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Abstract

The strength and stiffness of structures degrade with time due to a combination of
external forces and environmental conditions. A vehicular bridge, an offshore plat-
form, a ship hull, or a wind turbine are examples of structures that for decades must
endure cumulative degradation of their mechanical properties due to cyclic loading.
Fatigue-induced damage typically starts at the exterior surface of the component un-
less microscopic or macroscopic imperfections are present in the material’s structure.
Structural Health Monitoring (SHM) provides a scientific non-destructive framework
to estimate the structure’s current state and remaining service life. In many model-
based structural health monitoring applications, the models are linear, and common-
place is to formulate them based on modal parameters.

The research in this dissertation addresses the implications of model uncertainty
to system identification and state estimation. Specifically, determining the highest
achievable accuracy in the presence of noise in the measurements, unmeasured excita-
tions, and environmental conditions. The main contributions of this dissertation are
summarized as follows: i) derivation of exact mathematical expressions to compute
the minimum achievable variance of the identified frequencies and damping ratios
from noisy vibration measurements due to initial conditions or external forces, and
ii) the development of a weighted sensitivity-based finite element model updating
framework to a large scale model of a partially instrumented bridge. Additionally,
the dissertation explores the robustness of the Kalman filter in structural dynamics
for fatigue monitoring applications.

The dissertation presents recent developments in the feasibility of using global ac-
celeration measurements to assess the level of composite action on operational bridge
decks with unknown girder-slab connection stiffness. Our efforts focused on the 58N
Bridge constructed in 1963 located on Interstate 89 in Richmond, Vermont, United
States. The Bridge has a three-span continuous deck with two build-up outer gird-
ers spanning a total length of 558 feet (170.08 m). A portion of the bridge deck was
monitored with uni-directional accelerometers and dynamic strain sensors distributed
at various locations. Intermittently, for over two years, with measured temperatures
ranging from 15◦F to 87◦F , data was acquired. This data was used to update a
finite element model of the deck. The updated model displayed improved prediction
capabilities with respect to the original model. Such an updated model can be used
as a baseline model for stress analysis.
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Chapter 1

Introduction

1.1 Structural Health Monitoring

The performance of an engineering structure will degrade during its operational life.

Structural Health Monitoring (SHM) aims to provide a continuous diagnosis of the

"state" of the materials, the different parts, and the full assembly of these parts con-

stituting the structure as a whole [Balageas et. al.; 2006]. In other words, SHM is

the process of implementing a damage identification strategy for aerospace, civil, and

mechanical engineering [Deraemaeker et. al.; 2010]. [Rytter; 1993] described four ele-

ments (or levels) of damage identification: 1) Detection: a qualitative indication that

damage might have occurred; 2) Localization: the probable location of the damage; 3)

Assessment: an estimate of the severity of the damage; and 4) Prediction: estimate of

the future performance of the component (or structure) as damage accumulates. All

these elements require various levels of data, signal and/or information processing.

Signal processing is essential for implementation of any SHM technique. [Staszewski

& Worden; 2009] describes six major areas where signal processing has an important

1



role to play in SHM: measurements and data acquisition; data processing; feature

extraction, selection, and compression; pattern recognition and machine learning;

reliability and statistical analysis; uncertainties and information gaps. Figure 1.1 de-

picts the principle and organization of a SHM system (as shown in [Balageas et. al.;

2006]).

Figure 1.1: Principle and organization of a SHM system

Most SHM techniques can be classified into physics-based methods and data-

based methods; though a combination of the two is common [Farrar & Lieven; 2007].

Physics-based methods, also known as model-based methods, combine the physical

properties of a structure, employing a mathematical model, with sensor measurements

(also known as model-data fusion). These methods are useful to predict the response

of a structure to new loading conditions and new state configurations (damage). A

disadvantage of these methods is that they could become computationally intensive,

2



so the model selection is paramount. Data-based methods purely rely on sensor

measurements for damage identification, typically (but not always) through a pattern

recognition technique. Although these methods can be computationally efficient and

could inform that a change in the structural response as occurred, they aren’t able to

classify the nature of the change. In the context of this dissertation, we will follow a

Model-Based offline approach (see figure 1.2 and follow the discontinuous lines).

Off-line

Physics 

Model

Decision 

Making

Data-Based

Model-Based

Measurements
Prognosis 

Model

Data 

features

On-line

On-line

Off-line

Physics 

Model 

Updating

Figure 1.2: Processes of Structural Health Monitoring

In this dissertation, the author proposes several algorithms to asses and improve

the robustness of model-based structural health monitoring. The proposed algorithms

are validated using experiments with an increasing level of complexity: 1) model of

a single degree of freedom (DOF) structure, 2) model a 30-DOF of a real small scale

flexible-type frame structure in our laboratory, and 3) a large scale model of a partially

instrumented bridge on I-89 (Vermont, USA) with traffic-induced data.
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1.2 Definitions

The purpose of this section is to establish core terminologies and definitions used

throughout the dissertation:

• Damage:

– [Worden & Dulieu-Barton; 2004]: is when the structure is no longer op-

erating in its ideal condition but can still function satisfactorily, i.e. in

sub-optimal manner.

– [Farrar & Worden; 2007]: is defined as changes to the material properties

and/or geometric properties of these systems, including changes to the

boundary conditions and system connectivity, which adversely affect the

system’s performance.

– [Sohn, et. al.; 2004]: can be defined as changes introduced into a system

that adversely affects its current or future performance. Implicit in this

definition is the concept that damage is not meaningful without a compar-

ison between two different states of the system, one of which is assumed

to represent the initial, and often undamaged, state.

• Damage Prognosis [Sohn, et. al.; 2004]: estimates of the remaining service life

of a structure given the measurement and assessment of its current damaged

state and accompanying its predicted performance in the anticipated future

loading environments. Every industry is interested in detecting degradation

and deterioration in its structural and mechanical infrastructure at the earliest

possible state and in predicting the remaining useful life of the systems. Damage
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diagnosis and prognosis solutions can be used to monitor systems to confirm

system integrity in normal and extreme loading environments, to estimate the

probability of mission completion and personnel survivability, to determine the

optimal time needed for preventive maintenance, and to develop appropriate

design modifications that present observed damage propagation.

• Fatigue:

– [Poncelet; 1870]: under the action of alternating tension and compression,

the most perfect string may fail in fatigue.

– [Cook & Young; 1999]: refers to the initiation and gradual propagation of

cracks under cyclic loading. In parts that fail after a great many cycles of

loading, cracks being with yielding on a very small scale. A flaw, inclusion,

void, or surface scratch can raise local stresses high enough to produce

yielding in a crystal whose planes are oriented parallel to the largest shear

stress. With cycling, the crystal strain hardens and cracks. Micro-cracks

grow, join, and eventually produce a macro crack, whose orientation is

usually perpendicular to the maximum principal stress. The rate of crack

growth increases with crack length, and can be related to stress intensity

factors at the crack tip. When the crack reaches a critical length, the part

suddenly breaks by brittle fracture. Most fatigue cracks begin on a surface,

because it is usually where stresses are highest. Also, flaws that initiate

cracks are more likely to be found on the surface than internally.

• Fault [Worden & Dulieu-Barton; 2004]: is when the structure can no longer

operate satisfactorily. If one defines the quality of a structure or system as
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its fitness for purpose or its ability to meet customer or user requirements, it

suffices to define a fault as a change in the system that produces an unacceptable

reduction in quality.

• Fracture Control Plan:

– [McHenry & Rolfe; 1980]: engineering procedures and requirements that

contribute to the prevention of fracture in metal structures. The systematic

application of these practices to the prevention of fracture in a particular

structure is accomplished by either the code approach or the performance

specification approach to fracture control.

– [NASA SP-8057; 1972]: set of policies and procedures intended to prevent

structural failure due to the initiation or propagation of cracks or crack-like

defects during fabrication, testing, and operation.

• Fracture Critical Members (FCM):

– [NASA SP-8057; 1972]: are defined as those members whose failure could

result in loss of the aircraft and whose stress levels are limited by the

fracture mechanics analysis requirements. In summary, fracture-critical

members are identified on the basis of the consequence and likelihood of

fracture.

– [AASHTO/AWS D1.5; 2002]: are tension members or tension components

of bending members (including those subject to reversal of stress), the

failure of which would be expected to result in collapse of the bridge.

Members and components that are not subject to tensile stress under any

condition of live load shall not be defined as fracture critical.
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• Robustness:

– [Vander Heyden et al.; 2001]: the ability to reproduce the (analytical)

method in different laboratories or under different circumstances without

the occurrence of unexpected differences in the obtained result(s).

– [Mohsen & Cekecek; 2000]: the system is expected to perform its in-

tended function under all operating conditions (different causes of vari-

ations) throughout its intended life without necessarily eliminating noise

factors (noise factors are defined as disturbance factors that cause system

functional variability).

– [Stelling et. al.; 2004]: the persistence of a system’s characteristic behavior

under perturbations or conditions of uncertainity.

• State [Kalman; 1960]: some quantitative information (a set of numbers, a func-

tion, etc.) which is the least amount of data one has to know about the past

behavior of the system in order to predict its future behavior. The dynamics

is then described in terms of state transitions, i.e., one must specify how one

state is transformed into another as time passes.

• Uncertainty:

– [Schultz et al.; 2010]: is a lack of knowledge. Input uncertainty arises from

a lack of knowledge about the true value of quantities used in analyzing

a decision. Often, these quantities are found in scientific models that are

used to support a decision. Model uncertainty is about what variables,

assumptions, and functions best characterize the processes being modeled.

In practice, model uncertainties are much more difficult to deal with than
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input uncertainties because they require the analyst to propose and eval-

uate competing models.

– [Grebici et al.; 2008]: is often considered as a lack of knowledge that

may introduce risks to the outcome and execution of a process. Reducible

or epistemic uncertainty can be decreased through further studies, mea-

surements and expert consultation. However, the irreducible or stochastic

variability is inherent to the physical system such as the dimensional vari-

ation in the manufactured components and cannot be reduced through

additional studies or measurement.

1.3 Motivation

For structures subjected to dynamic effects such as wind loads, traffic loads, waves,

shocks, etc.; fatigue induced damage is critical and accounts for over 50% of failures

[Sundararajan; 1995]. In this dissertation we are interested in fatigue damage on

fracture critical structures. A fracture critical structure is one in which the failure of a

small number of elements (sometimes a single one) can generate systematic structural

collapse; typically seen in cantilever type structures such as wind turbines, chimneys,

and in non-redundant structures such as truss-type bridges, among others. These

types of structures received national attention August, 1st 2007 when the I-35W steel

truss bridge collapsed into the Mississippi river. The bridge is shown in figures 1.3a

and 1.3b before and after the collapse respectively. The bridge was visually inspected

every year since 1993 and in 2001 a report noted the presence of cracks and clear

signs of fatigue [Report MN/RC − 2001 − 10]. After over a year of investigations,
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the National Transportation Safety Board concluded that the sudden failure was

originated by an undersized gusset plates (figure 1.3c). Based on the latest data from

the National Bridge Inventory approximately 7.5% of all bridges in the United States

and its territories are classified as "poor" condition [National Bridge Inventory; 2019].

This percentage increases to 54.7% including those with a "fair" condition assessment.

The American Society of Civil Engineers scores the United States infrastructure with

a sicre of D+ [ASCE Infrastructure Report Card; 2017]. This score hasn’t change

since 2013.

National Transportation Safety Board U.S. Navy photo by 
 Mass Communication Specialist Seaman Joshua Adam Nuzzo (a) Before collapse - Side view

of the bridge showing steel

structural members

National Transportation Safety Board U.S. Navy photo by 
 Mass Communication Specialist Seaman Joshua Adam Nuzzo (b) After collapseNational Transportation Safety Board U.S. Navy photo by 

 Mass Communication Specialist Seaman Joshua Adam Nuzzo (c) Buckled gusset plates - Na-

tional Transportation Safety

Board

Figure 1.3: Fracture critical structure - I-35W Bridge in Minneapolis

In [Doebling et. al.; 1996], [Doebling et. al.; 1998], and [Sohn, et. al.; 2004] the

authors provide reviews of the technical literature on vibration-based structural health

monitoring. A subset of critical issues identified by the authors are: 1) Dependence on

prior analytical models and/or prior test data (having a detailed FEM of the structure

or presuming that a data set from the undamaged structure is available), and 2)

the level of sensitivity of the modal parameters have to small flaws in a structure.

The research in this dissertation addresses the implications of model uncertainty,
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in the context of these issues, to system identification and state estimation. We

are interested in determining the highest achievable estimation accuracy due to the

presence of noise in the measurements, unmeasured excitations, and environmental

conditions.

1.4 Objective

This dissertation investigates the propagation of modeling and measurement errors

in system identification and state estimation. The particular application of inter-

est is vibration-based fatigue monitoring of fracture-critical structures. The overall

approach is probabilistic and the research methods employed are a combination of

analytic, computational, and experimental.

1.5 Contributions

The main contributions of this dissertation are summarized below:

• Chapter 3 explores the implementation of the Fisher information and the Cramer-

Rao lower bound (CRLB) as means to determine bounds for the variance of

identified natural frequencies and damping ratios from noisy vibration measure-

ments. We derive exact mathematical expressions that compute the minimum

achievable bounds of the variance of identified natural frequencies and damp-

ing ratios from simulated noisy vibration measurements by initial conditions

or measured excitations. The proposed bounds establish a reference level com-

parable to second order statistics of the system identification results. We also
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demonstrate and quantify that there must be significantly more uncertainty

in the identified modal damping ratios than in natural frequencies. This is a

fact that stands independently of the system identification algorithm that it is

employed, as long as the algorithm is unbiased.

• Chapter 4 explores a weighted sensitivity-based finite element model updating

methodology. We propose a method that utilizes vertical acceleration measure-

ments to determine the degree of composite behaviour of an operational bridge

deck with unknown/uncertain installation of shear connections. The free pa-

rameters of the methodology are: the rigidity per unit length of the beam-slab

interface and the elastic modulus of concrete. The proposed methodology has

several key features: 1) it is intrinsically independent of the type of sensing, 2)

it identifies the free parameters from noisy operational measurements, 3) it is

more affordable by requiring a significant smaller number of measurements com-

pared to those needed by traditional methodologies (dynamic strain sensors), 4)

it is easy to implement to large complex finite element models, 5) it provides an

insight to how the environmental conditions affects the free parameters, 6) the

free parameters are based on physical and material properties making them easy

to intuitively validate, 7) the updated finite element model displayed improved

prediction capabilities with respect to the original model, and 8) the updated

finite element model can be used as a base-line model for stress analysis. A

limitation of the methodology is that although the stiffness of the deck can be

assessed, no much information can be inferred regarding the deck’s ultimate ca-

pacity. This is because various configurations of a shear connection can provide

similar stiffness yet provide quite different post-yielding behavior.
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• Chapter 5 investigates the robustness and sensitivity of the Kalman filter (KF)

to estimate the stress and strain fields, and their corresponding uncertainty,

throughout a building-type flexible structure from operational acceleration mea-

surements. We investigate how these estimates are affected by varying sources

of errors in the stochastic description of the measurement noise and unmea-

sured excitations, and in the physics of the mathematical model that describes

the structure. We instrumented the structure with strain sensors in various

locations and compared the measurements second order statistics with those of

the strain field. In this paper we propose a formulation that transforms the KF

state estimates into strain estimates and propagates their uncertainty bounds to

strain field uncertainty. It was found that the propagation of the KF estimates

underestimates the propagated estimation of the strain field variance. We show

that, in the experimental setting, the KF’s essential whiteness assumption of

the parametric errors is not satisfied. Nevertheless, the KF yields in accurate

mean estimates as long has no modeling error is considered. The mean estimates

accuracy have a significant drop once changes in the physics of the model of

the structure (modeling error) is considered. Modelling errors, that are within

the range of practical engineering models, can have a significant detrimental

effect in the estimation quality. To utilize more complex and detailed models

is not the answer. The computational demand and accuracy of the solution of

the sequential state estimation algorithm is related to the size of the model. A

trade off between the detail of the representation of the physics of the structure

and an acceptable estimation quality needs to be made. We need better models

in the engineering practice.
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Chapter 2

Theoretical/Mathematical

Background

2.1 Equation of Motion

The equation of motion of a linear single degree of freedom (SDoF) system is given

by

mẍ(t) + cẋ(t) + kx(t) = p(t) (2.1)

where m is the mass (inertia element), k is the stiffness (elastic element), c is

the viscous damping constant (dissipative element), and p(t) represents the external

load at time (t). The initial conditions consist in x(t = 0) = xo and ẋ(t = 0) = vo.

By defining

ωn =
√
k

m
(2.2)

17



and

c = 2mωnξ (2.3)

with ξ representing the fraction of critical damping, the equation of motion can

be re-written as

ẍ(t) + 2ωnξẋ(t) + ω2
nx(t) = p(t)

m
(2.4)

2.2 Harmonic Load Response Formulas

2.2.1 Damped Response

The response of a damped SDoF system to a harmonic load (p(t) = po sin(Ωt)) and

to arbitrary initial conditions xo and vo is given by

x(t) = Zd sin (Ωt+ φ) + e−ωnξt [E sin(ωdt) + F cos(ωdt)] (2.5)

where Zd is given by

Zd = po
k

1√(
1−

(
Ω
ωn

)2
)2

+
(
2ξ Ω

ωn

)2
(2.6)

and

φ = atan

 −2ξ Ω
ωn

1−
(

Ω
ωn

)2

 (2.7)
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The coefficients E and F are given by

E = ξωnxo + vo − Zd [ξωnsin(φ) + Ωcos(φ)]
ωd

(2.8)

F = xo − Zdsin(φ) (2.9)

The portion of the response given by x(t) = Zd sin (Ωt+ φ) is usually denoted

as the "steady-state response".

2.3 Response to Arbitrary Loading

The response of a SDoF system to an arbitrary loading can be computed for any

time of interest t using the following convolution integral (also known as Duhamel’s

integral)

x(t) =
∫ t

−∞
h(t− τ)p(τ)dτ =

∫ t

−∞
h(τ)p(t− τ)dτ (2.10)

If p(t) = 0 ∀t ≤ 0, then the integral simplifies to

x(t) =
∫ t

0
h(t− τ)p(τ)dτ =

∫ t

0
h(τ)p(t− τ)dτ (2.11)

Response Spectrum

The response spectrum of a load time history p(t) is defined as

max r(t) ∀t s.t. r(t) = f(x(t)) (2.12)
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where f(x(t)) is a function of x(t) such as displacement, velocity, reaction force,

etc.

2.4 Laplace Domain Analysis

The Laplace transform X (s) of a function x(t) is defined as

X (s) = L(x(t)) =
∫ ∞

0
x(t)e−stdt (2.13)

It can be shown that

L(ẋ(t)) = sL(x(t)) = sX (s)− xo (2.14)

Similarly

L(ẍ(t)) = s2L(x(t)) + sxo + vo = s2X (s)− sxo − vo (2.15)

Applying these results to the equation of motion of linear SDoF systems we

obtain

ms2X (s) + csX (s) + kX (s) = P(s) + xo (1 + s) + vo (2.16)

The solution, in the Laplace domain is given by

X (s) = P(s) + xo (1 + s) + vo
ms2 + cs+ k

(2.17)

In the special case of zero initial conditions
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X (s) = P(s) 1
ms2 + cs+ k

= P(s) · H(s) (2.18)

which turns out to be an algebraic equation. One of the advantages of working in

the Laplace domain is that one can turn a linear differential equation into an algebraic

equation. The function H(s) is known in control literature as the Transfer function.

The transfer function can be re-written as

H(s) = 1
ms2 + cs+ k

= 1
m(s2 + 2ωnξs+ ω2

n) = 1
m(s− s1)(s− s2) (2.19)

where

s1,2 = −ωnξ ± iωd (2.20)

The values s1,2 are known as the poles of the transfer function. It is trivial to

show that ∀ 0 < ξ < 1

|s1,2| = ωn (2.21)

i.e. the poles of the transfer function lie in a circle of radius ωn.

In order to return to the time domain, one must apply an inverse Laplace trans-

form to X (s). This involves using the Bromwich formula

x(t) = lim
R→∞

∫ a+iR

a−iR

1
2πiX (s)estds (2.22)

where a is taken to the right of all the singularities of X (s). There are also many
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available tables of Laplace transform pairs, which can be very useful and save time.

2.5 Fourier Domain Analysis

Fourier analysis of a periodic function refers to the extraction of the series of sines and

cosines (continuous time) or coefficients (discrete time) which when superimposed will

reproduce the function. This transformation is a mathematical method of a function

in the time into a function in the frequency domain.

The Fourier transform is the Laplace transform evaluated along the imaginary

axis, so s = iω.

X (iω) =
∫ ∞
−∞

x(t)e−iωtdt (2.23)

The inverse Fourier transform is given by

x(t) = 1
2π

∫ ∞
−∞
X (iω)eiωtdω (2.24)

The relationship between force and displacement in the Fourier domain (also

commonly referred to as frequency domain) is given by

X (ω) = P(ω) 1
−mω2 + iωc+ k

(2.25)

A useful result is

| X (ω) |=| P(ω) | 1/m√
(ω2

n − ω2)2 + 4ω2
nω

2ξ2
= P(ω) · H(ω) (2.26)
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2.5.1 Fourier Transform Discrete-Time

In SHM, measurements are sampled points from the vibrations of the structure of

interest in the time domain. By transforming these signals into the frequency domain,

we get insightful characteristics of the dynamics of the system.

Xk =
N−1∑
n=0

xne
−i2πkn/N

where Xk is called the frequency spectrum of the signal, n = 0, . . . , N − 1, N is

the length of the signal, and k refers to the kth sample.

To calculate the transform, by taking a look to the expression above, we can see

that it is nothing more than a straight forward linear operation of XNx1 = FNxNxNx1,

where FNxN is called the Fourier Matrix and Fkn = e−i2πkn/N

2.5.2 Fast Fourier Transform (FFT)

[Cooley & Tukey; 1965] shows that we can split the computation of the DTF into

two smaller parts. They separated the DTF into even and odd indexed sub-sequences


n = 2m ifeven

n = 2m+ 1 ifodd

where m = 1, 2, . . . , N2 − 1. After some algebra manipulation, we end up with the

summation of two terms that can be computed simultaneously
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Xk =
N−1∑
n=0

xne
−i2πkn/N

=
N/2−1∑
m=0

x2me
−i2πk(2m)/N +

N/2−1∑
m=0

x2m+1e
−i2πk(2m+1)/N

=
N/2−1∑
m=0

x2me
−i2πkm/(N/2) + e−i2πkm/(N)

N/2−1∑
m=0

x2m+1e
−i2πkm/(N/2)

= xeven + e−i2πkm/(N)xodd

The advantage in solution time is related to the number of operations that the

DTF needs vs the FFT. DTF requires O(N2) (operations) = N (multiplications)

× N (additions). The FFT reduces the number of computations from O(N2) to

O(N log2N).

2.6 Multi-Degree of Freedom System

In a structural system with n interconnected masses it is necessary to account for

the forces being transmitted through the connections. The equation of motion of

every mass will include coupling terms that involve the motion of one or more of the

remaining masses. In the case of linear viscous damping, the m equation of motions

can be written in matrix form as

Mẍ(t) + Hcẋ(t) + Kx(t) = f(t) (2.27)

The three resulting matrices are typically denoted as: M, the mass matrix, Hc

damping matrix, and K is the stiffness matrix. The time varying vector x(t) is the
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displacement of the m masses at time t. The right hand side f(t) is the load vector

at time t applied at the corresponding masses.

2.7 Modal Analysis

The objective of modal analysis is to decouple the equations of motion. We wish to

transform the set of m interdependent equations to m independent equations that

can be solved independently. To begin, consider the undamped equation of motion

Mẍ(t) + Kx(t) = 0 (2.28)

Assume a solution of the form

x(t) = Aφ sin(ωt) (2.29)

and second derivative given by

ẍ(t) = −Aφω2 sin(ωt) (2.30)

where A is a scalar, φ is a vector, and ω is a circular frequency. Substituting this

ansatz into the equation of motion we obtain

−Mφω2 sin(ωt) + KAφ sin(ωt) = 0 (2.31)

Eliminating common terms we get

Kφ = Mφλ (2.32)
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This can be re-written in two common equivalent forms, such as

(K−Mλ)φ = 0 (2.33)

M−1Kφ = φλ (2.34)

These equations mean that if you can find any φ and λ that satisfy these equa-

tions, then the ansatz is correct. Eq.2.33 can be useful when trying to determine an

analytical expression to find λ.

(K−Mλ)φ = 0⇒ det (K−Mλ) = 0 (2.35)

This results in a polynomial of degree n with n roots. Each one of these roots

is a solution with a corresponding vector φ. The corresponding φ is a vector in the

null-space of the matrix (K−Mλ). The scalar λ is known as eigenvalue and the

corresponding vector φ is known as an eigenvector.

Orthogonality Property

It can be shown that eigenvectors of the undamped system satisfy the following or-

thogonality property for i 6= j

φTi Mφj = 0 (2.36)

Similarly
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φTi Kφj = 0 (2.37)

Mass-normalized modes

If φ is a mode shape (arbitrarily scaled), then αφ is also a mode shape, where α is a

scalar. Thus it is possible to find scalars αi for each mode i such that

ψTi Mψi = 1 (2.38)

where ψ = αφ. The scaled modes ψ are known as mass-normalized modes. The

corresponding normalizing scalars for each mode are given by

αi = 1√
φTi Mφi

(2.39)

For mass-normalized modes, the following equality holds

ψTi Kψi = λi (2.40)

Classical Damping

Any viscous damping matrix that satisfies the following orthogonality property is

known as classical damping for i 6= j

ψTi Hcψj = 0 (2.41)

Popular examples of classical damping matrices
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Hc = αM Hc = βK Hc = αM + βK (2.42)

Modal Analysis

For systems with classical damping

Mẍ(t) + Hcx(t) + Kx(t) = f(t) (2.43)

One can define the following linear transformation of the displacement vector

x(t) = Ψz(t) (2.44)

where

Ψ = [ψ1 ψ2 ... ψn] (2.45)

then

MΨz̈(t) + HcΨż(t) + KΨz(t) = f(t) (2.46)

premultiplying by ΨT we obtain

ΨTMΨz̈(t) + ΨTHcΨż(t) + ΨTKΨz(t) = ΨTf(t) (2.47)

Using the aforementioned orthogonality properties

z̈(t) + Ξż(t) + Λz(t) = ΨTf(t) (2.48)
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these are independent set of equations and hence can be solved individually for

each mode i.

z̈i(t) + 2ωiξiżi(t) + ω2
i zi(t) = ψTi f(t) (2.49)

The dynamic response in physical coordinates can be found by simply applying

the linear transformation

x(t) = Ψz(t) =
∑
i

ψizi(t) (2.50)

2.8 Static Condensation of the

Stiffness Matrix

The mass matrix formulation for many structural dynamics problems only include

inertia (mass) terms corresponding to translational (vertical and horizontal) degrees

of freedom (DoF) . Static condensation is used to condense the DoFs that have zero

mass assigned to them from dynamic equations without affecting the innate structural

response characteristics of the system. By looking at Eq. 2.27 and setting Hc = 0:

 Kpp Kps

Ksp Ksp


 P

S

 =

 Fp

Fs

 =

 Fp

0

 (2.51)

where P stands for primary DoF and S stands for secondary DoF. Both P and S

are sub-vectors of the DoFs to be retained and condensed out, respectively. The sub-

matrices Kpp, Kps, Ksp, and Ksp and the force sub-vectors Fp and Fs correspond
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to the displacement sub-vectors P and S. Fs = 0 means no elastic rotational forces

are acting on the system. After some matrix manipulation we get that:

Kcc = Kpp −KpsKss
−1Ksp (2.52)

where Kcc is the condensed stiffness matrix. The stiffness matrix is now suitable

for used with lumped mass matrix (translational elements only). It is possible to

express the displacement of the condensed DoF by S = −K22
−1KspP. It is worth

noting the size of the system can be further reduced by condensing additional DoFs

that we aren’t necessarily interested in or that don’t contribute to the dynamics of the

system. These DoFs can be vertical or redundant horizontal DoF. The mass matrix

shall be modified to lump the masses of neighboring DoF.

2.9 State-Space Representation

The state-space representation provides a map from input to state and from state to

output. In finite dimensional models, the state is the smallest collection of variables

that, known at given time, can be projected into the future with the use of a structure

and the input acting on the system. By considering the auxiliary equation of q̇(t) =

q̇(t) the equation of motion can be written in first order form:


q̇(t)

q̈(t)

 =

 0n×n In×n

−M−1K −M−1Hc



q(t)

q̇(t)

+

 0n×m

M−1b2

u(t)+

 0n×(n−m)

M−1b1

w(t)

(2.53)

this system of equations can be rewritten as
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ẋ(t) = Acx(t) + Bcu(t) + Lcw(t) (2.54)

where x(t) =


q(t)

q̇(t)

 ∈ <2n×1 is the state vector, Ac ∈ <2n×2n is the state

matrix, Bc ∈ <2n×m is the known input to state matrix, and Lc ∈ <2n×(n−m) is

the unknown input to state matrix. The known excitation are defined in the vector

u(t) ∈ <m×1 with b2 ∈ < n×m its a Boolean force distribution matrix that indicates

which DoF has a known loading andm is the number of independent excitations. The

unknown excitation are denoted by the vector w(t) ∈ <(n−m)×1 and a its Boolean force

distribution matrix b1 ∈ < n×(n−m). The subscript c means that the equations are in

continuous time.

The state-space representation of a structure can be achieved with the geomet-

rical and material properties of the structure or by estimating the matrices using a

system identification scheme. It is worth noting that by rewriting second order equa-

tions of motion to a first order formulation, the new system needed to be solved has

doubled in size. As the number of degrees of freedom increases, the solution becomes

more computationally expensive limiting its applicability to small size models (low

number of Dofs). Additionally these equations, with its boundary conditions, can not

be solved analytically (except for very simple cases) so an approximate solution can

be obtained by a discretization of the system in both space and time.

2.9.1 Measurements

Measurements of the response of the system are represented by
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y(t) = Ccx(t) + Dc2p(t) + Dc1w(t) + v(t) (2.55)

where y(t) ∈ <n×1 , Cc ∈ <n×2n is the output matrix, Dc1 and Dc2 ∈ <n×m are

the feed-through (or direct transmission) matrices and v(t) is the measurement noise

(associated to the sensor technology). For displacement or velocity measurements,

the D matrix is zero and Cc has the following form:

Cdis = c2 [ I 0 ] Cvel= c2 [ 0 I ] (2.56)

where c2 ∈ <r×n maps the state to the measurements where every row of it has

a one at the column corresponding to the measured degree of freedom of that row

and zero elsewhere. If the measurements consists of accelerations:

Caccel = c2 [ −M−1K −M−1CD ] (2.57)

and the D matrices are given by:

Dc2 = c2M−1b2 Dc1 = c2M−1b1 (2.58)

2.9.2 State-Estimation

In some SHM applications, it is desirable to estimate unmeasured (or ummeasurable)

quantities of the structural response by blending a mathematical model and with an

usually incomplete characterization of the input forces. Furthermore, there are in-

stances where the input forces have a complex distribution, e.g wind acting on large
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structures, waves clashing on maritime structures, etc. These provide additional diffi-

culties for the state-estimation problem. As a way to mitigate unavoidable errors, the

measurements are used to improve the estimation. In the context of this dissertation

measurements are modeled as shown in Eq. 2.55. In Control theory, a system that

processes input/output signals and estimates the states of the system is referred to

as an observer. In general, the output only state estimates provided by an observer

can be written in first order state-space form as:

˙̂x(t) = Acx̂(t) + Gc [y(t)−Hcx̂(t)] (2.59)

where x̂(t) is the state estimate. As can be seen from Eq. 2.59, the observer

state estimate is the response of the system subjected to excitations consisting of the

weighted difference between measured response (y(t)) and model’s response estimate

x̂(t) (see Fig. 2.1). Discrepancy between measured response and model predictions

can arise mainly from a combination of four different sources: model error, unmea-

sured excitations, measurement error, and unknown initial conditions. In most ap-

plications, these cannot truly be distinguish one from the other. The feedback gain

matrix Gc is the essence of any observer design and it is chosen based on the as-

sumption of which source of error is responsible for the output discrepancy and the

selection of an objective function to be minimized.

Let’s look at the state-space representation of the estimates:
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˙̂q(t)
¨̂q(t)

 =

 0n×n In×n

−M−1K −M−1Hc



q̂(t)
˙̂q(t)

+

 G1

G2

∆y(t) (2.60)

where ∆y(t) = y(t) −Hcx̂ is the output discrepancy at time t. To satisfy the

top partition it is necessary that G1∆y(t) = 0 which means that either G1 = 0

or ∆y(t) ∈ N (G1)∀ t. Since in general G1 does not have a right null space and

moreover, even if it did, ∆y(t) does not need no remain in the same space for all

times, so G1 = 0. Thus for any observer of the form given by Eq. 2.59 to be

realizable in second order form its feedback gain matrix needs to have the following

internal structure:

Gc =

 0

G2

 (2.61)

where G2 is still free to be selected. This result was first shown by [Balas; 1998].
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Figure 2.1: Block diagram of a continuous time classical state estimator (output only)

2.9.3 Recursive Estimators

Recursive estimators are mostly based on Bayes’ theorem

P (X|Y ) = P (Y |X)× P (X)
P (Y ) (2.62)

where X is the state and Y is the measurements. This form describes how the

knowledge of the system state is combined with the measurement information to get

a better estimate of the state. The knowledge of the system state is given with the "a

priori" probability of the state P (X). The measurement information is the likelihood
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probability P (Y |X) which depends on the state. The likelihood and the "a priori"

probability are multiplied and normalized through the evidence P (Y ), which is a

normalization factor. The resulting new probability of the state P (X|Y ) is known

as the "a posteriori" estimate. When the next measurement is processed the former

"a posteriori" state probability is the new "a priori" probability. It is desirable to use

a distribution where the "a priori" probability and the likelihood probability yields

to "a posteriori" distribution of the same class. In other words, the family of the

probability distribution is not changing in the recursive process.

Bayesian linear state estimation has been applied by many researchers on var-

ious fields of science, with the contribution from Kalman [Kalman; 1960] being the

most celebrated. In classical Kalman filtering it is assumed that the model is correct

but that the excitations and measurement noise are realizations of a Gaussian white

random process with zero mean and known covariance matrix Q and R, respectively.

A related problem is where no disturbances are acting on the system and we have a

correct model but the dynamic response is uncertain due to lack of knowledge of the

initial conditions. The seminal contribution to solve this problem is the work done

by Luenberger [Luenberger; 1964].

The basic equations of the Kalman filter algorithm are given on Table 2.1.
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Table 2.1: Summary of discrete Kalman filter equations - Gelb [Gelb; 1996]

System Model xk = Axk−1 + wk−1 wk ∼ N (0,Qk)
Measurement Model zk = Hxk + vk vk ∼ N (0,Rk)

Initial Conditions E [x(0)] = x̂0,
E [(x(0)− x̂(0))(x(0)− x̂(0))T ] = P0

Other Assumptions E [wkvTj ] = 0 for all j,k

State Estimate Extrapolation x̂
(−)
k = Ax̂(+)

k−1
Error Covariance Extrapolation P0 = APk−1AT + Qk−1

State Estimate Update x̂
(+)
k = x̂

(−)
k + Kk[zk − Cx̂(−)

k ]
Error Covariance Update P(+)

k = [I−KkH]P(−)
k

Kalman Gain Matrix Kk = P(−)
k HT [HP(−)

k HT + Rk]−1

2.9.4 Discrete to continuous (d2c)

Relationships

All previous equations are presented in continuous time. In practice, vibration signals

are obtained in a digital fashion so we need to convert the continuous system matrices

to discrete time matrices.

The solution of the continuous time state-space representation is well known,

[Kailath; 1980], and can be expressed by:

x(t) = x0e
Act +

∫ t

0
e−Ac(t−τ)Bcu(τ)dτ (2.63)

and by taking t = k∆t the previous equation can be expressed as

xk+1 = Adxk + Ad

∫ ∆t

0
e−Ac∆tBcu(τ)dτ (2.64)

where τ has the origin at the start of each time step and Ad is the state-space
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matrix in discrete time (see Table 2.2 for details). To convert equation 2.64 into an

algebraic form, the integral that is related to the excitation needs to be resolved. The

solution of the integral is governed by how the intra sampling behavior of the input

is considered. The reader is referred to [Bernal; 2007] for more details. The author

discusses the discrete to continuous relationships of the state-space representation

matrices. The inter sampling behavior for analysis is based on the nature of the

input that is exciting the system. Bellow is a summary of these relationships:

Table 2.2: Summary of Discrete to Continuous (d2c) relationships

Matrices in continuous time

Method Ad Bd Cd Dd

BLH eAc∆t AdBc∆t Cc Dc

ZOH eAc∆t [Ad − I] Ac
−1Bc Cc Dc

FOH eAc∆t [Ad − I]2 Ac
−2Bc1/∆t Cc Dc −CcAc

−1 . . .[
I−Ac

−1 (Ad − I) 1/∆t
]

Bc

SZOH eAc∆t Ad
0.5 [Ad − I] Ac

−1Bc Cc Dc + CcAc
−1
[
Ad

0.5 − I
]

Bc

After selecting the inter step consideration, the state-space representation and

the measurements of the system can be expressed as:

xk+1 = Adxk + Bdpk + Gkwk (2.65)

yk = Cdxk + Dd2pk + Dd1wk + vk (2.66)

where the subscript d means discrete and k means the values of the state, exci-

tations and noise at the kth step.
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2.10 System Identification

System identification deals with the estimation of a model that better explains, in

some predefined sense, observed data on a dynamical system ( [Eykhoff; 1974], [Söder-

ström & Stoica; 1989], [Juang; 1994], [Overschee & De Moor; 1996], [Pintelon &

Schoukens; 1996], and [Ljung; 1999]). The search space is typically constrained to a

certain family or class of models and within that class optimal parameters are sought.

Due to the presence of noise in the measurements and unmeasured excitations, the

identified parameters are not optimal. The objective is to arrive at some practical

description of the dynamical system by processing the input (if any) and outputs

(measurements). The form of the dynamical model is chosen depending its appli-

cation: parametric models belongs to a class where each model is differentiated by

specific values of the parameter space and non-parametric models are those described

in terms of functions e.i., frequency response functions, impulse response functions,

etc. Broadly speaking, identification entitles: 1) collection of outputs, 2) selection of

the type of dynamical model, and 3) a criteria to select such model.

We implemented Subspace Identification (SUBID) and Eigensystem Realization

Algorithm (ERA) techniques to estimate model parameters from measurements in

this dissertation. The reader is referred to chapters 3 and 4 for more details on

these. [Shokravi, et al.; 2020] provides an extensive overview of SHM methods that

apply to system identification (see Fig. 2.2).
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The applied SHM methods in civil engineering 

Local damage detection methods 

Static-based damage detection (SDD) 

Global damage detection methods 

Vibration-based damage detection 
(VDD) 

Time-domain (TD) Frequency-domain (FD) 

Auto-regressive moving average 
(ARMA) 

Subspace system identification (SSI) Natural excitation technique (NExT) 

Covariance-driven subspace system 

identification (SSI-COV) 

Data-driven subspace system 

identification (SSI-DATA) 

Time/frequency-domain (TFD) 

Combined subspace system 

identification

Output-only subspace system 

identification 

Canonical variate analysis (CVA) 

Numerical algorithms for state space 

subspace system identification 

(N4SID) 

Multivariable output error state-space 

(MOESP) 

Figure 2.2: Classification of SHM methods (Figure 1. of [Shokravi, et al.; 2020]

2.10.1 Observability

A state, x(to), is observable if it can be determined from knowledge of the system

state-space matrices and the output y(t) for t > to. In structural dynamics, if every

mode shape has at least one measurement coordinate with non-zero amplitude the

system is called fully observable (other wise it is defined as partially observable). For

example, consider a simply supported beam under any type of dynamic loading with
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a single sensor in the middle of the span. In this example, regardless of the number

of mode shapes of the beam that are excited only the odd number mode shapes are

going to be captured by the sensor (even mode shapes have no contribution in the

middle span of a simply supported beam). In summary, a state is observable if you

can back track the initial values of the state by having knowledge system matrices

and measured output response.

There are different ways to determine the observability of a system. One way is

evaluate the rank of the observability block Op:

On =



Cd

CdAd

...

CdAd
n−1


= n (2.67)

where n is the order of the system (2 times the number of DoFs).

A more quantitative measure of the observability is through the Observability

Grammian Wo(tf , to) defined by:

Wo(tf , to) =
∫ tf

to
eAT (τ−to)CTCeA(τ−to)dτ (2.68)

where tf is the final time of observations. By examining the condition number

of Wo we can get a measure of the observability of the system. Given two sensor

configurations, one could infer that the one with the lowest condition number of Wo

is more desirable since it is more robust to measurement noise or changes in the input.
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Chapter 3

Lower Bounds for the Variance

of Frequency and Damping Ratio

Identified from Noisy Vibration

Measurements

3.1 Introduction

System identification deals with the estimation of a model that better explains, in

some predefined sense, observed data on a dynamical system [1–6]. The search space

is typically constrained to a certain family or class of models and within that class

optimal parameters are sought. Due to the presence of noise in the measurements

and unmeasured excitations, the identified parameters are not optimal. The math-

ematical form in which model parameter estimates are presented range from point
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estimates to a joint probability density function [7]. As an intermediate and common

compromise, various researchers have proposed methods that aim to estimate only

the mean and variance of the desired model parameters. Under some restrictions

these methodologies allow for the computation of confidence intervals with specified

probability [8].

In many structural engineering applications, the models are linear and it is com-

monplace to formulate them on the basis of modal parameters, i.e. mode shapes,

frequencies and modal damping ratios [9]. Various authors have performed experi-

mental uncertainty quantification studies with the objective of gaining insight into

the origin and relative magnitude of the various factors that give rise to uncertainty in

the identification of dynamic models from measured data [10,11]. In [10] it is reported

that sources of uncertainty in the identification of modal frequencies and damping can

be divided into: test-setup uncertainty, measurement uncertainty and data analysis

uncertainty. It was found that there is significantly more variation in the identified

modal damping ratios that in the identified modal frequencies. In [11] two different

laboratory experiments were conducted and the statistics of the frequency response

functions measured at different points were obtained for a range of frequencies. It

was reported that more variability is present at the high-frequency range than in the

low-frequency range.

On the theoretical side we can point out to the work of Gersch [12] as one of

the pioneers on the subject of uncertainty quantification of identified models in struc-

tural dynamics. Gersch developed expressions that relate auto-regressive coefficients

(AR) of auto-regressive moving average (ARMA) models to eigenvalues of the sys-

tem, and thus with modal frequency and damping ratios. He used these expressions
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together with the Cramer-Rao lower bound (CRLB) theorem to compute the max-

imum achievable accuracy of the modal frequency and damping ratio based on the

maximum likelihood estimates (MLE) of identified AR coefficients. Another funda-

mental development can be found in [13], where a methodology for optimal sensor

placement for system identification was developed on the basis of determining the

sensing locations that maximize the Fisher information matrix for a fixed number

of possible measurements. Implicit integral expressions were derived to evaluate the

Fisher information of linear multi-degree of freedom systems with mass and (or) stiff-

ness proportional damping. More recent developments on the subject of uncertainty

quantification of identified modal parameters have been reported in [14–17].

In [14] it was shown that in the case of output-only system identification it is

possible to obtain an estimate of the covariance of the normalized modal parameters

from knowledge of the mean and covariance of the parameters that define a common

denominator rational transfer function matrix, which in principle can be identified

from the structural response measurements. In [15] an algorithm is proposed that

efficiently estimates the covariance of modal parameters obtained from multi-setup

subspace identification. Multi-setup system identification refers to an algorithm ca-

pable of merging data from different sensor locations and different test setups. The

algorithm was validated using ambient vibration data of the Z24 bridge. In [16] an

algorithm is proposed to remove bias errors from system identification results and

estimating the variance errors from a single ambient vibration test. The bias removal

procedure makes use of a stabilization diagram. The variance estimation procedure

uses the first-order sensitivity of the modal parameter estimates to perturbations of

the measured output-only data. In [18] an algebraic relationship between the variance
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of the natural frequency and the damping ratio was derived on the basis of assum-

ing the location of the eigenvalue in the complex plane to be random within a circle

where the variance of the real part equals the variance of the imaginary part. From

examination of the existing literature we can deduced that modal damping ratios

are significantly more difficult to estimate than modal frequencies. Although most

of the studies regarding identification of damping and its uncertainty operate under

the basis of assuming viscous modal damping, other models for damping have been

proposed and methods to estimate it have been developed and summarized by [19].

In a recent paper by S.K. Au [17] the problem of maximum achievable accuracy

in operational modal analysis was investigated using a frequency domain Bayesian

approach. In similar fashion to our research, classical damping and well separated

modes were assumed. Our research differs from the work of [17] in various ways: (i)

all derivations are in the time domain as opposed to the frequency domain; (ii) we

are interested in signals resulting from initial conditions or known excitations and

the only source of uncertainty is the measurement noise and (iii) our approach is

based on Fisher information and CRLB as opposed to Bayes’ theorem. Despite these

differences, it is interesting to note that general result trends are preserved. These

will be discussed within the body of this chapter.

In the following pages, we derive of exact mathematical expressions which allow

for the computation of the minimum achievable variance of identified modal frequency

and damping ratio from noisy vibration measurements induced by either initial con-

ditions or measured excitations. Derived bounds establish a reference level to which

the second order statistics of system identification results can be compared. We also

demonstrate and quantify that there must be significantly more uncertainty in iden-
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tified modal damping ratios than in natural frequencies. This is a fact which stands

independent of the system identification algorithm that is employed, as long as the

algorithm is unbiased. The mathematical background of the proposed expressions is

rooted in the CRLB theory.

We begin with an examination of the Fisher information matrix and the CRLB

theory. Following this we proceed to derive exact expressions for the CRLB for natural

frequency, damping ratio, and initial conditions under free vibration conditions and

arbitrary excitations in single degree of freedom systems. Using the SDOF results and

modal analysis we extend the results to classically damped multi-degree of freedom

systems with well separated modal frequencies. We illustrate the results numerically

and confirms them by means of simulated system identification results. The close the

chapter with a section summarizing the main findings.

3.2 Fisher Information

The Fisher information is a measure of the amount of information that an observable

random variable X carries about an unknown parameter θ upon which the probability

of X depends. The probability function for X, which is also the likelihood function

for θ, is a function f(X; θ); is the probability mass (or probability density) of the

random variable X conditional on the value of θ. The Fisher information is defined

as

I(θ) = −E
[
∂2 ln f(X, θ)

∂θ2

]
(3.1)
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or alternatively as

I(θ) = E

(∂ ln f(X, θ)
∂θ

)2
 (3.2)

To gain some insight, one can use eq.3.1 to verify that the Fisher information of

the mean of a Gaussian random variable is equal to the inverse of the variance. This is

consistent with basic statistics which states that given a fixed number of samples of a

Gaussian random variable the uncertainty (lack of information) in the estimate of the

mean increases with the variance. An important property of the Fisher information

is that, given n independent measurements xi of the random variable X, the Fisher

information is additive, such that

In(θ) =
n∑
i=1

Ii(θ) (3.3)

where Ii is the Fisher information of the ith measurement. It was shown in

[22] that the Fisher information matrix of a scalar discrete signal s(t) dependent on

multiple parameters θi and corrupted by additive Gaussian white noise with variance

σ2 is given by

Iij(θ) = 1
σ2

N−1∑
n=0

∂s(n; θ)
∂θi

∂s(n; θ)
∂θj

(3.4)

where s(n; θ) is value of the signal at time t = n∆t and ∆t is the time step

between measurements. A dimensional analysis of the previous equation indicates

that the units of the Fisher information are [P ]−2 where P is the unit of the parameter

being investigated. Therefore, the corresponding Fisher information of two different

parameters, with different units, can not be compared directly. For the cases of

interest in our research, the Fisher information of circular frequency has units of
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s2/rad2 while the Fisher information of damping ratio has no units.

3.3 Cramer-Rao Lower Bound

If f(X; θ) satisfies the regularity condition

E

[
∂ ln(f(X; θ))

∂θ

]
= 0 ∀θ (3.5)

where the expectation is taken with respect to f(X; θ), then the variance of any

unbiased estimator θ̂ must satisfy

V ar(θ̂) ≥ CRLB = 1
I(θ) (3.6)

This lower limit is known as the Cramer-Rao lower bound (CRLB). For the case

of multiple parameters θ ∈ Rn×1, the Fisher information becomes a matrix and the

CRLB is given by

CRLB = I(θ)−1 (3.7)

The proof of this theorem can be found in [22]. From the previous discussion

it is clear that the Fisher information is always positive (by definition) and that

the minimum achievable variance of θ will shrink as the number of measurements

increases. By definition, if we denote R = I(θ)−1, then

V ar(θ̂i) ≥ CRLB(θi) = Ri,i (3.8)

It is possible to use the previous result to compute the minimum coefficient of
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variation (CoV) induced by the CRLB. This is given by

CoV (θ̂i) ≥

√
CRLB(θi)
E[θi]

(3.9)

Since the CoV is unitless, this criteria will be used for the remainder of the

chapter to compare the maximum achievable accuracy among different parameters.

3.4 Fisher Information in Free

Vibration Displacement

Measurements

In this section we develop the Fisher information theory and the CRLB in the context

of single degree of freedom (SDOF) elastic systems with velocity proportional damping

subjected initial conditions. The free vibration response of a SDOF with additive

noise (ν(t)) is given by

s(t) = e−ξωnt

[(
ẋo + ξωnxo

ωd

)
sinωdt+ xo cosωdt

]
+ ν(t) (3.10)

where ξ is the damping ratio, ωn is the undamped circular frequency, ωd =

ωn
√

1− ξ2, xo is the initial displacement and ẋo is the initial velocity. The derivatives

necessary to compute the Fisher information (eq. 3.4) can be found, after some
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differentiation and algebraic manipulations, to be given by

∂s

∂ωn
= e−ξωnt[− ξt

(
ẋo + ξωnxo

ωd

)
sinωdt+ . . .

+ t

(
ẋo + ξωnxo

ωd

)√
1− ξ2 cosωdt−

ẋo
ωnωd

sinωdt+ . . .

− xoξt cosωdt− xot
√

1− ξ2 sinωdt] (3.11)

∂s

∂ξ
= e−ξωnt[− ωnt

(
ẋo + ξωnxo

ωd

)
sinωdt+ . . .

+
[
ξ
(
ẋo
ωn

+ ξxo

) (
1− ξ2

)− 3
2 + xo√

1− ξ2

]
sinωdt+ . . .

−
(
ẋo + ξωnxo

ωd

)(
ωnξt√
1− ξ2

)
cosωdt− xoωnt cosωdt+ . . .

+ xo

(
ωnξt√
1− ξ2

)
sinωdt] (3.12)

∂s

∂ẋo
= e−ξωnt

ωd
sinωdt (3.13)

∂s

∂xo
= ξ√

1− ξ2 e
−ξωnt sinωdt+ e−ξωnt cosωdt (3.14)

For illustration purposes Fig. 1 depicts the shape of each of the derivatives

given above for the particular case of a system with ωn = 10π and ξ = 0.02. The

derivatives can be evaluated at discrete times consistent with the signal sampling rate

and inserted into eq.3.4 to compute the sum and obtain the Fisher information. Since

we are investigating four parameters, the Fisher information matrix will be 4× 4.

Evaluation of eq.3.4 using the previously shown derivatives in discrete time can
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Figure 3.1: Graphical representation of derivatives necessary to compute the Fisher infor-
mation matrix. In this case the particular parameters used were xo = 1, ẋo = 1, ωn = 10π
and ξ = 0.02

only be done numerically within the context of a particular example, however it proves

useful to examine the Fisher information in the limiting case where the sampling rate

goes to zero and the observation time goes to infinity, i.e.

lim
∆t→0
t→∞

Iij = lim
∆t→0
t→∞

1
∆tσ2

N−1∑
n=0

∂s(n; θ)
∂θi

∂s(n; θ)
∂θj

∆t = 1
σ2
d

∫ ∞
0

∂s(t; θ)
∂θi

∂s(t; θ)
∂θj

dt (3.15)

where σ2
d is the displacement measurement noise variance per unit of time (in

a Brownian motion sense). Eq.3.15 can be evaluated in closed form for any SDOF

system with initial velocity (ẋo) and displacement (xo). Eq.3.15 is an upper bound on
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the Fisher information, since all possible information is being used. The CRLB com-

puted from the asymptotic Fisher information represents the lowest possible bound

on the variance of the estimated parameters.

Some particular results are of special practical interest, namely, estimating the

Fisher information regarding circular frequency (ω) and damping ratio (ξ) in noise

contaminated free vibration measurements induced by an initial velocity or displace-

ment. These are explored in the following sections.

3.4.1 Initial Velocity

Substituting xo = 0 and ẋo = vo into eq.3.11 and solving the integral in eq.3.15 we

obtain the upper bound on the Fisher information regarding circular frequency (ωn)

in noise contaminated free vibration displacement measurements with additive white

Gaussian noise. The resulting expression is

lim
∆t→0
t→∞

Iωn = 1
σ2
d

∫ ∞
0

(
∂s

∂ωn

)2

dt = 1 + 5ξ2

8σ2
dξ

3ω5
n

v2
o (3.16)

Similarly, the upper bound for the Fisher information regarding the damping

ratio (ξ) is given by

lim
∆t→0
t→∞

Iξ = 1
σ2
d

∫ ∞
0

(
∂s

∂ξ

)2

dt =
(

1
8σ2

dξ
3ω3

n

)
v2
o +H.O.T (3.17)

where H.O.T are higher order terms where the damping ratio appears in the

numerator with powers higher than two. The previous integrals, although not nec-

essarily difficult, are numerous and cumbersome to compute. The authors resorted

to the software MATHEMATICA [29] to compute them in a time efficient manner.
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Their validity was confirmed using numerical integration. All other integrals to follow

were computed in a similar fashion.

By the CRLB theorem (eq.3.8) the minimum variance that can be achieved

whenever using an unbiased estimator of the natural circular frequency (ωn) of a

SDOF system from noisy displacement response measurements is

V ar(ωn) ≥ Iωn = 8σ2
dξ

3ω5
n

(1 + 5ξ2) v2
o

(3.18)

From this expression, the induced lower bound for the coefficient of variation of

ωn is

CoVωn ≥

√√√√ 8σ2
dξ

3ω3
n

(1 + 5ξ2) v2
o

(3.19)

Similarly, the minimum variance that can be achieved whenever using an unbi-

ased estimator of the damping ratio ξ of a SDOF system from noisy displacement

measurements is given by

V ar(ξ) ≥ 8σ2
dξ

3ω3
n

v2
o

(3.20)

From this expression, the induced lower bound for the coefficient of variation of

ξ is

CoVξ ≥

√√√√8σ2
dξω

3
n

v2
o

(3.21)

Fom eq.3.19 and 3.21 one can obtain an expression for the ratio between the

minimum coefficient of variation of damping and the minimum coefficient of variation
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of circular frequency

min(CoVξ)
min(CoVωn) =

√
1 + 5ξ2

ξ
(3.22)

From the previous expression it is evident that the coefficient of variation that

can be expected when identifying viscous damping is significantly higher that the one

for identified frequency. This is in agreement with system identification results in

civil and mechanical engineering practice. For small values of damping, i.e. ξ << 1,

the previous expression can be reduced to

min(CoVξ)
min(CoVωn) ≈

1
ξ

(3.23)

In [17] it was found that this ratio is given by

min(CoVξ)
min(CoVωn) = 1

ξ

√
Bf

Bξ

(3.24)

where Bf and Bξ are constants that depend on the size of bandwidth around the

resonant frequency. If the bandwidth is large, then both of the previous expressions

coincide.

3.4.2 Initial Displacement

In this section we examine the case where the free vibration is induced by an initial

displacement. All other conditions, i.e. measurement time and noise model remain

the same as in the previous section. Using eq.3.11 with ẋo = 0 and substituting into

eq.3.15 with θ = ωn we obtain
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lim
∆t→0
t→∞

Iωn = 1
σ2
d

∫ ∞
0

(
∂s

∂ωn

)2

dt = 1
8σ2

dξ
3ω3

n (1− ξ2)x
2
o +H.O.T. (3.25)

where the minimum coefficient of variation for ωn is given by

CoVωn ≥

√√√√8σ2
dξ

3 (1− ξ2)ωn
x2
o

(3.26)

Similarly, for the Fisher information regarding damping ratio (ξ) we use eq.3.12

with ẋo = 0 and substitute into eq.3.15 with θ = ξ to obtain

lim
∆t→0
t→∞

Iξ = 1
σ2
d

∫ ∞
0

(
∂s

∂ξ

)2

dt = 1 + 2ξ2

8σ2
dξ

3ωn (1− ξ2)2x
2
o +H.O.T (3.27)

where the minimum coefficient of variation for ξ is given by

CoVξ ≥

√√√√8σ2
dωnξ (1− ξ2)2

(1 + 2ξ2)x2
o

(3.28)

For the case of vibration induced by an initial displacement, the quotient of

the coefficient of variation of damping ratio to the coefficient of variation of circular

frequency is given by

min(CoVξ)
min(CoVωn) =

√√√√ 1− ξ2

ξ2 (1 + 2ξ2) ≈
1
ξ

(3.29)

For small values of damping, typically found in structures, eq.3.23 and eq.3.29

are identical. It is interesting to note that for any given initial displacement it is

possible to find a corresponding initial velocity such that the asymptotic value of the

Fisher information for frequency or damping is identical.
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Up to this point we have derived the Fisher information and the minimum at-

tainable coefficient of variation by a unbiased estimator for circular frequency (ωn)

and damping ratio (ξ). We have also proved that for ξ << 1 and independently of

the excitation source (initial displacement or initial velocity), the natural frequency

of the structure and the level of noise; the ratio between the CoV of damping ratio

versus the CoV of circular frequency is a constant and approximately equal to the

inverse of the damping ratio.

3.5 Fisher Information in Free

Vibration Acceleration

Measurements

In the previous section we have obtained results in the case of displacement measure-

ments, in this section we investigate the Fisher information and CRLB in the case of

acceleration measurements. The measured signal in the case of acceleration response

of a single degree of freedom with additive measurement noise is given by

s(t) = e−ξωnt

[(
(2ξ2 − 1)ωnvo + ξω2

nxo√
1− ξ2

)
sinωdt−

(
2ξωnvo + ω2

nxo
)

cosωdt
]

+ va(t)

(3.30)

This is found by taking two derivatives of the deterministic portion of eq.3.10

and adding acceleration measurement noise. Note that the measurement noise is

different in both cases. Again, two cases are of particular interest, initial displacement
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excitations and initial velocity excitations. For both cases we will examine the Fisher

information and determine the minimum variance of identified frequency and damping

ratio.

3.5.1 Initial Velocity

If the system is excited by an initial velocity and noise contaminated acceleration

measurements are used, then the upper limit of the Fisher information on circular

frequency is given by

lim
∆t→0
t→∞

Iωn = 1
σ2
a

∫ ∞
0

(
∂s

∂ωn

)2

dt = (1 + ξ2)
8σ2

aωnξ
3v

2
o +H.O.T (3.31)

and its corresponding minimum CoV is

CoVωn ≥

√√√√ 8σ2
aξ

3

(1 + ξ2)ωnv2
o

(3.32)

Similarly, the Fisher information regarding damping ratio (ξ) is given by

lim
∆t→0
t→∞

Iξ = 1
σ2
a

∫ ∞
0

(
∂s

∂ξ

)2

dt =
(

ωn (1 + 2ξ2)
8σ2

aξ
3 (1− ξ2)2

)
v2
o +H.O.T (3.33)

and its corresponding minimum CoV is

CoVξ ≥

√√√√ 8σ2
aξ (1− ξ2)2

ωn (1 + 2ξ2) v2
o

(3.34)

If the corresponding coefficient of variations are computed for frequency and

damping, their ratio is given by
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min(CoVξ)
min(CoVωn) =

√√√√(1− ξ2)2 (1 + ξ2)
ξ2 (1 + 2ξ2) ≈ 1

ξ
(3.35)

which not surprisingly, coincides with the case of displacement measurements

with low damping ratio.

3.5.2 Initial Displacement

If the system is excited by an initial displacement, the upper limit on the Fisher

information is given by

lim
∆t→0
t→∞

Iωn = 1
σ2
a

∫ ∞
0

(
∂a

∂ωn

)2

dt = ωn (1 + 5ξ2)
8σ2

aξ
3 x2

o +H.O.T (3.36)

and its corresponding minimum CoV is

CoVωn ≥

√√√√ 8σ2
aξ

3

(1 + 5ξ2)ω3
nx

2
o

(3.37)

Similarly, the Fisher information for the damping ratio (ξ) is given by

lim
∆t→0
t→∞

Iξ = 1
σ2
a

∫ ∞
0

(
∂a

∂ξ

)2

dt =
(

ω3
n (1− 2ξ2)

8σ2
aξ

3 (1− ξ2)2

)
x2
o +H.O.T (3.38)

and its corresponding minimum CoV is

CoVξ ≥

√√√√ 8σ2
aξ (1− ξ2)2

ω3
n (1− 2ξ2)x2

o

(3.39)

If the corresponding coefficient of variations are computed for frequency and

damping, their ratio is given by
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min(CoVξ)
min(CoVωn) =

√√√√(1− ξ2)2 (1 + 5ξ2)
ξ2 (1− 2ξ2) ≈ 1

ξ
(3.40)

which also coincides with the case of displacement measurements with small

damping ratios.

In the previous expressions σ2
a is the acceleration measurement noise variance per

unit of time and it differs from σ2
d. The relationship between these will depend on the

type of sensors that are used. If one is interested in a criteria for equality of Fisher

information regardless of the measurement type (displacement vs. acceleration), then

it is necessary to equate the expressions of the corresponding Fisher information and

solve for the σd in terms of σa. As an example, equating eq.3.16 and eq.3.31 we can

find that

σ2
a

σ2
d

=
(

1 + ξ2

1 + 5ξ2

)
ω4
n (3.41)

which means that in order to obtain the same Fisher information regarding natu-

ral frequency from free vibration signals generated by an initial velocity; the variance

of the noise in the acceleration (σ2
a) and the variance of the noise in the displacement

(σ2
d) need to satisfy the above relationship. The previous result can be understood

intuitively as follows: If a system is very slow, then it is much better to measure

displacements because one can tolerate a higher level of noise. On the other hand, if

the system is very fast, then it is better to measure accelerations. Although this is

conceptually intuitive, the formula provides a quantification of the concept.
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3.6 Fisher Information in Forced

Vibration Response

In the case of forced vibrations, the noise contaminated measured response of the

SDOF to an arbitrary input u(t) is given by the convolution integral

s(t) =
∫ t

0
h(t− τ)u(τ)dτ + ν(t) (3.42)

where h(t) is the impulse response function. By using Leibnitz’s rule of differ-

entiation of integrals, we can find that the required derivative of the signal is given

by

∂s(t)
∂θi

=
∫ t

0

∂h(τ)
∂θi

u(t− τ)dτ (3.43)

By definition (eq.3.4) the Fisher information after N observations is given by

Iij(N) = 1
σ2

N−1∑
n=0

∂s(n; θ)
∂θi

∂s(n; θ)
∂θj

= 1
σ2

N−1∑
n=0

(∫ n∆t

0

∂h(n∆t− τ)
∂θi

u(τ)dτ
)(∫ n∆t

0

∂h(n∆t− τ)
∂θj

u(τ)dτ
)

(3.44)

If we examine the limiting case where the sampling rate goes to infinity, we

obtain the following expression for the upper bound of the Fisher information at time

T
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lim
∆t→0

Iij(T ) = 1
σ2
d

∫ T

0

[∫ t

0

∂h(τ)
∂θi

u(t− τ)dτ
] [∫ t

0

∂h(τ)
∂θj

u(t− τ)dτ
]
dt (3.45)

Notice that since the impulse response h(t) of a SDOF system is the response

due to an initial velocity ẋo = 1/m, where m is the mass, we have

h(t) = e−ξωnt
( 1
mωd

)
sinωdt (3.46)

where the necessary derivatives of the impulse response have already been com-

puted in a previous section and in the case of frequency and damping ratio are given

by eq.3.11 and 3.12 substituting xo = 0 and ẋo = 1/m. In general, the integral in

eqs.3.44 depends explicitly on the time history of the excitation force (u(t)). Once

the Fisher information is computed, the CRLB in eq.3.6 can be used to compute the

minimum achievable variance of the estimated parameters.

3.7 Numerical Verification

In this section we proceed to simulate the theoretically exact Fisher information

and corresponding CRLB given in the previous sections for circular frequency and

damping ratio. We will examine a single degree of freedom system in free vibration

and in forced vibration.
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3.7.1 Single Degree of Freedom System -

Free Vibration

Consider a SDOF with m = 1, ωn = 2π, ξ = 0.2 subjected to an initial velocity of

vo = 1m/s. The total simulation time is 12s with a ∆t = 0.01s and the displacement

measurement noise variance is σ2 = 0.01m2. Fig. 3.2 illustrates the noise corrupted

free vibration response (s(t)), the computed temporal evolution of the Fisher infor-

mation regarding circular frequency and damping ratio using eq.3.4. In a dotted line,

the figure also shows the limiting values computed using eqs.3.16 and 3.17 (in this

case lim Iω = 1, 914 and lim Iξ = 62, 911). As expected, the Fisher information is

a non-decreasing function that flattens out after the vibration ends and only noise

is left in the signal (s(t)). The results shown in Fig. 3.2 confirm that the derived

asymptotic values are indeed correct.

Based on the CRLB, the minimum variance that any unbiased estimator can

achieve in estimating frequency and damping is min V arωn = 5.22×10−4 and min V arξ =

1.59 × 10−5. The respective coefficient of variations being minCoVωn = 0.0037 and

minCoVξ = 0.02. The ratio of the coefficients of variation is 5.41 which is close to

the result given by evaluating eq.3.22 (5.47). The small discrepancy results from

neglecting higher order terms.
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3.7.2 Single Degree of Freedom System -

Forced Vibration

Consider a SDOF with m = 1, ωn = 2π, ξ = 0.05 subjected to a ground motion. In

this case the total observation time is T = 60s with ∆t = 0.02. The displacement

measurement noise variance was selected as σ2 = 5 × 10−7m2/g2. Figure 3.3 shows

the ground motion that was applied and the noise corrupted measured response.

The Fisher information for undamped circular frequency and damping ratio com-

puted using eq.3.44 is shown in Fig. 3.4. In both cases the Fisher information basi-

cally flattens after 30s which is the point at which the response dies out and mostly

measurement noise remains. In this case the CRLB for the minimum coefficient of

variation of identified circular frequency and damping is computed using the total

Fisher information and is minCoVωn = 0.00031 and minCoVξ = 0.0062.

3.7.3 Verification Using System Identification

Results

In this section we examine the performance of a particular system identification algo-

rithm with respect to the asymptotic results previously derived. Specifically, we will

test how close is the minimum variance of estimated modal parameters to the CRLB.

We will employ subspace identification (SUBID) [30] and will implement it using the

MATLAB system identification toolbox [31]. To perform all simulations we will use

the same system and measurement noise model used in the previous section.

A linear state space model of the following form was identified from input-output
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Figure 3.2: Noise-corrupted free vibration response of SDOF system (top), temporal varia-
tion of Fisher information for undamped frequency (middle), temporal variation of Fisher
information for damping ratio (bottom)

data

x(k + 1) = A(k) + Bu(k) (3.47a)

y(k) = Cx(k) + Du(k) (3.47b)

where x(k) is the internal state at time t = k∆t, u(k) is the input, y(k) is the

output. The matrices A, B, C, and D result from the implementation of the system

identification algorithm. The complex eigenvalues of the SDOF (λ) can be calculated

from the eigenvalues of A, which here we denote as α. Both λ and α come in complex

conjugate pairs and each one satisfies
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Figure 3.3: Time history of ground motion acceleration (top) and noise-corrupted system
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λ = log(α)
∆t (3.48)

The undamped frequency (ωn) and damping ratio (ξ) can be computed from λ

by using the expression

λ = −ξωn + i
√

1− ξ2ωn (3.49)

We performed 500 realizations of the noise contaminated system response and

proceeded to identify the state space matrices and extract the modal circular fre-

quency and damping ratio. It is essential to note that the identified linear model

does not explicitly account for the presence of noise and thus in order to indirectly

account for it, the size of the model has to be artificially increased to leave “space"
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Figure 3.4: Temporal variation of Fisher information for undamped frequency (top), tem-
poral variation of Fisher information for damping ratio (bottom)

for the noise to project.

The results of the identified modal parameters are summarized in Table 3.1.

These results were obtained using a system order of 20 and extracting only the mode

of interest. As expected, it was found that the statistical properties of the iden-

tified circular frequency and damping are influenced by the assumed order of the

system. Figure 3.5 illustrates the variation of the CoV of the identified parameters as

a function of the order of the identified state-space model (eq.3.47). The larger the

identified order, the more accurate the estimation of the true mode becomes. One

logical explanation for this is that by artificially enlarging the size of the identified

system, more space is provided for the noise to project, which effectively cleans the

identified mode of interest.

As can be seen, the SUBID results are unbiased and thus the CRLB should
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Figure 3.5: Variation of the CoV of circular frequency (left) and damping (right) as a
function of the identified order of the system.

apply. The CRLB for circular frequency and damping was computed from the final

value of the Fisher information shown in Fig. 3.4 and recorded in Table 3.1. It is

verified that the CRLB provides a bound for the CoV of both identified parameters

that was not reached by SUBID.

Table 3.1: Comparison of System Identification Results with CRLB

Circular Freq. Damping ratio
Sample Ave. CoV Sample Ave. CoV

CRLB 6.2832 0.0003 0.0500 0.0062
SUBID 6.2830 0.0009 0.0500 0.0185
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3.8 Heuristic Extension to Multi-degree

of Freedom Systems

All the results so far correspond to SDOF systems. For multi-degree of freedom

(MDOF) systems with N degrees of freedom and classical damping the response at

any point p in the structure is given by

z(p, t) =
N∑
i=1

φi(p)xi(t) (3.50)

where φi(p) is the amplitude of the ith mode at p and xi(t) is the response of

the ith mode. If a sensor is present at p, then in the presence of additive noise, the

measured signal at p will be given by s(t) = z(p, t) + ν(t).

The results for SDOF systems can be heuristically extended by analyzing every

mode individually. Due to the orthogonality property of mode shapes, the derivative

with respect to any modal parameter of a particular mode only depends on that

mode, while the terms corresponding to other modes cancel out. Thus the block

diagonal terms in the Fisher information matrix I(θ) remain unchanged as the results

are extended from SDOF to MDOF systems.

The cross modal terms in the Fisher information matrix, namely

I(ωi, ωj) = 1
σ2

N−1∑
n=0

∂s(n; θ)
∂ωi

∂s(n; θ)
∂ωj

(3.51)

and
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I(ωi, ξj) = 1
σ2

N−1∑
n=0

∂s(n; θ)
∂ωi

∂s(n; θ)
∂ξj

(3.52)

for modes i and j can not be eliminated by simple inspection, since they will

not be zero in general. In the special case where modes are well separated, the

cross terms involve sums of products of enveloped sines and cosines with different

frequencies. Figure 3.6 illustrates that these sums decay rapidly as the distance

between the modal frequencies increase. Therefore it is expected that the magnitude

of the off-diagonal block matrices in the Fisher information will diminish with respect

to the block diagonals. This implies that the inverse of the Fisher information matrix,

i.e. the Cramer-Rao lower bound matrix will be mostly block diagonal. Consequently

the CRLB of each mode can be computed independently without significant error if

the modes are well separated. The validity of this heuristic claim will be tested in

the following section.

3.9 Verification of Modal CRLB for Mul-

tidegree of freedom systems

Consider a shear-beam system with the following mass and stiffness matrices

M =

 1 0

0 1

 (3.53)

K =

 30 −20

−20 20

 (3.54)
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The circular frequencies of this system are ωn,1 = 2.09 rad/s and ωn,2 = 6.75

rad/s. The damping of the system is classical with ξ = 0.05 for every mode. The

mass-normalized modal matrix is given by

Φ =

 −0.6154 −0.7882

−0.7882 0.6154

 (3.55)

The equation of motion in the modal space when the system is subject to a

ground motion (üg(t)) are given by

 1 0

0 1


 ẍ1(t)

ẍ2(t)

+

 0.2094 0

0 0.6754


 ẋ1(t)

ẋ2(t)

+ . . .

+

 4.3845 0

0 45.6155


 x1(t)

x2(t)

 =

 −1.4036

−0.1728

 üg(t) (3.56)

We performed 500 stochastic realizations with the ground motion shown in Fig.

3.3(top) and with displacement measurements at the first degree of freedom, contam-

inated with an additive Gaussian white noise with σ2 = 5 × 10−7m2/g2. For each

realization we implemented SUBID and identified modal frequencies and damping

ratios. The order of the identified system was 50. The second order statistics of the

results are shown in Table 3.2.
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Figure 3.6: Illustration of the relative importance of off-diagonal terms in the Fisher infor-
mation matrix with respect to its diagonal terms and as a function of the distance between
consecutive modal frequencies

Table 3.2: Comparison of System Identification Results with CRLB

Circular Freq. Damping ratio

Sample Ave. CoV Sample Ave. CoV

CRLB-Mode1 2.0939 0.0001 0.0500 0.0018

SUBID-Mode 1 2.0939 0.0004 0.0480 0.0048

CRLB-Mode 2 6.7539 0.0026 0.0500 0.0327

SUBID-Mode 2 6.7541 0.0050 0.0522 0.0601

From the results shown in Table 3.2 one can see that in the case of well sepa-

rated modes, the heuristic extension of the CRLB computed mode-by-mode provides

effective bounds for the CoV of circular frequency and damping ratio. It is also of
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interest to note that the two modes have very different bounds. This is driven mainly

by the difference in modal forces. From the right-hand side of eq. 3.56 one can see

that mode 1 has a much higher load factor than mode 2, this means that the response

of that mode will be much higher and thus the signal-to-noise ratio of mode 1 will

be higher that for mode 2. Higher signal-to-noise ratio leads to better estimation

accuracy.

3.10 Conclusions

We presented the derivations of exact expressions to compute the lowest achievable

variance by any unbiased estimator of modal frequency and damping ratio from free

vibration and forced vibration signals contaminated by additive Gaussian white noise.

These limits are found through the CRLB theory. The results were obtained for

displacement or acceleration measurements contaminated with zero-mean additive

Gaussian white noise.

The expressions were derived for single degree of freedom systems and extended

to classically damped MDOF systems with well-separated modes. It was proved

that the CoV of identified modal damping ratio must be significantly higher that

the CoV of identified modal frequency by factor approximately equals to the inverse

of the damping ratio. The analytical results were illustrated via simulated system

identification using SUBID methods.
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4.1 Abstract

Composite bridge decks provide higher flexural moment capacity and stiffness com-

pared to their non-composite counterparts. In order to achieve composite behavior,

differential slip between the steel member and the concrete slab must be restrained

by means of shear connectors. In older bridge decks composite behavior is uncertain.

Uncertainty arises, among other things, due to lack of knowledge regarding the type

of shear connector used (if any), cumulative damage due to fatigue, and aging effects.

In this paper the authors propose the use of sensitivity-based finite element model

updating to determine the degree of composite behavior of operational bridge decks

with uncertain shear connectors. The free parameters of the models are: rigidity

per unit length of the beam-slab interface and the elastic modulus of the concrete

slab. The features used in the model updating procedure are the identified modal fre-

quencies from operational acceleration measurements. A sequential sensitivity-based

weighted least-squares solution was implemented. The proposed methodology is ver-

ified in various simulated bridge deck structures and validated in an operational and

partially instrumented bridge deck with uncertain composite action.

4.2 Introduction

Based on data from the National Bridge Inventory approximately 24% of all multi-

span bridges in the United States are constructed using steel girders and a concrete

slab [National Bridge Inventory; 2019]. This percentage is higher in the Northeast

where it reaches approximately 63%. One important component in this type of deck
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construction is shear connectors. Shear connectors enable composite behavior by

transferring horizontal shear stresses between the steel beam and the concrete slab.

Composite decks possess a significantly larger flexural strength and stiffness with

respect to non-composite ones [2]. Shear connectors are typically constructed by

welding vertical steel studs to the top face of the top flange in steel girders prior

to pouring of the concrete slab. The design of shear connectors is governed by two

criteria; static strength and fatigue. Shear connectors are first designed for fatigue

loads due to moving vehicles and then checked for static ultimate strength. Girders are

checked for static ultimate strength assuming full composite action, i.e. the number of

shear connectors is enough to transfer the horizontal shear force at the interface that

results when the steel girder has fully yielded and the concrete slab has simultaneously

reached its maximum compressive capacity. AASHTO LRFD Specifications require

that steel girder/concrete slab decks be designed as fully composite [8]. If a beam

does not have enough connectors to guarantee fully-composite behavior, then it is

categorized as partially composite and its ultimate load capacity is typically governed

by the failure of shear connectors.

Whenever the structural integrity of an existing bridge deck needs to be as-

sessed; the presence and effectiveness of shear connectors becomes a central issue. In

older bridges with unknown construction practices, lack of as-built drawings and(or)

cumulative damage effects such as fatigue, the effectiveness of shear connectors is

uncertain. The most widely used approach in the practice of structural assessment

of bridge decks with uncertain composite action consists in assuming no interaction

between the concrete deck and the steel beam. This practice typically results in a

diagnosis that is not cost effective and inconsistent with the fact that over the years
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of service some of these decks have withstood traffic loading beyond the strength pro-

vided by the non-composite assumption. An overly conservative diagnosis regarding

a bridge deck could result in an unnecessary decision to replace, retrofit, or to reduce

the load rating of the deck. Development of technologies capable of assessing the ef-

fectiveness of shear connectors and the degree of composite action in uncertain bridge

decks would prove useful for engineers and public transportation decision makers.

A reasonable approach to assess the effectiveness of composite action in a deck

is to instrument it with sensors capable of measuring the strains in the vicinity of the

steel-concrete interface. If the strain measurements in the steel and concrete near the

interface are close, then one can infer that there is negligible relative slip between the

two surfaces and composite behavior is verified (at least within the range of loading

consistent with the measurements). As an alternative, one can measure the strain at

various points along the depth of the steel girder and interpolate (or extrapolate) the

location of the neutral axis. Using principles from structural mechanics, the level of

composite action can be inferred from the estimated location of the neutral axis. This

last approach is only valid if no net axial force is present in the deck. One drawback

of strain-based approaches is that they require significant instrumentation and can

only assess composite action at a local level, i.e. at the section where the strain is

measured.

Recent examples of the strain measurement approach can be found in the liter-

ature. In [4] Breña et al. present results from monitoring an I-girder type highway

overpass under a controlled live load test. A total of 60 strain measurements were

used to estimate load distribution factors and these results were compared with the

results from a finite element model (FEM). The researchers found that although the
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deck was designed as non-composite, the strain measurements across the cross sec-

tion (assuming Bernoulli’s hypothesis of linear strain distribution) were consistent

with the condition of I-girders acting as composite with the reinforced concrete slab.

In [5] Chakraborty and DeWolf developed and implemented a continuous strain mon-

itoring system on a three-span composite I-girder overpass. The instrumentation

consisted of 20 uniaxial strain gages. The study reported on data over a period of 5

months. Among other things, the study included the determination of the location

of the height of the neutral axes of various structural members when large trucks

travel across the bridge. One of the conclusions of this study was that the measured

strain levels are typically significantly below those recommended by AASHTO. The

authors stated that this is a byproduct of conservative simplifications typically used

in conventional designs, such as not including redundancies, connection restraints,

and the way in which loads are distributed to different parts of the structure. This

conclusion is in agreement with a previous study [6].

Jauregui et al. [7] conducted a series of controlled field loading tests on a standard

I-girder bridge built in the late 1950′s and assigned for decommission. Measurements

consisted of strains and vertical deformations at various points. Results of the inves-

tigation show that the deck behaved as if partially composite right up to the onset

of yielding. Partial composite action occurred in spite of the lack of shear connectors

between the girders’ top flange and the concrete slab. This suggests that partially

composite action of the girders can be attributed to friction due to the slab bearing

down on the girder top flange and mechanical interlock at the girder-deck interface.

Jauregui et al. argued that these two forms of shear restraint are dependable if not

overcome and thus may be used to arrive at a better measure of the bending stiffness
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and resistance of the deck.

The main hypothesis of this paper is that global acceleration measurements in-

duced by traffic can be used to estimate the stiffness provided by the presence of

partial composite action in bridge decks. Specifically, free vibration response shortly

after the vehicle leaves the deck. Laboratory experiments conducted by various re-

searchers on isolated composite beams provide encouraging results which indicate

that this approach might be scalable to operational bridge decks [9, 10].

Morassi et al. [9], performed a theoretical and experimental laboratory inves-

tigation into the behavior of isolated, free-free steel beams-concrete slab composite

beams. They found that if shear connectors are damaged, then their effect can be seen

in the changes in vibration frequencies. It is expected that their general conclusions

extrapolate to cases with different boundary conditions. Finally, Kwon et al. [10] per-

formed a series of controlled laboratory experiments aimed at testing the effectiveness

of post-installed shear connectors. After examination of their experimental results,

it is possible to conclude that steel girders with concrete slabs that do not possess

explicit shear transfer mechanisms in the form of shear connectors; exhibit a flexural

stiffness that lies between the fully-composite and non-composite assumptions. It

can also be concluded that the difference between the overall stiffness of a composite

beam with shear connectors versus an identical one without shear connectors can be

observed even within the range of linear stresses.

The use of acceleration measurements presents several advantages with respect

to localized strain monitoring: (i) the overall integrated behavior of the deck can be

assessed as opposed to a more local examination provided by the strains measurements

(ii) a smaller number of sensors could be used to perform the assessment, making
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instrumental monitoring of these type of structures more affordable. We propose the

use of a sensitivity-based weighted finite element model updating to determine the

degree of composite behavior in operational bridge decks with unknown/uncertain

installation of shear connectors. The free parameters of the model are the rigidity

per unit length of the beam-slab interface and the elastic modulus of the concrete

slab. The features used in the model updating procedure are the identified modal

frequencies and their corresponding mode shapes extracted from global acceleration

measurements. A sequential weighted least-squares solution was implemented with

a diagonal weighting matrix on which each element is inversely proportional to the

variance of the identified modal features.

From the perspective of model updating, the fundamental challenges addressed

in this paper are to determine if: (a) the concrete modulus of elasticity and the

interface stiffness are independently identifiable from a subset of modal frequencies

and (b) the sensitivity of frequencies to changes in the free parameters is large enough

to overcome the “noise” in the identified modal parameters. The identification noise

is important because bridges are subjected to variations in environmental conditions

that affect boundary conditions and stiffness properties of the material, which in turn

get reflected as changes in modal properties.

The proposed approach is verified in the context of numerical simulations and

validated in an operational and partially instrumented bridge deck located in the

state of Vermont, USA. The bridge was built in 1963 and it supports two lanes of

traffic. The deck consists of a concrete slab supported on three inner longitudinal

stringers and two exterior girders. The interior stringers are supported on transverse

floor beams simply connected to the two main longitudinal girders. The bridge spans
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a total of 170.08 m (558ft). A portion of the bridge deck was instrumented with a

total of 10 vertical accelerometers distributed along the length of stringers.

The paper begins with a section describing the sensitivity-based model updating

procedure to be employed. The procedure uses eigenvalue sensitivity in order to set

up the linear set of equations. It also includes a weighting matrix to account for

the relative variance in the identification of the modal features. The paper continues

with a section describing the various models and assumptions to be used through

the rest of the paper. This is followed by sections describing two-dimensional and

three-dimensional numerical simulations aimed at verifying the proposed methodol-

ogy. A section describing the application in the context of an operational bridge deck

concludes the computational portion of the paper. The paper ends with a section

highlighting the main findings, limitations and potential future work.

4.3 Sensitivity-based model updating

Finite element model updating can be defined as a series of computational steps,

in which a preselected set of model parameters within a particular model class are

modified to minimize a function of the difference between response measurements of

the system and model predictions [20,23]. More formally this can be stated as: Given

a model classM(θ) with response feature vector yM ∈ Rm and corresponding system

response feature vector yS ∈ Rm, modify an f -dimensional subset θf ⊂ θ such that

a local minimum of the function J = g(∆y) is attained, where ∆y = yS − yM. The

subset θf is typically referred to as the free parameter space. In general, the response

features and model parameters exhibit a non-linear relationship. The relation between
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the response features and perturbations in the free model parameters ∆θf can be

written as

yM(θf + ∆θf )− yM(θf ) = S∆θf +H.O.T. (4.1)

where H.O.T represents higher order terms in ∆θf , the matrix S ∈ Rm×f and

each component of it is defined as

Sij = ∂yM,i

∂θf,j
(4.2)

The objective function J is typically selected as a quadratic form

J = εTWε (4.3)

where

ε = ∆y − S∆θ̂f (4.4)

W ∈ Rm×m is a weighting matrix and ∆θ̂f is the estimated change in the free

parameters. If m ≥ f then the solution that minimizes J is obtained by

∆θ̂f = α
(
STWS

)−1
STW{∆y} = F{∆y} (4.5)

where 0 < α ≤ 1 is a scalar. The purpose of α is to reduce the estimated change in

the model parameters to avoid unrealistic variations (overshooting) byproduct of the

linearization in eq.4.1. The covariance of the estimates in each step of the updating

is given by
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COV
[
∆θ̂f

]
= FCOV [{∆y}] FT (4.6)

In this study the measurement features will consist of a subset of modal frequen-

cies and(or) their corresponding mode shape amplitudes at sparse locations. Ana-

lytical closed-form expressions of the sensitivity of eigenvalues and mode shapes in

undamped multi-degree of freedom systems can be found in the literature [19, 21].

The sensitivity of eigenvalues to parameters that define the mass and(or) stiffness is

given by

∂λj
∂θk

= φTj

[
−λj

∂M
∂θk

+ ∂K
∂θk

]
φj (4.7)

This expression is very convenient because it only involves the mode shape corre-

sponding to the frequency of interest. In cases where the computation of closed-form

sensitivities becomes computationally expensive or prohibitive, one can always resort

to a less elegant computation given by

Sij ≈
∆yM,i

∆θf,j
(4.8)

This requires careful selection of ∆θf,j and the solution of multiple eigenvalue

problems in order to compute the changes in eigenvalues and eigenvectors.

4.4 Model Formulation

The mathematical theory describing the behavior of composite beams with weak

shear connectors subjected to unidirectional bending on a symmetry plane has been
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studied in depth by various researchers [11], [12], [13] and [14]; just to mention a few.

More recently, Dall′Asta [16] developed a more complete theoretical formulation for

three-dimensional cases. The author included out-of-plane bending and torsion based

on Kirchhoff bending theory and Vlasov torsion theory. Ranzi et al. [17] performed

a two-dimensional comparative study using four different formulations to analyze

partially composite two-layer beams subject to symmetric bending, namely; the ex-

act analytical solution, direct stiffness method, the finite element method and finite

differences. The authors concluded that the direct stiffness method, formulated us-

ing basis functions from the exact solution, provides the best accuracy followed by

the finite element method and the finite differences. This paper focuses on complex

three-dimensional structures and does not assume prior knowledge of the basis func-

tions from the exact solution, therefore a finite element model (FEM) formulation is

preferred.

All finite element models (FEM) to be considered in this paper are linear, elastic

with lumped mass and classical damping. The set of parameters θ consist of all the

material properties necessary to formulate the stiffness, mass and damping matrices.

The set of free parameters θf will be the elastic modulus of the reinforced concrete

slab and the stiffness of the connecting elements representing the rigidity per linear

unit of length of the interface between the steel girder and the concrete slab. The

stiffness of the connecting elements will provide an indication of the overall degree of

composite action between steel and concrete. In both cases the parameters represent

homogenized averaged properties.

As mentioned previously the two fundamental problems to address are: (i) iden-

tifiability of parameters, i.e. Is it possible to separately identify the elastic modulus
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of concrete and the stiffness of the interface?, and (ii) Can these parameters be iden-

tified in the presence of noise or bias in the identified modal features? To investigate

these two aspects, various scenarios and models with increasing complexity will be

examined.

We begin with the simplified model of one of the stringers by considering it as

a simply supported 2-dimensional continuous beam. The model has analogous sec-

tions and dimensions to the stringers (W18x60) and tributary area of the concrete

slab. This model consists of two parallel longitudinal rows of frame-type elements

for concrete slab (top) and the steel stringer (bottom); as shown in Fig. 4.1a. The

longitudinal elements are interconnected at intermediate nodes by massless perpen-

dicular vertical elements that represent the stiffness of the interface that enables the

composite behavior, Fig. 4.1b. The model was implemented using a code developed

by the third author in MATLAB environment. Figure 4.1a shows the dimensions and

general details of the specific model considered. The mass of the model is lumped at

the nodes and the stiffness matrix is for horizontal and vertical degrees of freedom

(rotations where condensed out).

We also study a 3-dimensional model analogous to the portion of the bridge deck

that is instrumented as indicated in Fig. 4.10. The model explicitly includes the

main girders, floor beams, girders, bracings, and slab. The model has 83, 026 DOF,

932 frame members that represent the steel elements (girder, stringers, floor beams,

bracings) and shear connectors, and 13,120 shell areas to model the concrete slab.

The model was formulated using the software SAP2000 and it is shown in Figures

4.5a, 4.5b, and 4.5c.
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4.5 Two Dimensional Model -

Simulated Cases

This section describes the simulation results corresponding to the application of

sensitivity-based model updating to the 2-D semi-composite beam shown in Fig. 4.1a.

The main interest is to determine if the two free parameters θ1= elastic modulus of

concrete and θ2= shear connector stiffness per linear meter are distinguishable based

on the first five flexural modal frequencies of the deck.

7.00 m

34.70 m

6.70 m 7.00 m

0
.3

5
 m

7.00 m 7.00 m

0.20 m (TYP)

(a) Longitudinal section of two dimensional FEM of
composite beam

W 18x60 

1.98 m 

0.19 m 

 AC= 0.37 m2 

 IC = 1.13E-03  m4 

AS = 0.0114 m2 

IS = 4.096E-4 m4 
0.35 m  

ARL= 5.07E-4  m2 

IRL  = 2.04E-8   m4 
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Figure 4.1: Two dimensional FEM

Various cases where considered:

1. CASE 1: Identify a simultaneous increase of 20% in the rigidity per unit length

of the vertical connectors and in the elastic modulus of concrete.

90



2. CASE 2: Identify a 20% decrease in the rigidity per unit length of the vertical

connectors and an increase of 20% in the elastic modulus of concrete.

3. CASE 3: Identify an increase of 100% in the rigidity per unit length of the

vertical connectors while the elastic modulus of concrete remains unchanged.

This was induced by reducing the separation of vertical connectors in half while

keeping the stiffness of the individual connectors the same. This case involves

the presence of model error since the model does not match the system used to

generate the “identified” modal features.

Table 4.1: System and initial frequencies (prior to updating) for Cases 1, 2 and 3 in the
2D Model

Frequency SYSTEM CASE 1 CASE 2 CASE 3

(#) (Hz) (Hz) (Hz) (Hz)

1 16.24 16.80 16.17 17.20

2 17.40 18.042 17.30 18.63

3 20.28 21.13 20.21 21.85

4 22.86 24.13 22.84 24.92

5 25.79 27.05 25.58 28.39

The first two cases are intended to investigate the capability of the methodology

to distinguish separate changes in the free parameters. For both cases the separation

between the vertical connectors was selected as sm = 0.20 m. Case 3 examines

the effect of model error. Here the separation of the connectors is inconsistent with

the model and it is necessary to verify if the correct stiffness per unit length can
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still be estimated. For this case the system had a separation of vertical connectors

sλ = 0.10 m and the model sm = 0.20 m. For all cases, the sensitivity approach was

implemented using only the discrepancies in the first six eigenvalues. In all cases the

initial values of the free model parameters are 3, 630 kN/m/m for the rigidity per unit

meter of the rigid connectors and 28 GPa for the elastic modulus of concrete.

Figures 4.2, 4.3 and 4.4 show the evolution of the free model parameters as the

number of iterations increases for cases 1, 2 and 3 respectively. It can be seen that in

all cases, despite some initial overshooting, the selected free parameters converge to

the target values. This suggests that the parameters are independently identifiable

from changes in modal frequencies.
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Figure 4.2: Evolution of model parameters a)Rigidity per linear meter and b) elastic modulus
of concrete for Case 1 of 2D FEM
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Figure 4.3: Evolution of model parameters a)Rigidity per linear meter and b) elastic modulus
of concrete for Case 2 of 2D FEM
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of concrete for Case 3 of 2D FEM
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4.6 Three Dimensional Model -

Simulated Cases

Following encouraging results from updating a 2D FEM of an isolated stringer, ver-

ification of the sensitivity approach using a 3D FEM is investigated. This model

simulates the instrumented portion of the bridge deck shown in Fig. 4.5. Cases 1 and

2 from the previous section are investigated, namely

1. CASE 1: Identify a simultaneous increase of 20% in the rigidity per unit length

of the vertical connectors and in the elastic modulus of concrete.

2. CASE 2: Identify a 20% decrease in the rigidity per unit length of the vertical

connectors and an increase of 20% in the elastic modulus of concrete.

Table 4.2 shows the five modal frequencies used to perform the model updating.

The table also shows the initial values of the frequencies prior to updating corre-

sponding to each case. The sensitivity matrix was approximated using eq.4.8. The

value of ∆θf to compute the changes in modal parameters was selected as 0.01θf .

The sensitivity matrix is shown in Fig. 4.6. As expected the eigenvalues are more

sensitive to changes in the concrete modulus, however the sensitivity due to changes

in the stiffness of the shear links is not negligible.
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(a) Three dimensional FEM of bridge deck (b) Three dimensional FEM of bridge deck (no slab)

Node Centroid Axis of Girders/Stringers

Concrete Deck Shell Element

Rigid Link Frame Element

Floor Beam/Knee Brace Frame Element

10.62 m

1.02 m

1.98 m 1.98 m 1.98 m 1.98 m

1.32 m

(c) Cross section of three dimensional FEM

Figure 4.5: Three dimensional FEM of bridge deck (see Fig. 4.10 for additional dimensions)

Table 4.2: System and initial model frequencies (prior to updating) for Cases 1 and 2 in
the 3D Model

Frequency (#) SYSTEM (Hz) CASE 1 (Hz) CASE 2 (Hz)

1 14.05 14.35 14.30

2 17.16 17.69 17.58

3 18.15 18.80 18.67

4 18.83 19.51 19.37

5 22.19 19.51 19.37
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Figure 4.6: Sensitivity matrix of first five eigenvalues to concrete elastic modulus and stiff-
ness of shear links.

Figures 4.7 and 4.8 show the results for Cases 1 and 2 respectively. In similar

fashion to the 2D FEM, the modal features and the model parameters converge to

the target values.
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Figure 4.7: Evolution of model parameters a)Rigidity per linear meter and b) elastic modulus
of concrete for Case 1 of 3D FEM
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of concrete for Case 2 of 3D FEM
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4.7 Validation Using Data from an

Operational Instrumented Bridge

Having established that it is possible to distinguish between stiffness changes in shear

connectors and the concrete slab based on changes in modal frequencies, it is appro-

priate to proceed and apply the proposed method in the context of an instrumented

and operational bridge deck. Bridges 58N & S are twin bridges along interstate 89

in Vermont, USA. For this study, only the two-lane north-bound bridge was instru-

mented. The bridge was designed in 1961 and built in 1963. As can be seen from

Fig. 4.9 the deck is supported on two longitudinal built-up I-girders, which rest upon

two intermediate reinforced concrete piers and at the ends on reinforced concrete

abutments.

A typical cross section of the deck is depicted in Fig. 4.10. The reinforced

concrete slab (190mm thick) is supported at the ends on the main longitudinal girders

(with variable depth between 2.44 m (at the midspan) and 4.27 m (at the supports)

and on continuous intermediate stringers (W18x60) parallel to the main girders. The

stringers are supported on a transverse floor beam (W36 x 170) which itself is simply

supported on the main girders. The transverse floor beams are spaced at 7.01 m

on-center.

4.7.1 Modeling

As can be seen from Fig. 4.5a, the model is a substructure of the bridge. The bound-

ary conditions of the model are as follows: (i) rigid vertical supports at the abutment,
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Figure 4.9: Photograph of bridge 58N located in Vermont, USA.

(ii) longitudinal spring supports at the abutment (representing the horizontal rigidity

of the support at the abutment) and (iii) springs and masses at the opposite end,

these represent the stiffness and mass necessary to achieve the static displacement,

the fundamental vertical and torsional modal frequencies of the complete bridge deck.

The free parameters of the model are the stiffness per unit length of the shear con-

nectors between the slab and the stringer, and the elastic modulus of the concrete

deck.

4.7.2 Instrumentation

Instrumentation on the bridge deck consists of 10 accelerometers (PCBModel 393A03)

as shown in Fig. 4.10b. The deck was also instrumented with dynamic strain sen-
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Figure 4.10: (a)Cross section of bridge deck and (b) instrumentation layout (See Fig. 4.5
for the 3D FEM)

sors, but those measurements will not be used for the purposes of this paper, for

more information regarding the strain measurements see [18]. The location of the

accelerometers was selected to capture the maximum expected structural response of

the stringers while at the same time minimizing the required number of sensors (due

to budgetary constraints). It is worth noting that the main interest in the instru-

mentation is to capture the structural behavior of the stringers, however due to the
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interconnected nature of the structural system, some aspects of the global structural

response will also be captured. To perform the data acquisition the LMS SCADAS

MOBILE SCM05 with a uniform sample rate of 200 Hz was used. The data col-

lection presented in this study begins April 12, 2012 and concludes November 20,

2013, with a hiatus between August 27, 2012 and August 28, 2013. Therefore, the

data spans between April and November of a nominal year. Measurements consist of

1-hour long records recorded sporadically during this interval. To reduce the effect of

input uncertainty (weight, speed or lane of travel of the vehicles) only free vibration

measurements were used in this analysis. A total of 184 free vibration intervals were

selected from the measured data. The criteria for selection was that the length of the

record be longer than 10 seconds after the vehicle left the bridge while no other vehicle

entered the bridge during that time. The measured temperature during the selected

intervals ranged from 15◦F to 87◦F . Typical acceleration measurements during the

passing of a heavy truck are shown in Fig. 4.11.

4.7.3 System Identification

Knowledge of the characteristics of the traffic experienced by the bridge, vehicle speed,

weight and traveling lane, is rarely available. As a way to reduce uncertainty related

to the traffic induced excitation, free vibration responses are used for the system

identification. This is only possible because of the low average daily traffic on this

bridge, for bridges with constant traffic more advanced methods are necessary. The

acceleration intervals were processed using the Eigensystem Realization Algorithm
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Figure 4.11: Acceleration measurements at various positions along Stringer-1 during the
passing of a truck on the travel lane (See Fig. 4.10b for sensor location coordinates)

(ERA) [22]. The ERA identifies a linear model of the form

x(k + 1) = Ax(k) + Bu(k) (4.9a)

y(k) = Cx(k) + Du(k) (4.9b)

where x(k) is the internal state at time t = k∆t, u(k) is the input, y(k) is
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the output. The A matrix, also known in control literature as the state transition

matrix, and it carries information about the system eigenvalues. The mathematical

formulation to extract the system frequencies from the eigenvalues of A can be found

in [22]. A summary of the identified modal frequencies from the selected data set is

shown on Fig. 4.12.
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(b) Identified frequencies between July and Octo-
ber

Figure 4.12: Identified frequencies from global acceleration measurements. Mean values
indicated by dotted lines

From Fig. 4.12 it can be observed that during colder months the natural frequen-

cies experience an increase with respect to the warmer summer months. This change

occurs in all mode shapes and it appears to be reversible, so it can not be attributed to

a structural damage. We attribute it to temperature and humidity variations which

affect the mechanical properties of the deck and boundary conditions.
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4.7.4 Model Updating Results

This section presents a summary of the results from the implementation of the fi-

nite element model updating procedure described in Section 4.3. Two scenarios are

compared: (i) using all identified frequencies across the complete time interval of mea-

surements and (ii) using only the subset of the data corresponding to the summer

months.

In both cases the variance of the identified frequencies is computed and a diago-

nal weighting matrix is computed. The ith diagonal element of the weighting matrix is

the inverse of the variance of the ith identified frequency. For convenience purposes,

the weighting matrix is scaled in such manner that the diagonal of the weighting

matrix adds to unity. This is an arbitrary choice since the weighting matrix can be

multiplied by any scalar without changing the result of the weighted least-squares

solution. For each case, two different procedures were implemented. In the first one,

the model updating algorithm was unconstrained while in the second one, the algo-

rithm was constrained to operate within reasonable limits for the variables,specially

the concrete modulus of elasticity. The selected lower and upper bound for the con-

crete elastic modulus were 21.37 GPa and 27.59 GPa respectively, this corresponds

to a lower bound of a compressive strength of concrete of 20.68 MPa(3 ksi) and an

upper bound of 34.47 MPa(5 ksi). The expression used to link concrete strength and

elastic modulus was Ec = 4700
√
f ′c(MPa) [8].

The model updating results for the scenario where all the data was used is

presented in Tables 4.3 and 4.4. The model updating results for the scenario where

only a subset of the data was used is presented in Tables 4.5 and 4.6.
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Table 4.3: Model Parameters - Using complete data set

Parameter Initial Unconstrained Constrained

θ1 = Ec(GPa) 28 10.08 21.5

θ2 = kL(MN/m/m) 516.6 2,857.7 4.2

Table 4.4: Comparison of frequencies Bridge 58N - Using complete data set

Frequency ID σ2 W Initial Unconstrained Constrained

(#) (Hz) (Hz) (Hz) (Hz)

1 12.04 0.65 0.09 14.04 12.64 12.94

2 13.37 0.14 0.43 17.16 14.90 14.40

3 15.02 0.30 0.28 18.15 15.58 14.52

4 17.80 0.69 0.08 18.83 16.24 14.84

5 22.57 0.42 0.11 22.19 19.58 19.72

Table 4.5: Model Parameters - Using reduced data set

Parameter Initial Unconstrained Constrained

θ1 = Ec(GPa) 28 15.3 21.5

θ2 = kL(MN/m/m) 516.6 26,889.8 5.9

Table 4.6: Comparison of frequencies Bridge 58N - Using reduced data set

Frequency ID σ2 W Initial Unconstrained Constrained

(#) (Hz) (Hz) (Hz) (Hz)

1 12.15 0.11 0.26 14.04 13.33 12.96

2 13.20 0.10 0.29 17.16 16.08 14.49

3 14.86 0.16 0.22 18.15 16.86 14.60

4 17.21 0.21 0.13 18.83 17.56 14.94

5 22.49 0.30 0.10 22.19 21.08 19.76
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Fig. 4.13 shows a semi-log plot depicting the variation of the main vertical

frequencies of the deck as a function of the stiffness per unit length of the shear

connectors. The plots shows the frequencies corresponding to the initial model and

to the updated model (using a subset of the data shown in Fig. 4.12b).
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Figure 4.13: Frequencies of deck as a function of the effective stiffness of the shear connec-
tors. Shown are the values of the initial stiffness (solid circle) and the updated value (solid
triangle)

Fig. 4.14 shows the mode shapes (in the concrete slab) corresponding to the

constrained and unconstrained model updating. For both cases the reduced data set

was used. As can be seen, significant differences exist between the unconstrained and

constrained model updating results.

Fig. 4.15 presents a comparison between the maximum bending moments in

the stringers and outer girders as a function of the updated composite behavior of
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Figure 4.14: Mode shapes on the concrete slab corresponding to the updated model. On
the left is the result of the constrained model updating and on the right the results of the
unconstrained.

the deck. The loading is a pair point loads as indicated in the figure. These loads

represent the last axle of a three axle truck. The position of the loads corresponds

to the most critical, in the sense that it creates the largest bending moment. The

constrained updated model presents significant differences with respect to the un-

constrained model, specially in the stringer bending moments. The unconstrained
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Figure 4.15: Comparison of maximum bending moments in various elements of the bridge
deck

model presents a very high level of composite action and a very low slab stiffness, this

translates into a higher level of loads going into the girders with lower loads going

into the stringers. In the constrained model, the slab is much stiffer in comparison

with the unconstrained case and thus this means a better and more even transverse

distribution of forces.

4.7.5 Validation of Updated Finite Element

Model

In this section a validation of the updated finite element model (constrained FEM)

is presented. The data was derived from a test conducted on the bridge deck. The
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bridge was subjected to a passing truck driven on the travel lane with known axle

weight and spacing (measured off site). The truck had three axles weighting 30kN ,

100kN and 100kN from front to back. The spacing of the axles was 3.00m and 6.00m

respectively. The truck was driven at a constant speed of 60 mph on the travel lane.

During the passing of the truck, accelerations were measured at all locations indicated

in Fig. 4.10. Similarly, the updated finite element model was subjected to a set of

simulated moving point loads with the same magnitude, relative spacing and speed as

the actual truck. For this simulation a modal damping ratio of 0.035 for every mode

was used. This is consistent with identified damping from vibration measurements

on the bridge deck.

Figures 4.16 and 4.17 show a comparison between the measured acceleration, the

original model and the updated model predictions. The improvement in prediction

capability as a product of the model updating can be easily observed.
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Figure 4.16: Comparison of acceleration response (updated model vs. orignal model) at
stringer 1 (position P-5) when a test vehicle crosses the bridge in the travel lane at 60 mph.
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Figure 4.17: Comparison of acceleration response (updated model vs. orignal model) at
stringer 2 (position P-5) when a test vehicle crosses the bridge in the travel lane at 60 mph.

4.8 Conclusions

In this paper the authors propose the use of a weighted sensitivity-based finite element

model updating to determine the degree of composite behavior in operational bridge

decks with unknown/uncertain installation of shear connectors. The free parameters

of the model are the rigidity per unit length of the beam-slab interface and the

elastic modulus of the concrete slab. The type of measurements used are vertical

accelerations at various points in the span. The number of measurements required

by the proposed methodology are significantly less than the ones required if the more

traditional strain sensing is used, with the drawback that the estimated quantities

represent the behavior of the deck in an average sense and not section-by-section.

The proposed methodology was verified by means of numerical simulations in
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two models that varied in size and complexity. The first model was a 2D FEM of

an isolated stringer in a bridge deck. The second model was a 3D FEM of a deck

substructure. For each model, various levels of composite action were considered.

In all cases, the modal features were selected as a subset of the system eigenvalues

and the procedure accurately updates the model parameters related to composite

action. The method was implemented in an operational and partially instrumented

deck located in Vermont, USA. The variability of the identified data features was

accounted in the model updating procedure by means of a weighting matrix (inversely

proportional to the variance of the identified frequencies). As expected, identified

modal frequencies varied significantly from summer to winter and thus two separate

analysis were conducted, one with the complete data set and the other with a reduced

data set which included only the summer months.

As an illustrative exercise, two model updating strategies were compared, con-

strained versus unconstrained. In the unconstrained case, the free parameters did not

have limits or bounds, while, as the name suggests, in the constrained cases the elas-

tic modulus of concrete was constrained to a lower bound. It was found that these

two model updating solutions result in different structural behaviors of the bridge

(static and dynamic). The unconstrained solution results in a very low (and physi-

cally unreasonable) value of the concrete modulus in the slab and a very high value

for connection stiffness; the constrained solution provides more reasonable results and

was thus adopted. The updated FEM, using the constrained approach, was further

validated using measured accelerations induced by a moving test truck with known

axle weight and spacing. It was found that the updated model provided an improved

match between predictions and measurements in comparison with the original model.
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This exercise highlights the need for sound physical understanding of the variables

when performing a model updating.

A limitation of the proposed model updating approach (which is independent of

the type of sensing used) is that only stiffness of the deck can be assessed and not much

can be learned regarding its ultimate static capacity. This is because various types of

shear connectors can provide similar stiffness but display very different post-yielding

behavior. Nevertheless, if the interest is the formulation of a finite element model

that can be used as a base-line model for stress analysis (say for fatigue life estimation

and(or) load distribution factors) then the proposed model updating approach would

prove useful.
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5.1 Abstract

This paper explores the robustness of the Kalman filter in structural dynamics and

fatigue monitoring applications. The study is carried out using simulations and small

scale experiments. We investigate robustness to non-parametric errors in the descrip-

tion the unmeasured excitations, measurement noise and structural model.

5.2 Introduction

Fatigue is responsible for a large portion of structural failures in flexible structures

subjected to vibration effects [1]. Examples of these systems are aircraft, wind tur-

bines, bridges, offshore structures, among many others. Fatigue damage evolves in

three distinguishable phases: (1) micro-crack formation, (2) micro-crack nucleation

and (3) macro-crack formation and propagation. Phases 1 and 2 encompass the ma-

jority of the fatigue life of a specimen. Once phase 3 begins and a macro-crack begins

propagate, fatigue life is basically over. Monitoring fatigue in complex structures,

specially as they age, has become a topic of increasing interest among academics

and practicing engineers working in control, fault diagnosis, and structural health

monitoring [2–6].

There are essentially two approaches to monitor fatigue in flexible structures:

local and global [7]. In the local approach intense sensing such as guided waves are

used to detect small cracks, delaminations, etc. The local approach is feasible if

the engineer knows a priori where damage is taking place. In the global approach

a more sparse array of sensors is used which typically measure response in the low-
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to-medium frequency range. In this case the spatial range of detection increases but

the resolution decreases. This means that fatigue can be monitored throughout the

complete structure, the price to pay is that only larger cracks can be detected.

In this paper we focus on the global approach and in particular on vibration-

based monitoring. However, our aim is not to detect cracks after they have occurred or

are actively propagating. The objective in this paper is to monitor the accumulation

of fatigue damage throughout the structure during its operational life, even before

visible cracks begin to appear, i.e. phase 1 and 2. We investigate the use of the

Kalman filter to estimate stress and strain fields (and their uncertainty) throughout

the structure using operational acceleration measurements. The estimated stress and

strain fields can be used together with mechanistic damage functions, such as the

popular S-N curve and Miner rule, to estimate fatigue damage and remaining service

life [8].

An investigation along these lines has been carried out by Papadimitriu et al. [2],

however their study was limited to simulation. In this paper we present simulation

and experimental results aimed at determining the robustness and sensitivity of the

Kalman filter estimates to various sources of modeling errors. In particular we inves-

tigate the effects of errors in the stochastic description of the measurement noise and

unmeasured excitations, as well as errors in the physics of the model describing the

flexible structure.
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5.3 System of Interest

The system of interest is a flexible, bolted steel structure shown in Fig. 5.2. The

dimensions of the structure are shown in Fig. 5.1. The system was instrumented

with accelerometers (PCB 333B30) and strain sensors (PCB 740B02) as shown in

Fig. 5.1. The driving excitation force was delivered using an electrodynamic shaker

(TMS 2060E) from the Modal Shop. The input force to the system was measured by

means of a force transducer (PCB C02). The sampling frequency of all sensors was

819.2 Hz.
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Figure 5.1: Dimensions of experimental structure (mm)
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(a) Experimental Setup (b) Bolted connection  
Figure 5.2: Experimental setup

5.4 Mathematical Model

The partial differential equation (PDE) that models the vibrations y(x, t) of the linear

elastic frame structure in Fig. 5.2 at any point x and any time t is given by

ρA
∂2y

∂t2
+ c

∂y

∂t
+ EI

∂4y

∂x4 = p(x, t) (5.1)

where A and I are the cross-sectional area and moment of inertia of the frame
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elements, E is the elastic modulus of the material, c is the damping constant, ρ is the

mass density of the material and p(x, t) is the forcing function. This PDE, with its

boundary conditions, can not be solved analytically (except for very simple cases).

To obtain an approximate solution it is necessary to discretize in space and time.

For the particular structure of interest two discretizations are investigated. These are

shown in Fig. 5.3 and summarized below.

304 
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254 

50 

(a) (c) (b) 

Figure 5.3: From left-to-right: (a) The system, (b) Model M1, a frame with lumped masses
and (3) Model M2, a shear-beam model with lumped masses. Dimensions in mm

• Model M1: This model is a static condensation of the frame system to the 4

horizontal DOF at the centroid of the horizontal elements.

• Model M2: This model is a vertical shear-beam with concentrated masses.
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Both of these models can be represented as a set of simultaneous linear ordinary

differential equations of the form

Mq̈(t) + CDq̇(t) + Kq(t) = b2p(t) (5.2)

where q(t) ∈ < 4×1 is a displacement vector at time t , M = MT > 0 is the

mass matrix, CD = CD
T > 0 is the damping matrix and K = KT > 0 is the stiffness

matrix. The measured forces that drive the response of the system are defined by the

vector p(t) with b2 as its force distribution matrix. By setting

x(t) =


q̇(t)

q̈(t)

 , Ac =

 0 I

−M−1K −M−1CD



Bc =

 0

M−1b2


we can write eq.5.2 as

ẋ(t) = Acx(t) + Bcp(t) (5.3)

where x(t) is known as the state vector. Measurements z(t) are modeled as

z(t) = Cx(t) + Dp(t) + v(t) (5.4)

where v(t) is the measurement noise. In the case of acceleration measurements

the state-to-output matrix C has the following form
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C = c2 [ −M−1K −M−1CD ] (5.5)

where c2 indicates which degree of freedom in the model corresponds to a mea-

surement. The direct transmission matrix D is given by

D = c2M−1b2 (5.6)

All the previous equations are represented in continuous time. In practice, vibra-

tion signals are obtained in a digital fashion and we need to convert the continuous

system matrices to discrete time. The solution to state space of the system is well

known [9] and can be expressed in discrete time as

xk = Axk−1 + Bpk−1 (5.7)

zk = Cxk + Dpk + vk (5.8)

where

A = eAc∆t (5.9)

where xk = x(t = k∆t), ∆t is the time step and B depends on the intersample

behavior of the excitation force (see [10] for more details). In this paper we operate

using zero-order hold.

123



5.5 Kalman Filter

The Kalman filter (KF) is a sequential state estimation algorithm. The algorithm

is optimal for linear systems subjected to zero-mean unmeasured excitations and

additive measurement noise with covariances Qk and Rk respectably.

The basic equations of the algorithm are given below. Eqs. 5.10 and 5.11 prop-

agate the mean and covariance of the state estimate from time step k − 1 to k. Eq.

5.12 is the Kalman gain matrix. Eqs. 5.13 and 5.14 are the update or correction

equations for the mean and covariance of the state estimate.

x̂−k = Ax̂+
k−1 (5.10)

P−k = AP+
k−1AT + Qk−1 (5.11)

Kk = P−k CT
(
CP−k CT + Rk

)−1
(5.12)

x̂+
k = x̂−k + Kk

(
zk −Cx̂−k

)
(5.13)

P+
k = (I−KkC) P−k (5.14)

Expressions for the sensitivity of the KF to errors in the description of Q and R

are given in [11]. However these expressions assume that the error is parametric, i.e.

the measurement and process noise are zero-mean, white and Gaussian and the error
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lies in the numerical description of the respective covariance matrices. In this paper

we take a wider view of the problem and investigate the effect of errors that can not

be simply described by parametric errors in the covariance matrices.

5.6 Strain Estimation and Uncertainty

Propagation

Once the displacements have been estimated for all the DOF; the strain tensor and its

uncertainty can be calculated by a linear transformation of the nodal displacements

as

ε̂i(t) = Tix̂(t)

Pε(t) = TiP+(t)T′i

where t is time and the subindex i refers to the particular structural element

of interest. The estimated strain can be used to compute the stress tensor and

subsequently used as input to a fatigue damage function, from where the accumulated

fatigue damage, and its uncertainty, can be estimated.

5.7 Modeling Error

This section describes the experimental characterization of modeling errors in the

stochastic description of the unmeasured excitation, measurement noise and physical

model error.
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5.7.1 Physical Model

As mentioned in a previous section we investigate two different physical models for

the structure shown in Fig. 5.3. Fig. 5.4 shows the modal frequencies vs the damping

ratios plot of each mode shape in the two models compared the identified values from

vibration testing of the structure. As can be seen, the statistical variability in modal

damping is significantly larger than the variability in modal frequency. It can also

be observed that although M1 and M2 have almost the same fundamental frequency,

they differ significantly at the higher frequencies. Model M1 constitutes an overall

better representation of the structure than model M2.
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Figure 5.4: Comparison of modal frequency and damping ratio between models and identified
from vibration tests in test structure.

5.7.2 Covariance matrices

A fundamental input to the Kalman filter are the covariance matrices for the un-

measured excitation and measurement noise. Off-line vibration measurements were
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preformed in order to estimate these covariances. To characterize the stochastic na-

ture of the excitation, the shaker was ran for 600s and the estimated, normalized PSD

(using the Welch algorithm) was computed and shown in Fig. 5.5. To characterize

the stochastic nature of the measurement noise, ambient acceleration response was

measured with the structure “at rest” for 600s and its power spectral density was

computed. The result is shown in Fig. 5.6.
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Figure 5.5: Power spectral density of the excitation (assumed unmeasured for the estima-
tion).

As can be seen from Figs. 5.5 and 5.6 neither of the signals satisfies the whiteness

assumption (essential in the derivation of the KF). We selected the following values

for Q and R for the implementation of the KF.

Qk = 1
N − 1

∑
k

(pk − p̄)2 = 53.36 N2 ∀k (5.15)
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Figure 5.6: Estimated power spectral density of the acceleration measurement noise. (Ac-
cording to Fig. 5.1)

Rk = 1
N − 1

∑
k

(vk − v̄) (vk − v̄)T

=

 3.49 −3.59

−3.59 11.15

 ∗ 10−8(m/s2)2 ∀k (5.16)

5.8 Estimation Results

Table 5.1 summarizes all the cases examined in this study. Cases 0-2 use simulated

data and case 3 uses experimental data. In case 0 the Kalman filter is simulated in

an ideal setting (all assumptions are valid to within computer precisions and random

number generator). Case 1 looks at the effect of only modeling error. In this case M1

is used to generate the system response and M2 is used to perform the estimation.

Case 2 looks at various combined scenarios of modeling errors and finally case 3,

examines the robustness of the KF in the environment of experimental data.

Figures 5.7-5.14 depict estimation results in a small window of time for each of
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Table 5.1: Summary of Cases

Excitation Measurement noise Response
Case System Model System Model System Model

0 N (0,Q) N (0,Q) N (0,Rd) N (0,Rd) 4 DOFc 4 DOFc
1 N (0,Q) N (0,Q) N (0,Rd) N (0,Rd) 4 DOFc 4 DOFs
2a N (0,Q) N (0,Q) Exp N (0,Rd) 4 DOFc 4 DOFc
2b N (0,Q) N (0,Q) Exp N (0,R) 4 DOFc 4 DOFc
2c Exp N (0,Q) N (0,Rd) N (0,Rd) 4 DOFc 4 DOFc
2d Exp N (0,Q) Exp N (0,Rd) 4 DOFc 4 DOFc
2e Exp N (0,Q) Exp N (0,Rd) 4 DOFc 4 DOFs
3 Exp N (0,Q) Exp N (0,Rd) Exp 4 DOFc

c → condensed model
s → shear model
d → diagonal covariance matrix
Exp→ measured from experiment

the cases examined. Table 5.2 present the computed values of the estimated variance

of the strain estimate at the various points of strain measurement indicated in Fig.

5.1. Table 5.3 presents the computed values of the actual variance of the estimation

error. As can be seen, in case 0 the match is very close, meaning that the KF

provides an accurate estimate of the response and also an accurate estimate of the

actual estimation uncertainty. In case 3, which includes errors in the model and

the covariance matrices, the KF displays significant error in tracking and significant

underestimation of the actual variance of the estimation error.

In order to disaggregate the various source of error we contrast case 0 and case

1. It can be verified that the significant drop in accuracy is solely a product of model

error. This can be further confirmed by examining the results of case 2d where the

model and the system coincide but there is discrepancy covariance matrices of the
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measurement noise and the unmeasured excitation.
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Figure 5.7: Strain estimation Case 0: Location 1Case 1 
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Figure 5.8: Strain estimation Case 1: Location 1
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Case 2a 
 

6.1 6.2 6.3 6.4 6.5 6.6 6.7

-2

0

2

x 10
-5

Time (s)

S
tr

ai
n
 (
)

 

 

  2 Measured Estimated

Figure 5.9: Strain estimation Case 2a: Location 1
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Figure 5.10: Strain estimation Case 2b: Location 1
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Case 2c 
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Figure 5.11: Strain estimation Case 2c: Location 1Case 2d 
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Figure 5.12: Strain estimation Case 2d: Location 1
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Case 2e 
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Figure 5.13: Strain estimation Case 2e: Location 1Case 4a 
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Figure 5.14: Strain estimation Case 3: Location 1

133



Table 5.2: Strain Error RMS

Strain RMS error per Case (∗10−6)

Loc. 0 1 2a 2b 2c 2d 2e 3

1 0.57 8.45 0.83 1.66 0.43 0.76 9.39 8.20

2 0.67 3.44 0.97 1.96 0.51 0.90 4.71 7.11

3 1.22 6.21 1.76 3.55 0.92 1.63 8.53 14.11

4 0.42 7.60 0.60 1.21 0.31 0.56 8.69 6.28

5 0.75 5.60 1.09 2.19 0.57 1.01 5.90 9.21

6 1.39 10.34 2.01 4.05 1.05 1.86 10.90 16.93

Table 5.3: KF Estimated Variance

STD(ε) per Case (∗10−6)

Loc. 0 1 2a 2b 2c 2d 2e 3

1 0.56 0.85 0.56 0.51 0.56 0.56 0.85 0.56

2 0.66 0.72 0.66 0.60 0.66 0.66 0.72 0.66

3 1.19 1.30 1.19 1.09 1.19 1.19 1.30 1.19

4 0.41 0.16 0.41 0.37 0.41 0.41 0.16 0.41

5 0.74 0.51 0.74 0.67 0.74 0.74 0.51 0.74

6 1.36 0.95 1.36 1.24 1.36 1.36 0.95 1.36

5.9 Conclusions

The Kalman filter was implemented for strain estimation in a flexible steel structure.

The estimated strain can be used as input for fatigue damage models and fatigue
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damage can be monitored using only minimal instrumentation. It was found that the

KF is robust to errors in the description of the measurement noise and unmeasured

excitation; however, we found that modeling errors (within the range of practical

engineering models) can have significant detrimental effect in the estimation quality.

It was also found that the variance predicted by the KF significantly underestimates

the actual estimation variance of strains. Results presented in this paper indicate

that there is a need to develop and implement robust methods for filtering vibration

measurements in structural dynamics.
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Chapter 6

Conclusions

The research in this dissertation addresses the implications of model uncertainty

to system identification, parameter estimation, and state estimation. Specifically,

determining the highest achievable accuracy in the presence of measurement noise,

unmeasured excitations, environmental conditions, and model class selection.

6.0.1 Intellectual Contributions

• Exact expressions to compute the lowest achievable variance by any unbiased

estimator of modal frequency and damping ratio from free vibration and forced

vibration signals contaminated by additive Gaussian white noise. These limits

are found through the Cramer-Rao lower bound theory. The results were ob-

tained for displacement or acceleration measurements contaminated with zero-

mean additive Gaussian white noise.

The expressions were derived for single degree of freedom systems and heuristi-

cally extended to classically damped multi-degree of freedom systems with well
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separated modes. It was proved that the coefficient of variation of identified

modal damping ratio must be significantly higher that the coefficient of vari-

ation of identified modal frequency. The results were confirmed via simulated

system identification using subspace identification methods. It was found by

means of simulation that if the identified model does not explicitly account

for the noise in the measurements, then in order to reach (or come close) to

the CRLB it is necessary to increase the size of the identified system to a size

significantly larger that the underlying size of the system of interest. It was

also found that in the case of multi-degree of freedom systems, the CRLB of

different modes can vary appreciably depending on the signal-to-noise ratio of

the individual modes. We also derived an expression that aids in the decision

to use acceleration measurements or displacements measurements.

• A model updating methodology that accounts for the variability of environmen-

tal conditions to estimate the level of composite action in a full scale operational

bridge deck. We present recent developments in the feasibility of using global

acceleration measurements to assess the level of composite action on operational

bridge decks with unknown girder-slab connection stiffness. Our efforts focused

on the 58N Bridge constructed in 1963 and located on Interstate 89 in Rich-

mond, Vermont, United States. The Bridge has a three-span continuous deck

with buildup outer girders spanning a total length of 558 feet (170.08 m). A

portion of the bridge deck was monitored with uni-directional accelerometers

and dynamic strain sensors distributed at various locations. Intermittently, for

over two years, with measured temperatures ranging from 15◦F to 87◦F , data

was acquired. As a result, we achieved improved structural behavior was ob-
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tained (static and dynamic) with an improved matching between predictions

and measurements to those of the original model.

The proposed methodology was verified by means of numerical simulations in

two models that varied in size and complexity. The first model was a 2D FEM

of an isolated stringer in a bridge deck. The second model was a 3D FEM of

a deck substructure. For each model, various levels of composite action were

considered. In all cases, the modal features were selected as a subset of the

system eigenvalues and the procedure accurately updates the model parameters

related to composite action. We show that structural model parameters, the

elastic modulus of concrete and the rigidity per linear meter of rigid links, are

distinguishable based on the first five modal frequencies of the bridge deck’s

model. We verify this with 2D and 3D models of the deck and considering

various levels of composite action.

The variability of the identified data features was accounted in the model up-

dating procedure by means of a weighting matrix (inversely proportional to the

variance of the identified frequencies). As expected, identified modal frequen-

cies varied significantly from summer to winter and thus two separate analysis

were conducted, one with the complete data set and the other with a reduced

data set which included only the summer months.

A limitation of the proposed model updating approach (which is independent

of the type of sensing used) is that only stiffness of the deck can be assessed and

not much can be learned regarding its ultimate static capacity. This is because

various types of shear connectors can provide similar stiffness but display very

different post-yielding behavior. Nevertheless, if the interest is the formulation
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of a finite element model that can be used as a base-line model for stress anal-

ysis (say for fatigue life estimation and(or) load distribution factors) then the

proposed model updating approach would prove useful.

• The Kalman filter was implemented for strain estimation in a flexible steel struc-

ture. The estimated strain can be used as input for fatigue damage models and

fatigue damage can be monitored using only minimal instrumentation. It was

found that the KF is robust to errors in the description of the measurement noise

and unmeasured excitation. However, we found that modeling errors (within

the range of practical engineering models) can have significant detrimental ef-

fect in the estimation quality. It was also found that the variance predicted by

the KF significantly underestimates the actual estimation variance of strains.

Results indicate that there is a need to develop and implement robust methods

for filtering vibration measurements in structural dynamics.

6.0.2 Broader Impacts

The research presented in this dissertation can be extended and has the following

broader impacts:

• The Cramér-Rao Lower Bound (CRLB), obtained for modal frequency and

damping ratio of structural systems, could be applied to any other second order

system. This includes electrical, mechanical, and biological systems.

• The dissertation develops computational tools that will improve the fatigue life

assessment of a structure by updating a high fidelity finite element model and

thus reducing the uncertainty in its response to time-varying loads.
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6.0.3 Future Work

The following aspects remain open for future research:

• Uncertainty and estimation of model parameters in non-linear systems: We fo-

cused on structural systems that can be modelled with linear time invariant

equations of motion. Further studies need to be applied to parameter estima-

tion and their uncertainty in systems that experience elasto-plastic type cyclic

loading, represented with hysteresis models (like the Bouc-Wen model). Can

the CRLB theory be extended to systems with nonlinear behavior?

• Development and implementation of robust methods for filtering in structural

dynamics: Classical filters can be easily applied for state estimation in struc-

tural dynamics; yet their initial and operating conditions of are not clearly

transferable. For simple cases, deviations of these can still provide adequate

results. The implementation of more robust methods (extended Kalman Filter,

Unscented Kalman Filter, Robust Kalman Filter, etc.) could provide a better

tracking of the state estimate and its uncertainty in the presence of practi-

cal modeling errors in structural engineering. Although this aspect has been

examined by some authors, significant work remains on the subject.
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