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     Abstract 
 
 The search for improvements to detection and treatment of cancers is a paramount 

goal for all of medicine. The most important step for oncological research is to expand the 
knowledge base of the genetic characteristics and abnormalities that give rise to cancer. In 
our present day, one of the most pressing and deadly forms of cancer is that of the lung, with 
lung adenocarcinomas being the most prevalent variation of the disease. Improving our 
cancer genomic insight can provide the seedings for improved cancer detection, novel cancer 
treatment, and serve as a guide for avenues to explore with future oncological research. 
Using The Cancer Genome Atlas (TCGA), a cancer genomics program from the National 
Cancer Institute, a data set of 512 lung adenocarcinoma samples was compiled for analysis 
into the interconnectivity of patient characteristics and their impact on gene expression 
profiles. For this sample population, patient sex, age, race, smoking history, and tumor stage 
were analyzed using a permutational multivariate analysis of variance (perMANOVA) 
modeled with non-metric multidimensional scaling (NMDS) to determine significant 
interactions between the variables on tumor genetic differentiation. Patient smoking history 
and tumor stage, sex and tumor stage, and sex and age were all found to have statistically 
significant impacts on gene expression, while race on its own was also found to have a 
significant impact. This analysis highlights that male and female cancers might differentiate 
quite differently and illuminates a need to explore sex related differences in cancer 
progression. Additionally, the research emphasizes the continued buildup of mutations 
throughout a cancer’s proliferation, showing the need for investigation into cancer 
development after it has been initially discovered. Lastly, this research demonstrates that 
patient variables interact significantly to impact gene expression profiles and accentuates the 
need for research about how external factors combine and interconnect to make each cancer 
unique.   
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Introduction 
 
Curing cancer has been an ultimate goal of medical research, attracting ideas crossing 

many disciplines and systems (Nakamura et al., 2016). However, a cure for cancer is a 

challenging target to reach due to the difficulties of detection and treatment along with the 

immeasurable complexity of cancer itself (Auyang, 2006). Cancer at its core is chaotic, 

developing from the accumulation of random mutations that eventually override and 

overwhelm the cell’s anti-cancer defense mechanisms, leading to uncontrolled cell growth 

and division (Weinberg, 1996). While we do have an understanding of the core mechanisms 

that work to prevent cancer and the elements of normal cell functioning that go awry when 

cancer arises, the extraordinary complexity of life inherently means that every cancer is 

unique (Hartmaier et al., 2017). Although cancers have many common similarities which 

have formed the basis for many contemporary cancer treatments, gaining a complete genetic 

understanding of all cancers is the most essential step in the development of novel cancer 

therapies (Heim et al., 2014). Beyond simply enhancing our knowledge base of cancer 

genetics, increased genomic analyses could help us recognize the warning signs of cancer 

earlier, better prepare for new cancer patterns that arise, and most importantly, generate more 

personalized cancer therapies to better fight back against a patient’s unique cancer variant 

(Chin et al., 2011). 

Safer and more effective treatments are a primary objective for biomedical research, 

especially in oncology, so improvements to our current treatment methods are paramount. 

Generalized cancer therapies, such as radiation therapy or chemotherapy, impose a great toll 

on patients (Aslam et al., 2014). These treatments work to destroy cancer cells, but 

collaterally damage healthy cells (Baskar et al., 2014). Targeted therapies allow for a massive 
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step forward in tumor therapy, as specific cancer cell biological processes are targeted by the 

drug. However, many cellular processes are so complex our still limited understanding and 

biotechnological capabilities mean that we can only target specific cell mechanisms (Suda & 

Mitsudomi, 2014). Moreover, cancer cells might become resistant to these therapies over 

time and cancers can develop with multiple cellular abnormalities, meaning targeted 

therapies cannot be the sole treatment in most cases (Groenendijk & Bernards, 2014).  

This is where the importance of personalized therapies reveals itself. Only around 5 to 

10 percent of cancers come from inherited genetic mutations (Riley et al., 2012). For these 

patients, genetic testing and early targeted therapies can be a crucial tool for attacking their 

cancers. However, this still leaves out the large majority of patients whose cancers developed 

from random mutations over their lifetime. As our genomic knowledge base increases, we 

will begin to discover more and more abnormalities in each cancer variant and slowly 

develop treatments for these abnormalities (Moreira & Eng, 2014). With more treatment 

options available, doctors can prescribe personalized treatment plans that attack the exact 

mutinous pathways in a specific patient’s cancer, increasing treatment efficacy, improving 

quality of life, and prolonging patient lifespan (Friedman et al., 2015). Unfortunately, we are 

still a long way away from having a sufficient stockpile of treatments that can be 

personalized to every patient, but the first step in getting there is analyzing the genomics of 

as many cancer variants as possible and discovering patterns for the foundation of future 

therapies.  

This paper’s analysis attempts to explore a tiny fraction of the sprawling macrocosm 

that is cancer research by investigating the genomics of lung cancer. When choosing a 

primary focus for cancer investigation, no origin is more prevalent than cancer in the lung. 
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Based on statistics compiled by the SEER Cancer Statistics Review, there are estimated to be 

over 235,000 new cases of various forms of lung cancer every year in the United States 

alone. It is the second most prevalent form of cancer for both men and women and is 

primarily diagnosed in patients over the age of 65. Furthermore, it is also one of the deadliest 

forms of cancer, with a 5-year survival rate of only 18.1 percent (Howlader et al., 2020). This 

means lung cancer is the leading cause of death amongst all cancers, with over 130,000 

patients succumbing to the disease every year in the US (World Health Organization, 2021). 

All of this signifies that lung cancer is a top priority for cancer researchers, doctors, and 

patients alike.  

In addition to being categorized by the organ of origin, cancer is also classified by the 

type of cell it originates from (Travis et al., 2013). For lung cancer, this subsequent 

breakdown begins by classifying the cancer as small cell, non-small cell, or carcinoid tumors. 

Carcinoid tumors are quite rare and originate from the lung’s neuroendocrine cells. Small cell 

lung cancers are more common, making up a bit less than 20% of all total lung cancers, and 

typically originate from bronchi cells. However, far and away the most common type of lung 

cancer is non-small cell lung cancer (NSCLC), which accounts for over 80% of all lung 

cancers. While not as fast growing as its small cell counterparts, NSCLCs often go 

undetected and don’t show symptoms until it has reached an advanced stage (Markman, 

2021).  

Being such a large section of lung cancers, NSCLC is typically broken down further 

by the tissue it arises from (Travis et al., 2013). Undifferentiated carcinomas account for 10 

to 15 percent of NSCLC while squamous cell cancer accounts for about 30 percent of 

NSCLC. However, the most prevalent form of NSCLC, and the most common type of lung 
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cancer overall, are lung adenocarcinomas. These cancers arise in the mucus secreting glands 

on the outside of the lung and account for over 40 percent of all NSCLC cases. As such, 

increasing our knowledge about the fundamental mechanisms that lead to the emergence of 

lung adenocarcinomas is imperative (Markman, 2021). 

When attempting to understand the fundamental aspects of cancers, the most 

important investigative goal is finding the genetic differences that make each cancer unique 

(Hartmaier et al., 2017). As mentioned previously, only 5 to 10 percent of cancers are caused 

by uncontrollable genetic mutations, so pinpointing the external factors that promote cancer 

formation can not only help us generate new cancer therapies but is also key to 

improvements in early cancer detection and the encouragement of cancer-preventative 

lifestyle changes. Proactivity towards attacking cancer before it becomes insurmountable is 

paramount and goes hand-in-hand with treatment therapies (Valle et al., 2015). If our 

ultimate oncological goal is cancer treatment personalized to the patient, we need to have a 

comprehensive understanding of how external and internal factors manifest individual-

specific tumor genomics.  

For lung cancer, the most obvious of these external factors is smoking. The impacts 

of smoking are well documented and today it is considered a widely accepted medical truth 

that smoking directly and severely increases your chances of developing lung cancer, among 

other potential diseases (Walser et al., 2008). Based on a study by the World Health 

Organization, cigarette smoking is expected to cause 10 million fatalities per year, and most 

of those are related to lung cancer (Proctor, 2001).  

Like other lung cancers, lung adenocarcinomas are too significantly correlated to 

previous smoking (Brownson et al., 1987). However, lung adenocarcinomas are also the most 
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common type of lung cancer found in people who have never smoked, bringing into question 

the other risk factors that lead to such a prevalence among the non-smoking populous (Myers 

& Wallen, 2021). While asbestos, radon, heavy metals, and diesel have also been linked as 

risk factors, these risk factors are rare and are often difficult to study and measure throughout 

the average cancer patient’s life.  

For many patients, oftentimes there is no clear external catalyst for their cancers. This 

is especially true for the lung adenocarcinoma patients who develop the cancer without 

previous smoking, highlighting the importance of the rest of the genome for cancer 

susceptibility. Consequently, we are forced into examining the patient themselves to attempt 

to understand their cancer. While any two humans are 99.9 percent genetically similar this 

still leaves approximately 3 million base pair differences throughout the entirety of the 

human genome (Hernandez et al., 2006). It is highly possible that many of the differences in 

tumors stem from these 3 million base pair differences. Furthermore, while each patient’s 

encoded genetic differences might only be catalysts for a small portion of cancers, the 

genomic differences from a variety of patient factors likely interact differently to generate 

unique cancer variants within each patient (Campa et al., 2011).  

Research has been done into the interconnectivity between specific genes and their 

interactions leading to cancer development (Y. Li et al., 2019). However, these studies only 

look into the interaction of pinpointed genes. In these narrow lensed genetic interaction 

analyses, misidentification of certain genetic ties and the overlooking of others are not 

uncommon (Wu & Ma, 2019). To better comprehend intra-genomic influences, we need to 

broaden our view into robust wholescale genetic interaction analyses and the relation to 

discernable external factors that create these genetic individualities.  
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Any particular risk factor or patient feature on their own can tell us a lot about 

differences in tumor genetics and development, but these impacts are superficial and don’t 

serve to help the ultimate goal which is personalized medicine (Yoshino & Maehara, 2007). 

For any individual patient, they cannot be quantified by their age, smoking status, or any 

other characteristic. The patient and their cancer are a sum of hundreds of thousands of 

different factors, and to fully grasp how cancer arises and how it might be treated and 

prevented we need to understand how these factors interact to see beyond the impacts of any 

one particular trait.  

For this preliminary investigation into these complex interplays, we must start by 

looking at the relationships of the clearest factors available to us. Patient demographics offer 

perfect variables for analysis as they are not only recorded for nearly every sample taken 

from the hospital, but the findings from investigating these characteristics can be applicable 

to every future cancer patient (Dick et al., 1997). Not only do simple demographics such as 

sex or age provide a clear stratifying attribute for analysis, there are clear links to genetic 

differentiations in tumors for each of these characteristics (Lopes-Ramos et al., 2020). The 

next step is to widen our view and connect these genetic differentiators to each other.  

For the purpose of this analysis, patient sex, age, race, smoking status, and the stage 

of the patient’s tumor were selected for investigation. Although there are many other factors 

that also contribute to the impacts found from any one demographic, these characteristics 

offer the clearest and most well-defined variable to be used in the designation of subgroups 

for research, prognosis, and treatment (Zahm & Fraumeni, 1995). They all also have clear 

ties to differential tumor genetic expression (Patel et al., 2010).  
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Based on what we know about the interconnectivity of the human genome and the 

impact of external factors on tumor genetics, we hypothesize that there are some factor 

interactions that drive tumor genomic differentiation. The interdependence of the human 

genome inherently dictates there to be multiple causative elements to any singular genetic 

change (Barillot et al., 1999). This, coupled with the well-studied influence of outside 

elements on tumor gene profiles means it is most likely that these elements interconnect to 

alter gene expression (Colak et al., 2013). 

 

Methods 
 
The data used in this analysis comes from The Cancer Genome Atlas (TCGA). An 

endeavor from the National Cancer Institute, TCGA is a cornerstone program for the 

consolidation of cancer genomic and other genetic information. TCGA has sequenced over 

20,000 tumor and normal tissue samples from 33 different types of cancer and has generated 

over 2.5 petabytes of genetic data. The publicly available data has been analyzed countless 

times across the medical sphere to restructure the way we classify cancers, bolster 

researcher’s understandings of the biochemical underpinnings of cancer, and begin to 

identify those vital genomic patterns that targeted, personalized therapies will be directed at 

(Weinstein et al., 2013).  

The processes involved in obtaining, sequencing, and processing tumor data differs 

tremendously across all different institutions and for all different cancers, but the general 

structure for all cancer analysis is somewhat uniform. The first layer of tumor data is 

collected when clinical information about the patient is documented. Biopsy samples of the 

patients’ tumors along with samples of the normal tissue are then extracted and stored for 
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further analysis. These samples are eventually processed into molecular analytes that can be 

used for gene sequencing, protein expression profiles, and other analytic processes.  

While each lab has different analysis procedures and uses different analysis products 

and software, most tend to follow a similar outline. For example, Kratz Lab in the University 

of California, San Francisco begins by storing samples taken from the operating room in 

liquid nitrogen before transferring into longer term cold storage in the lab. RNA extraction is 

performed using Qiagen miRNeasy Mini kit and RNA quality is assessed using Agilent RNA 

6000 Nano kit on Bioanalyzer. Subsequently, library prep is performed with Illumina 

Stranded total RNA method with Ribo-Zero Plus and sequenced on Illumina Nextseq 500. 

Finally, this sequencing data is sent out to a database like TCGA to be compiled with similar 

sequencing data from around the country (Mendez et al., 2017). All metadata collected 

through TCGA is compiled in the Genomic Data Commons Data Portal, a comprehensive 

data platform that consolidates cancer data from TCGA and other research programs.  

RNA sequenced gene expression data for the tumors of 513 lung adenocarcinoma 

patients was compiled from TCGA on the Genomic Data Commons. One of the samples was 

removed as the patient’s race was listed as the sole American Indian/Alaskan Native, a 

sample size too small to draw confident interpretations from, bringing the total samples for 

the data set to 512. For these 512 samples, the gene expression data for 19,340 different 

genes were recorded through RNA sequencing. To simplify the data, the raw counts of the 

reverse transcribed mRNA sequences at each gene loci were reduced to counts per million.  

For each sample, diversity patient information was recorded. There exists a variation 

in what medical professionals do and do not record and the accuracy of that recorded data 
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(Brown et al., 2018). Due to this, the patient biographical information had to be focused upon 

five main biographical variables: sex, age, race, smoking history, and tumor stage (Table 1). 

Biological sex serves as one of the largest differentiators between any two humans. 

Aside from the hormonal and physiological differences, there are clear genetic differences 

between the sexes (Short & Balban, 1994). Moreover, there has been a well-studied impact 

of sex on the development of certain cancers. Most importantly, this includes some forms of 

lung cancer, making sex an appropriate variable for this analysis (Dorak & Karpuzoglu, 

2012).  

Age is the single largest risk factor in cancer development (Armitage & Doll, 1954). 

Additionally, age is known to cause significant genetic changes over time that result in the 

process of human aging (Wheeler & Kim, 2011). It is theorized that many of the genetic 

changes in cancer and aging might be intertwined, so the need for further investigation 

dictates the inclusion of patient age data in this study (Aunan et al., 2017). 

Race is also a well-studied genetic differentiator between individuals. While 

socioeconomic, environmental, and other factors have significant influences on racial 

impacts, there is clear evidence of varying disease susceptibility between racial groups 

(Anderson et al., 2004). This susceptibility disparity also applies to many forms of cancer, 

making race a valuable variable for this study (Özdemir & Dotto, 2017).   

Smoking is the most infamous risk factor associated with lung cancer, being linked to 

30 to 40% of all lung cancer deaths (L. A. Loeb et al., 1984). However, while some analysis 

has been conducted exploring the impacts on genetic expression of cancers due to smoking, it 

is certainly understudied for being the most significant cause of lung cancer (Woenckhaus et 

al., 2006). Conversely, deeper investigation into the genetics of lung cancer for patients who 
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have no history of smoking is vital in illuminating the cancer-causing mechanisms for these 

cases without clear causative factors (Subramanian & Govindan, 2008). 

Mutations that lead to the evolution of cancer do not stop once the cancer has 

developed, and many cancers increasingly develop subsequent mutations due to impaired 

DNA repair mechanisms (K. R. Loeb & Loeb, 2000). Moreover, research has shown 

significant differences in the profiles of various stages of esophageal cancer, indicating the 

potential for similar genetic differences to be found across other variations of cancer (Zhou et 

al., 2003). While tumor staging is based on the tumor’s physical and metastatic 

characteristics, its vital to better understand the genetic alterations that occur as cancer 

progresses. 

Sex data for the patients was the only variable recorded for all samples. The 

breakdown between males and females was fairly even, with 237 samples coming from 

males and 275 samples coming from females.  

Age data was mostly complete throughout the entire data set, with only 19 samples 

recorded without an age. Ages were recorded at the time of the sample collection and ranged 

from 33 to 88 years of age, with a mean age of 65.30 and median age of 66. While some ages 

were recorded to the exact age in years and days, the data was simplified to simply the year 

of age. From here, ages were broken down into subgroups of 20 years to allow for group 

wide analysis of the data. These specific groupings were selected as they allowed for 

sufficient samples within each grouping and are aligned with groupings of early adulthood 

(31-50), late adulthood and early old age (51 to 70), and geriatric stage (71 to 90) patients 

(Vobr, 2013).  
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Comparatively, race data was quite poorly recorded, with 66 samples recorded 

without race. In addition to the aforementioned American Indian/Alaska Native patient 

whose sample was removed, there were 7 Asian, 52 African American, and 387 White 

samples. The patients classified as White included both non-Hispanic or Latino and Hispanic 

and Latino patients, as breakdown by Hispanic/Latino status would lead to another layer of 

incomplete recorded data and further reduce the value of the data.  

Smoking history was recorded in two separate ways for the initial data set. Both 

‘years smoked’ and ‘packs per year smoked’ were recorded at varying degrees, with samples 

being recorded with both, one, or neither of the two variables. ‘Packs per year’ data was 

selected as it was more completely recorded than ‘years smoked’, allowed for stratification 

based on the severity of the patient’s smoking, and had been used previously by researchers 

in the Kratz Lab when doing similar analyses (Mendez et al., 2017). While using how many 

cigarettes smoked is not a perfect measure of smoking consumption and risk, it is still one of 

the clearest indicators and has a strong correlation to smoking related conditions and 

addiction (Schane et al., 2010).  

These patients were then parsed into non-smoking, light smoking, and heavy smoking 

groups. Non-smoking includes both patients recorded as smoking zero packs per year and 

patients whose packs per year were not recorded. For patient’s whose packs per year smoked 

were recorded, the breakdown between heavy and light smokers was based on Corrine 

Husten’s data analyzing how to best quantify heavy and light smokers (Husten, 2009). The 

most common figure cited in her paper seemed to be 5 cigarettes per day, which assuming 20 

cigarettes per pack and 365 days in a year, equates to 91.25 packs per year. This resulted in a 

final breakdown of 162 non-smokers, 318 light smokers, and 32 heavy smokers.  
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Tumor-stage was the final factor, with 8 samples listed without a stage. In recent 

years, tumor staging has been standardized around the world to ensure better prognosis, 

diagnostic, and research can be done according to tumor stages. For lung cancers specifically, 

the American Joint Committee on Cancer completed their worldwide initiative for uniform 

staging standards (Chheang & Brown, 2013). Within the TCGA data, tumor stage was 

recorded with the main stages I, II, III, and IV, and with substages a and b for stage I, II, and 

III tumors. To simplify the data, the substages were removed bringing the total samples to 

274 stage I, 120 stage II, 84 stage III, and 26 stage IV samples.  

With the data now segregated into cleaner groups, the wholescale analysis of the 

dataset could begin. To conduct our test of significance, we utilized a permutational 

multivariate analysis of variance (perMANOVA). Biological data is rarely normally 

distributed, and this is especially so when dealing with gene expression data (Troyanskaya et 

al., 2002). As a non-parametric multivariate statistical test, the perMANOVA allows us to 

reduce the dimensionality of the intergroup and intragroup interactions of 5 distinct variables 

on 19,340 expressed genes into one singular test of significance. To do this, the 

perMANOVA generates its own model for determining significance using random 

permutations of the data to determine the dissimilarity matrix, rather than using some 

predetermined mathematical structure (joshuaebner, 2018). 

The gene data was first imported into R such that each gene was transposed to be the 

leading variable for each column. The simplified patient data was then also imported and 

merged with the gene expression data to create the overall data frame. It is essential to ensure 

that all of the patient data was imported as categorical data while the gene expression data 

must be imported as numeric data.  
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Using the Vegan package for R, the perMANOVA function was run with 999 

permutations and using Bray-Curtis as the dissimilarity matrix (Oksanen et al., 2020). Gene 

expression data served as the Y variable which was ran across each of the 5 patient 

information characteristics, which served as the X variables. From this, we were able to see 

the statistical significance of each patient characteristic on the gene expression data, as well 

as the significance of the interactions. In order to properly understand where the significant 

interactions amongst the variables occurred, the data was read from the most complex 

interactions, meaning the 5-way interaction between all the patient characteristics, down 

towards the effects of each characteristic on their own, with alpha set at 0.05. While all 5 

characteristics showed significance in their effect on gene expression, this significance is 

likely a consequence of the upstream interactions of the characteristics.  

Because of this, the interactions that were significant and subsequently chosen for 

visualization and analysis were the interaction between patient age group and sex, between 

tumor stage and smoking status, and between patient sex and tumor stage. Race was not 

found to have a statistically significant effect on gene expression when interacting with any 

of the other variables. However, it did have a statistically significant interaction on its own 

and was therefore included for further analysis. 

To further assess the variation in gene expression for each variable, the significant 

results were plotted along non-metric multidimensional scaling (NMDS) planes using 

metaMDS in Vegan. Ordination analysis is a technique for plotting multivariate data onto a 

coordinate plane in order to graphically visualize calculated significant differences. While 

other forms of ordination analysis attempt to highlight variation within the data, NMDS 

offers the most accurate plotting for the dissimilarity between points since the plane is 
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generated from the dissimilarity of the data itself. Being that NMDS structures ordination on 

a Cartesian plane, this also offers us the ability to increase or decrease the number of axes to 

plot data along, allowing for more flexibility in our ability to graph data (Kenkel & Orloci, 

1986). 

Two-dimensional scaling was first attempted, but after running metaMDS with 999 

permutations per model run and 100 different runs per dimension, the model stress was still 

too large, and another dimension was necessitated. After running the model in 3 dimensions 

with 20 different runs per dimension, a sufficient model stress of 0.1623233 was produced. 

Model stress acts as a goodness of fit marker for the observations, and a stress level between 

0.5 and 0.15 is considered a fair fit (Oksanen, n.d.). This model generated 3 NMDS values 

for each patient, collapsing the expression of the 19,340 genes into 3 linear axes.  

To complete our analysis, the NMDS scores of the metaMDS model were combined 

with their respective patient information variables. The 3 NMDS scores served as the x, y, 

and z coordinates for the plotting of the data into 3-dimensional space. A 3-dimensional 

graph was first attempted for data visualization but resulted in a convoluted mess of data 

points. Therefore, 3 separate 2-dimensional graphs were utilized showing the 3 combinations 

of NMDS axes. These graphs were further simplified by facet wrapping each interaction by 

the primary variable, allowing for easier differentiation for each variable.  

 

Results 
 
Permutational analysis of variance revealed three variable interactions that were 

statistically significant within our lung adenocarcinoma data set. The first of these was the 

interaction between the patients’ smoking statuses and their tumor stages (perMANOVA, F1,7 
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= 1.2177, p-value = 0.038, Figure 1). Plotting via non-metric multidimensional scaling 

allowed us to visualize the most noticeable differentiations in overall gene expression. For 

the interactions between stage II tumor patients who were heavy smokers, stage IV tumor 

patients who were heavy smokers, and unreported tumor stage patients who were light 

smokers, there were not enough data points to draw 95% confidence ellipses from. Non-

smokers in stage IV differed most significantly from heavy and light smokers, while non and 

light smokers also differed noticeably from heavy smokers in stage I (Appendix 1).  

The second significant interaction came with patients’ sex and their tumor stages 

(perMANOVA, F1,4 = 1.2476, p-value = 0.010, Figure 2). Plotting via non-metric 

multidimensional scaling allowed us to visualize the most noticeable differentiations in 

overall gene expression. For the interactions between female patients who had an unreported 

tumor stage, there were not enough data points to draw 95% confidence ellipses from. Gene 

expression data spread tended to vary more and more between males and females as tumor 

stage progressed, with stage III and IV patients in particular showing noticeable differences 

in expression profiles between men and women (Appendix 2). 

The final significant interaction was between the patients’ age group and sex 

(perMANOVA, F1,3 = 1.2876, p-value = 0.036, Figure 3). Plotting via non-metric 

multidimensional scaling allowed us to visualize the most noticeable differentiations in 

overall gene expression. This interaction showed a similarly noticeable trend with variation 

in the data increasing between males and females as the age group of the patients decreased. 

The clearest differentiation came with our middle age group of 51-to-70-year old’s, for which 

males’ data was clearly spread more discernibly than for females (Appendix 3). 
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Lastly, the only variable that did not significantly interact with any others was race. 

However, race on its own was found to contribute significantly to difference in tumor gene 

expression profiles (perMANOVA F1,3 = 2.1867, p-value < 0.001, Figure 4). Plotting via 

non-metric multidimensional scaling allowed us to visualize the most noticeable 

differentiations in overall gene expression. This revealed apparent differentiation in data 

between the races. White patients and patients whose races were not reported were spread 

similarly with Black/African American patients and Asian patients each uniquely spreading 

differently (Appendix 4). 

 

Discussion 
 
The overall goal of this analysis was to better understand the interactions of multiple 

external variables for lung adenocarcinoma patients and the effects these interactions have on 

tumor gene expression profiles. Based on our analysis, we can conclude that the interactions 

of demographic variables significantly impact these expression profiles. This analysis also 

brings to light many possibilities for the way lung adenocarcinomas arise and advance.  

First and foremost, we must address the main issue with stratifying our data based on 

interactions between specific variables. Our data set is large enough to draw conclusions 

from and our analysis revealed statistically significant interactions, but more specific 

observations drawn from the NMDS visualization of the data spread must be met with the 

caveat of sample population size, a significant factor for certain groups. While most of the 

interaction subgroups have more than a sufficient number of individuals, certain groups were 

populated by only a few individuals, some of which have too few to even generate a 95% 

confidence interval (i.e., less than 4 per group). Most notably, this occurred with the stage 
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and smoking status interaction, where the high number of categories within each variable led 

to a larger number of interaction possibilities and therefore some groups with too low a 

number of patients from which to draw conclusions. While these data points can be looked at 

with intrigue and used as supplemental support for conclusions drawn from sufficiently 

populous groups, it should be noted that attempting to make any solid observations would be 

scientifically improper and inaccurate.  

A similar note should be made towards any data interaction of a ‘not reported’ group. 

As mentioned in the methods to this paper, data collection is often at the whim of who 

collects it. Even in a database as esteemed and rigorous as TCGA, there are limits on the 

completeness of any real-life data. Regardless, inclusion of these incomplete samples is still 

important. Removing any tumor sample due to the lack of a variable of study eliminates the 

information that the sample might have for our other 4 variables and reduces the validity of 

any conclusions that come from our data analysis. Furthermore, most of the ‘not reported’ 

groupings were quite small and can be ignored when looking at the sub-groupings of the 

significant interactions in a broad sense. The exception to this might be with the individual 

race isolation. While it would be improper to assume patient characteristics for those with 

‘not reported’ for any specific variable, prevalence of White patients throughout this specific 

data set means it can be reasonably inferred that most of those whose race was ‘not reported’ 

were white. This is consistent with what we see in the race-based plotting of the data spread, 

with the not-reported group’s data spreading very similarly to the White race group. 

However, as with groups with low sample populations, any conclusions made from this 

should only serve as supplemental information to conclusions about the White group and 

should never be used for independent conclusions. 
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With these caveats addressed, we can begin to decipher the meaning of our results. 

The most glaring conclusion comes from looking at all the graphs together (Figures 1 – 4). 

Because all of the confidence intervals within every interaction grouping all encompass the 

same central area in our NMDS Euclidian diagram, we can conclude that none of these 

factors contribute to tumors with such different gene expressions that they might be 

considered separate entities. Essentially, this shows us that while tumor gene expression 

might vary greatly due to any specific variable, these tumors at their core are still 

fundamentally the same.  

This conclusion is reasonable in the context of tumor and human biology. Firstly, 

these tumors are all lung adenocarcinomas, meaning they originate from similar tissue which 

would fundamentally have similar natural gene expression profiles (Sonawane et al., 2017). 

Furthermore, while every cancer is unique in some way and there are many different 

mechanisms that could go awry leading to the emergence of cancer, there are many 

functional similarities between cancers and consistencies in the pathways indicative to cancer 

formation. Studies have even shown similar genetic underpinnings across different types of 

cancer, so it’s no surprise that multiple cancers of the same type, like we have in our study, 

are in many ways intrinsically similar (Jiang et al., 2019). The more important conclusion to 

take away from looking at the graphs holistically is that the spread of the data differs 

noticeably for each variable breakdown. This shows us tumors are genetically impacted by 

our observed factors and genetically differentiate distinctly depending on external patient 

factors.  

Let us first look at each of our significant interactions individually, starting with 

smoking and tumor stage. Unfortunately, due to the small sample sizes for many of the heavy 
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smoking-interaction subgroups, most of our conclusions drawn from this interaction will 

have to focus on light and non-smokers (Figure 1). However, it is quite interesting to note 

that for stage I patients, where there was a sufficient population of heavy smokers in addition 

to light and non-smokers, heavy smokers showed far less differentiation than with the other 

smoking groups (Appendix 1). One reasoning for this might be that lung cancers detected 

early for heavy smokers are more likely to be linked directly to their smoking habits, whereas 

those who do not smoke more than likely have a variety of other underlying factors or 

random mutations that contributed to the cancer, meaning the genetic expressions for heavy 

smokers might vary less than those with more varying causes (Powell et al., 2003). However, 

more data would be needed for heavy smokers with tumors of higher stages to determine if 

this is indeed the case. Being that there is some level of expressional difference at every stage 

between light and non-smokers, it is more likely that smoking has a direct effect on the genes 

which have expressions that are altered during the rise and progression of lung cancer (He et 

al., 2018).  

Patient sex and tumor stage interacting further enlightens on how tumor progression 

changes with other external factors. Male and female tumors are similarly differentiated at 

early stages of cancer development but begin to deviate from each other as cancer progresses 

(Appendix 2). Furthermore, this deviation becomes increasingly apparent at every subsequent 

increase in tumor stage, rather than simply deviating at the transition between two stages. 

This seems to indicate that there is some fundamental distinction between genetic males and 

females that leads to differing progression of cancer.  

Significant dichotomy of sex-linked differentiation is also seen across different stages 

of the patients’ life. Genetic variation was greater for males than for females, but there was a 
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slight trend towards genetic similarity as patients aged. One explanation for this might be that 

for cancer to arise at far younger ages than typically expected, extreme and more genetically 

unique mutations might arise, leading to expression profiles that are more varied than the 

more typical elderly lung cancer patient (Berg et al., 2010). 

Lastly, we must examine race. While race in itself did not contribute to any 

significant interactions, investigation into why this disassociation from other factors is the 

case could tell us just as much as investigation into interactions between two other variables. 

It is interesting that race did not correlate with any other factors despite a well-established 

consensus of racial differences in the prevalence of lung cancer (Schabath et al., 2016). 

While any discussions about the implications of race in regard to human health must be met 

with the admonition of the extreme cultural, environmental, and socioeconomic 

circumstances that connect to race, it can enlighten us to interesting hypotheses about race’s 

impact. Most importantly, in the framework of this analysis, the alienation of race from 

interacting with other factors might indicate that whatever genetic differences there are 

between races are completely distinct from the genes that lead to cancer variation.  

While looking at each of these interactions on their own is illuminating, it’s important 

to observe them collectively. It is noteworthy that patient sex and their tumor stage were each 

a component in two out of those three interactions. This allowed us to observe common 

themes between each of those variables’ two sets of interaction plots.  

For patients’ tumor stages, both its interaction with smoking status and with patient 

sex revealed that as the tumor of the patients progressed in the stage, the spread of the data 

increased. Being that cancer stems from mutations which build up over time, it makes sense 

that mutations would continue to accumulate as tumors advance in stage. Investigation into 
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the driving genetic mutations that lead to metastasis (which is also the designating factor 

between stage III and stage IV tumors) highlights the accumulation of subsequent mutations 

being the culprit for this tumor advancement (Yokota, 2000). It can reasonably be assumed 

that the buildup of mutations occurs similarly between every stage of cancer, even if there is 

not a clear marker between stages as there is with malignancy. And as mutations in the 

genome directly tie to differential genetic expression, it is highly likely that this progression 

of genetic differentiation is tied to secondary mutations within the tumor (Jia & Zhao, 2017). 

This enunciates the need to treat tumors at different stages as separate entities and 

begin to research diagnostic biomarkers and novel treatments on a stage specific basis. With 

smoking specifically, the genetic differentiation of smokers versus non-smokers is well 

studied, but most studies are done without regard for tumor staging and how the tumor may 

have changed as it progressed within the patient (X. Li et al., 2018). While it is obviously 

difficult to test tumors every step of the way, it is vital to better understand whether these 

expression differences as the cancer progresses are linked to previous smoking. The 

relationship discovered between smoking and tumor stage gene expression highlights the 

importance of investigating this relationship at an isolated level. If it’s widely studied and 

understood that smoking promotes normal cells mutating to become cancerous, why do we 

also study how smoking promotes already cancerous cells to mutate further? 

 Similarly, the two significant interactions with patient sex highlight some important 

trends for the future of oncological study. Consistently, throughout both its interaction with 

patient age group and tumor stage, males tended to show far greater data spread when 

compared with women of the opposing sub-grouping. This is potential due to our model 

more closely fitting gene expression profiles found in women due to there being more 
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women in the bivariate ‘sex’ factor, meaning men were more likely to be spread farther and 

more noticeably (Kruskal, 1964). Regardless, the model still shows clear differences in the 

differentiation of males and females, indicating some underlying biological factor that ties to 

sex. Deferring genetic biomarkers between sexes have been studied throughout oncology and 

with non-small cell lung cancer specifically, so it not unreasonable to conclude that sex-

linked genetic differentiation might be present at many levels of lung cancer development 

(Planchard et al., 2009). 

Based on our results, the two factors with which sex was found to interact are key. 

Both age and tumor stage offer us progressive timelines over which to view genetic 

differentiation, indicating a linkage between time and sex in tumor development. Whether 

it’s over the course of the patient’s lifetime or the tumor’s, it is clear that cancers in men and 

women develop differently. Yet, in current oncological research, patient sex is often treated 

as a control variable rather than an independent variable with impacts to tumor biology 

(Rubin et al., 2020). The interaction with both of these progressive variables illuminates the 

potential need to isolate cancer research more harshly by sex. 

On the whole, these results show that we may be too liberal in our classification of 

cancers. Differences in tumor stage are known to contribute to gene expression differences 

(Ma et al., 2003). So is patient sex (Brannon et al., 2012). Now we need to dive deeper into 

how segregation by these two easily accessible oncological variables can help us more 

accurately find genetic targets for diagnosis, prognosis, and novel therapy development.  

Despite the success of this analysis, there are many ways the analysis could be 

improved to provide larger scale results. Most obviously, while 512 patient samples produce 

a sufficiently large data set, those 512 individuals in no way encompass all the possible 
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variation within the immensely complex universe of lung oncology. In the Genomic Data 

Commons alone, there are thousands more tumor samples that, coupled with the numerous 

other cancer data bases throughout the world that are constantly being added to, provide us 

the opportunity to conduct a similar analysis on a much larger scale. In our analysis, there 

were many interactions which were nearly statistically significant, and larger-scale analyses 

could enlighten us onto other significant interactions that we were not able to find in this 

investigation. 

In a similar vein, the five variables we studied were far from representative of all 

potential external factors that could impact lung cancer development. While these five factors 

were the most prevalently recorded throughout most data sets, there are many other potential 

risk factors and patient characteristics that would be worth investigating. External factors 

such as air pollution, radon, and hazardous chemicals have been known to increase 

susceptibility to lung cancer (Malhotra et al., 2016). Coupled with the abundance of other 

physical characteristics that could be recorded for patients, such as body mass index (BMI) 

or exercise habits, the possibility for other interactions is boundless (Arnold et al., 2016). 

This analysis serves as the initial step in finding all the ways external factors interact to 

differentiate lung cancer genomic expression.  

Additionally, there are a few aspects of the analysis’ methods that could be adjusted 

to provide better accuracy and insight for future studies. Firstly, due to the categorical nature 

of the variables required to perform a perMANOVA, there are some potential flaws with the 

way the data was reduced into specific groupings. The most significant of this comes with the 

grouping for the factor of smoking status. Patients who had no history of smoking were 

recorded as ‘not reported’ for their ‘packs per year’ values because of inconsistencies in the 
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way data was recorded within the TCGA database. This opens up the possibility for smokers 

who did not have their ‘packs per year’ recorded being lumped into the same group as those 

who had never smoked. This was further complicated by the fact that there was an additional 

smoking status category of ‘years smoked’ which occasionally conflicted with the data in the 

‘packs per year’ category. This complication of such a widely supplied data set could be 

mitigated with a large increase in the dataset size to allow for more flexibility in removing 

improperly recorded samples.  

Similar issues could have arisen in the way the other factors were grouped as well. 

For example, it might be beneficial to separate Hispanic/Latino patients from the rest of the 

‘White’ population within race, especially considering the cancer disparities between 

Hispanic/Latino and white populations (Zavala et al., 2021). Consolidating stages into just 

their main stage groups also removes the individual intricacies that make each sub-grouping 

of stages unique. Expanding the data set would allow both of these problems to be alleviated 

by removing the need to reduce the groupings down to more general categories. Lastly, 

grouping patients’ ages into rigid factions takes away the linearity of the age data and 

prevents the potential observations that could be made with regressions. Even if this isn’t 

possible, different groupings of ages may provide better results.  

Data visualization could also be improved. Visualization of our perMANOVA in 

Euclidean space is extremely important as the perMANOVA itself only tells us the 

significance of each interaction. However, while the NMDS plots revealed clear 95% 

confidence intervals that allowed us to see differences in data spread, there was still 

convoluted data with each individual plot and increasing the size of the data set would only 

worsen this issue. To compensate, transforming the data, perhaps by factoring each samples’ 



 28 

coordinates by an exponent, could enunciate the differences in data spread and make visual 

differences clearer and more apparent.  

Furthermore, our analysis only plotted the significant interactions. This not only 

means that we might be overlooking hidden trends within any of the non-significant 

interactions, but we also have no baseline for what non-significant interactions look like in 

Euclidean space. Secondary statistical testing on each sub-group interaction for all variable 

combinations could reveal these hidden trends within non-significant variable interactions.  

Overall, despite these possibilities for improvement, the analysis of this TCGA data 

set proved ultimately successful and allowed us to see explicit interactions that alter genetic 

expression profiles of lung adenocarcinomas. Each of the factors we examined here have 

been extensively studied individually, but it is time we look deeper and try to connect the 

dots between them. The immense complexity and interconnectedness of cancer should be 

matched by equally complex and interconnected research methods, and this paper’s findings 

provide a roadmap to guide other researchers on where to begin. As with nearly every 

experiment in science, more research is needed, but this analysis offers a foundation off of 

which our understanding of the way cancer forms, develops, and can be treated or prevented 

can leap off from.  
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Table 1. Table showing the breakdown of the entire sample population compiled in the TCGA lung adenocarcinoma 
data set by the 5 demographic variables studied (n = 512). Within race, White refers to both patients who did and did 
not identify as Hispanic/Latino. Stage reduced substage groupings into only the main stage designation. Mean, median, 
and range of age group refers to each individual patients’ age at the time the tumor sample was taken, after which the 
patients were segregated into 20-year groups. Heavy smokers were designated as those who smoke more than 5 
cigarettes per day.  
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Figure 1. Gene expression of lung adenocarcinoma samples plotted in ordination space (n = 512), segregated by the 
interactions between patient tumor stage and smoking status (perMANOVA, F1,7 = 1.2177, p-value = 0.038). 
Ordination axis are the NMDS values calculated for the data set using metaMDS in Vegan and the 3 NMDS axes 
generated a model stress of 0.1623233, a fair fit for a data set of this size (Oksanen et al.). Colored ellipses represent 
the 95% confidence interval for said color’s specific stage-smoking interaction. 
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Figure 2. Gene expression of lung adenocarcinoma samples plotted in ordination space (n = 512), segregated by the 
interactions between patient tumor stage and sex (perMANOVA, F1,4 = 1.2476, p-value = 0.010). Ordination axis are 
the NMDS values calculated for the data set using metaMDS in Vegan and the 3 NMDS axes generated a model stress 
of 0.1623233, a fair fit for a data set of this size (Oksanen et al.). Colored ellipses represent the 95% confidence 
interval for said color’s specific stage-sex interaction. 



 33 

 

 
  

Figure 3. Gene expression of lung adenocarcinoma samples plotted in ordination space (n = 512), segregated by the 
interactions between patient age group and sex (perMANOVA, F1,3 = 1.2876, p-value = 0.036). Ordination axis are the 
NMDS values calculated for the data set using metaMDS in Vegan and the 3 NMDS axes generated a model stress of 
0.1623233, a fair fit for a data set of this size (Oksanen et al.). Colored ellipses represent the 95% confidence interval 
for said color’s specific age-sex interaction. 
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Figure 4. Gene expression of lung adenocarcinoma samples plotted in ordination space (n = 512), segregated by the 
race of each patient (perMANOVA, F1,3 = 2.1867, p-value < 0.001). Ordination axis are the NMDS values calculated 
for the data set using metaMDS in Vegan and the 3 NMDS axes generated a model stress of 0.1623233, a fair fit for a 
data set of this size (Oksanen et al.). Colored ellipses represent the 95% confidence interval for said color’s specific 
race. 
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Appendix 1 A-C. Patient tumor stage and smoking status interaction gene expression ordination plots found in Figure 
1 facet wrapped to show the differences within each individual stage studied.  
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Appendix 2 A-C. Patient tumor stage and sex interaction gene expression ordination plots found in Figure 2 facet 
wrapped to show the differences within each individual stage studied.  
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Appendix 3 A-C. Patient age group and sex interaction gene expression ordination plots found in Figure 3 facet 
wrapped to show the differences within each individual age group studied. 
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Appendix 4 A-C. Patient race gene expression ordination plots found in Figure 4 facet wrapped to show the 
differences within each individual race studied. 
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