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A Quantitative Study of Infraslow intracranial EEG and Resting State

fMRI Network Activities in Human Epilepsy

by

SUSHMA GHIMIRE

Under the Direction of Mukesh Dhamala, PhD

ABSTRACT

Epilepsy is one of the most common neurological diseases affecting over 50 million people

worldwide. Approximately one-third of these patients are refractory to anti-epileptic drugs

and surgical resection of epileptic focus remains their only hope for cure. Despite many diag-

nostic tools, the clear identification of a resectable epileptic focus is still a major bottleneck.

This work presents a set of comprehensive quantitative analysis techniques for analyzing and

synthesizing infraslow intracranial electroencephalography (iEEG) signals and resting state

functional magnetic resonance imaging (rsfMRI) to quantify infra-slow (0.01- 0.1 Hz) network

activities, localize seizure onset zones and determine pathological propagation pathways.



Firstly, we examine the existence of a stable network from infra-slow to very high fre-

quencies throughout multiple phases of focal epilepsy using quantitative methods based on

spectral Granger causality and graph measures. We show that the strongest infra-slow iEEG

(IsEEG) signal correlates highly with the location of the visible seizure focus, and also with

that of the strongest high frequency EEG signal, in both the preictal and interictal phases

of the epilepsy cycle.

Secondly, we present a novel quantitative analysis technique to localize the seizure focus

by seeding the focus locations from iEEG to rsfMRI. We show that the iEEG electrode

contacts with the strongest infraslow iEEG signal correlates with the slow spontaneous blood-

oxygen-level-dependent (BOLD) fluctuations in corresponding locations; and those voxels

form a highly significant grouping when compared to others throughout the entire brain.

This presents an exciting direction in refractory epilepsy to link an invasively recorded iEEG

infra-slow network, from a few hypothesized cortical areas, to a non-invasive, whole brain

fMRI network.

INDEX WORDS: Brain network, Epileptic seizure network, High-frequency oscillations,
Infra-slow oscillations, Granger causality, Seizure onset zone (SOZ),
Seizure localization, Graph theory
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CHAPTER 1

Introduction

1.1 Motivation

Epilepsy is one of the most common neurological diseases affecting over 2.5 million people

in the United States and more than 50 million people worldwide. Epilepsy is characterized

by recurrent and unprovoked epileptic seizures. The treatment of epilepsy involves the use

of antiepileptic drugs (AEDs), as the first step. Medications generally work well in about

50% of patients. Approximately one-third of all seizure patients remain refractory to multiple

pharmacological agents even with the development of new generations of anti-epileptic drugs

(Franco et al. 2016). For these patients, the greatest opportunity for cure lies with surgical

resection of the seizure focus. Despite progress in neuroimaging and electrophysiological

techniques, the identification of clear resectable seizure focus is still a major bottleneck.

Many of those who undergo intracranial EEG (iEEG) for a non-lesional focus never progress

to surgical resection, and long-term remission occurs in only 40-60% of those who undergo

surgery. Responsive neural stimulation and selective laser ablation represent important re-

cent innovations for treatment (Youngerman et al. 2018). These techniques depend crucially

on precise seizure onset zone localization.

Epilepsy is now regarded more and more as a network disease. The organization of

epileptic brain networks and their dynamics is key for understanding the onset and spread

of epileptic seizures (Davis et al. 2021). Several imaging modalities such as IEEG, fMRI,

PET, and CT scan are utilized to define brain anatomy, record neural activities, and collect
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important signals from different brain regions. Invasive recording (iEEG) is the gold standard

for recording seizure activities in localized brain areas. However, spatial sampling is quite

poor, as dozens of electrodes, with 10 contacts each, can only sample a small percentage of

the cortex. As such, we can easily miss the “true” seizure onset zone entirely, or remain

uncertain, without additional clues from non-invasive methods like MRI and PET.

While neurologists perform visual inspection on iEEG signals to detect anomalies in the

brain functions, different computational methods are being proposed as ancillary tools to

quantify the neural activities and produce crucial biomarkers (Bartolomei et al. 2017; Smith

& Stacey 2021). Previous studies, including from our lab, have shown that the high-frequency

(> 80 Hz) neural information flow, as obtained by spectral Granger causality analysis on

patients’ iEEG recordings, can be helpful to localize seizure origin. Recent qualitative studies

have also shown that EEG system with an input filter of 0.1 Hz could record infraslow activity

which can provide additional information (Rampp & Stefan 2012). Quantitative analysis on

these infraslow activities is very limited and the concordance between the high and infraslow

frequency activities with regards to seizure localization throughout epilepsy stages is not

well understood. Likewise, the two different lines of evidence, based on iEEG recordings and

fMRI, remain largely independent. The better understanding of the epilepsy network and

application of that understanding to better network models for more successful treatment,

depend critically on bringing them together.

This research attempts to bridge this gap in knowledge on infraslow iEEG and its link to

rsfMRI via quantitative techniques based on spectral Granger causality and graph theory.
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We first investigate the concordance between infraslow and high frequency iEEG activities

throughout all phases of the epilepsy cycle. Secondly, we present a novel quantitative analysis

technique to localize seizure focus by seeding the focus locations from iEEG to resting state

fMRI that can potentially enable examining the seizure focus in unprecedented fine detail.

1.2 Contributions

The main contributions from this thesis work are summarized below.

• We demonstrate that infraslow activities can be quantified using spectral interdepen-

dency measures such as Granger causality and graph theory to localize the epileptic

seizure focus within the human brain both immediately prior to the visible seizure

onset (preictal) and remotely (interictally), many hours from any visible seizure.

• We demonstrate that the intracranial ictal EEG can be seeded into corresponding

voxels of the resting state functional MRI (rsfMRI) to characterize the epilepsy focus

and its connections at millimeter resolution.

• We establish the correlation of infraslow EEG activity, with the corresponding voxel

of the resting state functional MRI (rsfMRI), and the seizure focus.

1.3 Dissertation organization

This document is organized as follows. Chapter 2 provides a background on epilepsy, clinical

data modalities for epilepsy and state-of-art quantitative techniques on these data record-

ings related to our research and discuss the limitations. Chapter 3 presents the studies of
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functional connectivity correlation between infraslow and high frequency iEEG activities

throughout all epilepsy stages. Seeding of the epilepsy network from iEEG to resting state

fMRI for seizure onset localization is presented in Chapter 4. Finally, the summary of our

contributions and future outlook is discussed in Chapter 5.

Chapter 3 and Chapter 4 of this dissertation are based on my following articles.

• “A stable network spans from infraslow to ripples, from preictal to ictal, to interictal

in iEEG recording in human epilepsy”. Journal of Clinical Neurophysiology (Ready

for submission)

• “Seeding of iEEG infraslow network into resting state fMRI”. Journal of Clinical

Neurophysiology (Ready for submission)
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CHAPTER 2

Background and Related Work

This chapter presents some background on epilepsy and the frequency components present in

signals from data recordings in epileptic patients. This is followed by a survey of related works

on quantitative analysis techniques on these data for tracking epileptic seizure networks.

2.1 Epilepsy

The International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy

(IBE) have defined epileptic seizure as a transient occurrence of signs and symptoms due to

abnormal excessive or synchronous neuronal activity in the brain (Fisher et al. 2005). Such

seizures usually induce drastic changes in cognitive processes of an individual. The area of

the cortex from where the seizure is generated is called seizure onset zone (SOZ). It is also

called the epileptic focus or seizure focus.

The period between the beginning of symptoms in epileptic patients such as consciousness

loss or uncontrolled movement to the end of such symptoms is called the ictal state. This

can last from a few seconds to few minutes long. These symptoms are accompanied by

highly synchronous electrical activities in the SOZ that typically spread to much wider areas

of brain. The state immediately prior to the visible seizure onset is called pre-ictal. The

interval between two seizures is called inter-ictal and can last from many hours to days or

even years. The ictal period is dominated by synchronous electrical activity in the SOZ

and areas of spread. The time prior to the seizure is called pre-ictal which can last from

seconds to minutes. The experience can be different for different patients. Figure 2.1 shows
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Figure 2.1 IEEG recording of the focal seizure on the representative patient. X-axis rep-
resents the time in seconds and y-axis represents the recording sites or electrodes. The
arrow shows the electrode contact from where the seizure started. The synchronous activity
expanded to other areas in a few seconds.

a sample iEEG recording on a representative patient. The seizure onset electrode in the SOZ

is highlighted.

A seizure that begins with a single or localized origin is called a focal or partial seizure.

The majority of refractory epileptic patients fall under focal (partial) epilepsy. Surgical

resection of the seizure focus remains their best hope for cure. Various imaging modalities

are used in combination to get a complete picture of the events or disorder, and to localize

the seizure focus.
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2.2 Clinical modalities of interest

2.2.1 Intracranial EEG Recording (iEEG)

Intracranial electroencephalography (iEEG) is a type of invasive electrophysiological mon-

itoring. Most commonly depth electrodes consisting of 1-D linear electrode arrays, shaped

in the form of needles, are implanted through cortex into deeper and sub-cortical brain re-

gions. Continuous electrical activities are recorded from these electrodes to capture seizure

activities, along with simultaneous video monitoring. Usually, a patient stays in an epilepsy

monitoring unit (EMU) for a few days to weeks to record multiple episodes of seizure. The

decision for the resection areas are based upon the SOZ identified from these recordings.

Figure 2.2 shows the positions of implanted depth electrodes in the MRI scan for a represen-

tative patient. The red box marks the SOZ as identified from iEEG recording. iEEG provides

much better spatial and temporal resolution compared to scalp EEG as these are implanted

in the proximity of cortical electrical activity generators. However, the invasiveness of this

method can introduce risk of infection, bleeding, strokes and other complications. iEEG can

only sample a small area of the brain with a finite number of implanted electrodes. In order

to sample the whole brain volume with the present spatial resolution of 3.5mm, about 10,000

recording sites are required (Lachaux et al. 2003). At present, the maximum number of im-

planted electrodes is a few hundred. Subject to these limitations, there has been growing

interest in the combined application of iEEG with non-invasive techniques like functional

Magnetic Resonance Imaging (fMRI).
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Figure 2.2 Magnetic Resonance Imaging (MRI) scan of a patient. An array of electrodes is
implanted in the region of the hypothesized SOZ, with 10 contacts for each electrode. The
red box highlights the SOZ.

2.2.2 Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) technique is a non-invasive indirect mea-

surement of the local neuronal activity which tracks the changes in blood oxygenation over

involved brain areas and time. fMRI images are based on the physiological contrast of blood

oxygen saturation, thus it is often termed blood-oxygen level dependent (BOLD) signals

(Ogawa et al. 1990). Increased neuronal activity can lead to higher energy demand and

vascular changes, which in turn increases the oxygen-rich blood flow and the intensity of

recorded BOLD signals (Huettel et al. 2004). The smallest 3 dimensional smallest unit of

these images is called a voxel.

The fMRI signals recorded when the patient is not performing any specific task is called

resting state fMRI (rsfMRI). Patients are instructed to lie down with eyes open (or closed),

fixated at a screen during collection of fMRI data. The spontaneous low frequency fluctu-

ations (< 0.1 Hz) of rsfMRI BOLD signals are utilized to produce surrogate markers for



9

various physiological states and also pathological conditions.

fMRI has been widely used to investigate functional connectivity and large scale network

activities in the brain (Fox & Raichle 2007). The network between two brain areas or

voxels can be studied by a) Seed based correlation maps, b) Spatial independent component

analysis of fMRI, or the spatial map of co-varying voxels, and c) Causality analysis between

nodes (brain areas) to investigate network dynamics using computation models like dynamic

causal models (DCM), structural equation modelling and Granger Causality (Centeno &

Carmichael 2014).

Several research studies have applied these techniques in attempts to localize the SOZ and

included prospective patient series, and a few seem rather promising. However, in general

these studies have some pre-defined limitations, identify blobs rather than networks (Shah

et al. 2019; Boerwinkle et al. 2017; Gil et al. 2020; Hunyadi et al. 2013; Zhang et al. 2015),

and have not been directly correlated with epilepsy networks as assessed by EEG or other

techniques. Fine mapping of spectral (frequency specific) and spatial network from ictal

EEG to resting state fMRI could assist in accurate localization of the SOZ, in time and

space, further enhancing understanding of the origin and propagation of seizures.

2.3 Brain oscillations

iEEG recording consists of frequencies from very low (0.01 Hz) to very high ranges (600

Hz or more). Many studies consider 0.008 Hz to 0.2 Hz as the artifact free useful resting

state fMRI BOLD signal (DeRamus et al. 2020). Frequencies higher than 0.2 Hz have been
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shown to contain useful information in the BOLD signal but can consist of artifacts as well.

These broadband frequencies have been observed in different parts of the brain in healthy and

neurological conditions. These frequencies are also observed in various task based recordings.

2.3.1 Classical frequencies

The range from 1 to 80 Hz is sometimes called the classical EEG frequency range, subdivided

into frequency bands such as delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz,

and gamma (30-80 Hz). These classical frequencies have been shown to be associated with

different processes like working memory (theta oscillations), alertness, attention and semantic

memory (alpha oscillations), cognitive processing (beta oscillations), visual, auditory and

motor tasks (gamma oscillations). Few studies have shown coupling of these oscillations

with high frequency activities with respect to epilepsy (Hashimoto et al. 2020, 2021).

2.3.2 High frequency activities

High frequency oscillations > 80 Hz are often subdivided into ripples (80-200 Hz) and fast

ripples (200-500 Hz). Two important aspects necessary for recording HFOs are the size of the

electrodes and sampling frequency. Recently, commercially available clinical electrodes with

specification 4mm2 have been shown to record HFOs in human depth and subdural recording

from both temporal and neocortical areas, in both ictal and interictal phases (Ochi et al.

2007; Worrell et al. 2008; Crépon et al. 2010; Wu et al. 2010). The maximum frequency that

can be evaluated for HFOs is half of the sampling frequency (Nyquist frequency). Due to the

limitations of filters in EEG systems however, the maximum frequency that can be evaluated
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is about 1/3 of the sampling frequency, requiring at least 240 Hz to record 80 Hz (Modur

2014). HFOs may be generated by inhibitory post-synaptic potentials of the inter-neurons

on the pyramidal cells, which are the primary excitation units in human cortex. The fast and

synchronous firing of pyramidal cells can be facilitated at a cellular level by neuronal com-

munication methods like axonal sprouting (growth of axons), electrotonic coupling (direct

connection between cytosolic contents of adjacent cells), and ephaptic transmission (con-

nection caused by exchange of ions) (Jiruska et al. 2010). HFOs have been associated with

both normal and pathologic brain functions. HFOs could play a role in episodic memory

and is found to be associated with normal functioning of neocortex. HFOs of hippocampus

have been shown to be related to pathologic conditions. Pathologic HFOs have been shown

to be helpful in defining epileptic seizure, localizing the SOZ, and identifying propagation

pathways in ictal and interictal states (Zijlmans et al. 2011).

2.3.3 Infraslow activities

Infraslow frequencies have been identified variously as - “ultraslow,” “subdelta,” “baseline

shifts,” or “near DC” EEG activity in the literature. The upper boundary of recorded

activity range from 0.1 Hz (Miller et al. 2007), 0.2 Hz (Modur et al. 2012), and 0.5 Hz

(Murai et al. 2020) and the lower boundary between 0.01 and DC (Kim et al. 2009). In this

study, we consider 0.01 to 0.1 Hz as the infra-slow activity (ISA) range.

There are relatively few studies of ISA in epilepsy. This could be due to past equipment

lim- itation of the EEG system with relatively low input impedance and unstable DC base-

lines over time, and suboptimal electrode/electrolyte interfaces. More recent epilepsy case
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series argue that widely-available passbands, using conventional EEG systems, are sufficient

to provide valuable IsEEG data for visual analysis (Rampp & Stefan 2012). The number

of studies is expected to increase with the recent development of wider passbands of the

amplifiers, platinum electrodes, and gigaohm input impedances.

The generation of ISA is linked with neuronal and glial activity along with blood brain

barrier alteration. The neuronal depolarization during seizure causes an increase in extra-

cellular potassium and glial depolarization. The conduction of this depolarization due to

neuron-glial interaction results in negative shifts in deep recording and positive shifts in

superficial electrode recordings (Shorvon et al. 2015). ISA has been found in many brain

regions both in healthy (Mitra et al. 2015) and pathological conditions (Hughes et al. 2011).

ISA activities have been observed in qualitative studies before seizure onset (Modur et al.

2012), but the quantitative analysis of ISA has been rare. In a recent study by Hashimoto et.

al, ripple activities during seizure evolution have been found to be phase amplitude coupled

(PAC) with infra-slow (0.016-1Hz) (Hashimoto et al. 2020) and theta oscillations (4-8 Hz) a

few minutes before seizure onset (Hashimoto et al. 2021).

2.4 Quantitative analysis

Quantitative analysis has been applied to human EEG for well over half a century (Grass &

Gibbs 1938) long preceding the introduction of modern computerized techniques. The study

of infra-slow EEG is only a few decades behind (Aladjalova 1957). However, the early and

sustained attention of quantitative studies have been towards higher frequencies rather than
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the lower. This gap in progression may be due to the technical constraints on the infra-

slow recording at the scalp and the arrhythmic nature of the infra-slow EEG as described

above. Prior researchers may have assumed that data of this sort was unlikely to carry useful

information – especially information that could be extracted by more advanced quantitative

techniques.

Recently, there has been an increasing acceptance that a set of distributed regions forms

a network during seizure rather than a single focus, thus the recent researchers have applied

advanced quantitative methods to model such a system. Many approaches are based on the

quantification of the seizure onset zone using a time-frequency analysis of iEEG.

The linear relationship between iEEG time-series have been estimated using multivariate

auto-regressive (MVAR) models in methods like coherence, Granger Causality, direct di-

rected transfer function (dDTF) and partial directed coherence (PDC). The study by (Joshi

et al. 2016) have shown strong coherence between electrodes pair 0-2 cm apart in the infra-

slow frequency range of (< 0.15Hz), but decreased sharply for greater inter-contact distance.

DTF methods have been described by (Franaszczuk & Bergey 1998) to determine patterns

of flow of activity in pre-ictal periods, whereas (Wilke et al. 2011) discussed the betweenness

based on DTF in the classical frequency range for ictal and interictal dataset. (Zhang et al.

2020) studied graph network derived on partial directed coherence in classical frequency

range in both pre-ictal and inter-ictal periods.
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2.4.1 Granger causality

Granger causality (GC) is one of the most commonly used methods for determining causal

influences (or directional functional connectivity) between dynamical systems by the anal-

ysis of their time series measurements (Granger 1969). GC is based on the idea of linear

prediction by using multivariate autoregressive (MVAR) modeling (Wiener 1956) and uses

predictability and statistical dependencies to establish causal relations. GC can be esti-

mated using either autoregressive modeling (parametric methods) or by using direct Fourier

or wavelet transforms (non-parametric) spectral decomposition approaches (Dhamala et al.

2008b), (Ding et al. 2006). The definitions and calculation of GC are provided in Appendix

A.

Several studies, including from our lab, have successfully utilized Granger causality meth-

ods for analysis of high density EEG source waveforms, ICs (independent component) of scalp

EEG recording, high frequency activities in preictal, and classical frequencies in in- terictal

iEEG (Coben & Mohammad-Rezazadeh 2015; Coito et al. 2015; Epstein et al. 2014; Park &

Madsen 2018).

2.4.2 Graph theory

A graph is a mathematical structure used to model relations between objects. A graph

consists of nodes (vertices) and edges (connection between nodes). Graph theory is the study

of graphs (networks), and has been extensively used in numerous studies and applications,

including epilogenetic brain network. A graph can be directed, which contains ordered pair



15

of nodes, or undirected, that consists of edges with no specific direction or order. Several

graph metrics have been formulated to quantify network characteristics and are widely used

in network studies. Some of the commonly used graph measures are Degree and Betweenness.

Short descriptions of these measures along with their mathematical definitions are provided

in Appendix A.

Graph theory based techniques have gained interest in the recent years to model the

epileptic brain network and find important bio-markers of brain function and dysfunctions.

The pairwise interactions of iEEG time-series can be modeled as a graph. Quite a few studies

have utilized this method in iEEG signals in preictal, interictal and ictal periods of epilepsy

(Wilke et al. 2011; Van Mierlo et al. 2013; Bartolomei et al. 2013; Vecchio et al. 2016), but

none of these include quantitative analysis of infra-slow activities.

2.5 Discussion

Several of the prior qualitative studies and quite a few quantitative studies on infra-slow

iEEG have shown promising results for the usefulness of these signals in extracting important

biomarkers in an epileptic network. However, to the best of our knowledge, there is no

comprehensive study that quantifies the infraslow network and examines its correlation with

high frequency activities throughout all stages of focal epilepsy. Chapter 3 of this dissertation

presents such study where we examine the correlation between the two dfferent frequency

ranges throughout all epilepsy stages. One of the other unexplored areas is the concordance

between infraslow iEEG and resting state fMRI and if are able to seed epilepsy network from
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iEEG to rsfMRI for finer focus localization, which is discussed in Chapter 4.
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CHAPTER 3

Functional Connectivity Correlation between Infraslow and High Frequency
iEEG Activities

This chapter examines the concordance between infraslow (< 0.1) and high frequency (> 50

Hz) iEEG neural information flow throughout multiple phases of epilepsy using Granger

causality and graph theory. Results on three epileptic patients show overlap in the epileptic

network as observed in the high to infraslow, and from preictal to the interictal, to the visible

ictus.

3.1 Introduction

Few studies have shown that infraslow EEG (IsEEG) could be used as an ancillary tool

for the localization of the seizure focus in scalp (Leistner et al. 2007; Miller et al. 2007;

Murai et al. 2020). Several groups have also studied the relationships among IsEEG, the

classic EEG frequencies, and the gamma or higher frequency ranges (Modur et al. 2012; Wu

et al. 2014; Thompson et al. 2016b; Inoue et al. 2019). But the utility of very low-frequency

recording in epilepsy has not been universally accepted (Gross et al. 1999). Only a fraction of

publications concerning IsEEG and epilepsy have employed any form of quantitative analysis

(Modur et al. 2012; Thompson et al. 2016b,a; Murai et al. 2020), and none appear to have

applied it to HFO and infraslow EEG on the same patient.

In several prior studies in our lab, Granger causality (GC) (Granger 1969) has been used

as an analysis tool for intracranial EEG (iEEG) in the high frequency bands, and found

widespread network activity prior to visible seizure onset (Adhikari et al. 2013; Epstein
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et al. 2014).

In this study, we apply Granger causality (GC) and connectivity analysis to high fre-

quency and infraslow activities throughout multiple phases of focal epilepsy, from preictal to

interictal. Results show a striking consistency among the iEEG networks identified by GC

at both high and IsEEG frequencies, along with the visual seizure onset; plus the persistence

of this network during the pre-ictal, and interictal phases of epilepsy.

3.2 Materials and methods

3.2.1 Patients selection

All the data were analyzed under protocols approved by the Institutional Review Board of

the Emory University School of Medicine. Patients - A, B and C were chosen retrospectively

based upon meeting the following criteria: an established history of medication-refractory

epilepsy, absence of obvious anatomical lesion on 3 Tesla MRI, clinical confidence in the site

of seizure onset by contemporary intracranial EEG (iEEG) features and ancillary studies, and

long-term improvement in clinical seizures following a focal invasive procedure. Additional

data included positron emission tomography (PET), neuropsychological assessment, and if

indicated, single photon emission computed tomography (SPECT), magnetoencephalogra-

phy (MEG) or functional MRI (fMRI) mapping. All three patients had striking improvement

(1) or prolonged remission (2) following invasive procedures.

Patient A had no known clinical seizures following bilateral mesial temporal electrode

explantation, or for 18 months afterwards. Over the subsequent 6 years, seizures have been
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substantially milder and rarer than before the implantation. Prior to selection for the current

investigation, this case had been assessed as a rare instance of long term remission related

to implantation of intracranial electrodes (Katariwala et al. 2001; Schulze-Bonhage et al.

2010) . The striking and prolonged clinical improvement was considered strong confirmatory

evidence for seizure origin at the site of implantation.

Patient B elected responsive neural stimulation following recording of electrographic

seizure onset at a site where tissue ablation was considered to have high risk of perma-

nent neurological deficit; this has resulted in sustained reduction in symptomatic seizures

for years.

Patient C has been in complete remission (Engel 1A) for 4 years following laser ablation

along the track of the electrode that recorded electrographic seizure onset

3.2.2 IEEG recording

Patients underwent implantation of depth electrodes, subdural grids, and/or strip electrodes

(Ad-Tech Medical, Racine, USA) in various combinations according to the individual pre-

surgical localization hypothesis. Recordings were made with an XLTEK system (Natus

Medical, San Carlos, CA, USA) using up to 128 electrodes.

Initial oversampling and hardware antialiasing filters were followed by linear phase FIR

filters with an order of 30, set to just below the Nyquist frequency for the final sampling rate

of 500 or 1000 Hz. The Natus digital preamplifiers were specified to a lower frequency limit of

0.01 Hz, but no filtering was applied during download of wideband European Data Format

(EDF) data for analysis. Visual identification of the iEEG seizure focus was performed
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Figure 3.1 The unfiltered iEEG time-series shows spikes riding on top of slower waves on
seizure onset electrodes in pre-ictal and ictal period. The red box highlights the seizure onset
(SO) electrode.

according to current criteria (Andrzejak et al. 2015; Grinenko et al. 2018; Gnatkovsky et al.

2019) and the results of invasive therapies or procedures. Figure 3.1 shows the IEEG time-

series on a few electrodes including the SO electrodes on a representative patient. The spikes

are on top of slow waves. Similar infra-slow wave patterns relevant to seizure onset electrodes

have been reported in (Rampp & Stefan 2012).

3.2.3 Data pre-processing

The iEEG time-series data were filtered using forward and backward finite impulse filters

(FIR) in EEGLAB (Delorme & Makeig 2004) for its simple design, intrinsic stability and

free of phase distortion. The data were band-pass filtered at a cutoff of 50 Hz to Nyquist
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frequency (half of the sampling frequency) for high frequency oscillations (HFOs) analysis

and cutoff for infra-slow oscillations (ISO) were 0.01 Hz and 0.1 Hz. Temporal mean was

removed from the time-series before advanced mathematical calculations. Pre-ictal data

samples for high frequency activity were taken for 64, 69, and 54 seconds ending 1-2 seconds

before visible seizure onset for patients A, B and C. Variable length of data segments were

considered for different patients due to the artifacts present in the data. Similarly, 1550,

113 and 330 seconds data samples were analyzed for inter-ictal iEEG recording. For low

frequency activity, data samples were selected visually to correspond to the beginning and

the end of a baseline shift that coincided or overlapped with the visible seizure onset and

was congruent with it in multiple electrodes.

3.2.4 Time frequency analysis

The wavelet based spectral power was computed from unfiltered iEEG time-series to in-

vestigate when and how the power changes for high frequency oscillations and infra slow

oscillations in the seizure onset electrodes. We did not study the wavelet power for all the

electrodes, for pre-ictal and interictal periods separately, as previously done in (Adhikari

et al. 2013) for high frequency oscillations. The aim of time frequency analysis is to con-

firm the significant high and infraslow oscillations in these iEEG time-series. This facilitates

meaningful quantitative spectral interdependency analysis.
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3.2.5 Granger causality

We computed pairwise Granger causality spectra and graph measures, as directed functional

connectivity matrices to examine the strengths and directions of causal interactions in the

frequency domain, among multi-channel digitized iEEG time-series (Dhamala et al. 2008a).

Granger causality as computed in the time domain is the statistical technique that relies on

the concept of temporal precedence of cause before effect and is based on the prediction of

future behaviors using the past records (Granger 1969). If the past of one time series X1

can help predict another time series X2 better than using the past of X2 alone, then X1 is

known to have a causal influence on X2. Due to the difficulty of finding an optimal model

order in the parametric pairwise approach, we used both non-parametric and parametric

approaches at different model orders and selected the model order that yielded the lowest

power difference. Accordingly, we obtained the optimum model order 8 for our analyses.

Time domain Granger causality was obtained by integrating in the infra-slow frequency

range and high frequency range as specified above.

3.2.6 Graph measures

Graph measures were computed from the time domain Granger causality matrix as the

adjacency matrix using the BCT toolbox (Rubinov & Sporns 2010) with a threshold of 40%

above the maximum Granger causal flow. The electrodes were considered as the nodes and

the causal relations between nodes were considered as the edges. Three centrality measures,

betweenness, degree and closeness were computed to study the importance of SO electrodes
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in the network. Betweenness measure was computed for all the high-frequency and infraslow

GC spectra from preictal to ictal period to study the number of paths SO electrode lies

in the network graph. This represents the SO electrode’s ability to make connections to

other groups of brain areas (Chiang & Haneef 2014; Wang et al. 2008) Likewise, ‘Degree’

measures the number of edges of a node, and nodes with higher edges act like a hub of

activity. Closeness centrality is the inverse of the sum of all shortest paths to other nodes.

A higher closeness value corresponds to faster information spread throughout the network.

For directed graphs, the closeness value is called ‘Incloseness’. Clustering coefficient is the

measure of segregation of the network.

3.3 Results

3.3.1 Time frequency analysis

We focused our study on high frequency oscillations and infra-slow oscillations in preictal

and interictal periods. Figure 3.2 provides a sample iEEG time series after finite impulse

filtering (FIR) for high frequency oscillations. This data includes clinically identified seizure

events illustrating HFOs as one of the biomarkers of seizure onset electrodes. Even though

HFOs were observed in all channels in both preictal and interictal states, the evolution of

HFOs was distinctly visible in the SO electrode and later extended to multiple channels,

mostly in preictal period.

Figure 3.3 represents 100s of infraslow activities in a representative patient, which illus-

trates infraslow activity not just before seizure onset but during the interictal period as well.
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Infraslow activities were observed in a few other channels, including SO electrodes, in both

these periods in all patients. This motivated us to further quantitative analyses of these

activities to determine if infraslow activities during the interictal period correlates with the

SOZ.

The complex wavelet transform performed on these filtered iEEG time-series depicted

distinct maximum wavelet power for high frequency in the 50 Hz to 120 Hz, as shown in

Figure 3.4(a). Time frequency analysis of infraslow activity was observed around 0.03 Hz

for SO electrodes of same patient as shown Figure 3.4(b). Maximum power was observed in

different frequency ranges for other electrodes both in high and infraslow analysis. The time

frequency spectral analysis results for all the channels are not discussed in this paper as our

goal here is to demonstrate the presence of high and low frequency components in our iEEG

data for further quantitative analysis.

3.3.2 Granger causality and graph measures

We studied characteristics of high frequency and infra-slow oscillations by computing GC

spectra, source, sink and total causal flow. Neuronal information flow from the electrode to

all other electrodes is called outflow or source. Similarly, neuronal information flow from all

other electrodes to this electrode is termed inflow or sink activity. Total Granger causality

is the sum of inflow and outflow.

These measures were computed from high pass filtered iEEG time series above 50Hz to

just below the Nyquist frequency with a frequency resolution of 1 Hz for HFO analysis.

Figure 3.5 shows the GC (sink and total GC) for HFOs in preictal period for a repre-
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Figure 3.2 13s high pass filtered iEEG time-series. High frequency activities (> 50Hz to
Nyquist frequency) are visible on seizure onset electrodes RSMAcd3 and RSMAcd4 and later
extended to other electrodes.

Figure 3.3 100s low pass filtered iEEG time series (0.01-0.1 Hz). Infraslow activity is visible
in SO electrode RSMAcd4.
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[a]

[b]

Figure 3.4 High frequency activities as observed in representative patient on SO electrode,
RSMAcd4. Scattered blobs of high frequency activity could be seen from 50 Hz-100 Hz.
Time frequency analysis was done on iEEG time-series a few seconds before clinical seizure
onset b) Wavelet power was computed on 100s iEEG time-series hours away from any seizure
activity (inter-ictal state) for SO electrode RSMAcd4. The power was normalized between
0 and 1. Wavelet power was maximum between 10s and 70s and in the frequency range of
0.03 Hz and 0.05 Hz.
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sentative patient. Sink activities are visualized in the negative axis to represent incoming

neuronal information flow. Red circles in the figure, denoting SO electrodes as confirmed

visually by the epileptologists, were ranked in the top 5, out of 119 electrodes for causal Sink

measures. Blue circles denote the contralateral SO electrode, which interestingly are also

ranked among the topmost values for total GC only. We were able to localize SO electrodes

for patients A, B and C (Shown in Appendix B) using these tools and methods. Sink and

total GC were also clustered around SO electrodes for these patients.

Similarly, infraslow oscillations were quantified from low pass filtered iEEG time series

in the frequency range 0.01 to 0.1 Hz with 1/1000 frequency resolution. Figure 3.6 show the

integrated time domain Granger causality, Sink and Total GC computed and integrated over

infraslow frequency in interictal periods for the same patient. Total GC and sink activities

were highly clustered around SO electrodes for this representative patient as well as two

other patients (Shown in Appendix B). SO electrodes were ranked 2nd out of 119 electrodes

for both Sink and Total GC.

The threshold value of each integrated GC measure, for statistical significance, was com-

puted from surrogate data methods by using data permutation calculating GC values and

a gamma function fit to a distribution of maximum GC values for each permutation. This

threshold was designed to reject a null hypothesis of no interdependence at a significance

level of p < 10−6 as in (Adhikari et al. 2013).

To validate and compare the Granger causal measures, we also computed the graph the-

oretical measures - degree, betwenness and clustering coefficient and incloseness. Table 3.1
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High Infraslow
Measures

Preictal Interictal Preictal Interictal

Total GC 3 2 2 3

Sink 3 2 1 2

Betweenness 3 2 1 1

Degree 2 2 2 2

Clustering coef 0 1 0 1

Incloseness 1 0 2 1

Table 3.1 Summary listing the no. of patients for which corresponding causal and graph
measures are able to localize the SO electrodes across preictal and interictal periods, in high
frequency and infraslow oscillations

provides a summary view of the effectiveness of these measures along with the causal mea-

sures (Total GC and ) in localizing the seizure onset for both high and infraslow oscillations

in the preictal and interictal periods. If for a particular patient, the SO electrode belongs

among the top 5 for a given measure, it is considered as correct localization and counted 1,

otherwise it is counted 0. Thus, the values in this table represent the number of patients for

which the measure is able to localize SOZ.

As observed in the table, using the total Granger casuality, the SO electrodes were local-

ized appropriately in all the patients for HFO in the preictal and infraslow in the interictal

period. Likewise, sink and betweenness measures could predict the SO electrodes in preictal

periods for high frequency only. These results suggest that either total or negative causal

flow (sink), or betweenness measures could correlate seizure focus in different patients and

different phases of epilepsy cycle in both high and infraslow frequency.
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3.4 Discussion

In this work, we confirmed the existence of a stable iEEG network in very low to very high

frequencies throughout multiple phases of focal epilepsy, from preictal to interictal, to visi-

ble ictus, using quantitative analysis methods based on spectral interdependency measures

including GC spectra computation and graph measures. These network features were identi-

fied from among large sets of iEEG electrodes in selected patients who experienced sustained

remission following focal invasive procedures and lacked obvious anatomic lesions. In ad-

dition to the seizure-onset patterns on iEEG, remission confirmed the accuracy of seizure

localization. Absence of anatomic lesions helps exclude the alternative possibility that focal

changes in infraslow activity might be due simply to the lesion rather than to the presence

of an epileptic focus.

The statistical connectivity results of integrated GC and graph measures suggested the

extensive spatial-temporal neurophysiological network and its relationship to the site of focal

seizure onsets both in the infra-slow frequency (0.01-0.1 Hz) and the high frequency (> 50Hz

to Nyquist frequency). Although the amplifiers in digital EEG recording equipment may lack

the specific characteristics considered desirable for true DC recording, no fixed high pass

filter appeared to be present, and activity below 0.1 Hz was quantified through methods of

frequency analysis.

Both sink and total GC activity were ranked among the top for all three patients for

HFOs, but for infraslow activity, only total GC could localize SO electrodes, mostly in

interictal periods. This could be explained on the hypothesis that during the preictal period,
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seizure onset zone is subject both the uncontrolled hyperactivity and increased external

inhibition, which may fluctuate over time scales much briefer than this analysis., and produce

maximum sink activities in these electrodes. This has been illustrated in (Epstein et al.

2014). For interictal infraslow activity, the time duration of the measured signal is orders of

magnitude is orders of magnitude slower than the feedback loops of much neuronal activity,

so that infraslow measures would show only net effects. Our results suggest that total causal

flow (sum of source and sink) could be higher for these nodes in interictal periods. Other

groups have reported sink activity, but not that it could be either that or total (Narasimhan

et al. 2020). The graph measures for corresponding periods could be explained on a similar

hypothesis, as these were derived from the GC connectivity matrix.

The methods and results discussed in this study do not test the utility of infraslow iEEG in

predicting surgical outcomes. However, they supplement the findings of larger surgical series

(Narasimhan et al. 2020; David et al. 2011), which indicate that interictal EEG networks may

contribute valuable information to the epilepsy surgery assessment, thereby substantially

reducing the time, risk, and cost of diagnostic pre-surgical testing. Given the relatively

high voltages intrinsic to infraslow iEEG, both intracranially and at the scalp, there may

be further potential for a robust and independent contribution to localization of the seizure

focus. Extending the representation seizures networks to a wider range of frequencies may

also extend their eventual utility for diagnosis and treatment.
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CHAPTER 4

Seeding the Epilepsy Network from iEEG to Resting State fMRI

In this chapter, we investigate the concordance between infra-slow activities at the locations

of iEEG recordings and the infra-slow resting-state fMRI brain connectivity using quanti-

tative analysis based on Granger causality and graph theory. Results show the correlation

between the two at the corresponding locations around the seizure onset.

4.1 Introduction

Intracranial EEG (iEEG) is the predominant invasive method for surgical resection decision

making (Shah & Mittal 2014). Resting state fMRI (rsfMRI) is a non-invasive method that

records the blood oxygen level dependent (BOLD) signals, and is increasingly applied to

study brain activities and characterize network dysfunctions (Centeno & Carmichael 2014).

The main objective of iEEG, and any other neuroimaging modalities is to localize the seizure

focus for resection.

Simultaneous scalp EEG-fMRI has shown some promising results in localizing seizure

source (Bettus et al. 2011; Bagshaw et al. 2006; Su et al. 2019; An et al. 2013; Thornton

et al. 2010). The scalp EEG records activity of pyramidal neurons near the surface of the

brain and is relatively insensitive to deep brain structures. Due to lower spatial resolution

compared to iEEG, scalp EEG may not record epileptiform activities originating from smaller

regions. Aghakhani et. al studied the potential of simultaneous iEEG-fMRI for seizure onset

localization (Aghakhani et al. 2015). This approach may not record exact BOLD signals

because of signal distortion near the implanted electrodes. Some studies have discussed
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coupling of iEEG classical frequencies (α, β, θ and γ) with spontaneous fMRI BOLD signals

(Bettus et al. 2011; Shah et al. 2019). Recently, one of our group participated in a study

that directly correlated infraslow scalp EEG with spontaneous fMRI BOLD signals as well

(Grooms et al. 2017). The signal was subtle and required averaging the rsfMRI across a

group of normal subjects.

By seeding the ictal iEEG network into resting state fMRI, this study presents corre-

lation between infraslow iEEG at the locations of the seizure onset (SO) electrodes to the

corresponding voxels of rsfMRI, and the functional connection of fMRI siezure voxel to the

whole brain using functional connectivity methodologies, including Granger causality and

graph theoretical measures.

4.2 Materials and methods

4.2.1 Patient information

The study is based on the preictal and interictal iEEG recordings and fMRI scans from

patient A discussed in the previous chapter. The patient lacked any obvious anatomical

lesion on 3 Tesla MRI but clinical confidence in the site of seizure onset was assessed by

contemporary iEEG, and positron emission tomography (PET). The patient has been in

complete remission for 6 years following laser ablation along the track of the electrode that

recorded electrographic seizure onset.
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4.2.2 Data acquisition

iEEG were recorded from implantation of a total 128 depth electrodes, subdural grids, or

strip electrodes using the Natus XLTEK system in various hypothesized temporal, frontal

and motor cortices. The iEEG recordings with final sampling rate of 500 Hz were downloaded

in wideband EDF (European data format) data format for further analysis.

Both T1 structural scan and resting state fMRI (T2*) were obtained at the Emory

University Neuroimaging facility using a 3T SIEMENs scanner a few months before and

after the implantation of depth electrodes. The head was scanned using scanning sequence

‘EP’, slice thickness of 2mm, repetition time 720ms, Echo Time 32ms and Flip Angle 52.

T1 or the anatomical scan was done using the scanning sequence GRIR with slice thickness

0.8000mm, Repetition Time 2300ms, Echo Time 2.7500ms and flip angle 8, then repeated

following the implant.

4.2.3 Data pre-processing

IEEG data were preprocessed in EEGLAB (Delorme & Makeig 2004). Bad channels were

removed and the data were low pass filtered in the range of 0.01 Hz to 10 Hz using default FIR

filter. The data were not downsampled. Further causal relationship and network analysis

was carried out on temporal mean removed iEEG data.

Preprocessing of fMRI data was carried out in SPM12 and MATLAB based Conn-

functional connectivity toolbox. Dicom files were imported to Nifti in SPM12 (Ashburner

et al. 2014) and further analyses were carried out in Conn-functional connectivity Toolbox
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(Whitfield-Gabrieli & Nieto-Castanon 2012). Functional realignment and unwarp was done

at first for subject motion estimation and correction. Functional center to (0,0,0) co-ordinates

(translation), functional slice timing correction, functional outlier detection (ART-based

identification of outlier scans for scrubbing), functional direct segmentation and normaliza-

tion (simultaneous Gray/white/CSF segmentation and MNI normalization) were done as

the part of the preprocessing. For structural data, translation and structural segmentation

and normalization (simultaneous Gray/white/CSF segmentation and normalization) were

carried out. TRs with a motion threshold greater than 0.9mm were discarded.

BOLD signal change time series was extracted from the exact locations as those of iEEG

electrode contacts. T1 images of the patient before electrode implantation and after elec-

trode implantation were co-registered using SPM clinical toolbox (Rorden et al. 2012). 3D

electrode contacts were identified in CT scan by neurophysiologist and MRI physicist. Those

electrode contacts were manually recognized on normalized T1 by overlaying normalized T1

obtained after the electrode implantation. MNI coordinates for electrode contacts were ob-

tained based on AAL atlas in MRICRON (Rorden & Brett 2000). ROI time-series were

extracted, for different radius spherical masks, from these coordinates as center, in the

MARSBAR toolbox in SPM (Eickhoff et al. 2005). The normalized, segmented gray matter

from the T1 scan of the same patient was used as a mask to extract voxelwise BOLD signal

change time-series, for whole brain analysis. The surface file generated from the T1 of the

same patient is used for displaying the voxelwise causality relationship in BrainNet viewer

(Xia et al. 2013).
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4.2.4 Granger causality and graph measures

We computed Granger causality and graph measures to examine time-varying infra-slow

causal interactions among multi-channel digitized iEEG time series and BOLD signal time

series (Dhamala et al. 2008a). The parametric pairwise Granger causality was computed

using MVAR modelling in frequency domain in the infa-slow frequency range 0.01-0.2 Hz for

iEEG and in range of 0.08-0.8 Hz for spontaneous BOLD signal time-series. The optimal

model order for each calculation was obtained by comparing the power between parametric

and non-parametric methods (Adhikari et al. 2013). The time domain Granger causality

measures was obtained by integrating in the infa-slow frequency range (Geweke 1982).

Graph measures were computed from the time domain Granger Causality matrix as the

adjacency matrix using BCT toolbox (Rubinov & Sporns 2010) with threshold of 40% above

the maximum granger causal flow. Electrodes are considered as the node and the causal

relations between nodes are considered as the edges. Three centrality measures, betweenness,

degree and closeness were computed to study the importance of SO electrodes in the network.

Clustering coefficient was computed as the measure of segregation of the network.

The statistical significance of the Granger causality measures and graph measures were

done by resampling techniques built on a baseline null hypothesis distribution. The threshold

value of each of the measures were computed from surrogate data methods by using data

permutation calculating GC values and a gamma function fit to a distribution of maximum

GC values for each permutation. This threshold was designed to reject a null hypothesis of

no interdependence at a significance level of p < 10−6 (Adhikari et al. 2013).
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4.3 Results

4.3.1 Granger causality

To compare the causal relationship in identical frequency range for both the iEEG and

spontaneous BOLD signal, we computed Granger causal measures. Figure 4.1 shows the

source, sink and total GC from temporal mean removed iEEG time-series. These measures

were computed in the infra-slow frequency range of 0.01 to 0.2 Hz from interictal iEEG

recordings. The electrodes highlighted with a red box are SO electrodes, RSMAcd3 and

RSMAcd4. These electrodes have maximum sink (causal inflow) and total GC (total causal

flow) out of the 119 implanted electrodes. Only 35 representative electrodes are shown in

the figure.

For similar analysis of the fMRI, we use corresponding electrode locations manually

based on identified images on CT (computed tomography). The MNI co-ordinates of these

locations are presented in Table C.1 in the appendix section. Average BOLD signal change

were extracted at the 4mm radius sphere around these MNI coordinates. There was no

overlap of areas between two consecutive regions of interest (ROI). Causal relations were

computed between BOLD signal change time-series from these areas and integrated in the

frequency range 0.08-0.8 Hz. Figure 4.2 show that the total GC and sink activities are visibly

clustered around the SO electrodes, and one of the SO electrode are ranked topmost in terms

of total causal flow out of the 35 selected regions.
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Figure 4.1 The total GC, source, sink activity as calculated from iEEG time series. RSMAcd3
and RSMAcd4 are two electrode contacts identified as EZ focus by neurologists. These two
contacts are ranked among the highest for GC total and sink activity

Figure 4.2 Total Granger causality, source, sink activity as obtained from BOLD time series.
RSMAcd3 and RSMAcd4 have comparatively higher Total GC and sink activity
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Measures
4x4x4mm3 6x6x6mm3 8x8x8mm3

RSMAcd3 RSMAcd4 RSMAcd3 RSMAcd4 RSMAcd3 RSMAcd4

Total GC 17% 27% - 1% 3% 1%

Betweenness - - - 17% 5% 6%

Degree - - - 0.2% 13% 1%

Incloseness - - - 1% 4% 3%

ClusteringCoef - - - 26% 4% 17%

Table 4.1 The voxel wise analysis of gray matter on epileptic patients. SO electrodes RS-
MAcd3 and RSMAcd4 are ranked as percentage for four graph measures. N is the total
number of voxels for each dimension. ‘-’ represents non-significant results. Both SO elec-
trodes lie within top 5% for 8*8*8 mm3 voxel dimension

4.3.2 Graph theory

Figure 4.3[a-b] shows the betweenness measure computed for iEEG and fMRI networks. The

SO electrodes and the corresponding voxels RSMAcd is ranked top among 35 selected elec-

trodes. The edges in the figure represents the strongest connection which was observed be-

tween RSMAcd and LSMAcd electrodes, located in opposite hemisphere. The next stronger

connection of SO is with the hippocampus in both the networks, which is also considered as

the generator of temporal epilespy (Avoli 2007). The connection is stronger in fMRI network

compared to the iEEG network.

4.3.3 Voxelwise analysis

Previous computation was based upon the ROI extraction using spherical mask around the

MNI coordinates. Some areas or voxels can be missed between two electrode contacts, which

could potentially be the true seizure onzet zone. These regions can remain undetected using

neuroimaging techniques or iEEG. To consider such regions, we varied the voxel dimensions
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a)

b)

Figure 4.3 Betweenness measure computed from time domain Granger causality as adjacency
matrix for a) iEEG, and b) fMRI. Red represents the node with the highest measure value
and green represents the strongest edge or the connectivity strength. Strongest connection
is observed between RSMAcd and LSMAcd electrodes.
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Measures\MNI (2, -2, 40) (6, -6, 32) (6, 6, 40) (6, 6, 44) (10, 6, 44)

Total GC 79 173 88 506 244

Betweenness 118 89 8 269 234

Degree 253 270 407 351 909

Incloseness 88 392 154 178 709

Top R 79 89 8 178 234

Top ranked % 0.5% 0.6% 0.1% 1.2% 1.5%

Table 4.2 Rank of voxels located in the boundary of 8*8*8 mm3 voxel in the site of SO
electrodes

(4x4x4 mm3, 6x6x6 mm3 and 8x8x8 mm3) and computed the pairwise Granger causality

between every other voxels in the gray matter.

4.3.3.1 Rank of SO voxels

The rankings of SO voxels among the total number of source voxels are shown in Table

4.1. As we increase the voxel dimensions, total number of voxels in each voxel dimension

decreases (15,462 voxels with 4 ∗ 4 ∗ 4mm3, 4,552 in 6*6*6 mm3 and 1,959 in 8*8*8 mm3).

We ranked our result for each voxel in descending order of their magnitude for all measures.

The percentage value is computed as the percent of rank of the SO electrode to the total

number of voxels. As summarized in the table, the SO electrode RSMAcd4 is ranked within

the top 1% for 6x6x6 mm3 voxel dimension for Total GC, Degree and Incloseness measures.

Both the SO electrodes - RSMAcd3 and RSMAcd4 are among top 5% in almost all measures

for 8*8*8 mm3 voxel dimension. ’-’ denotes that the result is not significant. The analysis

for 10*10*10 mm3 voxel dimension was not significant and it is not included in the table.
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4.3.3.2 Neighborhood around SO voxels

The SO electrodes were ranked at the top for voxel dimension 8*8*8 mm3 but not for 4*4*4

mm3. This could be because the targeted voxel existed beyond the 4 mm voxel dimension

but inside 8 mm. For the finer details, we focused on the spherical volume of radius 8mm

around the center of SO electrodes as determined above and consider all 4x4x4 voxels within

this boundary, and checked their rankings in the 4mm dimension, consisting of 15,562 voxels.

Table 4.2 shows the ranks of 5 voxels that were constantly ranked highest for all 4

measures out of the 15,562 voxels. The measure for which the rank is topmost (i.e. lowest

number in table) is selected as the top ranked voxel and its percentage is shown in the top

ranked percentage row. The voxel with MNI coordinate (6, 6, 40) was ranked 8th out of 15,462

voxels for the betweenness measure. This voxel is also ranked within top 5 percentage for all

other measures. Similarly the nearby voxel (2, -2, 40) was ranked among top 5 percentage

for total GC and betweenness among these 5 voxels. However, it is possible that the voxel (6,

6, 40) represents the prime voxel for seizure onset, being located very close to the identified

SO electrode RSMAcd4, and ranked at the 0.05 percentile for the entire brain using the

betweenness measure.

Figure 4.4 illustrates the top voxels of 4*4*4 mm3 voxel dimension located within the

boundary of 8*8*8 mm3 voxel dimension right in the location of SO electrodes.

Figure 4.5 shows the strongest connections from the top ranking voxel (8 out of 15,000)

to the whole brain. The connections of this voxel cluster around frontal lobes, cerebellum,

basal ganglia and thalamus. These areas have a major role in cognition, decision making



44

Figure 4.4 Top voxels according to total causal flow and three graph measures located within
the boundary of 8*8*8 mm3 voxels dimension. Two red dots are SO voxels - RSMAcd3 and
RSMAcd4 with voxel dimension 4*4*4 dimension. (2,-2,40) and (6, 6, 40) are represented
as green dots. Blue dots are the other three voxels.

Figure 4.5 The top 80 connections from the 8th top ranked (6, 6, 40) voxel of over 12,000.
The outflow clusters are observed in frontal lobes, cerebellum, basal ganglia and thalamus.
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and motor control. This result demonstrates the connection between seizure origin and

other areas. The impairment of these clustered areas could be associated with the seizure

symptoms.

4.4 Discussion

In this study, we used quantitative techniques based on Granger causality and graph theory

to study the correlation between iEEG and BOLD signals from resting state fMRI. Our

results showed that the iEEG electrode contacts with the strongest infra-slow EEG signal

correlated with the spontaneous BOLD fluctuations in corresponding location. The voxels

within a small radius of the seeded location were constantly significant for total causal flow

and directed centrality measures like betweenness, degree and incloseness. Individual voxel

analysis within this radius showed a highly significant clustering based on various measures

when compared to other voxels throughout the entire brain.

We compared the causal relationship of the total causal flow and sink activity between the

infra-slow interictal iEEG time-series and the corresponding fMRI BOLD signal. However,

causal relationship was not overlapped for the same range of infra-slow frequency range. The

infraslow frequency range considered for BOLD signal was longer than that for iEEG. Based

on our multiple experiments on different frequency ranges, we found that the frequency range

0.01-0.2 Hz in iEEG and 0.08-0.8 Hz in fMRI have the highest coupling between each other

and the SO electrodes. This result could be patient specific, and multiple patients have to

be studied to find the average overlap range of infraslow frequency between iEEG and fMRI.
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The voxelwise analysis of whole brain showed that the voxels in the proximity of seeded

locations resulted in the top rank for the computed quantitative measures.The electrical

activity recorded in SO iEEG electrodes might have been influenced by these cluster of

voxels as (Menon et al. 1996) illustrated that the distribution of coherence values differed

from background level at interisite distances of 1 and 1.4 cm for iEEG electrodes. Prolonged

seizure freedom by a small laser resection strongly supports the iEEG indications that the

presumed focus did indeed include the true seizure onset zone.

We acknowledge the challenges in comparing EEG and BOLD signals. Few previous

studies have used functional connectivity measures in the two signals, similar to our approach.

Instead, we follow the same methods of functional connectivity method - Granger causality

and graph measures, for both iEEG and BOLD signals, similar to our analysis of high-

frequency infra-slow iEEG time-series for different phases of epilepsy.

The iEEG and BOLD signals not being recorded simultaneously is another challenge. As

discussed by Aghakhani and team, the BOLD signal from true seizure onset areas could be

distorted in simultaneous iEEG-fMRI due to implanted electrodes (Aghakhani et al. 2015).

The time of acquisition of fMRI and iEEG signals differed by several months in our study.

Neuroimaging and iEEG studies have confirmed that significant progression of the epilep-

togenic process might progress over several years in epilepsy (Walker et al. 2002). However,

the locations of the SOZ appear nearly identical in our dataset.

The other challenges include the computation time for connectivity measures with a

large number of voxels. We limited our analysis to 43
mm voxel dimensions as the computation
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boundary of the cluster computer in our lab. The number of voxels would increase to

hundred of thousands as we increase the resolution to 23
mm voxels, the highest resolution of

fMRI with present day scanners. The correlations between the neighboring voxels can be

profound at this level and the result could be compromised. We also limited our study of

causality to pairwise parametric Granger causality, instead of a non-parametric method for

the same reason. However, we determined model order by comparing spectral power between

parametric and non-parametric methods for the validation of autoregressive model fitting of

the data. These two issues related to computation time could be resolved in the future with

more efficient algorithms and more powerful computing resources.

Despite these challenges and limitations, we are able to demonstrate that using the

intracranial ictal EEG recording as a seed, the infraslow EEG activity is highly correlated

with the corresponding voxels of the resting state functional MRI (rsfMRI) recorded months

before. As such, intracranial EEG has the potential to be used as a seed in the rsfMRI

to characterize the epilepsy focus and connections of the epilepsy network throughout the

entire brain at milimeters resolution.

Nonetheless, the fine detail mapping of the epilepsy network presented in this study

requires further extensive testing and analysis to determine the optimal methods for charac-

terizing and displaying the results. As with other applications of RSfMRI, causal analysis,

and graph theory, a great variety of techniques are feasible. Obvious questions of importance

include the percentage of potential epilepsy surgery patients in whom the focus can be this

precisely defined, including those with visible lesions or possible tandem foci; and whether
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combining them with cluster analysis may allow the application of these techniques to the

interictal resting state fMRI alone.
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CHAPTER 5

Summary and Future Directions

In this dissertation, we have provided the first comprehensive quantitative analysis of in-

fraslow iEEG recording from human subjects using intracranial electrodes. We have per-

formed for the first time a quantitative analysis of the information contents of different

frequency components in the infraslow iEEG signal. We showed that the strongest infraslow

iEEG signal correlates highly with the location of the visible seizure focus, and also with that

of the strongest high frequency EEG signal as well, in both the preictal and interictal phases

of the epilepsy cycle. In different patients and phases this signal may be more prominent in

either total or negative causal flow.

We then demonstrated that the iEEG electrode contacts showing the strongest infraslow

iEEG signal correlated with voxels with the strongest resting state fMRI (rsfMRI) signal

at the corresponding locations, using similar methods of frequency analysis; and that those

those voxels form a highly significant grouping when compared to others throughout the

entire brain. Finally, having seeded the epilepsy focus into the rffMRI, we have begun

mapping the connections of the epilepsy network throughout the entire brain in unprece-

dented fine detail. These exciting results make a crucial contribution to our understanding

of epileptic seizure propagation and open up new possibilities for localizing seizure onset

zones non-invasively.

Having used infraslow EEG analysis to seed the epilepsy focus into the rsfMRI, we will

continue mapping in fine detail the connections of the epilepsy network throughout the entire
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brain, and extend our techniques to additional patients. Through testing of multiple causal

and graph theory parameters, we will identify those that best allow characterization of the

epilepsy focus voxels as a discrete cluster. Then, using additional methods of cluster analysis,

we hope that our techniques may allow the precise identification of the focus and network

without seeding from the iEEG, but directly from the rsfMRI.
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APPENDIX A

Definitions - Granger causality and graph measures

A Granger causality

Given two simultaneously measured time series X1(t) and X2(t), we compute the covariance

matrix (Σ), the transformation function (H(f)) by multivariate vector autoregressive mod-

eling of the time series (Dhamala et al. 2008a,b), and the spectral density matrix (S(f))

from these time series, such that S(f) = H(f)
∑
H ∗ (f).

The noise covariance matrix (Σ) is computed from the residual errors of the prediction

models, and the transfer function H is obtained from the matrix inverse of the Fourier

transforms of the coefficients in the prediction models. For non-stationary process, S,H, and

Σ can be estimated using the wavelet transforms-based non-parametric estimation (Dhamala

et al. 2008b), so that these quantities become the function of both time and frequency

domains.

The spectral GC from 2 to 1, M2→1(f) can be obtained as

M2→1(f) = − ln
S11(f)− (

∑
22−

∑2
12∑
11

)|H12(f)|2

S11(f)

where, by interchanging 1 and 2, one can compute the spectral GC from 1 to 2, M1→2(f).

The time-domain Granger causality can be obtained by integration over the entire frequency

range. The total interdependency measures of statistically inter-related two stationary pro-
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cesses consists of sub-measures and can be expressed as;

M1,2 = M1→2 +M2→1 +M1.2

where M2→1 and M1→2 are one-way directional delayed causal flow from 2 to 1 and 1 to 2,

and M1.2 is non-delayed instantaneous causal flow.

B Graph measures

Consider a graph G with N nodes, and the corresponding adjancey matrix A, where each

element aij represents a connection from node i to node j, 1 if they are connected, and

0 otherwise. The mathematical definitions of some of the common graph measures are

presented below.

• Degree: Node degree is the number of links connected to the node. In directed

networks, the in-degree is the number of inward links and the out-degree is the number

of outward links. The degree of node i (ki) can be defined as

ki =
∑
j∈N

aij

• Clustering Coefficient The clustering coefficient is the fraction of triangles around

a node and is equivalent to the fraction of node’s neighbors that are neighbors of each

other.

Clustering coefficient of the network (Watts & Strogatz 1998) ,
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C =
1

n

∑
i∈n

Ci =
1

n

∑
i∈n

2ti
ki(ki − 1)

,

where Ci is the clustering coefficient of node i (Ci = 0 for Ki < 2)

• Closeness centrality: Closeness centrality is a distance function that can be used

to determine the nodes that are central to other nodes (Freeman 1978). Nodes with a

high closeness score have the shortest distance to all other nodes.

Closeness centrality of node i

L−1i =
n− 1∑
j∈n,j 6=i dij

Weighted closeness centrality of node i,

(Lw
i )−1 =

n− 1∑
j∈n,j 6=i di

w
j

Directed closeness centrality of node i,

(L→i )−1 =
n− 1∑

j∈n,j 6=i di
→
j

• Betweenness centrality: Node betweenness centrality is the fraction of all shortest

paths in the network that contain a given node. Nodes with high values of betweenness

centrality participate in a large number of shortest paths. Betweenness centrality of

node i can be defined as

bi =
1

(n− 1)(n− 2)

∑
h,j∈N,h6=j,h6=i,j 6=i

ρij(i)

ρij
,
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where ρij is the number of the shortest paths between h and j, and ρij(i) is the number

of the shortest paths between h and j that pass through i

Betweenness centrality is computed equivalently on weighted and directed networks,

provided that path lengths are computed on respective weighted or directed paths.
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APPENDIX B

Granger causality results on all patients

Here we report additional results for patients A, B and C for all combination of the epilepsy

stages (preictal and interictal) and the frequency ranges (high frequency activities and in-

fraslow activities). The bar diagram shows the total Granger causality, sink activity and

source activity. The red circle represents seizure onset (SO) electrode and the blue circle

represents contralateral electrode pair to the SO electrode. The result of patient C as a

representative patient are included in the main part of this dissertation.

Figure B.1 Patient A - Integrated Granger causality in the preictal state for high frequency
activities
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Figure B.4 Patient A - Integrated Granger causality in the preictal state for infraslow activ-
ities
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Figure B.7 Patient A - Integrated Granger causality in the interictal state for high frequency
activities
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Figure B.10 Patient A - Integrated Granger causality in the interictal state for infraslow
activities
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APPENDIX C

Electrodes and corresponding MNI coordinates

A MNI coordinates

The table presented here shows the electrodes and their corresponding Montreal Neurological

Institute (MNI) coordinates in MRI. MNI coordinates are a system standard coordinates for

indexing the voxels within a volume of MRI or CT.

Electrode MNI (X, Y, Z) Electrode MNI (X, Y, Z)

RSMAcd1 (7, 2, 29) LSMAcd1 (-5, 2, 31)

RSMAcd2 (9, 0, 34) LSMAcd2 (-6, 2, 38)

RSMAcd3 (9, -1, 38) LSMAcd3 (-7, 3, 42)

RSMAcd4 (12, -3, 44) LSMAcd4 (-9, 2, 49)

RSMAcd5 (13, -4, 48) LSMAcd5 (-10, 2, 53)

RSMAcd6 (15, -5, 53) LSMAcd6 (-12, 3, 59)

RSMAcd7 (16, -6, 57) LSMAcd7 (-13, 2, 63)

RSMAcd8 (19, -7, 62) LSMAcd8 (-15, 1, 70)

RSMAcd9 (21, -9, 65) LSMAcd9 (-16, 2, 73)

RSMAcd10 (22, -9, 68) LSMAcd10 (-17, 1, 76)

RpHGd1 (20, -19, -28) 5Rprd1 (-1, 13, 25)

RpHGd3 (29, -16, -32) 5Rprd2 (-3, 12, 31)

RpHGd7 (48, -10, -31) 5Rprd3 (-6, 12, 36)

RpHGd9 (56, -7, -31) 5Rprd4 (-8, 12, 40)

RpHGd10 (62, -7, -32) 5Rprd8 (-20, 10, 58)

RSTGId1 (46, 7, 5) 5Rprd9 (-24, 8, 63)

RSTGId3 (55, 3, -5) 5Rprd10 (-27, 8, 68)

RSTGId5 (62, 2, 5)

Table C.1 MNI coordinates for the iEEG electrodes and the corresponding voxels
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