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ABSTRACT: Perfluorinated acids (PFAs) are widely used synthetic chemical compounds, highly resistant to environmental
degradation. The widespread PFA contamination in remote regions such as the High Arctic implies currently not understood long-
range atmospheric transport pathways. Here, we report that perfluorooctanoic acid (PFOA) initiates heterogeneous ice nucleation at
temperatures as high as −16 °C. In contrast, the eight-carbon octanoic acid, perfluorooctanesulfonic acid, and deprotonated PFOA
showed poor ice nucleating capabilities. The ice nucleation ability of PFOA correlates with the formation of a PFOA monolayer at
the air−water interface, suggesting a mechanism in which the aligned hydroxyl groups of the carboxylic acid moieties provide a
lattice matching to ice. The ice nucleation capabilities of fluorinated compounds like PFOA might be relevant for cloud glaciation in
the atmosphere and the removal of these persistent pollutants by wet deposition.

Perfluorinated acids (PFAs) such as perfluorooctanoic acid
(PFOA) or perfluorooctanesulfonic acid (PFOS) are

anthropogenically generated compounds that have emerged
as significant global environmental pollutants with persistent,
bioaccumulative, and toxic properties.1,2 The adverse environ-
mental effects of PFAs have led to their addition to annexe A of
the Stockholm Convention for persistent organic pollutants,
and PFOS and related chemicals were voluntarily removed
from the market.3 Despite the efforts to stop the environmental
release, products containing PFAs remain in use and continue
to contribute to environmental contamination. Of the
perfluorinated acids, PFOA is the most ubiquitous pollutant
due to its extensive usage in the fluoropolymer industry and
high total emissions.4,5 PFOA has been observed in different
air and water sources (rain, snow, sea) and was detected in
regions as remote as the High Arctic.6,7 Since there are no
primary sources of PFOA in remote locations that could
contribute to contamination, questions arise regarding the
sources and transport pathways of this concerning pollutant.7,8

The currently suggested long-range transport pathways of
PFOAs are hydrospheric and atmospheric, with the latter being
more relevant for remote locations and the Arctic.9,10 This can
be witnessed by high PFA and PFOA concentrations in the

Arctic atmosphere and ongoing detection of PFOA and PFAs
in Arctic snow samples.7,11

Within the atmosphere, perfluorinated compounds can
undergo atmospheric oxidation and react with Criegee
intermediates,12 but they could also interact with clouds,13

which are important for weather effects due to cloud glaciation
and precipitation. Pure water droplets do not freeze
homogeneously until ∼ −38 °C owing to the energy barrier
associated with creating the initial crystallization nucleus.14 In
cloud droplets, water typically freezes in a heterogeneous
process, facilitated by the presence of particles that serve as ice
nucleators (IN). Common abiotic IN include clay, dust,
minerals, or carbonaceous materials.15 Biogenic IN consist of
biomolecules derived from bacteria, fungi, insects, or pollen.16

Among the abiotic ice-nucleating surfaces, monolayers of long-
chain alcohols have been shown to be particularly effective,
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while fatty acids with similar chain lengths are significantly less
so.17 Here, we report that PFOA is an efficient IN, much more
so than the structurally similar PFOS and octanoic acid (OA).
These compounds consist of a hydrophobic tail and a
hydrophilic headgroup, and are known to accumulate and
form monolayers at the air−water interface (Figure 1).18 The

ice nucleation activities of the (fluoro)surfactants are
investigated using the high-throughput Twin-plate Ice
Nucleation Assay (TINA).19 TINA enables the simultaneous
measurement of a complete dilution series with each series
composed of hundreds of droplets of a few microliters with
high statistics, enabling the analysis and characterization of the
efficiency of particles with high accuracy.20−22

Figure 2A shows the results of statistical freezing curves of
aqueous PFOA solutions with concentrations between 0 and
2000 mg/L, while Figure 2B shows the T50 values of PFOA
solutions as a function of concentration. The T50 values are
defined as the temperatures at which 50% of the droplets are
frozen. PFOA shows considerable ice nucleating activity, in a
manner highly dependent on the solution concentration.
At PFOA concentrations up to 0.02 mg/L, the ice nucleation

activity is negligible, with freezing occurring at T50 = ∼ −28
°C, comparable to pure water in our experimental setup.
Increasing the concentration above 0.02 mg/L results in
freezing temperatures that are higher than that of pure water.
We find that for 200 mg/L PFOA solutions T50 = ∼ −21 °C,
and for 2000 mg/L solutions, T50 increases up to ∼ −16 °C.

While the maximal determined T50 value is ∼ −16 °C, it is also
worth mentioning that we occasionally observed high initial
freezing temperatures of up to −5 °C even at low
concentrations (Figure 2A).
Interestingly, the T50 values of the droplet freezing statistics

do not simply increase linearly with higher concentration.
Instead, the data for PFOA shows resemblance with a
Langmuir adsorption model with an initial rapid increase in
T50 up to ∼200 mg/L and a subsequent slower increase and
leveling off of the ice nucleation activity until 2000 mg/L.
Next, we determined the ice nucleation activity of OA,

PFOS, and deprotonated PFOA to unravel which properties of
PFOA give rise to its ice nucleation efficiency. The activities of
OA, deprotonated PFOA, and PFOS were determined over
different concentration ranges owing to their respective
solubilities in water.
Figure 3 shows the T50 values of OA, deprotonated PFOA,

and PFOS solutions plotted as a function of concentration in
aqueous solution. We find that, similar to PFOA, the T50 plots
of all three compounds resemble Langmuir adsorption models.
However, in contrast to PFOA, the maximal ice nucleation
activities were significantly lower for all three (fluoro)-
surfactants. For OA, we found that the maximal ice nucleation
activity is at ∼ −24 °C, which is only slightly higher than the
freezing temperature of pure water in our setup. Apparently,
the perhydrogenated fatty acid is a significantly poorer ice
nucleator than perfluorinated PFOA (Figure S1). For PFOS,
the maximal ice nucleation activity was ∼ −20.5 °C, but at 20
times higher concentration than PFOA. Deprotonation of the
carboxylic acid headgroup of PFOA eliminates most ice
nucleation activity with a maximum of ∼ −26.5 °C. It seems
that both changing the hydrophilic headgroup of PFOA or the
hydrophobicity of the tail suppresses the ice nucleation
activities of the respective (fluoro)surfactants. We performed
dynamic light scattering and calorimetric measurements to
examine whether different water activities or solution
aggregates may be the origin of the observed differences in
the ice nucleation capabilities. Neither the melting points of
the compounds nor their aggregate sizes were found to differ
notably (Table S1, Figure S2), eliminating explanations
involving different water activities or aggregate sizes in solution
as the origins for the observed differences in ice nucleation
activity.

Figure 1. Chemical structures of the investigated perfluorooctanoic
acid (PFOA), octanoic acid (OA), perfluorooctanesulfonic acid
(PFOS), and deprotonated PFOA.

Figure 2. Ice nucleation activity of PFOA. (A) Freezing curves of aqueous PFOA solutions from concentrations ranging from 0 to 2000 mg/L.
Shown are the fraction of frozen 3 μL droplets vs temperature. The point at which 50% of the droplets are frozen ( f ice = 0.5) represents the T50
value. (B) T50 values of aqueous PFOA solutions as a function of concentration. Error bars represent the standard deviation of 3−8 independent
measurements.
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PFOA and other fluorosurfactants are known to accumulate
and form monolayers at the air−water interface,18 with a
maximum surface excess of ∼2 mg/m2 for aqueous
concentrations exceeding 100 mg/L. In the TINA droplet
freezing experiments, the surface pressure cannot be controlled
and is a function of the amount of PFOA at the surface and the
temperature. Interestingly, we find that the observed ice
nucleation activities of PFOA and the other surfactants directly
correlate with their surface tensions, implying that their ice
nucleation activities are linked to the buildup of the
(fluoro)surfactant monolayers (Figure 4B, Figure S3). We

exclude the possibility that multilayered structures or micelles
form or coexist underneath the PFOA monolayer, since we
observe no changes in aggregate size in DLS measurements
(Figure S4). The critical micelle concentration for PFOA also
falls below the solubility limit, and X-ray reflectivity measure-
ments showed that the thickness of a perfluorinated carboxylic
acid layer corresponds to a monolayer state of the film.23

Previously, monolayers of n-alkyl alcohols have been shown
to be particularly effective in nucleating ice and that their
freezing temperatures increased with the length of the
hydrocarbon tail.17 These monolayers expose hydroxyl groups
to water in a manner that resembles the basal plane of ice.
Hence, it was suggested that the structural lattice matching
with ice governs their ice-nucleating efficiency. Interestingly,
fatty acid monolayers, which also expose hydroxyl groups to
water, are very poor ice nucleators, with solid fatty acid crystals
showing more promise.24 Molecular simulations have

previously suggested that the discrepancy between the alcohol
and fatty acid layers was due to differences in the monolayer’s
compactness and the resulting structural match to ice, which
are key for determining the ice nucleation ability of organic
surfaces that expose hydroxyl groups to ice.25

Upon fluorination, hydrophobic chains will undergo
structural and conformational changes that directly affect the
packing of the monolayer. Structurally, perfluorinated chains
display a larger footprint (∼0.28 nm2) than hydrogenated
chains (∼0.19 nm2) and thus lower interfacial densities and
molar volumes than hydrogenated chains with the same
number of carbon atoms.27 There are also conformational
differences. For perfluorinated chains, the dihedral angle at
minimum energy is not exactly 180°, as it is for hydrogenated
ones. Consequently, perfluorinated chains adopt a character-
istic helical conformation, while hydrogenated chains tend to
be in an all-trans planar zigzag form.28−30 Moreover, the energy
barrier for internal rotation of perfluorinated chains is
appreciably higher than for hydrogenated chains, which induce
a rigid character, in contrast with the flexible character of
hydrogenated chains.29

Altogether, the Langmuir monolayers of fluorinated
molecules will have a higher crystallinity than their hydro-
carbon counterparts. In fact, grazing incidence X-ray diffraction
studies of monolayers of perfluorinated carboxylic acids have
revealed tight hexagonal packing of molecules with their long
axes nearly perpendicular to the water surface and the
coexistence of crystalline and dilute disordered phases.23,31

We conclude that upon fluorination, the morphology and
packing within the monolayer allow for a better alignment of
the carboxylic acid groups with less structural fluctuations,
thereby providing a better ice template and enabling enhanced
nucleation properties. This hypothesis is supported by
additional measurements of perfluorodecanoic acid, which
also shows good ice nucleation abilities (Figure S5). Our
conclusion is also in line with previous suggestions based on
MD simulations and experimental findings that solid fatty acid
particles are better INs than fatty acid monolayers.24,25

Irrespective of the precise molecular mechanism, the finding
that PFAs have high ice nucleation activity may have direct
implications for the transport and environmental fate of these
persistent organic pollutants, as they could get distributed to
remote environments by actively being involved in cloud
glaciation.
While the local concentration at the anthropogenic point of

origin may be high, once it becomes distributed in the
environment, average concentrations found in the atmosphere
are significantly lower than the ones reported here (∼15 pg/

Figure 3. Ice nucleation activity, quantified through T50 values, of OA (gray circles), PFOS (green circles), and deprotonated PFOA (purple
circles) solutions as a function of concentration. Error bars represent the standard deviation of 3−5 independent measurements.

Figure 4. Surface tension and ice nucleation of PFOA. (A) The ice
nucleation activity of PFOA is concentration dependent and follows
the trend of the surface tension. Surface tension values were derived
from Lyu et al.26 (B) Schematic representation of the buildup of a
PFOA monolayer, which correlates with the increase of the ice
nucleation activity (nucleation temperature) of PFOA.
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m3),32 and the deprotonated PFOA form is likely prevalent,
which has low ice nucleation activity.33 Our results suggest that
increasing the crystallinity and order of monolayers through
perfluorination will also affect the ice nucleation abilities of
other perfluorinated compounds such as long-chain alcohols,
potentially rendering them from good to exceptional ice
nucleators with direct atmospheric implications.13,17 The
possible ice nucleation synergy between hydrogenated and
perfluorinated long-chain alcohols and the interplay of PFAs
with other ice-nucleating particles found in the atmosphere are
yet to be investigated.
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