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Abstract 

 

Plasmaspheric density and composition strongly influence wave growth and propagation, as well 

as energetic particle scattering. Previous statistical, empirical plasma density models of the inner 

magnetosphere have limited capability to make accurate predictions. Consequently, these models 

cannot be used to adequately quantify complex global processes and nonlinear responses to 

driving conditions, factors of critical importance during geomagnetic storms. Recent 

advancements in machine learning techniques have enabled a more dynamic study of the space 

environment. Here we present two three-dimensional dynamic electron density models (one 

magnetospheric model and one ionospheric model) based on an artificial neural network. The 

models use feedforward neural networks which were generated using electron densities from 

satellite missions of CRRES, ISEE, IMAGE, POLAR, and DMSP. The three-dimensional 

electron density model takes spacecraft location and time series solar wind conditions (e.g., flow 

speed, plasma density, solar radiance) and geomagnetic indices (e.g., AP index, AE and AL 

indices, F10.7 index, Dst index, KP index, PCN index, and solar Lyman-Alpha flux) obtained 

from NASA’s OMNI database as inputs. When compared with the out-of-sample data, the three-

dimensional models predict equatorial and field-aligned density profiles from satellite 

measurements with root mean square errors of 0.410 and 0.622, respectively. When the three-

dimensional magnetospheric model is applied to a geomagnetic storm, successful reconstruction 

of the expected plasmaspheric dynamics, such as the plasmaspheric erosion, and plume 

formation in three dimensions was achieved. 
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Introduction 

 

1.1 Plasmaspheric Composition and Dynamics 

The difference in gas pressure between the solar corona and interstellar space results in a 

flow of ionized solar plasma and remnants of the solar magnetic field to be driven outward and 

away from the sun. This solar wind is comprised mainly of ionized hydrogen (or protons and 

electrons in equal numbers), along with a smaller percentage of ionized helium and heavier 

elements [Kivelson and Russell, 1995]. Where the solar wind meets the magnetic field of the 

Earth , the pressure of the solar wind and the Earth’s magnetic field, which also contains plasma, 

establish an equilibrium. Thus, a bubble of sorts forms around the Earth, which is referred to as 

Earth’s magnetosphere. The magnetosphere is usually divided into three regions: the ionosphere, 

the plasmasphere or inner magnetosphere, and the outer magnetosphere. The magnetosphere also 

contains charged particles that interact with the remnants of the solar magnetic field contained 

within the solar wind. 

Earth’s magnetospheric environment is comprised of several components including, as 

described by Bortnik et al. [2016], “the ionosphere, background electric and magnetic fields, 

plasma waves, electrons ranging from cool (1 eV) to ultrarelativistic (> 5 MeV) energies, and 

different species and energies of ions.” All these components have both external driving factors, 

such as the solar wind, and internal driving factors including various other instabilities. In 

addition to this, they often couple to one another in complex and nonlinear ways that are not easy 

to predict via simple mathematical models [Bortnik et al., 2016]. This fact results in a dynamic 

environment that cannot be sufficiently empirically modeled through the use of statistical 

models. 

The plasmasphere is a region in Earth’s inner magnetosphere, between the upper 

atmosphere and the plasmapause, containing cold and dense plasma. [Carpenter, 1966; Nishida, 

1966; Lemaire et al., 1998; Darrouzet et al., 2009].  This system in Earth’s inner magnetosphere 

is inextricably connected to the Sun and is driven by energy inputs from the solar wind [Bortnik 

et al., 2016]. During quiet times, when there is minimal geomagnetic activity, the charged 
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particles in the plasmasphere exist in dynamic equilibrium with the upper ionosphere. When a 

disturbance occurs, such as during a geomagnetic storm, the enhanced magnetospheric 

convection causes an erosion of the plasmasphere to lower L shells—in other words, the 

plasmasphere erodes radially, as seen in the satellite image in Figure 1 [Chu et al., 2017a, b]. 

Simultaneously, the afternoon region of the magnetosphere is drawn towards the dayside 

magnetopause, and a Plasmaspheric plume forms as a result [Grebowsky, 1970; Ober et al., 

1997; Goldstein et al., 2004; Darrouzet et al., 2008]. This convection is followed by a period of 

storm-time recovery, wherein the low-energy ionospheric plasma is pulled from low latitudes 

upward along the magnetic field lines, and previously emptied regions are refilled. This dynamic 

cycle constantly repeats, with the erosion influenced by geomagnetic activity occurring on the 

order of a few hours and the subsequent refilling occurring over a few days [Kersley and 

Klobuchar, 1980; Dent et al., 2006; Sandel and Denton, 2007; Foster et al., 2014]. 

The electrically charged particles found in the ionosphere are ionized by extraterrestrial 

radiation, affecting the propagation of radio waves [Li et al., 2021]. Thus, plasmaspheric density 

and composition strongly influence wave growth and propagation, as well as energetic particle 

scattering [Chu et al., 2017a, b]. In addition to this, low energy electrons in the plasmasphere 

significantly influence the acceleration of relativistic electrons with high speeds and high energies. 

Such “killer” electrons can affect both satellites and astronauts and are therefore of key interest in 

the study of space weather. Previous empirical models are independent of time and geomagnetic 

activity [Sheeley et al., 2001], and thus fail to accurately describe the electron density at any time 

or region. Therefore, the development of machine learning models is necessary to quantify effects 

on the plasmasphere due to geomagnetic storms, and to fully understand Plasmaspheric dynamics 

and space weather.   
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1.2 Previous Work and Significance  

Plasma density, or equivalently electron density number, in the equatorial plane and 

along magnetic field lines has been modeled statistically in the past via several empirical models 

[Carpenter and Anderson, 1992; Sheeley et al., 2001; Gallagher et al., 2000; Denton et al., 

2002a, 2002b, 2004; Tu et al., 2006; Reinischet al., 2009; Ozhogin et al., 2012]. The equatorial 

plasma density is usually modeled with two empirical functions for trough and plasmaspheric 

densities, expressed either as exponential or power-law functions, or some mix of the two, and a 

function for plasmapause location [Carpenter and Anderson, 1992; Sheeley et al., 2001]. The 

following model by Carpenter and Anderson [1992] was developed using observations from the 

satellite ISEE. The Plasmaspheric density is given by the following function: 

𝑙𝑜𝑔10𝑛𝑒 = (−0.3145𝐿 + 3.9043)

+ [0.15(cos
2𝜋(𝑑 + 9)

365
) − 0.5 cos

4𝜋(𝑑 + 9)

365
) + 0.00127𝑅̅ − 0.0635]𝑒

−𝐿−2
1.5  

where d is the number of days representing seasonal variations and 𝑅̅ is the 13 month-average 

sunspot number. Here, L refers to the L shell, which describes the magnetic field line that crosses 

the magnetic equator at a number of Earth-radii equal to the L-value. Together with magnetic 

local time (MLT) and magnetic latitude (MLAT), it makes up a coordinate system somewhat 
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similar to r, θ, and φ in spherical coordinates. MLAT is a coordinate similar to the geographic 

latitude, except it is defined relative to the geomagnetic poles rather than the geographic poles. 

MLT can be defined as the hour angle from the midnight magnetic meridian, increasing 

positively in the magnetic eastward direction. The midnight magnetic meridian is defined as the 

meridian 180⁰ in magnetic longitude away from the subsolar point. Therefore, the MLT/MLAT 

coordinate system rotates with respect to Earth at the same rate that the subsolar point crosses 

magnetic meridians [Laundal et al., 2016].  

The trough density is given by the following function which depends on MLT: 

𝑛𝑒 = (5800 + 3000𝑀𝐿𝑇)𝐿−4.5 + (1 − 𝑒
−𝐿−2
10 ) , 00 ≤ 𝑀𝐿𝑇 ≤ 06 

𝑛𝑒 = (−800 + 1400𝑀𝐿𝑇)𝐿−4.5 + (1 − 𝑒
−𝐿−2
10 ) , 06 ≤ 𝑀𝐿𝑇 ≤ 15 

The plasmapause location is given by: 

𝐿𝑝𝑝 = 5.6 − 0.46𝐾𝑝𝑚𝑎𝑥 

where 𝐾𝑝𝑚𝑎𝑥 is the maximum value of 𝐾𝑝 in the previous 24 hours. 

The functions for electron density in the trough and plasmasphere were later developed 

with the addition of observations from the satellite CRRES, which covers a larger range of MLT 

values [Sheeley et al., 2001]. The updated function for the plasmaspheric density is given by: 

𝑛𝑒 = 1390 (
3

𝐿
)
4.83

, 3 ≤ 𝐿 ≤ 7 

and the updated function for the trough density is: 

𝑛𝑒 = 124 (
3

𝐿
)
4.0

+ 36 (
3

𝐿
)
3.5

cos⁡(
{𝐿𝑇 − [7.7 (

3
𝐿)

2.0

+ 12]} 𝜋

12
)⁡, 3 ≤ 𝐿 ≤ 7 

As seen in the preceding equations of the Carpenter and Anderson model, the electron 

densities in the Plasmaspheric and trough regions are a function of L shell and magnetic local 

time (MLT) and are thus independent of both time and geomagnetic activity [Sheeley et al., 

2001]. Additionally, the function for the plasmaspheric density considers the solar cycle effects 
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only by the 13 month-average of sunspot number and by the day number, which consider 

semiannual variation. Therefore, the equation for plasmaspheric density is only weakly 

dependent on the long-term effects of the solar cycle, as well as the seasonal effect [Carpenter 

and Anderson, 1992].  

The field-aligned distribution of the plasma density has also been examined using various 

data sets and methods. The global core plasma model (GCPM) [Gallagher et al., 2000] uses an 

exponential function to interpolate between the topside ionospheric profile of the International 

Reference Ionosphere model and the equatorial Plasmaspheric density profiles [Gallagher et al., 

2000] in order to obtain the field-aligned density profile. In situ observations made by the 

plasma-wave instrument aboard the Polar satellite were later used to study field-aligned 

distributions [Goldstein et al., 2001; Denton et al., 2002a, 2002b]. Here, the field-aligned plasma 

density was modeled using a power-law as follows: 

𝑛𝑒 = 𝑛𝑒0 (
𝐿𝑅𝐸
𝑅

)
𝛼

= 𝑛𝑒𝑂 𝑠𝑒𝑐 𝜆
2𝛼 

Where ne0 is the electron density at the equator, L is the L shell, RE is the radius of the 

Earth, R is the geocentric distance from the Earth’s center, 𝜆 is the magnetic latitude (MLAT), 

and 𝛼 is a function of L shell. The parameter of 𝛼 was fitted under an assumption of no MLT or 

temporal variations, defined as when a polar-orbiting satellite crossed the same L shell. In 

addition to in situ measurements, the field-aligned distribution was constructed using echo 

observations from the radio plasma imager aboard to IMAGE satellite [Reinisch et al., 2001; 

Huang et al., 2004; Tu et al., 2006; Ozhogin et al., 2012]. The field-aligned density was also 

sometimes obtained simultaneously in both hemispheres, in this case being expressed in a more 

compact form: 

𝑛𝑒 = 𝑛𝑒0 𝑐𝑜𝑠
−𝛽 (

𝛱

2

𝛼𝜆

𝜆ⅈ𝑛𝑣
) 

where 𝑛𝑒0 is again the equatorial electron density,  𝜆 is the magnetic latitude, and 𝜆ⅈ𝑛𝑣 is 

the magnetic invariant latitude. The parameters α and β control the flatness and steepness of the 

field-aligned density profiles and were fitted based on specific events [Huang et al., 2004; 

Reinisch et al., 2004] and statistically [Ozhogin et al., 2012]. 
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Most empirical models are expressed as functions of L shell and have no dependence on 

geomagnetic activity or time, and furthermore fail to take into account the effects on charged 

particles of the magnetosphere from several solar-terrestrial factors, including solar flux, 

geomagnetic storms, neutral winds, and the electric field [Anderson et al., 1998; Atıcı & 

Sağır, 2020; Du et al., 2019; Karatay, 2020; Schunk et al., 1975]. A time-dependent model of the 

inner magnetosphere’s electron density, however, is very important for a variety of applications. 

For example, by using in-situ observations of electron density obtained by the Van Allen probes 

(rather than a statistically averaged empirical model) a much better comparison between modeled 

and observed electron acceleration during a major radiation belt enhancement on October 8th-9th 

of 2012 was drawn [Thorne et al., 2013]. Unfortunately, satellite observations of electron 

densities are not available for every storm event, so this is not a practical approach to modeling 

plasmaspheric dynamics. In addition to this, it is not the in situ density but rather the global 

distribution of the electron density which is required for modeling wave-particle interactions. 

This is because electron acceleration occurs over extended paths along an electrons’ drift orbit, 

not simply where in situ density measurements are obtained [Chu et al., 2017]. A time and 

geomagnetic activity-dependent and global model of the electron density is therefore essential to 

understand wave growth propagation and particle scattering. In addition to this, cold electrons in 

the plasmasphere significantly influence the acceleration of relativistic electrons with high 

speeds and high energies. Such “killer” electrons can affect both satellites and astronauts and are 

therefore of key interest in the study of space weather. 

In order to model the dynamic evolution of the plasmasphere due to storm-induced 

erosion and refilling, a time-dependent equatorial plasma density model has been developed by 

Bortnik et al. [2016] and Chu et al. [2017a, b] using a neural network approach with time series 

of solar and geomagnetic indices as inputs. This neural network model has successfully 

reconstructed dynamic behaviors and density features, including quiet time plasmasphere, 

erosion, recovery, and plume formation during storm events. 

1.3 Machine Learning and Neural Networks 

Recent advancements in machine learning techniques have enabled a more dynamic 

study of the space environment. Artificial neural networks (ANN) are useful in representing 

complicated functions such as the complex, nonlinear dependence of electron density dynamics. 
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The structure of neural networks is inspired by the brain: a network is comprised of neurons, 

which make up layers. Each neuron contains an activation which determines the activation in the 

following layers. In addition, the connections between neurons have weight assigned to them, 

which are multiplied by all of the activations in the layer to give the weighted sum of that layer. 

At the input layer, the neural network is given a set of training data, and the weights and 

activations are initially randomized. The weighted sum at that layer is then computed by the 

following equation: 

𝑧 = 𝑓∑(𝑎ⅈ𝑤ⅈ + 𝑏ⅈ)

ⅈ

 

where i denotes the layer, 𝑎 is the activation, 𝑤 is the associated weight, and 𝑏 is the bias. The 

entire weighted sum is wrapped in an activation function, 𝑓, such as the sigmoid function. This 

function condenses the values onto a number line between 0 and 1 so that very negative values 

are close to zero and very positive ones are close to one. The bias is added so that the neuron 

only lights up when the weighted sum is larger than some non-zero number. The learning process 

is finding valid values for all the weights, activations, and biases to accurately solve the problem. 

At the final output layer, a cost function is defined to tell how accurate the output is. By adding 

the squares of the differences between each output activation and the desired output, provided by 

a validation data set which is held out of the training processes, the accuracy of the output can be 

determined. The goal is then to find the minimum of the cost function, which is often very 

complex. This can be done by starting at any random input and determining which direction it 

must move to lower the cost. This is done repeatedly until a local minimum is found. Since there 

may be many local minima, strategies such as early stopping are used to help find the correct 

minimum. Through this process the model can be trained to minimize the cost and produce the 

most accurate output. 
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Database 

 

2.1 Overview 

In this study, two DEN3D dynamic electron density models were developed using in situ 

electron density observations from the instruments aboard eight satellites. The first model 

focuses on the magnetosphere covering 2<L<6, using in-situ measurements from four satellites 

CRRES, IMAGE, ISEE, and POLAR. The second model focuses on the ionosphere covering an 

altitude of ~850 km, using in-situ density data from four DMSP satellites. The input parameters 

for the two models include the position of the measurements and the geomagnetic activity 

indices. The position parameters are given in MLT, MLAT, and L shell coordinates for the 

magnetospheric model, and altitude, MLT, and MLAT for the ionospheric model. The 

geomagnetic indices include the solar wind conditions (e.g., flow speed, plasma density, solar 

radiance) and geomagnetic indices (e.g., AP index, AE and AL indices, F10.7 index, Dst index, 

KP index, PCN index, and solar Lyman-Alpha flux). A description of the various geomagnetic 

indices follows. 

2.2 OMNI 

 The geomagnetic parameters which describe the solar wind are all are obtained from the 

OMNI database of NASA’s Space Physics Data Facility. The Dst index is a measure of magnetic 

activity derived from a series of equatorial geomagnetic observations which measure the 

intensity of the globally symmetrical equatorial electrojet, or “ring current” [Center, National 

Geophysical Data, 2010]. SYM-H index dictates the intensity of magnetic storms. It is similar to 

the DST index, but with a much higher time-resolution [Cai et al., 2009]. Both Dst and SYM-H 

indices are designed to measure the intensity of the storm time ring current. While Dst has a 1-

hour time resolution, SYM-H has a 1-min time resolution. [Wanliss et al., 2006]. AE index 

provides a global measure of the auroral zone magnetic activity caused by increased Ionospheric 

currents flowing below and within the auroral oval [Center, National Geophysical Data, 2010]. 

As stated by Kamide et al., it is defined by “the separation between the upper and lower 
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envelopes of the superposed H component plots from auroral-zone magnetic observatories”.  

Thus the relationship is given by AE = AU – AL, where AU and AL indices are the upper and 

lower envelopes, respectively [2004].  The AE index (and therefore the AL and AU indices) 

describe the disturbance level recorded by auroral zone magnetometers and the AL index 

monitors the strength of the westward electrojet [McPherron et al., 2015]. The AP index is 

another measure of geomagnetic disturbance uniquely associated with storm events [Fu et al., 

2010]. The F10.7 index is spot measurements of the solar radio flux density at 10.7 cm wavelength 

and is an indicator of solar activity [Tapping et al., 1994]. It coordinates well with the sunspot 

number and a number of ultraviolet and visible solar irradiance records [Center, National 

Geophysical Data, 2010]. The KP index is an indicator of disturbances in the Earth’s magnetic 

field and is a measure of the strength of the solar-wind flux [Dessler et al., 1963]. The PCN index 

is a measure of the magnetic activity at the northern polar cap generated by the solar wind and 

the magnetic field [Troshichey et al., 2006]. The solar Lyman-alpha flux is useful to examine and 

model solar and solar irradiance processes [Machol et al., 2019]. 

2.3 CRRES, IMAGE, ISEE, POLAR 

 

For the magnetospheric density model the in-situ electron density was obtained using the 

upper hybrid resonance frequency, or plasma frequency, identified from the continuum edge 

from the instruments on board four satellites [Chu et al., 2017a, b]. These four instruments 
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include the plasma wave experiment onboard ISEE, which ran from October 27th 1977 to 

September 25th 1987 [Gurnett et al., 1978], the plasma wave experiment onboard CRRES, 

which ran from August 1st 1990 to October 13th 1991 [Anderson et al., 1992], the plasma wave 

experiment onboard Polar, which ran from March 26th 1996 to September 17th 1997 [Gurnett et 

al., 1995],  and the radio plasma imager (RPI) onboard IMAGE, which ran from January 1st 

2001, to December 19th 2005 [Reinisch et al., 2000]. The temporal resolution of the data was 

interpolated to a 5-minute resolution to save computational time. The relative error of the 

electron density derived from the wave measurements typically is less than 20% [Reinisch et al., 

2004], varying slightly based on the frequency resolution of the wave instrument. 

Figure 2 show the two-dimensional histograms of the electron density measurements 

log10(ne) versus L shell, MLAT, and MLT. The log of the electron density, log10(ne) versus the L 

shell is shown on the left. The greatest concentration of measurements is at L shells of between 

1.5 to 4, and the distribution of the electron density decreases linearly with respect to the L shell. 

This is expected based on the power-law and exponential functions presented in the previous 

empirical models of Carpenter and Anderson [1992] and Sheeley et al. [2001]. At higher L 

shells, the density decreases. These higher L shell regions usually corresponds with the trough 

region of the plasmasphere, where the distribution of electrons is more spread [Che et al., 2017]. 

In the magnetospheric density model, we focus on the inner magnetospheric region and thus 

limit the data to observations within L shell 8. The center plot in Figure 2 shows log10(ne) versus 

MLAT, centered around the equator and restricted to -60⁰ < MLAT < 60⁰. The rightmost plot in 

Figure 2 shows log10(ne) versus MLT. The electron densities cover all MLTs between 0 and 24 

hours. The number of measurements of densities log10(ne) > 2 is more uniform, while the number 

of observations of densities log10(ne) < 2 is slightly higher in the afternoon region (12 and 18 

MLT) due to the orbits of the satellite. 

2.4 DMSP 

In the ionospheric model, the electron densities were obtained using data from The 

Defense Meteorological Satellite Program (DMSP), which is comprised of satellites in Sun-

synchronous polar orbits near 850 km altitude with orbital periods of around 104 minutes [Fu et 

al., 2010]. Figure 3 shows the known orbit of the satellites DMSP-15, DMSP-16, DMSP-17, and 
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DMSP-18. From Figure 3, it can be seen that satellite 15 orbits between about 15 and 4 hours in 

MLT, satellite 16 orbits between about 16 and 5 hours in MLT, satellite 17 orbits around about 

18 and 6 hours in MLT, and satellite 18 orbits between about 20 and 8 hours in MLT. 

 Figure 4 shows the number of in situ electron density measurements versus altitude, 

MLAT, and MLT, respectively for all four DMSP satellites. The leftmost plot shows log10(ne) vs. 

the altitude. The number of measurements is greatest around 850 km, since all four satellites 

orbit near 850 km altitude. In the plot of MLT versus electron density, the measurements are 

centered around MLTs of 4-8 hours on the low end and 15-20 hours on the high end. In the 

rightmost plot of MLAT versus electron density, the measurements are seen between latitudes of 

-90⁰ (south pole) and 90⁰ (north pole), which is the range of latitudes covered by the satellites. 
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Methodology 

 

3.1 Procedures 

The first step in building the model involved data processing. The electron density and 

positional data from all eight satellites were first read and then plotted over all time steps in order 

to check for abnormalities which needed to be removed. For example, when processing the 

CRRES, IMAGE, ISEE, and POLAR data, any data corresponding to L shells of 0 or MLT’s 

greater than 24 were removed because they did not reflect what was expected of the data 

physically and were therefore identified as anomalies. After all the data had been checked for 

abnormalities, the ensembles could be created for use in the model training. 

XSEDE is a virtual system that can be used to share computing resources and data. 

Through XSEDE, the Pittsburg Supercomputing Center was used to process data for the 

ionospheric model. In addition to this, Google Colab was  used to process the data for the 

magnetospheric model. When creating the ensembles for the first model (using CRRES, 

IMAGE, ISEE, and POLAR data) the positional, electron density, and OMNI data, were all first 

interpolated in order to fill large gaps in the data where no satellite observations were available. 

The OMNI data was then interpolated onto the timestamps of the satellite data, because the 

OMNI data is much lower resolution than the CRRES, IMAGE, ISEE, and POLAR data, and 

thus the ensemble dimensions over the same time steps did not match. In total, each input 

(electron density, position, and time) of the CRRES, IMAGE, ISEE, and POLAR data had 

2,609,661 points when interpolated. An array was created of interpolated OMNI data at several 

different shifted time steps in order to have a temporally larger range of geomagnetic indices. 

Two arrays were then created, one with the interpolated positional data and the various time 

shifts of the interpolated OMNI data, and one of the interpolated electron density data. All non-

finite numbers were then removed from the data. The input and target parameters were then 

normalized by calculating the standard deviation and mean of each ensemble, and then 

calculating a new set which was the original ensemble minus the mean and divided by the 

standard deviation. The data was then split into random training and test datasets via the 

sklearn.model_selection.train_test_split module, which takes an array as an input and randomly 
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splits the data into sets for training and testing along with a given percentage. For this model, the 

training size was set to 70% of the data, and the test size was set to 30% of the data. The model 

was then defined by setting the number of neurons in each hidden layer as well as the activation 

function and loss, which are described in more detail in the ‘Model Architecture’ section. The 

model was then trained using the TensorFlow and Keras libraries, including callbacks such as 

early stopping to improve model generability. When the root mean square error is minimized, the 

training stops, and the model performance can be evaluated. The performance was then 

evaluated using the root mean square error to calculate the error factor, and by plotting the 

model’s predicted electron density, and comparing it to the observed electron density which was 

held out of the model. Once the model achieved a satisfiable level of performance, it was applied 

to a geomagnetic storm event to examine the predictive abilities further. In order to do this, a 

virtual grid of L shell versus MLT was created on which to project electron density predictions. 

The magnetospheric model was then used to predict the electron density at four-time steps during 

the storm event, and the predictions were plotted onto the virtual grid in order to search for 

recognizable features of the plasma density evolution. 

This process was then repeated for the model trained using the DMSP data. For this 

model, after the data was processed, slightly less than 7% of the DMSP data was randomly 

selected for use in the training using numpy.random.permutation, because of the huge size of the 

DMSP data. In total, each input (electron density, position, and time) of the DMSP data from 

each satellite had 336,089,655 points. In the model training, only 20,000,000 of those points 

were used. The OMNI data were then interpolated onto the timestamps of the DMSP data. The 

same processes as described above were then used for the creation of the ensembles and training. 

The geomagnetic event reconstruction was attempted but was ultimately unsuccessful, as 

described further in the Results and Application section of this paper. 

3.2 Model Architecture 

Traditional neural networks contain an input layer, several hidden layers, and an output 

layer. Each layer contains multiple neurons. The output of each neuron is used as the input of the 

following node via their associated weight, and the output of each neuron within the hidden 

layers is computed using an activation function such as Tansig, sigmoid, Relu, or Tanh [Li et al., 
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2021]. In the model used for this study, the sigmoid was used as the activation function. During 

the training process, the neural network updates the weights and biases based on the mean square 

error calculated at the output layer, and the training stops when that mean square error is 

minimized. The architecture of the ANN model is shown in Figure 5, with 30 and 10 neurons 

respectively in the first and second layers. The model is similar to those developed in previous 

studies by Bortnik et al. [2016] and Chu et al. [2017a, b], both of which successfully model the 

equatorial plasma density global dynamic distributions. The input of each neuron, given by 𝑧𝑗
𝑙 =

𝑓 (∑ 𝑤ⅈ𝑗

𝑁−1

ⅈ=0
+ 𝑏𝑗) , is a product of the output of the previous node and its associated weight, 

where i and j are the neuron number in the current and preceding layers, respectively, and wij 

and bi are the weights and biases in the hidden layer. The sigmoid activation function, which 

calculates the output of each neuron, is given by 𝑓(𝑧𝑙) = 1 ∕ (1 + 𝑒𝑥𝑝(−𝑧𝑙)) [Chu et al., 

2017a]. The DEN3D model is trained using backpropagation to minimize the mean square error 

(MSE) of log10(ne). A randomly chosen portion of the database totaling 70% of the database is 

used as the training set, and 30% is held out as the validation set. The training set is the set of 

data used to fit the parameters, such as the weights of the connections between neurons, during 

the training process. The training set is usually made up of input vectors and the corresponding 

output vectors [Li et al., 2021]. In this case the training set consisted of the positional data and 

various solar wind parameters (as input vectors) and the log of the electron density (as output 

vectors). The validation set is held out of the model and is used to evaluate the model’s 

performance. The training process stops updating weights and biases when the cost of the 

validation set stops improving for several consecutive steps [Chu et al., 2017a]. These early 

stopping criteria are useful to avoid overfitting of the model and improve the generalizability of 

the DEN3D model. 
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Results and Application 

 

4.1 Model Performance 

Figure 6 shows the comparison between the observation and model prediction for a 

randomly selected data set data for the magnetospheric density model. The plot shows the 

model’s predictions versus the validation data for 50 random data points. The validation data, 

which was held out of the model, is shown in blue. The model’s prediction is shown in red. From 

Figure 6, it can be seen that there is very good agreement between the observed data and the 

model’s prediction. Figure 7 shows the two-dimensional histogram between the observed and 

modeled electron density for the magnetospheric density model. The colorbar shows the number 

of observations in each bin, and the light blue diagonal line represents perfect agreement 

between the model’s prediction and observations (y = x). Most of the data points are clustered 

around the diagonal, indicating that most of the observations can be modeled accurately. The 

root mean square error (RMSE) of the test data set of log10(ne) is 0.410, giving an error factor of 

100.410 = 2.57. The RMSE is calculated by subtracting the log of the predicted electron density 

from the log of the observed electron density according to the following equation: 

log(𝑛𝑒,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − log(𝑛𝑒,𝑚𝑜𝑑𝑒𝑙𝑒𝑑) = ±RMSE 

thus it can be found that 

log(
𝑛𝑒,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑛𝑒,𝑚𝑜𝑑𝑒𝑙𝑒𝑑

) = ±RMSE 

 

𝑛𝑒,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑛𝑒,𝑚𝑜𝑑𝑒𝑙𝑒𝑑

=⁡10±RMSE 

Here, the RMSE is 0.410, so 
𝑛𝑒,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑛𝑒,𝑚𝑜𝑑𝑒𝑙𝑒𝑑
 has a value of 10±0.410= 2.57 or 0.389. In other 

words, 𝑛𝑒,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 2.57 * 𝑛𝑒,𝑚𝑜𝑑𝑒𝑙𝑒𝑑 or  𝑛𝑒,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 0.389 * 𝑛𝑒,𝑚𝑜𝑑𝑒𝑙𝑒𝑑. Therefore, if the 

predicted density is 1.0 g/cm3, the modeled density has a standard deviation between 0.389 and 
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2.57. This is close to the intrinsic uncertainty level of the instrument measurements of the plasma 

density, which is a factor of 2 [Chu et al., 2017a]. This means that this DEN3D model has the 

ability to predict out-of-sample observations with uncertainty between a factor of 2 and 3. 
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In Figure 8 the data to model comparison for the model trained using DMSP data is 

shown for a randomly selected set of data. The plot shows the model’s predictions versus the 

validation data for 50 random data points. The validation data is again shown in blue, while the 

model’s prediction is shown in red. The plot shows good agreement between the observed data 

and the model’s prediction, although not as good as the model trained using the CRRES, 

IMAGE, ISEE, and POLAR data. In Figure 9 the correlation between the observed electron 

density and the model’s prediction of the electron density is shown. The colorbar shows the 

number of observations in each bin, and the red diagonal line at y=x represents perfect agreement 

between the model’s prediction and observations. From this plot, we can again assume that most 

of the observations can be modeled accurately. The root mean square error (RMSE) of the test 

data set of log10(ne) is 0.622 giving an error factor of 100.622 = 4.19. This means that the DEN3D 

model has the ability to predict out-of-sample observations with an error within a factor of 5. The 

error of the ionospheric model using DMSP data is higher than the error of the magnetospheric 

model using CRRES, IMAGE, ISEE, and POLAR data is because the DMSP model is trained 

using instantaneous input parameters, while the model using CRRES, IMAGE, ISEE, and 

POLAR data is trained using a time series of input parameters. Time series indices are the 

preferred input over instantaneous values because the plasmaspheric and ionospheric state varies 

strongly depending on its current state and preceding states. However, a time series of input 

parameters were not used in the DMSP model because of the large data size. Therefore, it is 

expected that the DMSP model has a lower performance than the magnetospheric model.  
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4.2 Model Application 

The magnetospheric model was applied to a geomagnetic storm between March 20th of 

2001 and June 10th of 2001 to test the predictive abilities. The eight plots in Figure 10 show the 

increase in electron density around MLT 18 as a Plasmaspheric plume forms in response to the 

increased geomagnetic activity of the storm. The top four plots show the electron density plotted 

as a function of L shell and MLT for four different time steps in 2001: March 20th at 13:59 UT, 

May 8th at 18:24 UT, May 28th at 22:17 UT, and June 10th at 6:33 UT. The bottom four plots 

show the same event at the same time steps with the coordinates MLT and L-shell translated to 

polar coordinates according to the following equation in order to represent a more familiar view 

of the Earth with the plasmasphere surrounding it: 

𝑥 = 𝐿 𝑠𝑖𝑛(𝑀𝐿𝑇 − 12) ⋅ 15
𝜋

180
 

𝑦 = 𝐿 𝑐𝑜𝑠(𝑀𝐿𝑇 − 12) ⋅ 15
𝜋

180
 

Thus, in this view the L shell increases radially outward, and MLT is a function of the angle 

around Earth, so that the plots show a horizontal cross-section from above Earth with the 

nightside of Earth represented by the black side of the circle and the dayside represented by the 

white side of the circle. When compared to the observed electron densities during this storm 

event, it is found that successful reconstruction of the expected Plasmaspheric dynamics is 

achieved. In other words, plume formation is observed along with the expected dates and at the 

expected coordinates of L shell and MLT. This further demonstrates the model’s accurate 

predictive abilities. The plots show an increase in electron density as the plasmaspheric plume 

forms due to the geomagnetic storm. 
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At the time of writing this thesis the ionospheric model trained using DMSP data was not 

able to be applied in order to create useful reconstructions of the electron density. The initial 

attempt to plot the electron density onto a virtual grid of MLAT and MLT was unsuccessful due 

to the large spatial areas which the satellite did not cover. The lack of electron density data in 

these regions resulted in reconstructions that did not accurately reflect the plasma density 

evolution. Plots can be made that show instead the electron densities over the trajectories of the 

DMSP satellites over time, but at the time of writing, this was not successfully completed. 
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Discussion 

 

A time and history-dependent plasma density model of the inner magnetosphere is 

necessary to understand the energetic particle scattering and the wave excitation and propagation 

which is influenced by electron density. Previous empirical modes have been limited in their 

predictive abilities because of their lack of temporal and geomagnetic-activity dependence. In 

this project, we develop a history-dependent plasma density model using a three-dimensional 

dynamic electron density model based on an artificial neural network. Two models were 

developed, one magnetospheric model generated using electron densities from the satellite 

missions of CRRES, ISEE, IMAGE, and POLAR, and the ionospheric model generated using 

electron densities from the DMSP satellite missions. Time series of various geomagnetic and 

solar indices were also used, using data from NASA’s OMNI database, resulting in the history 

dependence of the model. Therefore, the modeled plasma density depends on the preceding state, 

and produces a spatially and temporally continuous output rather than stepwise. 

The magnetospheric model trained using CRRE, ISEE, IMAGE, and POLAR data 

reproduces plasmaspheric dynamics with an error within a factor of 3, while the model trained 

using DMSP data reproduces plasmaspheric dynamics with an error with a factor of 5. Overall, 

the models’ predictions showed excellent agreement with electron density observations. There 

are some limitations in the model’s accuracy due to the noise over observations of the instrument 

measurements. For example, in the magnetospheric model, an error factor of 2.57 was found. 

However, the noise due to the instrumentation has an error factor of 2, representing a significant 

portion of that error [Chu et al., 2017a]. The size of the data also presented a limitation due to the 

finite computing power. The DMSP data, for example, was so large that only a small portion of 

the data could be randomly selected for use in the model’s training process in order to avoid 

using enormous quantities of computational time. 

The magnetospheric model’s predictive ability was further confirmed by its successful 

reconstruction of the plasmasphere’s response to a geomagnetic storm event commencing on 
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March 20th of 2001. The model successfully reconstructed dynamic density features such as the 

plume formation in response to increased geomagnetic activity. 

One of the most important applications of the DEN3D model is the ability to construct 

time-dependent three-dimensional electron density distributions over time periods for which 

spacecraft observations are sparse or non-present. The DEN3D model has the ability to convert 

sparse observations over long periods of time into dense reconstructions for any given instant in 

time. The reconstruction can then be used to examine potentially important physics which is 

absent from physics-based models by comparing the modeled values to the physics-based model 

output. For example, in a study by Chu et al., [2107b] DEN3D was used to calculate the field-

aligned density profiles in the noon-midnight meridian for a moderate storm that occurred on 

June 1st of 2013. In that study, it was found that plasmaspheric depletion during the storm was 

consistent with storm effects indicated by the SYM-H index, while short-term variation in the 

plasmaspheric density was modulated by the AL index as well [Chu et al., 2017]. One possible 

explanation for this effect is magnetospheric processes such as substorm injections, subauroral 

polarization streams, or enhanced convection influencing plasmaspheric dynamics [Goldstein et 

al., 2003]. 

The model can also be applied to study plasmaspheric refilling dynamics. Past 

determinations of refilling rates have been based off of observation from successive orbits of 

satellites during storms. The limited data resulted in refilling rates which were assumed to be 

constant over a few days according to equations for L shell. The refilling was thought to occur at 

monotonically increasing rates moving in towards earth [Denton et al., 2012; Krall et al., 2016]. 

Using the DEN3D model, it is found that density variations are not uniform during the storm 

recovery phase, instead following complex dynamics. The refilling rate depends on both SYM-H 

and AL indices rather than being constant values during storms. The speed of density depletion 

and subsequent refilling also depends on the strength of the geomagnetic activity triggering it 

[Chu et al., 2017a] 

A three-dimensional neural network model of the plasmasphere is essential in the study 

of space weather. The next step in improving these models would be to combine the observations 

from CRRES, IMAGE, ISEE, POLAR, and DMSP satellites to have a larger database for 
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training and to have data at a larger number of spatial coordinates, thus improving the model’s 

accuracy. 
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