
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Chemistry Dissertations Department of Chemistry 

8-10-2021 

Chemistry of a Dehydrogenase and Di-heme Enzyme Related to Chemistry of a Dehydrogenase and Di-heme Enzyme Related to 

Tryptophan Oxidation Tryptophan Oxidation 

Christopher Ian Davis 
Georgia State University 

Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_diss 

Recommended Citation Recommended Citation 
Davis, Christopher Ian, "Chemistry of a Dehydrogenase and Di-heme Enzyme Related to Tryptophan 
Oxidation." Dissertation, Georgia State University, 2021. 
https://scholarworks.gsu.edu/chemistry_diss/201 

This Dissertation is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ 
Georgia State University. It has been accepted for inclusion in Chemistry Dissertations by an authorized 
administrator of ScholarWorks @ Georgia State University. For more information, please contact 
scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/chemistry_diss
https://scholarworks.gsu.edu/chemistry
https://scholarworks.gsu.edu/chemistry_diss?utm_source=scholarworks.gsu.edu%2Fchemistry_diss%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


CHEMISTRY OF A DEHYDROGENASE AND DI-HEME ENZYME RELATED TO 

TRYPTOPHAN OXIDATION 

 

 

by 

 

 

CHRISTOPHER IAN DAVIS 

 

 

Under the Direction of Aimin Liu PhD 

 

 

ABSTRACT 

Tryptophan is an essential amino acid that is used as a building block to construct 

proteins, the biosynthetic precursor for several essential molecules, and is modified to serve as a 

cofactor in some enzymes. This dissertation focuses on two enzymes involved in tryptophan 

oxidation, AMSDH and MauG.  

AMSDH is a dehydrogenase in the kynurenine pathway, which is the main metabolic 

route for tryptophan catabolism. In addition to breaking down tryptophan, the kynurenine 

pathway is also involved in regulating the innate immune response, NAD biosynthesis, and some 

neurodegenerative. As such, enzymes of the kynurenine pathway are of fundamental interest for 

study. This work leveraged a bacterial homologue of human AMSDH to solve its crystal 



structure in various forms, including several catalytic intermediates. The knowledge gained from 

the bacterial enzyme was then used to identify and verify human ALDH8A1 as the human 

AMSDH.  

MauG is the enzyme responsible for catalyzing the formation of the tryptophan-derived 

cofactor of methylamine dehydrogenase. It is a diheme enzyme that utilizes hydrogen peroxide 

perform long-range oxidations on its protein substrate. MauG possesses the remarkable ability to 

store two oxidizing equivalents as a bis-Fe(IV) species that is stabilized through a type III charge 

resonance phenomenon. The nature of the charge resonance phenomenon was investigated with 

exogenous small molecules, radical traps, and temperature dependent studies. Finally, a 

cryogenic method for generating radicals was developed to study the electronic structure of 

model compounds similar to the substrate of MauG. 
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1 

1 THE KYNURENINE PATHWAY OF TRYPTOPHAN CATABOLISM  

This chapter is adapted from the published work authored by ID: Davis I and Liu A (2015) What 

is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert 

Review in Neurotherapeutics, 15(7), 719-721. DOI: 10.1586/14737175.2015.1049999 

1.1 Abstract  

The kynurenine pathway has received increasing attention as its connection to 

inflammation, the immune system and neurological conditions has become more apparent. It is 

the primary route for tryptophan catabolism in the liver and the starting point for the synthesis of 

nicotinamide adenine dinucleotide in mammals. Dysregulation or overactivation of this pathway 

can lead to immune system activation and accumulation of potentially neurotoxic compounds. 

These aspects make the kynurenine pathway a promising target for therapeutic development to 

treat inflammation and disease with neurological aspects, especially in cancer patients 

undergoing chemotherapy. 

1.2 The kynurenine pathway  

Tryptophan is an essential amino acid that is used to build protein and is a biosynthetic 

precursor to numerous neurologically active compounds. It is probably most well known as the 

starting point for the biosynthesis of serotonin and melatonin. While the generation of these two 

compounds may have garnered the most attention in the past, a less well-known pathway for 

tryptophan metabolism, the kynurenine pathway, has recently seen steadily increasing research 

activity. The importance of the kynurenine pathway, which accounts for the catabolism of 

approximately 99% of ingested tryptophan not used for protein synthesis [1], was originally 

ascribed to its role in the biogenesis of nicotinamide adenine dinucleotide (NAD); however, 
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apparent links with neurodegenerative diseases, tumor proliferation, inflammation and 

depression are currently driving the study of the kynurenine pathway. 

The kynurenine pathway was first discovered in 1853 through the detection of excreted 

products from animals fed tryptophan. In the ensuing century, much work was performed to 

establish the chemical transformations, enzymes involved, and possible disease relations of the 

kynurenine pathway. In the 1960s, the component enzymes of the kynurenine pathway were 

fully elucidated through the laborious work of extracting each component enzyme from 

mammalian tissue and determining their corresponding activities [2]. 

As the link between the kynurenine pathway and major depressive disorder became more 

apparent, the serotonin hypothesis was proposed, stating that upon activation, the kynurenine 

pathway would divert available tryptophan away from serotonin production towards further 

catabolism [3]. Although the correlation between kynurenine pathway activity and inflammation 

has been confirmed in many instances, the serotonin hypothesis has not survived in its original 

form. It was shown that kynurenine pathway activation by IFN-α did not significantly lower the 

tryptophan concentration in cerebrospinal fluid, although it did lead to inflammation by 

increasing the amounts of kynurenine pathway metabolites, namely kynurenine, kynurenic acid 

and quinolinic acid (abbreviated as QA or QUIN), concentrations in cerebrospinal fluid [4]. 

Inflammation caused by kynurenine pathway activation has also been implicated in the treatment 

resistance of some patients suffering from depression as well as with patients undergoing 

chemotherapy [5]. 

Thanks to modern molecular biological methods, as well as the discovery of analogous 

kynurenine pathways in bacterial species [6], it recently became possible to study the individual 

enzymes of the kynurenine pathway at the molecular level. The first and rate-limiting step of the 
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kynurenine pathway is catalyzed by tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-

dioxygenase (IDO). These heme-dependent enzymes insert molecular oxygen across the 2–3 

bond of the indole moiety of tryptophan [7] and were formerly known as tryptophan pyrrolase. 

TDO is a homotetramer with rigid substrate selectivity which is found mostly in hepatic tissue, 

whereas IDO is a monomer with much more relaxed specificity that is found in most tissues. 

Notably, IDO is increasingly recognized as a link between the immune system and the 

kynurenine pathway, as it is activated by cytokines and appears to have some anti-inflammatory 

effects. It is also implicated in the tumor-suppressive abilities of IFN-γ [8]. From a mechanistic 

enzymology viewpoint, these enzymes are unique, as they are the only known dioxygenases that 

employ a heme prosthetic group as a cofactor. Furthermore, IDO is the only enzyme, other than 

superoxide dismutase that can utilize superoxide as a substrate, implicating it in oxidative stress 

response. 

The product of the TDO/IDO-catalyzed reaction, N-formylkynurenine, is then 

hydrolyzed to kynurenine. Depending on the tissue type, kynurenine either continues down its 

pathway toward the tricarboxylic acid cycle or is transformed to kynurenic acid in microglial 

cells or astrocytes, respectively [9]. Kynurenine and its immediate metabolites do not appear to 

have any direct effects on neurons; however, they do possess various pro- and antioxidant 

activities. Alternatively, kynurenic acid competitively antagonizes glutamate receptors and non-

competitively inhibits the α7 nicotinic acetylcholine receptor [9]. 

Further down the kynurenine pathway, a second dioxygenase, 3-hydroxyanthranilic acid 

dioxygenase (HAO), is utilized to open the remaining aromatic ring that once belonged to 

tryptophan. HAO is a type III, non-heme, iron-dependent extradiol dioxygenase [10]. Although 

not as unique as TDO/IDO, HAO still has interesting features. Notably, HAOs from bacterial 
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sources often contain an extra, rubredoxin-like metal binding domain that is not necessary for 

catalysis. This domain is not found in HAOs from animal sources, raising the question as to the 

function and significance of such an extra metal binding domain. HAO cleaves the ring of 3-

hydroxyanthranilic acid, a known free radical generator, to create α-amino-β-carboxymuconate-

ϵ-semialdehyde, a compound that decays non-enzymatically to the NAD precursor, QUIN. The 

renewed interest in the kynurenine pathway is due in large part to the discovery that QUIN can 

selectively activate N-methyl-D-aspartate (NMDA) receptors [11-12]. Although the basal levels 

of QUIN are not such that they can significantly excite NMDA receptors, activation of the 

kynurenine pathway can lead to dangerous QUIN levels, which are associated with numerous 

neurological diseases: Alzheimer’s disease, anxiety, depression, epilepsy, human 

immunodeficiency virus-associated neurocognitive disorders and Huntington’s disease [11, 13-

17]. The generation of QUIN is thought to be the major link between the kynurenine pathway 

and inflammatory response [18]. 

The next enzyme in the kynurenine pathway not only exhibits unique chemistry but is 

also the major branching point between a non-enzymatic formation of the excitotoxic NAD 

precursor, QUIN and further metabolism. This enzyme is α-amino-β-carboxymuconate-ϵ-

semialdehyde decarboxylase (ACMSD), the only known metal-dependent, oxygen-independent 

decarboxylase. The x-ray crystal structure of this enzyme was recently solved, and biochemical 

work has shown a potential mechanism for regulating the activity of this enzyme. It was shown 

that only the homo-dimer form of ACMSD is able to catalyze the decarboxylation of the 

substrate, opening the door to the possibility that modulation of the quaternary structure of 

ACMSD may be the dominant regulatory mechanism for this enzyme [19-20]. Another 

interesting feature of ACMSD is that both its substrate and product are unstable and will undergo 
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electrocyclizations to QUIN and picolinic acid, respectively. Although there are a wealth of 

studies showing the deleterious effects of QUIN, the literature on the effects of picolinic acid is 

sparse, and no consensus has yet been reached as to its physiological roles and effects [21]. It 

seems to represent a metabolic dead-end for the kynurenine pathway, as it is excreted. 

At least in the in vitro studies, the substrate of ACMSD is an order of magnitude more 

stable than its product [22], which brings up the natural question of how the rates of these two 

non-enzymatic decay reactions are controlled in the cell. Answering this question will require 

detailed knowledge of the enzymatic mechanism of HAO, ACMSD, and the next enzyme in the 

pathway, α-aminomuconate-ϵ-semialdehyde dehydrogenase (AMSDH). The structure and 

mechanism of ACMSD are relatively well studied [19-20], and the structure of HAO is defined 

[23]. However, little was known about this third enzyme, which presumably controls the 

partitioning between further metabolism and picolinic acid formation, until very recently, when 

the crystal structure was solved, and catalytic mechanism proposed [22]. α-Aminomuconate-ϵ-

semialdehyde dehydrogenase (AMSDH) is a member of the aldehyde dehydrogenase 

superfamily and the first energy harvesting step of the kynurenine pathway, oxidizing its 

semialdehyde substrate while reducing NAD. 

To summarize, the primary metabolic route for tryptophan catabolism in mammals 

produces neuroactive compounds, one of which, QUIN, is both the biosynthetic precursor to 

NAD production and an agonist of NMDA receptors. Elevation of QUIN concentrations in 

cerebrospinal fluids has been seen in several neurodegenerative diseases, and injection of 

exogenous QUIN can cause neurodegeneration in mice. The kynurenine pathway can be 

stimulated in the brain by treatment with IFN-α. These findings point to the production of QUIN 
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by the kynurenine pathway as a contributing factor to neurodegenerative diseases that are 

associated with inflammation. 

1.3 Conclusion 

The kynurenine pathway is the major route for tryptophan catabolism in mammalian 

cells, and many of the intermediates and products of this pathway are implicated in numerous 

neurological diseases. As such, the kynurenine pathway is a ripe target for drug discovery, 

especially because so little is known regarding its regulation. The kynurenine pathway also has 

some connection to tumor growth and proliferation through one of its initiating enzymes, IDO, 

and there are IDO inhibitors currently in Phase II clinical trials [24]. In recent years, the 

kynurenine pathway has received increased attention from clinicians, biologists, and biochemists 

as its medical relevance became more apparent. Even with the renewed effort, there is still a lack 

of understanding of how the production of arguably the most detrimental metabolite, QUIN, is 

controlled and work must be done to target its production therapeutically. There is a current need 

for investigations into the mechanisms by which the kynurenine pathway is regulated, especially 

the enzymes involved in QUIN formation.  
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2 CRYSTALLOGRAPHIC AND SPECTROSCOPIC SNAPSHOTS REVEAL A 

DEHYDROGENASE IN ACTION 

This chapter is adapted from the published work co-first authored by ID: Huo L, Davis I, Liu F, 

Andi B, Esaki S, Iwaki H, Hasegawa Y, Orville AM, and Liu A (2015) Crystallographic and 

spectroscopic snapshots reveal a dehydrogenase in action. Nature Communications, 6:5935. 

DOI: 10.1038/ncomms6935 

2.1 Abstract 

Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity 

can often make them quite unstable. There are several aldehydic intermediates in the metabolic 

pathway for tryptophan degradation that can decay into neuroactive compounds that have been 

associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-

6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. 

Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant 

forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. 

We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacyl 

intermediate and an NAD+-bound complex from an active site variant. These covalent 

intermediates are characterized by single-crystal and solution-state electronic absorption 

spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at 

the enzyme active site before an sp3-to-sp2 transition during enzyme-mediated oxidation. 

2.2 Introduction 

The dominant route of tryptophan catabolism, the kynurenine pathway, has recently 

garnered increased attention given its apparent association with numerous inflammatory and 

neurological conditions, for example, gastrointestinal disorders, depression, Parkinson’s disease, 
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Alzheimer’s disease, Huntington’s disease and AIDS dementia complex [25-30]. Though the 

precise mechanism by which the kynurenine pathway influences these diseases has not yet been 

fully elucidated, it has been determined that several metabolites of this pathway are neuroactive. 

Notably, the concentration of quinolinic acid, a non-enzymatically derived decay product of an 

intermediate of the kynurenine pathway used for NAD+ biosynthesis, is elevated over 20-fold in 

patients’ cerebrospinal fluid with AIDS dementia complex, aseptic meningitis, opportunistic 

infections or neoplasms [31], and more than 300-fold in the brain of human immunodeficiency 

virus-infected patients [32]. This NAD+ precursor has also been shown to be an agonist of 

NMDA receptors, and an increase of its concentration may lead to over-excitation and death of 

neuronal cells [11, 14]. 

The apparent medical potential of the kynurenine pathway warrants detailed study and 

characterization of its component enzymes and their regulation. One enzyme in particular, 2-

aminomuconate-6-semialdehyde dehydrogenase (AMSDH), is responsible for oxidizing the 

unstable metabolic intermediate 2-aminomuconate-6-semialdehyde (2-AMS) to 2-

aminomuconate (2-AM) (Figure 2.1a). On the basis of sequence alignment, AMSDH is a 

member of the hydroxymuconic-semialdehyde dehydrogenase (HMSDH) family under the 

aldehyde dehydrogenase (ALDH) superfamily [33]. ALDHs are prevalent in both prokaryotic 

and eukaryotic organisms and are responsible for oxidizing aldehydes to their corresponding 

carboxylic acids. They use NAD(P)+ as a hydride acceptor to harvest energy from their primary 

substrate and generate NAD(P)H, which provides the major reducing power to maintain cellular 

redox balance [34-35]. In addition to being commonly occurring metabolic intermediates, 

aldehydes are reactive electrophiles, making many of them toxic. Enzymes of the ALDH 

superfamily are typically promiscuous with regards to their substrates; however, in recent years, 
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this superfamily has had several new members identified with greater substrate fidelity, 

especially when the substrate is identified as a semialdehyde [36]. 

The putative native substrate of AMSDH, 2-AMS, is a proposed metabolic intermediate 

in both the 2-nitrobenzoic acid degradation pathway of Pseudomonas fluorescens KU-7 [37] and 

the kynurenine pathway for L-tryptophan catabolism in mammals [11, 14, 38]. In the presence of 

NAD+ and AMSDH, 2-AMS is oxidized to 2-AM (Figure 2.1a); however, it can also 

spontaneously decay to picolinic acid and water with a half-life of 35 s at neutral pH. [39]. Due 

to its instability, 2-AMS has not yet been isolated, leaving its identity as the substrate of 

AMSDH an inference based on decay products and further metabolic reactions. There are several 

reasons for the poor understanding of this pathway: it is complex with many branches, some of 

the intermediates are unstable and difficult to characterize, and several enzymes of the pathway, 

including AMSDH, are not well understood. Hence, the structure of AMSDH will help to 

address questions such as what contributes to substrate specificity for the semialdehyde 

dehydrogenase and how 2-AMS is bound and activated during catalysis. 

In the present study, we have cloned AMSDH from Pseudomonas fluorescens, generated 

an E. coli overexpression system and purified the target protein for molecular study. We also 

constructed several mutant expression systems to characterize the role of specific active site 

residues. Enzymatic assays were performed for all forms of the enzyme, and crystal structures 

were solved for the wild type and one mutant. We were able to capture several catalytic 

intermediates in crystallo by soaking protein crystals in mother liquor containing either the 

primary organic substrate or a substrate analogue and discovered that in addition to 

dehydrogenation, the substrate undergoes isomerization in the active site. 
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Figure 2.1 Activity of AMSDH.  (a) Reaction scheme showing the enzymatic generation of 2-
AMS, the reaction catalyzed by AMSDH, and the competing non-enzymatic decay of 2-AMS 
to picolinic acid. (b) Representative assay showing the ACMSD (1 µM)-catalyzed conversion 
of ACMS (λmax 360 nm) to 2-AMS (λmax 380 nm), which decays to picolinic acid 
(transparent). (c) Coupled-enzyme assay in which AMSDH (200 nM) oxidizes 2-AMS, 
produced in situ as shown in b in 50 s, to 2-AM (λmax 325 nm). (d) Reaction scheme showing 
2-HMS oxidation by AMSDH. (e) Representative assay showing the activity of AMSDH 
(200 nM) on 2-HMS (λmax 375 nm) in 50 s. The inset is a Michaelis-Menten plot. 
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2.3 Results 

2.3.1 Catalytic activity of wild-type AMSDH 

Due to the unstable nature of its substrate, 2-AMS, the activity of AMSDH was detected 

using a coupled-enzyme assay that employed its upstream partner, α-amino β-carboxymuconate 

ε-semialdehyde decarboxylase (ACMSD), to generate 2-AMS in situ. ACMSD transforms α-

amino β-carboxymuconate ε-semialdehyde (ACMS) (λmax at 360 nm) to 2-AMS (λmax at 380 nm) 

[38-39]. As seen in Figure 2.1b, in an assay that uses only ACMSD, the absorbance peak of its 

substrate, ACMS, red-shifts to 380 nm as 2-AMS is formed. The absorbance at 380 nm then 

quickly decreases as 2-AMS decays to picolinic acid, a compound with no absorbance features 

above 200 nm. In a coupled-enzyme assay, ACMSD, AMSDH and NAD+ are included in the 

reaction system. As shown in Figure 2.1c, ACMS is still consumed; however, there is no red 

shift observed because 2-AMS is enzymatically converted to 2-AM (λmax at 325 nm) rather than 

accumulating and decaying to picolinic acid. The production of 2-AM requires that an equimolar 

amount of NAD+ be reduced to NADH (λmax at 339 nm). A stable alternative substrate, 2-

hydroxymuconate-6-semialdehyde (2-HMS), was used to pursue kinetic parameters (Figure 

2.1d), when using saturating NAD+ concentrations (≥1 mM), the kcat and KM of AMSDH for 2-

HMS were 1.30 ± 0.01 s−1 and 10.4 ± 0.2 μM, respectively (Figure 2.1e). 

2.3.2 Structural snapshots of the dehydrogenase catalytic cycle 

We solved five crystal structures of wild-type AMSDH, including the ligand-free (2.20 Å 

resolution), NAD+-bound binary complex (2.00 Å), ternary complex with NAD+ and substrate 2-

AMS (2.00 Å) or 2-HMS (2.20 Å), and a thioacyl intermediate (1.95 Å). All five structures 

belong to space group P212121. Data collection and refinement statistics are listed in Table 2.1. 

The complete AMSDH model includes four polypeptides per asymmetric unit describing one 
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homotetramer (Figure 2.2). Each monomer of AMSDH contains three domains: a subunit 

interaction domain, a catalytic domain and an NAD+ binding domain (Figure 2.2b). For details of 

the secondary structure, see Supplementary Discussion in 2.4.1. 

  

Table 2.1. X-ray crystallography data collection and refinement statistics. 

 

a Values in parentheses are for the highest resolution shell. 
b Rmerge = Σi |Ihkl,i - ‹Ihkl›|/Σhkl Σi Ihkl,i, where Ihkl,i is the observed intensity and ‹Ihkl› is the 
average intensity of multiple measurements. 
c Rwork = Σ||Fo|-|Fc||/Σ|Fo|, where |Fo| is the observed structure factor amplitude, and |Fc| is 
the calculated structure factor amplitude. 
d Rfree is the R factor based on 5% of the data excluded from refinement. 
e Based on values attained from refinement validation options in COOT 

Data collection 
Apo-

AMSDH 
NAD-

AMSDH 
NAD-2-AMS-

AMSDH 

NAD-2-
HMS-

AMSDH 

Thioacyl 
Intermediate 

E268A-
AMSDH 

E268A- 
Thiohemiacetal 

Intermediate 

E268A-
Thioacyl 

Intermediate 

detector type 
MAR300 

CCD 
MAR225 CCD MAR300 CCD 

MAR300 
CCD 

MAR225 
CCD 

MAR225 
CCD 

MAR225 CCD MAR225 CCD

source 
APS, Sector 

22-ID 
APS, Sector 

22-BM 
APS, Sector 

22-ID 
APS, Sector 

22-ID 
APS, Sector 

22-BM 
APS, Sector 

22-BM 
APS, Sector 22-

BM 
APS, Sector 

22-BM 

space group P222121 P222121 P222121 P222121 P222121 P222121 P222121 P222121 

unit cell lengths (Å) 

 
a=88.27, 

b=141.89, 
c=172.92 

 

 
a=88.58, 

b=142.00, 
c=174.38 

 

a=88.40, 
b=142.12, 
c=174.41 

a=88.57, 
b=142.72, 
c=175.01 

a=88.36, 
b=141.75, 
c=174.37 

a=88.53, 
b=141.98, 
c=173.80 

a=88.57, 
b=141.56, 
c=174.63 

a=88.33, 
b=141.35, 
c=173.53 

unit cell angles (˚) α=β=γ=90° α=β=γ=90° α=β=γ=90° α=β=γ=90° α=β=γ=90° α=β=γ=90° α=β=γ=90° α=β=γ=90° 

wavelength (Å) 0.8 1.0 0.8 0.8 1.0 1.0 1.0 1.0 

temperature (K) 100 100 100 100 100 100 100 100 

resolution (Å) a 
45.00-2.20 
(2.24-2.20) 

35.00-2.00 
(2.07-2.00) 

35.00-1.98 
(2.03-1.98) 

45.00-2.15 
(2.19-2.15) 

45.00-1.95 
(1.98-1.95) 

50.00-2.00 
(2.03-2.00) 

 
50.00-2.15 (2.15-

2.19) 
 

50.00-2.20 
(2.24-2.20) 

completeness (%)a 99.8 (99.4) 99.8 (98.9) 95.2 (99.7) 99.9 (100.0) 94.9 (88.8) 97.2 (97.4) 99.9 (100) 99.6 (99.2) 

Rmerge (%)a, b 8.0 (53.5) 11.2 (89.1) 10.7 (78.3) 12.2 (84.1) 10.4 (84.3) 10.8 (74.5) 14.8 (58.7) 9.9 (71.7) 

I/σI a 45.2 (4.4) 27.3 (2.3) 22.7 (2.2) 27.1 (2.7) 28.4 (2.2) 13.3 (3.2) 17.7 (3.9) 36.9 (3.7) 

multiplicity a 14.0 (11.6) 13.7 (9.1) 9.8(7.8) 12.5 (10.3) 10.5 (6.4) 11.9 (10.5) 8.8 (7.6) 11.4 (10.3) 

no. of observed 
reflections 

109724 149605 149047 120432 152910 146528 119893 110554 

Refinement 

resolution (Å) 2.20 2.00 2.00 2.15 1.95 2.00 2.15 2.20 

no. reflections; 
working/test 

109619/5469 149298/7485 147418/7401 114123/6029 145080/7649 144988/7303 119216/5973 110312/5518 

Rwork (%)c 18.6 17.2 16.2 18.0 17.6 19.5 19.2 18.4 

Rfree (%)d 23.9 21.8 20.8 23.7 21.6 23.7 23.5 22.7 

no. of protein atoms 14651 14684 14684 14684 14684 14668 14668 14668 

no. of ligand atoms 23 188 220 220 220 204 220 220 

no. of solvent sites 702 1682 1397 802 1702 1188 1136 882 

Average B-factor (Å2) 

protein 41.1 28.5 28.5 39.7 27.9 31.7 29.2 36.2 

NAD+ N/A 28.8 40.1 56.7 37.5 37.0 41.4 56.4 

NA+ 35.3 N/A 32.3 41.6 30.7 34.0 43.6 43.9 



13 

  

 

Figure 2.2. Overall crystal structure of AMSDH.  (a) View of the tetramer with the subunit A 
in pink, subunit B in blue, subunit C in yellow, and subunit D in green. Each subunit contains 
an NAD+ molecule, which is shown in stick representation and colored by elements. (b) 
Structure of one AMSDH subunit with NAD+ and substrate 2-AMS. The ribbon trace is 
rainbow-colored with the N-terminus in blue and the C-terminus in red. Top right is the 
subunit interaction domain, bottom right shows the cofactor binding domain, and top middle 
and left is the catalytic domain. NAD+ and 2-AMS are shown as stick models with gray color. 
(c) Topology diagram showing the AMSDH secondary structure, which is also rainbow-
colored according to cartoon in (b).
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In the structure of the co-crystallized binary complex, an NAD+ molecule is present in an 

extended, anti-conformation in the amino-terminal, co-substrate-binding domain of each 

monomer (Figure 2.3a). The electron density map of NAD+ is well defined, and the interactions 

between the protein and NAD+ are equivalent in all four subunits as shown in Figure 2.3e. The 

NAD+-bound AMSDH structure is similar to the ligand-free structure with an aligned r.m.s.d. of 

0.239 Å. Residues that belong to the NAD+-binding pocket are also well aligned with the 

exception of Cys302, Arg108 and Leu116 (Figure 2.4). On binding NAD+, the thiol moiety of 

Cys302 rotates so that the sulfur is 2.3 Å closer to the substrate-binding pocket and away from 

the nicotinamide head of NAD+. 
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Figure 2.3. Crystal structures of wild-type AMSDH and single-crystal electronic absorption 
spectrum of a catalytic intermediate.  AMSDH was co-crystallized with NAD+ to give 
AMSDH-NAD+ binary complex crystals which were used for soaking experiments. (a) Active 
site structure of the binary AMSDH-NAD+ complex, (b) the ternary complex of AMSDH-
NAD+ crystals soaked with 2-AMS for 5 minutes before flash-cooling, (c) the ternary complex 
of AMSDH-NAD+ soaked with 2-HMS for 10 minutes before flash-cooling, (d) the trapped 
thioacyl, NADH-bound intermediate obtained by soaking AMSDH-NAD+ crystals with 2-
HMS for 40 minutes before flash-cooling. (e) 2D-interaction diagram for NAD+ binding. (f) 
Close-up of the thioacyl intermediate in d. (g) Single-crystal electronic absorption spectrum of 
d. Protein backbone and residues are shown as light blue cartoons and sticks, respectively. The 
substrates and intermediate are shown as yellow sticks, and NAD+ and NADH are shown as 
green sticks. The omit map for ligands is contoured to 2.0 σ and shown as a grey mesh.
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Figure 2.4. Local changes at the active site of AMSDH induced by NAD+ binding. 
Superimposition of the active sites of apo-AMSDH (yellow) and NAD+-bound-AMSDH 
(blue). The 2Fo - Fc electron density map is contoured to 1.0 σ and shown as a grey mesh. 
Residues and NAD+ are shown as sticks. The overall structure aligned very well with a 
RMSD of 0.239 Å. Arg108, Val116, and Cys302 are the only residues to have notable 
conformational changes caused by NAD+ binding. 
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2.3.3 Crystal structures of enzyme–substrate ternary complexes 

Structures of AMSDH in ternary complex with co-substrate NAD+ and its primary 

substrates were obtained by soaking co-crystallized AMSDH-NAD+ crystals with 2-AMS and 2-

HMS, respectively. Extra density that fits with the corresponding substrate molecule was 

observed in the active site of each subunit. The co-substrate NAD+ in the ternary complex 

structures is bound in the same manner as in the binary complex. Binding of the primary 

substrates introduced minimal change to the protein structure; the r.m.s.d. for the superimposed 

structures of substrate-free with 2-AMS- and 2-HMS-bound ternary complex structures are 0.170 

and 0.276 Å, respectively. These two primary substrates bind to AMSDH in an identical fashion, 

with two arginine residues, Arg120 and Arg464, playing an important role in stabilizing the 

substrate by forming two sets of bifurcated hydrogen bonds with one of the carboxyl oxygens 

and the 2-amino or hydroxyl group of 2-AMS (Figure 2.3b) or 2-HMS (Figure 2.3c), 

respectively. The observation of two hydrogen bonds being donated by the active site arginines 

to the 2-amino group of 2-AMS indicates that in the substrate-bound form, 2-AMS may be in its 

2-imine rather than 2-enamine tautomer, as an amino group unlikely to accept two hydrogen 

bonds. Mutation of Arg120 to alanine causes a moderate decrease of the kcat to 0.7 ± 0.2 s−1 from 

1.30 ± 0.01 s−1 and a dramatic increase of the KM with a lower bound of 446.3 ± 195.9 μM (an 

accurate determination of the KM is hindered by insufficient 2-HMS concentrations) compared 

with 10.4 ± 0.2 μM in the wild type (Figure 2.5a). Mutation of Arg464 to alanine decreased the 

kcat to ~0.3 s−1, and not only increased the KM to ~170 μM, but also leads to a significant substrate 

inhibition effect with a Ki of ~6 μM (Figure 2.5b). This substrate inhibition is likely caused by 

the unproductive binding of a second substrate molecule in the space created by the deletion of 
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Arg464 or by a failure of the enzyme to properly bind and stabilize the imine form of the 

substrate. 

  

 

Figure 2.5. Kinetic assays of R120A and 
R464A with 2-HMS.  (a) Activity of R120A fit 
with the Michaelis-Menten equation. (b) Activity 
of R464A fit with the Michaelis-Menten equation 
with substrate inhibition. Assay details can be 
found in the materials and methods. 
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2.3.4 Catalytic intermediates trapped after ternary complex formation 

Enzyme–NAD+ binary complex crystals were soaked in mother liquor containing 2-HMS 

for a range of time points from 5 min to more than 3 h before flash cooling in liquid nitrogen. In 

a crystal that was soaked for 40 min, an intermediate was trapped and refined to a resolution of 

1.95 Å (Figure 2.3d). Crystals soaked for longer time points gave a similar intermediate with 

poorer resolution. In this structure, 2-HMS is observed in the 2Z, 4E isomer rather than the 2E, 

4E isomer as seen in the substrate-bound ternary structure. Also, the substrate interacts with 

Arg120 and Arg464 with both of its carboxyl oxygens rather than one carboxyl oxygen and the 

2-hydroxy oxygen as shown in the 2-HMS ternary complex structure. Fitting this density with 

the 2E, 4E conformation resulted in unsatisfactory 2Fo−Fc and Fo−Fc density maps as shown in 

Figure 2.6a. Likewise, attempting to fit the 2Z, 4E isomer to the ternary complex structure did 

not produce satisfactory results (Figure 2.6b). On E to Z isomerization, the carbon chain of the 

substrate extends, and the distance between its sixth carbon and Cys302’s sulfur is now at 1.8 Å, 

which is within covalent bond distance for a carbon–sulfur bond. Also, the continuous electron 

density between Cys302-SG and 2-HMS-C6 indicates the presence of a covalent bond (Figure 

2.3f). Another feature of this intermediate is that the nicotinamide ring of NAD+ has moved 

4.6 Å away from the active site and adopted a bent conformation (Figure 2.3d) compared with 

the position in the binary or ternary complex structures (Figure 2.3a–c). The structural changes 

of NAD+ associated with reduction has been observed and well documented [40-41]. In the 

oxidized state, NAD(P)+ lies in the Rossmann fold in an extended conformation, allowing for 

hydride transfer from the substrate to its nicotinamide carbon during the first half of the reaction. 

Reduced NAD(P)H then adopts a bent conformation in which the nicotinamide head moves back 

towards the protein surface. This movement provides more space in the active site for the second 
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half of the reaction, acyl-enzyme adduct hydrolysis, to take place. Thus, the coenzyme in this 

intermediate structure is likely to have been reduced to NADH and, as such, the structure is 

assigned as a thioacyl-enzyme–substrate adduct. The single-crystal electronic absorption 

spectrum of the sample has an absorbance maximum at 394 nm (Figure 2.3g). The same 

 

Figure 2.6 Alternate fitting of substrate-bound ternary complex and thioacyl intermediate. (a) 
Electron density map of the thioacyl intermediate fit with incorrect model of (2E, 4E)-2-
hydroxy-6-oxohex-2,4-enoic acid (left) and the correct model (right), respectively. (b) 
Electron density map of the substrate-bound ternary complex fit with incorrect model of (2Z, 
4E)-2-hydroxy-6-oxohex-2,4-enoic acid (left) and the correct model (right), respectively. The 
2Fo - Fc map is shown in gray mesh contoured at 1.0 σ. The Fo - Fc electron density maps are 
shown in green mesh contoured at 3.0 σ and red mesh contoured at -3.0 σ. The chemical 
structure of each ligand is shown on the left of the fitting. 
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absorbance band was observed in crystals soaked with 2-HMS from 30 min to 2 h (Figure 2.7). 

However, this long-lived intermediate in the crystal was not observed in solution with 

millisecond-to-second time resolution in stopped-flow experiments (Figure 2.8a). Thus, it is 

 

Figure 2.7 Single-crystal electronic absorption spectra of wtAMSDH and E268A AMSDH 
co-crystallized with NAD+ and soaked with 2-HMS.(a) wtAMSDH co-crystallized with 
NAD+ and soaked with 2-HMS for increasing time. before flash-cooling in liquid nitrogen. 
(b) Same experiment as a using E268A AMSDH. The soaking solution contains 0.2 M 
sodium phosphate dibasic, pH 9.1, 20% polyethylene glycol 3350, and 1 mM 2-HMS. 
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either present in an earlier time domain (sub-milliseconds), or alternatively, it may not 

accumulate in solution because NADH can readily dissociate in solution, whereas it may be 

trapped in the active site when in the crystalline state. 

Another notable change in the intermediate structure is the movement of the side chain of 

Glu268, which rotates 73° towards the active site (Figure 2.3c,d). To probe the function of 

Glu268, we constructed an alanine variant and found that it exhibited no detectable activity in 

steady-state kinetic assays. Interestingly, E268A exhibits completely different pre-steady state 

activity than the wild-type enzyme. As shown in Figure 2.8b, an absorbance band at 422 nm was 

formed concomitant with the decay of the 2-HMS peak within 1 s of the reaction. This new 

species is generated stoichiometrically on titration of 2-HMS with E268A (Figure 2.9d). The 

moiety that gives rise to this new absorbance band is stable for minutes at room temperature and 

 

Figure 2.8 Time-resolved, stopped-flow UV-Vis spectra of the reactions of wtAMSDH and 
E268A with 2-HMS. (a) wtAMSDH (23 µM) is mixed with 2-HMS (25 µM) and observed 
for 1.0 s. Decay of 2-HMS (λmax 375 nm) is inset. (b) E268A AMSDH (23 µM) is mixed with 
2-HMS (25 µM) and observed for 1.0 s. Decay of 2-HMS (λmax 375 nm) and the formation of 
an intermediate (λmax 422 nm) are inset. The reaction is performed in buffer containing 25 
mM HEPES, pH 7.5, and 1 mM NAD+ at 10 °C. The arrows indicate the trends of changes in 
the spectra. 
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cannot be separated from the protein by membrane filtration-based methods [19], suggesting that 

it is covalently bound to the protein. The formation of an enzyme–substrate adduct in the E268A 

mutant was investigated by mass spectrometry. For the as-isolated E268A, the resultant multiply 

 

Figure 2.9 Crystal structures of the E268A mutant and its solution and single-crystal 
electronic absorption spectra.  (a) Structure of the active site of the co-crystallized E268A-
NAD+ binary complex, (b) a thiohemiacetal intermediate obtained by soaking the E268A-
NAD+ crystals with 2-HMS for 30 min before flash-cooling, (c) a thioacyl intermediate 
obtained by soaking the E268A-NAD+ crystals with 2-HMS for 180 min before flash-cooling. 
(d) Solution electronic absorption spectra of a titration of 2-HMS with E268A. (e) Single-
crystal electronic absorption spectrum of the intermediate in b (top panel), and single-crystal 
electronic absorption spectrum of the intermediate in c (bottom panel). Protein backbone and 
residues are shown as light blue cartoons and sticks, respectively. The substrate and 
intermediate are shown as yellow sticks, and NAD+ and NADH are shown as green sticks. 
The omit map for ligands is contoured to 2.0 σ and shown as a grey mesh. 
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charged states (Figure 2.10) were deconvoluted to obtain a molecular weight (MW) of 56,252 Da 

(Figure 2.11, top). This value is in good agreement with the predicted MW of E268A AMSDH 

plus an amino-terminal His-tag and linking residues, 56,251 Da. The second largest peak in the 

deconvoluted spectrum has a MW 177 Da greater than that of the most abundant signal. This is 

likely due to post-translational modification of the His-tag; α-N-Gluconoylation of His-tags has 

been observed in E. coli-expressed proteins, which cause 178 Da extra mass [42]. The mutant 

protein was then treated with the alternate substrate, 2-HMS, and the mass spectrum shows a 

new major peak at 56,390 Da (Figure 2.11, bottom), 138 Da heavier than the as-isolated mutant. 

 

Figure 2.10 Raw ESI mass spectra of E268A AMSDH. As-isolated protein (top) and E268A 
treated with 2-HMS (bottom). Narrow range scans corresponding to the proteins are shown 
in the insets. 
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Similarly, the second most abundant peak corresponds to a His-tag modified mutant plus 139 Da. 

In this spectrum, the peaks arising from the as-isolated mutant are substantially reduced, 

indicating that 2-HMS, 141 Da, is bound to the E268A mutant enzyme. 

We determined the crystal structure of E268A co-crystallized with NAD+ and refined it 

to 2.00 Å resolution (Figure 2.9a). The overall structure aligns very well with the wild-type 

 

Figure 2.11 Deconvoluted mass spectra E268A AMSDH. As-isolated E268A (top) and 2-
HMS treated E268A (bottom). The two major components are labeled with their respective 
molecular weights 

 

Figure 2.12 Superimposition of E268A active 
site with wtAMSDH. E268A and wild-type 
are shown in pink and grey, respectively, 
Cys302, Glu/Ala 268 and NAD+ are present as 
sticks. The 2Fo-Fc electron density map of 
Ala268 is shown as gray mesh contoured at 
1.0 σ. 
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binary complex structure with an r.m.s.d. of 0.139 Å. The active site of E268A also resembles 

the native AMSDH structure (Figure 2.12). The nature of the absorbing species at 422 nm was 

further investigated by soaking co-crystallized E268A-NAD+ crystals in mother liquor 

containing 2-HMS. By doing so, two temporally, structurally and spectroscopically distinct 

intermediates were identified. 

When E268A-NAD+ crystals are soaked with 2-HMS for 40 min or less, their single-

crystal electronic absorption spectra show an absorbance maximum at 422 nm (Figure 2.7b), as 

was observed in the solution-state titration and the stopped-flow assays. An individual electronic 

absorption spectrum for an E268A-NAD+ crystal soaked with 2-HMS for 15 min can be found in 

Figure 2.9e (top). The structure of E268A-NAD+ soaked with 2-HMS for 30 min before flash 

cooling was solved and refined to 2.15 Å resolution (Figure 2.9b). In this structure, a continuous 

electron density between Cys302-SG and 2-HMS-C6 is observed, similar to the thioacyl 

intermediate observed in the wild-type enzyme. However, in contrast to the thioacyl 

 

Figure 2.13 Crystal structures of two distinct catalytic intermediates. (a) Electron density map 
of the thiohemiacetal intermediate obtained from E268A-NAD+ crystal soaked with 2-HMS 
for 30 min, (b) Electron density map of the thioacyl intermediate obtained from E268A-
NAD+ crystal soaked with 2-HMS for 180 minutes. The 2Fo - Fc electron density map for 
ligands and Cys302 is contoured to 1.0 σ and shown as a blue mesh. The omit map for 
ligands and Cys302 is contoured to 2.0 σ and shown as a gray mesh. 
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intermediate, the density around C6 is less flat, indicating an sp3- rather than sp2-hybridized 

carbon (Figure 2.13). The angle between the plane of the carbon backbone of the substrate and 

the formerly aldehydic oxygen is 55 ± 9°, compared with the angle of the wild-type thioacyl 

intermediate at 26 ± 4° (Table 2.2). More importantly, the C6 of 2-HMS and the C4N of NAD+ 

are very close (2.4–2.8 Å), making it unlikely that the hydride has been transferred from the 

substrate. Taken together, these data allow us to assign this intermediate to a thiohemiacetal 

enzyme adduct (Figure 2.9b). A similar intermediate has only been trapped once previously in a 

crystal that contains no co-substrate [43]. Hence, this is the first time for this intermediate to be 

trapped in the presence of NAD+. 

Table 2.2 Out of plane bending of the C6 oxygen in intermediate structures 
 wt-thioacyl E268A-thioacyl E268A-thiohemiacetal 

PDB entry 4NPI 4OUB 4OU2 

Subunit A 23.5 18.1 44.4 
Subunit B 28.7 22.3 51.9 
Subunit C 22.0 26.5 63.5 
Subunit D 30.5 14.9 60.3 

Average ± SD 26.2 ± 4.1 20.5 ± 5.1 55.0 ± 8.6 

 

If the E268A-NAD+ crystals are soaked with 2-HMS for longer than 1 h, their single-

crystal electronic absorption spectra begin to resemble that of the wild-type, thioacyl 

intermediate with a corresponding absorbance maximum at 394 nm (Figure 2.7b), as seen in 

wild-type, thioacyl intermediate crystals. An individual electronic absorption spectrum for an 

E268A-NAD+ crystal soaked with 2-HMS for 120 min can be found in Figure 2.9e (bottom). The 

structure of an E268A-NAD+ crystal soaked with 2-HMS for 180 min was solved and refined to 

2.20 Å (Figure 2.9c). The structure of this intermediate is also similar to the wild-type, thioacyl-

enzyme adduct with NADH, rather than NAD+ found at the active site. The distance between the 

C4N of NADH and C6 of 2-HMS is longer than 6.1 Å (Figure 2.9c). The electron density around 
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C6 is flatter (Figure 2.13b) compared with the thiohemiacetal intermediate and similar to the 

thioacyl intermediate trapped in the wild-type AMSDH structure (Figure 2.3f), and the angle 

between the plane of the carbon backbone of the substrate and the carbonyl oxygen is 20 ± 5°, 

which is statistically indistinguishable from that of the wild-type, thioacyl intermediate, 26 ± 4° 

(Table 2.2). On the basis of the similarities in their absorbance and structures, we conclude that 

this latter intermediate is equivalent to the wild-type, thioacyl intermediate. It is also worth 

noting that the strictly conserved asparagine 169 (Figure 2.13) is seen to stabilize both the 

thiohemiacetal and thioacyl intermediates through hydrogen-bonding interactions. 

2.3.5 Investigation of isomerization by computational modelling 

The isomerization of 2-AMS from the 2E to 2Z isomer implied by the solved crystal 

structures was probed with density functional theory calculations. The free energy profiles 

obtained were used to help illuminate the nature of 2-AMS and gain insight into how the active 

site of AMSDH may facilitate the isomerization. The total energies of different isomers and 

rotamers of 2-AMS in its enamine/aldehyde and imine/eneol tautomers and the rotational barriers 

about their respective 2–3 bond were compared. For the imine/eneol tautomer, additional 

computations were performed with the side groups from Arg120 and Arg464 to investigate what 

effect, if any, they will have on the free energy profile for rotation about the 2–3 bond of 2-AMS. 

First, 2-AMS was constructed and optimized in its 2-enamine, 6-aldehyde, 2E isomer 

with a negatively charged 2-carboxylate group (Figure 2.14a). To estimate the energy barrier for 

an uncatalyzed isomerization from the 2E to the 2Z isomer, the 2–3 double bond was then 

restrained at 10° intervals from 180 to 0°, and the structure was optimized at each point. On the 

basis of the free energy profile (Figure 2.14a), the uncatalyzed isomerization barrier is 

31.9 kcal mol−1. The profile also shows that the 2Z isomer, as might be expected, is lower in 
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energy than the 2E isomer by 4.2 kcal mol−1. Next, the rotational barrier about the 2–3 bond of 2-

AMS when in its 2-imine, 6-enol tautomer, as is suggested by the ternary complex structure, was 

calculated in the same manner. The barrier was found to be 9.2 kcal mol−1, and opposite to the 

enamine tautomer, the ‘2Z-like’ rotamer is higher in energy than the ‘2E-like’ rotamer by 

1.7 kcal mol−1 (Figure 2.14b). Unsurprisingly, the rotational barrier about the 2–3 bond is much 

lower in the imine tautomer; however, the ‘2Z-like’ rotamer of the imine tautomer is 

21.8 kcal mol−1 higher in energy than the 2Z isomer of the enamine tautomer. 

Possible influences of the two active site arginines on the free energy profile for rotation 

were also considered. To mimic the conditions of the enzyme active site, similar calculations as 

those above were performed, which included the guanidinium heads of Arg120 and Arg464. The 

starting model was built using the active site geometry of the ternary complex crystal structure 

(PDB entry: 4I25), and on inspection, it is immediately apparent that with two arginines in such 

 

Figure 2.14 Free energy profiles for the rotation about the 2-3 bond of 2-AMS. DFT 
calculations were performed at the B3LYP/6-31G*+ level of theory for the (a) enamine and 
(b) imine form, respectively. The dihedral angle about the 2-3 bond was restrained in ten- 
degree increments, and the structures were optimized at each point. 
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close proximity to the substrate, there is insufficient space for two hydrogen atoms on the 

nitrogen at the 2-position of 2-AMS, and attempts to optimize an enamine tautomer with the 

hydrogen-bonding pattern of the ternary complex produced structures within which the entire 2-

AMS molecule rotates so that only the carboxylate group interacts with the guanidinium 

moieties. The absolute positions of the guanidinium groups were fixed and the structure of 2-

AMS in the imine tautomer was optimized. The dihedral angle of the 2–3 bond of 2-AMS was 

then increased in 45° increments and the structure optimized while restraining the position of the 

guanidinium groups and the 2–3 bond to build a rough free energy profile to estimate the 

rotational barrier. In the presence of the active site arginines, the barrier about the 2–3 bond of 2-

AMS is further reduced to 8.5 kcal mol−1 (Table 2.3). Another interesting finding is that in the 

presence of the guanidinium groups, the ‘2E-like’ and ‘2Z-like’ rotamers of 2-AMS are nearly 

isoenergetic, with a free energy difference of 0.2 kcal mol−1 (Table 2.3). 

Table 2.3 Relative energy of 2-AMS with the Arg120 and Arg464 guanidinium groups. 

 Dihedral Anglea (degrees) Relative Energyb (kcal mol-1) 
‘Z-like’ 0 0.18 

 45 2.23 
 90 8.47 
 135 4.06 

‘E-like’ 180 0.00 
a The angle about the 2-3 bond of 2-AMS was constrained. 
b The lowest energy structure (‘E-like’) was set as zero. 

2.4 Discussion 

The substrate of AMSDH, 2-AMS, contains an unstable aldehyde in conjugation with an 

enamine and can decay to picolinic acid and water, presumably through an electrocyclization 

reaction similar to its metabolic precursor, ACMS [44]. To assay the enzymatic activity, the 

upstream enzyme was utilized in the reaction mixture to generate substrate, and it was shown 

that AMSDH is catalytically active. Unfortunately, no kinetic parameters can be reliably 
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determined because the concentration of 2-AMS is not well defined in the coupled-enzyme 

assay. To circumvent this issue, a previously-identified, stable alternative substrate, 2-HMS [45-

46], in which a hydroxyl group replaces the amino group in 2-AMS to prevent cyclization, was 

used to characterize the activity of AMSDH and to examine the activity of the mutants. 

Substrate-bound, ternary complex structures were obtained by soaking co-crystallized 

protein and NAD+ with 2-AMS or 2-HMS. 2-AMS is an unstable compound which decays with a 

t1/2 of about 9 s at pH 7.5 and 37 °C or 35 s at pH 7.0 and 20 °C. Notably, this is its first reported 

structure. It appears to be stabilized in the enzyme active site in its imine tautomer by forming 

two sets of bifurcated hydrogen bonds with Arg120 and Arg464 so that the electrocyclization 

reaction cannot occur. Both arginine residues are close to the protein surface and in good 

positions to serve as gatekeepers, bringing the substrate into the active site. As a residue residing 

on a loop, Arg464 should be relatively flexible. The electron density for the side chain of Arg120 

is partially missing in the binary complex structure but very well resolved in both ternary 

complex structures. This observation indicates that the presence of substrate can stabilize what 

may be a flexible residue. It becomes evident from the coordinates that Arg120 and Arg464 play 

an important role in substrate recognition, stabilization and possibly product release. Two 

arginine residues are rarely observed in such close proximity, stabilizing one end of the same 

molecule with multiple hydrogen bonds. With the exception of the hydrogen bonds provided by 

Arg120 and 464, the substrate-binding pocket is mostly composed of hydrophobic residues. On 

the basis of sequence alignment (Figure 2.15), these two arginine residues are strictly conserved 

throughout the HMSDH family but are not found in other members of the ALDH superfamily. 

We propose that these dual arginines combined with the size restrictions provided by the 

hydrophobic pocket endow this enzyme with its specificity towards small α-substituted 
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carboxylic acids with an aldehyde moiety, such as 2-AMS and 2-HMS. Furthermore, our 

computational work suggests that these arginines are crucial for stabilizing the imine tautomer of 

2-AMS to allow for rotation about its 2–3 bond. 

Two strictly conserved catalytic residues, Cys302 and Glu268, are present at the interior 

of the substrate-binding pocket. General features regarding these residues in the ALDH 

 

Figure 2.15 Identification of substrate binding residues for the hydroxymuconic 
semialdehyde dehydrogenase (HMSDH) family.Sequence alignment of several enzymes 
from the HMSDH family of aldehyde dehydrogenase superfamily: AMSDH from 
Psuedomonas fluorescens (gene ID: 28971621), AMSDH from Cupriavidus metallidurans 
(gene ID: 94314125), HMSDH from Cupriavidus basilensis (gene ID: 493151182), 
HMSDH from Pseudomonas sp. M1 (gene ID: 575528385), ACSDH from Comamonas 
testosterone (gene ID: 190571970), CHSDH from Glaciecola arctica (gene ID: 494892710). 
Highly conserved residues are shown with red text and boxed in blue, strictly conserved 
residues are shown with a red background, conserved arginines for substrate binding are 
shown with a green background, the catalytic cysteine and glutamate are shown with a blue 
background, and hydrophobic residues in the active-site pocket are shown with pink 
background. This figure was prepared using ESPript. 
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superfamily are (1) that the cysteine serves as a catalytic nucleophile, which is anticipated to 

form a covalent-adduct intermediate with the substrate by a nucleophilic addition during 

catalysis [47-49] and (2) that the glutamate serves as a base to activate water for hydrolysis of 

the thioacyl-enzyme adduct [50-53]. Previous studies indicate that the catalytic cysteine can 

adopt two conformations, resting and attacking [41]. In the ligand-free structure, Cys302 is far 

from where the carbonyl carbon of the substrate should be and is in the resting state. In the 

ternary complex structures, Cys302 is located at an ideal position to initiate catalysis, which is 

the attacking state. It is proposed to attack the aldehydic carbon (C6) of the substrate. In the two 

ternary complex structures, the distance between the sulfur of Cys302 and the C6 of the substrate 

is ~3.3 Å. Cys302 and the aldehydic carbon form a covalent bond in both thioacyl and 

thiohemiacetal intermediates. Mutation of Cys302 to serine led to enzyme with no detectable 

dehydrogenase activity, further confirming its catalytic significance. 

Examining the wild-type AMSDH structures shows that in the NAD+-bound binary 

complex, Glu268 adopts a ‘passive’ conformation, pointing away from the substrate-binding 

pocket, and forms hydrogen bonds with both NE of Trp177 (3.2 Å distance) and the backbone 

oxygen of Phe470 (3.6 Å) to leave space for the reduction of NAD+. Its electron density is very 

well-resolved and the side chain B-factor is close to average: 28.2 Å2/28.5 Å2. The thiol moiety 

of Cys302 is 7.14 Å from Glu268 and is unlikely to form interactions. Interestingly, in both 

substrate-bound structures, Glu268 becomes more flexible and exhibits much weaker electron 

density and increased side chain B-factors compared with average protein B-factors: 

37.8 Å2/28.5 Å2 and 66.37 Å2/39.7 Å2. In the thioacyl intermediate structure, the electron density 

of Glu268 becomes very well defined again, but its side chain rotates 73° towards the bound 

substrate and seems to be in an ‘active’ position to abstract a proton from a deacylating water 
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(Figure 2.3d). At this point in the reaction cycle, the NADH molecule needs to leave the active 

site to make room for the catalytic water molecule. Movement of the nicotinamide ring of NAD+ 

coupled with the rotation of an active site glutamate has previously been observed in other 

ALDHs during catalysis [51-52, 54]. 

Mutation of Glu268 to alanine led to the accumulation of the thiohemiacetal intermediate 

in both solution and crystalline states. The strictly conserved glutamate residue in the active site 

of ALDH enzymes has been proposed to play up to three possible roles during catalysis. It is 

strictly required to activate the deacylating water that allows for product release, it is in a 

‘passive’ conformation during NAD(P)+ reduction, and in some cases, it may serve to activate 

cysteine for nucleophilic attack [55]. On the basis of these roles, mutation to alanine would be 

expected to decrease the rate of hydrolysis of the thioacyl adduct, have no effect on the rate of 

reduction of NADH and possibly decrease the rate of nucleophilic attack by cysteine. With this 

understanding, deletion of the active site glutamate should cause an accumulation of the thioacyl 

intermediate. However, in this work, the E268A mutant is shown to accumulate the preceding 

thiohemiacetal intermediate both in crystal and in solution. This finding suggests an additional 

catalytic role for this residue: rotation of Glu268 towards the active site facilitates the hydride 

transfer from the tetrahedral thiohemiacetal adduct to NAD+. The rapid formation of the 

intermediate in solution indicates that Glu268 of AMSDH does not play a role in activating 

cysteine. However, it does appear necessary to complete hydride transfer from the substrate to 

NAD+, and its removal turns the native, primary substrate into a suicide inhibitor. 

On the basis of previous studies of the ALDH mechanism, the eight high-resolution 

crystal structures solved (Table 2.1) as well as our biochemical and computational studies, we 

propose a catalytic mechanism for AMSDH. As shown in Figure 2.16, NAD+ binds to the 
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enzyme, 1, to form an NAD+-bound AMSDH complex, 2. The substrate, 2-AMS, is then 

recognized by Arg120 and Arg464 through multiple hydrogen-bonding interactions, and its 

imine tautomer is stabilized in the active site, 3. At this point, the order of the rotation, 

tautomerization and nucleophilic attack by C302 on the aldehydic carbon to produce the 

tetrahedral, thiohemiacetal intermediate, 4, is not yet clear. The isomerization and nucleophilic 

attack drive a translation of the substrate away from Arg120 and Arg464 so that they are only 

 

Figure 2.16 Proposed catalytic mechanism for the oxidation of 2-AMS by AMSDH. The 
primary substrate (2E, 4E)-2-aminomuconate-semialdehyde binds to the enzyme in its imine 
tautomer to form the ternary complex (3). An isomerization and attack by cysteine on the 
aldehydic carbon form the (2Z, 4E)-2-aminomuconate-thiohemiacetyl adduct (4). AMSDH-
mediated oxidation of 4 concomitant with reduction of NAD+ to NADH follows, generating a 
thioacyl enzyme intermediate (5). Hydrolysis of 5 then allows the release of the products 2-
AM and NADH, restoring the ligand-free enzyme for the next catalytic cycle. 
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able to interact with the carboxylate group of the substrate. Next, NAD+ is reduced to NADH by 

abstraction of a hydride from 4, forming a thioacyl intermediate, 5, a process which involves an 

sp3-to-sp2 transition during oxidation of the organic substrate by NAD+. On reduction, the 

nicotinamide portion of NADH moves away from the substrate as Glu268 rotates into position to 

activate a water molecule to perform a nucleophilic attack on the same carbon that was 

previously attacked by Cys302, forming a second tetrahedral intermediate, 6. Finally, the second 

tetrahedral intermediate collapses, breaking the C–S bond and releasing the final products, 2-AM 

and NADH. Species 1–5 are spectroscopically and structurally characterized, while intermediate 

6 was not seen to accumulate. 

2.4.1 Supplementary Discussion 

2.4.1.1 Secondary Structure Features.  

Each polypeptide contains 500 amino acids, but the first 16 – 17 amino acids are not 

included in our model due to missing electron density even though full-length AMSDH was used 

for crystallization. It is most likely that these N-terminal residues belong to a random coil as in 

most other ALDH structures. The first 135 residues comprise a cap which surrounds the cofactor 

binding domain. This cap region starts with two β-hairpin motifs (residues 22 - 50) and is 

followed by four α-helixes (residues 51 - 134). The sequence then extends to the subunit 

interaction domain with two beta strands (residues 138 -158). The central strand of the cofactor 

binding domain starts at residue 161 and stops at residue 266 and resembles a distorted 

Rossmann fold. The catalytic domain (residues 267 - 476) is based on a topologically related βαβ 

polypeptide fold and contains a thiol, Cys302, in the catalytic center (Figure 2.2). The sequence 

ends with a C-terminal helix and a beta strand (residue 477 - 500), which is part of the 

oligomerization domain. The active site is located in the region between the NAD+ binding 
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domain and the catalytic domain with entrances for NAD+ and primary substrate on two separate 

sides.  

2.4.1.2 Binary and Ternary Complex Features.  

The adenine ribose ring and the two phosphate groups are the main components that 

stabilize the NAD+ position by interacting with protein residues which all belong to the 

surrounding loops, except Thr250, which belongs to the 8th α-helix. The nicotinamide half of 

NAD+ has fewer interactions with local residues. Two oxygen atoms (O2 and O3) of the ribose 

ring form hydrogen bonds with OE2 and OE3 of Glu404, respectively. On the other ribose ring, 

the O3 atom forms an H-bond with the Nz of Lys192 while its O2 atom forms a hydrogen bonds 

with both Lys192 (Nz) and Glu195 (OE1). The O1 belonging to the phosphate group nearer the 

nicotinamide is hydrogen-bonded to NE1 of Trp168. The anionic O2 of the other phosphate 

group forms hydrogen bonds with both Thr250 (OG1) and Glu247 (N) (Figure 2.3e). For the 2-

AMS and 2-HMS binding pocket, except for the hydrogen bonds provided by Arg120 and 464, 

the substrate binding pocket is mostly composed of hydrophobic residues including four leucine 

residues (170, 173, 174, and 303), one valine (Val301), and one phenylalanine residue (Phe470) 

which rotates upon substrate binding, and they are all conserved residues (Figure 2.15). This 

hydrophobic residue cluster may also help stabilize the loop on which Arg464 is located through 

hydrophobic interactions with Tyr462 and Trp461. 

2.5 Conclusion 

In this work, five catalytically relevant structures of the wild-type AMSDH and three 

mutant structures yield a comprehensive understanding of the protein’s overall structure, co-

substrate-binding mode and elucidate the primary residues responsible for substrate specificity 

among the HMSDH family of the ALDH superfamily. The structural and spectroscopic 
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snapshots capture the crystal structure of an unstable kynurenine metabolite, 2-AMS, and two 

catalytic intermediates, including stabilizing a tetrahedral intermediate in a mutant protein, which 

was further verified by mass spectrometry. Capture of a thiohemiacetal intermediate upon 

deletion of E268 also points to a new role for this well-established active site base in hydride 

transfer from the substrate to NAD+. Another interesting finding revealed through solving the 

ternary complex and intermediate crystal structures and supported by computational studies is 

that an E to Z isomerization of the substrate occurs in this dehydrogenase before hydride transfer. 

To the best of our knowledge, this is the first piece of structural evidence illustrating an ALDH 

that proceeds via an E/Z isomerization of its substrate during catalysis. 

2.6 Methods 

2.6.1 Expression and purification of pfAMSDH and pfACMSD 

To construct a His10-tagged AMSDH expression plasmid, nbaE gene from P. fluorescens 

(accession: AB088043.2) encoding AMSDH was amplified by the polymerase chain reaction 

(PCR) using genomic DNA of P. fluorescens strain KU-7 as a template and primers 5’-

GGAATTCCATATGAATACCTTACCAAGTCAAG-3’ and 5’-

CCCTCGAGTTAAATTTTTATGCAGATGTTGG-3’ (built-in NdeI and XhoI sites are 

underlined). The PCR product was purified from a 0.8% agarose gel, digested with NdeI and 

XhoI, and ligated in the equivalent sites of pET-16b (Novagen). Ligation product was 

transformed to Escherichia coli BL21(DE3) for protein expression. A single colony was 

introduced to 10 mL of autoclaved LB medium containing 100 µg/mL ampicillin and cultured at 

37 °C. When cells reached ca. 0.6 OD at 600 nm, 1.5 mL of cells were diluted into 500 mL 

autoclaved LB medium containing ampicillin. The cells were cultured in 37 °C until the optical 

density reached ca. 0.8 at 600 nm. Isopropyl β-D-1-thiogalactopyranoside was then added to a 
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final concentration of 0.6 mM, and the temperature was lowered to 28 °C for 12 hours to induce 

AMSDH expression before the cells were harvested by centrifugation at 8,000 × g. The 

harvested cells were then resuspended in 50 mM potassium phosphate buffer, pH 8.0, containing 

300 mM NaCl and 5% glycerol. The cell slurry was passed through an M-110P Microfluidics 

cell disruptor and the debris was removed by centrifugation at 27,000 × g for 30 min at 4 °C. The 

supernatant containing AMSDH was purified using a Ni-NTA affinity column on an ÄKTA 

FPLC system (GE Healthcare). The major fraction with AMSDH activity was eluted by 

increased imidazole concentration. Purified protein was concentrated and desalted on a 

prepacked HiTrap desalting column (GE Healthcare) using buffer containing 50 mM HEPES 

(pH 7.5), 150 mM NaCl, and 1 mM DTT. Expression, purification and protein re-constitution of 

ACMSD were performed as described previously1. 

2.6.2 Site-directed mutagenesis 

C302S, E268A, R120A, and R464A single mutation variants were constructed by the 

PCR overlap extension mutagenesis technique2. Plasmid containing AMSDH from P. 

fluorescens was used as a template. The forward primers used in the site-directed mutagenesis 

are 5'-CAACTCGGGGCAGGTCagcCTGTGTTCCGAACG-3' for C302S, 5'-

GAAAGAAGTGTCTTTCgcgTTGGGGGGCAAGAACG-3' for E268A, 5'-

GGACCCTCGATATTCCTgcgGCCATTGCCAACTTTC-3' for R120A, and 5'-

GAACACCTGGTACTTGgcgGATCTGCGTACGCC-3' for R464A. The insert of each mutant 

was verified by DNA sequencing and the positive clone was transformed to E. coli BL21(DE3). 

The expression and purification of the mutants are the same as wtAMSDH. 
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2.6.3 Preparation of ACMS and 2-HMS 

ACMS was generated by catalyzing the insertion of molecular oxygen to 3-

hydroxyanthranilic acid by purified, Fe2+ reconstituted 3-hydroxyanthranilate 3,4-dioxygenase as 

described previously [19, 38]. 2-HMS is generated non-enzymatically from ACMS following a 

previously established method [45]. The pH of solutions containing ACMS was adjusted to ~2 

by the addition of hydrochloric acid. 2-HMS formation was monitored on an Agilent 8453 diode-

array spectrophotometer at 315 nm. The solutions were then neutralized with sodium hydroxide 

once the absorbance at 315 nm stopped increasing. 2-HMS at neutral pH has a maximum 

absorbance at 375 nm [45]. 

2.6.4 Enzyme activity assay using 2-HMS as substrate 

Steady-state kinetics analyses were carried out at room temperature on an Agilent 8453 

diode-array spectrophotometer. Reaction buffer contains 25 mM HEPES and 1 mM NAD+, pH 

7.5. Consumption of 2-HMS by 200 nM AMSDH was detected by monitoring the decrease of its 

absorbance at 375 nm with a molar extinction coefficient of 43,000 M−1cm−1 (ref. 24) for 15 s 

with a 0.5 s integration time. For mutants, 700 nM protein and a wavelength of 420 nm, ε420 

11,180 M−1cm−1, was used. Absorbance at 375 nm decreased and blue shifted to 295 nm, the 

maximum ultraviolet absorbance for the product, 2-hydroxymuconic acid. This is consistent with 

previous reports in which the ending compound was purified and verified as the correct product 

[45]. Data were either fitted with either the Michaelis-Menten equation: 

 

or the Michaelis-Menten equation with substrate inhibition, as appropriate: 
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The pre-steady state spectra were obtained with an Applied Photophysics Stopped-Flow 

Spectrometer SX20 (UK) with the mixing unit hosted inside an anaerobic chamber made by Coy 

Laboratory Products (MI, USA). Pre-steady state activity used the same reaction buffer but with 

23 μM AMSDH or E268A and 25 μM 2-HMS and were carried out at 10 °C. The change in 

absorbance was monitored for 1.0 s. 

2.6.5 X-ray crystallographic data collection and refinement 

Purified AMSDH samples at a final concentration of 10 mg ml−1 containing no NAD+ or 

10 equiv. of NAD+ were used to set up sitting-drop vapor diffusion crystal screening trays in Art 

Robbins 96-well Intelli-Plates using an ARI Gryphon crystallization robot. The initial 

crystallization conditions were obtained from PEG-Ion 1/2 (Hampton Research) screening kits at 

room temperature. The screened conditions were optimized by increasing protein concentration 

to 40 mg ml−1 and lowering crystallization temperature to 18 °C. NAD+-bound AMSDH crystals 

were obtained from drops assembled with 1.5 μl of protein (preincubated for 10 min with 10 

equiv. of NAD+) mixed with 1.5 μl of a reservoir solution containing 20% polyethylene glycol 

3350 and 0.2 M sodium phosphate dibasic monohydrate, pH 9.1, by hanging drop diffusion in 

VDX plates (Hampton Research). Pyramid shaped crystals that diffract up to ~1.9 Å appeared 

overnight. The reservoir solution for crystallizing the cofactor-free AMSDH crystals contains 

12% polyethylene glycol 3350, 0.1 M sodium formate, pH 7.0. Crystals belonging to the same 

space group formed within 2–3 days with an irregular plate shape and diffracted up to ~2.2 Å. 

NAD+-AMSDH crystals were used for substrate-soaking experiments. Crystals were transferred 

to mother liquor solution containing ~1 mM 2-HMS and incubated for 10–180 min before flash 

cooling in liquid nitrogen. Soaking 2-AMS as a substrate is more complicated because of its 

instability. Crystallization solution containing ~1.5 mM ACMS were used for soaking. After 
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transferring several crystals to the soaking solution (8 μL), 2 μL of 1 mM purified ACMSD was 

included to catalyze the conversion of ACMS to 2-AMS. Crystals were flash frozen after a 

5 min-incubation. Crystallization solution containing 20% glycerol or ethylene glycol was used 

as cryoprotectant. X-ray diffraction data were collected on SER-CAT beamline 22-ID or 22-BM 

of the Advanced Photon Source, Argonne National Laboratory. 

2.6.6 Ligand refinement and molecular modelling 

The first AMSDH structure, the cofactor NAD+ bound structure, was solved by the 

molecular replacement method with the Advanced Molecular Replacement coupled with Auto 

Model Building programs from the PHENIX software using 5-carboxymethyl-2-

hydroxymuconate semialdehyde dehydrogenase (PDB: 2D4E) as a search model, which shares 

39% of amino-acid sequence identity with P. fluorescens AMSDH. The ligand-free, mutant and 

ternary complex structures were solved by molecular replacement using the refined NAD+-

AMSDH as the search model. Refinement was conducted using PHENIX software [56]. The 

program Coot was used for electron density map analysis and model building [57]. 

NAD+/NADH, substrates 2-AMS and 2-HMS and Cys-substrate covalent-adduct intermediate 

were well defined and added to the model based on the 2Fo−Fc and Fo−Fc electron density maps. 

Refinement was assessed as complete when the Fo−Fc electron density contained only noise. The 

structural figures were generated using PyMOL software [58]. 

2.6.7 Single-crystal spectroscopy 

Electronic absorption spectra from single crystals held at 100 K were collected at 

beamline X26-C of the National Synchrotron Light Source (NSLS) [59]. The electronic 

absorption data were typically obtained between 200 and 1,000 nm with a Hamamatsu 

(Bridgewater, N.J.) L10290 high-power ultraviolet–visible light source. The lamp was connected 
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to one of several 3-m long solarization-resistant optical fibers with an internal diameter of 115, 

230, 400 or 600 μm (Ocean Optics, Dunedin, FL). The other end was connected to a 40-mm 

diameter, 35 mm working distance 4 ×, Schwardchild design reflective microscope objective 

(Optique Peter, Lentilly France). The spectroscopy spot size is a convolution of the optical fiber 

diameter and the magnification of the objective, which in this case produced 28, 50, 100 or 

150 μm diameter spots, respectively. Photons that passed through the crystal were collected with 

a second, aligned objective that was connected to a similar optical fiber or one with a slightly 

larger internal diameter. The spectrum was then recorded with either an Ocean Optics USB4000 

or QE65000 spectrometer. Anisotropic spectra and an image of the crystal/loop were collected as 

a function of rotation angle in 5° increments. These were analyzed by XREC37 to determine the 

flat face and optimum orientation. 

2.6.8 Mass spectrometry 

To prepare samples for ESI mass spectrometry, as-isolated E268A AMSDH was buffer-

exchanged to 10 mM Tris (pH 8.0) by running through a desalting column (GE Healthcare). 

Intermediate bound E268A was obtained by mixing E268A with 3 equiv. of 2-HMS. Excess 2-

HMS was removed by desalting chromatography using the same buffer. Desalted proteins were 

concentrated to a final concentration of 20 μM. Freshly prepared samples were rinsed by 

acetonitrile and 0.1% formic acid (1:1 ratio) before injection. Mass spectrometry experiments 

were conducted using a Waters (Milford, MA) Micromass Q-TOF micro (ESI-Q-TOF) 

instrument operating in positive mode. The capillary voltage was set to 3,500 V, the sample cone 

voltage to 35 V and the extraction cone voltage to 2 V. The source block temperature and the 

desolvation temperature were set to 100 and 120 °C, respectively. The samples were introduced 
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into the ion source by direct injection at a flow rate of 5 μl min−1. The raw data containing 

multiple positively charged protein peaks were deconvoluted and smoothed using MassLynx 4.1. 

2.6.9 Computational studies 

All ground-state density functional theory calculations were performed with Gaussian 03 

Revision-E.01 at the B3LYP/6-31G*+ level of theory [60]. The chemical structures were 

optimized using the ternary complex crystal structure (PDB entry: 4I25) as a starting model. To 

calculate the isomerization barrier, the dihedral angle about the 2–3 bond was restrained and the 

rest of the molecule was optimized. For the calculations that included the guanidinium heads of 

Arg120 and Arg464, the geometry was obtained from the crystal structure, and their positions 

were fixed while the substrate was optimized.  
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3 A PITCHER-AND-CATCHER MECHANISM DRIVES ENDOGENOUS 

SUBSTRATE ISOMERIZATION BY A DEHYDROGENASE IN KYNURENINE 

METABOLISM 

This chapter is adapted from the published work co-first authored by ID: Yang Y, Davis I, Ha U, 

Wang Y, Shin I, and Liu A (2016) A Pitcher-and-Catcher Mechanism Drives Endogenous 

Substrate Isomerization by a Dehydrogenase in Kynurenine Metabolism. Journal of Biolological 

Chemistry, 291(51), 26252 – 26261. DOI: 10.1074/jbc.M116.759712 

3.1 Abstract 

Aldehyde dehydrogenases typically perform oxidation of aldehydes to their 

corresponding carboxylic acid while reducing NAD(P)+ to NAD(P)H via covalent catalysis 

mediated by an active-site cysteine residue. One member of this superfamily, the enzyme 2-

aminomuconate-6-semialdehyde dehydrogenase (AMSDH), is a component of the kynurenine 

pathway, which catabolizes tryptophan in mammals and certain bacteria. AMSDH catalyzes the 

NAD+-dependent oxidation of 2-aminomuconate semialdehyde to 2-aminomuconate. We 

recently determined the first crystal structure of AMSDH and several catalytic cycle 

intermediates. A conserved asparagine in the oxyanion hole, Asn169, is found to be H-bonded to 

substrate-derived intermediates in the active site of AMSDH during catalysis, including both 

covalently bound thiohemiacetal and thioacyl intermediates. To better interrogate the 

significance of the hydrogen bond provided by Asn169 to the reaction mechanism of AMSDH, 

we created Ala, Ser, Asp, and Gln variants and studied them using biochemical, kinetic, 

crystallographic, and computational studies. The in crystallo chemical reaction of the primary 

substrate with the co-crystalized complex of the N169D variant and NAD+ led to the successful 

trapping of a new catalytic intermediate that was not previously seen. The structural and 
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computational data are consistent with a substrate imine/enol tautomer intermediate being 

formed prior to the formation of the covalent bond between the substrate and the active-site 

cysteine. Thus, AMSDH surprisingly includes an isomerization process within its known 

catalytic mechanism. These data establish a hidden intrinsic isomerization activity of the 

dehydrogenase and allow us to propose a pitcher-catcher type of catalytic mechanism for the 

isomerization. 

3.2 Introduction 

The kynurenine pathway is the catabolic route for tryptophan degradation in mammals 

and certain bacteria. In mammals, the pathway has been found to produce neuroactive 

compounds that correlate with depression and neurodegenerative disease states such as 

Alzheimer's, Parkinson's, and Huntington's diseases [9, 11, 14]. Moreover, the kynurenine 

pathway is a de novo biosynthetic route to produce the coenzyme NAD+/NADH, which is 

involved in many fundamental biological processes as an energy carrier and redox mediator. In 

the kynurenine pathway, tryptophan metabolites are partitioned by both enzymatic and non-

enzymatic reactions [61]. Three consecutive enzymes of the pathway, 3-hydroxyanthranilate 

dioxygenase (HAO), 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD), 

and 2-aminomuconate-6-semialdehyde dehydrogenase (AMSDH), compete with the non-

enzymatic auto-cyclization of their substrates and products for further metabolism (Figure 3.1). 

The trio of enzymes is also present in the 2-nitrobenzoic acid biodegradation pathway. 
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Figure 3.1 Tryptophan catabolic pathways 
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Investigations at the molecular level of the kynurenine pathway were extended to 

AMSDH in our recent work [22]. AMSDH is a 216-kDa homotetrameric protein (500 amino 

acid residues in each subunit) that belongs to the aldehyde dehydrogenase superfamily. It 

competes with a spontaneous, non-enzymatic cyclization of 2-aminomuconate semialdehyde (2-

AMS) to prevent overproduction of picolinic acid. The off-pathway product, picolinic acid, is a 

metal chelator in human milk that is barely detectable in blood serum and below the detection 

limit in other tissues [62]. AMSDH oxidizes 2-AMS to 2-aminomuconate and directs the 

metabolic flux to enzyme-controlled reactions. We have shown the anticipated enzymatic 

activity of AMSDH using isolated protein and determined its first crystal structure [22]. 

Furthermore, the binary and ternary complexes as well as two catalytic intermediates, 

thiohemiacetal and thioacyl, were characterized by soaking single crystals of the binary enzyme-

NAD+ complex under varied time periods with substrates, widening our knowledge of the 

catalytic mechanism of this semialdehyde dehydrogenase. 

In the active site of AMSDH, as in ACMSD [19], two arginine residues appear to 

stabilize the carboxyl group of their respective substrates [22]. In AMSDH, Cys302 and Glu268 

are reported to have critical roles in the reaction catalyzed by AMSDH [22]. Cys302 serves as a 

catalytic nucleophile and Glu268 acts as a general base based on our recent findings and 

literature reports of enzymes in the same family [22, 49, 55]. In addition to their catalytic 

nucleophile and general base, members of the aldehyde dehydrogenase superfamily also possess 

a strictly conserved asparagine in their active site (Figure 3.2), i.e., residue 169 in AMSDH. Such 

an active-site asparagine residue is hypothesized to provide catalytic contribution as an oxyanion 

hole residue in other aldehyde dehydrogenases [50, 52]. Substitution of the asparagine by alanine 

eliminated the dehydrogenase activity [54, 63]. However, the precise role of the asparagine 
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residue remains unexplored in any member of the aldehyde dehydrogenase superfamily, 

including AMSDH. Asn169 is within H-bonding distance of the substrate-derived intermediates 

of the catalytic cycle [22]. As shown in the thioacyl intermediate structure of AMSDH (Protein 

Data Bank (PDB) entry: 4NPI), the amide moiety of Asn169 forms a hydrogen bond with the 

oxo moiety of the thioacyl, substrate-enzyme adduct. Thus, Asn169 is expected to stabilize the 

bound substrate, 2-AMS, as well as to stabilize the thiohemiacetal and thioacyl intermediates 

through hydrogen-bonding interactions during the oxidation of 2-AMS by AMSDH. 

In this work, we constructed and expressed several variants to illuminate the precise role 

of Asn169 in the reaction catalyzed by AMSDH. Kinetic analysis and crystallography were 

employed to study those mutants. Unexpectedly, we captured an isomerization reaction 

intermediate in addition to the previously trapped intermediates in the native protein. 



50 

  

 
Figure 3.2 Aldehyde dehydrogenase (ALDH) sequence alignment.  The conserved catalytic 
residues are marked by green stars. AMSDH from Psuedomonas flurenscens (accession 
number: Q83V33); N-succinylglutamate 5-semialdehyde dehydrogenase from Aliivibrio 
salmonicida (accession number: B6EML5); NAD(P)-dependent glyceraldehyde-3-phosphate 
dehydrogenase from Sulfolobus solfataricus (accession number: Q97U30); NAD(P)-
dependent benzaldehyde dehydrogenase from Pseudomonas putida (accession number: 
Q84DC3); α-aminoadipic semialdehyde dehydrogenase from Rattus norvegicus (accession 
number: Q64057); Succinate semialdehyde dehydrogenase from Escherichia coli (strain K12) 
(accession number: P76149); HMSDH from Pseudomonas sp. (strain CF600) (accession 
number: P19059); ALDH from Pongo abelii (accession number: Q5R6B5); SSDH from 
Arabidopsis thaliana (accession number: Q9SAK4). 
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3.3 Results 

3.3.1 Steady-state Kinetics 

Asn169 was mutated to alanine, glutamine, aspartate, and serine, respectively, to explore 

the function of the active-site asparagine residue. The steady-state kinetic parameters were 

determined for each of the active mutants. As compared with the kinetic parameters of the wild-

type enzyme (wtAMSDH), N169S, N169Q, and N169D variants have similar KM but a much 

lower kcat. The observation of a greater than 100-fold reduction in reaction rate with a less than 2-

fold change in the KM indicates that before the first irreversible step of the reaction, Asn169 is 

not heavily involved in catalysis. Therefore, the hydrogen-bonding interaction between Asn169 

and the C6 oxygen of the alternate substrate, 2-hydroxymuconate-6-semialdehyde (2-HMS) (5), 

appears to be essential to the rate-limiting steps of the reaction. Substitution of Asn169 with 

alanine creates an enzyme variant that does not contain any side-chain functional group capable 

of forming H-bonds, eliminating a possible stabilizing interaction at this position. As indicated in 

Table 3.1, there is no detectable steady-state activity with the N169A variant. 

Table 3.1 Kinetic parameters of N169 mutants with 2-HMS at pH 7.5 
 KM (µM) kcat (s-1) kcat/KM (M-1s-1) 

Native 10.4 ± 0.2 1.30 ± 0.01 1.25 × 105 
N169Q 5.7 ± 0.7 0.0034 ± 0.0001 5.9 × 102 
N169S 8.7 ± 0.8 0.0077 ± 0.0003 8.8 × 102 
N169D 7.7 ± 0.6 0.0110 ± 0.0004 1.4 × 103 
N169A ND ND ND 
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In the thioacyl intermediate of wtAMSDH, the amide side chain of Asp169 forms an H-

bond with the C6 oxo of the 2-HMS-enzyme adduct (2.8 Å distance). In this arrangement, the 

NH group of Asn169 is expected to be the H-bond donor, and the adduct oxo group is expected 

to be the H-bond acceptor. With this understanding, the N169D variant should only be able to 

donate a hydrogen for the formation of an intermediate-stabilizing H-bond at lower pH values. 

To test this hypothesis, pH profiles were obtained for N169D using wtAMSDH as the control. 

As shown in Figure 3.3, the kcat value of N169D increases with decreasing pH such that at pH 

4.5, the kcat value is an order of magnitude larger than at pH 8.0. Meanwhile, the KM values 

present less change with no consistent trend. By comparison, the kcat value of wtAMSDH 

 

Figure 3.3 pH profile of Michaelis-Menten 
parameters of wild-type AMSDH (dashed line) and 
N169D mutant (solid line).
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actually decreases with decreasing pH, opposite to what was observed with N169D, but their KM 

profiles are similar. The increase in the catalytic rate of N169D with decreasing pH is consistent 

with the hypothesis that Asn169 acts to stabilize intermediates and transition states by donating a 

hydrogen for H-bonding interactions to the C6 oxygen of the substrate. At lower pH conditions, 

Asp169 becomes increasingly protonated, enhancing its ability to function as an H-bond donor, 

fulfilling the same role as Asn169 in the wild-type enzyme. 

3.3.2 Crystal Structure of N169A and a Thioacyl Intermediate 

To rule out aberrant structural changes as the cause for a lack of steady-state activity in 

N169A, the variant was crystallized, and its structure was determined by X-ray diffraction and 

refined to 1.99 Å resolution. The NAD+-bound N169A variant structure is a homotetramer and 

agrees well with that of the binary complex structure of wtAMSDH (Figure 3.4A), with a root 

mean square deviation (RMSD) of 0.197 Å (PDB entry: 5KJ5). 

Crystals of N169A were then soaked with the stable alternate substrate 2-HMS for 5 min 

to 20 h. Of all the datasets collected, those with shorter soaking times (less than 20 h) yielded 

diffraction maps with poor density for substrate or NAD+, whereas the ones with the longest 

soaking times (20 h) show clear and continuous electron density for 2-HMS- and NAD+-derived 

intermediate and product in the active site (Figure 3.4B). 

The N169A intermediate structure from the 20-h in crystallo reaction was refined to 1.79 

Å resolution. As compared with the NAD+-bound N169A structure, Glu268 rotates more than 

70° from its “passive” to its “active” conformation upon formation of the thioacyl intermediate to 

activate a water molecule for hydrolysis, and the nicotinamide head of NAD+ moves 6 Å away 

from the active site as it has been reduced to NADH as seen in the crystal structure of 

wtAMSDH (5). Therefore, the crystal structure shows clear evidence of the in crystallo 
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formation of a substrate-N169A adduct corresponding to a thioacyl intermediate (Figure 3.4B). 

However, under the same conditions, this intermediate was formed by wtAMSDH in 30–40 min. 

The lack of steady-state activity measured for this mutant may be accounted for by a 

combination of inefficient formation of the newly observed substrate-derived intermediate and 

an inability to prepare the thioacyl adduct for hydrolysis through the formation of a second 

tetrahedral intermediate. 

 

Figure 3.4 Superimposition of N169 variants with wtAMSDH and a thioacyl intermediate. 
N169A (magenta, 5KLN), N169D (yellow, 5KJ5), and wtAMSDH (green, 4I1W) in the 
binary complex form. (B) Electron density map of the thioacyl intermediate obtained from 
N169A-NAD+ crystal reacted with 2-HMS for 20 h. Cys302, Glu268, Arg464, Arg120, 
Asn/Asp169 and NAD+ are present as sticks. The omit maps for ligands and Cys302 are 
contoured to 3.0 σ and shown as a blue mesh.
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3.3.3 Time-lapse in Crystallo Reaction of N169D 

The NAD+-bound N169D binary complex structure was determined and refined to 2.11 Å 

resolution. The mutant structure exhibits high similarity with the wtAMSDH binary complex 

with an RMSD of 0.173 Å (Figure 3.4A). Moreover, to ascertain whether there is any further 

information about the influence of the Asn-to-Asp alteration, the crystals of the N169D-NAD+ 

mutant were mixed with 2-HMS for varying times. As a result, 11 crystal structures were solved 

with reaction times of 1 min to 23 h. 

Among all structures solved, most of the structures showed incomplete or low 

occupancies of a specific reaction intermediate at the active site. However, three distinct reactive 

intermediates were captured at reaction times of 1, 5, and 30 min. These intermediates were 

reproducible, and their structures were refined to resolutions of 2.01, 2.17, and 2.10 Å, 

respectively (Table 3.2). The N169D ternary complex with 1-min reaction time (PDB entry: 

5KLK) dataset exhibits the same tertiary and quaternary structural characteristics as compared 

with the wtAMSDH ternary complex structure. 2-HMS is H-bonded with Arg-120 and Arg-464 

as its keto tautomer form, and the enol end is pointed to the opposite direction toward Cys-302 

(Figure 3.5A). The N169D ternary complex with 5-min reaction time also has the same overall 

structural features. Interestingly, significant differences in the details of the active site of the 

N169D ternary complex with 5-min reaction time are found as compared with the wtAMSDH 

enzyme, where a thioacyl intermediate was observed (5).  



56 

Table 3.2 Crystallization data collection and refinement statistics 

 
NAD+-
N169D 

2-HMS-
NAD+-
N169D  
(1 min)

2-HMS-
NAD+-
N169D  
(5 min)

2-HMS-
NAD+-
N169D  

(30 min)

NAD+-
N169A 

N169A-
thioacyl 

intermediate  
(20 h)

PDB code 5KJ5 5KLK 5KLL 5KLM 5KLN 5KLO 
Data collection 

Space group P212121 P212121 P212121 P212121 P212121 P212121

Cell dimensions 
a, b, c (Å) 

88.6, 142.4, 
173.4 

88.2, 142.9, 
174.2

88.4, 143.1, 
174.1

88.4, 142.0, 
171.6

88.7, 141.0, 
173.3 

88.1, 141.7, 
171.5

Resolution 
31.5 - 2.11 

(2.19 - 2.11)a 
35.1 - 2.01 

(2.08 - 2.01)
35.2 - 2.17 

(2.25 - 2.17)
45.6 - 2.10 

(2.18 - 2.10)
34.4 - 1.99 

(2.06 - 1.99) 
34.9 - 1.79 

(1.85 - 1.79)
No. of observed 

reflections 
125557 
(12419) 

145427  
(14114)

115719  
(11331)

124700  
(12305)

148478 
(14680) 

193366  
(17447)

Redundancy 14.2 (14.1) 12.0 (11.4) 14.3 (14.0) 7.9 (8.0) 12.1 (9.7) 11.7 (11.8)
Completeness 

(%) 
99.8 (100.0) 98.7 (96.9) 99.6 (98.9) 99.8 (100.0) 99.8 (99.6) 95.3 (86.8) 

I/sigma(I) 27.8 (2.9) 23.5 (2.0) 26.5 (3.5) 20.2 (1.8) 29.3 (2.9) 34.6 (2.7)
Rmerge (%)b 11.6 (92.5) 11.6 (89.6) 13.1 (92.9) 11.7 (96.2) 10.1 (69.2) 7.6 (81.3)

Refinementc  
Rwork 19.0 18.8 17.0 18.6 18.7 17.9
Rfree 23.7 23.1 21.8 23.0 22.2 20.3

RMSD 
bond length (Å)d 0.008 0.007 0.008 0.007 0.008 0.007 

RMSD 
bond angles (º) 1.10 1.12 1.07 1.10 1.14 1.11 

Ramachandran statistics e 

Preferred (%) 97.2 97.1 97.1 97.2 97.2 97.7 
Allowed (%) 2.8 2.8 2.7 2.6 2.7 2.1
Outliers (%) 0.2 0.1 0.3 0.2 0.2 0.2 

Average B-factor (Å2) 
Protein/atoms 44.6/14691 39.0/14705 36.1/14726 45.8/14685 37.6/14701 33.2/14679
NAD+/atoms 47.6/176 42.9/176 N/A 51.4/176 34.0/176 39.5/176

Na+/atoms N/A 51.6/3 35.7/4 48.5/4 37.7/4 32.2/4
2-HMS or 

intermediates/ 
atoms 

N/A 51.8/30 38.2/40 N/A N/A 33.7/40 

Solvent/atoms 48.3/843 44.0/1092 41.9/1179 51.3/864 46.2/1179 42.0/1475 
All-atoms Clash 
score/percentilee 

3.64/99 2.78/99 2.46/100 3.17/99 3.50/99 2.86/99 

MolProbity 
score/percentilee 

1.72/94 1.56/95 1.56/98 1.60/96 1.76/88 1.51/93 

a Values in parentheses are for the highest resolution shell. 
b Rmerge =ΣhklΣi |Ii(hkl)-〈I(hkl)〉|/ΣhklΣiIi(hkl), in which the sum is over all the i measured reflections with equivalent 

miller indices hkl; 〈I(hkl)〉 is the averaged intensity of these i reflections, and the grand sum is over all measured 
reflections in the data set.  
c All positive reflections were used in the refinement.  
d According to Engh and Huber .  
e Calculated by using MolProbity . 
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Figure 3.5 Intermediate crystal structures of N169D-NAD+ binary complex reacted with 2-
HMS.  Soaking for 1 min (A, PDB entry: 5KLK) and for 30 min (B, PDB entry: 5KLM). 
Glu268 is present in the passive position as found in the ligand-free and binary complex 
structures, indicating that the dehydrogenation reaction has not occurred but isomerization 
reaction has taken place. The omit maps of 2-HMS and NAD+ are contoured to 2.5 σ and 
shown as a blue mesh. The residues in the active site are shown as sticks. 
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As expected, 2-HMS is bound to the enzyme active site by two arginine residues in the 

active site of N169D in the same manner as seen in the wtAMSDH ternary complex structure 

(PDB entry: 4I2R). After soaking the co-crystalized NAD+-N169D with 2-HMS for 5 min (PDB 

entry: 5KLL), 2-HMS adopts an extended conformation reminiscent of the previously captured 

thioacyl intermediate, but the electron density of the nicotinamide head of NAD+ is not well 

defined. At longer soaking times (30 min, PDB entry: 5KLM), the electron density of the 

aldehyde portion of 2-HMS is not well defined, presumably due to increased conformational 

heterogeneity. The position of Glu268 and the nicotinamide head of NAD+, however, are both 

well-defined and indicate that even after 30 min of soaking, hydride transfer from the substrate to 

NAD+ has not yet occurred (Figure 3.5B). 

3.3.4 Crystallographic Capture of a New Tautomerized Intermediate 

In the 5-min N169D intermediate structure, Glu268 surprisingly remains in its passive 

state (i.e. pointing away from the substrate-binding pocket). In all previous intermediate 

structures (5) obtained with the same in crystallo reaction procedure from wtAMSDH, Glu268 is 

in an active position, rotated 73° toward the bound substrate from its resting passive position. 

The electron density of the nicotinamide moiety of NAD+ is not well defined. Careful inspection 

of the electron density of 2-HMS in the N169D active site reveals that the carbon backbone of 

the substrate is distorted as compared with all previous structures (5). Specifically, 2-HMS 

shows significant out-of-plane rotation about its C3–C4–C5–C6 dihedral. Another key 

distinction between the 5-min N169D intermediate and previously solved structures is the 

interatomic distances around the aldehydic carbon of the substrate and nearby residues. The two 

values of interest are the distances between C6 of 2-HMS and the sulfur of Cys302 and between 

the oxo of 2-HMS and the terminal atom of Asn/Asp169, respectively. 
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Figure 3.6 Crystallographic and computational evidence for an enol tautomer. A 
stereographic view of the omit map of a substrate-based intermediate in the co-crystalized 
crystals of N169D-NAD+ soaked with 2-HMS for 5 min (A). The ligand density is fit with the 
enol tautomer of 2-HMS. This is shown side-by-side with the thioacyl intermediate trapped in 
the native enzyme (PDB entry: 4NPI) under identical conditions (B). The omit maps of 
intermediates in active site are contoured to 3.0 σ and show as a blue mesh. The active site 
residues interacting with the intermediate are included in the presentation. (C) The 
isomerization reaction in AMSDH N169D. (D) Optimized geometry of 2-AMS in its 
imine/enol tautomer with Cys302 and Asp169. C, H, O, N and S atoms are shown in grey, 
white, red, blue, and yellow, respectively. 
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In the N169D structure, the thiol moiety of Cys302 has two alternative conformations. In 

the first conformation, the thiol is pointed toward the nicotinamide ring of NAD+, as seen 

previously in the wtAMSDH structure (PDB entry: 4I26) [22]. In the other confirmation, the 

thiol is in position for nucleophilic attack on the substrate, similar to the scenario found in the 

ternary complex structures of the wtAMSDH [22]. In wtAMSDH,the C6-sulfur distance between 

the substrate and Cys302 is 1.8 Å, indicating a formal covalent bond, whereas in the N169D 

variant, the shortest distance is 2.4 Å (Error! Reference source not found.A), at the shorter end 

of hydrogen-bonding range and too long to indicate a formal covalent carbon-sulfur bond. The 

other conformation of Cys302 is farther away from the substrate, 4.4 Å from C6 of the substrate. 

Thus, the substrate-derived intermediate is not covalently bound to the enzyme in this 

intermediate. 

Additionally, the substrate oxo-Asp distance in the N169D mutant is 2.2 Å (Error! 

Reference source not found.A), whereas the substrate oxo-Asn distance in the wild-type 

thioacyl intermediate is 2.8 Å (Error! Reference source not found.B). The finding of what 

appears to be a very strong H-bond between the C6 oxygen of 2-HMS and the carboxylate 

moiety of Asp169 is unexpected, as the crystallization conditions (pH 7.9) should ensure that the 

side chain of Asp-169 is deprotonated, and an aldehydic oxygen is expected to carry a significant 

partial negative charge. With such a close observed distance, either Asp169 is protonated at pH 

7.9, or 2-HMS can act as the donor in the formation of this hydrogen bond. The positions of 

NAD+ and Glu268 in the structure of the 5-min reaction intermediate of N169D are also 

consistent with the structure of a later (30-min reaction time) structure (PDB entry: 5KLM) as 

shown in supplemental Figure 3.5, which has increased conformational heterogeneity for the 

bound substrate. 
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Taken together, the details of the N169D active site after reacting with 2-HMS for 5 min 

point to the capture of a keto/enol intermediate, which corresponds to an imine/enol 

intermediate, 1, in the AMSDH mechanism (Error! Reference source not found.C). The 

findings of an extended substrate conformation in the active site with a C6-sulfur distance 

outside the covalent bond range, a glutamate in the passive position, an unreduced NAD+, and a 

very short substrate oxo-Asp distance all suggest that N169D stabilizes an enol tautomer of the 

substrate that was not previously seen but was anticipated to facilitate isomerization prior to the 

dehydrogenation reaction. 

3.3.5 Quantum Chemical Investigation of a Crystallographically Captured 

Intermediate 

The crystal structure of the 2-HMS-derived intermediate structure of N169D is distinct 

from all previous structures of this enzyme or its mutants [22]. The straightforward explanation 

for the disparities between the N169D intermediate and the thiohemiacetal or thioacyl structures 

is that the introduction of a negative charge to the active site in the mutant protein leads to the 

preferential stabilization of the imine/enol tautomer. Such an intermediate is necessary for the 

isomerization of the substrate before the nucleophilic attack by Cys302. With such an 

isomerization reaction, the next dehydrogenase step is less sterically hindered. 

Density functional theory calculations were carried out to assess the feasibility of this 

explanation. The starting models were generated from the 5-min 2-HMS-NAD+-derived 

intermediate of N169D crystal structure (PDB entry: 5KLL) and optimized at the B3LYP/6-

31G*+ level of theory. For calculations, the native substrate, 2-AMS, was used. The results are 

summarized in Table 3.3, where values are shown as the difference in free energy between the 

aldehyde tautomer as compared with the enol tautomer optimized under the same restraints 
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(negative values indicate lower energy for the enol tautomer). Numbering convention and a 

representative optimization can be found in Error! Reference source not found.D. 

Table 3.3 Geometry optimization of 2-AMS under various conditions: relative energy of the enol 
minus aldehyde tautomers 

 
 ΔG (kcal mol-1) 
2-AMSa only -1.15 
2-AMSb, Asp169 -11.1
2-AMSa,c, Asp169 -6.87 
2-AMSd, Asp169, Cys302 -5.81 

aThe C3-C4-C5-C6 dihedral is frozen;  
ball heavy atoms except N are frozen;  
cC1, C2, and all oxygens are frozen;  
dC1, C2, O1, and O2 are frozen. 

The first row of Table 3.3 shows the results of optimizing each of the tautomers with the 

C3–C4–C5–C6 dihedral angle fixed to what is observed in the crystal structure. Although the 

enol form is lower in energy, the difference between the two tautomers is small. The second row 

shows that inclusion of the carboxylate group of Asp169 drastically increases the difference in 

free energy between the aldehyde and the enol tautomers. Allowing more flexibility during the 

geometry optimization reduces the difference, as seen in the third row; however, the enol is still 

significantly lower in energy than the aldehyde. The inclusion of the side chain of Cys302 does 

not qualitatively change the results of optimization. Interestingly, if the optimization is 

performed with the carboxylate group of Asp169 protonated, as would be expected at lower pH 

values, the aldehyde tautomer optimizes to a structure with geometry nearly identical to the 

previously published thiohemiacetal intermediate trapped in the E268A mutant crystal (PDB 

entry: 4OU2). This observation suggests that when protonated, Asp169 can play the same role as 

Asn169 does in the wild-type enzyme. 
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3.4 Discussion 

3.4.1 An Update to the Mechanism of AMSDH Action 

In a previous report, insight was gained into the dehydrogenation mechanism of AMSDH 

by the capture of two important catalytic intermediates, thiohemiacetal 2 and thioacyl adducts 3 

(5). The primary substrate and the catalytic intermediates are in distinct E/Z configurations at the 

C2–C3 position. Following our recent success, here, we have captured a new intermediate, which 

was not previously seen by reacting single crystals of the N169D mutant with a substrate analog. 

The new intermediate was trapped prior to the NAD+-dependent oxidation reaction. A perusal of 

the new intermediate structure and computational analysis point to an isomerization intermediate 

in AMSDH before its expected dehydrogenase activity. A hidden isomerase-like catalytic 

mechanism is revealed for the dehydrogenase. Thus, an updated, and more complete, catalytic 

cycle of AMSDH is proposed (Figure 3.7). As compared with our first mechanistic model (5), 

the new catalytic mechanism removes the puzzle of the E-to-Z conformation difference 

previously observed in the catalysis and defines an unprecedented isomerization reaction 

mechanism mediated by a dehydrogenase. 

The new tautomerization intermediate was captured from the N169D variant of AMSDH. 

The substitution of asparagine to aspartic acid at the 169 position provides enhanced stabilization 

of the enol intermediate as compared with the native enzyme, so that it accumulates in the 

mutant. It is likely that a similar intermediate also occurs in the native enzyme, but presumably it 

decays faster than it forms. At physiological pH, aspartic acid is typically deprotonated. The side 

chain of N169D is only able to donate an H-bond when protonated. While in the deprotonated 

state, the carboxylate moiety is restricted to receiving H-bonds. N169D should only be able to 

donate a hydrogen for the formation of an H-bond at lower pH values to stabilize intermediates. 
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With this understanding, the pH profile of the mutant was determined, and the results indicate a 

critical role of an H-bonding stabilization of the catalytic intermediates by Asn169. In contrast to 

aspartic acid, asparagine can both donate and receive hydrogen for forming H-bonding 

interactions and thus possesses a different pH profile. 

3.4.2 The Catalytic Driving Force of Isomerization Reaction and the Role of Asn169 

The results obtained in this work reveal a pitcher-and-catcher mechanism. At one end of 

the active site, two arginine residues (Arg120 and Arg464) function as the “pitcher,” using 

 

Figure 3.7 An updated catalytic mechanism of AMSDH.  The isomerase reaction is 
highlighted in a dotted box 
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electrostatic forces to drive an isomerization (Error! Reference source not found.C). Because 

of the two arginine residues, the substrate binds in the 2-imine, 6-enol form. At the other end of 

the active site, Asn169 acts as the “catcher” by stabilizing the 2-enamine, 6-aldehyde form of the 

substrate, the necessary tautomer for dehydrogenation. In the N169D variant, however, the 

scenario is somewhat different. In wtAMSDH, the side chain of Asn169 can act as an H-bond 

donor with its amide moiety to stabilize the aldehydic oxygen of the substrate and subsequent 

reactive intermediates. By contrast, in the N169D variant, the deprotonated carboxylate group of 

the Asp169 can only accept H-bonds, giving an unexpected opportunity to capture an imine/enol 

tautomer during the in crystallo chemical reaction. 

During the reaction catalyzed by AMSDH, the role of Asn169 is to stabilize partial 

negative charges of intermediates and transition states by acting as an H-bond donor with the C6 

oxo group of the substrate-derived intermediates. It was a fortuitous discovery to capture a 

tautomer of the primary substrate during our quest to determine the precise role of Asn169. This 

finding allows for a deeper understanding of AMSDH (Figure 3.7), and the enzymatically 

mediated tautomerization mechanism is fully established. 

3.4.3 The Necessity of the Isomerization Reaction 

Upon recognizing that AMSDH performs an unexpected isomerization on its substrate, 

the question of why such an isomerization should take place naturally arises. There is a 

difference of ∼4.2 kcal mol−1 in free energy between the 2-AMS 2-enamine, 6-aldehyde, 2E 

isomer and 2Z isomer (5). One reason for the presence of an intrinsic isomerase activity is 

perhaps to utilize this small but noticeable energy for the dehydrogenation reaction. Moreover, in 

the tertiary complex, the substrate in the active site was recognized by arginine residues in its 

original “compact” conformation (Error! Reference source not found.). After isomerization, 
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the distance between C6 of the substrate and the sulfur of cysteine decreased from ∼3.5 Å to ∼2 

Å, which also facilitates the nucleophilic attack from the cysteine in the subsequent step of the 

reaction. Thus, the isomerization reaction forces the substrate binding to the active site in a 

correct configuration for dehydrogenation. 

Another consideration is that the enzyme following AMSDH in the kynurenine pathway 

is a deaminase that presumably works by adding water to the iminium ion of 2-AM, generating 

ammonia and 4-oxalocrotonate (Figure 3.8) [64]. The chemistry of deamination has been well 

studied and proceeds via backside nucleophilic attack of a water molecule or hydroxide ion on 

the electrophilic imine carbon. Such a reaction would be less sterically hindered on the observed 

product of AMSDH as compared with the expected product had no isomerization taken place. 

A broader look at the kynurenine pathway may provide further insight into both why an 

isomerization is needed at this point in the pathway as well as why AMSDH is best suited to 

perform such an activity. The metabolic intermediate two reactions upstream of 2-AMS is 3-

hydroxyanthranilic acid (3-HAA) with a substituted benzene ring. The aromaticity of 3-HAA is 

broken by HAO as molecular oxygen is added across its C3–C4 bond. During the addition of 

 

Figure 3.8 Backside attack on the immonium ion of 2-AM is less sterically hindered after 
isomerization. The expected chemical step for the enzyme downstream of AMSDH if there 
had been no isomerization, top left, and with isomerization, bottom left.
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oxygen, 3-HAA bidentately chelates the active-site iron ion of HAO with its hydroxyl and amino 

groups, ensuring that the resulting product, 2-amino-3-carboxymuconic semialdehyde (ACMS), 

will be formed with its two carboxylate groups trans to each other and its amine group cis to its 

3-carboxyl group. This much of the stereochemistry has been previously verified [44]. A crystal 

structure of ACMSD bound with a competitive inhibitor also agreed with the two carboxylate 

groups of ACMS being trans to each other [20]. After decarboxylation by ACMSD, the 

kynurenine metabolite, 2-AMS, can rapidly, spontaneously decay to picolinic acid, presumably 

by an electrocyclization like its upstream metabolite, ACMS, which decays to quinolinic acid. 

The decay reaction to picolinic acid, a metabolic dead end, is relatively rapid with a half-life of 

35 s at room temperature [22]. 

If one is to accept that an isomerization must be performed before the downstream 

deamination reaction, HAO, the first enzyme of the pathway available to perform the 

isomerization, is an untenable choice because it is directly chelated by its substrate and products 

across the very bond to isomerize. The next candidate, ACMSD, is more promising; however, if 

it were to catalyze the isomerization of the 2–3 bond of ACMS or 2-AMS, it would increase the 

rate of an already fast decay process [39] by putting 2-AMS in the correct conformation to form 

picolinic acid. AMSDH is then the logical choice to perform the isomerization, as it is the last 

enzyme for which the amine and aldehyde of the metabolite are in full conjugation to allow for 

facile tautomerization to an imine and enol form that can readily rotate about the C2–C3 bond. 

After oxidation to 2-aminomuconic acid, the barrier for tautomerization to the imine form to 

allow for isomerization is expected to be much larger. Hence, from both the metabolic pathway 

and the chemical logic standpoints, there is an intrinsic need for isomerization. 
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3.4.4 A Conserved Substrate Recognition Model in Kynurenine Pathway 

In the kynurenine pathway, several intermediates are unstable. The in vitro decay rates of 

ACMS and 2-AMS are 0.015 and 1.2 min−1 at pH 7.4, respectively [39], which means that the 

enzymes responsible for them must compete with their non-enzymatic decay under differing 

metabolic states. Therefore, it is essential to recognize and stabilize those unstable intermediates 

by H-bonding within a short time during the enzymatic reactions. It was reported that two 

arginine residues from the adjoining units in ACMSD [19], the upstream neighbor of AMSDH in 

kynurenine pathway, are located in the binding pocket for H-bonding with the two carboxylate 

groups of ACMS and possible catalytic intermediates [19] [20]. In AMSDH, the substrate, 2-

AMS, is even more unstable than ACMS, and thus it needs to be efficiently recognized and 

stabilized by the two arginine residues in AMSDH at one end and an asparagine residue at the 

other end to prevent spontaneous autocyclization of the substrate inside the enzyme. 

3.4.5 Comparison with 4-Oxalocrotonate Tautomerase 

Based on previously characterized dehydrogenases, there is no precedent for an aldehyde 

dehydrogenase to isomerize its bound substrate before performing its primary redox reaction. 

Interestingly, an enzyme in the tautomerase superfamily has been characterized in which 2-

hydroxymuconate, the product of AMSDH with its alternate substrate, 2-HMS, is a reaction 

intermediate in the isomerization of 2-oxo-4-hexenedioate to 2-oxo-3-hexenedioate [65-66]. The 

enzyme, 4-oxalocrotonate tautomerase, has been well studied [65-71], and it binds its substrate 

with three arginine residues. This binding model is the same as that in the active site of the 

AMSDH ternary complex. The implication is that the two arginine residues, Arg120 and Arg464, 

in the active site of AMSDH facilitate a similar tautomerization. 
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3.5 Conclusion 

An enzyme-mediated substrate tautomerization mechanism is found in the early stage of 

the dehydrogenase catalytic cycle of AMSDH. Our previous work suggested an E/Z 

isomerization of the substrate in the enzyme active site. However, the chemical mechanism of 

the isomerization was not studied [22]. The chemical mechanism of the hidden isomerization 

reaction was solved unexpectedly during our quest to delineate the precise role of Asn169. On 

the basis of the newly captured enol tautomer intermediate shown in our crystal structure and 

computational analysis, we propose an enzyme-mediated isomerization mechanism that proceeds 

through tautomerization catalyzed by the dehydrogenase as part of the AMSDH catalytic cycle 

(Figure 3.7). First, the 6-aldehyde form of the substrate, 2-AMS, is tautomerized to its 2-imine, 

6-eneol form in the active site. Next, the substrate rotates about its C2–C3 bond to an extended 

conformation under the assistance of Asn169. Finally, the extended substrate is tautomerized 

back to the aldehyde form to allow for nucleophilic attack from the thiolate of Cys302 to carry 

out the natural dehydrogenation chemistry. As the electrostatic driving force identified for 

initiating tautomerization during AMSDH turnover is also found in other members of the 

aldehyde dehydrogenase superfamily, these findings may have broader implications for these and 

related enzymes. 

3.6 Experimental Procedures 

3.6.1 Site-directed Mutagenesis and Protein Preparation 

The cloning and generation of expression plasmid of Pseudomonas fluorescens KU-7 

AMSDH were described in a previous publication [22]. N169A, N169S, N169D, and N169Q 

single mutants were constructed by the PCR overlap extension mutagenesis method. The plasmid 

pET16b-AMSDH containing amsdh KU-7 was used as a template, and the forward primers were 
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5′-GTTATTTCTCCGTGGgcgCTGCCGTTGCTGTTG-3′for N169A, 5′-

GTTATTTCTCCGTGGtctCTGCCGTTGCTGTTG-3′ for N169S, 5′-

GTTATTTCTCCGTGGgatCTGCCGTTGCTGTTG-3′ for N169D, and 5′-

GTTATTTCTCCGTGGcagCTGCCGTTGCTGTTG-3′ for N169Q.  

Each mutant plasmid was verified by DNA sequencing and transformed to Escherichia 

coli BL21 (DE3). The isolation strategy of each mutant protein is the same as wtAMSDH [22]. 

3.6.2 Preparation of the Substrate 2-HMS and Kinetic Assay 

The native substrate of AMSDH, 2-AMS, is too unstable for routine kinetic work [22]. 

As such, an alternate substrate by which the nitrogen atom of 2-AMS is substituted by oxygen, 2-

hydroxymuconate semialdehyde, 2-HMS, was used to measure the dehydrogenase activity as 

described in our previous study [22]. 2-HMS was generated as described previously [45]. 

Briefly, 3-hydroxyanthranilic acid dioxygenase was used to catalyze the addition of molecular 

oxygen to 3-hydroxyanthranilic acid, generating ACMS [20, 38-39, 72]. As described 

previously, lowering the pH below 2 caused the chemical conversion of ACMS to 2-HMS [22]. 

The steady-state kinetics analyses were performed in a reaction mixture of 1 mM NAD+ and 25 

mM citrate buffer (pH 4.5–5.5) or HEPES buffer (pH 6.5–8.0). All assays were done at room 

temperature; the consumption of 2-HMS (λmax at 375 nm, ϵ375 is 43,000 m−1 cm−1) [22] was 

monitored with an Agilent 8453 diode-array spectrophotometer. 

3.6.3 Crystallization, Data Collection, Processing, and Refinement 

The N169A and N169D mutants were incubated with 10 eq of NAD+ for 10 min and 

crystallized by the hanging-drop method and using a reservoir solution of 20–25% PEG 3350 

and 0.2–0.3 m sodium phosphate dibasic monohydrate, pH 9.1. The cryoprotectant solution 

containing 13% PEG 3350 and ∼1 mM 2-HMS was employed to react with the NAD+ co-
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crystalized mutant crystals. After incubation for 1 min to 20 h, the soaked crystals were flash-

cooled in liquid nitrogen. X-ray diffraction datasets were collected at the SER-CAT beamline 22-

ID of the Advanced Photon Source, Argonne National Laboratory, and were processed and 

scaled by HKL-2000 [73]. Using the wtAMSDH structure (PDB entry: 4I26) as the template, the 

structures of the mutants and catalytic intermediates were solved by molecular replacement and 

refined by employing the Phenix 1.10.1 [56] and Coot 0.8.3 [57]. PyMOL [58] was used in 

generating structural figures. 

3.6.4 Quantum Chemical Calculations 

Gaussian 03 Revision-E.01 was used to perform all calculations [60]. The crystal 

structure of N169D ternary complex (PDB entry: 5KLL) was used to build the starting models. 

Geometry optimizations and density functional theory calculations were done at the B3LYP/6-

31G*+ levels.  
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4 REASSIGNMENT OF THE HUMAN ALDEHYDE DEHYDROGENASE ALDH8A1 

(ALDH12) TO THE KYNURENINE PATHWAY IN TRYPTOPHAN CATABOLISM 

This chapter is adapted from the published work authored by ID: Davis I, Yang Y, Wherritt D, 

and Liu A (2018) Reassignment of the human aldehyde dehydrogenase ALDH8A1 (ALDH12) to 

the kynurenine pathway in tryptophan catabolism. Journal of Biological Chemistry, 293(25), 

9594 – 9603. DOI: 10.1074/jbc.RA118.003320 

4.1 Abstract 

The kynurenine pathway is the primary route for L-tryptophan degradation in mammals. 

Intermediates and side products of this pathway are involved in immune response and 

neurodegenerative diseases. This makes the study of enzymes, especially those from mammalian 

sources, of the kynurenine pathway worthwhile. Recent studies on a bacterial version of an 

enzyme of this pathway, 2-aminomuconate semialdehyde (2-AMS) dehydrogenase (AMSDH), 

have provided a detailed understanding of the catalytic mechanism and identified residues 

conserved for muconate semialdehyde recognition and activation. Findings from the bacterial 

enzyme have prompted the reconsideration of the function of a previously identified human 

aldehyde dehydrogenase, ALDH8A1 (or ALDH12), which was annotated as a retinal 

dehydrogenase based on its ability to preferentially oxidize 9-cis-retinal over trans-retinal. Here, 

we provide compelling bioinformatics and experimental evidence that human ALDH8A1 should 

be reassigned to the missing 2-AMS dehydrogenase of the kynurenine metabolic pathway. For 

the first time, the product of the semialdehyde oxidation by AMSDH is also revealed by NMR 

and high-resolution MS. We found that ALDH8A1 catalyzes the NAD+-dependent oxidation of 

2-AMS with a catalytic efficiency equivalent to that of AMSDH from the bacterium 

Pseudomonas fluorescens. Substitution of active-site residues required for substrate recognition, 
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binding, and isomerization in the bacterial enzyme resulted in human ALDH8A1 variants with 

160-fold increased KM or no detectable activity. In conclusion, this molecular study establishes 

an additional enzymatic step in an important human pathway for tryptophan catabolism. 

4.2 Introduction 

L-Tryptophan, an essential amino acid, has several metabolic fates in mammals: a 

building block for proteins, the precursor for serotonin and melatonin, and its complete 

catabolism through the kynurenine pathway (KP) to pyruvate via alanine, acetoacetate via 

glutaryl-CoA [74], NAD/NADH via quinolinic acid (QA or QUIN) [44], and several 

neurologically active compounds. Various kynurenine pathway metabolites are linked to the 

innate immune response and both neuroexcitatory and neurodepressive effects [11, 14, 61, 75]. 

Because of its potential medical significance, the KP has received increasing attention. The first 

and committing enzymes, tryptophan and indolamine dioxygenase, are active drug targets with 

inhibitors in clinical trials [75-77]. Recently, a downstream enzyme of the KP (Figure 4.1), 2-

amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD), has received attention as a 

potential drug target [61]. Inhibition of ACMSD has been shown to slow down the reaction 

competing with QA formation and boost cellular NAD(H) levels [78]. 
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Figure 4.1 The kynurenine pathway.  The enzymes identified in kynurenine pathway are: 
indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase (TDO), N-formyl 
kynurenine formamidase (FKF), kynurenine 3-monooxygenase (KMO), kynurenine 
aminotransferase (KAT), kynureninase (KYNU), 3-hydroxyanthranilate-3,4-dioxygenase 
(HAO), 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD), and the 
proposed enzyme 2-aminomuconate semialdehyde dehydrogenase (AMSDH). 
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To date, the KP pathway genes and their corresponding enzymes have not been identified 

beyond ACMSD [20, 79], although the metabolic pathway was published 53 years ago and has 

made its way into numerous biochemistry textbooks. One limiting factor for studying KP 

enzymes is that the identification of their mammalian genes has proved difficult. Initial 

characterization of the KP enzymes was performed from animal liver extracts [74]. Although 

these studies verified the activities and transformations of the KP, they were unable to provide 

much insight into the individual enzyme structures and mechanisms. Study of the KP enzymes 

stagnated until the discovery of an analogous KP in some bacteria [6, 80-84] and that 2-

nitrobenzoate biodegradation shares many of the downstream proteins with the eukaryotic 

kynurenine pathway [46, 64, 85]. An additional difficulty for studying the KP enzymes, 

especially downstream proteins, is that several of the metabolic intermediates of the pathway are 

unstable and commercially unavailable. As shown in Figure 4.1, the substrates for ACMSD and 

its downstream neighbor, 2-aminomuconate semialdehyde dehydrogenase (AMSDH), are both 

unstable and spontaneously cyclize via a pericyclic reaction to their respective pyridine products, 

QA and picolinic acid (PA) [44]. 

Despite the difficulties mentioned above, much progress has been made in understanding 

the mechanisms of KP enzymes. Recently, AMSDH from Pseudomonas fluorescens 

(pfAMSDH) identified from the 2-nitrobenzoate biodegradation pathway has been studied at the 

molecular level. Crystal structures of the resting enzyme, NAD+-bound complex, ternary 

complex, catalytic thioacyl and thiohemiacetal intermediates, and several mutants have been 

reported [22]. A hidden isomerase activity of AMSDH has also been uncovered [86]. 

Furthermore, the study of pfAMSDH revealed that, in addition to active-site residues that are 

broadly conserved across all aldehyde dehydrogenases, the hydroxymuconate semialdehyde 
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dehydrogenase (HMSDH) family possesses two conserved arginine residues that are involved in 

substrate recognition and an isomerization activity [86]. 

In this work, we have identified a human enzyme annotated as a retinal dehydrogenase 

(ALDH8A1) that carries the hallmarks of an aminomuconate semialdehyde dehydrogenase. An 

overexpression system was constructed, and recombinant ALDH8A1 was tested for activity with 

two muconic semialdehyde substrates. The activity of selected active-site variants was also 

investigated, and the reaction products were verified with NMR and high-resolution MS. All 

evidence suggests that ALDH8A1 should be reconsidered as the aldehyde dehydrogenase of the 

kynurenine pathway of tryptophan catabolism. 

4.3 Results and discussion 

4.3.1 Identification of ALDH8A1 as a potential member of the kynurenine pathway 

To continue studying the KP pathway at the molecular level, the next pressing step is to 

identify a mammalian AMSDH, especially the human version. We performed a BLAST search 

with pfAMSDH as the search sequence. The results revealed a human protein, ALDH8A1 

(initially designated ALDH12), with 44% amino acid sequence identity to pfAMSDH. However, 

ALDH8A1 is currently annotated in the NCBI gene database as a retinal dehydrogenase. It was 

assigned as cis-retinal dehydrogenase based on its ability to oxidize 9-cis-retinal faster than all-

trans-retinal, even though it was most active with benzaldehyde rather than the retinal substrates 

[87]. It was also noted in the original characterization that ALDH8A1 shares the closest 

nucleotide and protein sequence similarity with AMSDH, but it was not tested for such activity, 

presumably due to difficulty obtaining 2-aminomuconate semialdehyde (2-AMS). Here, we 

present evidence that ALDH8A1 may be more appropriately considered human AMSDH of the 

KP. AMSDH belongs to the HMSDH family. Our alignment of ALDH8A1 against AMSDH and 
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several members of the HMSDH family showed not only high overall conservation but also that, 

in addition to residues required for aldehyde dehydrogenase activity (Asn155, Glu253, and 

Cys287), residues responsible for substrate recognition only in HMSDH enzymes are conserved 

in ALDH8A1, namely Arg109 and Arg451 (Figure 4.2, generated with ESPript [88]). 

A homology structure model of ALDH8A1 was built using the iTASSER server [89]. An 

overlay of the homology model and pfAMSDH is shown in Figure 4.3A. The model shows full 

coverage of the human enzyme sequence, which overlays well with the bacterial enzyme with a 

root mean square deviation of 1.15 Å for 472 C-α carbons. In addition, all of the catalytically 

essential active-site residues from pfAMSDH (Arg109, Asn155, Glu253, Cys287, and Arg451 

by ALDH8A1 numbering) are in the same location in the homology model as in the pfAMSDH 

structure (Figure 4.3B). 
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Figure 4.2 Sequence alignment of ALDH8A1 with HMSDH enzymes.  Highly conserved 
residues are shown with red text and boxed in blue, strictly conserved residues are shown with 
a red background, and catalytic residues are shown with a green background. The enzymes 
chosen for alignment are as follows: ALDH8A1, GenBank: AAI13863; AMSDH from 
Pseudomonas fluorescens, GenBank: BAC65304; HMSDH from Paraglaciecola arctica, 
Accession No: WP_007618756; ACSDH from Comamonas testosterone, Accession No: 
YP_001967696; AMSDH from Cupriavidus metallidurans, GenBank: KWW33428; AMSDH 
from Cupriavidus basilensis, GenBank: AJG18463; HMSDH from Pseudomonas sp. M1, 
GenBank: ETM66811. 
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4.3.2 ALDH8A1 can perform the NAD+-dependent oxidation of 2-aminomuconic 

semialdehyde 

The next question to arise was whether ALDH8A1 is able to catalyze the NAD+-

dependent oxidation of 2-AMS to 2-aminomuconate (2-AM). Pursuant to this end, an 

overexpression system was generated. The synthesized gene for human ALDH8A1 was ligated 

into pET-28a(+) vector with a cleavable N-terminal His6 tag and transformed into Escherichia 

coli BL21(DE3) competent cells. The expressed protein was purified by nickel affinity 

chromatography (Figure 4.4A), and its ability to oxidize 2-AMS in a coupled-enzyme assay with 

ACMSD was tested. As shown in Figure 4.4B, ACMS has a broad absorbance band at 360 nm. 

Upon ACMSD-catalyzed decarboxylation to 2-AMS, the absorbance maximum red-shifted to 

380 nm and then decayed as 2-AMS was nonenzymatically converted to PA. The inclusion of 

purified ALDH8A1 and 1 mM NAD+ in an otherwise identical assay prevented the red shift, and 

instead, a broad absorbance band around 350 nm was observed that has been previously assigned 

 

Figure 4.3 Homology model of ALDH8A1 and crystal structure of pfAMSDH. Overlay of a 
single polypeptide (A), and a zoom-in of the active site with catalytically relevant residues 
(B). ALDH8A1 is shown in green and pfAMSDH (PDB: 4I26) in grey. 
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as the oxidized product, 2-AM, and NADH (Figure 4.4C) according to the reaction scheme 

shown in Figure 4.4D. These results resemble those observed from pfAMSDH and show that 

ALDH8A1 is able to rapidly oxidize 2-AMS in solution. The presence of the expected product in 

the coupled-enzyme assay was also verified by NMR spectroscopy. As shown in Figure 4.5, the 

reaction mixture contained resonances consistent with 2-AM and expected cross-peaks in the 1H-

1H COSY spectrum to show connectivity. Proton resonances were assigned based on similarity 

with 2-hydroxymuconic acid, which has been rigorously characterized [90]. 
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Figure 4.4 Purification and representative activity assay of ALDH8A1. (A) SDS-PAGE of a 
purification by Ni-NTA affinity chromatography. Lane 1 is clarified cell extract, 2 is cell 
pellet, 3 is flow-through, and 4-7 are fractions 1-4, respectively. Fractions 2 and 3 were 
collected for use. (B) Time course of ACMSD acting on ACMS to produce 2-AMS which 
decays to PA. (C) Coupled-enzyme assay with ACMSD and ALDH8A1 converting ACMS to 
2-AM in the presence of NAD+, and (D) Scheme showing the reactions in A and B as the top 
and bottom branches, respectively.
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4.3.3 Characterization of the reaction product of the ALDH8A1-catalyzed reaction 

In initial studies of AMSDH, the identity of the product was inferred based on knowledge 

of the substrate structure and the catalytic cycle of the dehydrogenation reaction. The in crystallo 

characterization of the AMSDH reaction revealed that, in addition to oxidation of the aldehyde to 

its corresponding carboxylic acid, pfAMSDH also isomerizes the 2,3-double bond inside the 

active site prior to substrate oxidation [86]. In the process of trying to determine the 

conformation of the product of the reaction catalyzed by ALDH8A1, we noticed that the product, 

2-AM (λmax 330 nm), is unstable and is nonenzymatically bleached in a single kinetic phase with 

a half-life of 67 min (Figure 4.6A). High-resolution mass spectra were acquired of the 2-AM 

decay product after purification by HPLC. Mass spectra were collected in negative mode, and as 

 

Figure 4.5 1H-1H NMR COSY spectrum of a coupled-enzyme reaction mixture containing 2-
AM.  The highlighted cross-peaks show correlations of Hb with Ha and Hc. Details of the 
NMR experiment can be found in 4.5.4 NMR spectroscopy 
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shown in Figure 4.6B, the parent ion matches tautomerized hydroxymuconate, 2-oxo-3-

hexenedioate, with 2.55-ppm mass accuracy. Furthermore, fragment ions from cleaving at either 

side of the keto group can be observed with nominal masses of 113 and 85 Da. 

The downstream enzyme of AMSDH performs deamination on 2-AM to produce 2-

hydroxymuconate, which is expected to tautomerize to its α,β-unsaturated ketone form, 2-oxo-3-

hexenedioate, as shown in Figure 4.7. The deamination reaction is not known to be coupled to 

any other reaction, so it is expected to be thermodynamically preferred. As such, it may proceed 

nonenzymatically at a slower rate. To lend credence to the proposed nonenzymatic deamination 

followed by tautomerization, ACMSD–AMSDH coupled-enzyme assays were performed in H2O 

and D2O in separate experiments, and the reaction products were monitored by NMR 

 

Figure 4.6 Analysis of the ALDH8A1 reaction product. (A) UV-visible spectrum of 2-AM 
and the time course of its nonenzymatic decay (inset). (B) MS-MS spectrum of the 2-AM 
decay product. mAU, milliabsorbance units. Details of the MS-MS experiment can be found 
in 4.5.5 Mass spectrometry 
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spectroscopy (Figure 4.8). When performing the reaction in H2O (Figure 4.8A), two doublets 

around 5.8 ppm and a doublet of doublets at 7.15 ppm can be observed to decay while a new 

doublet at 6.17 ppm and a doublet of triplets at 6.9 ppm arise. These new resonances are 

consistent with 2-oxohexenedioate observed in the study of 2-hydroxymuconate tautomerization 

[90]. Alternatively, upon enzymatic decarboxylation and oxidation performed in D2O by 

ACMSD and AMSDH, respectively, the 1H NMR spectrum shows two doublets at 7.1 and 5.8 

ppm, corresponding to the protons on carbons 4 and 5 (Hb and Hc) of 2-AM, respectively (Figure 

4.8B). The proton at the 3-position (Ha) is replaced with deuterium by running the ACMSD 

reaction in D2O (Figure 4.9). The two doublets coalesce into a single resonance at 6.9 ppm over 

time. The decay of the resonance at 5.8 ppm indicates that the proton at the 5-position can 

eventually exchange with solvent, and the shift of the doublet at 7.1 to a singlet at 6.9 ppm 

implies that a chemical change takes place in addition to simple exchanging of protons for 

deuterons. The most likely candidate for such a chemical change is the replacement of the 

nitrogen at the 2-position with oxygen derived from water, i.e. deamination of 2-AM. Thus, the 

NMR spectra of the initial and final products of the ALDH8A1 reaction are consistent with 2-

AM being the initially formed product, which then spontaneously deaminates and tautomerizes. 

 

Figure 4.7 Proposed spontaneous decay mechanism for 2-aminomuconate. 
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Figure 4.8 1H-NMR spectra monitoring the decay of 2-AM from a coupled-enzyme assay 
performed in H2O (A) and D2O (B).2-AM resonances are highlighted with red boxes, and the 
decay product, 2-oxo-hexenedioate, is highlighted with blue boxes. A zoomed-in view of the 
resonances corresponding to 2-AM and its decay product is shown in the inset in B. The 
initial and final spectra are shown as blue and black, respectively. 
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4.3.4 Determination of the kinetic parameters of ALDH8A1 and selected site-directed 

mutants 

Although the coupled-enzyme assays presented above show that 2-AMS can serve as a 

substrate for ALDH8A1, such experiments are not amenable to extraction of enzymatic kinetic 

parameters. Instead, a substrate analog, 2-hydroxymuconate semialdehyde (2-HMS), in which 

the amino group of 2-AMS has been replaced with a hydroxyl group to prevent the 

nonenzymatic cyclization reaction, is used to determine kinetic parameters. The 1H NMR 

spectrum of 2-HMS can be found in Figure 4.10 along with corresponding 1D NOESY spectra, 

which show not only through-space interactions between protons but also in-phase resonances 

for the enol tautomer, which was previously implicated as an intermediate in the 2,3-bond 

isomerization reaction. The observation of resonances consistent with the enol form of 2-HMS in 

solution lends credence to the previously proposed tautomerization mechanism in pfAMSDH by 

showing that the enol form is energetically accessible. ALDH8A1 exhibits typical steady-state 

kinetics when acting on 2-HMS (Figure 4.11A). The data were fitted with the Michaelis–Menten 

equation to provide a kcat, KM, and kcat/ KM of 0.42 s−1, 590 nM, and 7.1 × 105 M−1 s−1, 

respectively. A sub-micromolar KM is at the lower end for the KP enzymes; however, such high 

commitment may be necessary to efficiently compete with the rapid decay of its substrate to PA. 

 

Figure 4.9 Coupled ACMSD-AMSDH assay performed in D2O. 
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Figure 4.10 1H NMR spectrum of 2-HMS and 1D NOESY spectra show enol tautomer. 
NOESY spectra were acquired by irradiating at the resonance marked with an asterisk 
corresponding to the color-coded proton (Hd as blue, Hb as red, and Ha/c as mustard). Out-of-
phase, positive resonances show through-space interactions between protons, and in-phase, 
negative resonances show the same proton in the enol tautomer as indicated by the 
isomerization shown. 1H NMR spectrum of 2-HMS is shown at the bottom in black. 
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To further investigate the specificity of ALDH8A1 for α-substituted muconate 

semialdehydes, several active-site mutants were constructed. The two strictly conserved residues 

among the HMSDH family previously shown to be responsible for substrate recognition and 

binding, Arg109, and Arg451, were mutated to alanine, and their kinetic parameters for 2-HMS 

were determined. As summarized in Table 4.1, deletion of Arg109 by mutation to alanine 

generated a variant with a similar turnover number but approximately 160-fold increased KM as 

compared with WT (Figure 4.11B). No detectable activity could be measured for the R451A 

variant. Additionally, the active-site asparagine (Asn155) responsible for stabilizing tetrahedral, 

oxyanion intermediates in general and involved in substrate isomerization in AMSDH was 

mutated to alanine, aspartic acid, and glutamine. The activity of the mutants was too low to 

determine kinetic parameters; however, specific activities for N155A, N155D, and N155Q were 

7.4 ± 0.1, 20 ± 1, and 0.31 ± 0.03 nmol/mg/min, respectively. Of the same mutants in 

pfAMSDH, N169D also showed the highest activity (22). In other aldehyde dehydrogenases, 

mutation of the corresponding asparagine to alanine or aspartic acid reduced the activity by 

approximately 1,000-fold or below detectable limits (27, 28). 

Table 4.1 Kinetic parameters of ALDH8A1 and variants for 2-HMS. 

 kcat (s-1) KM (µM) kcat/KM (M-1 s-1)
ALDH8A1 0.42 ± 0.03 0.59 ± 0.10 7.1  105

R109A 1.06 ± 0.12 97 ± 13 1.1  104

R451A NDa ND -
N169A/D/Q < 0.02 ND -

a Not determined 
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Figure 4.11 Determination of Michaelis–Menten parameters of ALDH8A1 and the R109A 
variant for 2-HMS. Reactions were monitored by the decrease in absorbance at 375 nm. 
ALDH8A1 and its R109A variant are shown in A and B, respectively. Error bars represent 
S.D. 
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4.4 Conclusion 

The human enzyme ALDH8A1 (ALDH12) was shown to catalyze the NAD+-dependent 

oxidation of 2-AMS with catalytic efficiency comparable with pfAMSDH. Mutation of the 

active-site residues, which were shown to be heavily involved with substrate recognition, 

binding, and isomerization in the bacterial enzyme, resulted in variants with 100-fold increased 

KM or no detectable activity. As such, the ALDH8A1 enzyme, which was previously assigned as 

a cis-retinal dehydrogenase, should be reassigned as human AMSDH. It was also shown that the 

reaction product, 2-AM, can spontaneously deaminate in solution, ultimately forming 2-oxo-3-

hexenedioate. This work thus establishes that the aldehyde dehydrogenase of the kynurenine 

pathway, first discovered 53 years ago from liver extracts [74], is ALDH8A1 (ALDH12). The 

kynurenine pathway of the tryptophan catabolic pathway in humans is therefore extended to 

AMSDH. 

4.5 Experimental procedures 

4.5.1 Cloning and site-directed mutagenesis 

A DNA sequence that codes for human ALDH8A1 (accession number AF303134) was 

purchased from DNASU (Arizona State University) and ligated into pET28a(+) vector with NheI 

and HindIII restriction sites, creating an N-terminal His6-tagged construct. The resultant plasmid 

was transformed into E. coli cell line BL21 (DE3), which was stored at −80 °C as a 20% (v/v) 

glycerol stock. Overexpression systems for R109A, R451A, N155A, N155Q, and N155D were 

constructed by PCR overlap extension using the WT as the starting template. The forward 

primers were 5′-CCATGGACATTCCCgcgTCTGTGCAGAA and 5′-

CTGCTGGCTCATCgcgGAGCTGAACCTT for R109A and R451A, respectively, and 5′-

GCTGGTCTGATCAGCCCCTGGgctTTGCCACTCTACTTGCTGACC, 5′-
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GCTGGTCTGATCAGCCCCTGGcagTTGCCACTCTACTTGCTGACC, and 5′-

GCTGGTCTGATCAGCCCCTGGgacTTGCCACTCTACTTGCTGACC for N155A, N155Q, 

and N155D, respectively.  

4.5.2 Protein preparation 

For all cultures, antibiotic selection under kanamycin was used. Cultures were started by 

streaking the appropriate glycerol stock onto an LB-agar plate, which was incubated overnight at 

37 °C. A single colony was selected for further incubation in 15 ml of LB-Miller broth at 37 °C 

with 220 rpm shaking until an A600 of approximately 0.6 was achieved. Then 50 ml of LB-Miller 

broth was inoculated to an A600 of 0.0002 and incubated at 37 °C with 220 rpm shaking. Finally, 

once the 50-ml flask reached an A600 of approximately 0.6, it was used to inoculate 6 liters of 

LB-Miller broth in 12 two-liter baffled flasks to an A600 of 0.0002. The flasks were incubated at 

37 °C with 220 rpm shaking. Upon reaching an A600 of 0.5, isopropyl β-D-1-

thiogalactopyranoside was added to a final concentration of 800 μM to induce protein 

expression, the temperature was lowered to 16 °C, and the culture was incubated for an 

additional 12 h. Cells were harvested by centrifugation at 8,000 × g and resuspended in 50 mm 

KPi, 150 mm NaCl buffered to pH 8.0 with 0.1% (v/v) β-mercaptoethanol. Protein was released 

by cell disruption (LS-20, Microfluidics), and the cell debris was removed by centrifugation at 

27,000 × g. 

The protein of interest was purified by nickel affinity chromatography. Clarified, cell-free 

extract was applied to a nickel-nitrilotriacetic acid column and eluted with an imidazole gradient. 

The running and elution buffers were 50 mM KPi, 150 mM NaCl buffered to pH 8.0 with 5 mM 

1,4-DTT with the elution buffer also containing 500 mM imidazole. The purified protein was 

then desalted to 25 mM HEPES buffer, pH 7.5, 5 mM 1,4-DTT, 1 mM NAD+, 5% glycerol 
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(w/v); concentrated to approximately 1 mM by 30-kDa centrifugal filters; flash frozen in liquid 

nitrogen; and stored at −80 °C until use. ACMSD used for coupled-enzyme assays was prepared 

as reported previously [19-20, 38-39, 72, 91]. 

4.5.3 Kinetic assays 

The substrate analog 2-hydroxymuconic semialdehyde was prepared as reported 

previously [22]. Briefly, 3-hydroxyanthralinic acid was converted to 2-amino-3-carboxymuconic 

semialdehyde by purified 3-hydroxyanthranilic acid dioxygenase. 2-Amino-3-carboxymuconic 

semialdehyde was then nonenzymatically converted to 2-hydroxymuconic semialdehyde by 

lowering the pH below 2. After conversion, the solution was neutralized, and excess enzyme was 

removed by filtration. 

The coupled-enzyme assays were initiated by addition of excess ACMSD (1 μM) to 

rapidly convert all ACMS to 2-AMS, which is in turn was converted to 2-aminomuconic acid by 

ALDH8A1. In the absence of ALDH8A1 and 1 mM NAD+, the 2-AMS nonenzymatically 

decays to picolinic acid. Catalytic parameters were obtained using 2-HMS as the substrate. The 

decrease in absorbance as 2-HMS (λmax at 375 nm, ε375 of 43,000 M−1 cm−1) and NAD+ are 

converted to 2-hydroxymuconic acid and NADH (ε375 of 1,900 M−1 cm−1) was measured with an 

Agilent 8453 diode-array spectrometer. The reaction rate was calculated as the change in 

absorbance divided by the sum of the extinction coefficients of 2-HMS and NADH. Initial rates 

versus substrate concentration were fitted with the Michaelis–Menten equation. 

	 

Nonlinear least squares regression was performed with OriginPro 8.5. 
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4.5.4 NMR spectroscopy 

All NMR spectra were recorded on a Bruker (Billerica, MA) Avance III HD 500-MHz 

spectrometer equipped with a CryoProdigy Probe at 300 K running TopSpin 3.5pl6. Spectra 

were recorded in D2O or 90% H2O, 10% D2O and referenced to residual solvent (1H, 4.70 ppm). 

One-dimensional 1H spectra (pulse sequence, zg30) were recorded with 1-s relaxation delays, 

65,536 data points, and multiplied with an exponential function for a line broadening of 0.3 Hz 

before Fourier transformation. Double quantum–filtered COSY (pulse sequence, cosygpmfppqf) 

spectra were acquired with spectral widths of 13.0 ppm with 2,048 × 128 data points and a 

relaxation delay of 2.0 s. 1D gradient-selected NOESY (pulse sequence, selnogp) spectra were 

recorded with a mixing time of 0.3 s and a 2-s relaxation delay and multiplied with an 

exponential function for a line broadening of 3 Hz before Fourier transformation. All NMR data 

were processed using MestReNova NMR version 11.0.3 software. 

4.5.5 Mass spectrometry 

The AMSDH reaction product, 2-aminomuconate, was isolated for mass spectrometric 

characterization by reverse-phase HPLC with an InertSustain C18 column (5-μm particle size, 

4.6-mm inner diameter × 100 mm; GL Sciences Inc.) on a Dionex Ultimate 3000 HPLC 

equipped with a diode-array detector (Sunnyvale, CA). The crude reaction mixture was 

ultrafiltered (10-kDa cutoff) to remove protein, and separation was achieved using isocratic 

elution with 95% H2O, 5% acetonitrile, and 0.5% formic acid. Mass spectra were collected on a 

maXis plus quadrupole-TOF mass spectrometer equipped with an electrospray ionization source 

(Bruker Daltonics). The instrument was operated in the negative ionization mode in the range 50 

≤ m/z ≤ 1,500 and calibrated using ESI-L Low Concentration Tuning Mix (Agilent 

Technologies). Samples were introduced via syringe pump at a constant flow rate of 3 μL/min. 
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Relevant source parameters are summarized as follows: capillary voltage, 3500 V with a set end 

plate offset of −500 V; nebulizer gas pressure, 0.4 bar; dry gas flow rate, 4.0 L/min; source 

temperature, 200 °C. Mass spectra were averages of 1 min of scans collected at a rate of 1 scan 

per second. Collision-induced dissociation was achieved using a set collision energy of −20 eV. 

OtofControl software version 6.3 was used for data acquisition, and Compass Data Analysis 

software version 4.3 (Bruker Daltonics) was used to process all mass spectra. mMass software 

version 5.5.0 was used for all exact mass calculations [92].  
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5 PROBING BIS-FE(IV) MAUG: EXPERIMENTAL EVIDENCE FOR THE LONG-

RANGE CHARGE-RESONANCE MODEL 

This chapter is adapted from the published work coauthored by ID: Geng J, Davis I, and Liu A 

(2015) Probing Bis-FeIV MauG: Experimental Evidence for the Long-Range Charge-Resonance 

Model. Angewandte Chemie International Edition, 54(12), 3692 – 3696. DOI: 

10.1002/anie.201410247 

5.1 Abstract 

The biosynthesis of tryptophan tryptophylquinone, a protein‐derived cofactor, involves a 

long‐range reaction mediated by a bis‐FeIV intermediate of a diheme enzyme, MauG. Recently, a 

unique charge‐resonance (CR) phenomenon was discovered in this intermediate, and a 

biological, long‐distance CR model was proposed. This model suggests that the chemical nature 

of the bis‐FeIV species is not as simple as it appears; rather, it is composed of a collection of 

resonance structures in a dynamic equilibrium. Here, we experimentally evaluated the proposed 

CR model by introducing small molecules to, and measuring the temperature dependence of, bis‐

FeIV MauG. Spectroscopic evidence was presented to demonstrate that the selected compounds 

increase the decay rate of the bis‐FeIV species by disrupting the equilibrium of the resonance 

structures that constitutes the proposed CR model. The results support this new CR model and 

bring a fresh concept to the classical CR theory. 

5.2 Introduction 

Since its first documentation by Brocklehurst and Badgers in 1968, [93] charge‐

resonance (CR) phenomena have been actively researched by organic chemists [94]. In a typical 

CR event, one‐electron oxidation of an aromatic compound generates a cation radical which 

spontaneously associates with its neutral parent molecule or another molecule of the cation 
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radical to form noncovalent “sandwich‐like” dimeric complexes. The former scenario stabilizes 

an odd number of spin/charge in a mixed‐valence species, (Π)2
•+, and is classified as type I CR; 

the latter one stabilizes an even number of spin/charge in a dication diradical, (Π•+)2, and is 

classified as type II CR [95]. Notably, unique electronic absorption bands in the near‐infrared 

(NIR) region arise from resonance stabilization of spin/charge in the CR complexes and are 

thereby termed as CR bands (Error! Reference source not found.) [96-99]. CR complexes 

represent the simplest intermolecular units that carry delocalized spin/charge. Investigation of 

these phenomena may provide the chemical basis for electron transfer (ET), conductivity, and 

ferromagnetism in many organic materials and metalloporphyrin complexes. 

Like many classical chemical models adopted by nature, the utilization of CR in 

biological systems to transiently stabilize spin/charge was first suggested in a pair of chlorophyll 

molecules, known as the “special pair”, in bacterial photosynthetic reaction centers [100-101]. 

Recently, a second example was revealed from a diheme enzyme, MauG [95]. MauG is the 

terminal enzyme in the biogenesis pathway of a protein‐derived cofactor, tryptophan 

 

Figure 5.1 Qualitative MO diagrams for Charge Resonance.  Type I CR in the mixed-valence 
cation radical (Π)2

•+ and Type II CR in the di-cation di-radical (Π •+)2. The origins of the CR 
stabilization energy (ΔECR) and the CR band (hνCR) are illustrated. 
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tryptophylquinone (TTQ), [102] which is the catalytic center of methylamine dehydrogenase 

(MADH) [103]. MauG possesses two c‐type hemes in distinct spin states: one is pentacoordinate, 

high‐spin with an axial histidine ligand and the other is hexacoordinate, low‐spin with an axial 

histidine‐tyrosine ligand set (denoted as Heme5C and Heme6C, respectively, as shown in Error! 

Reference source not found.) [102, 104]. The substrate of MauG is a precursor protein of 

MADH, preMADH [105]. MauG performs three cycles of H2O2‐dependent oxidation on two 

adjacent tryptophan residues of preMADH to produce TTQ (Figure 5.2a) [106]. Each two‐

electron oxidation cycle is suggested to be mediated by a unique bis‐FeIV intermediate of MauG 

in which Heme5C is in an oxyferryl state and Heme6C is in a ferryl state with its two original axial 

ligands retained (Figure 5.2b) [107-108]. 

It is in the bis‐FeIV intermediate that the CR phenomenon was proposed [95]. A broad 

electronic absorption band centered at 950 nm (ε = ca. 7000 M−1 cm−1) is present specifically in 

the bis‐FeIV state of MauG (Figure 5.2c) [95]. It is noteworthy that the spectral properties of the 

NIR band are highly reminiscent of the reported CR spectroscopic signatures from 

metalloporphyrin complexes [99, 109]. The bis‐FeIV species is electronically equivalent to two 

ferric hemes each coupled with a porphyrin cation radical, a scenario resembling the dication 

diradical complexes in type II CR. However, this case cannot be simply illustrated by the 
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classical CR models as the two porphyrin rings are about 14 Å apart (Error! Reference source 

not found.), a much wider separation than the interacting moieties in model CR complexes [110-

111]. A significant conformational change that enables the diheme cofactor to fold into a 

“sandwich‐like” dimer is unlikely to occur during the formation of the bis‐FeIV species since the 

structure shown in Error! Reference source not found. was previously demonstrated to be in 

 

Figure 5.2 MauG-dependent TTQ biosynthesis and the bis-FeIV species of MauG. (a) 
Chemical reaction catalyzed by MauG. Posttranslational modifications on the two tryptophan 
residues of preMADH are shown in red. H2O2 serves as a co-substrate to provide oxidizing 
equivalents. (b) Chemical conversion between di-ferric and bis-FeIV MauG. (c) NIR 
electronic absorption band at 950 nm displayed by bis-FeIV MauG (5 M). Ten equivalents of 
H2O2 was added to achieve a full conversion from di-ferric to bis-FeIV MauG. 
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the catalytically active form by reactions in crystals [104]. Thus, a new class of CR, type III, was 

proposed, whereby resonance stabilization of spin/charge is facilitated by an additional π moiety, 

the Trp93 residue located between the hemes (Figure 5.3a) [95]. Electron/hole hopping through 

Trp93 was postulated to occur in the ET process between the hemes to enable CR stabilization. 

Ultrafast and reversible ET with Trp93 as the hopping site mimics the distribution of spin/charge 

as if this was in an extended conjugated system. Overall, the type III CR model represents a 

dynamic equilibrium of different electronically equivalent resonance structures as one electron 

from Trp93 cannot simultaneously fill two holes. This new CR model is supported by theoretical 

calculations, which predicted that in the bis‐FeIV species electron/hole hopping through Trp93 

makes possible a rate of inter-heme ET greater than 107 s−1, in accordance with the reported ET 

rates from established model CR systems [95]. 

In this work, we aim to experimentally evaluate the proposed type III CR model and 

determine the chemical nature of bis‐FeIV MauG, i.e., whether it is a single redox species or 

 

Figure 5.3 Type III CR in bis‐FeIV MauG. a) Proposed resonance structures in the type III CR 
model. “H” represents a third aromatic moiety (i.e., the Trp93 residue in this case), which 
functions as a hopping relay to facilitate ET between the two primary aromatic moieties. The 
two resonance structures (Cpd ES* and Cpd I*) that can be potentially targeted by small‐
molecule ligands are highlighted with a grey background. b) Specific targeting of Cpd ES* 
and Cpd I* by CN− to disrupt the type III CR in the bis‐FeIV species. 
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composed of multiple resonance structures as predicted by the CR model. We introduced small‐

molecule ligands to disrupt the hypothesized equilibrium of high‐valence species. The selected 

ligand molecules include cyanide (CN−), imidazole (IM), and fluoride (F−). They are all capable 

of binding to the heme iron when there is a coordinate vacancy, yet with different binding 

affinities. If bis‐FeIV MauG is a single redox species, exogenous small‐molecule ligands (CN−, 

for instance) are not expected to cause a notable effect on its chemical properties because both 

hemes are coordinatively saturated and the axial ligands are either irreplaceable (Heme5C) or 

inaccessible (Heme6C) [104, 112]. However, if bis‐FeIV MauG represents an equilibrium of 

resonance structures as proposed in Figure 5.3a, exogenous CN− might be able to specifically 

target species like compound Cpd ES* and Cpd I* by outcompeting the relatively weakly 

associated axial ligand of Heme5C to generate the [FeIIICN−⋅⋅⋅Trp93 •+⋅⋅⋅FeIV] and 

[FeIIICN−⋅⋅⋅Trp93⋅⋅⋅FeIV •+] complexes, respectively (Figure 5.3b). Neither CN− adduct is likely to 

be capable of maintaining the CR stabilization due to changes in heme redox properties, and it is 

anticipated that they will quickly decay to a stable, reduced state by releasing two oxidizing 

equivalents to the protein matrix or the solvent (Figure 5.3b). Previously, three methionine 

residues near Heme5C were identified to absorb the oxidizing equivalents from bis‐FeIV in the 

absence of preMADH through ancillary ET pathways [113]. Despite the fact that Cpd ES* and 

Cpd I* are present only as minor species in the proposed CR model, [95] the dynamic exchange 

with other resonance structures allows the CN−‐induced disruption to gradually shift the 

equilibrium and break the electronic communication between the hemes. It will eventually 

destroy the CR stabilization, resulting in an accelerated decay of the bis‐FeIV species to a di-

ferric CN− adduct (Figure 5.3b). 
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5.3 Results 

In the absence of preMADH, bis‐FeIV MauG does not misfire but instead exhibits 

extraordinary stability with a half‐life of several minutes [114-115]. The NIR band at 950 nm can 

be used as a spectral signature to monitor the decay process of the bis‐FeIV species [95]. Figure 

5.4a shows that the introduction of CN− to the bis‐FeIV species led to an apparent increase in the 

decay rate of the NIR band, compared to a parallel experiment without CN−. In the presence of 

25 mM CN−, the NIR spectral signature became completely diminished ca. 75 s after addition of 

CN−, with a decay rate nearly one order of magnitude greater than that in the absence of CN−. 

When different small‐molecule ligands were examined, they exhibited different degrees of 

disruptive effects on the decay rate of the NIR band with CN− presenting the most pronounced 

influence, followed by IM (Figure 5.4b). The F− anion showed almost no observable effect. This 

trend correlates with the binding affinities of these small‐molecule ligands to ferric heme centers; 

it is known that in many hemoproteins diatomic molecules like CN− are the most tightly 

associated ligands, whereas small heterocyclic compounds like IM and halide anions are usually 

weaker ligands [116-117]. Figure 5.4c summarizes the decay rates of the NIR band in the 

absence and presence of these small‐molecule ligands. 

EPR spectroscopy was also used to characterize the aforementioned chemical events. As 

shown in the gray trace of Figure 5.5, there are three different heme species revealed from the 

EPR spectrum of di-ferric MauG, a high‐spin species (Heme5C), a major low‐spin species 

(Heme6C), and a minor low‐spin species attributed as a freezing‐induced artifact derived from the 

high‐spin species [102, 118-119]. Exogenous CN− was only able to coordinate to Heme5C and 

caused a spin transition to produce a new low‐spin species with a very broad signal around g = 

3.37, at the expense of the high‐spin species (Figure 5.5, black trace). This low‐spin signal is 
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consistent with the formation of a hexacoordinate CN− adduct of Heme5C, based on its similarity 

to the EPR signals of CN− adducts reported from other hemoproteins [120]. In addition, the 

freezing‐induced artifact was removed in the presence of CN−, confirming that it is derived from 

 

Figure 5.4 Disruption of bis‐FeIV MauG by small‐molecule ligands. a) Addition of CN− 
accelerated the decay of the NIR band of bis‐FeIV MauG. CN− was added immediately after 
bis‐FeIV formation. The solid lines are fits of the data to single‐exponential decay. b) Effect of 
different small‐molecule ligands on the decay of the NIR band. Each small‐molecule ligand 
(25 mM) was added immediately after bis‐FeIV formation. c) Decay rates of the NIR band in 
the absence and presence of small‐molecule ligands. 
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the high‐spin species of Heme5C. Upon addition of H2O2 to di-ferric MauG, the high‐spin and 

low‐spin ferric signals are nearly absent, owing to the formation of the bis‐FeIV species (Figure 

5.5, blue trace) [114]. The introduction of CN− to this system accelerated the decay of the newly 

generated bis‐FeIV species as indicated by a more rapid return of the low‐spin signal of Heme6C, 

compared to a control sample without CN− (Figure 5.5, red and green traces, respectively). It 

should be noted that Heme6C is buried in the protein matrix and inaccessible to exogenous small‐

molecule ligands [104, 112]. Thus, the accelerated decay of the ferryl species at the Heme6C site 

is likely due to disruptive events that remotely occurred at the Heme5C site and caused a loss of 

 

Figure 5.5 EPR spectra of MauG. Gray trace: as‐isolated di-ferric MauG; black trace: MauG 
+ 25 mM CN−; blue trace: MauG + 1×H2O2; red trace: MauG + 1×H2O2 (frozen 75 s after 
reaction); green trace: MauG + 1×H2O2 + 25 mM CN− (CN− was added immediately after 
addition of H2O2 and the sample was frozen 75 s after addition of CN−). The arrows indicate 
the CN− adduct of Heme5C at g = 3.37. 
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the electronic communication between the two hemes. The sample freeze‐quenched 75 s after 

addition of CN− to bis‐FeIV MauG displayed a spectrum that is almost identical to that of the 

sample containing the CN− adduct of MauG (Figure 5.5, black and green traces, respectively). 

This observation suggests that almost all the newly generated bis‐FeIV species was eliminated 

after the CN− treatment for 75 s, consistent with the result obtained from monitoring the decay of 

the NIR band. It also indicates that the end product of this chemical processing is a di-ferric CN− 

adduct of MauG, in accordance with our proposed scheme shown in Figure 5.3b. 

Given the relatively high concentration of small‐molecule ligands added to the system, it 

could be possible that direct reduction by these molecules or exchange of the ferryl oxo group 

with exogenous ligands occurred at the Heme5C site, thereby causing a more rapid decay of bis‐

FeIV MauG. Our further investigation on the Y294H mutant of MauG ruled out this possibility. 

Tyr294 is an axial ligand of Heme6C (Error! Reference source not found.). Mutation of this 

residue to histidine creates an axial bis‐histidine ligand set at Heme6C, which is not capable of 

stabilizing the ferryl oxidation state [121]. In the reaction between di-ferric Y294H MauG and 

H2O2, the two oxidizing equivalents from H2O2 are trapped at the Heme5C site in the form of a 

Cpd I‐like species (Figure 5.6a), which presents a characteristic absorption band for Cpd I 

species at 655 nm but no NIR band at 950 nm (Figure 5.6b) [121-122]. The introduction of 

small‐molecule ligands such as CN− and IM to Y294H Cpd I had a minimal effect on its decay 

rate as revealed from the time‐dependent spectral change at 655 nm (Figure 5.6c). Therefore, the 

observed accelerated decay of the bis‐FeIV species from wild‐type MauG in the presence of 

small‐molecule ligands is unlikely due to direct reduction or ligand exchange on the oxyferryl 

species at the Heme5C site. 
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Furthermore, the effect of temperature on the spectral and kinetic properties of the NIR 

absorption feature was investigated over a temperature range of 2 to 30 °C. As reported from a 

previous study, MauG is not stable above the higher temperature [123], thereby limiting the 

temperature range. Within this interval, changes in temperature have no observable effect on the 

absorption maxima wavelength or the overall lineshape of the NIR band; however, the 

absorption intensity was seen to increase with decreasing temperature. Figure 5.7 shows that the 

decay rate of the NIR band increases as the temperature rises. Fitting of the experimental data by 

the Arrhenius equation yields an activation energy (Ea) of 18.6 kcal mol−1. As mentioned 

 

Figure 5.6 Cpd I-like species in Y294H MauG. (a) Chemical conversion from di-ferric to 
Cpd I Y294H MauG. (b) Optical absorption spectra of Y294H (5 µM) before (dotted trace) 
and after (solid trace) addition of H2O2. (c) Effect of small molecule ligands on the decay rate 
of Y294H Cpd I. Y294H Cpd I was generated by addition of a stoichiometric amount of 
H2O2 to di-ferric Y294H MauG (4.4 µM). Each small molecule ligand (25 mM) was added 
immediately after the formation of Y294H Cpd I. The solid lines are fits of the data to a 
single-exponential equation. 
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previously, the decay of the NIR band is associated with the decay of the bis‐FeIV species 

through oxidation of the methionine residues near Heme5C. The Ea value of the bis‐FeIV self‐

decay reaction is comparable but slightly higher than those determined from H2O2‐dependent 

oxidation reactions of methionine residues in other proteins or peptides [124-125]. The self‐

decay process of the bis‐FeIV species can also be treated as an ET reaction from the methionine 

residues to the diheme cofactor. The experimental data was also analyzed using the classical ET 

theory [126] (see details in 5.5.4 Temperature-dependence studies.). Among the three methionine 

residues near Heme5C, Met108 was identified as the first residue to be oxidized by bis‐FeIV 

MauG [113]. The ET reaction was analyzed with Met108 as the electron donor and the diheme 

cofactor as the electron acceptor. Using the direct distance approach developed by Dutton and 

co‐workers [127], a HARLEM [128] calculation on this ET reaction revealed an ET distance (r) 

of 7.31 Å and a decay constant (β) of 1.64 Å. Although the free energy change (ΔG°) of this ET 

reaction is unknown, it can be estimated based on the redox potentials of the associated redox 

 

Figure 5.7 Temperature effect on the decay rate of the NIR band of bis‐FeIV MauG.The bis‐
FeIV species was generated by addition of a stoichiometric amount of H2O2 to di-ferric MauG 
(15 μM). The data were fit to the Arrhenius equation (solid trace) to calculate the activation 
energy (Ea) and to the Marcus equation (dashed line) to calculate the reorganization energy 
(λ) of the ET reaction, respectively. 
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centers [129-130]. The reaction potential (E°) is anticipated to be within the range of 0 to 1 V, 

corresponding to a range of 0 to −23.1 kcal mol−1 for ΔG°. In Figure 5.7, fitting of the 

experimental data by the Marcus equation with the input of these calculated parameters yields a 

range of the reorganization energy (λ) of 3.02 to 4.81 eV. This range is comparable but slightly 

larger than those calculated for other ET reactions from similar systems [123]. The increased 

values of Ea and λ for the bis‐FeIV self‐decay reaction highlight the role of CR in stabilizing the 

bis‐FeIV species by elevating the energy barrier for self‐oxidation reactions. This is achieved by 

expanding the single redox center to an extended conjugated system and thereby increasing the 

reorganization energy of the related ET reactions. 

5.4 Conclusions 

The bis‐FeIV state of MauG is not a single redox species but rather an equilibrium of 

different electronically equivalent resonance structures. The data presented here provide 

supporting evidence for our proposed long‐distance type III CR model, which brings a new 

concept to the well‐documented CR phenomena. 

5.5 Methods 

5.5.1 Reagents.  

Sodium cyanide (97%), imidazole (> 99%) and sodium fluoride (≥ 99%) were purchased 

from Sigma-Aldrich. H2O2 (30% v/v) was purchased from Fisher Scientific. The concentration of 

H2O2 was determined based on the molar absorptivity of 43.6 M-1 cm-1 at 240 nm.  

5.5.2 Protein expression and purification.  

Wild-type and Y294H MauG were expressed in Paracoccus denitrificans and purified as 

described previously [102, 121]. 
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5.5.3 Spectroscopic characterizations.  

All the spectroscopic experiments were performed in 50 mM potassium phosphate buffer, 

pH 7.5. The Vis-NIR spectra of MauG were recorded on an Agilent 8453 spectrometer, which 

has a photodiode-array detector with a detection range of 190–1100 nm. For wild-type MauG, 

the bis‐FeIV species was generated by rapidly mixing di-ferric MauG (15 µM) with a 

stoichiometric amount of H2O2. The selected small molecule ligands were then introduced to the 

reaction system immediately after addition of H2O2. The time-dependent change of the NIR 

absorption band at 950 nm was monitored to evaluate the effect of these small molecule ligands 

on the decay rate of the bis‐FeIV species. For Y294H MauG, a similar procedure was followed. 

The Compound I-like species of Y294H MauG was generated by rapidly mixing di-ferric Y294H 

(4.4 µM) with a stoichiometric amount of H2O2. The selected small molecule ligands were then 

introduced to the reaction system immediately after addition of H2O2. The time-dependent 

change of the absorption band at 655 nm was monitored. X-band EPR spectra were recorded in 

perpendicular mode on a Bruker ER200D spectrometer coupled with a 4116DM resonator at 100 

kHz modulation frequency. The measurement temperature was maintained at 10 K using an 

ESR910 liquid helium cryostat and an ITC503 temperature controller from Oxford Instruments 

(Concord, MA). The heme concentration of each EPR sample was 200 µM.  

5.5.4 Temperature-dependence studies.  

The temperature-dependence studies of the spectral and kinetic properties of the NIR 

band were performed using an Agilent 8453 spectrometer with the cuvette holder coupled with a 

VWR MM7 temperature controller. The temperature range was from 2 to 30 °C. At each selected 

temperature, the Vis-NIR spectra of bis‐FeIV MauG and its decay process were monitored over a 

period of time ranging from 10 min to 1 h. The bis‐FeIV species was generated by rapidly mixing 
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di-ferric MauG (15 µM) with a stoichiometric amount of H2O2. The temperature dependence of 

the decay rate of the NIR band was fit to the Arrhenius equation, where k is the decay rate, Ea is 

the activation energy, A is the pre-exponential factor, R is the gas constant, and T is the absolute 

temperature. 

⁄  

In this case, the self-decay process of bis-FeIV MauG is associated with oxidation of 

Met108, a residue in the distal pocket of Heme5C [113]. The temperature dependence of the 

decay rate of the NIR band was also analyzed using the classical electron transfer (ET) theory 

[123, 126] with Met108 as the electron donor and the bis‐FeIV cofactor as the electron acceptor. 

First, a HARLEM [128] calculation was performed to determine the ET parameters (i.e., the ET 

distance (r) and the decay constant (β)), based on the crystal structure of MauG (PDB entry: 

3L4M). The parameter β describes the efficiency of the intervening medium in mediating ET. 

The direct distance approach developed by Dutton and coworkers [127] was used to define the 

redox centers and the ET pathway. Specifically, the sulfur atom of Met108 was defined as the 

donor center, and the iron-porphyrin complex of Heme5C without the propionate groups was 

defined as the acceptor center. The temperature dependence of the decay rate of the NIR band 

was then fit to the Marcus equation, where kET, the ET rate from the donor to the acceptor, is 

treated as the decay rate of bis‐FeIV MauG, ∆G° is the free energy change of the ET reaction, λ is 

the reorganization energy comprising inner-sphere and outer-sphere nuclear rearrangement, r0 is 

the close contact distance (3 Å), k0 is the characteristic frequency of nuclei (1013 s-1, the maximal 

ET rate when the donor and acceptor are in van der Waals contact and λ = ∆G°). To determine 

the relevant range of λ, the ∆G° value was allowed to change between 0 and -23.1 kcal/mol, 

which corresponds to a range from 0 to 1 V for the potential difference (E°) of the ET process. 
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6 RADICAL TRAPPING STUDY OF THE RELAXATION OF BIS-FE(IV) MAUG 

This chapter is adapted from the published work authored by ID: Davis I, Koto T, and Liu A 

(2018) Radical Trapping Study of the Relaxation of bis-Fe(IV) MauG. Reactive Oxygen Species, 

5(13), 46 – 55. DOI: 10.20455/ros.2018.801 

6.1 Abstract  

The di-heme enzyme, MauG, utilizes a high-valent, charge-resonance stabilized bis-

Fe(IV) state to perform protein radical-based catalytic chemistry. Though the bis-Fe(IV) species 

is able to oxidize remote tryptophan residues on its substrate protein, it does not rapidly oxidize 

its own residues in the absence of substrate. The slow return of bis-Fe(IV) MauG to its resting di-

ferric state occurs via up to two intermediates, one of which has been previously proposed by Ma 

et al. (Biochem. J. 2016; 473:1769) to be a methionine-based radical in a recent study. In this 

work, we pursue intermediates involved in the return of high-valent MauG to its resting state in 

the absence of the substrate by EPR spectroscopy and radical trapping. The bis-Fe(IV) MauG is 

shown by EPR, HPLC, UV-Vis, and high-resolution mass spectrometry to oxidize the trapping 

agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to a radical species directly. Nitrosobenzene 

was also employed as a trapping agent and was shown to form an adduct with high-valent MauG 

species. The effects of DMPO and nitrosobenzene on the kinetics of the return to di-ferric MauG 

were both investigated. This work eliminates the possibility that a MauG-based methionine 

radical species accumulates during the self-reduction of bis-Fe(IV) MauG. 

6.2 Introduction 

MauG is a di-heme enzyme responsible for oxidizing two tryptophan residues on its 

substrate protein (preMADH) to produce the tryptophan tryptophylquinone cofactor of 

methylamine dehydrogenase [102]. In order to perform the oxidation reactions, MauG itself must 
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first be oxidized to a high-valent bis-Fe(IV) state by hydrogen peroxide (H2O2) [107]. The heme 

moieties of MauG are inequivalent with distinct coordination environments: one five-coordinate 

and one six-coordinate [104]. Only the five-coordinate heme is able to react with H2O2, but the 

two heme centers are able to efficiently share electrons [107, 112, 131]. The substrate protein is 

oxidized by bis-Fe(IV) MauG through electron-hole hopping, generating tryptophan radicals on 

preMADH over a long distance [106, 132]. 

Even though bis-Fe(IV) MauG is electronically equivalent to the highly-reactive 

compound I of cytochrome P450 enzymes (an oxoferryl porphyrin cation radical), bis-Fe(IV) 

MauG is stable for several minutes at neutral pH [95, 107-108, 133]. This unusual stability has 

been attributed to a type III charge-resonance phenomenon, by which the radical character of the 

high-valent species is shared over both hemes and with an intervening tryptophan residue [95, 

133]. In the absence of its substrate, bis-Fe(IV) MauG will eventually return to its resting, di-

ferric, state [134]. The return to the resting state is accompanied by oxidation of methionine 

residues on the surface of the protein adjacent to the buried five-coordinate heme center [113]. 

Recently, the mechanism by which bis-Fe(IV) MauG returns to the resting state has been 

studied kinetically [135]. It was shown through UV-Visible spectroscopy that MauG returns 

from its high-valent, bis-Fe(IV) state to its resting, di-ferric state via multiple intermediates: one 

at pH 7.4 and two at pH 9.0 [136]. As displayed in Figure 6.1, the first intermediate is proposed 

to be a protonated bis-Fe(IV) species, termed compound I-like. Intermediate I is only observed at 

basic pH values. The second intermediate, Intermediate II, is much longer lived and was 

proposed to be a single-electron reduced, mixed-valent species, termed compound II-like (i.e., an 

oxoferryl heme), with a one-electron oxidized methionine cation radical. A second electron 

transfer from methionine and proton from solvent to Intermediate II would then produce di-ferric 
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MauG with an oxidized methionine residue. Protein-based radicals, particularly on tyrosine, 

tryptophan, and glycine residues, have been implicated in a large number of catalytic and 

electron transfer reactions in biology [137], including the long-range electron transfer reactions 

required for photosynthesis [138], respiration [139], and DNA synthesis [140] and repair [141]. 

Methionine oxidation by reactive oxygen species (ROS) and relevance to Alzheimer's disease 

has been proposed [142]. One electron chemical oxidation, irradiation, or photoreaction 

oxidation of free methionine amino acid or methionine residues in peptides has been studied 

computationally and experimentally [143-148]. Thus, it is highly significant to investigate the 

hypothesized methionine cation radical in MauG. In this work, we investigate the possibility of 

protein-based methionine radical involvement in the return of bis-Fe(IV) to di-ferric MauG. 

 

Figure 6.1 Various oxidation states of MauG.
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6.3 Materials and Methods 

6.3.1 Chemicals 

5,5-Dimethyl-1-pyrroline N-oxide (DMPO) was purchased from Cayman Chemical (Ann 

Arbor, MI, USA). All other chemicals, including nitrosobenzene, were purchased from Sigma 

Aldrich (St. Louis, MO, USA) at the highest available grade. 

6.3.2 Preparation of MauG 

MauG was prepared as described previously [95, 102, 106-107, 112, 149]. Briefly, P. 

denitrificans cells carrying a plasmid for expression of MauG were grown in mineral salts 

medium at 30 ºC in 4 stages: 10 ml, 100 ml, 1 L, and 10 L. Tetracycline at 2 μg/mL was used for 

antibiotic selection. Cells were harvested by centrifugation, resuspended in phosphate buffer, and 

MauG was released from the periplasm by osmotic shock. Cell lysate was clarified by 

centrifugation, and the supernatant was collected. The His6-tagged MauG was purified by nickel 

affinity chromatography, desalted to remove excess imidazole, and concentrated by ultrafiltration 

as described previously [95, 106, 149]. All reactions were carried out in 50 mM potassium 

phosphate buffered to pH 9.0 for optimized intermediate production. 

6.3.3 UV-Visible Spectroscopy 

The kinetics of the decay of bis-Fe(IV) MauG was measured with an Agilent 8453 

spectrophotometer (Santa Clara, CA, USA). MauG and H2O2 were mixed to a final concentration 

of 5 μM each, and the return to the ground state was monitored in the absence and presence of 

DMPO (500 μM) from a fresh stock solution prepared under dark. As a precaution, the stock 

solution was subjected to multiple vacuum-argon cycles to remove potential trace amount of 

nitric oxide (NO•) from decayed spin trap but otherwise used without further purification. 
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6.3.4 Electron Paramagnetic Resonance (EPR) Spectroscopy 

Room-temperature, continuous-wave EPR spectra were collected in a quartz flat cell with 

a Bruker (Billerica, MA, USA) E560 spectrometer and Superhigh-Q (SHQE)-W resonator at 

9.74 GHz, 100 kHz modulation frequency, 0.1 or 0.3 mT modulation amplitude, and 31.7 mW 

microwave power. Time courses were measured with 20 s per scan over a 10 mT sweep width at 

the g = 2 region. 

6.3.5 High-Performance Liquid Chromatography (HPLC) and High-Resolution 

Mass Spectrometry 

Chromatographic separation was performed with a Dionex UltiMate 3000 HPLC 

equipped with a diode array detector (Sunnyvale, CA, USA). The reaction mixture from the spin-

trapping EPR experiment was applied to a C18 column and separation was achieved with a linear 

gradient of 100% solvent A (94.9% H2O, 5% acetonitrile, and 0.1% trifluoroacetic acid) to 85% 

solvent A, 15% solvent B (94.9% acetonitrile, 5% H2O, and 0.1% trifluoroacetic acid) over 7.5 

min at 1.2 mL/min. Fractions were collected, and mass spectra were obtained on a maXis plus 

quadrupole-time of flight mass spectrometer equipped with an electrospray ionization source 

(Bruker Daltonics) operated in the positive ionization mode. Samples were introduced via 

syringe pump at a constant flow rate of 3 μL/min. Source parameters are summarized as follows: 

capillary voltage, 3500 V; nebulizer gas pressure, 0.4 bar; dry gas flow rate, 4.0 L/min; source 

temperature, 200 °C. Mass spectra were averages of one minute of scans collected at a rate of 1 

scan per second in the range 50 ≤ m/z ≤ 1500. Compass Data Analysis software version 4.3 

(Bruker Daltonics) was used to process all mass spectra. 



116 

6.4 Results 

6.4.1 EPR Measurement of the Relaxation of bis-Fe(IV) MauG 

It was previously reported that at pH 9.0, the return to the resting state from bis-Fe(IV) 

requires more than 25 min and proceeds via two intermediates, the latter of which was proposed 

to be a methionine radical which maximizes at ~5 min after the formation of the high-valent 

species [136]. In order to investigate whether or not the auto-reduction of bis-Fe(IV) MauG 

involves a long-lived protein radical intermediate, the high-valent state of MauG (50 μM) was 

prepared by mixing with an equimolar amount of H2O2. The solution containing the bis-Fe(IV) 

MauG was then transferred to a quartz flat-cell, and the EPR spectrum at the g = 2 region was 

repeatedly scanned 30 times over 10 mins with 83 s having elapsed from the mixing of MauG 

with H2O2 and the beginning of the first scan. All scans are indistinguishable and contain only 

noise (data not shown). Since Intermediate I is expected to maximize at ca. 100 s and 

Intermediate II at 300 s, the absence of an EPR signal during the return of MauG from its high-

valent to its resting state suggests that a stable protein radical is not involved. 

6.4.2 Radical Trapping with DMPO 

While the experiment described in 6.4.1 above does not support the presence of a long-

lived radical species during the conversion of bis-Fe(IV) MauG to the di-ferric state in the 

absence of substrate, it does not exclude the possibility of a transient, reactive radical being 

formed in the process. To test the possibility of a transient radical species being formed during 

the relaxation of bis-Fe(IV) MauG, the high-valent species of MauG (150 μM) was prepared by 

mixing with an equimolar amount of H2O2 and then mixed with DMPO (1.5 mM) before 

repeated EPR measurements with a dead time of 85 s between addition of the oxidant and the 

start of the first scan. Inclusion of DMPO during the relaxation process produces a 7-line EPR 
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signal (Figure 6.2) which maximizes at ca. 160 s after mixing and then slowly decays. At the 

experimental pH of 9.0, MauG returns to the resting state via two intermediates. The appearance 

and decay of the transient EPR signal follows closely the first, Compound I-like, intermediate 

identified by UV-Vis spectroscopy [136]. To eliminate the second, Compound II-like, 

intermediate as the source of the EPR signal, a parallel experiment was performed in which the 

DMPO was added 300 s after the formation of bis-Fe(IV) MauG, at which point Intermediate I 

should be nearly gone and Intermediate II should be maximized. Samples made in this way show 

only a trace NO signal which is also seen in control samples of DMPO alone (Figure 6.3A, top). 

 

Figure 6.2 Time-resolved EPR spectra of bis-Fe(IV) MauG with DMPO. MauG (150 μM) 
was mixed with an equimolar concentration of H2O2 before adding DMPO (1.5 mM) and 
transferring the reaction mixture to a quartz flat cell. The first scan began 85 s after initial 
mixing, and a subsequent scan was recorded every ca. 23 s. The spectra were recorded at 
room temperature, 9.74 GHz, 31.7 mW microwave power, 100 kHz modulation frequency, 
0.1 mT modulation amplitude, 10 mT sweep width, 20 s sweep time. 
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6.4.3 Identification of the Transient Radical 

The radical species observed can be simulated with a single component centered at g = 

2.0068 with hyper-fine interactions from one nitrogen nucleus, AN = 20.0 MHz, and 2 equivalent 

 

Figure 6.3 Identification of a transient radical species.(A) EPR spectrum of DMPO alone 
(top), the transient radical (middle, black), spectral simulation (middle, red), and residual 
from fitting, bottom, blue; (B) Peak-to-trough height for the radical species over time. 
Spectrometer conditions are the same as in Figure 6.2. 
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protons, AH = 11.0 MHz (Figure 6.3A, middle) with a residual (Figure 6.3A, bottom) which is 

indistinguishable from the control, DMPO only (Figure 6.3A, top). The signals grow in and 

maximize at ~160 s, as seen in Figure 6.3B. These observations are inconsistent with a radical 

trapped by DMPO and are instead indicative of a radical of an oxidized DMPO product termed 

5,5-dimethyl-2-oxo-pyrroline-1-oxyl (DMPOX) [150-153]. The presence of a DMPOX radical is 

further confirmed by performing chromatographic separation of the reaction mixture (Figure 

6.4A) and analyzing the major fractions by high-resolution mass spectrometry. The second 

largest peak of the chromatogram has an absorbance maximum at 266 nm (Figure 6.4B) and 

shows one major ion by mass spectrometry which corresponds to a protonated DMPOX, 1-

hydroxy-5,5-dimethylpyrrolidin-2-one (DMPOXH) within 3.07 ppm mass accuracy (Figure 

6.4C). 
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Figure 6.4 Characterization of the transient radical species.(A) HPLC chromatogram of the 
reaction mixture at 227 nm, black, and 266 nm, blue; (B) UV-Vis spectrum of the DMPOXH 
extracted from the chromatogram in A; (C) high-resolution mass spectrum of the peak 
corresponding to DMPOXH collected in positive ion mode. 
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6.4.4 Radical Trapping with Nitrosobenzene 

Since the nitrone-based radical trap, DMPO, acts as a substrate for MauG, generating a 

DMPOX radical, we employed other spin traps in our attempts to trap the proposed methionine 

radical. Figure 6.5 shows the EPR results with nitrosobenzene (NB) as an alternative spin trap. 

As can be seen in Figure 6.5, top two traces, respectively, di-ferric MauG and di-ferric MauG 

mixed with NB show no major resonances at room temperature. However, if NB is added after 

the formation of bis-Fe(IV), a new asymmetric radical species can be observed (Figure 6.5, 3rd 

trace). The spectrum can be simulated (blue) with a somewhat rhombic g-tensor, 2.00798, 

2.00650, 2.00349, and a very anisotropic hyperfine coupling to one nitrogen atom, AN 0.35, 22.2, 

75.2 MHz, and 0.887 mT Gaussian line broadening. To determine whether the radical is 

localized on the protein or in solution, the sample was filtered with a 10 kDa cut-off centrifugal 

filter (MauG MW is 42 kDa) to separate the flow-through (Figure 6.5, 4th trace) and retained 

protein (Figure 6.5, 5th trace); the measurement was initiated 50 min after initial radical 

formation. Virtually no signal can be seen in the filtrate, and the retained protein shows 

approximately one-quarter of the initial intensity after re-dilution to the starting volume, though 

there is slightly less splitting in the low-field g-component. Thus, we conclude that the EPR 

signal is a protein-based radical. An additional experiment was performed in which NB was 

added 300 s after formation of bis-Fe(IV) MauG to assess the ability of Intermediate II to form 

an adduct (Figure 6.5, bottom trace). The delayed addition of NB leads to accumulation of less 

than 10% compared to direct addition, indicating that bis-Fe(IV) and Intermediate I are the most 

likely candidates for trapping with NB. 
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Figure 6.5 EPR of Radical Trapping with MauG and Nitrosobenzene. From top to bottom, rt 
EPR spectra of MauG (50 µM), MauG mixed with NB (1 mM), a radical trapped by 
nitrosobenzene after mixing with bis-Fe(IV) MauG  (black) and simulated spectrum (blue). 
The sample was then filtered by a 10 kDa spin filter. The next spectrum is the flow-through, 
followed by the filtered protein. The final spectrum contained bis-Fe(IV) aged for 300 s 
before addition of NB. Spectra were recorded at room temperature, 9.74 GHz, 31.7 mW 
microwave power, 100 kHz modulation frequency, 0.3 mT modulation amplitude, 30 mT 
sweep width, 80 s sweep time, average of 4 scans. 
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6.4.5 Effect of Spin Traps on the Kinetics of the Return to Resting State 

The decay of bis-Fe(IV) MauG was observed by UV-Visible spectroscopy alone and in 

the presence of nitrosobenzene and DMPO (Figure 6.6 black, blue, and red, respectively). With 

MauG alone, the decay of the charge resonance band requires two summed exponential functions 

with rate constants of 0.83 ± 0.17 and 0.2 ± 0.04 min‒1, respectively. Addition of either spin trap 

immediately after the formation of bis-Fe(IV) resulted in a much faster return to the ground state. 

Additionally, while the data which includes spin traps show significant residuals from fitting 

with a single exponential, fits with a double exponential equation do not converge and all 

parameters show complete dependency. The estimated rates with the inclusion of nitrosobenzene 

and DMPO are 0.94 ± 0.20 and 2.8 ± 0.5 min‒1, respectively. These results are consistent with 

high-valence forms of MauG being able to readily react with nitrosobenzene and DMPO. 

 

Figure 6.6 Kinetics of the Decay of the Charge Resonance Band of MauG. Representative 
time courses of the disappearance of the charge resonance band of bis-Fe(IV) disappearing as 
MauG returns to the resting, di-ferric state, black; the effect of nitrosobenzene, blue; and the 
effect of DMPO on the return to the resting state, red. Absorbance was averaged over 944 – 
954 nm to improve signal-to-noise ratio. 
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6.5 Discussion 

Methionine residues are known to play a role in proteins as a sacrificial reductant to 

protect other, functionally important, residues from oxidative damage [154]. This appears to be 

the case in MauG, as it has three methionine residues on its surface which be-come oxidized as 

MauG redox cycles without the presence of its substrate [113]. The observation of two 

intermediates in the auto-reduction of bis-Fe(IV) MauG by UV-Vis spectroscopy makes MauG a 

promising candidate for the characterization or capture of a methionine radical in a protein. 

Previously characterized methionine radicals were generated photochemically with free amino 

acids, leaving an open question as to how a protein environment might affect a methionine 

radical [148, 155]. We sought to characterize or capture any possible radical species formed 

during the return of bis-Fe(IV) MauG to the resting state. Following the return to the di-ferric 

state by EPR spectroscopy did not produce any signals which could be attributed to a protein-

based radical. We then attempted to trap any potential transient radical species with DMPO and 

NB. With DMPO, rather than trapping a protein-based radical, we observed that either bis-

Fe(IV) MauG or Intermediate I is able to directly oxidize the spin trap to a DMPOX radical. We 

then attempted to trap a radical from Intermediate II by adding the trapping agent 300 s into the 

decay process, when Intermediate I should be nearly fully converted to Intermediate II. Delaying 

the addition of DMPO is able to remove the oxidation issue; however, no trapped radical species 

were observed. Furthermore, the rates of return from the bis-Fe(IV) to di-ferric state, as 

monitored by UV-Visible spectroscopy, were increased over 3-fold by the addition of DMPO. 

The radical observed during the relaxation of bis-Fe(IV) MauG in the presence of DMPO does 

not agree with any published DMPO trapped radicals [153]. Rather, the radical arises from direct 

oxidation of DMPO to a so-called DMPOX species. The first published spectrum of the DMPOX 
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radical arose in the attempt to trap a radical in the reaction of hematin with cumene 

hydroperoxide [151]. The assignment was made by comparison with a previously synthesized 

and characterized compound whose hyperfine coupling constants were reported in various 

solvents excluding any aqueous solutions [150]. Several similar compounds give rise to EPR 

signals with comparable coupling patterns and constants [156]. The rigorous assignment of the 

structure of the DMPOX radical was made later by direct synthesis and oxidation of DMPOX 

and measuring its EPR spectrum in various water/methanol mixtures [152]. It is also possible to 

produce the DMPOX radical from DMPO and singlet oxygen [157]. Even though DMPO is 

unable to trap any radicals within this system, NB is capable of rapidly forming an adduct with 

bis-Fe(IV) MauG or Intermediate I. The trapped radical is dissimilar to most radicals trapped 

with NB as it displays g-anisotropy at room temperature and only shows hyperfine coupling to a 

single nitrogen atom with extreme anisotropy, indicating that the g- and A-tensors may not 

coincide. A very similar species has been observed at liquid-nitrogen temperatures in an 

inorganic system [158], however their room temperature measurements are more similar to 

typical NB-trapped radicals with several coupled protons. Another study with a similarly-shaped 

radical signal at room temperature claimed to have used 2-methyl-2-nitrosopropane to trap a 

tyrosyl radical on cytochrome c [159]. The rapidness of the reaction between bis-Fe(IV) and NB 

indicates that the adduct is formed with bis-Fe(IV) or Intermediate I, both of which still carry 

two oxidizing equivalents. The absence of significant trapping at the later time suggests that NB 

is able to trap a radical on the tryptophan 199 of MauG which is responsible for passing 

oxidizing equivalents to its substrate protein. 
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6.6 Conclusion 

In summary, though the reactive species of MauG returns to its resting state with two 

distinct intermediates, neither contains a long-lived protein radical. Furthermore, no radical 

adduct was able to be trapped by incubation of DMPO with bis-Fe(IV) MauG at various time 

points. Instead, the first intermediate is able to oxidize DMPO to produce a DMPOX radical 

while returning to its resting, diferric state. Conversely, NB is able to trap a radical with bis-

Fe(IV) or Intermediate I MauG to form a long-lived radical with unusual spectral characteristics.
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7 HIGH-FREQUENCY/HIGH-FIELD ELECTRON PARAMAGNETIC RESONANCE 

AND THEORHETICAL STUDIES OF TRYPTOPHAN-BASED RADICALS 

This chapter is adapted from the published work co-first authored by ID: Davis I, Koto T, Terrell 

JR, Kozhanov A, Krzystek J, and Liu A (2018) High-Frequency/High-Field Electron 

Paramagnetic Resonance and Theoretical Studies of Tryptophan-Based Radicals. Journal of 

Physical Chemistry A, 122(12), 3170 – 3176. DOI: 10.1021/acs.jpca.7b12434 

7.1 Abstract 

Tryptophan-based free radicals have been implicated in a myriad of catalytic and electron 

transfer reactions in biology. However, very few of them have been trapped so that biophysical 

characterizations can be performed in a high-precision context. In this work, tryptophan 

derivative-based radicals were studied by high-frequency/high-field electron paramagnetic 

resonance (HFEPR) and quantum chemical calculations. Radicals were generated at liquid 

nitrogen temperature with a photocatalyst, sacrificial oxidant, and violet laser. The precise g-

anisotropies of L- and D-tryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 5-

fluorotryptophan, and 7-hydroxytryptophan were measured directly by HFEPR. Quantum 

chemical calculations were conducted to predict both neutral and cationic radical spectra for 

comparison with the experimental data. The results indicate that under the experimental 

conditions, all radicals formed were cationic. Spin densities of the radicals were also calculated. 

The various line patterns and g-anisotropies observed by HFEPR can be understood in terms of 

spin-density populations and the positioning of oxygen atom substitution on the tryptophan ring. 

The results are considered in the light of the tryptophan and 7-hydroxytryptophan diradical found 

in the biosynthesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase. 
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7.2 Introduction 

The essential amino acid tryptophan is used both as a building block for proteins and as a 

precursor of various bioactive compounds. In mammals, tryptophan not utilized for protein 

synthesis is catabolized by two major pathways: kynurenine and serotonin biosynthesis. In the 

brain, tryptophan is transformed to serotonin and then melatonin, two molecules involved in 

mood and sleep, respectively [160-161]. In other tissues, mostly liver, the kynurenine pathway is 

capable of transforming tryptophan to alanine and acetoacetate via glutaryl–coenzyme A for 

energy production. The kynurenine pathway also produces several neuroactive side products, one 

of which is the precursor for nicotinamide adenine dinucleotide biosynthesis [11, 80, 162-163]. 

As a protein building block, tryptophan is used for structural roles [164] and electron 

transport [138, 165] and is occasionally modified to serve as a cofactor for various enzymes 

[103, 166]. Tryptophan also plays important redox roles in biology. Tryptophan-based free 

radicals have been found in cytochrome c peroxidase [167], Bulkholderia pseudomallei catalase-

peroxidase [168], lignin peroxidase [169], versatile peroxidase [170], and mutagenic or modified 

forms of azurin and ribonucleotide reductase [171-174]. One notable example of tryptophan 

being used as radical intermediates for synthesis of an enzyme cofactor is in methylamine 

dehydrogenase (MADH). The active site of MADH contains a tryptophan tryptophylquinone 

(TTQ) cofactor consisting of two cross-linked tryptophan residues, one of which has been 

hydroxylated at the 6 and 7 positions and oxidized to the corresponding quinone [103]. The TTQ 

cofactor is generated from a precursor protein, preMADH, which contains no cross-link and only 

one hydroxylation at the 7-position, as shown in Figure 7.1, by the diheme enzyme MauG [102]. 

MauG is able to redox cycle between its resting di-ferric and a high-valent bis-Fe(IV) species, 

which carries two oxidizing equivalents [107]. The bis-Fe(IV) state of MauG has been shown to 
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be able to oxidize preMADH, generating two distinct radicals reported as a tryptophan and a 7-

hydroxytryptophan radical that undergo spontaneous radical recombination and deprotonation to 

form the cross-link necessary for TTQ formation [106]. The two radicals observed in preMADH 

upon oxidation by bis-Fe(IV) MauG display g-anisotropy intermediate between other measured 

tryptophan and tyrosine radicals [139]. 

In the initial EPR characterization of the intermediate formed upon reaction of preMADH 

with bis-Fe(IV) MauG, stoichiometry and spin quantitation indicated that two radicals were 

formed on preMADH concomitant with the reduction of MauG to its resting di-ferric state. EPR 

spectra of the preMADH-based intermediate measured at X-band (9 GHz) were unable to 

determine whether the signals arose from multiple similar species or multiple equivalents of a 

single species. Therefore, high-frequency/high-field (HFEPR) studies with a 15 T magnet were 

pursued [106]. Measurements of the preMADH-based radical at 416 GHz revealed two sets of 

overlapping signals with differing g-anisotropies. On the basis of the g-anisotropies Δg (gz – gx), 

overall reaction, and crystal structure of preMADH and MADH, the two radical species were 

 

Figure 7.1 Crosslink Formation in preMADH during TTQ Biosynthesis and Compounds 
under Investigation in This Study 
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assigned to the tryptophan and 7-hydroxytryptophan (7-OH-Trp) which are cross-linked during 

TTQ biosynthesis, with the latter assigned to the signal with larger g-value anisotropy.(22) 

If the two radicals observed in the preMADH-based intermediate are indeed the residues 

involved in forming the cross-linked TTQ cofactor, the close proximity of these two residues (ca. 

3 Å from edge to edge) raises an immediate question as to why no through-space coupling 

interactions are observed in the EPR spectra. Two radical species at such a distance would be 

expected to interact with each other. In the case of weak exchange, an exchange-coupling 

interaction would be expected to produce a much broader signal. But line broadening was not 

observed from the preMADH diradical EPR spectrum. Strong interactions such as 

antiferromagnetic coupling would lead to an EPR silent species, whereas ferromagnetic coupling 

would produce an integer spin system with resonances appearing in different locations due to 

zero-field splitting contributions [175]. 

One potential explanation for the lack of coupling may be that the close proximity of two 

cation radicals enforced by the protein scaffold in preMADH may perturb the spin density 

distributions of the radicals or cause electrostatic repulsion. An additional complication to 

interpreting the previous findings is that no other 7-OH-Trp radical has been previously 

characterized by EPR spectroscopy, so it is impossible to know what features observed in the 

diradical intermediate are intrinsic to the 7-OH-Trp and how those features may be perturbed in 

the context of a diradical species. The closest example is a UV–vis absorbance study of the 7-

hydroxyindole radical [176]. Therefore, there is a need to analyze HFEPR spectra of isolated 

tryptophan and 7-OH-Trp to provide insight into the contributions made by the close proximity 

of two cation radicals and the protein scaffold on the radical spectra. 
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In this work, we adapted a recently developed rhenium/ruthenium-based photocatalyst to 

generate organic radicals [177]. This novel method has been successfully used in the transient 

kinetics study of tyrosyl radicals in solution. Here, we extended this approach to 

spectroscopically characterize tryptophan radicals in solid state at cryogenic temperatures. The 

resulting tryptophan and various tryptophan derivative-based radicals are amenable to 

characterization by HFEPR. The results are interpreted with quantum chemical calculations to 

clarify the effects of substituents on the g-anisotropy of tryptophan-based radicals. 

7.3 Materials and Methods 

7.3.1 Chemicals 

All chemicals, including the Ru(III) complex, were purchased from Sigma-Aldrich in 

their highest available purity and were used without further purification with the exception of 7-

hydroxytryptophan which was purchased from Ryan Scientific Inc. 

7.3.2 Synthesis of Photocatalyst 

Tricarbonyl(1,10-phenanthroline)(4-hydroxymethylpyridyl)rhenium(I) 

hexafluorophosphate, [Re(phen)(CO)3(PyCH2OH)]PF6, was prepared by a literature method 

[177]. Briefly, [Re(phen)(CO)3(NCMe)]PF6 was dissolved in tetrahydrofuran with PyCH2OH, 

and the mixture was heated under reflux for 18 h. The product was purified to analytically pure 

form by recrystallization after exchanging solvent to a minimal amount of DCM and slow 

addition of diethyl ether. 

7.3.3 EPR Spectroscopy 

Compounds under study were dissolved in 40% phosphoric acid with the rhenium 

photocatalyst and ruthenium sacrificial oxidant before being frozen in liquid nitrogen at 1, 1.5, 

and 5 mM, respectively. Frozen samples were irradiated at 77 K for 30 min with a 405 nm, 120 
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mW laser. Radical formation was verified by X-band (9 GHz) EPR spectroscopy, and the 

experimental conditions were optimized on the basis of the X-band EPR results. HFEPR samples 

were generated in sample cups of ca. 150 μL volume. HFEPR spectra were recorded at the EMR 

Facility at the National High Magnetic Field Laboratory in Tallahassee, FL. The 15-T magnet-

based spectrometer has been described previously [178]. All spectra were acquired at 4.5 K, 

406.4 GHz, and 0.3 mT modulation amplitude with the presence of an atomic hydrogen standard 

to calibrate the magnetic field [179]. A series of experiments was also performed on a 25 T 

resistive “Keck” magnet in the DC Facility at ∼700 GHz [180]. HFEPR simulations of the 

experimental spectra were performed using the EPR simulation program DOUBLET [181]. 

7.3.4 Quantum Chemical Calculations 

All calculations were implemented with the ORCA quantum chemistry program package 

(version 3.0.3) [182]. Full geometry optimizations were performed using the B3LYP hybrid 

functional with RIJCOSX approximation [183-184] in combination with the def2-TZVP(-f) basis 

set for all atoms with tight SCF convergence criteria for both cation and neutral radical forms of 

tryptophan and four substituted tryptophan derivatives: 7-hydroxytryptophan (7-OH-Trp), 5-

hydroxytryptophan (5-OH-Trp), 5-methoxytryptophan (5-MeOx-Trp), and 5-fluorotryptophan 

(5-F-Trp). The basis sets used for geometry optimization were also used for g-tensor and spin 

population calculations. The calculations included consideration of solvent effects assuming the 

presence of a dielectric continuum with the conductor-like screening model (COSMO) [185] and 

the dielectric constant of water [186]. 
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7.4 Results and Discussion 

7.4.1 Solid-State, Photocatalytic Radical Generation 

Tryptophan free radicals are short-lived, with an estimated t1/2 of less than 1 ms in 

solution. To circumvent this issue, we adapted a recently developed photocatalyst method by 

Nocera et al., which has been used by others to generate tyrosyl radicals in solution for transient 

absorption spectroscopy [177], and optimized it for HFEPR studies. As illustrated in Figure 7.2, 

the radical species were generated with the use of a rhenium photocatalyst and ruthenium 

sacrificial oxidant. All compounds, L-Trp, D-Trp, 5-F-Trp, 5-MeOx-Trp, 5-OH-Trp, and 7-OH-

Trp, were dissolved in 40% phosphoric acid, respectively, with photocatalyst and sacrificial 

 

Figure 7.2 Photocatalytic method for generating tryptophan-based radicals 
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oxidant so that the frozen solutions would form a transparent glass, allowing facile 

photoexcitation of the rhenium catalyst at cryogenic temperatures. Solubility issues arose with 

other common glass-forming solvents [187]. The oxidation of tryptophan and several of its 

analogues, including 7-OH-Trp, were initiated by photoexcitation of the rhenium complex. The 

excited-state rhenium complex is then oxidized by the sacrificial ruthenium oxidant. The 

oxidized Re(II) species can in turn oxidize tryptophan or one of its analogues to its respective 

radical, presumably cation, species. Because the radical is formed at cryogenic temperatures, it is 

not rapidly quenched. Also, the photocatalytic method allows for the use of nonionizing violet 

light, which prevents the formation of solvated electrons or multiple undesirable radical species 

that might otherwise interfere with species of interest. 

7.4.2 HFEPR Characterization 

The radical forms of L-Trp, D-Trp, 5-F-Trp, 5-MeOx-Trp, 5-OH-Trp, and 7-OH-Trp 

were successfully generated by the photocatalytic method and subsequently analyzed by HFEPR 

spectroscopy after optimization of the experimental conditions. Exclusion of any of the elements, 

photocatalyst, sacrificial oxidant, indole derivative, or laser light gave rise to samples with no 

radical signals. Aside from D- and L-tryptophan, all other compounds studied were racemic 

mixtures. The presence of concentrated phosphoric acid, catalyst, or sacrificial oxidant resulted 

in significant absorption of the transmitted sub-THz wave power, which in turn limited the 

signal-to-noise ratio of the spectra. However, with sufficient averaging, the spectra were fully 

interpretable. Experiments at higher frequency/field (∼700 GHz/25 T, respectively) were, 

however, unsuccessful. Due to increased power losses through the solvent at elevated sub-THz 

frequencies, the resulting spectra were not amenable to analysis due to very low S/N ratio, even 

with averaging. 
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Figure 7.3 shows the HFEPR spectra of tryptophan radicals generated by the 

photocatalytic method. Three distinct spectral patterns can be recognized for the experimental 

HFEPR spectra: axial with g-parallel larger than g-perpendicular for Trp and 5-F-Trp; axial with 

g-parallel smaller than g-perpendicular for 7-OH-Trp; and rhombic for 5-OH-Trp and 5-MeOx-

Trp. Experimentally determined g-values and Δg are summarized in Table 7.1, and the full 

spectrum of each radical including the magnetic field standard [179] and simulation can be found 

in Figure 7.4–Figure 7.9. X-band EPR spectra of L-Trp, 5-OH-Trp, 5-MeOx-Trp, and 7-OH-Trp 

can be found in Figure 7.10–Figure 7.13. Spectra of L- and D-tryptophan both produce axial 

EPR spectra with slightly different principal g-values; however, they have very similar g-

anisotropies (Δg, gmax – gmin) of 102 × 10–5 and 100 × 10–5, respectively. Even at the magnetic 

fields used for this study (15 T), all the principal g-values of tryptophan cannot be fully resolved, 

and the radicals produce axial spectra with gmin and gmid largely overlapping. Replacing hydrogen 

in the 5-position with a highly electronegative fluorine, 5-F-Trp, did not perturb the line shape; 

however, it did lead to a slight increase in the Δg to 110 × 10–5. 
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Figure 7.3 HFEPR spectra of tryptophan-based radicals. Spectra were measured with 406.4 
GHz, 0.3 mT modulation amplitude, at 4.5 K (black trace) and corresponding simulated 
spectra (blue trace). Simulation parameters can be found in Table 7.1. 
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Table 7.1 Experimentally determined and calculated g-values for tryptophan derivatives 

  gmin gmid gmax Spana Span / L-Trp Skewb

L-Trp exp. 2.00227 2.00240 2.00329 102 - 0.873 
 cation 2.00226 2.00255 2.00325 99 - 0.698 
 neutral 2.00225 2.00288 2.00366 140 - 0.551 

7-OH-Trp exp. 2.00213 2.00313 2.00358 145 1.422 0.310 
 cation 2.00225 2.00318 2.00360 135 1.361 0.312 
 neutral 2.00225 2.00303 2.00407 183 1.300 0.574 

5-OH-Trp exp. 2.00223 2.00319 2.00439 216 2.118 0.556 
 cation 2.00224 2.00321 2.00427 203 2.043 0.521 
 neutral 2.00224 2.00322 2.00416 192 1.368 0.488 

5-MeOx-Trp exp. 2.00205 2.00319 2.00416 211 2.069 0.460 
 cation 2.00223 2.00335 2.00442 219 2.213 0.491 
 neutral 2.00225 2.00313 2.00451 226 1.608 0.608 

5-F-Trp exp. 2.00217 2.00244 2.00327 110 1.078 0.755 
 cation 2.00227 2.00256 2.00322 95 0.959 0.695 
 neutral 2.00227 2.00290 2.00375 148 1.052 0.575 

a. Span is g, the difference between gmin and gmax x 105. 
b. Skew is (gmax - gmid) / (gmax - gmin) 
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Figure 7.4 Full HFEPR spectrum of L-tryptophan radical and field standard. The spectrum is 
an average of 16 scans collected with 406.4 GHz, 0.3 mT modulation amplitude, at 4.5 K 
(black trace) and corresponding simulated spectrum (blue trace). 
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Figure 7.5 Full HFEPR spectrum of D-tryptophan radical and field standard. The spectrum is 
an average of 10 scans collected with 406.4 GHz, 0.3 mT modulation amplitude, at 4.5 K 
(black trace) and corresponding simulated spectrum (blue trace). 
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Figure 7.6 Full HFEPR spectrum of 5-fluorotryptophan radical and field standard. The 
spectrum is an average of 20 scans collected with 406.4 GHz, 0.3 mT modulation amplitude, 
at 4.5 K (black trace) and corresponding simulated spectrum (blue trace). 
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Figure 7.7 Full HFEPR spectrum of 5-methoxytryptophan radical and field standard. The 
spectrum is an average of 30 scans collected with 406.4 GHz, 0.3 mT modulation amplitude, 
at 4.5 K (black trace) and corresponding simulated spectrum (blue trace). 
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Figure 7.8 Full HFEPR spectrum of 5-hydroxytryptophan radical and field standard. The 
spectrum is an average of 25 scans collected with 406.4 GHz, 0.3 mT modulation amplitude, 
at 4.5 K (black trace) and corresponding simulated spectrum (blue trace). 
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Figure 7.9 Full HFEPR spectrum of 7-hydroxytryptophan radical and field standard. The 
spectrum is an average of 16 scans collected with 406.4 GHz, 0.3 mT modulation amplitude, 
at 4.5 K (black trace) and corresponding simulated spectrum (blue trace). 
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Figure 7.10 X-band EPR spectrum of L-tryptophan radical. Instrument parameters: 9.6 GHz, 
100 kHz modulation frequency, 0.01 mT modulation amplitude, 77 K. 
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Figure 7.11 X-band EPR spectrum of 5-hydroxytryptophan radical. Instrument parameters: 
9.6 GHz, 100 kHz modulation frequency, 0.01 mT modulation amplitude, 77 K. 
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Figure 7.12 X-band EPR spectrum of 5-methoxytryptophan radical. Instrument parameters: 
9.6 GHz, 100 kHz modulation frequency, 0.01 mT modulation amplitude, 77 K. 
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Figure 7.13 X-band EPR spectrum of 7-hydroxytryptophan radical. Instrument parameters: 
9.6 GHz, 100 kHz modulation frequency, 0.01 mT modulation amplitude, 77 K. 
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Substitution at the 5-position with a methoxy or hydroxyl group, 5-MeOx-Trp and 5-OH-

Trp, respectively, however, gave rise to rhombic signals with completely resolved g-values and a 

doubling of the Δg to 211 × 10–5 and 216 × 10–5, respectively. Similarly to the unsubstituted 

tryptophan, substitution with a hydroxyl group at the 7-position, 7-OH-Trp, gives rise to an axial 

signal; however, in this case, the gmid and gmax could not be resolved, opposite to what was seen 

with the unsubstituted tryptophan. The 7-OH-Trp radical also showed an increased Δg, 

intermediate between unsubstituted tryptophan and 5-OH-Trp at 145 × 10–5. The g-anisotropy 

has been previously found to be a sensitive indicator for differentiating tyrosyl and tryptophanyl 

radicals [106, 173, 188]. The OH substitution on the phenyl ring of tryptophan is anticipated to 

increase the Δg value. Comparing 7-OH-Trp and L-Trp radicals, the ratio of the Δg for the 

photogenerated species is 1.422, slightly larger than the 1.352 obtained from HFEPR spectra of 

enzymatically oxidized preMADH.(22) 

7.4.3 Quantum Chemical Calculations 

Density functional theory calculations were performed to interpret the origin of the above 

experimental findings theoretically in terms of spin populations and g-tensors for both cation and 

neutral radical forms of the compounds measured. Cationic radical structures are derived from 

 

Figure 7.14 Potential neutral radical structures resulting from π-radical delocalization over the 
indole ring. 
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their parent indole derivative less one electron; however, there is some ambiguity as to what 

chemical structure may be most appropriate for a neutral radical species. Geometry optimization 

and energy calculation indicate that only structures in which the indole nitrogen is deprotonated 

should be used for further consideration, as other possible neutral radicals are significantly 

higher in energy, as shown in Figure 7.14 and Table 7.2. 

Table 7.2 Calculated energies (kcal mol-1) of different forms of neutral indole radicals as 
compared to 1. 

 X Y 4CH 4NH 6CH 6NH
Unsubs. H H 36.8310 20.4730 37.4073 21.2050
7-OH H OH 39.9200 23.4033 40.8399 24.1682
5-OH OH H 37.5223 23.1598 38.9827 23.6731

5-MeOx OMe H 38.8657 24.3535 38.1734 23.2923
5-F F H 37.9905 22.1130 39.2172 22.6526

 

The calculated g-values and associated anisotropies for both cation and neutral radicals 

are summarized in Table 7.1. Comparing the predicted Δg of the cation and neutral radical 

forms, at 406.4 GHz, L-Trp, 5-F-Trp, and 7-OH-Trp cation radicals are all expected to give rise 

to spectra with axial splitting, whereas neutral radicals should show fully resolved, rhombic 

patterns. Therefore, because the experimentally observed spectra are not fully resolved, they are 

expected to arise from their respective cationic radicals. For both 5-OH-Trp and 5-MeOx-Trp, 

the calculated Δg for the cationic forms are closer to the experimental data than the neutral 

forms; however, the difference is less significant than that of the other tryptophan-based 

compounds. As such, g-anisotropy alone is insufficient to determine the protonation state of 5-

OH-Trp and 5-MeOx-Trp radicals. A summary of tryptophan-based radicals characterized by 

HFEPR and our predicted neutral radicals can be found in Figure 7.15. 
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To gain insight into the origin of Δg, spin populations were considered for each of the 

potential radical species. Mulliken spin populations are schematically shown by the size of 

circles in Figure 7.16A and summarized in Table 7.3. Spin density distributions have also been 

previously measured for L-Trp and related compounds in solution by rapid mixing with Ce(IV) 

as an oxidant, and those distributions are in qualitative agreement with our cationic L-Trp radical 

[189]. L-Trp and 5-F-Trp have similar spin distributions with the largest spin population on C3 

 

Figure 7.15 Plot of g-value anisotropy versus rhombicity of various tryptophan radical 
species.Tryptophan-based radicals measured in protein are represented by stars, cation 
radicals measured in this work are closed circles, and neutral radicals (as calculated in this 
study) are open circles. The y-axis shows rhombicity, where 1.0 and 0.0 are completely axial, 
and the x-axis shows g-value anisotropy, with 0 representing a purely isotropic signal. 
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in both cation and neutral radical forms. One significant difference between neutral and cationic 

L-Trp radicals is that only the cationic species show radical spin density on C2, the position of 

the cross-link in TTQ. Similarly, 7-OH-Trp shows significant spin density on its TTQ cross-

linked carbon, C4, which is diminished upon deprotonation (Figure 7.16B). Of the compounds 

studied, only 5-OH-Trp and 5-MeOx-Trp show any spin density at the C5 position and the 

corresponding substituted oxygen, leading to their rhombic spectra. 

  

 

Figure 7.16 Spin density distributions of tryptophan-based radicals. (A) Mulliken spin 
populations (p-orbital π-component) for the radical forms of tryptophan derivatives. The open 
and solid circles symbolize positive and negative spin densities, respectively. The size of the 
circles represents the magnitude of the density. (B) Three-dimensional representation of the 
spin density distribution of cationic and neutral 7-OH-Trp radicals. 
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Table 7.3 Mulliken spin populations (pπ/p-component) for tryptophan-based radicals. 
Cation Radicals

 Unsubs. 7-OH 5-OH 5-MeOx 5-F
1N 0.12 0.13 0.16 0.18 0.15 0.18 0.16 0.19 0.14 0.16
2C 0.12 0.11 -0.03 -0.06 -0.03 -0.05 -0.06 -0.08 0.09 0.08
3C 0.31 0.40 0.21 0.27 0.10 0.11 0.12 0.15 0.36 0.45 
4C 0.22 0.27 0.32 0.40 0.15 0.17 0.19 0.23 0.22 0.28
5C -0.07 -0.11 -0.02 -0.05 0.23 0.26 0.18 0.20 -0.05 -0.08
6C 0.18 0.22 0.15 0.17 -0.02 -0.04 -0.03 -0.06 0.14 0.18
7C 0.05 0.05 0.15 0.17 0.10 0.11 0.12 0.15 0.04 0.04
O/F - - 0.09 0.09 0.14 0.14 0.15 0.16 0.00 0.00

Neutral Radicals
1N 0.25 0.26 0.29 0.31 0.36 0.38 0.34 0.37 0.27 0.29
2C -0.05 -0.10 -0.10 -0.15 -0.12 -0.17 -0.12 -0.17 -0.08 -0.13
3C 0.45 0.57 0.35 0.44 0.33 0.40 0.32 0.40 0.46 0.59 
4C 0.17 0.22 0.21 0.27 0.15 0.17 0.16 0.19 0.17 0.21
5C -0.04 -0.07 0.01 -0.01 0.12 0.13 0.11 0.12 -0.02 -0.04
6C 0.14 0.17 0.12 0.14 -0.05 -0.07 -0.05 -0.07 0.10 0.13
7C 0.03 0.02 0.10 0.10 0.14 0.18 0.15 0.19 0.03 0.03
O/F - - 0.04 0.04 0.05 0.05 0.06 0.07 0.00 0.00
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7.5 Conclusion 

We have shown for the first time, through the novel use of a photocatalyst system that 

can generate organic radicals at cryogenic temperatures in a frozen glass without the need for 

ionizing radiation, HFEPR spectra of L-Trp and 7-OH-Trp cationic radicals in free solution. 

Producing radicals in this way prevents generation of confounding signals from solvated 

electrons or other unwanted free radicals. Cationic radical spectra were collected for species 

relevant to the formation of TTQ in MADH, and the experimental g-anisotropies were 

interpreted in terms of spin populations. The experimental HFEPR spectral patterns are sensitive 

to the location of oxygen substitution. The cationic radicals have low pKa values and thus would 

be expected to decay to neutral radicals spontaneously. The neutral radical forms are predicted to 

give rhombic spectra, mainly due to delocalization on N1 and C3 positions, even in the absence 

of oxygen substitution. As related to TTQ biosynthesis, the C2 of an L-Trp residue, and the C4 

of a 7-OH-Trp residue form a new covalent bond. This study shows that the radical 

recombination that forms the TTQ cross-link may be more likely when the respective Trp-based 

radicals are in their protonated states because the carbon atoms of L-Trp and 7-OH-Trp that form 

the cross-link have more radical character in their respective protonated states. This finding 

provides new physical insight about the unusual 7-OH-Trp radical and opens a new possibility 

for the cross-linking reaction, as it was previously thought that the cation radicals initially 

generated by MauG would have to spontaneously deprotonate before cross-link formation [106]. 
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