is necessary to multiply together d copies of the variable x. It can
be shown that the fastest possible way to do this is to multiply x by itself to
get x2, then multiply x2 by itself to get x4, and so on until an exponent on the
order of d is reached, for approximately log2 d multiplications. This logic still
applies for multi-variable terms of total degree d. So this lower bound simply
reflects the nature of multiplication, rather than any special properties of a
particular polynomial in question. Bauer and Strassen’s achievement is to
establish a lower bound on elemenary symmetric polynomials that is greater
than simply the logarithm of their degrees.

4.1 Elementary symmetric polynomials

To begin with, what is an elementary symmetric polynomial? Assume a
set of n objects, [n] � {1, 2, 3, ..., n}. A permutation of [n] is an bĳective
function σ : [n] → [n], which can be thought of as simply a reordering of the
objects. The set of all permutations of [n] form a group Sn under function
composition, called the symmetric group on n elements. Fix a field k and let
Sn act on the vector space V � kn by permuting the coefficients of a given
vector in the natural way (i.e. for σ ∈ Sn , the i-th coefficient of v ∈ kn is the
σ(i)-th coefficient of σ · v).

We are interested in the invariant ring of this action, k[V]Sn , which
consists of all n-variate polynomials which are unchanged by permuting
their coefficients. Polynomials in k[V]Sn are called symmetric polynomials. It
can be shown that a natural generating set for the non-constant symmetric
polynomials is given by:

en
1 (x1 , x2 , ..., xn) � x1 + x2 + · · · + xn

en
2 (x1 , x2 , ..., xn) � x1x2 + x1x3 + · · · + xn−1xn

...

en
d (x1 , x2 , ..., xn) �

∑
1≤ j1< j2<···< jd≤n

x j1 x j2 · · · x jd

...

en
n (x1 , x2 , ..., xn) � x1x2 · · · xn
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These are called the elementary symmetric polynomials (the e is for elemen-
tary) in n variables. Bauer and Strassen prove the following, which is one of
the only known arithmetic circuit lower bound beyond the naïve logarithmic
lower bounds:

Theorem 1. If en
d is the d-th elementary symmetric polynomial in n variables, then

S(en
d ) ≥ Ω(n log r),

where r � min(d , n − d).
Note that this improves the naïve lower bound S(en

d ) ≥ Ω(log d) by a
factor of n.

4.2 Proof overview

We will start with an overview of how Theorem 1 is proved. We will assume
the case where d ≤ n

2 , so r � d; the result then follows for d > n
2 because

en
d � en

n−d

(
1
x1
, ...,

1
xn

)
· x1 · x2 · · · · · xn .

This is computable with a circuit of size O(S(en
n−d) + n).1

As mentioned above, the proof arises from combining two theorems.
Before we can state the theorems, we need to define two key pieces of
notation.

For f ∈ k[x1 , ..., xn], ∇ f is the gradient of f , or the tuple ( ∂ f
∂x1
,
∂ f
∂x2
, ...,

∂ f
∂xn
)

consisting of all partial derivatives of f . Below we will speak of S(∇ f ), and
you may wonder what it means to apply S to a tuple of polynomials. By
S( f1 , f2 , ..., fm), we mean the size of the smallest arithmetic circuit with m
outputs such that the first output is f1, the second is f2, and so on.

Finally, the degree of a tuple of polynomials f1 , f2 , ..., fm , denoted by
deg( f1 , f2 , ..., fm), is a notion from algebraic geometry that generalizes the
degree of a single polynomial. We will not be able to define it here without
giving a full course’s worth of background in algebraic geometry, but it is
computed by examining the surface in 2n-dimensional space defined by the
system z1 � f1(x1 , ..., xn), z2 � f2(x1 , ..., xn), ..., zn � fn(x1 , ..., xn).

1The reciprocals can be used to construct a circuit because Bauer and Strassen allow
divisions in their circuits, which is a wrinkle we will not discuss here, for the sake of brevity.
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Theorem 2. For any polynomial f ,

S(∇ f ) ≤ 5 · S( f ).

Theorem 3. For any tuple of polynomials f1 , ..., fm ,

S( f1 , ..., fm) ≥ Ω(log deg( f1 , f2 , ..., fm)).

Theorem 2 asserts that there is no polynomial f that is more than a
constant factor easier to compute than its partial derivatives. Theorem 3
(which was proven in Strassen (1973a)) generalizes the trivial lower bound
S( f ) ≥ Ω(log deg f ) discussed above to tuples of polynomials, using the
generalized degree that can apply to such tuples.

Bauer and Strassen prove Theorem 1 by computing the partial derivatives
of en

d , and then showing that the generalized degree of this set of polynomials
is dn . This then shows that

S(en
d ) ≥ Ω

(
S

(
∂en

d

∂x1
, ...,

∂en
d

∂xn

))
≥ Ω

(
log deg

(
∂en

d

∂x1
, ...,

∂en
d

∂xn

))
� Ω

(
log(dn)

)
� Ω(n log d),

with Theorem 2 providing the first inequality and Theorem 3 providing the
second.

4.3 Partial derivatives preserve lower bounds

In this section we will prove Theorem 2. Our proof is based on the proof
given by Morgenstern (Morgenstern (1985)).

Assume we have some polynomial f over a field k and n variables
x1 , ..., xn . We will simplify our induction by proving the slightly stronger
statement that for any polynomial f whose smallest circuit A has size S( f ),
there is a circuit B computing ∇ f that not only has size(B) ≤ 5 · size(A),
but also uses all of the same constants that A uses. Note that we will not
consider the constants 0 or 1 to have any bit complexity.

Our proof will proceed by induction on S( f ). When S( f ) � 0, f requires
no operations to compute. Thus f is either the constant 0 or 1, or a single
variable xi . If f is constant, than all its partial derivatives are zero, so
S(∇ f ) � 0 � S( f ). If f is xi , then it has a single partial derivative which is 1,
and the rest are zero, so again S(∇ f ) � 0 � S( f ).
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If S( f ) > 0 but f can be computed by a circuit with no additions or
multiplications, then f consists of some constant c, and S( f ) � dlog2 ce.
Then there must be a circuit for ∇ f that has a constant gate for c which it
ignores, and returns 0 or for all partial derivatives. This circuit shows that
S(∇ f ) ≤ S( f ) ≤ 5 · S( f ).

Now we consider the case where S( f ) > 0 and f is non-constant, and
we assume by way of induction that the theorem holds for polynomials
f ′ with S( f ′) < S( f ). Let A be a circuit of size S( f ) computing f , with N
operations. Let g1 , g2 , ..., gN be the functions computed by themultiplication
and addition gates of A, in an ordering such that every gate occurs after its
inputs.

We can imagine the computation of A as occurring by first listing the
variables x1 , ..., xn , then the constants c1 , ..., cm used in the computation,
then listing each gi as a sum or product of two items previously listed. For
example, a circuit computing the polynomial f (x , y) � 2x y + y might look
like:

x1 � x , x2 � y , c1 � 2, g1 � x1 × c1 � 2x ,

g2 � x2 × g1 � 2x y , g3 � x2 + g2 � 2x y + y � f .

In this case, assuming this is the smallest circuit computing f (which it is),
we would have 3 gates and a bit complexity of log2(2) � 1, so S( f ) � 4.

Now, consider the polynomial f ′ on x1 , ..., xn , xn+1 that satisfies

f ′(x1 , ..., xn , g1(x1 , ..., xn)) � f (x1 , ..., xn).

f ′ can be computed by a circuit A′ using N − 1 gates and the same set of
constants, by using the same computation strategy as in A, but treating g1
as an indeterminate. Thus S( f ′) ≤ size(A′) − 1 � S( f ) − 1.

Let us see how this works for our example polynomial f (x , y) � 2x y + y.
In our example circuit for f above, we would define f ′(x , y , z) � yz + y,
so that f ′(x , y , g1(x , y)) � f ′(x , y , 2x) � 2x y + y � f (x , y). Then f ′ can be
computed by the following circuit A′:

x1 � x , x2 � y , x3 � z , c1 � 2,

g′1 � x2 × x3 � yz , g′2 � x2 + g′1 � yz + y � f ′,

which uses 3 − 1 � 2 gates, and no additional constants. Thus the size of A′

is 3, which is strictly smaller than A, the optimal circuit for f , meaning that
S( f ′) ≤ S( f ) − 1.
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Since S( f ′) < S( f ), we can apply the inductive hypothesis to get S(∇ f ′) ≤
5 · S( f ′). So we can assume we have a circuit B′ of size at most 5 · S( f ′) that
computes ∇ f ′ �

(
∂ f ′

∂x1
,
∂ f ′

∂x2
, ...,

∂ f ′

∂xn
,
∂ f ′

∂xn+1

)
, and also uses all the same constants

that A′ and A use. By transforming B′ while adding no more than 5 to its
size, we will turn it into a circuit B computing ∇ f �

(
∂ f
∂x1
,
∂ f
∂x2
, ...,

∂ f
∂xn

)
in size

at most 5 · S( f ′) + 5 ≤ 5 · S( f ).
To see how, note that since we have

f ′(x1 , ..., xn , g1(x1 , ..., xn)) � f (x1 , ..., xn),

the chain rule gives
∂ f
∂xi

�
∂ f ′

∂xi
+

∂ f ′

∂xn+1
·
∂g1

∂xi
.

Therefore the partial derivatives of f are expressible in terms of the partials
derivatives of f ′ and g1. In B′, we already have the partial derivatives of f ′

in terms of x1 , ..., xn , xn+1, and if we add the orginal first gate g1 back in,
this will give us xn+1 in terms of the other variables, and thus give access to
all the partials of f ′ in terms of x1 , ..., xn .

Thus by adding 1 gate g1, all that is left is to compute the partials of g1,
and carry out the addition and multiplication that characterizes the chain
rule. We must be able to do this by adding no more than 5− 1 � 4 to the size
complexity of the circuit. Fortunately, since g1’s children are either variables
or constants, its derivatives will be easy to compute and plug into the chain
rule. For all the xi which are not inputs to the gate g1,

∂g1
∂xi

� 0, and we simply
have ∂ f

∂xi
�

∂ f ′

∂xi
, so the circuit B′ already computes ∂ f

∂xi
. Therefore, we only

need to add gates onto B′ to compute the derivatives for variables involved
in gate g1.

The next step of the proof is best handled in cases, depending on the
nature of g1:

Case 1: g1 � xi + c j

In this case, ∂g1
∂xi

� 1, so

∂ f
∂xi

�
∂ f ′

∂xi
+

∂ f ′

∂xn+1
,

which can be computed by appending a single addition gate onto
B′, for a complexity increase of 1.
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Case 2: g1 � xi + x j , i , j

In this case, ∂g1
∂xi

�
∂g1
∂x j

� 1, so

∂ f
∂xi

�
∂ f ′

∂xi
+

∂ f ′

∂xn+1

and
∂ f
∂x j

�
∂ f ′

∂x j
+

∂ f ′

∂xn+1
.

We can compute the two by appending two addition gates onto B′,
for a complexity increase of 2.

Case 3: g1 � xi + xi

In this case, ∂g1
∂xi

� 2, so

∂ f
∂xi

�
∂ f ′

∂xi
+ 2

∂ f ′

∂xn+1
.

We can compute the two by appending the constant 2 (which adds
a bit complexity of 2), a multiplication gate, and an addition gates
onto B′, for a complexity increase of 4.

Case 4: g1 � xi × c j

In this case, ∂g1
∂xi

� c j , so

∂ f
∂xi

�
∂ f ′

∂xi
+ c j

∂ f ′

∂xn+1
.

Since we assume that B′ uses all the same constants as A (here we
see why that wrinkle is necessary), c j must already be a constant in
B′, meaning that ∂ f

∂xi
can be computed by appending multiplication

gate and an addition gate onto B′, for a complexity increase of 2.

Case 5: g1 � xi × x j , i , j In this case, ∂g1
∂xi

� x j and
∂g1
∂x j

� xi , so

∂ f
∂xi

�
∂ f ′

∂xi
+ x j

∂ f ′

∂xn+1

and
∂ f
∂x j

�
∂ f ′

∂x j
+ xi

∂ f ′

∂xn+1
.
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We can compute these two partial derivatives bywith two additional
gates each (an addition and a multiplication) added onto B′, for a
complexity increase of 4.

Case 6: g1 � xi × xi In this case, ∂g1
∂xi

� 2xi , so

∂ f
∂xi

�
∂ f ′

∂xi
+ 2xi

∂ f ′

∂xn+1

�
∂ f ′

∂xi
+ (xi + xi)

∂ f ′

∂xn+1
.

We can compute this with three additional gates (two additions and
one multiplication) added onto B′, for a complexity increase of 3.

We can see that regardless of what g1 is, we need add at most 5 gates to
B′ (1 to compute g1, and ≤ 4 to compute the chain rule) in order to create a
circuit B that computes ∇ f . Thus

S(∇ f ) ≤ size(B′)+ 5 � S(∇ f ′)+ 5 ≤ 5 · S( f ′)+ 5 ≤ 5(S( f ) − 1)+ 5 � 5 · S( f ).

This concludes our proof.

4.4 The lower bound

Now consider Theorem 2 applied to the elementary symmetric polynomial
en

d . Note that
∂en

d

∂xi
�

∂
∂xi

∑
1≤ j1< j2<···< jd≤n

x j1 x j2 · · · x jd

�

∑
1≤ j1< j2<···< jd−1≤n

i<{ j1 ,..., jd−1}

x j1 x j2 · · · x jd−1 � en−1
d−1 (x1 , x2 , ..., xi−1 , xi+1 , ..., xn).

Denote this last polynomial, en−1
d−1 applied to x1 , ..., xn with xi removed, by

en−1
d−1 (î). Theorem 2 then gives that

S(en
d ) ≥ Ω

(
S(∇en

d )
)
� Ω

(
S(en−1

d−1 (1̂), e
n−1
d−1 (2̂), ..., e

n−1
d−1 (n̂))

)
.

We will not give an explanation of how Theorem 3 is proved, since this
would require an in-depth dive into algebraic geometry. However, Bauer
and Strassen rely on this result, and prove that

deg
(
en−1

d−1 (1̂), e
n−1
d−1 (2̂), ..., e

n−1
d−1 (n̂)

)
� (d − 1)n � Ω(dn).
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Therefore
S(en

d ) ≥ Ω(log dn) � Ω(n log d).

Theorem 2 seems to be a powerful tool, in that it can be used to obtain
lower bounds on one polynomial based on other lower bounds (namely
those on its partial derivatives). It is a tool for translating lower bounds
between polynomials that are related by the partial derivative operator. In
the next chapter, we will explore the question of whether Theorem 2 can be
further applied to translate Bauer and Strassen’s lower bounds into other
polynomials besides elementary symmetric polynomials.





Chapter 5

Can We Go Further?

This chapter will discuss the potential implications of Bauer and Strassen’s
lower bound discussed in Chapter 4, and possible strategies for generalizing
it beyond just elementary symmetric polynomials. This chapter reflects
exploratory work by the author, and though it is light on new results, it will
propose original questions and ideas for solving them. It is my hope that the
ideas here may provide an avenue for future research in arithmetic circuit
lower bounds.

5.1 Simple extensions

Asmentioned in Chapter 4, Bauer and Strassen’s lower bound for elementary
symmetric polynomials (Theorem 1) is one of the only known non-trivial
arithmetic circuit lower bounds. Given that all symmetric polynomials are
expressible in terms of these elementary symmetric polynomials, we can
intuitively think of this result as a quantification of the intrinsic complexity
of symmetric polynomials.

But there are many polynomials whose intrinsic complexity we are
interested in that are not symmetric (such as, notably, the determinant and
the permanent). In many cases these polynomials, while not symmetric
in the sense of being invariant with respect to every permutation of their
variables, do have some type of inherent symmetry. For example, the
determinant generates the invariant ring of a simple action involving matrix
multiplication (for a description, we refer the reader to Garg et al. (2019)).

Since Theorem 1 tells us that objects with a particular kind of symmetry
are complex, it is natural to wonder what it might imply for objects with
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other kinds of symmetry. Can we somehow extend Theorem 1 to find
lower bounds on polynomials which are not symmetric polynomials, but
nonetheless have a high degree of symmetry?

The short answer is yes, although not all extensions of their result are
very interesting. For example, for integers n that are a perfect square n � m2,
for 1 ≤ d ≤ m, define

τn
d (x1 , ..., xn) � em

d (x1 + · · · + xm , xm+1 + · · · + x2m , ..., xn−m+1 + · · · + xn).

For example,

τ9
3(x1 , ..., x9) � e3

3(x1 + x2 + x3 , x4 + x5 + x6 , x7 + x8 + x9)

� (x1 + x2 + x3)(x4 + x5 + x6)(x7 + x8 + x9).

Note that in general τn
d is not a symmetric polynomial – exchanging x1

and x4 in the above expression would yield a polynomial with different
coefficients. It is however invariant with respect to permutations that act only
on the m variables {xmi+1 , xmi+2..., xm(i+1)}, for each i � 0, 1, ...,m − 1. It is
therefore in the invariant ring of a subgroup of the full permutation group Sn
(specifically the subgroup generated by the aforementioned permutations).

It can be straightforwardly shown that Theorem 1 implies the following
for τn

d :

Theorem 4. If τn
d is as defined above, and r � min(d ,

√
n − d), then

S(τn
d ) ≥ Ω(

√
n log r).

Proof. We will demonstrate this in two ways. The first way is by analogy
with how Theorem 1 was proved. We find the gradient of τn

d :

∇τn
d �

(
∂τn

d

∂x1
, ...,

∂τn
d

∂xn

)
�

(
em−1

d−1 (1̂), ..., e
m−1
d−1 (m̂)

)
,

where we are now using em−1
d−1 (î) to denote em−1

d−1 applied to the list x1 +

· · · + xm , ..., xn−m+1 + · · · + xn with xm(i−1)+1 + · · · + xmi removed. Now the
partial derivative theorem (Theorem 2) guarantees that a lower bound on
computing this tuple of polynomials is also a lower bound on computing τn

d
(to within a constant factor). This tuple is identical to the tuple ∇em

d , with the
exception that single variables have been replaced with sums of m variables,
with no two sums sharing terms. The same logic that Bauer and Strassen
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used to show that ∇em
d has degree rm can now be applied to show that ∇τn

d
has degree rm . Therefore by Theorem 3,

S(τn
d ) ≥ Ω

(
S(∇τn

d )
)
≥ Ω

(
log rm )

� Ω(m log r) � Ω(
√

n log r).

Our second proof method is simpler. Note that if we set xi � 0 for all i
that are not multiples of m, then

τn
d (x1 , x2 , ..., xn) � em

d (x1 + · · · + xm , xm+1 + · · · + x2m , ..., xn−m+1 + · · · + xn)

� em
d (0+ · · ·+0+xm , 0+ · · ·+0+x2m , ..., 0+ · · ·+0+xn) � em

d (xm , x2m , ..., xn).
If we had a circuit computing τn

d in less thanΩ(m log r) gates, then we could
compute em

d in less thanΩ(m log r) as well by simply replacing those variable
inputs with constant 0s. This is impossible by Theorem 1.

�

The simplicity (or, as some might say, the triviality) of our second proof
method suggests that the τn

d family is not all that interesting of an extension
of Theorem 1. It is just e

√
n

d with each variable replaced by a sum of
√

n

variables, and as such it behaves just like e
√

n
d .

How can we find a more interesting extension? The idea we will
explore in the remainder of this chapter is to look for a class of polynomials
which are not symmetric, but whose partial derivatives are symmetric. The
rationale behind this idea is that Theorem 1 intuitively tells us that symmetric
polynomials are inherently complex, and Theorem 2 tells us that functions
are as complex as their partial derivatives. So if we could find a polynomial
whose partial derivatives are symmetric, we might be able to prove it shares
the inherent complexity of those derivatives. It turns out that much of the
difficulty of following this line of reasoning comes is hidden by that little
word “find.”

5.2 Which polynomials have symmetric partial deriva-
tives?

For all you fans of formal notation out there, let’s formally define exactly
what the title of this section is asking. For convenience we’ll use the notation
fxi to represent ∂ f

∂xi
, and [n] to represent {1, 2, ..., n}.

Fix an integer n and a field k. Let Sn be the symmetric group on n
elements, and let it act on the vector space kn by permuting coefficients in the
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natural way. Then we want to characterize the set of n-variate polynomials
f ∈ k[x1 , ..., xn] such that for every xi , fxi is symmetric. That is, the set

Dn ,k � { f ∈ k[x1 , ..., xn] | fxi ∈ k[x1 , ..., xn]Sn for all i ∈ [n]}.

We will hereafter omit the field k and write simply Dn .
One interesting feature of Dn is that unlike k[x1 , ..., xn]Sn , or any other

invariant ring, Dn is not a ring in general, because it is not necessarily closed
under multiplication. Symmetric polynomials form a ring because if we
have f , g ∈ k[x1 , ..., xn]Sn , then both f + g and f g are also symmetric. This
reflects the fact that both addition and multiplication commute with the
operation of permuting the variables. If one permutes the variables of f
and g and then adds/multiplies them, the result is the same as if one first
adds/multiplies them, then permutes the variables of the result. Therefore
for any permutation σ,

σ · ( f + g) � (σ · f ) + (σ · g) � f + g ,

and
σ · ( f g) � (σ · f )(σ · g) � f g ,

so f + g and f g are in k[x1 , ..., xn]Sn . In contrast, the operation that first
takes a partial derivative with respect to xi , and then permutes the variables,
commutes with addition but not multiplication. Formally, if f , g ∈ Dn , then
for all i ∈ [n],

σ · ( f + g)xi � σ · ( fxi + gxi ) � (σ · fxi ) + (σ · gxi ) � fxi + gxi � ( f + g)xi ,

so f + g ∈ Dn . However, for i ∈ [n],

σ · ( f g)xi � σ · ( fxi g + f gxi ) � (σ · fxi g) + (σ · f gxi ) � fxi (σ · g) + (σ · f )gxi ,

which is not in general equal to ( f g)xi since f and g are not necessarily
symmetric. Thus f g may not be in Dn .

Dn is not a ring, but it is a vector space over k, since it is closed under
both addition, and multiplication by constants in k. Therefore instead of
trying to describe Dn with a generating set, we will look for a basis, or a
set such that every polynomial in Dn can be expressed uniquely as a linear
combination of set elements.

To understand Dn better, let us start with small particular values of
n. D1 is simply the set of all univariate polynomials, since all univariate
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polynomials (and their derivatives) are symmetric with respect to the single
permutation of the variable x (the identity permutation). A basis for D1
is given by {1, x , x2 , x3 , ...}. Note that since all univariate polynomials are
trivially symmetric, there are no univariate polynomials which are not
symmetric but are in D1.

D2 is the set of polynomials f ∈ k[x , y] such that fx(x , y) � fx(y , x) and
fy(x , y) � fy(y , x). Let f be any polynomial in D2, and assume for now that
it is homogeneous of degree d (meaning every term in f with a non-zero
coefficent has degree d). Then

f (x , y) �
d∑

i�0
ai x i yd−i .

The constraint fx(x , y) � fx(y , x) implies that

fx(x , y) �
d∑

i�1
iai x i−1 yd−i

� fx(y , x) �
d∑

i�1
iai xd−i y i−1

�

d∑
i�1
(d − i + 1)ad−i+1x i−1 yd−i .

For these two polynomials to be equal, we must have iai � (d − i + 1)ad−i+1
for all i � 1, ..., d. Likewise, the constraint fy(x , y) � fy(y , x) implies that

fy(x , y) �
d−1∑
i�0
(d − i)ai x i yd−i−1

� fy(y , x) �
d−1∑
i�0
(d − i)ai xd−i−1 y i

�

d−1∑
i�0
(i + 1)ad−i−1x i yd−i−1.

This constraint gives that we must have (d − i)ai � (i + 1)ad−i−1 for all
i � 0, ..., d − 1.

In summary, here are the constraints we have found, written out in a
clearer form:

a1 � dad da0 � ad−1
2a2 � (d − 1)ad−1 (d − 1)a1 � 2ad−2
3a3 � (d − 2)ad−2 (d − 2)a2 � 3ad−3
...

...
dad � a1 ad−1 � da0
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Let’s start with a0 and try to use these constraints to get as many
coefficients as we can in terms of a0. We proceed as follows:

ad−1 � da0 ,

a2 �
d − 1

2
ad−1 �

d(d − 1)
2

a0 �

(
d
2

)
a0 ,

ad−3 �
d − 2

3
a2 �

d(d − 1)(d − 2)
6

a0 �

(
d
3

)
a0 ,

a4 �
d − 3

4
ad−3 �

d(d − 1)(d − 2)(d − 3)
24

a0 �

(
d
4

)
a0 , · · ·

You may now see the pattern. In general, we are finding that for even i,
ai �

(d
i

)
a0, and for odd j, ad− j �

(d
j

)
a0, or equivalently ad− j �

( d
d− j

)
a0. When

d is an even integer, these constraints fully determine every coefficient in
terms of a0, and we get:

f (x , y) � a0 ·
(
yd

+

(
d
1

)
x yd−1

+

(
d
2

)
x2 yd−2

+ · · · +
(
d
i

)
x i yd−i

+ · · · + xd
)

� a0 · (x + y)d .
If, on the other hand, d is odd, then this only allows us to express ai in terms
of a0 for even i. Performing an equivalent process starting with ad allows us
to say that ai �

(d
i

)
ad for odd i. Therefore we get:

f (x , y) � a0 ·
(
yd

+

(
d
2

)
x2 yd−2

+ · · · +
(

d
d − 1

)
x yd−1

)
+ad ·

((
d
1

)
x yd−1

+

(
d
3

)
x3 yd−3

+ · · · + xd
)

� a0 ·
(x + y)d + (x − y)d

2
+ ad ·

(x + y)d − (x − y)d
2

�
a0 + ad

2
· (x + y)d + a0 − ad

2
· (x − y)d .

In summary, we have shown that if f ∈ D2 is homogeneous of even degree
d, then it is a multiple of (x + y)d , and if it is homogeneous of odd degree d,
then it is a linear combination of (x + y)d and (x − y)d . Since any polynomial
is expressible as a sum of homogeneous components, this gives a basis for
D2: {1, x + y , x − y , (x + y)2 , (x + y)3 , (x − y)3 , ...}.
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Of particular interest here are the polynomials x − y , (x − y)3 , (x − y)5 , ...,
since they are not themselves symmetric. Exchanging x and y in these
polynomials is equivalent to multiplying these polynomials by a factor of
−1 (they are known as “alternating polynomials” for this reason). So we
have found a family of polynomials that are not symmetric, but which have
symmetric partial derivatives!

You are now likely tottering on the edge of your seat hoping that I’m
about to tell you that the polynomial family fm(x , y) � (x − y)2m−1 has
interesting and nontrivial circuit lower bounds arising from the fact that
∇ fm consists of symmetric polynomials, combined with Theorem 1. And
believe me, I would gladly tell you that if I thought I could get away with it.
Unfortunately, standards of peer review being what they are, I am forced
to remind you that Theorem 1 only improves on the trivial Ω(log d) lower
bound on degree-d polynomials by a factor of n, the number of variables.
If our number of variables is fixed, as in the case of ∇ fm for which n � 2,
Theorem 1 gives only a constant factor improvement on the trivial lower
bound. Since we are already so deeply invested in asymptotic thinking, a
constant factor improvement doesn’t really make much difference to us. So
our search for lower bounds must take us beyond the n � 2 case, to the
frightening world of polynomials in arbitrary numbers of variables.

Since alternating polynomials (polynomials for whom exchanging two
variables is equivalent to multiplying by −1) were so useful in the n � 2
case, it is reasonable hope that they might come to our rescue again in the
general case. That is, might it be the case that all alternating polynomials
in n variables have symmetric partial derivatives? Regrettably not. The
following is an alternating polynomial in n � 3 variables which provides a
counterexample:

f (x , y , z) � (x − y)(x − z)(y − z) � x2 y − x y2 − x2z + xz2
+ y2z − yz2 ,

but
fx � 2x y − y2 − 2xz + z2 ,

which is not symmetric. (Interestingly, fx is alternating with respect to
permutations that don’t include x, and this trend holds in general, but that
isn’t helpful for us right now.)

The time constraints of the semester unfortunately kept me from as deep
an exploration of the space Dn as I might have hoped for. However, some
time spent searching in the n � 3 and arbitrary n cases has left me with the
following conjecture, for which I have no certain proof or disproof:
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Conjecture 1. Let n ≥ 3. Then

{1, x1 + x2 + · · · + xn , (x1 + x2 + · · · + xn)2 , (x1 + x2 + · · · + xn)3 , ...}

is a basis for Dn .

Since the basis consists of the powers of the elementary symmetric polyno-
mial en

1 , Conjecture 1 would imply that for n ≥ 3, Dn ⊆ (en
1 ) ⊆ k[x1 , ..., xn]Sn .

That is, all polynomials in n ≥ 3 variables whose partial derivatives are all
symmetric are themselves symmetric. If true, this conjecture would be a
death knell for our simple strategy of lower bounding polynomials with
their partial derivatives, at least in its most basic form.

The remainder of the chapter will give some ideas for how to adapt this
strategy beyond its most basic form, such that we might be able to lower
bound functions based on the symmetry of their partial derivatives, even if
Conjecture 1 turns out to be true.

5.3 What next?

Let us define two classes of polynomials that generalize Dn .
For r ∈ [0, 1], let Dr

n be the set of polynomials in X � x1 , ..., xn such that
for every f ∈ Dr

n , at least an r-fraction of the partial derivatives of f are
symmetric. That is,

Dr
n � { f ∈ k[X] | ∃A ⊆ [n] such that |A| ≥ rn and fxi ∈ k[X]Sn for all i ∈ A}.

D1
n is simply Dn , but for r < 1, Dr

n may possibly contain more polynomials
than Dn . For fixed r (say r � 1/2), a polynomial family ( fn) with each
fn ∈ D1/2

n would then have gradients ∇ fn containing a linear number in n of
symmetric polynomials. Such a polynomial family may have lower bounds
arising from Theorem 1.

Another possible generalization comes from relaxing the invariant ring
in question from the ring of symmetric polynomials to an arbitrary invariant
ring. Fix a group action of a group G on kn , and let DG

n be the set of
polynomials f ∈ k[X]with all their partial derivatives in k[X]G:

DG
n � { f ∈ k[X] | fxi ∈ k[X]G for all i ∈ [n]}.

Then DSn
n � Dn for the natural action of Sn on [n]. This class of polynomials

is less relevant to Theorem 1 specifically, since that theorem deals specifically
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with k[X]Sn . However, this is where the ideas discussed in Chapters 2
and 3 may become relevant again. Chapter 3 specifically exhibited a line
of research into the inherent complexity of invariant rings, via circuit
encodings of their generating sets. As more information is learned about
the computational complexity of an invariant ring k[X]G, the complexity of
the class of polynomials DG

n may then be better understood.
Since the partial derivative is at the heart of the an arithmetic circuit

lower bound based on symmetry, it makes sense to ask questions about
the interaction of the partial derivative with symmetries of group actions.
Further study is needed to understand this interaction, and classes of
polynomials like Dn , Dr

n , and DG
n provide concrete objects at which to direct

this study.





Chapter 6

Conclusion

If you have read all the way to this point, you may find yourself wondering
what you have gained from your time thereupon spent. What unifying
insights was I trying to impart to you in so many painstakingly chosen
words? What, in short, was this all about? If my prose has been sufficiently
skillful, the separate shards of this answer are by now safely lodged in
your brain, but it is worth taking the time to arrange them into a complete,
self-contained sculpture that you are now equipped to view in its entirety.
You have seen the tail and the trunk and the ears, and now it is time to look
upon the full elephant.

6.1 What we have learned

Uniting everything we have discussed are two concepts not unique to math-
ematics – symmetry and complexity. Invariant polynomials and invariant
rings are defined by their symmetry – they remain the same when trans-
formations (group actions) are applied. In other contexts, we may think of
symmetry as a form of simplicity, but in the context of polynomials, it is para-
doxically through properties symmetry that we are able to construct proofs
of inherent complexity, as measured by arithmetic circuit lower bounds.
In Chapter 3, symmetry under a particular transformation was exploited
to show that an arithmetic circuit could solve the 3-matching problem,
which (if that problem is as hard as is believed) shows that the arithmetic
circuit must be complex. In Chapter 4, polynomials with symmetry under
variable permutations were shown to have a definite structure, with partial
derivatives taking a particular form, which then gave definite limits on how
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efficiently they could be computed.
In both cases, the symmetry of the polynomials makes it possible for

mathematicians to prove their complexity, but it would be hasty to walk away
with the conclusion that “symmetry causes complexity.” This statement
is intuitively backwards, and our intuition here is valuable and not worth
abandoning just yet. In the world of Boolean circuits, it is known that
a randomly chosen Boolean function family is overwhelmingly likely to
require large circuits to compute. However, computer scientists struggle to
write down a specific Boolean function family that requires large circuits,
because if you can construct a function family through some kind of rational
process, you can probably compute it with a small circuit as well. Humans
are very bad at randomly sampling the space of Boolean function families.
This dilemma is sometimes described as “searching for hay in a haystack”
– you know there is hay all around you, but every time you reach into the
stack, you draw out a needle.

It is not known whether similar facts are true for polynomials, since
the proof method does not translate into the arithmetic realm, but we
might expect that “random” polynomial families not defined by any special
symmetry would be complex and hard to express with a small circuit, by
virtue of their arbitrariness. The methods available to mathematicians for
proving theorems are inherently biased towards nice polynomials with
nice properties that can be exploited, and so it is natural that when we
begin proving theorems about polynomial complexity, these are the first
polynomials that yield to investigation. So although the idea of symmetry
giving rise to provable complexity is an interesting one, the maxim of
“symmetry causes complexity” is not and should not be accepted as a
philosophy of how arithmetic circuits work.

With this word of caution in mind, however, we have seen in this paper
that symmetry does provide a useful tool with which to analyze complexity.
Analysis of invariant rings and polynomials may have the potential deepen
our understanding of arithmetic complexity yet further. We will conclude
by suggesting a few possible areas for such analysis.

6.2 Future work

We recklessly imply throughout Chapter 5 that the lower bounds shown
for elementary symmetric polynomials will likely give rise to lower bounds
for the more general class of symmetric polynomials. However, this is
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by no means a solved problem. In order to formalize the intuition that
“symmetric polynomials have provable inherent complexity” that Chapter 5
assumes, it would be necessary to show that the lower bounds on elementary
symmetric polynomials extend in some way to all symmetric polynomials. If
this assumption is indeed true, the most likely directions toward proving it
wouldbe either to follow the footsteps of Baur andStrassen (1983) and analyze
the algebraic geometry of the gradients of general symmetric polynomials,
or to show that small-size circuits for general symmetric polynomials would
somehow yield small-size circuits for elementary symmetric polynomials.

In Section 5.3, we give specific examples of not-yet-understood classes
of polynomials whose partial derivatives are defined by symmetry. These
classes seem natural as next steps to study after Bauer and Strassen’s results,
since those describe how complexity arises from symmetric polynomials
and is preserved by partial derivatives. This is a good potential direction for
exploration, especially for someone (like me, and perhaps you the reader as
well) without a great deal of prior research experience in algebra or complex-
ity theory, since it seems that an understanding of partial derivatives would
be mostly sufficient. The goal of this work would be to find unconditional
lower bounds on a wider range of polynomial families, and thereby to better
understand arithmetic circuit complexity.

The work presented in Chapter 3 on the complexity of succinct encodings
also has the potential for extension to new results. Section 1.5 of Garg
et al. (2019) lists several open questions which are natural extensions of
the work summarized in this paper, and we refer readers interested in the
most natural specific extensions of this work (in the opinions of those who
actually did it) to this list. These questions are aimed at understanding other
problems related to invariant rings such as the orbit closure and null cone
problems, which have implications for the complexity of the permanent
polynomial, and fit into the larger goal of separating VP and VNP, perhaps
the most fundamental goal of arithmetic complexity.

Arithmetic circuit complexity is an indirect path toward answering
questions about the nature of computation, a path that is uniquely poised to
take advantage of tools from algebra. We have seen that these tools, in the
form of objects like group actions and algebraic varieties, can be applied to
polynomials with the right kinds of symmetry. This area of study is exciting
because it brings the very old results of algebra into conversation with the
very new field of computational complexity theory. With so little known
about the complexity of polynomials, it can be safely assured that though
the history of algebra is long, its future is longer yet.
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