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ABSTRACT 

The family of voltage-gated Kv4 ion channels (Kv4.1-3) mediates the transient A-type 

potassium currents, IA, and is an important regulator of neuronal signaling. Aberrations in Kv4 

channel expression and/or function are associated with several disease states, including chronic 

pain, epilepsy, Alzheimer’s disease, Huntington’s disease and major depressive disorder. Kv4 

channels exist as ternary complexes with potassium channel interacting proteins and dipeptidyl 

peptidase-like proteins. Multiple ancillary proteins also associate with the Kv4 ternary complex 

throughout its lifetime. Little is known about the regulation of protein-protein interactions within 

Kv4 macromolecular complexes. Small ubiquitin-like modifier (SUMO) is a peptide that is post-

translationally conjugated to lysine (K) residues on target proteins. This post-translational 

modification dynamically regulates protein-protein interactions. It can either promote or prevent 

a given interaction. This dissertation research investigated if/how post-translational 

SUMOylation moderated Kv4.2 protein-protein interactions to tune IA. Kv4.2 has several 

putative SUMOylation sites. Two conserved sites were examined in this work: K437 and K579. 

SUMOylating K579 increased IA when Kv4.2 existed in the ternary complex but decreased IA 

when Kv4.2 was expressed alone. Studies to identify the mechanism indicated that K579 

SUMOylation increased IA by promoting ternary complex recycling after endocytosis, most 

likely by blocking an interaction with a ubiquitin ligase and thereby reducing a ubiquitin 

lysosome sorting signal. In contrast, when Kv4 was not incorporated into a ternary complex, 

K579 SUMOylation blocked an unknown protein-protein interaction that altered channel gating 

to reduce IA. SUMOylation at the second site, K437, had no effect when Kv4.2 was incorporated 

into the ternary complex, but increased the insertion of electrically silent channels when Kv4.2 

was expressed alone. The mechanism underpinning increased surface expression was not 



examined. These dissertation findings were the first to demonstrate that Kv4.2 can be 

SUMOylated to regulate IA, that SUMOylation modulates Kv4.2 internalization and that the 

effect of SUMOylation depends upon the available interactome. 
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1 INTRODUCTION  

1.1 Role of the transient A-type potassium current in the nervous system 

Potassium channels are grouped into several families, including two-pore domain 

channels, inward-rectifier channels, ligand-gated channels, and voltage-activated channels 

(Coetzee et al., 1999; Kuang, Purhonen, & Hebert, 2015). Twelve subfamilies of voltage-

activated potassium channels (Kv1-12) have been identified and classified according to function: 

delayed rectifying (Kv1.1-3, Kv1.5-8, Kv2, Kv3.1-2 Kv7, Kv10.1), A-type (Kv1.4, Kv3.3-4, 

Kv4), outwardly rectifying (Kv10.2), inwardly rectifying (Kv11) slowly activating (Kv12), or 

modifier/silent (Kv5, Kv6, Kv8, Kv9) (Gutman et al., 2005).  

The Kv4 subfamily comprises Kv4.1, Kv4.2 and Kv4.3. Transcripts can be alternately 

spliced to create additional isoforms. Four Kv4 pore-forming 𝛼𝛼-subunits assemble to form a 

channel. Each subunit has a cytoplasmic N- and C-terminus and six transmembrane spanning 

regions (S1-S6). Kv4 channels have a highly conserved tetramerization domain (T1), which 

immediately precedes S1 and assists in tetrameric assembly of the 𝛼𝛼-subunits. S1-S4 make up 

the voltage sensing domain (VSD), while the p-loop between S5 and S6 constitute the pore-

forming domain (Birnbaum et al., 2004).  

Kv4 channels are widely expressed throughout the central and peripheral nervous 

systems (CNS/PNS), and in neurons Kv4 channels are largely expressed in somatodendritic 

compartments (Birnbaum et al., 2004; Sheng, Tsaur, Jan, & Jan, 1992). Kv4 channels play key 

roles in controlling neuronal excitability (Jerng & Pfaffinger, 2014). For example, Kv4 channels 

control neuronal firing rates (Carrasquillo, Burkhalter, & Nerbonne, 2012; Lin, Sun, Kung, 

Dell'Acqua, & Hoffman, 2011). Kv4 channels modulate back propagating action potentials. In 

CA1 pyramidal neurons, the density of the Kv4.2 channels increases with distance from the 
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soma. The high density of Kv4.2 channels in the distal dendrites prevents back propagating 

action potentials from infiltrating this region (Hoffman, Magee, Colbert, & Johnston, 1997). Kv4 

channels regulate synaptic plasticity. For example, Kv4.2 knock out mice have a lowered 

threshold for LTP induction (X. Chen et al., 2006), and Kv4.2 channels are internalized during 

LTP induction to facilitate synaptic plasticity (J. Kim, Jung, Clemens, Petralia, & Hoffman, 

2007).  

A plethora of extracellular signals can modulate IA. In many cases, modulatory effects 

are mediated by protein kinases, and several different protein kinases are known to 

phosphorylate Kv4 channels. Protein kinase A (PKA) directly phosphorylates Kv4.2 channels at 

threonine 38 (T38) and serine 552 (S552) on the N- and C-termini, respectively (A. E. Anderson 

et al., 2000). PKA phosphorylation at S552 has multiple effects that vary with system. For 

example, in Xenopus oocytes expressing Kv4.2 and potassium channel interacting protein 

(KChIP), PKA phosphorylation at S552 decreases current amplitude by causing a rightward shift 

in the voltage of half-activation and increasing the inactivation time constant. In hippocampal 

dendritic spines, PKA phosphorylation at S552 reduces IA current density and channel surface 

expression by increasing Kv4.2 internalization (Hammond, Lin, Sidorov, Wikenheiser, & 

Hoffman, 2008). Protein kinase C (PKC) directly phosphorylates Kv4.2 at two additional C-

terminal sites, S447 and S537, and reduces IA current density and surface expression (Schrader 

et al., 2009). ERK is a downstream target of both PKA and PKC, and ERK phosphorylates 

Kv4.2 at T602 and T607 to downregulate IA (Adams et al., 2000; H. J. Hu, Alter, Carrasquillo, 

Qiu, & Gereau, 2007; Schrader et al., 2009; Yuan, Adams, Swank, Sweatt, & Johnston, 2002). 

Glycogen synthase kinase 3 (GSK3) beta phosphorylation of Kv4.2 at S616 downregulates IA 

and augments spike-timing dependent LTP (Aceto et al., 2020). Calcium-calmodulin-dependent 
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kinase (CaMKII) phosphorylates Kv4.2 at two C-terminal sites, S438 and S459, and CaMKII 

phosphorylation increases channel surface expression and IA current amplitude (Varga et al., 

2004).   

Aberrant Kv4 expression and function have been implicated in several neurological 

diseases, including fragile X syndrome, epilepsy, Huntington’s disease, Alzheimer’s disease, 

chronic depression, and chronic pain. Fragile X syndrome is caused by loss of fragile X mental 

retardation protein (FMRP) and is associated with neuronal hyperexcitability. Normally, FMRP 

associates with Kv4.2 mRNA and positively regulates its translation and protein expression, and 

in cortical neurons and hippocampal slices from Fmr1 knockout (KO) mice, a reduction in total 

Kv4.2 protein levels and Kv4.2 surface expression is observed, and this increases neuronal 

excitability (Gross, Yao, Pong, Jeromin, & Bassell, 2011). Different studies report either a 

decrease or increase in Kv4.2 expression following a seizure. In the hippocampus, Kv4.2 surface 

expression is decreased following kainate-induced status epilepticus (SE) (Joshi, Rajasekaran, 

Hawk, Chester, & Goodkin, 2018; Lugo et al., 2008), while Kv4.2 surface expression is 

increased following lithium-pilocarpine-induced SE (Joshi et al., 2018). Autosomal dominant 

lateral temporal epilepsy (ADTLE) is an inherited epilepsy disorder associated with mutations in 

leucine-rich glioma-inactivated-1 (LGI1). LGl1 is necessary for trafficking Kv4.2 channels to the 

surface after a pilocarpine induced seizure, and this homeostatic response attenuates phasic firing 

in thalamocortical neurons (Smith, Xu, Kasten, & Anderson, 2012). Deficits in indirect spiny 

projection neurons (iSPNs) is linked with the hyperkinetic phenotype seen in Huntington’s 

disease (HD). Distal dendrites of iSPN neurons from symptomatic HD mice are hypoexcitable 

due to an increased association of Kv4 with KChIP (Carrillo-Reid et al., 2019). In several 

Alzheimer’s disease models neuronal excitability is enhanced by down regulation of Kv4 
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channels (Hall et al., 2015; K. R. Kim et al., 2021; Ping et al., 2015; Scala et al., 2015). In a 

mouse model of chronic depression there is an increase in spike timing-dependent long-term 

potentiation (LTP) in the medium spiny neurons of nucleus accumbens caused by a down 

regulation of Kv4 channels due to phosphorylation of the channel by GSKbeta (Aceto et al., 

2020). Blocking GSKbeta ameliorates depressive-like behaviors in these animals. Chronic pain 

is associated with nociceptor hyperexcitability and this hyperexcitability is caused by reduced IA 

and Kv4 expression in these neurons (Kanda et al., 2021; C. Wang et al., 2021; Zemel, Ritter, 

Covarrubias, & Muqeem, 2018).  

1.2 Kv4 macromolecular complex 

Kv4 𝛼𝛼-subunits form functional channels that mediate IA; however auxiliary proteins that 

interact with the 𝛼𝛼-subunit can modulate channel function. Co-expressing two auxiliary proteins, 

potassium channel interacting protein (KChIP1-4) and dipeptidyl peptidase like protein (DPLP; 

DPP6 and DPP10) is necessary to recapitulate native IA in heterologous expression systems 

(Amarillo et al., 2008; Jerng, Kunjilwar, & Pfaffinger, 2005; Jerng & Pfaffinger, 2012). This 

fundamental unit is termed a ternary complex (Figure 1.1).  

KChIPs belong to the neuronal calcium sensor (NCS) gene family, and in mammals, four 

KChIP (KCNIP1-4) genes encode the four families of KChIP proteins (KChIP1-4), and multiple 

KChIP isoforms exist due to alternative splicing (An et al., 2000; Jerng & Pfaffinger, 2014; 

Morohashi et al., 2002). KChIPs have four conserved EF-hands that can bind Mg2+ or Ca2+. EF-1 

is unbound, EF-2 binds Mg2+, and EF-3 and EF-4 bind Ca2+ (Chen, Lee, & Chang, 2006; Osawa 

et al., 2005). KChIPs are cytosolic proteins that have a variable N-terminus attached to a 

conserved C-terminal core, which contains the 4 EF-hands. Some KChIP isoforms can associate 

with the plasma membrane via N-myristoylation (O'Callaghan, Hasdemir, Leighton, & 
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Burgoyne, 2003), S-palmitoylation (Takimoto, Yang, & Conforti, 2002), or a transmembrane 

segment on the variable N-terminus (Jerng & Pfaffinger, 2008, 2014).  

Cytosolic KChIPs first interact with the cytosolic termini of Kv4 𝛼𝛼-subunits at the ER 

(An et al., 2000; Hasdemir, Fitzgerald, Prior, Tepikin, & Burgoyne, 2005; Shibata et al., 2003). 

Structural models show a 4:4 stoichiometry of Kv4: KChIP subunits, and high-resolution 

structural information obtained from a crystalized rat or human Kv4.3 N-terminal domain and 

human KChIP1 describes two KChIP binding sites on the Kv4 N-terminus. A hydrophobic 

binding pocket on KChIP interacts with a stretch of ~40 N-terminal hydrophobic amino acids on 

the 𝛼𝛼-subunit (site 1), and that same KChIP binds to the T1 domain on an adjacent Kv4 subunit 

and “clamps” two 𝛼𝛼-subunits together (site 2) (Pioletti, Findeisen, Hura, & Minor, 2006; H. 

Wang et al., 2007) (Figure 1.2). KChIPs also bind to the Kv4 C-terminus. High-resolution X-ray 

crystallography studies detailing the interaction between KChIP and the Kv4 C-terminus have 

yet to be resolved; however, C-terminal deletion mutants show that an intact C-terminus facilities 

KChIP binding (Callsen et al., 2005; W. Han, Nattel, Noguchi, & Shrier, 2006).  

KChIPs increase Kv4 surface levels and steady-state Kv4 protein expression and reduce 

Kv4 internalization at the cell surface (Foeger, Marionneau, & Nerbonne, 2010; Shibata et al., 

2003). In addition, KChIPs exert significant effects on channel biophysical properties, including 

increasing IA current density, slowing channel inactivation, shifting the voltage dependence of 

activation and steady-state inactivation to more depolarized values and accelerating recovery 

from inactivation (An et al., 2000; Bahring et al., 2001; Foeger et al., 2010; Shibata et al., 2003).  

DPLPs are single-pass transmembrane proteins belonging to a family of serine proteases 

that lack the active-site serine and the molecular structure for catalytic activity. DPLP proteins 

are encoded by two homologous genes, DPP6 and DPP10, and multiple isoforms exist due to 
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alternative splicing. DPLPs have a short variable cytoplasmic N-terminus, conserved 

transmembrane segment and large extracellular globular C-terminus (Jerng, Qian, & Pfaffinger, 

2004; Nadal, Amarillo, Vega-Saenz de Miera, & Rudy, 2006; Nadal et al., 2003; Takimoto, 

Hayashi, Ren, & Yoshimura, 2006).  

The DPLP transmembrane domain binds to S1 and S2 on the Kv4 𝛼𝛼-subunit (Ren, 

Hayashi, Yoshimura, & Takimoto, 2005); however, high-resolution structural data regarding the 

binding is lacking. There are conflicting reports about how many DPLPs bind to Kv4 channels. 

Kv4-DPP6 shows a preference for a 4:4 stoichiometry (Soh & Goldstein, 2008), while Kv4-

DPP10 shows a preference for a 4:2 stoichiometry (Kitazawa, Kubo, & Nakajo, 2015).  

Like KChIPs, DPLPs also interact with Kv4 𝛼𝛼-subunits at the ER and facilitate forward 

trafficking to the plasma membrane (Lin, Long, Hatch, & Hoffman, 2014; Nadal et al., 2003; 

Zagha et al., 2005), and this increase in Kv4 surface expression is mediated by N-glycosylation 

of the DPLP extracellular domain (Cotella et al., 2010; Cotella et al., 2012). DPLPs exert a 

profound effect on channel gating, increasing single channel conductance, accelerating channel 

activation, inactivation, and recovery from inactivation, and shifting the voltage dependence of 

activation and steady-state inactivation to more hyperpolarized values (Jerng et al., 2004; Kaulin 

et al., 2009; Nadal et al., 2003). 

In addition to KChIP and DPLP, multiple ancillary proteins interact with Kv4 𝛼𝛼-subunits 

to influence trafficking and gating. Recently, tandem affinity purification of exogenously 

expressed Kv4.2 followed by mass spectrometry identified over 120 endogenous HEK cell 

proteins that associate with the 𝛼𝛼-subunit (J. H. Hu et al., 2020). In the ER, J-proteins interact 

with Kv4 𝛼𝛼-subunits to facilitate tetramerization, and recruit chaperone protein Hsp70 to prevent 

the channel from misfolding and aggregating (Li et al., 2017). The Kv4 𝛼𝛼-subunit can traffic in 
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distinct pathways from the ER to the Golgi depending on which KChIP isoform the channel 

interacts with. For example in HeLa cells, Kv4 channels that associate with KChIP1 traffic from 

the ER to the Golgi in non-COPII vesicles that do not contain the usual ER-Golgi SNARE 

proteins, but instead are positive for Vtila and VAMP7 (Flowerdew & Burgoyne, 2009; 

Hasdemir et al., 2005; B. L. Tang, 2020). Cardiomyocytes express KChIP2 and not KChIP1, and 

in these cells, Kv4 traffics through a conventional ER-Golgi pathway in COPII containing 

vesicles, and trafficking requires Rab1 and Sar1 (T. Wang et al., 2012). Soluble N-

ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, syntaxin 1A binds 

to the N-terminus of Kv4.2𝛼𝛼 and this interaction decreases channel surface expression and 

reduces IA current density in HEK cells (Yamakawa et al., 2007). A di-leucine motif on the C-

terminus of Kv4𝛼𝛼 is necessary and sufficient for dendritic transport of the channel (Rivera, 

Ahmad, Quick, Liman, & Arnold, 2003), and Kif7 binding to a sequence of amino acids 

downstream of this motif facilitates dendritic transport (Chu, Rivera, & Arnold, 2006). 

Potassium channel-associated protein (KChAP, aka PIAS3) associates with Kv4 and increases 

IA in a transcription-independent fashion (Kuryshev, Gudz, Brown, & Wible, 2000; Pourrier, 

Schram, & Nattel, 2003). The mechanism of action was not identified, but PIAS proteins were 

subsequently determined to be SUMO E3 ligases (Johnson & Gupta, 2001; Kahyo, Nishida, & 

Yasuda, 2001). Actin binding protein filamin interacts with the Kv4 C-terminus to increase IA 

current density (Petrecca, Miller, & Shrier, 2000). The C-terminus of Kv4 channels associate 

with Kv𝛽𝛽2 in the rat brain to increase total Kv4 protein levels and IA (Yang, Alvira, Levitan, & 

Takimoto, 2001). In the mouse brain, Kv4 interacts with Nav𝛽𝛽1 and this association stabilizes 

Kv4.2 protein levels and increases channel surface expression and increase IA current density 

(Marionneau et al., 2012). Kv4 channels interact with two members of the membrane-associated 
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guanylate kinase (MAGUK) family, SAP97 and PSD95, and both of these proteins bind the Kv4 

C-terminus (Gardoni et al., 2007; Wong, Newell, Jugloff, Jones, & Schlichter, 2002). In the 

hippocampus, SAP97 is important for Kv4 trafficking from the ER to the post-synaptic sites, 

while PSD95 is an important anchoring element once the channel arrives to the synaptic 

compartment (Gardoni et al., 2007). Scaffolding protein AKAP79/150 binds SAP97 and PSD95 

and also directly interacts with the C-terminus of Kv4 𝛼𝛼-subunits and anchors PKA and 

calcineurin close to the channel to facilitate dynamic (de)-phosphorylation (Colledge et al., 2000; 

Lin et al., 2011). Finally, the Kv4 macromolecular complex includes other ion channels. For 

example, in cerebellar stellate cells, Kv4.2 forms a complex with KChIP3 and Cav3. Calcium 

influx from Cav3 binds to KChIP3 and this modulation is important for shifting the voltage-

dependence of half-inactivation into a physiological range to control spike output (D. Anderson, 

Mehaffey, et al., 2010; D. Anderson, Rehak, et al., 2010). 

Little is known about how interactions with Kv4 are regulated. Previous studies have 

looked at mechanisms targeting the Kv4𝛼𝛼-KChIP or Kv4𝛼𝛼-DPLP interaction. Calcium binding 

to KChIP influences its binding to the 𝛼𝛼-subunit. Mutating KChIP EF-hands blocks the ability of 

KChIP4 to co-immunoprecipitate (co-IP) with Kv4.2 in COS cells and attenuates the KChIP4 

mediated increase in IA current density and recovery from inactivation (Morohashi et al., 2002). 

In HEK cells expressing KChIP3 and Kv4.2, more KChIP3 co-IPs with Kv4.2 in the presence of  

Ca2+; and in whole-cell recordings using a Ca2+ -free pipette solution, KChIP3 failed to increase 

recovery from inactivation and shift the steady-state voltage of half-inactivation to more a 

positive value (C. Seifert, Storch, & Bahring, 2020). Ceroid lipofuscinosis neuronal 3 (CLN) 

protein interacts with KChIP3 and modulates the Kv4.2-KChIP3 interaction. Overexpressing 

CLN3 with Kv4.2 and KChIP3 in HEK cells, reduces the amount of KChIP3 that co-IPs with 
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Kv4.2 channels, abolishes the KChIP3-mediated increase in IA current density, and attenuates 

the ability of KChIP3 to slow the time constant of inactivation, shift the voltage of steady-state 

inactivation to more depolarized value, and speed recovery from inactivation (C. Seifert et al., 

2020). N-glycosylation of DPP10 is essential for interaction with Kv4.3. In CHO cells, 

preventing N-glycosylation of DPP10 disrupts its binding to Kv4.3 and blocks the DPP10 

mediated increase in Kv4.3 surface expression, and impairs the ability of DPP10 to hasten 

inactivation, shift the voltage of activation and steady-state inactivation to more negative values, 

and accelerate recovery from inactivation (Cotella et al., 2012). In hippocampal CA1 neurons 

proyl cis/trans isomerase Pin1 modulates the Kv4.2-DPP6 interaction to adjust IA. Seizure or 

enriched environment exposure leads to phosphorylation of Kv4.2 at T607, and Pin1 binding to 

phosphorylated T607 reduces the amount of DPP6 that co-IPs with Kv4.2. Pharmacological 

block of Pin1 or mutating the Pin1 binding site on Kv4.2 increases IA current density and speeds 

recovery from inactivation in out-side out somatic patches from CA1 pyramidal neurons, 

suggestive of more Kv4.2 channel in a complex with DPP6 (J. H. Hu et al., 2020). Identifying 

the mechanisms controlling these protein-protein interactions is important for understanding how 

IA is dynamically regulated.   

1.3 Small ubiquitin-like modifier is a dynamic modification that organizes protein-

protein interactions 

Small ubiquitin-like modifier is an 11kD peptide post-translationally added to lysine (K) 

residues on a target protein (Flotho & Melchior, 2013; Henley, Carmichael, & Wilkinson, 2018; 

Henley et al., 2021). In some cases, SUMO can be SUMOylated to create a polySUMO chain on 

a protein. In mammals, there are 5 SUMO isoforms (SUMO1-5). SUMO-2 and SUMO-3 are 

98% identical and share 47% sequence homology with SUMO-1. Post-translational modification 
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by SUMO1-3 is widely studied. (Celen & Sahin, 2020; H. M. Chang & Yeh, 2020; Flotho & 

Melchior, 2013; Henley et al., 2018; Henley et al., 2021). SUMO-2 and SUMO-3 can form poly-

SUMO chains on internal K residues (Tatham et al., 2001). Little is known about the function of 

SUMO-4 and SUMO-5 as post-translational modifiers (Liang et al., 2016; Owerbach, McKay, 

Yeh, Gabbay, & Bohren, 2005).  

SUMO is added to K residues using a series of enzymes similar to those used for 

conjugating ubiquitin. First, the carboxy terminal of immature SUMO is cleaved by a family of 

Sentrin/SUMO-specific proteases (SENPs) to expose a C-terminal di-glycine residue, and mature 

SUMO is transferred to the SAE1/UBA2 heterodimer (E1) and is then transferred to the sole E2 

conjugating enzyme Ubc9 (Desterro, Thomson, & Hay, 1997). Approximately 65% of 

SUMOylation occurs at a SUMO consensus motif, ψKXE/D, where ψ is a hydrophobic residue, 

x is any amino acid, D is aspartic acid and E is glutamic acid. Ubc9 can directly recognize and 

SUMOylate a K residue within a SUMO consensus motif (Matic et al., 2010; Sampson, Wang, & 

Matunis, 2001), or recruit an E3 ligase which helps stabilize the interaction and catalyze 

conjugation. In the cases where SUMO is added to a non-consensus site, the E3 ligase can direct 

SUMO to a K residue or provides substrate specificity (Uzoma et al., 2018). Alternatively, a 

SUMO interacting motif (SIM) can capture a SUMO attached to Ubc9 and SUMO can be added 

to a nearby K residue (Meulmeester, Kunze, Hsiao, Urlaub, & Melchior, 2008; Zhu et al., 2008). 

SUMO is a reversible modification, and the main SUMO de-conjugating enzymes are the SENPs 

(Hickey, Wilson, & Hochstrasser, 2012; Nayak & Muller, 2014) (Figure 1.3).  

SUMOylation organizes protein-protein interactions, and there are several non-mutually 

exclusive consequences of protein SUMOylation. (1) SUMO can compete with another post-

translational modification, such as ubiquitination, methylation, or acetylation, for the same K 
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residue (D. D. Anderson, Eom, & Stover, 2012; Armando et al., 2014).  (2) SUMO can interact 

with phosphoinositols in the trans-Golgi (PI(3)P) or plasma membrane (PI(3,4,5)P3) (Kunadt et 

al., 2015). (3) SUMO can block a protein-protein interaction through steric hindrance. For 

example, CRMP2 SUMOylation blocks its interaction with endocytic proteins Numb, Esp15, and 

E3 ubiquitin ligases Nedd4-2 and Itch (Dustrude et al., 2016). (4) SUMO can facilitate target 

protein interactions with other proteins when the SUMO moiety on the target protein attaches to 

a SUMO binding domain on an interacting partner protein, the most common being the SIM 

domain (Hecker, Rabiller, Haglund, Bayer, & Dikic, 2006). The SUMO-SIM interaction is weak, 

and most protein pairs have additional, stronger sites of interaction. Thus, SUMO is useful for 

recruitment or for stabilizing protein interactions.  Often a single protein will have multiple SIM 

domains and SUMOylation sites, and large multi-protein complexes can be stabilized by 

multiple SUMO-SIM interactions (Figure 1.4). This is widely observed in the nucleus, where 

SUMOylation has been extensively studied. 

SUMO is predominately expressed in the nucleus where it controls transcription, 

replication, DNA repair, and transport. The ability of SUMO to co-regulate a set of functionally 

related nuclear proteins is well documented. For example, during heat shock, transcription 

regulatory proteins are recruited to ~1300 gene regulatory sites, mostly at promoters. Although 

these proteins have binding sites that allow them to form a complex, normally these proteins 

would disperse after a few minutes. However, SUMOylation of the proteins in these complexes 

is increased as a part of the heat shock response. As a result, the multi-protein complexes are 

stabilized on the DNA for 30min, and this drives the gene expression necessary for the heat 

shock response (A. Seifert, Schofield, Barton, & Hay, 2015). Similarly, when there is a break in 

DNA, repair proteins are recruited to the site of the break on the DNA. The proteins in the 
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complex are SUMOylated, and the multiprotein complex is stabilized on the DNA until the 

repair can be performed (Jentsch & Psakhye, 2013; Psakhye & Jentsch, 2012) (Figure 1.4). In 

these cases, mutating SUMOylation sites on one individual protein does not alter its functional 

effect, as long as the other proteins in the network remain SUMOylated. 

Extranuclear proteins can also be SUMOylated. Though studies on extra-nuclear 

SUMOylation began relatively recently, there is a preponderance of data indicating that neurons 

are tuned by the SUMOylation of ion channels, receptors, transporters for neurotransmitter re-

uptake, synaptic proteins, signaling proteins, cytoskeletal-associated proteins, and RNA-binding 

proteins (Henley et al., 2018; Henley et al., 2021; Wasik & Filipek, 2014). SUMOylation 

regulates multiple cellular processes in neurons including membrane protein trafficking (Cartier 

et al., 2019; Dustrude et al., 2016; Kunadt et al., 2015; Ma et al., 2016; Odeh, Coyaud, Raught, 

& Matunis, 2018; Zhou et al., 2018), translation (Ford, Ling, Kandel, & Fioriti, 2019), signal 

transduction (Henley et al., 2021), protein localization (Huang et al., 2012), ion channel 

biophysical properties (see below), synaptic vesicle trafficking and exocytosis (Craig, Anderson, 

Evans, Girach, & Henley, 2015; Girach, Craig, Rocca, & Henley, 2013; L. T. Tang, Craig, & 

Henley, 2015). As a result, SUMOylation influences most aspects of neuronal function including 

neuronal excitability and firing properties, synaptic transmission and plasticity, spine maturation 

and density, and the stress response (Henley et al., 2021). While an expanding repertoire of 

targets and functions of extra-nuclear SUMOylation continues to be identified, the regulatory 

mechanisms involved remain elusive. SUMOylation can be regulated by the phosphorylation 

status of the target protein (Flotho & Melchior, 2013). Neuronal activity can also modify 

SUMOylation profiles by altering the behavior of the SUMOylation machinery and/or its 

location and/or abundance (Craig et al., 2012; Feligioni, Mattson, & Nistico, 2013; Hickey et al., 
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2012; Jaafari et al., 2013; Loriol et al., 2014; Loriol, Khayachi, Poupon, Gwizdek, & Martin, 

2013; Mendes, Grou, Azevedo, & Pinto, 2016; Nayak & Muller, 2014; Watts, 2013).  

Research over the last fifteen years suggests that ion channel SUMOylation serves as a 

mechanism to dynamically adapt the electrophysiological properties of neurons. SUMOylation 

silences K2P1 channels (Plant et al., 2010; Rajan, Plant, Rabin, Butler, & Goldstein, 2005). 

Kv1.5 channel SUMOylation results in a 15mV hyperpolarizing shift in the voltage of 

dependence of steady-state inactivation (Benson et al., 2007). SUMOylation of Kv2.1 enhances 

the firing rate of rat hippocampal neurons by shifting the channel’s voltage dependence of 

activation up to 35mV (Plant, Dowdell, Dementieva, Marks, & Goldstein, 2011). Hyper-

SUMOylation of Kv7.2 and Kv7.3 diminishes the hyperpolarizing M-current in hippocampal 

CA3 neurons leading to neuronal hyperexcitability (Qi et al., 2014). Kv11.1 channel 

SUMOylation reduces current amplitude by reducing the time constant of inactivation 

(Steffensen, Andersen, Mutsaers, Mujezinovic, & Schmitt, 2018). SUMOylating TRPV1 lowers 

the temperature coefficient and temperature threshold for channel activation (Y. Wang et al., 

2018). Hypoxia induces Nav1.2 SUMOylation which shifts the voltage-dependence of channel 

activation so that depolarizing current steps evoke larger Na+ currents (Plant, Marks, & 

Goldstein, 2016). Hypoxia also increases the late Na+ current in myocytes by inducing rapid 

SUMOylation of NaV1.5 channels so they reopen when normally inactive, late in the action 

potential (Plant, Xiong, Romero, Dai, & Goldstein, 2020). HCN2 SUMOylation increases 

channel surface expression and Ih Gmax (Parker et al., 2016), and nociceptor HCN2 

SUMOylation is altered during chronic pain (Forster, Jansen, Rubaharan, Murphy, & Baro, 

2020; Jansen et al., 2021). Enhanced Kainate receptor (GluK2) SUMOylation increased its 

internalization (Konopacki et al., 2011). SUMOylating an auxiliary subunit of NaV1.7, CRMP2, 
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reduces its binding to NaV1.7 and results in reduced current density and surface expression 

(Dustrude et al., 2016). Continued research in this field is likely to reveal that the function of 

most ion channels can be dynamically regulated by SUMOylation. Furthermore, it is reasonable 

to think that the behavior of a battery of ion channels can be locally organized by dynamic 

SUMOylation because, the level of SUMOylation in a compartment is determined by a single 

SUMO-conjugating enzyme and additional enzymes that have multiple targets including E3 

ligases, SENPs, kinases and/or phosphatases. Thus, changing the activity of one of these 

enzymes should alter a network of proteins. Identifying the effects of ion channel SUMOylation, 

the molecular mechanisms that mediate these effects and the regulatory mechanisms controlling 

dynamic SUMOylation will provide important insight into how adaptations in neuronal 

excitability and/or firing properties are orchestrated.  

1.4 Hypothesis 

The work presented here seeks to addresses the question, How are interactions within the 

Kv4 macromolecular complex organized? This work uses a heterologous expression system to 

test the hypothesis that post-translational SUMOylation modulates Kv4 interactions to tune IA. 

In Chapter 2, SUMOylation of Kv4.2 is characterized, and the effects of SUMOylation on IA 

mediated by Kv4.2 were identified. In Chapter 3, the effects of Kv4.2 SUMOylation was 

examined for IA mediated by the ternary complex, and the molecular mechanisms mediating 

these effects were investigated.  
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Figure 1.1 The Kv4 ternary complex 
The ternary complex is comprised of 4 Kv4 pore-forming 𝛼𝛼-subunits, 4 KChIPs, and 4 

DPLPs. The N- and C-termini of Kv4 channels interact with cytoplasmic KChIPs, and the 
transmembrane domain of DPLPs interacts with S1 and S2 on Kv4𝛼𝛼. Black helices, Kv4𝛼𝛼; red 
helices, Kv4 N-terminus; purple helices, DPLP; orange helices, KChIP. Only 6 of the 12 
subunits are shown for clarity. Adapted from Jerng and Pfaffinger 2014.  
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Figure 1.2 KChIP1-Kv4.3 N-terminal binding sites 
KChIP1 interacts with 2 sites on the Kv4.3 N-terminus. At Site 1 hydrophobic residues 

on the Kv4 N-terminus anchor to a hydrophobic pocket in KChIP1 that is revealed when KChIP 
helix 10 is displaced. Site 2 involves KChIP helix 2 binding to the T1 domain of an adjacent 
Kv4α subunit, “clamping” two 𝛼𝛼-subunits together. Orange helices, Kv4.3 N-terminus; blue 
helices, KChIP1; yellow helices, KChIP1 helix 10; gray helices KChIP1 helix 2; red spheres, 
calcium. Adapted from Pioletti et al., 2006. Protein databank 2I2R.  

Site 1 

Site 2 
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Figure 1.3 SUMOylation pathway 
Immature SUMO is cleaved by SENP to reveal a C-terminal di-glycine residue. SUMO is 

transferred to the E1 conjugating enzyme (SAE1/SAE2) in an ATP-dependent manner and is 
then added to the sole E2 conjugating enzyme, Ubc9. Ubc9, often in conjunction with E3 SUMO 
ligases, adds SUMO to K residues on a target protein via an isopeptide bond. SUMO is a 
reversible modification and the isopeptide bond can be cleaved by SENP. Modified from Flotho 
and Melchior 2013.  
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Figure 1.4 Group protein SUMOylation 
Group protein SUMOylation facilitates DNA repair by homologous recombination (HR) 

following a double stranded break. The SUMOylation machinery which includes Ubc9 and an 
E3 SUMO ligase is bound to the chromatin via a binding domain on the E3 ligase. Upon DNA 
damage, homologous recombination factors assemble on the single stranded DNA and the E3 
ligase initiates group protein SUMOylation of the HR proteins. There is a SUMO-interacting 
motif (SIM) (dark blue curved circle) on the E3 ligase to allow stable binding of the ligase to the 
HR complex. It is the combination of multiple SUMO-SIM interactions that stabilize the HR 
complex and ultimately promotes DNA repair. Modified from Jentsch and Psakhye, 2013.  

.  
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2 CHAPTER 1: SUMOYLATING TWO DISTINCT SITES ON THE A-TYPE 

POTASSIUM CHANNEL KV4.2, INCREASES SURFACE EXPRESSION AND 

DECREASES CURRENT AMPLITUDE  
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2.1 Abstract 

Post-translational conjugation of Small Ubiquitin-like Modifier (SUMO) peptides to 

lysine (K) residues on target proteins alters their interactions. SUMOylation of a target protein 

can either promote its interaction with other proteins that possess SUMO binding domains, or it 

can prevent target protein interactions that normally occur in the absence of SUMOylation. One 

subclass of voltage-gated potassium channels that mediates an A-type current, IA, exists as a 

ternary complex comprising Kv4 pore forming subunits, Kv channel interacting proteins 

(KChIP) and transmembrane dipeptidyl peptidase like proteins (DPPL). SUMOylation could 

potentially regulate intra- and/or intermolecular interactions within the complex. This study 

began to test this hypothesis and showed that Kv4.2 channels were SUMOylated in the rat brain 

and in human embryonic kidney (HEK) cells expressing a GFP-tagged mouse Kv4.2 channel 

(Kv4.2g). Prediction software identified two putative SUMOylation sites in the Kv4.2 C-

terminus at K437 and K579. These sites were conserved across mouse, rat, and human Kv4.2 

channels and across mouse Kv4 isoforms. Increasing Kv4.2g SUMOylation at each site by ~30% 

produced a significant ~22-50% decrease in IA Gmax, and a ~70-95% increase in channel surface 

expression. Site-directed mutagenesis of Kv4.2g showed that K437 SUMOylation regulated 

channel surface expression, while K579 SUMOylation controlled IA Gmax. The K579R mutation 

mimicked and occluded the SUMOylation-mediated decrease in IA Gmax, suggesting that 

SUMOylation at K579 blocked an intra- or inter-protein interaction involving K579. The K437R 

mutation did not obviously alter channel surface expression or biophysical properties, but it did 

block the SUMOylation-mediated increase in channel surface expression. Interestingly, 

enhancing K437 SUMOylation in the K579R mutant roughly doubled channel surface 

expression, but produced no change in IA Gmax, suggesting that the newly inserted channels were 
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electrically silent. This is the first report that Kv4.2 channels are SUMOylated and that 

SUMOylation can independently regulate Kv4.2 surface expression and IA Gmax in opposing 

directions. The next step will be to determine if/how SUMOylation affects Kv4 interactions 

within the ternary complex. 

2.2 Introduction 

The transient A-type potassium current (IA) is a rapidly activating, subthreshold current 

that regulates neuronal excitability. In mammals, IA is mediated by Kv1.4, Kv3.3-4 and Kv4.1-3 

α-subunits (Gutman et al., 2005). Kv4 channels are widely expressed in a number of central 

neurons, and evidence suggests that native Kv4 channels exist in a ternary complex with two 

well studied auxiliary subunit proteins, cytosolic Kv channel interacting protein (KChIP) and 

transmembrane dipeptidyl peptidase like protein (DPPL) (Birnbaum et al., 2004; Jerng & 

Pfaffinger, 2014; W. C. Wang, Cheng, & Tsaur, 2015). Interactions between Kv4α subunits and 

β auxiliary subunits determine channel surface expression and biophysical properties (An et al., 

2000; Holmqvist et al., 2002; Jerng & Pfaffinger, 2014; Jerng et al., 2004; Nadal et al., 2003; 

Shibata et al., 2003; Zagha et al., 2005). However, how these interactions are regulated remains 

largely unknown. KChIP EF-hands can bind Mg2+ and Ca2+, and there is evidence suggesting 

Ca2+ binding to KChIP can influence its interaction with Kv4α (Bahring, 2018; C. P. Chen et al., 

2006; Gonzalez, Pham, & Miksovska, 2014; Lee, Chen, & Chang, 2009; Morohashi et al., 2002; 

Pioletti et al., 2006). N-glycosylation of DPP10 controls its interaction with Kv4α, and its ability 

to modulate channel surface expression and the biophysical properties (Cotella et al., 2010; 

Cotella et al., 2012). It is important to identify additional mechanisms that may govern these 

interactions. Post-translational modifications like SUMOylation can regulate protein-protein 
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interactions, and in this work, we begin investigating whether SUMO regulates α-β subunit 

interactions by studying the role of Kv4 SUMOylation.  

Small ubiquitin-like modifier (SUMO), a.k.a. sentrin, represents a family of pro-peptides. 

There are four SUMO isoforms in mammals (SUMO 1-4). SUMO-1 and SUMO-2 share 47% 

sequence identity. SUMO-2 and SUMO-3 are 97% identical and are typically referred to as 

SUMO-2/3 because they are usually not experimentally differentiated. Post-translational 

modifications by SUMO 1-3 are well studied  (Flotho & Melchior, 2013; Henley et al., 2018; 

Wasik & Filipek, 2014). SUMO-4 is atypical and little is known about its function as a post-

translational modifier (Guo et al., 2004; Owerbach et al., 2005; C. Y. Wang, Yang, Li, & Gong, 

2009; Wei et al., 2008).  

The terminal amino acids of SUMO 1-3 pro-peptides are removed to produce a mature 

peptide that ends in a di-glycine. The mature peptide can be conjugated to lysine (K) residues on 

target proteins by the enzyme, Ubc9 (Desterro et al., 1997). In most cases (~65%), Ubc9 

recognizes a SUMO consensus sequence on the target protein and SUMOylates the K in that 

sequence; however, Ubc9 can also act in conjunction with other proteins to SUMOylate K 

residues at non-consensus sites (Flotho & Melchior, 2013; Hendriks, D'Souza, Chang, Mann, & 

Vertegaal, 2015; Matic et al., 2010). SUMO modification is reversible, and deconjugation is 

effected by a family of sentrin-specific proteases (SENP) (Hickey et al., 2012).  

SUMO influences diverse cellular functions by controlling protein-protein interactions, 

and recent work highlights SUMO’s role in regulating the surface expression and biophysical 

properties of ion channels (Gong et al., 2016; Henley et al., 2018; Kruse et al., 2009; Parker et 

al., 2016; Wasik & Filipek, 2014; H. Wu, Chen, Cheng, & Qi, 2016). Several voltage-gated 

potassium channels are known to be regulated by SUMO. Kv1.1 channels are modified by 
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SUMO-1 and SUMO-2/3 and co-localize with SENP2 in hippocampal neurons (Qi et al., 2014). 

Kv1.5 channels are largely SUMOylated at two K residues, and preventing SUMOylation at 

these sites causes a hyperpolarizing shift in the voltage of half-inactivation (V50 inact) (Benson et 

al., 2007). SUMOylation of Kv2.1 channels regulates pancreatic β-cell excitability by 

accelerating the time constant (τ) of inactivation and impairing recovery from inactivation (Dai, 

Kolic, Marchi, Sipione, & Macdonald, 2009). Additionally, Kv2.1 SUMOylation increases the 

excitability of rat hippocampal neurons by causing a depolarizing shift in the voltage of half-

activation (V50 act) (Plant et al., 2011). Kv7.1 channel SUMOylation in neonatal mouse 

ventricular myocytes results in a depolarizing shift in V50 act (Xiong et al., 2017). SENP2 

knockout mice display increased excitability in CA3 pyramidal neurons due to hyper-

SUMOylation of Kv7.2 channels which diminishes the hyperpolarizing M-current, causing these 

mice to develop spontaneous convulsive seizures followed by sudden death (Qi et al., 2014). 

Kv11.1 SUMOylation decreases steady-state current amplitude by increasing the τ of 

inactivation and modifying deactivation kinetics (Steffensen et al., 2018).  

SUMOylation of Kv4 channels has not been reported. Here, we test the hypothesis that 

Kv4.2 channels are SUMOylated to regulate their surface expression and biophysical properties. 

2.3 Materials and Methods 

2.3.1 Plasmids and antibodies 

A previously described plasmid containing a mouse Kv4.2-GFP fusion protein, here 

termed Kv4.2g, was generously provided by Dr. Dax Hoffman. Note GFP is attached to the C-

terminus of Kv4.2. A plasmid containing mCherry2-Cl was a gift from Michael Davidson 

(Addgene plasmid #54563). A plasmid containing SUMO-2 (Kamitani, Nguyen, Kito, Fukuda-

Kamitani, & Yeh, 1998) was a gift from Edward Yeh (Addgene plasmid #17360). A plasmid 
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containing Ubc9 (Yasugi & Howley, 1996) was a gift from Peter Howley (Addgene plasmid 

#14438). All antibodies are described in Table 2.1. 

2.3.2 Site-directed mutagenesis  

PCR-based site-directed mutagenesis was used to create 2 mutations in the Kv4.2g 

plasmid described above: K437R and K579R. Typically, 10-100ng of Kv4.2g DNA served as the 

template in 50μL PCRs containing PrimeSTAR GXL polymerase (Takara), 5X PrimeSTAR 

GXL buffer (Takara), nucleotides, and the primers described in Table 2.2. The cycling 

conditions were as follows: 1X 95°C 1min; 30X 98°C 30sec, 68°C 7min; 1X 68°C 5min. 

Afterward, 20units of DPN1 (Takara) was added to the PCR and incubated at 37°C for 2hrs to 

digest the template DNA. Then, 2μl of the PCR was added to 50μl of subcloning grade 

competent XL1 blue cells (Agilent) and incubated on ice for 30min. The cells were heat shocked 

for 45sec at 42°C and cooled on ice for 2min. 200μl of NZY broth was added and the reaction 

was incubated at 37°C for 30min to allow for expression of kanamycin resistance. The cells were 

plated onto NZY plates containing 30μg/ml kanamycin and incubated at 37°C overnight. A 

single colony was used to inoculate NZY broth containing 30μg/ml kanamycin and incubated at 

37°C, shaking at 220rpm, overnight. Plasmid DNA was isolated using the Qiagen Mini Kit, 

according to the manufacturer’s instructions. The isolated plasmid was sequenced at the Georgia 

State University Cell Protein and DNA Core Facilities, and the sequences were analyzed using 

Lasergene software (DNAstar) to ensure that only the desired mutation was present. To create a 

double mutation, a previously mutated Kv4.2g channel served as the template in the PCR 

reaction. 
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2.3.3 Rat Brain Membrane preparations 

A single whole rat brain was homogenized ~20X on ice in homogenization buffer (0.3M 

sucrose, 10mM sodium phosphate buffer pH 7.4, 1mM EDTA, and protease inhibitor cocktail 

[1:100, Sigma cat. #P8340]) supplemented with 20mM N-Ethylmaleimide (NEM) to prevent 

SUMO deconjugation. The homogenate was centrifuged at 5000rpm for 10min at 4°C to spin 

down cell nuclei. The supernatant was transferred to two Beckman tubes and crude membranes 

were pelleted by centrifuging at 40,000rpm for 90min at 4°C. The supernatant was removed, the 

pellets were re-suspended in homogenization buffer (500μl/tube) for 1hr at 4°C with shaking. 

The resuspended pellets from each tube were combined, and protein concentration was 

determined by performing a bicinchoninic acid (BCA) assay (Pierce). Rat brain tissue was 

generously provided by Dr. Chun Jiang. This study was carried out in accordance with the 

principles of the Basel Declaration and recommendations of Ethical Issues of the International 

Association for the Study of Pain and National Institutes of Health. The protocol was approved 

by the Institutional Animal Care and Use Committee at Georgia State University. 

2.3.4 Cell culture 

Human embryonic kidney 293 (HEK-293) cells were obtained from American Type 

Culture Collection (ATCC). Cells were maintained at 37°C with 5% CO2 in Eagle’s Minimum 

Essential Medium (Corning, cat. #10009CV) supplemented with 10% Fetal bovine serum (FBS) 

(ATCC 30-2020) and 1% Penicillin/Streptomycin (Sigma, cat. #P4333). 

2.3.5 Generating cell lines stably expressing wild-type and mutant Kv4.2g 

HEK-293 cells were plated on 60mm culture plates at ~90% confluency. 1hr prior to 

transfection, the media was replaced with EMEM+10% FBS without antibiotics. 10μg of 

plasmid DNA was combined with 50μl OptiMEM (Gibco). 20μl of Lipofectamine 2000 
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(Invitrogen) was combined with 50μl OptiMEM. After 5min, DNA and Lipofectamine were 

combined and incubated for 20min at RT. The mixture was dropped onto HEK-293 cells. After 2 

days, cells were harvested and dilute resuspensions were re-plated with EMEM+10% FBS+1% 

Pen/Strep+G418 (Geneticin, Gibco, 500μg/ml). After ~3 weeks individual colonies were selected 

using cloning rings. Expression in all cells was confirmed using fluorescence microscopy and 

whole cell patch clamp recordings.   

2.3.6 Transient transfections 

Cells were plated onto 60 or 100mm culture dishes at 1.9X106 or 6X106 cells per plate, 

respectively. The next day, cells were transiently transfected using calcium phosphate. At least 

1hr prior to transfection, the media was changed. For 60 or 100mm culture plates, 10 or 25μg of 

plasmid DNA was prepared in 250 or 440μl of TE buffer (10mM Tris-HCl pH 8, 1mM EDTA), 

respectively. When multiple plasmids were co-transfected, the total amount of DNA remained 

the same, and the different plasmids were equally represented by weight within a mixture. 

Immediately prior to transfection, 30 or 60μl of 2M CaCl2 was added to the DNA, dropwise, 

flicking to mix. Then 250 or 500μl of 2X HBS (275mM NaCl, 10mM KCl, 12mM dextrose, 

1.4mM Na2HPO4, 40mM HEPES, pH 7.05-7.1) was added dropwise to the DNA, flicking to 

mix. The mixture was immediately added to the cells and cells were returned to 37°C with 5% 

CO2 for 4hrs followed by a media change. Cells were allowed to grow for ~48hrs to allow for 

expression of the plasmid DNA. Before using the transfected cells, the transfection efficiency 

was assessed using fluorescence microscopy. Only plates with >80% transfection efficiency were 

used in experiments.  
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2.3.7 Immunoprecipitation 

2.3.7.1 Kv4.2 IP from rat brain 

Kv4.2 channels were immunoprecipitated from rat brain membranes using the Classic 

Magnetic IP/Co-IP Kit (Pierce), 1mg of rat brain membrane and 5μg of rabbit anti-Kv4.2 (Table 

2.1). The IP product was eluted in a volume of 50μL.  

2.3.7.2 GFP IP from HEK cells 

Cells on 100mm culture dishes were washed 2X with ice-cold PBS and lysed with 1ml of 

RIPA buffer (1% NP40, 50mM Tris-HCl pH 7.4, 150mM NaCl, 0.1% SDS, 0.5% DOC, 2mM 

EDTA, 20mM NEM, 1:100 protease inhibitor cocktail) for 30min on ice. The plate was scraped, 

the lysate was transferred to a 1.5ml microcentrifuge tube, and cell debris was spun down by 

centrifuging for 15min at 14,000rpm. Protein concentration in the supernatant was determined 

with a BCA assay (Pierce). Kv4.2g channels were immunoprecipitated using the Classic 

Magnetic IP/Co-IP Kit (Pierce) according to the manufacturer’s instructions using 5μg of rabbit 

anti-GFP (Table 2.1) with 1mg of protein. IP product was eluted in a volume of 100μL. 

2.3.8 Western Blot 

After electrophoresis on 12% SDS-polyacrylamide gels, proteins were transferred for 

2hrs at 45mAMP to a PVDF membrane (Immobilon-P, cat. #IPVH00010) using a semidry 

electroblotting system (OWL). After drying overnight, membranes were blocked in 5% non-fat 

dry milk in TBS (50mM Tris-HCl pH 7.4, 150mM NaCl) for 1hr at room temperature. Blots 

were washed 1X for 10min with TTBS (TBS+ 0.1% Tween20), and then primary antibodies 

prepared in 1% non-fat dry milk in TTBS were added and incubated at 4°C overnight with 

shaking. Blots were washed 3X, 5min each with TTBS and then incubated with appropriate 

alkaline phosphatase conjugated secondary antibodies in TTBS with 1% non-fat dry milk for 
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2hrs at RT with shaking. The membrane was washed 3X with TTBS, 10min each. The blot was 

incubated with alkaline phosphatase substrate (Bio-Rad) for 5min, and then the membrane was 

exposed to film (MedSupply Partners), and chemiluminescent signals were captured with a 

Kodak X-Omat 2000A imager. Optical densities for bands of interest were measured with 

ImageJ, as previously described (Parker et al., 2016). In some cases, antibodies were stripped 

from blots as follows: 2X mild stripping buffer, 10min each; 2X PBS, 10min each; 2X TTBS, 

5min each. AP substrate was applied for 5min, and the membrane was exposed to film to ensure 

that the original chemiluminescent signal was gone. In order to compensate for error introduced 

by technical variabilities such as fluctuating exposure times and loss of protein due to stripping, 

blots that were stripped and re-probed always contained 0.2μg BSA in one lane. A primary 

antibody against BSA was always included along with other primary antibodies to detect the 

BSA signal. The pre- and post-stripping BSA signals were used to normalize other signals of 

interest on the pre- and post-stripped blot, respectively.  

2.3.9 Biotinylation assay to measure surface expression 

Cells were washed twice with room-temperature PBS containing 0.2mM CaCl2 and 

1.5mM MgCl2 (PBS-CM) and incubated with 2ml of 1mg/ml EZ-link-Sulfo-NHS-SS-Biotin 

(ThermoFisher, cat. #21331) for 30min at 8°C. Cells were washed twice with room-temperature 

PBS-CM and residual biotin was quenched using PBS-CM with glycine for 15min at 8°C. Cells 

were lysed for 30min on ice using 500μL RIPA buffer. Cells were scraped from the plate and the 

lysate was transferred to a sterile 1.5ml microcentrifuge tube. Cell debris was pelleted by 

centrifuging for 10min at 14,000rpm. The supernatant was removed, added to a spin column 

(ThermoFisher, cat. #69725) containing 100μL of NeutrAvidin Agarose Resin (ThermoFisher, 

cat. #29201), and incubated with shaking for 2hr at 4°C. The lysate/resin was centrifuged at 
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1000Xg for 2min and the eluate containing intracellular proteins was saved for western blot 

analysis. The resin was washed 3X with Wash Buffer 1 (1% NP40, 1% SDS, 1X PBS) and 3X 

with Wash Buffer 2 (0.1% NP40, 0.5M NaCl, 1X PBS). In order to elute extracellular proteins, 

50μL of 1X SDS buffer (1X SDS, 0.1% Bromophenol blue, 100mM DTT) was added to the 

beads and incubated with shaking for 1hr at room temperature. Beads were pelleted by 

centrifugation at 1000Xg for 2min. The supernatant was recovered and used in western blot 

analyses. 

Western blots containing intracellular and extracellular fractions as well as 0.2µg BSA 

(~66kD, Sigma cat. #A7517) were cut horizontally at the ~50kD marker. Optical densities for 

bands on the upper portion of the blot were obtained using primary antibodies against GFP 

(Table 2.1) and BSA (Table 2.1). After obtaining the optical densities for the Kv4.2g and BSA 

bands, the upper portion of the blot was stripped and re-probed with primary antibodies against 

Na+/K+-ATPase (Table 2.1) and BSA. The Kv4.2g and Na+/K+-ATPase signals were each 

normalized by their respective BSA signal to remove error introduced by technical variabilities 

such as fluctuating exposure times and loss of protein due to stripping. Kv4.2g surface 

expression was then quantified by dividing the normalized Kv4.2g signal by the normalized 

Na+/K+-ATPase signal, which we previously showed did not change when SUMO availability 

was altered (Parker et al., 2016). In all experiments, the lower portion of the blot was probed 

with a primary antibody against actin to detect any intracellular contamination in the 

extracellular fractions. The experiment was excluded if actin was detected in the extracellular 

fraction.  
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2.3.10 Whole cell patch clamp electrophysiology 

Glass coverslips were prepared by dipping in ethanol, air drying, and coating with 

50μg/ml Poly-L-Lysine for 1hr at 37°C. Poly-L-Lysine was removed, coverslips were washed 

1X with dH20, and allowed to air dry before use. Cells were transiently transfected with mCherry 

or mCherry+SUMO+Ubc9. Approximately 24hrs after transfection, cells were seeded onto 

20mm Poly-L-Lysine coated coverslips at a density of 8X104 cells per coverslip, and were 

incubated for >24hrs before use. A coverslip was transferred to the recording chamber and 

continuously superfused with extracellular saline (in mM: 141 NaCl, 4.7 KCl, 1.2 MgCl2, 1.8 

CaCl2, 10 glucose, 10 HEPES, pH 7.4, osmolarity ~300). Cells were visualized using an 

Olympus IX70 microscope and only cells expressing mCherry, visualized by red fluorescence, 

were patched. Fire polished borosilicate glass pipettes having a resistance between 2-5MΩ were 

filled with intracellular saline (in mM: 140 KCl, 1 MgCl2, 1 CaCl2, 10 EGTA, 2 MgATP, 10 

HEPES, pH 7.2, osmolarity ~290) and connected to a MultiClamp 700A amplifier (Axon 

Instruments). To generate a whole cell patch, a GΩ seal was formed by slight negative pressure. 

After forming a GΩ seal, gentle suction was used to rupture the membrane and only cells that 

maintained ≥700MΩ seal after breaking through the membrane were used. Fast and slow 

capacitance transients, and series resistance was compensated. To elicit IA, a 1sec -90mV pre-

pulse was followed by a 250ms test-pulse from -50mV to +50mV in 10mV increments. Offline 

subtraction of currents evoked following a pre-pulse to -30mV was used to isolate IA. IA Gmax and 

voltage of half-activation (V50 act) were determined by converting peak current amplitude (Ipeak) 

to conductance (G) for each voltage step using the equation G=Ipeak/(Vm-Vr), where Vr= -86mV, 

plotting G/Gmax as a function of membrane potential, and fitting the resulting curve with a first-

order Boltzmann equation. The steady-state inactivation properties of IA were determined with a 
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series of 1.4sec steps from -110mV to -30mV in 10mV increments, each followed by a 200ms 

test pulse to +20mV. Steady state voltage-dependence of half-inactivation (V50 inact) curves 

were generated by plotting I/Imax as a function of pre-pulse voltages and fitting the resulting 

curve with a first-order Boltzmann equation. To determine the fast (τf) and slow (τs) time-

constants of inactivation a two-term exponential equation was used to fit the decay current 

elicited by 250ms voltage-step to +50mV following a pre-pulse to -90mV.   

2.3.11 Statistical analysis      

Data were analyzed using GraphPad PRISM 7 software. Each data set was assessed for 

normality and homogeneity of variance. Data were analyzed using parametric or non-parametric 

tests as indicated, including the student’s unpaired t-test, the Mann-Whitney U test, and the one-

way ANOVA followed by a Tukey’s post-hoc comparison when appropriate. In all cases, the 

significance threshold was set at p<0.05. Data points > 2 standard deviations from the mean were 

considered outliers and were excluded. In all cases, values reported represent the mean±SEM. 

2.4 Results 

2.4.1 Kv4.2 is SUMOylated in the rodent brain 

To determine if Kv4.2 channels were SUMOylated in vivo, immunoprecipitation (IP) 

experiments were performed using rat brain membrane preparations and an antibody against 

Kv4.2 (Table 2.1) followed by western blot experiments using primary antibodies against Kv4.2, 

SUMO-1, or SUMO-2/3 (Table 2.1). The antibodies against Kv4.2 and SUMO-2/3, but not 

SUMO-1, recognized the same 68kD band previously identified as the Kv4.2 channel in rat brain 

membrane preparations (Figure 2.1, asterisk) (Nadal et al., 2003). This band was not observed 

when IP experiments were repeated with a non-specific rabbit IgG. These data suggest that a 

fraction of rat brain Kv4.2 channels were decorated with SUMO-2/3 and that the addition of the 
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12kD modification did not detectably alter the molecular weight of the channel under our PAGE 

conditions. A 130kD band likely representing aggregated Kv4.2 channels was also observed 

(Figure 2.1, arrow) (Jerng et al., 2005; Jerng et al., 2004). The anti-SUMO-2/3 antibody 

recognized an additional 100kD band that was not recognized by the channel antibody in the 

anti-Kv4.2 but not the anti-IgG IP product (Figure 2.1, arrow head), and this band may represent 

a SUMOylated protein(s) that non-covalently interacts with the channel. Two likely candidates 

are DPP6-S and DPP10 that have predicted molecular weights of ~115kD and ~100kD when 

glycosylated, respectively (Jerng et al., 2004). SUMO prediction software (see 2.4.6 below) 

indicates both of these proteins have multiple potential SUMOylation sites. In sum, these results 

showed that Kv4.2 channels were measurably decorated with SUMO-2/3 but not SUMO-1 in the 

rat brain. 

2.4.2 Kv4.2 channels are SUMOylated in a heterologous expression system  

To study the effects of Kv4.2 SUMOylation, we established a Human Embryonic Kidney 

(HEK)-293 cell line that stably expressed Kv4.2g, which is a mouse Kv4.2 channel tagged with a 

C-terminal GFP. The stable cell line was called HEK-Kv4.2g. IP experiments using an anti-GFP 

antibody (Table 2.1) were performed on whole cell lysates from HEK-Kv4.2g cells, and IP 

products were analyzed with western blotting (Figure 2.2). Antibodies against GFP (Figure 

2.2A), Kv4.2 (Figure 2.2B) and SUMO-2/3 (Figure 2.2C) all recognized the same 100kD band 

(asterisk), which is the predicted size of the Kv4.2-GFP fusion protein. The 100kD band was 

never observed when a non-specific IgG was used in IP experiments, or on blots containing IP 

products from HEK parental cells (Figure 2.2). Furthermore, a 70kD band was also detected by 

all antibodies (arrow head), and it most likely represents cleavage of the channel. This signal was 

not included in subsequent quantifications, and most likely represents sample degradation. These 
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data suggest that Kv4.2g channels are SUMOylated in our heterologous expression system under 

baseline conditions. 

2.4.3 SUMOylation of the Kv4.2 channel can be manipulated in a heterologous expression 

system  

SUMOylation can be increased in HEK cells by overexpressing SUMO and its 

conjugating enzyme Ubc9 (Dai et al., 2009; Parker et al., 2016). SUMOylation can be decreased 

by application of anacardic acid, which inhibits protein SUMOylation by binding to the SUMO-

activating enzyme (E1) and preventing the formation of the E1-SUMO intermediate (Fukuda et 

al., 2009). To determine if SUMOylation of Kv4.2g could be manipulated in our heterologous 

expression system, we transiently transfected HEK-Kv4.2g cells with mCherry or 

mCherry+SUMO+Ubc9 plasmid DNA. For the anacardic acid treatment group, the drug was 

bath applied (100µM) for 1hr to HEK-Kv4.2g cells that had been transiently transfected with 

mCherry immediately before cell lysis. Kv4.2g SUMOylation was analyzed with IP followed by 

western blotting experiments (Figure 2.3). Blots were initially probed with anti-SUMO-2/3 and 

then stripped and re-probed with anti-GFP (Figure 2.3A). The fraction of SUMOylated Kv4.2g 

channels in a given experiment was determined by dividing the BSA-normalized optical density 

(OD) of the SUMO-2/3 band by the BSA-normalized OD of the GFP band, as described in 

Materials and Methods. All data for control (mCherry), SUMO+Ubc9, and anacardic acid 

treatment groups were plotted in Figure 2.3B after normalizing each data point by the mean 

control value. A significant ~60% increase in mean Kv4.2g channel SUMOylation was observed 

in the SUMO+Ubc9 treatment group relative to control (Figure 2.3B). No significant difference 

in Kv4.2g channel SUMOylation was observed in cells treated with anacardic acid relative to 

control (Figure 2.3B). This might be due to a low level of baseline SUMOylation in the HEK-



Kv4 SUMOylation regulates IA                                                                                                   34 
 

Kv4.2g cell line. On the other hand, a higher concentration and/or a longer application of 

anacardic acid might be necessary to observe a decrease in Kv4.2g channel SUMOylation in our 

heterologous expression system. In sum, overexpressing SUMO+Ubc9 in HEK-Kv4.2g cells 

produces a significant increase in Kv4.2g SUMOylation, and only this manipulation was 

performed in subsequent experiments.  

2.4.4 Increased SUMOylation of Kv4.2 channels alters the properties of IA 

To test whether altering baseline SUMOylation affected the function of Kv4.2 channels, 

HEK-Kv4.2g cells were transiently transfected with mCherry (control) or 

mCherry+SUMO+Ubc9 plasmid DNA, and whole cell patch clamp recording was used to elicit 

IA (Figure 2.4A) and steady-state inactivation of IA (Figure 2.4B). The maximal conductance 

(Gmax) (Figure 2.4C), voltage dependence (Figure 2.4D), and time constants (τ) of inactivation 

(Figure 2.4E-F) in the two treatment groups were measured. Enhancing baseline SUMOylation 

by ~60% (Figure 2.3) produced a significant ~22% decrease in mean IA Gmax (Figure 2.4C; Table 

2.3), a small but significant ~4mV depolarizing shift in the voltage-dependence of inactivation 

(Figure 2.4D, Table 2.3), and a significant ~25% increase in the fast time constant of inactivation 

(τf) (Figure 2.4E; Table 2.3). 

2.4.5 Kv4.2 SUMOylation regulates channel surface expression  

We hypothesized that a mean ~60% increase in Kv4.2 SUMOylation (Figure 2.3) 

produced a mean 22% decrease in IA Gmax (Figure 2.4) by reducing channel surface expression. 

To test this, biotinylation experiments were used to measure Kv4.2g channel surface expression 

in HEK-Kv4.2g cells transiently transfected with mCherry or mCherry+SUMO+Ubc9 plasmid 

DNA. Briefly, biotin was added to the cells to label extracellular proteins, cells were lysed, and 

biotinylated proteins were isolated using NeutrAvidin beads. Western blots containing 
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intracellular and extracellular fractions were probed for GFP, Na+/K+-ATPase and actin as 

described in Materials and Methods. We previously demonstrated that surface expression of 

Na+/K+-ATPase was not altered by increasing SUMO and Ubc9 (Parker et al., 2016), so changes 

in Kv4.2g surface expression between the two treatment groups were detected as differences in 

the ratio of extracellular GFP to Na+/K+-ATPase signals. A representative experiment is shown 

in Figure 2.5A. As expected, Kv4.2g and Na+/K+-ATPase were observed in intracellular and 

extracellular fractions, while actin was not. Extracellular Kv4.2g bands appeared higher than 

intracellular Kv4.2g bands. This could be due to differences in the loading buffers: Intracellular 

samples were run in 8M Urea loading buffer (8M urea, 20mM Tris-HCl pH 8.0, 1mM EDTA, 

0.05% Bromophenol blue, 0.6M DTT), while extracellular samples were run in 1X SDS buffer 

(1X SDS, 0.1% Bromophenol blue, 100mM DTT). Alternatively, protein concentrations and 

post-translational modifications could differ between fractions. Experiments were repeated and 

the extracellular GFP to Na+/K+-ATPase ratio was obtained for each experiment as described in 

Materials and Methods. All data for control (mCherry) and experimental 

(mCherry+SUMO+Ubc9) treatments were plotted after normalizing each data point by the mean 

control value (Figure 2.5B). Surprisingly, enhancing Kv4.2g SUMOylation did not decrease 

channel surface expression as predicted, but rather, significantly increased Kv4.2g surface 

expression by ~70%.  

2.4.6 SUMOylation at K579 is responsible for the decrease in IA Gmax, while SUMOylation at 

K437 mediates the increase in Kv4.2 surface expression when SUMOylation is 

enhanced. 

Enhanced SUMOylation appears to have two opposing effects: (1) to decrease IA Gmax 

(Figure 2.4), and (2) to increase channel surface expression (Figure 2.5). One explanation may be 
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that Kv4.2g can be SUMOylated at multiple sites, and SUMOylation at each site could produce a 

distinct effect. Potential Kv4 SUMOylation sites were identified using two free web-based 

prediction programs: SUMOplot (http://www.abgent.com/sumoplot) and GPS-SUMO (Zhao et 

al., 2014). Multiple sites were identified, but only two were conserved across species and 

isoforms, were predicted by both programs and were located within intracellular domains (Figure 

2.6). We chose to examine SUMOylation at these two lysine (K) residues, K437 and K579. 

To test whether overexpression of SUMO+Ubc9 increased SUMOylation at K437 and 

K579, we used site-directed mutagenesis to replace K with arginine (R). This mutation will 

prevent SUMOylation but not electrostatic interactions. Three stable lines were generated: HEK-

Kv4.2g K437R+K579R, HEK-Kv4.2g K437R, and HEK-Kv4.2g K579R. SUMOylation was or 

was not globally enhanced in each line using transient transfection of mCherry+SUMO+Ubc9 or 

mCherry alone. SUMOylation of the Kv4.2 double mutant was highly similar in the two 

treatment groups (Figure 2.7A-B). On the other hand, average Kv4.2g SUMOylation was 

increased in the single mutants, but instead of the significant ~60% increase observed for wild-

type channels (Figure 2.3), each single mutant showed a ~30% increase in SUMOylation that 

was not significantly different from control (Figure 2.7C-D and 7E-F). Together these data 

suggested that both sites were being SUMOylated and each contributed equally to the ~60% 

increase observed for wild-type Kv4.2g. It should be noted that Kv4.2g channels were 

SUMOylated in the double mutant, suggesting that additional sites on the channel or the GFP tag 

were SUMOylated under baseline conditions and that SUMOylation at these sites was not 

obviously increased by transient overexpression of SUMO+Ubc9.  

Biotinylation experiments were used to measure channel surface expression in mutant 

cell lines transiently transfected with mCherry or mCherry+SUMO+Ubc9. Whereas over-
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expressing SUMO+Ubc9 in the wild-type cell line produced a significant 70% increase in 

Kv4.2g surface expression (Figure 2.5), globally enhancing SUMOylation in the double mutant 

or the HEK-Kv4.2g K437R cell lines had no effect on Kv4.2g surface expression (Figure 2.8A-

D). In contrast, overexpressing SUMO+Ubc9 produced a significant 94% increase in Kv4.2g 

surface expression in HEK-Kv4.2g K579R cells relative to mCherry controls (Figure 2.8E-F). A 

t-test indicates that the 94% increase in the K579R mutant cell line is not significantly greater 

than the 70% increase observed in the wild-type cell line (t-test, p=0.64). 

Electrophysiological experiments were repeated on the mutant cell lines to determine if 

SUMOylation at K437 and/or K579 was associated with the SUMOylation-mediated changes in 

Kv4.2g biophysical properties (Figure 2.4). Whole cell patch clamp was used to measure IA in 

mutant cells lines transiently transfected with mCherry or mCherry+SUMO+Ubc9 (Figure 2.9; 

Table 2.3). Whereas over-expressing SUMO+Ubc9 in wild-type HEK-Kv4.2g produced a 

significant 22% decrease in IA Gmax relative to mCherry controls (Figure 2.4B), enhancing 

SUMOylation did not reduce IA Gmax in the double mutant or the HEK-Kv4.2g K579R mutant 

cell lines; however, a significant decrease was observed in the HEK-Kv4.2g K437R cell line 

(Figure 2.9). These data suggested that SUMOylation of Kv4.2g at K579 mediates a decrease in 

IA Gmax. 

Table 2.3 shows that the SUMOylation-mediated 4mV shift in the V50 inactivation seen 

in the wild-type channel (Figure 2.4C) was lost in cells expressing Kv4.2g channels containing 

the double-mutation or either of the single-mutations. Similarly, the previously observed SUMO-

mediated increase in τf (Figure 2.4D) was lost in all 3 mutant cell lines, and a mean ~20% 

decrease was observed in the double mutant and K579R cell lines. Interpretation of these data is 

confounded by the fact that the mutations themselves may alter τf independent of SUMOylation, 
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and/or there could be cell-line specific factors contributing to the effects. The latter hypothesis 

was next tested using transient transfection experiments (see section 2.4.7 below).  

In sum, enhanced SUMOylation at K437 increased Kv4.2 channel surface expression while 

enhanced SUMOylation at K579 decreased IA Gmax (Figures 2.8 and 2.9). Enhancing 

SUMOylation of the wild type channel produced a ~30% increase in SUMOylation at both sites 

(Figure 2.7), and the net result of the two opposing effects was a ~22% decrease in IA Gmax 

(Figure 2.4B). Interestingly, when the SUMOylation-mediated increase in surface expression 

was prevented by the K437R mutation, enhanced SUMOylation at K579 produced only a slightly 

larger decrease in the mean IA Gmax (33% instead of 22%) (Table 2.3). Similarly, when the 

SUMOylation-mediated decrease in IA Gmax was prevented by the K579R mutation, enhancing 

SUMOylation at K437 produced an average 94% increase in surface expression (Figure 2.8E-F), 

but no change in IA Gmax (Figure 2.9E-F; Table 2.3). These data suggest that the channels 

inserted into the membrane upon enhanced SUMOylation may be mostly silent.  

2.4.7 There is a significant decrease in IA Gmax in HEK cells transiently transfected with 

Kv4.2g K579R compared to Kv4.2g. 

The mutations K437R and K579R prevented SUMOylation at these sites and the 

SUMOylation-mediated alterations in surface expression and IA Gmax, respectively (Figures 2.8 

and 2.9). It was not clear if the mutations blocked, or mimicked and occluded the effects of 

SUMOylation. Measurements could not be compared between the independently selected stable 

lines because there could be differences in their proteomes and/or Kv4.2g gene copy number; 

i.e., different numbers of plasmids stably integrated into the genome in each cell line. In order to 

address this issue, HEK cells were transiently transfected with wild-type or mutant plasmids, and 

IA was recorded using whole cell patch clamp. Figure 2.10 illustrates that HEK cells transiently 
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transfected with the K579R plasmid had a significantly smaller IA Gmax than cells transfected 

with the wild-type or K437R plasmids, while IA in the latter two transfections was not 

significantly different (Kv4.2g, 54.2nS±7.9; Kv4.2g K437R, 62.1nS±5.9; Kv4.2g K579R, 

27.6nS±3.6). IA could not be further reduced by enhancing SUMOylation in cells transfected 

with K579R plasmid, whereas this treatment did reduce IA in cells transfected with the wild-type 

or K437R plasmids (Figure 2.10D). These data suggest that enhancing SUMOylation at K579 

had the same effect as removing K579; i.e., the K579R mutation mimicked and occluded the 

effect of SUMOylation at K579.  

Overexpression of SUMO+Ubc9 in the stable HEK-Kv4.2g cell line significantly shifted 

the V50 inact and increased τf (Figures 2.4D-E; Table 2.3). It is noteworthy that these significant 

changes were not observed in transient co-transfections with Kv4.2g+SUMO+Ubc9 (Table 2.4). 

Also, these parameters were not significantly different among transient transfections using wild-

type vs. mutant plasmid DNA (Table 2.4). These data suggest that SUMOylation at K437 or 

K579 is not sufficient to regulate the V50 inact and τf. The SUMOylation-mediated changes in 

the stable HEK-Kv4.2g cell line may have required an additional factor(s) specific to that cell 

line. 

Lastly, we examined whether the K437R mutation blocked, or mimicked and occluded the 

effect of K437 SUMOylation. HEK cells were transiently transfected with wild-type or mutant 

plasmids, and biotinylation experiments were performed. Figure 2.11 illustrates that Kv4.2g 

surface expression was not significantly different among HEK cells transiently transfected with 

wild-type or mutant plasmids (Kv4.2g 1.0±0.094, Kv4.2g K437R 1.1±0.28, Kv4.2g K579R 

0.98±0.18). Thus, the K437R mutation blocks the effect of SUMOylation.  
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2.5 Discussion 

Several ion channels are post-translationally regulated by SUMOylation (Gong et al., 

2016; Henley et al., 2018; Kruse et al., 2009; Parker et al., 2016; Wasik & Filipek, 2014; H. Wu 

et al., 2016). Multiple members of the voltage-gated potassium channel superfamily are known 

to be SUMOylated including Kv1.1 (Qi et al., 2014), Kv1.5 (Benson et al., 2007), Kv2.1 (Dai et 

al., 2009; Plant et al., 2011), Kv7.1 (Xiong et al., 2017), Kv7.2 (Qi et al., 2014), and Kv11.1 

(Steffensen et al., 2018). In this work, we tested the hypothesis that Kv4 channels can be 

SUMOylated to regulate their biophysical properties and surface expression. We found Kv4.2 

channels were decorated by SUMO-2/3 but not SUMO-1 in rat membrane preparations. In silico 

analysis suggested that Kv4.2 could be SUMOylated at several sites. Two predicted 

SUMOylation sites, K437 and K579, were conserved across species and Kv4 isoforms. Globally 

enhancing baseline SUMOylation in HEK cells stably expressing Kv4.2 increased SUMOylation 

at K437 and K579 by ~30% each. Enhanced SUMOylation at K437 resulted in a mean ~70-95% 

increase in Kv4.2 surface expression with no change in IA Gmax. Enhancing SUMOylation at 

K579 decreased mean IA Gmax by ~25-50% with no change in surface expression. Our data 

support the hypothesis that post-translational SUMOylation of Kv4 channels can regulate their 

function through multiple mechanisms.  

2.5.1 The function of Kv4 channel SUMOylation  

Post-translational modification of Kv4 channels regulates IA over short time scales. This 

is the first report that Kv4.2 channels can be post-translationally modified by SUMO. Globally 

increasing SUMOylation in HEK cells expressing a mouse Kv4.2-GFP fusion protein (Kv4.2g) 

increased Kv4.2 SUMOylation on the C-terminus at K437 and K579. When both sites were 

mutated to R, Kv4.2g SUMOylation could no longer be experimentally increased; however, 
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Kv4.2 was still SUMOylated under baseline conditions. This suggests that SUMOylation occurs 

at additional sites on the channel and/or the GFP tag.  

There are three potential, non-mutually exclusive consequences of protein SUMOylation. 

First, SUMOylation can prevent protein-protein interactions through steric hindrance (Dustrude 

et al., 2016). Second, SUMO can compete with other post-translational modifications that occur 

on the same K residue such as ubiquitination, methylation, or acetylation (D. D. Anderson et al., 

2012; W. Wang et al., 2014). The third and most common function of SUMOylation is to 

promote protein-protein interactions (Psakhye & Jentsch, 2012; A. Seifert et al., 2015). SUMO 

interacts with specific protein binding domains, and the best studied is the SUMO-interacting 

motif (SIM) (Aguilar-Martinez et al., 2015; C. C. Chang et al., 2011; Hecker et al., 2006; Jardin, 

Horn, & Sticht, 2015; Kerscher, 2007; Namanja et al., 2012). In general, the SUMO-SIM bond is 

relatively weak and serves to increase the affinity between proteins that bind one another through 

additional contacts. Thus, SUMOylation may stabilize an existing interaction and/or facilitate 

recruitment of a protein.   

In some cases, SUMOylation enzymes can target an entire group of physically or 

functionally connected proteins. Importantly, a protein that is SUMOylated often possess one or 

more SIMs. Thus, group SUMOylation can result in a set of interlocking Lego-like interactions 

for each protein in a complex, and the collection of individually weak SUMO-SIM bonds 

stabilizes the entire structure (Jentsch & Psakhye, 2013). In native cells, Kv4 channels exist in a 

ternary complex comprising four α-subunits, four cytoplasmic KChIP subunits, and four 

transmembrane DPPL subunits (Amarillo et al., 2008; Foeger, Norris, Wren, & Nerbonne, 2012; 

Jerng et al., 2005; Jerng & Pfaffinger, 2012; W. C. Wang et al., 2015). It is possible that group 

SUMOylation could stabilize the ternary complex, as prediction software indicates that all Kv4 
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channels, all KChIPs (1-4) and DPP6/10 possess multiple potential SUMO and SIM domains. In 

support of this idea, both KChIPs and DPPLs regulate Kv4 surface expression and gating (Jerng 

& Pfaffinger, 2014), and both have the potential to interact with Kv4 C-terminal SUMOylation 

sites (Callsen et al., 2005; W. Han et al., 2006; Lin et al., 2014; Ren et al., 2005; Sokolova et al., 

2003). It is also possible that cytoplasmic C-terminal SUMOylation could regulate interactions 

between the Kv4.2 α-subunits, themselves, or C-terminal intra-molecular interactions (Hatano et 

al., 2004). SUMOylation could also regulate Kv4α interactions outside the ternary complex, as 

the C-terminus is known to interact with additional proteins, like SAP97 (El-Haou et al., 2009; 

Gardoni et al., 2007; Jerng & Pfaffinger, 2014).  

In HEK cells stably or transiently expressing Kv4.2g, enhancing SUMOylation at K437 

increased channel surface expression by up to 95% without altering IA Gmax, suggesting 

SUMOylation increased the number of silent channels in the plasma membrane. The human 

protein atlas indicates KChIP2-4 are endogenously expressed at a low but detectable level in 

HEK cells (http://www.proteinatlas.org), and a previous study showed that co-expression of 

Kv4.2 and KChIP2 in HEK cells produced a 40-fold increase in Kv4.2 surface expression but 

only a 3-fold increase in Kv4.2 current density (Foeger et al., 2010). These data suggest 

SUMOylation at K437 could modulate the Kv4.2-KChIP interaction. SUMOylation could also 

stabilize interactions with endogenous SAP97 which is expressed at high levels in HEK cells 

(http://www.proteinatlas.org) and has been shown to increase Kv4 surface expression. On the 

other hand, attachment of a bulky SUMO at K437 might also reduce C-terminal interactions 

necessary for endocytosis (Nestor & Hoffman, 2012).  

In HEK cells stably or transiently expressing Kv4.2g, increasing SUMOylation at K579 

reduced IA Gmax by ~30-50% without altering channel surface expression. Replacing K with R 
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had the same effect. Since enhancing K579 SUMOylation produced the same effect as removing 

K579, SUMOylation most likely blocked an interaction involving K579 that influenced peak 

current amplitude.  

2.5.2 Physiological functions and regulation of SUMOylation  

SUMO is emerging as an important physiological regulator of ionic currents. Dopamine 

gates activity-dependent SUMOylation to regulate the densities of IA and the hyperpolarization 

activated current (Ih), and this is necessary to maintain activity homeostasis in a pattern 

generating neuron (Parker, Forster, & Baro, 2019). In hippocampal neurons, SUMOylation is 

known to regulate the kainate-receptor-mediated excitatory postsynaptic current (Chamberlain et 

al., 2012; Martin, Wilkinson, Nishimune, & Henley, 2007), the delayed rectifier (Plant et al., 

2011), and the M-current (Qi et al., 2014). SUMOylation is necessary for synaptic plasticity at 

mossy fiber-CA3 synapses, and hyper-SUMOylation suppresses the M-current and leads to 

hippocampal neuron hyperexcitability and seizures in a mouse model of sudden death. In dorsal 

root ganglion (DRG) sensory neurons, SUMOylation increases Na+ current (INa) amplitude 

(Dustrude et al., 2016; Francois-Moutal et al., 2018; Moutal et al., 2017), and lowers the 

temperature threshold of activation for the TRPV1-mediated current (Y. Wang et al., 2018) and 

hyper-SUMOylation contributes to pathological pain states. In rat cerebellar granule neurons, 

SUMOylation increases INa and reduces the leak current; and, hypoxia acts through 

SUMOylation to increase INa, which contributes to hypoxic brain damage (Plant et al., 2016; 

Plant, Zuniga, Araki, Marks, & Goldstein, 2012). In cardiac myocytes, SUMOylation determines 

the native attributes of the slow delayed rectifier current (IKs) (Xiong et al., 2017).  

In many of the previous examples, SUMO-mediated regulation of the current was due to 

SUMOylation of ion channels and/or their auxiliary proteins. In hippocampal neurons GluR2, 
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Kv1.1, Kv2.1 and Kv7 ion channels are SUMOylated (Chamberlain et al., 2012; Martin, 

Wilkinson, et al., 2007; Plant et al., 2011; Qi et al., 2014). In DRG sensory neurons, auxiliary 

subunit Collapsin Response Mediator Protein 2 (CRMP2) is SUMOylated to increase its 

association with the voltage-gated sodium channel 1.7 (NaV1.7) (Dustrude et al., 2016; Dustrude, 

Wilson, Ju, Xiao, & Khanna, 2013). NaV1.2 α-subunits and two-P domain, acid sensitive K+ 

(TASK) channels are SUMOylated in cerebellar granule neurons (Plant et al., 2016; Plant et al., 

2012). In cardiac myocytes, KCNQ1 subunits are SUMOylated to shift their voltage dependence 

(Xiong et al., 2017). An appreciation for the regulation of ion channel SUMOylation is guiding 

the design of small molecules to prevent SUMO dysregulation in disease states (Cox & Huber, 

2018; Francois-Moutal et al., 2018).  

SUMOylation is highly regulated. In this study, target protein SUMOylation was 

experimentally enhanced by transient overexpression of the SUMO substrate and the SUMO 

conjugating enzyme, Ubc9. In native cells, SUMOylation can be regulated at the level of the 

target protein and/or the SUMOylation machinery. The target protein phosphorylation status 

gates its ability to be SUMOylated (Dustrude et al., 2016; Flotho & Melchior, 2013) and 

neuromodulators have been shown to act through kinases to gate SUMOylation (Parker et al., 

2019). In addition, neuronal activity can regulate the SUMOylation machinery abundance, 

localization and level of activity (Craig et al., 2012; Feligioni et al., 2013; Hickey et al., 2012; 

Lee et al., 2014; Loriol et al., 2014; Loriol et al., 2013; Lu et al., 2009; Nayak & Muller, 2014). 

Modulators and activity regulate IA in native neurons (J. Kim et al., 2007; Lei, Deng, & Xu, 

2008; Parker et al., 2019; Rodgers, Krenz, Jiang, Li, & Baro, 2013; Shah, Hammond, & 

Hoffman, 2010; Shen, Zhou, Yang, Xu, & Wang, 2008). It will be important to test whether 

SUMO post-translational modification of Kv4.2 channels contributes to this regulation. 
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Figure 2.1 Kv4.2 channels are SUMOylated in the rodent CNS.  
Immunoprecipitation (IP) experiments were followed by western blot analysis. 

Antibodies are as indicated. The experiment was repeated three times using the brains from three 
different rats. A 68kD band, representing the Kv4.2 channel is indicated by an asterisk. A 130kD 
band representing aggregated Kv4.2 channels is indicated by an arrow. A 100kD band that most 
likely represents a protein that non-covalently interacts with the Kv4.2 channel is indicated by an 
arrowhead. A 50kD band (double asterisk) most likely represents the IP antibody. 
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Figure 2.2 Kv4.2 channels are SUMOylated in a heterologous expression system. 
A mouse Kv4.2 channel with a C-terminal GFP tag (Kv4.2g) was stably expressed in 

Human Embryonic Kidney (HEK) cells (HEK-Kv4.2g). IP experiments were performed on cell 
lysates from HEK-Kv4.2g cells or HEK parental cells using an anti-GFP or a negative control 
IgG antibody. Western blots containing IP product were probed using an (A) anti-GFP, (B) anti-
Kv4.2, or (C) anti-SUMO-2/3 antibody. Experiments were repeated three times. The Kv4.2-GFP 
protein was detected as a 100kD band (asterisk) using antibodies against GFP, Kv4.2, and 
SUMO-2/3. This band was never observed when a negative control IgG or HEK parental cells 
were used in the IP. A 70kD band was also detected by all antibodies (arrow head), and it most 
likely represents cleavage of the channel. This signal was not included in subsequent 
quantifications. This most likely represents sample degradation. The 50kD band observed in all 
lanes (double asterisk) likely represents the IP antibodies.   
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Figure 2.3 Kv4.2 channel SUMOylation can be manipulated in a heterologous expression 
system. 

HEK-Kv4.2g cells were transiently transfected with mCherry or mCherry+SUMO+Ubc9 
plasmid DNA. Two days after transfection, cells were lysed and used in IP experiments. In some 
cases, HEK-Kv4.2g cells transiently transfected with mCherry were treated with anacardic acid 
(100µM, 1hr) prior to cell lysis and IP. Western blots containing IP product were probed for 
SUMO-2/3 and then stripped and re-probed for GFP. The fraction of SUMOylated Kv4.2 
channels was determined. (A) Representative western blots for each treatment group. Note that 
two bands are resolved with anti-SUMO-2/3, but not anti-GFP, suggesting that shorter exposure 
times or lower amounts of input protein would reveal two bands with anti-GFP. (B) Plots 
showing the fraction of SUMOylated Kv4.2 channels in control, SUMO+Ubc9, and anacardic 
acid treatment groups. Each symbol represents one independent experiment, and all data points 
were normalized by the mean value for the control treatment group. Asterisk, significant 
differences in the fraction of SUMOylated Kv4.2 channels among treatment groups. One-way 
ANOVA with Tukey’s post-hoc, F(2,17)=3.68, p=0.047; control, 1.0±0.16; SUMO+Ubc9, 
1.6±0.23; anacardic acid, 1.1±0.083.   
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Figure 2.4 IA Gmax is significantly decreased in HEK-Kv4.2g cells transiently transfected 
with SUMO+Ubc9 compared to control. 

Whole cell patch clamp experiments were performed on HEK-Kv4.2g cells that were or 
were not transiently transfected with SUMO+Ubc9 to produce a ~60% increase in mean Kv4.2 
SUMOylation. (A) Representative current traces (upper panel) and voltage steps (lower panel) 
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used to obtain the voltage dependence of activation. (B) Representative current traces (upper 
panel) and voltage steps (lower panel) used to obtain the voltage dependence of steady-state 
inactivation. (C) Plots of normalized IA Gmax for control and SUMO+Ubc9 treatment groups. 
Each data point represents one cell. Cells in each treatment groups were obtained from ≥3 
independent transfections. All data points were normalized by the mean value for the control 
treatment group. Asterisk, significantly different; control, 1.0±0.079; SUMO+Ubc9, 0.78±0.068; 
Mann-Whitney U p=0.044. (D) Activation and steady-state inactivation curves for control and 
SUMO+Ubc9 treatment groups. Each point represents the mean±SEM for all cells shown in 
panel 4C. (E-F) Inactivation τ for all cells shown in panel 4C. Asterisk, significantly different; t-
test p=0.018. 
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Figure 2.5 Increased SUMOylation mediates an increase in Kv4.2 surface expression. 
(A) Representative western blots for each treatment group. HEK-Kv4.2g cells were 

transiently transfected with mCherry or mCherry+SUMO+Ubc9. Extracellular proteins were 
biotinylated, and cells were lysed. Surface proteins were isolated using NeutrAvidin beads (E for 
extracellular). Unbound proteins were assumed to be intracellular (I for intracellular). The upper 
portion (above 50kD) of a western blot containing I and E fractions was probed for GFP and then 
stripped and re-probed for Na+/K+-ATPase, and the lower portion of the blot (below 50kD) was 
probed for actin. Intracellular bands appeared to run slightly lower than extracellular. There are 
several potential explanations including distinct loading buffers, different protein concentrations 
and differences in post-translational modifications. (B) Plots of normalized Kv4.2g channel 
surface expression. The blots were used to measure channel surface expression as described in 
Materials and Methods. Each data point is one independent experiment. Each data point was 
normalized by the mean value for the control treatment group. Asterisk, significantly different; 
control, 1.0±0.11; SUMO+Ubc9, 1.7±0.28; t-test p=0.025. 
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Figure 2.6 Identification of Kv4.2 SUMOylation sites. 
The amino acid sequences for mouse Kv4.1 (NP_032449.1), Kv4.2 (NP_062671.1) Kv4.3 

(NP_001034436), rat Kv4.2 (Q63881.1), and human Kv4.2 (NP_036413.1) channels were aligned. 
Two putative, evolutionarily conserved SUMOylation sites predicted by SUMOplot and GPS-
SUMO are located on intracellular domains. The probability that the site is SUMOylated is 
indicated, and transmembrane domains are highlighted in red. 
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Figure 2.7 The ability to manipulate Kv4.2 channel SUMOylation is lost when K437 and 
K579 are mutated to R. 

(A, C, and E) Representative experiments using the indicated stable mutant cell line. (B, 
D, and F) Bar graphs showing normalized fraction of SUMOylated Kv4.2 channels. Each data 
point represents one independent experiment. All data points were normalized by the mean value 
for the mCherry treatment group. Kv4.2g K437R+K579R: control, 1.0±0.13; SUMO+Ubc9, 
0.98±0.11; t-test p=0.90. Kv4.2g K437R: control, 1.0±0.088; SUMO+Ubc9, 1.3±0.15; t-test 
p=0.11. Kv4.2g K579R: control, 1.0±0.16; SUMO+Ubc9, 1.3±0.31; t-test p=0.51. 
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Figure 2.8 Increased SUMOylation at K437 mediates the increase in Kv4.2 surface 
expression. 

(A, C, and E) Representative experiments. (B, D, and F) Bar graphs showing normalized 
Kv4.2 surface expression. Each data point is one independent experiment. All data points were 
normalized by the mean value for the mCherry treatment group. Asterisk, significant difference. 
Kv4.2g K437R+K579R: control, 1.0±0.12; SUMO+Ubc9, 0.95±0.15; t-test p=0.82. Kv4.2g 
K437R: control, 1.0±0.17; SUMO+Ubc9, 1.1±0.16; t-test p=0.81. Kv4.2g K579R: control, 
1.0±0.19; SUMO+Ubc9, 1.9±0.37; t-test p=0.049. 
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Figure 2.9 Increased SUMOylation at K579 mediates the decrease in IA Gmax. 
(A, C, and E) Representative current traces for the indicated stable mutant cell line in 

each treatment group. (B, D, and F) Bar graphs representing normalized IA Gmax. Each data point 
is one cell, and cells in each treatment group were obtained from ≥3 independent transfections. 
All data points were normalized by the mean value for the mCherry treatment group. Asterisk, 
significantly different. Kv4.2g K437R+K579R: control, 1.0±0.14; SUMO+Ubc9, 0.91±0.12; t-
test p=0.63. Kv4.2g K437R: control, 1.0±0.080; SUMO+Ubc9, 0.66±0.12; t-test p=0.035. 
Kv4.2g K579R: control, 1.0±0.1656; SUMO+Ubc9, 1.02±0.1141; Mann-Whitney U p=0.4715. 
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Figure 2.10 Transiently transfecting HEK cells with Kv4.2g K579R significantly 
decreases IA Gmax compared to control. 

 (A-C) Representative current traces for each treatment group. Each data point represents 
one cell, and data for each treatment group was pooled from ≥3 independent transfections. (D) 
Plots showing IA Gmax. Orange asterisks, significant differences in IA Gmax among HEK cells 
expressing Kv4.2g, Kv4.2g K437R, and Kv4.2g K579R. One-way ANOVA with Tukey’s post-
hoc, F(2,35)=9.75, p=0.0004. Blue asterisks, significant differences in IA when SUMO+Ubc9 
was co-transfected. Kv4.2g: control, 54.2nS±7.9; SUMO+Ubc9, 27.8nS±5.2; t-test p=0.014. 
Kv4.2g K437R: control, 62.1nS±5.9; SUMO+Ubc9, 46.9nS±5.9; t-test p=0.049. Kv4.2g 
K579R: control, 27.6nS±3.59; SUMO+Ubc9, 36.2nS±4.84; t-test p=0.18. 
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Figure 2.11 Transiently transfecting HEK cells with wild-type or mutant Kv4.2g does not 
significantly alter surface expression. 

HEK cells were transiently transfected with Kv4.2g, Kv4.2g K437R, or Kv4.2g K579R 
plasmid DNA and cell surface biotinylation experiments were performed. (A-C) Representative 
western blots for each treatment group. (D) Plots of normalized surface Kv4.2g channels. Each 
data point is one independent experiment and was normalized by the mean wild-type value. One-
way ANOVA with Tukey’s post-hoc, F(2,10)=0.16, p=0.85. 
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Table 2.1 Primary antibodies 

Antigen: Verified by: 

Species, 
manufacturer 
and catalogue 

number: 

Concentration used: 

Kv4.2 

Specificity verified by the company. 
WB analysis of rat membranes probed 

with anti-Kv4.2 (1:200) revealed a 
68kD band. 

rabbit, alomone 
labs, #APC-023 

IP: 8.3µL antibody per 
1000µg protein;  

WB: 1:750 

GFP (IP) 
Specificity verified by the company. 

Ab detects 5ng recombinant GFP 
expressed in HEK293 cells. 

rabbit, abcam, 
ab290 

IP: 1µL antibody per 
500µg protein 

GFP (WB) 

Specificity verified by the company. 
WB analysis of untransfected COS 

and COS cells transfected with pCruz 
GFP-Lac Z 

rabbit, Santa 
Cruz 

Biotechnology, 
sc-8334 

WB: 1:3000 

SUMO-1 
Specificity verified by the company. 
WB analysis of HEK293 expressing 

SUMO-1. 

rabbit, Santa 
Cruz 

Biotechnology, 
sc-9060 

WB: 1:1000 

SUMO-2/3 
Specificity verified by the company. 

WB analysis of HEK293 cells 
transfected with SUMO-2 

rabbit, Santa 
Cruz 

Biotechnology, 
sc-32873 

WB (HEK cells): 
1:3000; WB (rat 
brain): 1:1000 

SUMO-2/3 
Specificity verified by the company. 
Ab recognizes 15 and 18kD bands in 

HeLa extract on WB. 

rabbit, abcam, 
ab3742 

WB (HEK cells): 
1:1000; WB (rat 

brain): 1:750 

Na+/K+-ATPase 
Specificity verified by the company. 

Positive signal on WB using HEK293 
whole cell lysate. 

mouse, abcam, 
ab7671 WB: 1:3000 

Actin Specificity verified by the company. 
WB analysis of C32 whole cell lysate 

rabbit, Santa 
Cruz 

Biotechnology, 
sc-1616-R 

WB: 1:2000 

BSA 

Specificity verified by the company. 
BSA was loaded onto a gel. WB 

analysis revealed a 68kD band when 
probed with anti-BSA antibody. 

rabbit, 
ThermoFisher, 

A11133 
WB: 1:20,000 
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Table 2.2 Site-directed mutagenesis primers  
Primer name: Primer sequence: 

For-

Kv4.2K437R 
CGAGCAGCCAgAAGCGGGAGTGCAAATGCCTACATGC 

Rev-

Kv4.2K437R 
GCATGTAGGCATTTGCACTCCCGCTTcTGGCTGCTCG 

For-

Kv4.2K579R 
CAGCCGATCCAGCTTAAATGCCAgAATGGAAGAGTGTGTTAAAC 

Rev-

Kv4.2K579R 
GTTTAACACACTCTTCCATTcTGGCATTTAAGCTGGATCGGCTG 
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Table 2.3 Whole-cell patch clamp physiology data for stable lines  
Stable Lines 

 

HEK-Kv4.2g HEK-Kv4.2g K437R HEK-Kv4.2g K579R HEK-Kv4.2g 
K437R+K579R 

mCherry 
mCherry+ 
SUMO+ 

Ubc9 
mCherry 

mCherry+ 
SUMO+ 

Ubc9 
mCherry 

mCherry+ 
SUMO+     

Ubc9 
mCherry 

mCherry+ 
SUMO+ 

Ubc9 

Gmax (nS) 32.7±2.6 25.5±2.2T 75.2±6.0 49.5± 9.2TT 26.2±4.3 26.7±3.0NS 92.8±13.3 84.5±10.9NS 

V50 
Actvation 

(mV) 
-4.9±2.0 -2.8±1.7 -2.5±1.9 -5.1±1.6 -6.5±1.5 -4.3±2.6 -19.3±3.8 -15.2±4.3 

V50 
Inactivation 

(mV) 

-72.2± 
1.2 

-67.8± 
0.7T 

-73.5± 
1.1 -75.8±1.7NS -72.8±1.0 -71.2±1.1NS -69.3±1.6 -69.4±1.9NS 

Slope 
Activation 29.0±1.3 25.6±1.1 31.1±1.9 29.8±1.8 25.0±1.3 26.4±1.0 26.1±2.0 29.3±2.2 

Slope 
Inactivation -7.3±0.3 -7.4±0.3 -6.7±0.2 -6.7±0.2 -7.8±0.3 -6.7± 0.2 -6.5±0.4 -6.7±0.3 

τ Fast (ms) 22.6±1.8 28.6±1.6T 16.6±0.9 18.3±2.0NS 29.4±1.8 23.2± 
1.7TTT 26.8±2.8 18.3±2.9NS 

τ Slow (ms) 126.1± 
16.3 

153.4± 
15.7 64.1±3.0 72.0±8.9 229.8± 

29.3 121.4± 12.9 81.04±7.2 77.9±10.9 

T HEK-Kv4.2g mCherry significantly different from mCherry+SUMO+Ubc9 (Gmax, Mann-Whitney U, p=0.044; 
V50 inactivation, t-test, p=0.0019; τfast, t-test, p=0.018) 

TT HEK-Kv4.2g K437R mCherry significantly different from mCherry+SUMO+Ubc9 (t-test, p=0.035) 
TTT HEK-Kv4.2g K579R mCherry significantly different from mCherry+SUMO+Ubc9 (t-test, p=0.019) 
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Table 2.4 Whole-cell patch clamp physiology data for transient transfections 
Transient transfections 

 

Kv4.2g Kv4.2g K437R Kv4.2g K579R 

Kv4.2g Kv4.2g+ 
SUMO+Ubc9 

Kv4.2g 
K437R 

Kv4.2g 
K437R+ 

SUMO+Ubc9 

Kv4.2g 
K579R 

Kv4.2g 
K579R+ 

SUMO+Ubc9 

Gmax (nS) 54.2±7.9TTT 27.8±5.2T 62.1±5.9TTT 46.9±5.9TT 27.6± 3.6 36.2±4.8 

V50 Activation 
(mV) -2.6±1.8 2.5±2.5 -5.1±3.3 -0.7±2.1 2.6±1.8 -4.3±3.4 

V50 
Inactivation 

(mV) 
-71.5±1.5 -72.9±1.0 NS -69.6±1.7 -70.8±1.3 -73.5±0.9 -70.9±0.8 

Slope 
Activation 26.1±0.8 23.0±1.0 27.1±1.8 28.2±1.4 27.2±0.8 28.7±1.1 

Slope 
Inactivation -6.4±0.2 -7.0±0.2 -6.2±0.2 -6.3±0.2 -7.1± 0.2 -6.5±0.2 

τ Fast (ms) 22.1±2.4 27.4±3.1 NS 17.1±1.7 17.1±1.0 26.1±2.1 26.9±2.0 

τ Slow (ms) 76.2±8.0 105±20.5 68.3±6.9 60.9±3.7 93.2±10.1 138.4±32.4 

T Kv4.2g significantly different from Kv4.2g+SUMO+Ubc9 (t-test, p=0.014) 
TT Kv4.2g K437R significantly different from Kv4.2g K437R+SUMO+Ubc9 (t-test, p=0.049) 

TTT Significantly different from Kv4.2g K579R (One-way ANOVA with Tukey’s post-hoc, F(2,35)=9.75, 
p=0.0004) 

NS Significant differences produced by enhanced SUMOylation previously observed in the Kv4.2g stable line are 
not observed when Kv4.2g is transiently expressed (V50 inactivation, t-test p=0.48; τ Fast, t-test p=0.19)  
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3 CHAPTER 2: SUMOYLATION OF THE KV4.2 TERNARY COMPLEX 

INCREASES SURFACE EXPRESSION AND CURRENT AMPLITUDE BY 

REDUCING INTERNALIZATION 
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3.1 Abstract  

Kv4 𝛼𝛼-subunits exist as ternary complexes with potassium channel interacting protein 

(KChIP) and dipeptidyl peptidase-like protein (DPLP), and multiple ancillary proteins also 

interact with the 𝛼𝛼-subunits throughout the channel’s lifetime. How interactions within the Kv4 

macromolecular complex are modulated is poorly understood. Small ubiquitin-like modifier 

(SUMO) is a 11kD peptide post-translationally added to lysine (K) residues to regulate protein-

protein interactions. SUMO is a dynamic modification, and it could be the case that 

SUMOylation modulates interactions within the Kv4.2 macromolecular complex to control IA. 

In this manuscript, we begin testing this hypothesis by examining the effect of SUMOylation 

when a Kv4.2 GFP (Kv4.2g) fusion protein was co-expressed with KChIP2a and DPP10 in 

human embryonic kidney cells (HEK). Increasing SUMOylation in HEK cells expressing 

Kv4.2g+KChIP2a+DPP10 produced a significant ~35-70% increase in IA maximum 

conductance (Gmax) and a significant ~30-50% increase in Kv4.2g surface expression that was 

accompanied by a 65% reduction in ternary complex internalization. Blocking clathrin-mediated 

endocytosis in HEK cells expressing the Kv4.2g ternary complex mimicked and occluded the 

effect of SUMO on IA Gmax, however the amount of adaptor protein 2 (AP2) associated with 

Kv4.2g channels was not SUMO dependent. We previously generated Kv4.2g constructs 

containing K to arginine (R) substitutions at two evolutionarily conserved SUMOylation sites, 

K437 and K579. Experiments in HEK cells overexpressing Kv4.2g mutant ternary complexes 

revealed SUMOylation of Kv4.2g K579 was responsible for the increase in IA Gmax and surface 

expression and the reduction in internalization, while SUMOylation of Kv4.2g K437 had no 

effect on any parameter tested. Interestingly, we also found that the effect of Kv4.2g 

SUMOylation depended on the available interactome.   
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3.2 Introduction 

The transient potassium current (IA) is a rapidly inactivating subthreshold current 

mediated by Kv1.4, Kv3.3-4 and Kv4.1-3 𝛼𝛼 -subunits (Gutman et al., 2005). These 𝛼𝛼 -subunits 

exist in macromolecular complexes. Kv4 channels play a key role in shaping neuronal 

excitability, action potential firing rate, synaptic integration and synaptic plasticity; and, 

dysregulation of Kv4 channels is associated with neurological disorders, including epilepsy, 

Alzheimer’s disease, major depressive disorder, Huntington’s disease and chronic pain (Aceto et 

al., 2020; Carrillo-Reid et al., 2019; Hall et al., 2015; Kanda et al., 2021; K. R. Kim et al., 2021; 

Kohling & Wolfart, 2016; Noh, Pak, Choi, Yang, & Yang, 2019; Scala et al., 2015; C. Wang et 

al., 2021; Zemel et al., 2018). 

Kv4 channels form a ternary complex with potassium channel interacting protein 

(KChIP1-4) and dipeptidyl peptidase-like protein (DPLP; DPP6 and 10). The ternary complex is 

the fundamental unit that reproduces native IA in heterologous expression systems (Amarillo et 

al., 2008; Jerng et al., 2005; Jerng & Pfaffinger, 2012). The Kv4 ternary complex is anchored in 

distinct, dynamic macromolecular complexes at different stages in the channel’s lifespan. 

Tandem affinity purification of exogenously expressed Kv4.2 followed by mass spectrometry 

identified over 120 endogenous HEK cell proteins that associate with the 𝛼𝛼 subunit (J. H. Hu et 

al., 2020). 

Dynamic interactions with several proteins contribute to Kv4 trafficking and function at 

the plasma membrane (Jerng & Pfaffinger, 2014). Kv4 channels are translated and inserted in the 

ER membrane, and ER-located J proteins recruit Hsp70 to properly fold and stabilize Kv4 

monomers and facilitate tetrameric assembly of Kv4 channels (Li et al., 2017). Cytosolic KChIPs 

interact with the cytosolic N- and C-termini of Kv4𝛼𝛼 subunits at the ER, which facilitates 
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tetrameric assembly and masks a hydrophobic stretch of amino acids at the Kv4 N-terminus, 

allowing Kv4 to efficiently traffic to the plasma membrane (Kunjilwar, Strang, DeRubeis, & 

Pfaffinger, 2004; Shibata et al., 2003). Kv4-KChIP2 containing vesicles traffic through a 

conventional ER-Golgi pathway in ventricular myocytes, while Kv4-KChIP1 traffics in non-

COPII containing vesicles in HeLa cells, and different combinations of SNAREs and GTPases 

likely interact with the Kv4 complex depending on the route taken (Flowerdew & Burgoyne, 

2009; Hasdemir et al., 2005; J. H. Hu et al., 2020; B. L. Tang, 2020; T. Wang et al., 2012). The 

transmembrane domain and the short intracellular N-terminus of DPLP interacts with Kv4 S1 

and S2 to promote exit from the ER (Cotella et al., 2012; Lin et al., 2014; Ren et al., 2005). Both 

DPLPs and KChIPs modulate channel gating at the plasma membrane (An et al., 2000; Bahring 

et al., 2001; Foeger et al., 2010; Jerng et al., 2004; Nadal et al., 2003; Shibata et al., 2003). A 

conserved di-leucine motif on the Kv4.2 C-terminus is necessary and sufficient to traffic Kv4.2 

channels to the dendrites (Rivera et al., 2003), and kinesin isoform Kif17 interacts with the 

Kv4.2 C-terminus downstream of the di-leucine motif to facilitate this transport (Chu et al., 

2006). The Kv4.2 C-terminus also interacts with the actin binding protein, filamin, and this 

interaction results in a robust increase in IA current density (Petrecca et al., 2000). 

Phosphorylation controls Kv4 surface expression, and in hippocampal neurons, the scaffolding 

protein AKAP79/150 anchors PKA and calcineurin in the Kv4 macromolecular complex (Lin et 

al., 2011). The Kv4 macromolecular complex can include other ion channels, such as Cav3.1-3 

(D. Anderson, Mehaffey, et al., 2010; D. Anderson, Rehak, et al., 2010).  

Little is known about what modulates these dynamic protein-protein interactions with and 

within the ternary complex. Previous work has shown calcium binding to KChIP stabilizes its 

binding to Kv4 (Morohashi et al., 2002; C. Seifert et al., 2020). Ceroid lipofuscinosis neuronal 3 
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(CLN3) protein interacts with KChIP3 and disrupts the Kv4.2-KChIP3 interaction (C. Seifert et 

al., 2020). N-glycosylation of DPP10 is essential for its interaction with Kv4.3 (Cotella et al., 

2012). Prolyl cis/trans isomerase Pin1 disrupts the interaction between Kv4.2 and DPP6 (J. H. 

Hu et al., 2020). Expanding our knowledge of the mechanisms regulating protein-protein 

interactions within the Kv4 macromolecular complexes is key for understanding how IA is 

dynamically adapted.  

Post-translational SUMOylation regulates protein-protein interactions. Small ubiquitin 

like modifiers (SUMO1-5) are 11kD peptides that can be conjugated to lysine residues on target 

proteins (Celen & Sahin, 2020; H. M. Chang & Yeh, 2020; Flotho & Melchior, 2013; Henley et 

al., 2021). SUMOylation is a dynamic modification, and the SUMOylation status of a target is 

determined by the opposing activities of the sole SUMO conjugating enzyme, Ubc9, and 

proteases that cleave SUMO from a target (Desterro et al., 1997). There are several non-mutually 

exclusive consequences of protein SUMOylation. 1.) SUMOylation can promote protein-protein 

interactions usually by an association between the SUMO moiety and a specific SUMO binding 

domain on the interacting partner (Psakhye & Jentsch, 2012; A. Seifert et al., 2015). 2.) 

SUMOylation can block protein-protein interactions usually through steric hindrance (Dustrude 

et al., 2016). 3.) SUMOylation can compete with another post-translational modification such as 

methylation, acetylation, and ubiquitination for the same K reside on a target protein (D. D. 

Anderson et al., 2012; W. Wang et al., 2014). 4.) SUMO can interact with phosphoinositols 

concentrated in the trans-Golgi (PI(3)P) and plasma membrane (PI(3,4,5)P3) (Kunadt et al., 

2015). In this work, we begin to test the hypothesis that post-translational SUMOylation 

modulates interactions within the Kv4.2 macromolecular complex to tune IA.   
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Kv4.2 channels can be SUMOylated. Increasing baseline SUMOylation in HEK cells 

expressing a mouse Kv4.2 GFP fusion protein (Kv4.2g) increased channel SUMOylation at two 

evolutionarily conserved K residues, K437 and K579, to produce a significant 22-50% decrease 

in IA maximal conductance (Gmax) and a significant 70-95% increase in surface expression 

(Welch, Forster, Atlas, & Baro, 2019). SUMOylation at K437 increased surface expression of 

electrically silent channels while SUMOylation at K579 mediated the significant decrease in IA 

Gmax without altering surface expression. In the previous study, Kv4.2g was expressed alone 

(Welch et al., 2019). This study examines the effect of SUMOylation on IA mediated by the 

Kv4.2 ternary complex. 

3.3 Materials and Methods 

3.3.1 Chemical and antibodies  

All chemicals were purchased from Sigma unless stated otherwise. All antibodies are 

described in Table 3.1. 

3.3.2 Cell culture 

Human Embryonic Kidney 293 (HEK) cells were obtained from American Type Culture 

Collection (ATCC) and were cultured at 37°C and 5% CO2 in Eagle’s Minimum Essential 

Medium (MEM) (Corning, cat no. 10009CV) supplemented with 10% fetal bovine serum 

(ATCC, cat no. 30-2020) and 1% penicillin/streptomycin (Sigma, cat no. P4333).  

3.3.3 Plasmids  

A previously described plasmid containing the mouse Kv4.2 channel with GFP fused to 

the c-terminus (Kv4.2g) was provided by Dax Hoffman. PCR-based site directed mutagenesis 

was performed as previously described to generate two mutations in the Kv4.2g plasmid, K437R 

and K579R (Welch et al., 2019). A plasmid containing SUMO-2 (Kamitani et al., 1998) was 
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provided by Edward Yeh (Addgene plasmid #17360). A plasmid containing Ubc9 (Yasugi & 

Howley, 1996) was a gift from Peter Howley (Addgene plasmid #14438). pCMV6-KChIP2a 

(NM_145703) was purchased from Origene Technologies. PCR was used to add SalI and XhoI 

restriction sites at the beginning and end of the KChIP2a open reading frame (ORF) using the 

primers: SalI_KChIP2aFor: ATATATGTCGACGATGCGGGGCCAAGGCCGAAAGG and 

XhoI_KChIP2aRev: GAGTTTCTGCTCGAGCGGCCGCGTACGCGTCTAGATGAC. The 

KChIP2a ORF was subcloned into pCMV-HA-N vector (Clontech) at the SalI and XhoI 

restriction sites to generate the vector pCMV-HA-N-KChIP2a. pCMV3-DPP10 (NM_199021) 

was purchased from Sino Biological. PCR was used to add SalI and XhoI restriction sites at the 

beginning and end of the DPP10 ORF using the primers: SalI_DPP10For: 

ATATATGTCGACGATGACAGCCATGAAGC and XhoI_DPP10Rev: 

ATATATCTCGAGTTATTCATCTTCTTCT. The DPP10 ORF was subcloned into pCMV-HA-

N vector (Clontech) at the SalI and XhoI restriction sites to generate the vector pCMV-HA-N-

DPP10. All constructs were sequenced to ensure that PCR did not introduce mutations.  

3.3.4 Transfection  

HEK cells were transfected using the calcium phosphate transfection method. HEK cells 

were plated at 1.9X106 cells/plate or 6X106 cells/plate onto 60mm or 100mm plates, respectively, 

and incubated for 24 hr. 10µg or 25µg of DNA were prepared in 250µl or 440µl TE buffer 

(10mM Tris-HCl pH 8, 1mM EDTA), and immediately before transfection 30µl or 60µl of 2M 

CaCl2 followed by 250µl or 500µl 2X HBS (275mM NaCl, 10mM KCl, 12mM dextrose, 1.4mM 

Na2HPO4, 40mM HEPES, pH 7.05-7.1) was added dropwise to the DNA mixture, respectively. 

The transfection solution was added dropwise to the cells, and the cells were returned to 

37°C/5% CO2 for 4hrs followed by a media change. Equal amounts of each plasmid were used 
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when co-transfecting multiple plasmids. Transfection efficiency was assessed 48hrs later using 

fluorescence microscopy and only plates with >80% efficiency were used in experiments.  

3.3.5 Western Blot assay 

Proteins were resolved on 10% SDS-polyacrylamide gels and transferred for 1hr at 90V 

to a PVDF membrane (Immobilon-P, cat# IPVH00010) using a wet electroblotting system 

(BioRad, Mini Trans-Blot cell) and instructions provided by the manufacturer. Membranes were 

dipped in methanol and dried for 30min. Membranes were blocked in 5% non-fat dry milk in 

TBS (50mM Tris-HCl pH7.4, 150mM NaCl) for 1hr at room temperature. Membranes were 

washed 1X with T-TBS (TBS+0.1% Tween20) for 10min. The membrane was incubated with 

primary antibodies (Table 3.1) in 1% non-fat dry milk in T-TBS overnight at 4°C with shaking. 

Membranes were washed 3X 5min each with T-TBS. Membranes were incubated with the 

appropriate alkaline phosphatase conjugated secondary antibodies in 1% non-fat dry milk in T-

TBS for 2hr at room temperature. Membranes were washed 3X with T-TBS for 10min each. 

Alkaline phosphatase substrate was placed on the membrane for 5min. Membranes were exposed 

to film (Research Products International) and chemiluminescent signals were visualized with a 

Kodak X-Omat 2000A imager. The optical density (OD) of a protein(s) of interest was measured 

using ImageJ software, as previously described (Parker et al., 2016; Welch et al., 2019).  

In some cases, membranes were stripped and re-probed. In these cases, membranes were 

washed 2X in mild stripping buffer (20mM glycine, 0.1%SDS, 1% Tween 20, 50mM KCl, 

20mM Magnesium acetate, pH 2.2) for 10min each. Membranes were then washed, 2X with PBS 

for 10min each, and 2X with T-TBS for 5min each. To ensure that the chemiluminescent signal 

was gone, alkaline phosphatase substrate was added to the membrane for 5min and the 

membrane was exposed to film for 10min. To account for technical variabilities such as 
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differences in exposure time or loss of protein due to stripping, 0.1µg or 0.2µg BSA protein was 

always included in one lane on every gel and a primary antibody against BSA was always 

included for detection. The signal for the protein of interest on the pre- and post-stripped blot 

was always normalized by the BSA signal on the pre- and post-stripped blot, respectively.  

In some cases, SYPRO Ruby Protein Blot Stain (BioRad) was used to assess total 

protein. Whole cell lysates (10µg) were resolved with PAGE and transferred to a PVDF 

membrane, as described above. Dried PVDF membranes were incubated protein side face-down 

in 7% acetic acid/10% methanol for 15min and then washed 4X, 5min each with dH2O. 

Membranes were placed protein side face-down in SYPRO Ruby Protein Blot Stain for 15min 

and then washed 3X, 1min each with dH2O. Stained protein was visualized using an Omega 

Ultra Lum 10gD imaging system using blue light transillumination. The optical density of the 

total protein signal was measured using ImageJ. 

3.3.6 Electrophysiology 

For whole-cell patch clamp experiments, HEK cells were transfected with the appropriate 

DNA and incubated for 24hr. Cells were then passaged on to 100mm coverslips coated with 

Poly-L-Lysine (50µg/ml) and incubated. The next day, coverslips were transferred to a recording 

chamber and superfused continuously with extracellular saline (in mM: 141 NaCl, 4.7 KCl, 1.2 

MgCl2, 1.8 CaCl2, 10 glucose, 10 HEPES, pH 7.4, osmolarity ~300). Cells were visualized on an 

IX70 Olympus microscope, and transfected cells were identified with fluorescence microscopy. 

Fire polished borosilicate glass pipettes having a resistance of ~2MΩ were filled with 

intracellular saline (in mM: 140 KCl, 1 MgCl2, 1 CaCl2, 10 EGTA, 2 MgATP, 10 HEPES, pH 

7.2, osmolarity ~290) and connected to a MultiClamp 700A amplifier (Axon Instruments). After 

forming a GΩ seal, a slight negative pressure was used to break through the membrane, and only 
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cells that maintained >700MΩ seal following rupture and had less than 15MΩ access resistance 

were examined. Fast and slow capacitance and series resistance were compensated. IA was 

elicited with a series of 1sec pre-pulses to -90mV each followed by a 250ms test-pulse ranging 

from -50 to +50mV in 10mV increments. The leak current from a pre-pulse to -30mV was 

subtracted offline. Current (I) was converted to conductance (G) using the equation G=I/Vm-Vr, 

with Vm being the membrane potential and Vr being the reversal potential for potassium, -

86mV. The maximal conductance (Gmax), the voltage of half-activation (V50 act), and the slope 

of the activation curve were determined by plotting conductance against voltage and fitting the 

data with a first-order Boltzmann equation. The fast and slow time constants of inactivation 

(𝛕𝛕fast and 𝛕𝛕slow) were determined by fitting the decay current for the +50mV test-pulse with a 

two-term exponential equation. The voltage of half-inactivation (V50 inact) was measured with a 

series of 1.4sec pre-pulses from -110 to -30mV in 10mV increments, each followed by a 200ms 

test pulse to +20mV. Current was plotted against voltage and the data were fitted with a first-

order Boltzmann equation to determine V50 inact and the slope of the inactivation curve.  

In some experiments, clathrin-mediated endocytosis was blocked with Pitstop2 (abcam, 

ab120687). Cells were treated with 20µM Pitstop2 for 20min at 37°C/5%CO2 before transferring 

the coverslip to the recording chamber and Pitstop2 (20µM) was included in the superfusate. 

Pitstop2 was prepared as a 30mM stock in DMSO, where the working concentration of DMSO 

was 0.7%. Application of 0.7% DMSO for 20min at 37°C/5%CO2 prior to transferring the cells 

to the recording chamber and inclusion of 0.7% DMSO in the superfusate did not affect IA 

Gmax (n=3; Gmax, control: 87.44nS vs. DMSO: 90.55nS). In experiments using Pitstop2, 

enhanced SUMOylation was not achieved by co-transfecting SUMO and Ubc9; rather, SUMO-2 

and/or SUMO-3 peptide (4.2µM, Boston Biochem, #K-700) was dissolved in the intracellular 
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saline in the patch pipette and delivered to the cell after whole-cell configuration was achieved. 

SUMO peptides were used at a concentration previously shown regulate the amplitude of kainate 

evoked current in HEK cells expressing GluK2 (Konopacki et al., 2011). 

3.3.7 Immunoprecipitation 

For experiments to measure steady-state Kv4.2g levels, transfected HEK cells on 100mm 

culture dishes were washed 1X with ice-cold PBS and lysed in 1ml RIPA buffer (1% NP40, 

50mM Tris-HCl pH7.4, 150mM NaCl, 0.1% SDS, 0.5% DOC, 2mM EDTA) supplemented with 

20mM N-Ethylmaleimide (NEM) and protease inhibitor cocktail (1:100, Sigma cat no. P8340) 

on ice for 30min. Plates were scraped, and lysates were transferred to a 1.5ml centrifuge tube. 

Cell debris was pelleted by centrifugation at 14,000rpm for 15min. Bicinchoninic acid (BCA) 

assay was performed to determine protein concentration, and 1mg of protein was added to 2µl 

anti-GFP antibody (Table 3.1). The lysate was incubated with the antibody at 4°C overnight with 

shaking. IP was carried out using the Pierce Classic Magnetic IP/Co-IP kit (ThermoFisher cat no. 

88804) according to manufacturer’s instructions. IPs were eluted in 100µl of elution buffer.  

For experiments quantifying the amount of adaptin 𝛼𝛼 that co-immunoprecipitated (co-IP) 

with Kv4.2g, transfected HEK cells on 60mm culture plates were washed 1X PBS.  Cells were 

then lysed for 30min on ice with IP/lysis buffer supplied with the Pierce Classic Magnetic IP/Co-

IP kit and supplemented with 20mM NEM and protease inhibitor cocktail (1:100). Cells were 

scraped, transferred to a 1.5ml centrifuge tube, and cell debris was pelleted for 10min at 

14,000rpm. Protein concentration was determined with BCA, and 0.5mg of protein was added to 

1µl anti-GPF (Table 3.1). The lysate was incubated with the antibody at 4°C with shaking 

overnight, and IP was performed with the Pierce Magnetic IP/Co-IP kit. IP was eluted in 50µl 

elution buffer. 
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3.3.8 Biotinylation of cell surface proteins  

NeutrAvidin resin (300µL) (ThermoFisher cat no. 29201) was placed in a Pierce Snap 

Cap Spin Column (ThermoFisher cat no. 69725) and was equilibrated by washing 3X with PBS. 

Transfected HEK cells were washed 2X with PBS supplemented with 1.5mM MgCl2 and 0.2mM 

CaCl2 (PBS-CM) and incubated with EZ-Link Sulfo-NHS-SS-Biotin (1mg/ml) (ThermoFisher 

cat no. 21331) in PBS-CM for 30min at 4°C. Unreacted biotin was quenched with PBS-CM 

+100mM glycine at 4°C for 15min, and cells were lysed for 30min on ice in 500µL RIPA buffer 

supplemented with protease inhibitor cocktail. Plates were scraped. The lysate was transferred to 

a clean 1.5ml centrifuge tube. Cell debris was pelleted by centrifugation for 10min at 14,000rpm, 

and the supernatant was added to the washed NeutrAvidin resin and incubated for 2hr at 4°C 

with shaking. The column was placed in a clean 1.5ml microcentrifuge tube and centrifuged for 

2min at 1000xg. The flow-through containing the unbiotinylated proteins was considered to be 

the intracellular fraction. The resin was washed 3X with Wash Buffer 1 (1% NP40, 1% SDS, 1X 

PBS) and 3X with Wash Buffer 2 (0.1% NP40, 0.5M NaCl, 1X PBS). Biotinylated, cell surface 

proteins were eluted from the NeutrAvidin resin by incubating with 75µl of 1X SDS buffer 

(50mM Tris HCl pH 6.8, 2% SDS, 10% glycerol, 0.1% Bromophenol Blue, 100mM DTT) with 

gentle shaking for 1hr at room temperature followed by centrifugation for 2min at 1000xg. 

Intracellular and extracellular fractions along with 0.2µg of BSA were used in western blot 

assays. Blots were cut horizontally at ~50kD. The lower portion of the blot was incubated with 

an antibody against actin. The upper portion of the blot was incubated with antibodies that 

recognized BSA and GFP. After measuring the OD for BSA and GFP, the blot was stripped and 

incubated with antibodies that recognize BSA and the Na+/K+-ATPase, whose surface expression 

did not change when SUMOylation was increased above baseline in HEK cells (Parker et al., 
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2016). The ODs of the extracellular GFP and Na+/K+-ATPase signals were normalized to their 

respective BSA signals, and then the normalized GFP signal was divided by the normalized 

Na+/K+-ATPase signal to determine Kv4.2 surface expression.  

3.3.9 Internalization assay 

Three plates of cells were used for each internalization experiment. One plate was used to 

measure internalization, one was used to measure total surface expression, and one was used to 

measure stripping efficiency. Cells were biotinylated and quenched as described above. The 

remainder of the experiment varied according to the plate.  

Cells on the internalization plate were washed 1X in MEM. Fresh MEM was added, and 

the plate was incubated for 2.5hr at 18°C to allow for internalization with reduced degradation 

(Le, Yap, & Stow, 1999). Cells were then washed 1X with NT buffer (150mM NaCl, 1mM 

EDTA, 0.2% BSA, 20mM Tris pH8.6). Surface-bound biotin was removed by incubating with 

100mM sodium 2-mercaptoethanesulfonate (MESNA) in NT buffer for 30min at 4°C. Cells were 

washed 3X in NT buffer, 3X in PBS-CM and lysed with 500µL RIPA buffer supplemented with 

protease inhibitor cocktail.  

Immediately after the quenching step, cells on the strip plate and the total plate were 

washed 1X with NT buffer. Cells on the strip plate were incubated with MESNA in NT buffer 

for 30min at 4°C to remove surface bound biotin. Cells on the total plate were incubated with NT 

buffer for 30 min at 4°C. Cells on the strip plate and the total plate were washed 3X in NT 

buffer, 3X in PBS, and lysed with 500µL RIPA buffer supplemented with protease inhibitor 

cocktail.  

Protein concentration for each of the 3 lysates was determined with a BCA. For each 

lysate, 450µg of protein was added to a Pierce Snap Cap Spin Column containing washed 
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NeutrAvidin resin (300µL) and incubated at 4°C overnight, shaking. The next day, the columns 

were placed in clean 1.5ml microcentrifuge tubes, and the flowthroughs containing the 

unbiotinylated proteins were collected by centrifuging 2min 1000xg. The resin was washed 3X 

with Wash Buffer 1 and 3X with Wash Buffer 2. Biotinylated proteins were eluted from the resin 

with 75µl 1X SDS buffer by shaking for 1hr at room temperature. Biotinylated fractions were 

collected by centrifuging at 1000xg for 2min.  

The unbiotinylated and biotinylated fractions from the three plates were resolved with 

PAGE. Blots were probed with anti-GFP. The percentage of Kv4.2g internalized was calculated 

as the optical density (OD) of the biotinylated Kv4.2g signal from the internalized plate divided 

by the OD of the biotinylated Kv4.2g signal from the total surface expression plate multiplied by 

100. The stripping efficiency was calculated as the OD of the biotinylated Kv4.2g signal from 

the strip plate divided by the OD of the biotinylated Kv4.2g signal from the total surface 

expression plate, subtracted from 1 and multiplied by 100. Only data from experiments where the 

stripping efficiency was >90% were included.  

3.3.10 Statistical analysis 

GraphPad PRISM 9 software was used for statistical analysis of data. Normality and 

homogeneity of variance was assessed for each data set. Data points > 2 standard deviations from 

the mean were considered outliers and were excluded. In all cases, the significance threshold was 

set at p<0.05.  
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3.4 Results  

3.4.1 SUMOylation of Kv4.2g at K579 increases IA Gmax in the presence of auxiliary 

subunits, KChIP2a and DPP10 

The effect of Kv4.2g SUMOylation may be context-dependent. To investigate if/how 

SUMO modulates Kv4.2g in ternary complexes, we transiently transfected HEK cells with 3 

plasmids encoding Kv4.2g, KChIP2a, and DPP10. SUMOylation of target proteins can be 

increased in cell culture when SUMO and Ubc9 are overexpressed (Dai et al., 2009; Parker et al., 

2016; Welch et al., 2019), and SUMOylation was or was not enhanced in this experiment by co-

expressing two additional plasmids encoding SUMO and Ubc9. Whole-cell patch-clamp 

recordings were performed to characterize the currents in the two treatment groups (Figure 

3.1A). There was a significant 35% increase in IA maximal conductance (Gmax) when SUMO 

and Ubc9 were co-expressed with the Kv4.2g ternary complex relative to cells only expressing 

the Kv4.2g ternary complex (Figure 3.1B). SUMO and Ubc9 co-expression had no significant 

effect on the voltage of half-activation (V50 act), the voltage of half-inactivation (V50 inact), the 

slopes of the activation and inactivation curves, or the fast (𝛕𝛕 fast) and slow (𝛕𝛕 slow) time 

constants of inactivation (Figure 3.1C-E).  

The increase in IA Gmax could be due to SUMOylation of Kv4.2g, KChIP2a or DPP10. 

Kv4.2g is known to be SUMOylated at K437 and K579 (Welch et al., 2019). We asked whether 

SUMOylation of Kv4.2g K437 and/or K579 mediated the significant increase in IA Gmax by 

repeating the patch-clamp experiments with three Kv4.2g mutants: K437R, K579R and 

K437R+K579R (Figure 3.2). Incorporating the Kv4.2g double mutant into the ternary complex 

abolished the SUMOylation-induced increase in IA Gmax, suggesting that SUMOylation of 

Kv4.2g was necessary for the enhancement. Augmenting SUMOylation in HEK cells expressing 
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Kv4.2g K437R still produced a significant increase in IA Gmax, but not when the ternary 

complex contained Kv4.2g K579R. These data suggested that SUMOylation of Kv4.2g K579 

produced a significant increase in the current mediated by the ternary complex. 

3.4.2 SUMOylation of Kv4.2g K579 does not enhance Kv4.2 protein expression  

SUMOylation can increase IA Gmax by increasing protein expression. We next asked 

whether SUMOylation regulated steady-state Kv4.2g protein levels. Kv4.2g channels were 

immunoprecipitated from HEK cells transiently transfected with Kv4.2g + KChIP2a + DPP10 

with or without SUMO + Ubc9. The immunoprecipitates (IPs) were used in western blot 

experiments that employed anti-GFP to visualize Kv4.2g (Figure 3.3A). Total protein in the 

whole cell lysate was estimated by staining with SYPRO Ruby, as described in Materials and 

Methods (Figure 3.3B). The steady-state Kv4.2g was defined as the OD for the anti-GFP signal 

divided by the OD for SYPRO Ruby stain (Figure 3.3C). There was no significant difference in 

steady-state levels of Kv4.2g between the two treatment groups (Figure 3.3C). These data 

indicate that Kv4.2g SUMOylation did not increase protein expression. 

3.4.3 SUMOylation of Kv4.2g at K579 increases ternary complex surface expression by 

reducing internalization  

Since SUMOylation did not increase protein expression, we next asked whether the 

significant increase in IA Gmax was mediated by an increase in Kv4.2g surface expression. To 

do this, we performed cell surface biotinylation assays on HEK cells expressing the ternary 

complex with or without SUMO+Ubc9. Surface proteins were biotinylated, cells were lysed, and 

the extracellular fraction was isolated using NeutrAvidin resin. Proteins that did not bind to the 

NeutrAvidin resin were considered to be intracellular. Intracellular and extracellular fractions 

from each treatment group were used in western blot experiments (Figure 3.4A). Blots were cut 
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horizontally at ~50kD and the upper portion of the blot was probed for Kv4.2g. After obtaining 

the OD for the Kv4.2g signal, the blot was stripped and re-probed for Na+K+-ATPase. The lower 

portion of the blot was probed for actin to ensure there was no intracellular contamination in the 

extracellular fraction. Kv4.2g surface expression was defined as the Kv4.2g OD in the 

extracellular fraction divided by the Na+K+-ATPase OD in the extracellular fraction. A plot of 

the data indicated that Kv4.2g surface expression increased by 30% when SUMOylation was 

enhanced (Figure 3.4B). This is consistent with the SUMOylation-induced ~35% increase in IA 

Gmax (Figure 3.1). 

The experiment was repeated using the mutants, Kv4.2g K437R (Figure 3.4C-D) or 

Kv4.2g K579R (Figure 3.4E-F). Enhanced SUMOylation still elicited an increase in surface 

expression when the ternary complex comprised Kv4.2g K437R (Figure 3.4D) but not Kv4.2g 

K579R (Figure 3.4F). These data indicated that SUMOylation of the ternary complex at Kv4.2 

K579 increased channel surface expression and IA Gmax. 

Membrane protein SUMOylation is known to modulate that protein’s surface expression 

by regulating both exocytosis from the Golgi to the plasma membrane (Zhou et al., 2018) and 

internalization from the plasma membrane (Dustrude et al., 2016; Ma et al., 2016). We first 

tested if SUMOylation reduced internalization. Current data suggest that Kv4.2 undergoes 

clathrin-mediated endocytosis (J. H. Hu et al., 2020; J. Kim et al., 2007; Nestor & Hoffman, 

2012). We therefore performed patch clamp recordings to measure IA when clathrin-mediated 

endocytosis was inhibited with Pitstop2, a cell-permeable clathrin inhibitor. Application of 

Pitstop2 (20µm, 20min) to HEK cells expressing Kv4.2g + KChIP2a + DPP10 produced a 

significant 57% increase in IA Gmax compared to control (Figure 3.5) (Table 3.2). To test if 

Pitstop2 mimicked and occluded the effects of SUMOylation, SUMO was delivered to HEK 
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cells expressing the ternary complex by including the peptide in the recording pipette (4.2µM). 

Pitstop2 was or was not pre-applied for 20min followed by whole-cell patch clamp. Treatment 

with SUMO or Pitstop2 or SUMO+Pitstop2 produced a similar increase in IA Gmax relative to 

untreated controls; however, IA Gmax was not significantly different between these three 

treatment groups (Figure 3.5) (Table 3.2). Thus, Pitstop2 mimicked and occluded the effect of 

SUMO. Because the effects of SUMO and Pitstop were not additive, these data support the 

hypothesis that SUMOylation increased channel surface expression and IA Gmax largely by 

reducing internalization, rather than increasing exocytosis. It should be noted that the level of 

internalization depends upon the rates of two opposing processes: endocytosis and recycling 

from the endosome back to the plasma membrane. Since recycling is downstream of endocytosis, 

and Pitstop2 blocks endocytosis, these data do not indicate if SUMO regulates endocytosis 

and/or recycling.  

In order to further test whether SUMOylation of Kv4.2 at K579 was necessary to reduce 

ternary complex internalization, Kv4.2 internalization was analyzed with a biotin assay. The 

assay was performed on two treatment groups: HEK cells expressing the Kv4.2g ternary 

complex or the Kv4.2g ternary complex + SUMO + Ubc9. Three plates of cells were used for 

one experiment in one treatment group. The 1st plate was used to measure internalized channels. 

Cells were treated with biotin on ice to label surface proteins and prevent endocytosis. Labeled 

cells were then placed at 18°C for 2.5hr to allow for internalization with reduced degradation (Le 

et al., 1999). Upon completion of the incubation, cells were treated with MESNA to cleave biotin 

from surface proteins. Biotinylated Kv4.2g channels that were internalized during the 18°C 

internalization step were protected from cleavage by MESNA, and following cell lysis 

internalized biotinylated proteins were isolated using NeutrAvidin resin. The 2nd plate was used 
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to measure total Kv4.2g surface expression. Immediately following biotinylation on ice, cells on 

this plate were lysed and biotinylated proteins were isolated using NeutrAvidin resin. Since there 

was no incubation at an elevated temperature, biotinylated proteins should largely represent 

surface expression. The 3rd plate served as a control to determine stripping efficiency. 

Immediately following biotinylation on ice, cells on this plate were treated with MESNA to 

remove all biotin from surface expressed proteins. NeutrAvidin resin was once again used to 

isolate any remaining biotinylated proteins. The unbiotinylated and biotinylated fractions from 

the three plates were resolved with PAGE followed by western blot experiments using anti-GFP 

to visualize Kv4.2g (Figure 3.6A). MESNA stripping efficiency was determined by dividing the 

OD for the biotinylated Kv4.2g signal on the stripped plate (3rd plate) by the OD for the 

biotinylated Kv4.2g signal on the total plate (2nd plate), subtracting from 1 and multiplying by 

100. An experiment was not used if the stripping efficiency was < 90% (11% of experiments). If 

stripping efficiency was >90%, then the percentage of internalized Kv4.2g channels was 

determined by dividing the OD for the biotinylated Kv4.2g signal on the internalization plate (1st 

plate) by the OD for the biotinylated Kv4.2g signal on the total plate (2nd plate) and multiplying 

by 100. Plotting the data for both treatment groups showed that enhancing SUMOylation 

significantly decreased Kv4.2g internalization by 64% relative to control (Figure 3.6B). In order 

to determine if SUMOylation of Kv4.2g K579 was necessary for this effect, these experiments 

were repeated using the Kv4.2g K579R mutant (Figure 3.6C). Plotting the data for the two 

treatment groups showed that enhancing SUMOylation had no significant effect on 

internalization when K579 was mutated to R (Figure 3.6D). In addition, the mutation alone 

significantly reduced internalization by ~20% (% internalized: TC, 33.3%±1.61 vs. TC K579R, 

26.4%±1.95; p=0.037, t-test). Together these data suggest that K579 influences Kv4.2g 
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interactions with a protein(s) that regulates/mediates internalization, and post-translationally 

decorating K579 with SUMO significantly reduces internalization. 

3.4.4 The effect of K579 SUMOylation on Kv4.2g internalization is downstream of cargo 

recruitment and vesicle formation 

Internalization of Kv4.2g in the previous experiment was largely determined by the rates 

of two opposing processes: endocytosis and recycling of the endocytosed channel back to the 

plasma membrane. Note that degradation during the 2.5hr period should be greatly diminished. 

Current evidence suggests that Kv4.2 channels undergo clathrin-mediated endocytosis (J. H. Hu 

et al., 2020; J. Kim et al., 2007; Nestor & Hoffman, 2012). Adaptor protein 2 complex (AP2) is 

the major clathrin adaptor that recruits cargo and participates in vesicle formation (Mettlen, 

Chen, Srinivasan, Danuser, & Schmid, 2018). To begin to test if Kv4.2 K579 SUMOylation 

reduced internalization by inhibiting endocytosis, we examined whether or not SUMOylation 

altered the interaction between Kv4.2g and AP2. Standard IP experiments with an antibody 

against GFP were performed on HEK cells co-expressing Kv4.2g + KChIP2a + DPP10 with and 

without SUMO+Ubc9. IP products were resolved with PAGE and western blots were probed 

with an antibody against the 𝛼𝛼-subunit of AP2, 𝛼𝛼 adaptin, and the blot was stripped and re-

probed for Kv4.2g (Figure 3.7A). The OD for 𝛼𝛼 adaptin was divided by the OD for Kv4.2g to 

determine the amount of 𝛼𝛼 adaptin that associated with Kv4.2g. Plotting the data for the two 

treatment groups showed that SUMOylation did not significantly alter the amount of 𝛼𝛼 adaptin 

associated with Kv4.2g (Figure 3.7B). Thus, the effect of K579 SUMOylation on Kv4.2g 

internalization must be downstream of cargo recruitment into clathrin-coated pits. 
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3.4.5 The effect of Kv4.2 SUMOylation is context-dependent  

The effect of Kv4.2 SUMOylation varies depending upon whether it is heterologously 

expressed alone or co-expressed with KChIP2a and DPP10 in HEK cells. Enhanced 

SUMOylation elicited a decrease vs. increase in IA Gmax in HEK cells that expressed Kv4.2g 

alone vs. Kv4.2g + KChIP2a + DPP10, respectively (Figure 3.8A). Enhancing SUMOylation 

also increased Kv4.2g surface expression to different extents when Kv4.2g was expressed alone 

or co-expressed with auxiliary subunits (Figure 3.8B). We ascertained the specific effect of 

SUMOylation at K437 and K579 under each condition.  

SUMOylation of K437 had no effect on IA Gmax under either condition, i.e., 

SUMOylation still produced significant changes in IA Gmax when K437 was mutated to R 

(compare Figure 3.8C with 3.8A). On the other hand, SUMOylation of K437 enhanced Kv4.2g 

surface expression when it was expressed alone, but not when it was co-expressed with KChIP2a 

+ DPP10, i.e., the increase in surface expression was blocked by mutating K437 only when 

Kv4.2g was expressed alone (compare Figure 3.8D vs. 3.8B). Together, these data indicate that 

SUMOylation of K437 increased the insertion of electrically silent channels/subunits only when 

the pore-forming 𝛼𝛼-subunit was expressed alone. It is not clear if K437 can be SUMOylated 

when Kv4.2g is incorporated into the ternary complex, because mutating K437 did not prevent 

the SUMOylation induced increase in surface expression (compare Figure 3.8D, right vs. 3.8B, 

right) or IA Gmax (compare Figure 3.8C, right vs. 3.8A, right) when the 𝛼𝛼-subunit was co-

expressed with KChIP2a and DPP10. 

SUMOylation of K579 decreased vs. increased IA Gmax when the 𝛼𝛼 -subunit was 

expressed alone vs. with the other components of the ternary complex, i.e, when K579 was 

mutated to R, SUMOylation no longer produced a significant change in IA Gmax under either 
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condition (compare Figure 3.8E vs. 3.8A). SUMOylation of K579 had no effect on surface 

expression when the 𝛼𝛼 -subunit was expressed alone, but increased surface expression when 

Kv4.2g was co-expressed with auxiliary subunits, i.e., when K579 was mutated to R, 

SUMOylation still produced the significant increase in surface expression when the 𝛼𝛼 -subunit 

was expressed alone, but not when expressed with ternary complex components (compare Figure 

3.8F vs. 3.8B). Together, these data showed that in the absence of auxiliary subunits, K579 

SUMOylation decreased IA Gmax without altering surface expression. In contrast, in the 

presence of KChIP2a and DPP10, K579 SUMOylation increased IA Gmax by reducing 

internalization (Figures 3.5-3.6). Based on all of these results, we conclude that the effect of 

Kv4.2 SUMOylation at K437 and K579 is context-dependent. 

3.5 Discussion  

The biophysical properties of neuronal IA are reproduced in a heterologous system by a 

ternary complex containing Kv4, KChIP and DPLP subunits (Jerng & Pfaffinger, 2014). It is not 

clear if all functional channels exist in ternary complexes in native neurons, and how the ternary 

complex interacts with a larger assemblage of variable accessory subunits and regulator proteins 

as the channel is assembled, trafficked and modulated in the plasma membrane. Post-

translational SUMOylation is likely to play a fundamental role in mediating dynamic interactions 

within Kv4 macromolecular complexes. This is the first report to examine if/how post-

translational SUMOylation modulates the Kv4.2 ternary complex. The current study 

demonstrated that SUMOylating Kv4.2 K579 reduced internalization and thereby enhanced 

channel surface expression and IA Gmax. In addition, the effect of SUMOylation depended upon 

which proteins were available to interact with Kv4.2.  
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3.5.1  K579 SUMOylation enhances Kv4.2 surface expression by reducing internalization 

Increasing SUMOylation of Kv4.2g at K579 in HEK cells expressing Kv4.2g + KChIP2a 

+ DPP10 produced a significant ~35-70% increase in IA Gmax. SUMOylation did not alter 

steady-state Kv4.2g protein levels but produced a significant ~30-50% increase in surface 

expression. Modulation of K579 SUMOylation status could be a basis for many of the 

mechanisms regulating Kv4.2 surface expression in a variety of physiologically relevant models. 

Different studies report either a decrease or increase in Kv4.2 surface expression following a 

seizure. In the hippocampus, Kv4.2 surface expression is decreased following kainate-induced 

status epilepticus (SE) (Joshi et al., 2018; Lugo et al., 2008), while Kv4.2 surface expression is 

increased following lithium-pilocarpine-induced SE (Joshi et al., 2018). These effects could be 

mediated by decreasing vs. increasing SUMOylation at K579, respectively. Enhanced excitatory 

input also regulates Kv4.2 surface expression. Glutamate application to cultured rat cortical or 

hippocampal neurons results in an increase or decrease in Kv4.2 surface expression, respectively 

(Lei et al., 2008; Shen et al., 2008). LTP induction or stimulation with AMPA induces Kv4.2 

internalization in hippocampal neurons (Hammond et al., 2008; J. Kim et al., 2007). In some of 

these examples, post-translational phosphorylation is involved in regulating Kv4.2 surface 

expression (Hammond et al., 2008; Lugo et al., 2008). This is noteworthy because the 

phosphorylation state of a protein determines its ability to be SUMOylated (Flotho & Melchior, 

2013). For example, activation of PKA prevents the SUMOylation-dependent regulation of IA in 

an invertebrate neuron (Parker et al., 2019). In hippocampal neurons, PKA-dependent 

phosphorylation of S552 by itself can produce Kv4.2 internalization (Hammond et al., 2008); 

and preventing K579 SUMOylation should enhance Kv4.2 internalization. These data suggest 
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that the S552 phosphorylation state may regulate the K579 SUMOylation state, and thereby, 

ternary complex surface expression.  

The surface expression of several membrane proteins is regulated by their SUMOylation 

state. SUMOylation of HCN2 (Parker et al., 2017), NaV1.7 (Dustrude et al., 2016), mGluR7 

(Choi et al., 2016), the dopamine transporter (Cartier et al., 2019), and smoothened (Ma et al., 

2016) increased their surface expression, whereas GluR6 SUMOylation decreased its surface 

expression (Martin, Nishimune, Mellor, & Henley, 2007). In the 3 cases where the mechanism 

was examined, post-translational SUMOylation increased surface expression by reducing 

ubiquitination of the membrane protein (Cartier et al., 2019; Dustrude et al., 2016; Ma et al., 

2016), either by enhancing the membrane protein’s interaction with a de-ubiquitinase (Ma et al., 

2016) or by diminishing its interaction with a ubiquitin ligase (Dustrude et al., 2016).  

Ubiquitin serves as a trafficking signal recognized by many components of the endocytic 

and lysosome-targeting machinery (Ferron, Koshti, & Zamponi, 2021; Mettlen et al., 2018). In 

some cases, multiple ubiquitins on a membrane protein may serve as an endocytic signal, and 

several endocytic adaptors possess ubiquitin binding domains and recruit ubiquitinated cargo 

into clathrin-coated pits (Piper, Dikic, & Lukacs, 2014). Thus, decreasing the ubiquitination of a 

membrane protein can lead to a decrease in its endocytosis. A ubiquitin signal is also used to 

regulate membrane protein recycling. After endocytosis and vesicle fusion with the early 

endosome, a membrane protein can either be recycled back to the plasma membrane or it can be 

recognized by the endosomal ESCRT protein complex and incorporated into vacuoles that 

remain in the organelle as it matures into the lysosome (Foot, Henshall, & Kumar, 2017; Mettlen 

et al., 2018). Proteins in the ESCRT system have ubiquitin binding domains that recognize 

ubiquitin-tagged cargo. Thus, decreasing a membrane protein’s ubiquitination can also lead to an 
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increase in its recycling. To summarize, membrane protein de-ubiquitination generally inhibits 

internalization by reducing endocytosis and/or increasing recycling. 

This study indicated that decorating K579 with SUMO reduced Kv4.2 internalization. 

The BDM-PUB online prediction tool indicates that Kv4.2 K579 is not a potential site for 

ubiquitination; and therefore, it is unlikely that K579 is ubiquitinated to produce an 

endocytic/lysosome sorting signal that may be blocked by competitive SUMOylation (Flotho & 

Melchior, 2013). However, when exogenously expressed in HEK cells, Kv4.2 interacts with 

several endogenous de-ubiquitinases (USP9X, USP7, USP24, USP48, USP10, USP10, USP5, 

USP15), as well as ubiquitin ligases (ITCH, CAND1, UBE3C, UB20, UBE4B, UBE2M) (J. H. 

Hu et al., 2020). Thus, SUMOylation at K579 could reduce Kv4.2 ubiquitination by enhancing 

an interaction between Kv4.2 and a de-ubiquitinase and/or by blocking an interaction with a 

ubiquitin ligase. 

Kv4.2 most likely does not require ubiquitination in order to undergo endocytosis. Kv4.2 

appears to directly associate with AP2 through conserved motifs. The interface between the 𝛼𝛼/𝜎𝜎 

subunits binds cargos with the [D/E](XXX)3-5L[LI] consensus motif (Azarnia Tehran, Lopez-

Hernandez, & Maritzen, 2019; Beacham, Partlow, & Hollopeter, 2019), and this motif is present 

in the C-terminus of Kv4.2 channels (amino acids 475-482). The di-leucine residues in this motif 

are necessary for Kv4.2 dendritic localization and for activity dependent Kv4.2 internalization 

(Hammond et al., 2008; Rivera et al., 2003). Kv4.2 also possesses the YXX𝜙𝜙 motif (x is any 

amino acid and 𝜙𝜙 is an amino acid with a bulky hydrophobic side chain) that directly binds the 𝜇𝜇 

subunit of the AP2 complex (Mettlen et al., 2018). In addition, our data showed that 

SUMOylation did not change the amount of binding between Kv4.2 and AP2; therefore, the 

effect of SUMOylation on internalization must be downstream of cargo recruitment into the 
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vesicle. K579 SUMOylation could potentially reduce Kv4.2g endocytosis by inhibiting vesicle 

maturation and/or membrane fission, but this seems unlikely. It is more probable that K579 

SUMOylation reduces internalization by promoting Kv4.2g recycling, perhaps by reducing 

Kv4.2g ubiquitination.  

3.5.2 The effect of SUMOylation is context-dependent  

Given that the role of SUMO is to regulate protein-protein interactions, it is no surprise 

that the effect of Kv4.2 SUMOylation varied depending upon whether or not it was co-expressed 

with KChIP2a and DPP10. Kv4.2 surface expression is regulated by SUMOylation of either 

K579 or K437, depending upon whether Kv4.2 is or is not co-expressed with KChIP2a + DPP10, 

respectively. When Kv4.2 is expressed alone, SUMOylation of K579 regulates channel gating by 

blocking an unknown interaction to reduce IA Gmax (Welch et al., 2019). It is possible that 

SUMOylation of K579 blocks a different protein-protein interaction to increase surface 

expression when Kv4.2 is in the ternary complex, such as an interaction between Kv4.2 and a 

ubiquitin ligase.  

Other types of post-translational modifications of Kv4.2 also appear to be context-

dependent. For example, phosphorylation of Kv4.2 S552 only has an effect when Kv4.2 is co-

expressed with KChIP in oocytes (L.A. Schrader, A.E. Anderson, A. Mayne, P.J. Pfaffinger, & 

J.D. Sweatt, 2002). This may be because S552 phosphorylation regulates K579 SUMOylation, 

whose effect is context-dependent. Context-dependence may be physiologically relevant as 

recent work suggests that distinct subpopulations of Kv4 channels may exist, wherein Kv4.2 may 

be dissociated from other components of the ternary complex (J. H. Hu et al., 2020).  
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3.5.3 Summary  

In sum, the effect of Kv4.2 SUMOylation varies depending on the available interactome. 

When expressed with ternary complex components in HEK cells, Kv4.2g SUMOylation at K579 

reduces channel internalization and increases Kv4.2g surface expression and IA Gmax. Future 

experiments will examine whether SUMOylation increases Kv4.2g recycling by regulating its 

ubiquitination status by either blocking the channel’s association with a ubiquitin ligase and/or 

facilitating an interaction with a de-ubiquitinase. 
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Figure 3.1 Enhanced SUMOylation increases IA Gmax mediated by the ternary complex 
(TC). 

Whole cell-patch clamping was performed on HEK cells transiently transfected with 
Kv4.2g + KChIP2a + DPP10 in order to measure the current mediated by the TC. SUMOylation 
was (+) or was not (-) enhanced by co-expressing SUMO + Ubc9. (A) Representative current 
traces for each treatment group. (B) Plots of mean+SEM IA Gmax. Each dot represents one cell 
from ≥3 transfections. Asterisks indicate significant differences. TC: control, 87.4nS ±5.7 vs 
SUMO+Ubc9, 118.7nS ±7.9, t-test p=0.003. (C) Activation (circle) and steady-state inactivation 
(square) curves. The points on the curve represent the mean±SEM for the cells shown in panel 
(B). Plots of the mean±SEM fast (D) and slow (E) time constants of inactivation. 
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Figure 3.2 SUMOylation of Kv4.2g at K579 increases IA Gmax mediated by the TC. 
Kv4.2g SUMOylation sites at K437 and K579 were disrupted using site directed 

mutagenesis. Mutant plasmids were co-expressed with wild type KChIP2a and DPP10 in HEK 
cells to generate mutant TCs. (A-C) Representative current traces for mutant TCs when 
SUMOylation was or was not increased by co-transfecting SUMO+Ubc9. (D) Bar graph 
showing the mean±SEM IA Gmax for each treatment group. Each dot represents one cell 
collected from ≥3 transfections. Asterisk, significant differences. TC K437R+K579R: control, 
91.23nS±8.832 vs SUMO+Ubc9, 92.0nS±8.509, t-test p=0.95; TC K437R: control, 
75.48nS±7.816 vs SUMO+Ubc9, 131.9nS±15.03, t-test p=0.005; TC K579R: control, 
92.55nS±8.015 vs SUMO+Ubc9, 92.78nS±7.794, t-test p=0.98. 
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Figure 3.3 Kv4.2g steady-state levels are not altered by enhancing ternary complex 
SUMOylation.  

 Kv4.2g IPs were performed on lysates from HEK cells co-expressing Kv4.2g + KChIP2a 
+ DPP10 with (+) or without (-) SUMO+Ubc9. Lysates and IP products were used in western 
blot experiments. Total protein in lysate lanes was visualized with SYPRO Ruby blot stain. 
Kv4.2g in IP lanes was visualized with anti-GFP. Kv4.2g protein expression was quantified by 
dividing the OD for the Kv4.2g signal by the OD for the lysate total protein signal. (A) 
Representative western blots showing Kv4.2g IP products. (B) Representative SYPRO Ruby 
total protein staining. (C) Bar graph showing mean ±SEM Kv4.2g protein expression. Each data 
point represents one independent experiment. TC: control, 4.212 X10-5±0.432 X10-5 vs. 
SUMO+Ubc9, 4.249 X10-5±0.348 X10-5; t-test p=0.948.  
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Figure 3.4 SUMOylation of Kv4.2g at K579 increases TC surface expression. 
SUMOylation was (+) or was not (-) increased in HEK cells expressing wild-type TC, TC 

K437R, or TC K579R. Surface proteins were biotinylated, cells were lysed, and extracellular 
fractions (E) were isolated using NeutrAvidin resin. Proteins that did not bind to the NeutrAvidin 
resin were considered to be the intracellular fraction (I). (A, C, and E) Western blots containing 
E and I from one representative experiment for each treatment group. The upper portion of the 
blot (above 50kD) was used to visualize Kv4.2g with anti-GFP; it was then stripped and re-
probed with anti-Na+/K+-ATPase. The lower portion of the blot (below 50kD) was probed for 
actin. (B, D, and F) Bar graphs showing the mean±SEM Kv4.2g surface expression 
[extracellular Kv4.2g OD/extracellular Na+/K+-ATPase OD]. Each dot is one independent 
experiment. Asterisk, significantly different. TC: control, 1.002±0.06 vs SUMO+Ubc9, 
1.28±0.11, t-test p=0.046; TC K437R: control, 0.94±0.10 vs SUMO+Ubc9, 1.43±0.16, t-test 
p=0.037; TC K579R: control, 1.021±0.09 vs SUMO+Ubc9, 0.938±0.08, t-test p=0.528. 
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Figure 3.5 SUMOylation of the Kv4.2g ternary complex increases IA Gmax by preventing 
internalization of the TC. 

HEK cells were transiently transfected with plasmids encoding the three TC components. 
Whole cell patch clamp recordings were performed on transfected cells with and without 
SUMO(2 or 3) peptides in the patch pipette and Pitstop2, a cell permeable endocytic inhibitor, in 
the superfusate. (A) Plot showing the mean+SEM IA Gmax for each treatment group. Asterisks 
indicate significance. One-Way ANOVA with Tukey’s post hoc, F(3,38)=7.681, p=0.0004; TC: 
87.44nS±5.67, TC+SUMO: 136.3nS±12.20, TC+Pitstop2: 137.5nS ± 9.78, 
TC+Pitstop2+SUMO: 151.0nS±19.64. (B) Activation (circle) and steady-state inactivation 
(square) curves for each treatment group. Each data point represents the mean±SEM for all data 
points analyzed. 
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Figure 3.6 Ternary complex SUMOylation of Kv4.2g at K579 reduces channel 
internalization. 

HEK cells were co-transfected with plasmids encoding the three TC or TC K579R 
components. SUMOylation was (+) or was not (-) enhanced by co-expressing SUMO and Ubc9. 
Assays to measure internalization in the two treatment groups were performed as detailed in the 
text. (A and C) Western blots containing the unbiotinylated and biotinylated fractions from the 
internalized, total, and strip plate lysates for a representative experiment in each treatment group 
for wild-type and mutant TCs. Blots were probed with anti-GFP to visualize Kv4.2g 𝛼𝛼-subunits. 
(B and D) Bar graph representing the mean±SEM percent internalization: (OD internalized, 
biotinylated fraction ÷ OD total, biotinylated fraction) x 100. The data for an experiment were 
only included if the stripping efficiency was >90%: [1-(OD strip, biotinylated fraction ÷ OD 
total, biotinylated fraction)] x100. Each data point represents one independent experiment. 
Asterisk, significantly different. TC: control, 33.28%±1.608 vs. SUMO+Ubc9, 11.95%±0.716, t-
test p=<0.0001; TC K579R: control, 26.38%±1.954 vs. SUMO+Ubc9, 21.08%±3.99, t-test 
p=0.337. 



Kv4 SUMOylation regulates IA                                                                                                   94 
 

 

 

Figure 3.7 Enhancing SUMOylation of the TC does not change the fraction of Kv4.2g 
associated with adaptin 𝛼𝛼. 

HEK cells were co-transfected with the TC components, and SUMOylation was (+) or 
was not (-) increased by co-expressing SUMO and Ubc9. Kv4.2g IP was obtained from cell 
lysates using an anti-GFP antibody, and IP products were resolved with PAGE. Western blots 
were probed for adaptin 𝛼𝛼 and then stripped and re-probed for Kv4.2g. (A) Representative 
western blots for adaptin 𝛼𝛼 and Kv4.2g for control and enhanced SUMOylation treatment 
groups. (B) Bar graphs plotting the mean±SEM of adaptin 𝛼𝛼 that co-immunoprecipitates with 
Kv4.2g for each treatment group [OD adaptin 𝛼𝛼 ÷ OD Kv4.2g]. Each data point is one 
independent experiment. TC: control, 0.0206±0.0035 vs. SUMO+Ubc9, 0.0227±0.0033; t-test 
p=0.657.  
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Figure 3.8 SUMOylation produces distinct effects on IA and surface expression when 
expressed alone or as a member of the ternary complex. 

Bar graphs show normalized IA Gmax (A) or normalized surface expression (B) in HEK 
cells expressing only Kv4.2g or all 3 components of the wild-type TC when SUMOylation was 
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(+) or was not (-) increased by co-expressing SUMO+Ubc9. Bar graphs show normalized IA 
Gmax (C and E) or normalized surface expression (D and F) in HEK cells expressing the 
indicated Kv4.2g mutant or Kv4.2g mutant ternary complex with (+) and without (-) co-
expression of SUMO+Ubc9. Asterisk, significantly different. Data for Kv4.2g lacking KChIP2a 
and DPP10 were adapted from (Welch et al., 2019). 
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Table 3.1 Primary antibodies 

Antigen Immunogen Host 
species Verified by 

Manufacturer, 
catalog 
number 

Concentration 

GFP 

Recombinant 
full-length 

protein 
corresponding 

to GFP 

Rabbit, 
polyclonal 

Specificity verified by 
company. On WB, the 
antibody recognizes 

recombinant GFP from HEK 
lysates. 

abcam, ab290 

IP- 1uL 
antibody per 
0.5mg protein 
WB- 1: 20,000 

Na+/K+- 
ATPase 

Full length 
Rabbit alpha 1 

Sodium 
Potassium 
ATPase 

Mouse, 
monoclonal 

Specificity verified by 
company. Positive signal on 
WB using HEK cell lysate 

abcam, ab7671 WB- 1:3000 

Actin 

Peptide 
mapped to C-
terminus of 
human actin 

Rabbit, 
polyclonal 

Specificity verified by 
company. Positive signal on 

WB using C32 cell lysate 

Santa Cruz 
Biotechnology, 

sc-1616-R 
WB- 1:2000 

BSA Bovine serum 
albumin 

Rabbit, 
polyclonal 

Specificity verified by 
company. On WB, the 

antibody recognizes BSA 
protein. 

ThermoFisher, 
A11133 WB- 1:20,000 

Adaptin-
α 

Mouse adaptin 
α, amino acids 

38-215 

Mouse, 
monoclonal 

Specificity verified by 
company. WB shows positive 

signal using rat cerebellum 
lysate 

BD 
Biosciences, 

610502 
WB- 1:2000 
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Table 3.2 Whole-cell patch clamp data when clathrin-mediated endocytosis was blocked 
using Pitstop2  

 TC TC+ Pitstop2 TC+ SUMO TC+ Pitstop2+ 
SUMO 

 
Gmax (nS) 

 
87.44±5.7 137.5±9.8 T 136.3±12.2 T 151.0±19.6 T 

 
V50 act (mV) 

 
-11.05±1.5 -11.53±2.4 -9.945±2.6 -6.067±4.1 

 
Slope act 

 
22.33±0.74 19.57±1.4 22.58±1.5 18.84±1.5 

 
V50 inact (mV) 

 
-60.75±1.4 -60.23±1.8 -54.03±2.0 -56.74±2.5 

 
Slope inact 

 
-6.984±0.33 -7.078±0.26 -7.839±0.73 -6.507±0.33 

 
𝛕𝛕 fast (ms) 

 
22.72±2.1 19.66±2.2 23.13±3.4 20.32±2.4 

 
𝛕𝛕 slow (ms) 

 
76.89±4.6 92.10±18.9 94.94±15.6 79.70±4.3 

TC is the ternary complex and includes Kv4.2g, KChIP2a, and DPP10 
T Significantly different from Kv4.2g+KChIP2a+DPP10. One-way ANOVA with Tukey’s multiple 

comparisons test, F (3,38)= 7.681, p=0.0004 
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4 DISCUSSION 

In this dissertation work, we have shown Kv4.2 channels are decorated by SUMO-2/3 in 

rat brain membrane preparations and have characterized the effect of SUMO on a Kv4.2-GFP 

(Kv4.2g) fusion protein heterologously expressed in human embryonic kidney (HEK) cells. Co-

transfecting plasmids containing SUMO-2/3 and Ubc9 in HEK cells expressing Kv4.2g alone 

produced a significant 60% increase in Kv4.2g SUMOylation that was accompanied by a 22-

50% decrease in IA maximal conductance (Gmax) and a significant 70-95% increase in channel 

surface expression. Using prediction software, we identified two evolutionary conserved 

SUMOylation sites on Kv4.2g, K437 and K579. Using site-directed mutagenesis, we 

characterized the effect of SUMOylation at both of these sites. SUMOylation at K437 had no 

effect on IA Gmax but mediated the insertion of electrically silent channels into the plasma 

membrane. SUMOylation at K579 had no effect on Kv4.2g surface expression but was 

responsible for the significant decrease in IA Gmax. Mutating K579 to R mimicked and 

occluded the effect of SUMOylation, suggesting that SUMOylation at K579 blocks an 

inter/intramolecular interaction. Next, we determined effect of ternary complex SUMOylation by 

co-expressing Kv4.2g with potassium channel interacting protein (KChIP2a) and dipeptidyl 

peptidase-like protein (DPP10). Surprisingly, increasing SUMOylation in HEK cells expressing 

the ternary complex produced a significant 30-70% increase in IA Gmax and 30-50% increase in 

Kv4.2g surface expression that was accompanied by a 65% reduction in internalization, and 

SUMOylation of Kv4.2g K579 was responsible for these effects. Blocking clathrin-mediated 

endocytosis mimicked and occluded the effect of SUMO on IA Gmax, however the amount of 

adaptor protein 2 (AP2) associated with Kv4.2g was not affected by SUMO, suggesting that the 

effect of Kv4.2 internalization is downstream of cargo recruitment and vesicle formation. Our 
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findings raise two important questions. First, why is the effect of Kv4.2g SUMOylation different 

in the presence of auxiliary subunits? Second, how does SUMOylation control ternary complex 

internalization?  

4.1 The effect of Kv4.2g SUMOylation is context dependent  

The effect of Kv4.2g K437 SUMOylation is context dependent. When the α-subunit is 

expressed alone, SUMOylation of Kv4.2g K437 produces a 70-95% increase in channel surface 

expression and has no effect on IA Gmax. We did not specifically address the mechanism, 

however as discussed in Chapter 2, it is likely the case that Kv4.2g SUMOylation at K437 

promotes a protein-protein interaction. Alternatively, SUMO at K437 could compete with 

another post-translational modification, such as ubiquitination, acetylation and methylation, for 

addition to that same K residue (D. D. Anderson et al., 2012; W. Wang et al., 2014). K437 is not 

predicted to be acetylated or methylated, but is a predicted ubiquitination site. As discussed in 

Chapter 3, ubiquitin plays an important role in regulating internalization. Additionally, misfolded 

proteins in the ER can be targeted for degradation in a process known as endoplasmic reticulum-

associated degradation (ERAD), whereby the misfolded protein is recognized, ubiquitinated, 

translocated from ER, and degraded by the proteasome (Preston & Brodsky, 2017; X. Wu & 

Rapoport, 2018). In both of these cases, if K437 SUMOylation were competing with 

ubiquitination for that residue, we would expect Kv4.2g surface expression to be increased in 

HEK cells expressing Kv4.2g K437R comparted to wild-type Kv4.2 (e.g. less Kv4.2g would be 

endocytosed and/or more Kv4.2 would be recycled); however as shown in Chapter 2, there was 

no difference in Kv4.2g surface expression between the two groups.  

It is not clear if Kv4.2g can be SUMOylated at K437 when expressed with KChIP2a and 

DPP10 because mutating that site has no effect on IA Gmax or channel surface expression. 
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While a weak argument, KChIP2a binding to the Kv4.2g C-terminus could mask K437 and block 

its ability to be SUMOylated. High resolution structural data on the KChIP-Kv4 C-terminus 

interface are lacking, but Kv4.2 C-terminal deletions studies do show that residues proximal to 

amino acid 580 are important for this interaction and for KChIP modulation of IA (Callsen et al., 

2005; W. Han et al., 2006). Additionally, it is also unlikely that DPP10s association with Kv4.2g 

prevents SUMOylation at K437, as the interaction does not involve the C-terminus of the α-

subunit (Cotella et al., 2012; Lin et al., 2014; Ren et al., 2005). 

The Kv4.2 SUMOylation pattern could also be different in the two states because the 

Kv4.2 phosphorylation pattern can vary depending upon whether Kv4.2 is expressed alone or 

with KChIP and DPLP. Phosphorylation controls the ability of a lysine residue to be 

SUMOylated (Dustrude et al., 2016; Flotho & Melchior, 2013; Konopacki et al., 2011). 

Phosphorylation can permit or prevent SUMOylation. For example, collapsin response mediator 

protein 2 (CRMP2) SUMOylation at K374 is facilitated by cyclin-dependent kinase (Cdk5) 

phosphorylation at S552 and blocked by Src-family kinase Fyn phosphorylation at Y32 

(Dustrude et al., 2016). There are multiple phosphorylation sites on the Kv4.2 C-terminus (S438, 

S548, S459, S552, S572, S575, T602, T607, T616), and in some cases the ability of 

heterologously expressed Kv4.2 channels to be phosphorylated depends on the presence of 

auxiliary subunits. Tandem mass spectrometry reveals phosphorylated S548, S572, and S575 are 

only detected in COS-1 cells co-expressing Kv4.2+DPP6 or Kv4.2+KChIP2, but not in COS-1 

cells only expressing Kv4.2 (Seikel & Trimmer, 2009). It could be the case that phosphorylation 

at one or multiple site(s) on the Kv4.2g C-terminus antagonizes K437 SUMOylation when the 

channel is expressed as a ternary complex. Additionally, K437 is located within a Calcium 
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Calmodulin kinase II (CaMKII) consensus motif (RXXS/T), and CAMKII phosphorylation at 

S438 or S459 could block ternary complex SUMOylation of Kv4.2g K437 (Varga et al., 2004). 

The effect of Kv4.2g K579 SUMOylation is also context dependent. As previously stated 

in Chapter 3, it seems unlikely that SUMO is competing with another post-translational 

modification for K579, as this site does not fall within a ubiquitination, methylation, or 

acetylation consensus motif. While a weak argument, K579 falls within the proposed Kv4.2 C-

terminus-KChIP2a binding region (Callsen et al., 2005; W. Han et al., 2006), and it could be the 

case that conformational change in the C-terminus when interacting with KChIP2a permits K579 

SUMOylation to modulate a new interaction. In some cases, the effect of a post-translational 

modification on Kv4 varies in the presence or absence of auxiliary subunits. For example, 

AKAP79/150 is a scaffolding protein that interacts with Kv4.2 and tethers PKA and calcineurin 

for dynamic (de)phosphorylation of the channel. In COS-7 cells, AKAP79/150 co-expressed 

with Kv4.2+KChIP4 results in increased Kv4.2 stability and surface expression (Lin, Sun, 

Wikenheiser, Kung, & Hoffman, 2010). However, in COS-7 cells expressing Kv4.2 alone, 

AKAP79/150 has an inhibitory effect, reducing Kv4.2 surface expression and reducing IA (Lin 

et al., 2011). In both cases, Kv4.2 phosphorylation at S552 mediated the effect. As described in 

Chapter 3, in Xenopus oocytes, KChIP3 co-expression with the 𝛼𝛼-subunit is needed for PKA 

phosphorylation at S552 to produce a functional effect on IA, which in this cases involves 

decreasing current amplitude by causing a rightward shift in the voltage of half-activation and 

increasing time constant of inactivation (L. A. Schrader, A. E. Anderson, A. Mayne, P. J. 

Pfaffinger, & J. D. Sweatt, 2002). 
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4.2 SUMOylation modulates ternary complex interactions  

As previously discussed in Chapter 3, SUMOylation can increase an ion channel’s 

surface expression by reducing its ubiquitination (Cartier et al., 2019; Dustrude et al., 2016; Ma 

et al., 2016), either by blocking an interaction with a ubiquitin ligase or facilitating an interaction 

with a de-ubiquitinase. For example, loss of CRMP2 SUMOylation triggers Nav1.7 clathrin-

mediated endocytosis by recruiting E3 ubiquitin ligase Nedd4-2 and endocytic proteins Numb 

and Esp15 (Dustrude et al., 2016). Activation of the smoothened (smo) receptor disrupts its 

interaction with Ulp1, a de-SUMOylation enzyme, resulting in SUMOylation of the smo 

receptor. Smo receptor SUMOylation recruits de-ubiquitinase UBPY, which antagonizes smo 

ubiquitination, thus stabilizing smo surface expression and preventing its internalization and 

degradation (Ma et al., 2016). As proposed in Chapter 3, SUMOylation could be blocking an 

interaction with a ubiquitin ligase and/or facilitating an interaction with a de-ubiquitinase to 

control ternary complex internalization.  

This leads to the question, which ubiquitin ligases and/or de-ubiquitinases could be 

controlling ternary complex internalization? As previously stated in Chapter 3, Multiple 

ubiquitin ligases (ITCH, CAND1, UBE3C, UB20, UBE4B, UBE2M) and de-ubiquitinases 

(USP9X, USP7, USP24, USP48, USP10, USP5, USP15) interact with the 𝛼𝛼-subunit (J. H. Hu et 

al., 2020). This section will focus on how these ubiquitin ligases and de-ubiquitinases are 

involved in internalization. E3 ubiquitin ligase ITCH is expressed in multiple cellular 

compartments including the endosomes, and ITCHs association with a cargo protein peaks after 

the cargo is endocytosed (Angers, Ramjaun, & McPherson, 2004; Tong, Taylor, & Moran, 

2014). ITCH recognizes proline rich consensus sequences, PPXY(PY), and also interacts with 

phosphorylated serine or threonine followed by proline motifs (phospho-S/T P) (Melino et al., 
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2008). Several of the latter motifs are present on the Kv4.2g C-terminus near K579 (phosho-

Thr602/proline-603; phosho-Thr607/proline-608; and phosphor-Ser616/proline 617), and it 

could be the case K579 SUMOylation blocks ITCH from interacting with and ubiquitinating the 

α-subunit. UBE4B is an endosome-associated ubiquitin ligase that interacts with both the 

ESCRT complex and the internalized proteins to regulates endosomal trafficking (Gireud-Goss 

et al., 2020), and SUMO could be acting to block an interaction with this protein. It is unclear if 

ubiquitin ligases CAND1, UBE3C, UB20 regulate internalization.  

There are multiple predicted ubiquitination sites on the Kv4.2 C-terminus (K421, K426, 

K427, K437, K448, K535, K536). Ubiquitination at one or more than one of these residues could 

be important for internalization, and it could be the case that K579 SUMOylation facilitates an 

interaction with a de-ubiquitinase to reduce Kv4.2 internalization. For example, USP9X 

(Kharitidi et al., 2015), USP7 (Y. Han & Yun, 2020), and USP10 (Bomberger, Barnaby, & 

Stanton, 2009, 2010) can remove ubiquitin from internalized cargo and this could be occurring at 

the plasma membrane, during vesicle transport or at the early endosome. USP48 can prevent 

endocytosis by removing ubiquitin on proteins expressed at the plasma membrane (Armando et 

al., 2014). USP5 is upregulated and its association with Cav3.2 is enhanced in chronic pain 

models. The increased interaction between Cav3.2 and USP5 reduces channel ubiquitination and 

leads to an upregulation of the T-type Ca2+ current (Garcia-Caballero et al., 2014). Interestingly, 

it was recently shown that SUMO modulates the Cav3.2-USP5 interaction. USP5 SUMOylation 

is reduced in dorsal root ganglia (DRG) neurons following peripheral nerve injury, and there is a 

stronger interaction between Cav3.2 and SUMO-deficient USP5 compared to Cav3.2 and wild-

type USP5 (Garcia-Caballero et al., 2019). Little is known about the role of de-ubiquitinases 

USP15 and USP24 in internalization. 
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It could also be the case the aforementioned ubiquitin ligases and/or de-ubiquitinases are 

not involved in reducing Kv4.2g internalization. In this case, stable isotope labeling of amino 

acids in cell culture (SILAC) and mass spectrometry would be useful in order to quantify 

changes in the Kv4.2g interactome when the ternary complex is expressed without vs. with 

SUMO and Ubc9. This type of experiment would provide greater insight into which interactions 

within the Kv4.2 macromolecular complex were changing and would allow for a more targeted 

approach when designing experiments to elucidate the role of ternary complex internalization.  

Additionally, SUMOylation not only modulates internalization but is involved at multiple 

trafficking stages, and SUMO could be acting at these steps to enhance channel trafficking to the 

plasma membrane.  SUMO protease SENP2 associates with the ER and Golgi membranes (Odeh 

et al., 2018). SUMO modulates trafficking from the Golgi to the plasma membrane (Zhou et al., 

2018). SUMO can act as a sorting motif for incorporation into transport vesicles (Kunadt et al., 

2015). SUMO can interact with phospholipids at the plasma membrane to stabilize a proteins 

surface expression (i.e. a positively charged interface on SUMO can interact with the negatively 

charged phospholipid bilayer) (Huang et al., 2012). It could be the case that SUMOylation 

dynamically organizes interactions with and within the Kv4 macromolecular complex at multiple 

stages throughout the channel’s lifetime. For example, Kv4.2 might be de-SUMOylated by a 

SENP located in the ER to permit an interaction with a vesicle transport protein, such as a 

SNARE, to facilitate forward trafficking. It might also be the case that once at the plasma 

membrane SUMO stabilizes Kv4.2 surface expression by interacting with PI(3,4,5)P3. 

4.3 The benefits and limitations of using a heterologous expression system  

Much of this dissertation work was performed in HEK cells. HEK cells are widely used 

by researchers because they provide high reproducibility of results, they are inexpensive and 
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easy to grow and maintain, and they are easy to transfect and produce high amounts of protein.  

My work used HEK cells to examine the effects of SUMO on Kv4.2 channels. HEK cells do not 

endogenously express Kv4.2 channels. This makes it possible to directly test the effects that 

specific mutations have on Kv4.2, without the interference of endogenous wild-type Kv4.2. 

Despite these benefits, there are several limitations with using HEK cells, and understanding 

these limitations is important when interpreting our results. In some cases, we stably expressed 

Kv4.2g or SUMO deficient Kv4.2g channels in HEK cells. With our stable lines, we were unable 

to control the number of copies of the Kv4.2 gene integrated into the HEK cell genome, making 

it impossible to compare across lines. Most of our experiments involve overexpressing SUMO 

and Ubc9 to examine the effects of SUMOylation on Kv4.2 channels. In this case, it’s important 

to consider the biological context. By increasing the levels of SUMO and Ubc9 in HEK cells, we 

maximize Kv4.2 SUMOylation, but are we producing an effect that would not normally be 

observed under physiological conditions? As previously discussed, SUMO is dynamic, and a 

target proteins SUMOylation status can be regulated by activity and can be altered in disease 

states. In future studies, it will be interesting to examine SUMO’s effect on Kv4.2 and IA when 

SUMOylation is manipulated in these physiological contexts.  

4.4 Conclusion  

In summary, this dissertation work presents the novel finding Kv4.2 channels are post-

translationally SUMOylated. This work determines the effect of SUMOylation at two C-terminal 

K residues on Kv4.2, K437 and K579, and shows effect of SUMOylation at both of these 

residues depends on the available interactome. This work suggests SUMOylation regulates the 

Kv4.2 macromolecular complex. This is an important finding because very little is known about 

mechanisms that organize interactions with and within the Kv4.2 macromolecular complex, and 
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mechanisms targeting these interactions could be important for tuning Kv4.2 expression and 

gating, which in turn could modulate cellular excitability.  
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