
University of Vermont University of Vermont

ScholarWorks @ UVM ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2021

Arrangements of the Inputs and Outputs in the Multi-Robot Arrangements of the Inputs and Outputs in the Multi-Robot

Continuous Control Problem Continuous Control Problem

Sida Liu
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Liu, Sida, "Arrangements of the Inputs and Outputs in the Multi-Robot Continuous Control Problem"
(2021). Graduate College Dissertations and Theses. 1404.
https://scholarworks.uvm.edu/graddis/1404

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It
has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of
ScholarWorks @ UVM. For more information, please contact donna.omalley@uvm.edu.

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/graddis
https://scholarworks.uvm.edu/etds
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/1404?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1404&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu

Arrangements of the Inputs and
Outputs in the Multi-Robot Continuous

Control Problem

A Thesis Presented

by

Sida Liu

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Master of Science
Specializing in Computer Science

May, 2021

Defense Date: March 25th, 2021
Dissertation Examination Committee:

Josh Bongard, Ph.D., Advisor
Jun Yu, Ph.D., Chairperson

Emma Tosch, Ph.D.
Cynthia J. Forehand, Ph.D., Dean of Graduate College

Abstract

The Multi-Robot Continuous Control (MRCC) problem in Deep Reinforcement Learn-
ing requires a single neural controller (agent) to learn to control the behavior of
multiple robot bodies. When learning to control a single robot body, sensors and
motors are arbitrarily connected to the input and output layers of the neural con-
troller, respectively, and this arrangement does not affect the learnability of target
robot behaviors. If and how such arrangement can affect learnability in MRCC—
when dealing with multiple robots with different body plans—is as of yet unknown.
In this thesis, I demonstrate the following: (1) A neural controller can control a small
number of robot bodies with an arbitrary arrangement of sensors to control inputs,
and control outputs to motors for locomotion, which explains why arrangements can
be ignored in this case. But such arbitrary arrangements do not work well when
the number of robot bodies increases. (2) For a given set of robot bodies, some ar-
rangements can make the MRCC problem easier. In certain cases, the variation in
MRCC facilitation provided by different arrangements is pronounced. This fact holds
both in bodies with parametric differences (e.g. short and long legs) and bodies with
topological differences (e.g. differing numbers of legs). Arrangement thus provides a
heretofore unknown optimization opportunity in MRCC: searching for arrangements
that increasingly facilitate learning of a single policy for different robots.

To Anne, Zimo, and the future.

ii

Acknowledgements

Throughout the development of this thesis I have received a great deal of support from

my advisor, Professor Josh Bongard. We discussed about every aspect of the research

and the writing. We have spent many weeks together discussing and debating. I really

enjoyed it and have learned a lot from it.

I would like to thank my colleague, Sam Kriegman Ph.D. for sharing the knowledge

and for many interesting discussions.

I would like to thank two friends, Lapo Frati and Keith Epstein, for giving sug-

gestions for the research and the writing.

I also would like to thank all the kind and interesting people I have met in Vermont.

Last but not least, computations were performed, in part, on the Vermont Ad-

vanced Computing Core.

iii

Table of Contents
Dedication . ii
Acknowledgements . iii
List of Figures . vii
List of Tables . viii

1 Introduction 1
1.1 The Problem . 1
1.2 Background . 7

1.2.1 Robotics . 7
1.2.2 Reinforcement Learning . 10
1.2.3 Deep Learning . 13
1.2.4 Deep Reinforcement Learning 16
1.2.5 Previous Work on MRCC . 17

1.3 Learnability, the Measurement . 22
1.4 Overview of Three Experiments . 23

2 Parametrically Different Bodies 25
2.1 Overview . 25
2.2 Methods . 27

2.2.1 Rigid-body Physics Simulation 27
2.2.2 Gym interface . 28
2.2.3 Locomotion Tasks . 29
2.2.4 Procedurally Generated Bodies 33
2.2.5 Specifying Arrangements . 34
2.2.6 Training . 37

2.3 Results . 39
2.3.1 Selection of Bodies . 39
2.3.2 Training On A Set Of Bodies 41

3 Topologically Different Bodies 47
3.1 Overview . 47
3.2 Methods . 48
3.3 Results . 51

4 Topologically Different Bodies with Obvious Correspondence 53
4.1 Overview . 53
4.2 Methods . 54

4.2.1 Manually Generated Bodies 55

iv

4.2.2 Permutation Distance . 55
4.3 Results . 57

4.3.1 Gradient Around M0 . 57
4.3.2 Difference in same distance . 59

5 Discussion 61
5.1 Compare to the State-of-the-art . 61
5.2 Search for Optimal Arrangements . 62
5.3 Soft Arrangement . 64
5.4 Arrangements in Soft Robots . 65

6 Conclusion 67

v

List of Figures

1.1 In contrast to the conventional Continuous Control Problem, in the
Multi-Robot Continuous Control Problem, multiple different robots
are controled by one shared controller. 2

1.2 One possible way to arrange the inputs. a1, a2, a3, a4 are the sensory
information from the quadruped. b1, b2 are the sensory information
from the biped. Here, a3 corresponds to b1, a4 corresponds to b2, and
a1 and a2 from the quadruped correspond to nothing. 3

1.3 The spectrum from ideas of robots to the real physical robots. 9
1.4 The illustration of two main areas of robotics and the position of this

thesis. 11
1.5 RL: The Agent interacts with the Environment in a Markov decision

process. 11
1.6 A simple multi-layer ANN. 13

2.1 An illustration of the MRCC problem on Parametrically Different Bod-
ies. Here are eight Walker2Ds, and they are controlled by one shared
policy. There will be experiments on different numbers and different
body types. 26

2.2 Robot body plans in four popular locomotion tasks: (1) Walker2D, (2)
HalfCheetah, (3) Ant, and (4) Hopper. 29

2.3 (1) A capsule-shaped body part with two parameters: l and r, (2) A
spherical body part with one parameter: r, (3) An angle between two
parts: α. 34

2.4 An illustration of the Aligned arrangement. 35
2.5 One example of the Randomized arrangements. 35
2.6 An illustration the wrapper and training schema. 36
2.7 Learnability of all randomly generated bodies. The episodic reward

was measured at the end of 2M-step training. The red dashed line is
the original bodies from PyBullet. The blue dashed line is the average
value of generated bodies. 40

2.8 To have less idling in Walker2D and less HalfCheetah with low learn-
ability, 16 bodies were selected from the generated 50 bodies for each
body type. 41

2.9 All selected parametrical variations: 16 Walker2Ds, 16 HalfCheetahs,
16 Ants, and 16 Hoppers. 42

vi

2.10 One controller learns to control a set of bodies. Sizes of the set are 2, 4,
8, and 16 (from top to bottom). Different body types are investigated
in the experiments: Walker2D, HalfCheetah, Ant, and Hopper (from
left to right). The blue dashed line is the average value of training on
individual bodies. 44

2.11 The probability density of the final distribution of the same data with
Figure 2.10. 45

3.1 An illustration of the MRCC problem on Topologically Different Bodies. 48
3.2 Two sets of four bodies. Each row shows an arbitrary arrangement. . 50
3.3 For example, the red body parts on all four robots in arrangement #1. 50
3.4 Learning curves and probability densities. 51

4.1 An illustration of the MRCC problem on Topologically Different Bodies
with Correspondence. Here are eight topologically modified Walker2Ds. 54

4.2 Eight manually constructed bodies. 55
4.3 Robots are colored based on the M0 arrangement. 56
4.4 Learning curves and probability densities for M0. 57
4.5 Learning curves and probability densities for M2, M4, M8, M16, and

M32. The green dashed line is the mean values while using M0. . . . 58
4.6 Independently compare the best arrangement (#1) and the worst ar-

rangement (#2) in a certain permutation distance. 60

5.1 Two soft robot examples. 65

vii

List of Tables

2.1 Meaning of each number in the observation space of the locomotion
tasks. 30

3.1 Two arbitrary arrangements . 49

4.1 M0: a possible optimal arrangement 56

5.1 A comparison with previous MRCC work with topologically different
bodies . 62

viii

Chapter 1

Introduction

1.1 The Problem

In the Multi-Robot Continuous Control (MRCC) problem, the goal is to control mul-

tiple different robots to do the same task with one shared controller (Figure 1.1).

Consider two robots with different body shapes, for example. Suppose one has

four legs (a quadruped), and the other has only two legs (a biped), and the goal is to

use one controller to make either one walk forward.

First, sensory information must be provided to the controller. Assume there is

one sensor on each leg, and at each time step, there is one unit of information coming

from each leg. A unit of information is defined to be a set of values from one sensor.

For example, one unit of information of a leg can be the angle of joint on that leg

and the first derivative of the angle. So the quadruped has four units of information,

but the biped only has two. And, assume the controller can take four as input. One

might decide to input the four units of information from the quadruped in order, but

in what order should the two units of information be supplied from the biped?

1

Conventional Continuous Control Problem

Multi-Robot Continuous Control Problem

Robots' Common
Environment

Robot
I

sensor

motor

Robot
II

sensor

motor

Robot
III

sensor

motor

Shared

Controller

in

out

Environment Robot
Body

sensor

motor

Controller

inObservation

outAction

Figure 1.1: In contrast to the conventional Continuous Control Problem, in the Multi-
Robot Continuous Control Problem, multiple different robots are controled by one shared
controller.

2

Figure 1.2 shows one possible way to arrange the inputs. Here, a3 from the

quadruped corresponds to b1 from the biped, a4 corresponds to b2, and a1 and a2

from the quadruped have no corresponding inputs in the biped. By aligning input in

this way, the controller will treat the corresponding inputs (e.g., a3 and b1) the same

as if they have identical meaning. The term arrangement will be used to mean such

one particular solution, i.e., one particular way of arranging the orders of inputs from

a set of robot bodies.

a1 a2 a3 a4

I II III IV

b1 b2 a1

a2

a3

a4 b2

b1

Figure 1.2: One possible way to arrange the inputs. a1, a2, a3, a4 are the sensory infor-
mation from the quadruped. b1, b2 are the sensory information from the biped. Here, a3
corresponds to b1, a4 corresponds to b2, and a1 and a2 from the quadruped correspond to
nothing.

Of course, Figure 1.2 provides only one possible arrangement. There are many

other possible arrangements. For example, one can also decide to make the corre-

spondence between a1 and b1, a2 and b2, and leave a3 and a4 unmatched.

The same decision also needs to be made on the output side. Assume the controller

outputs four units of information, and one need to decide which two motors (or

actuators in general) from two robots receive the same unit of output. To simplify

the problem, assume that the output to the motors is arranged in the same way that

the input from the sensors is arranged, i.e., if a correspondence between a3 and b1 is

made on the input side, the same correspondence is also made on the output side.

3

Formally, let Or,t be the overall sensor observation of robot r at time t; let Cin
r,t

be the overall observation of robot r that is inputted to the controller at time t. It

is assumed that the arrangement does not change over time, so for simplicity, the

subscript t will be omitted henceforth. Without loss of generality, it is also assumed

that each robot has multiple joints, and each joint can produce one unit of sensor

observation and can take in one unit of motor action, and a unit of sensor observation

and motor action can be null. Thus, Or is a vector, and it contains multiple units

of sensor observation: Or = [O(1)
r ,O(2)

r , · · ·]. Here, O(i)
r is the i-th unit of sensor

observation from i-th joint. Each unit of sensor observation can itself be a vector

that contains multiple real numbers: O(1)
r = [O(1,1)

r ,O(1,2)
r , · · ·]. O(i,j)

r ∈ R is the j-th

number in i-th unit of sensor observation from the i-th joint. As an example, O(1,1)
r

denotes the position of the first joint and O(1,2)
r denotes the velocity of the first joint.

Let Jr to be the cardinality |Or|, so Jr is also the number of joints of the r-th robot.

Let A be the arrangement for a list of robots. A contains one permutation matrix

for each robot: A = [A1,A2, · · ·], where Ar is the permutation matrix for the r-th

robot. Ar has Jr columns and Jr rows. Thus:

Cin
r = ArOr (1.1)

Equation (1.1) represents the order of units (joints) in Or is changed by the

permutation matrix Ar into Cin
r , this process is the arrangement of observations for

the r-th robot, and thus, A is the arrangement of a list of robots.

To express a permutation matrix in a more readable way, let z be a vector of

length Jr, so that zi = i. Let ar be the shorthand of Ar, the arrangement for robot

4

r, so that ar = Arz. For example, if Ar =


0 1 0

0 0 1

1 0 0

, then z =


1

2

3

 and ar =


2

3

1

.

To make it more readable, the vector can be written as ar = [2, 3, 1].

Now consider the arrangement of outputs. The controller outputs actions to the

motors. So, similar to Cin
r and Or, let Cout

r be the overall action that is outputted

from the controller; let Ar be the overall action that robot r applies to its motors.

Similarly, A(i)
r is the i-th unit (joint) of action, and A(i,j)

r is the j-th number in the i-th

unit (joint) of action. In this thesis, one unit of action only contains one real number,

which is the torque for the motor, but in more complex cases, one unit can contain

several real numbers just like the observation. Recall it is assumed that each joint can

produce one unit of sensor observation and can take in one unit of motor action, so

|Ar| = |Or|. Note the total number of real numbers contained in the observation and

action are in general be different, but they have the same number of units (joints). It

is assumed that, for each robot r, the output side uses the same arrangement Ar as

the input side, because the sensor observation and the motor action are both in the

order, which is the order of joints. That is:

Cout
r = ArAr (1.2)

This is similar to Equation (1.1). Usually, the controller will produce Cout
r first,

5

then the robot applies Ar to the motors, so Equation (1.2) can also be written as:

Ar = A−1
r Cout

r (1.3)

Ar = AT
r Cout

r (1.4)

Here, the inverse of the permutation matrix Ar is its transpose.

Let a′r = AT
r z Take the previous example, when ar = [2, 3, 1], a′r = [3, 1, 2].

Our question of this thesis is, in MRCC, given a list of robots with different

arrangement A’s, will the resulting control problems be different? Will some arrange-

ments result in easier control problems? Will other arrangements result in harder

control problems?

6

1.2 Background

1.2.1 Robotics

The ideas of building a robot can be traced back to the very early days, long before

the word “robot” had been invented. Among those early ideas, one very interesting

example is from a book written in the 4th century C.E. in ancient China called

Liezi [1] (Page 110 - 111). The story was about a craftsman named Yen-shin. He

made a humanoid robot and brought it to the king. The humanoid sang when its

cheek was pushed, it danced when its hand was clasped, and it did innumerable other

tricks. The king believed that it was a man, but when the craftsman cut open the

performer, there were only leather, wood, glue and lacquer. When they were put

together, the humanoid could perform again. It is hard to know whether this story

actually took place, but the author of that book clearly documented the idea of an

entertainment robot. And this robot, if realized, would be quite advanced even in

today’s standard.

Many ideas of robots had appeared with many different names before the word

“robot” was eventually invented in 1920. The word was introduced by a science-fiction

play called R.U.R (Rossumovi Univerzální Roboti) written by a Czech writer Karel

Čapek [2]. In the story, the word “robot” was created to describe the artificial people,

who are made of synthetic organic matter such as artificial flesh and blood and can

think for themselves. They worked for humans at first, but later they rebelled and

extincted the human race. These robots, if realized, would be far beyond today’s

technology. But the author could express his idea of robots in terms of a play, and

7

the audience could visually observe movements and reactions of the robots.

In 1954, a device called a Programmed Article Transfer was designed [3], and later

in 1961, the Unimate robot was built based on it. The Unimate robot was considered

to be the first industrial robot [4]. The main part of the Unimate was a robot arm

which had multiple rigid parts and multiple joints. It was practical since it could

move the arm and grab other things, but compared to those early-day imaginations,

the functionality was very limited.

As shown in the three examples above, the ideas of the robots usually occur before

the realization of the physical robots. Like Valentino Braitenberg wrote in his book

Vehicles in 1986, in which he introduced his idea of how to make vehicles so that they

appear to have certain feelings:

Our vehicles may move in water by jet propulsion. Or you may prefer to

imagine them moving somewhere between galaxies, . . . It does not matter.

Get used to a way of thinking in which the hardware of the realization of

an idea is much less important than the idea itself.

If an idea can capture the essence of one aspect of robotics, then it is important.

With the help of modern digital computers, researchers can make their ideas even

more precise and realistic. In 1994, Karl Sims [5] showed the world his evolved virtual

creatures in simulated three-dimensional physical worlds. The simulation utilized its

computational power to compute the dynamics of the worlds, so that the virtual

robots could be evaluated in those environments. Compared to only using human

imagination to evaluate the ideas of robots, this method can show us which ideas

are more physically plausible. Today, the computer simulations and virtual creatures

are even more important [6], and most researchers utilize them to help design novel

8

robots for the future.

The ideas of robots were presented in different forms. A spectrum can be con-

structed to represent the development of the ideas of robots, as shown in Figure

1.3.

Pure Imagination Documentation Animations Physical
Simulations Physical Robots

The Idea The Realization of the idea

Figure 1.3: The spectrum from ideas of robots to the real physical robots.

Now let us take a close look at Karl Sims’ virtual creatures. Each creature con-

sisted two parts: the brain and the body. The brain was the control system. The

body followed the control of the brain, provided sensory information to the brain,

and followed the laws of the physical simulation. This formulation became a common

pattern in robotics.

For convenience, later researchers tend to focus on one of those two parts, so the

field of robotics can be viewed to consist of two main areas.

One of the main area focuses on the body. Sims [5] modeled the robot using rigid

cuboids and different types of joints. This abstraction was widely accepted. But

people are still trying to find better other ways to construct the body. For example,

Lipson [7] showed that the robot can be made of bars and ball joints. Hiller [8]

showed that by using voxels to model the material used by the robot bodies rather

than cuboids and joints, it is possible to simulate and design soft robots. Cheney [9]

showed that by specifying the structure of the body, it is possible to construct robots

that locomote even with almost trivial controllers. Kriegman [10] showed that the

robot body can be not just soft, but can made of living cells. Beside the material,

9

researchers are also interested in the higher level structures. For example, Bongard

[11] showed that changing the body plan from anguilliform to legged form can make

the locomotion behavior more robust.

The other area focuses on the controller. There are many ways of creating the

controller. One of the most recent methods, which is closely related to this thesis,

is the use of learned controllers, which will be discussed in the next two sections.

For example, Timothy [12] applied algorithms derived in other domains to control

the robots. Schulman [13, 14] applied Reinforcement Learning that demonstrated

significant improved results in controlling robots in the simulation.

It is worth noting that in addition to those examples, there are also works that

took both the body and the controller into consideration, and thus are in the intersec-

tion of the two main areas. For example, Bongard [15] showed that by modeling its

body in the simulation running inside the robot, the controller can make better deci-

sions. Kwiatkowski [16] showed the self-modeling can also be done by utilizing not a

simulation but a neural network. Cheney [17] showed that the body and the controller

can be optimized together using the Evolutionary Algorithm. Ha [18] also showed

that the body and the controller can be optimized together, but using Reinforcement

Learning.

And this thesis is also one of the works in the intersection.

1.2.2 Reinforcement Learning

Classic Reinforcement Learning (RL) [19] is one of the ways to design learned con-

trollers. RL is learning what to do to maximize a numerical reward signal, so that

the human designers do not need to specify the detailed actions for the robots. The

10

Control Body

This thesis

Figure 1.4: The illustration of two main areas of robotics and the position of this thesis.

designer only need to give the goals (reflected by the reward signals), and the robot

will learn how to act on its own by interacting with its environment and considering

reward or punishment it received.

In the fundamental RL setting (Figure 1.5), the controller is called the Agent, the

all the rest other than the Agent is called the Environment. The Environment can

be either physical or non-physical. When RL is used to control a robot, the body of

the robot is included in the environment.

Action

Agent

Reward

State (Observation)

Environment

Figure 1.5: RL: The Agent interacts with the Environment in a Markov decision process.

The time is discretized into multiple time steps. At each time step t, the Agent

will receive a State St (or Observation) from the Environment, it will also output

an Action At that can influence the Environment. The Environment will provide a

Reward Rt and the next State St+1 based on the current State St and the Action At

11

of the Agent. This is called the Markov Decision Process (MDP), which means the

Environment is memoryless and the next State is only depend on the current State

and the Action of the Agent.

In the MDP setting, the State contains all the information of the Environment

that can determine the future. It is not realistic in many applications. Luckily, for

most current RL algorithms, the MDP assumption can be relaxed [19]. In the relaxed

MDP setting, only part of the State is observed by the Agent, so the Agent receives

a Observation instead of a State.

Note that, instead of simply replace the State with the Observation, more rigorous

methods exist [19]. For example, the Bayesian approach Partially Observable MDP

(POMDP) takes probability into account, or the Predictive State Representations

(PSRs) method uses future predictions rather than current observations. But these

methods are beyond the scope of this thesis.

One of the most important components of an RL algorithm is the Value function.

A Value function specifies “what is good in the long run” [19]. An RL algorithm is

trying to estimate the Value function according to the Rewards it has received over

time.

Another important component is the Policy. A Policy produces Actions based on

its States (or Observations).

The relation between the Value function and the Policy is that, if there is a good

estimation of the Value function, it is easy to obtain a good Policy that can get more

Reward; but at the same time, the Value function is depend on the current Policy

because the future depend on the Actions it produces. So the estimation of the Value

function and the Policy need to be improved together. Different RL algorithms are

12

different ways to improve these two, including the one that was used in this thesis.

The RL theory was well developed in 1990s [20], but the power of RL was strongly

experienced in recent years. This is because the development of another branch Deep

Learning.

1.2.3 Deep Learning

Deep Learning (DL), as a field, is studying how to learn abstract representations from

data using multiple layers of non-linear Artificial Neural Networks (ANNs).

Inspired by the structure of human brains, ANNs were proposed as a computa-

tional model [21]. An ANN is typically organized into multiple layers. Figure 1.6

shows a simple multi-layer ANN which contains the Input Layer, the Hidden Layers,

and the Output Layer. The input layer and the output layer are exposed to the user,

which is the most relevant to this thesis.

Output
Layer

Hidden
Layer

H1

Input
Layer

Hidden
Layer

H2

Figure 1.6: A simple multi-layer ANN.

In each layer, there are circles and a yellow square. A circle is a unit that can store

13

a real number, it is usually called a Neuron in the ANN. Once the value is placed

in a neuron in a hidden layer and if the next layer is also a hidden layer, it will be

passed into a non-linear function called the Activation function (indicate by the red

crescent). Any differentiable, non-linear function can be an activation function. The

activation functions make the ANN much more expressive while keeping the whole

network still differentiable. Then the result of the activation functions will be passed

to multiple arrows simultaneously. A yellow square contains a real-number called a

Bias of that layer. The bias is also passed to multiple arrows. One arrow represents

multiplication of the input by a Weight (also a real number) of that arrow and the

resulting value flows to the neuron pointed by the arrow. The results from multiple

arrows to the neuron then are summed into one value and placed in that neuron.

The whole process keeps carrying out until the neurons in the output layer have their

values placed. This is called Feedforward. If there is a model with fixed parameters

(weights and biases), feedforward can be used to get the output of an ANN. But

in order to get the right parameters, another algorithm called Back-propagation is

needed.

The Back-propagation algorithm [22] is the keystone of DL. After feedforward

is done for a particular input, an output can be obtained from the model. Before

the model is trained, the output of the model is not the desired output. A Loss

function is needed to specify how bad the output is, and the result of the loss function

can be minimized by adjusting the parameters so that next time, hopefully, the

model can produce a better output. Because the whole network is differentiable,

once the value of the loss function is computed, the gradient of all parameters can be

computed. Using a process called Stochastic Gradient Descent (SGD), the parameters

14

are adjusted a small amount towards the desired value whenever samples of data are

given. Gradually, the parameters of the whole network are adjusted so that the output

is more desirable.

In the case of Supervised Learning, the data contains the desired output, so the

loss function can be defined as the difference between the desired output and the

output of the network. Although the whole process was proposed back in the 1980s,

due to its compute-intensive nature, the DL showed its great potential only in recent

years [23], thanks to the development of the hardware and increasing computational

power.

Many higher-level architectures were proposed to increase the capability of DL.

Convolutional Neural Network (CNN) [24] used shared kernels to process data across

different dimensions of input. It is well-known for its success in image-processing

applications. Recurrent Neural Network (RNN) [22] can reuse earlier values in the

neurons so it relaxed the i.i.d. assumption and gave the network the ability to mem-

orize. The gating mechanism was introduced into RNN to stabilize the system. Ar-

chitectures such as Long short-term memory (LSTM) [25] and Gated Recurrent Unit

(GRU) [26]. Attention [27] applied the gating mechanism beyond RNN to the whole

DL field. Autoencoder [28] brought the ability to compress the representation even

when there is no signal other than the input itself. Generative Adversarial Nets

(GAN) [29] introduced the idea of multiple different neural networks with conflicting

loss functions can be trained together, so that each neural network can keep improv-

ing.

Those tools and many others make DL very powerful and general. Once a loss

function is defined, all the tools can work together to make a good model that can

15

minimize the loss function. This brings us back to RL again.

1.2.4 Deep Reinforcement Learning

Recall RL was discussed in Section 1.2.2. RL estimates the value function according

to the rewards it has received over time. Once the estimation of the value function was

obtained, one can apply DL to create models that are consistent with the estimated

value function by specifying the loss function based on the value function. And once

those DL models are trained (the parameters of these models are adjusted so that

they are consistent with the estimated value function), the agent can use one of those

models to make decisions based on its observations. This approach is called Deep

Reinforcement Learning (DRL).

In 2013, Mnih et al. [30] connected an RL algorithm to a DL network so that the

agent can play seven Atari games with raw input image data. This DRL approach

outperformed all previous approaches on these games, and the performance of the

agent even surpassed a human expert on three of them.

Game is an important testbed for DRL, algorithms such as the AlphaGo [31] and

later the MuZero [32] achieved superhuman performance in Go, chess, and shogi.

Beyond games, researchers started to tackle the continuous control problem in-

cluding the robotic control problem in simulation, Trust Region Policy Optimization

(TRPO) [13] and Stochastic Value Gradient (SVG) [33] showed that a DRL agent

can learned to control robots in simulation to locomote by trial-and-error. Algorithms

such as Proximal Policy Optimization (PPO) [14], Soft Actor-Critic (SAC) [34], Deep

Deterministic Policy Gradient (DDPG) [12], and Twin Delayed DDPG (TD3) [35]

were developed based on the experiments in simulation.

16

Researchers utilized those algorithms along with other DL methods, developed

learned controllers in simulation first, and then applied them to physical robots.

The real-world applications include locomotion [36], robot arm grasping [37], solving

Rubik’s cube [38], etc.

1.2.5 Previous Work on MRCC

Using DRL, researchers approached one problem after another. One of those is the

MRCC problem: how one controller could be used to control multiple robot bodies.

Like any other problem, this problem can be approached in different ways.

Multi-Task Reinforcement Learning

Following the line of Multi-Task Learning (MTL) [39] in DL, researchers formulated

the MRCC problem as the Multi-Task Reinforcement Learning (MTRL) problem.

However, MTL methods were usually evaluated on tasks that are from a very narrow

distribution. For example, Landolfi, 2019 [40] evaluated algorithms on different tasks

with the only differences in desired locomotion speed/direction.

Henderson [41] provides a set of tasks that can be used for MTRL and Meta-RL,

which includes several parametric modifications to the robot bodies. They modified

one body part at a time, the resulting size is either “Big” (times 1.25) or “Small”

(times 0.75). For example, a valid task is HopperBigFoot, indicating that the body

part called “foot” is enlarged based on the body plan called “Hopper”. Each reported

benchmark groups contain several different bodies: some groups such as the Hopper

group contain 8 bodies, other groups like the Humanoid group contain 14 bodies.

However, the number of robot bodies in a group can significantly affect the results.

17

In Devin et al. [42], there were different robot arms–two were 3 Degree of Freedom

(DoF) and the third was 4 DoF. Although there were only three different body plans,

one of them was topologically different. The author used a shared network module

for the same task, but different network modules for different bodies, so that different

bodies can perform the same task.

Noticeably, Yang, 2020 [43] integrated multiple modularized expert networks with

the gating mechanism to control a physical robot perform different tasks like trotting,

turning, and fall recovering. However, no morphological modifications are involved.

Meta-Reinforcement Learning

Closely related to MTRL, Meta-Reinforcement Learning (Meta-RL) aims to solve

previous unseen tasks in a few-shot learning manner.

Finn et al. [44], Rothfuss et al. [45], Fernando et al. [46], and Rakelly et al. [47]

evaluated their algorithm on tasks that differ in locomotion direction, velocity, target

position, or simulation parameters. No morphological difference was introduced.

Meta-World [48] provides a set of tasks that can be used for MTRL and Meta-

RL. They evaluated six state-of-the-art meta-RL and MTRL algorithms at that time

(2019), and the results showed that non-parametric tasks are much harder than para-

metric tasks, and all algorithms struggled to learn the non-parametric tasks in their

tasks set. Recent researches started using this environment [49] In addition, their

parametric and non-parametric tasks only vary in the task itself. For example, the

parametric task variations include reaching puck at different locations, and the non-

parametric task variations include both reaching puck and opening window. But the

robot body (a robot arm) is always the same.

18

Nagabandi et al. [50] introduced topologically different body plan. In their exper-

iments, a robot could lose a limb during operation. For each experiment, only two

possible bodies were involved: one was before losing the limb and the other was after

losing the limb. In this case, they disabled the sensor and the motor. Since the other

part of the body did not change, they did not consider to re-arrange the observation

and the action space.

Sim2Real/Sim2Sim Transfer

Sim2Real/Sim2Sim transfer is to handle the problem that, after people have made

(or trained) an agent in the computer simulation, how could the controller be used

directly in a physical robot or a different simulation. In the RL setting, this is closely

related to MTRL and Meta-RL, because the task in the physical robot or the other

simulation can be viewed as a new task. Usually, this transfer only needs to deal with

parametrical differences because it is easy to make a new environment with a similar

topological structure.

Tobin et al. [37] applied Domain Randomization when they transfer learned policy

to real robots. The policy was trained in many simulated environments with different

object colors, background colors, camera positions, etc., so that when the policy was

deployed in the real robot, the policy can handle the new environment as if it is just

another random environment. Here the input to the agent is the camera images, so

random camera position changed the content of the input. CNN was used to enhance

the ability to handle image inputs. However, there is only one camera, so the input

only has one unit of information (i.e. |Or| = 1 as defined in Section 1.1). And the

robots in different environments are topologically identical.

19

Following the idea of domain randomization, Peng et al. [51] utilized RNN to

enhance the agent’s ability to capture the dynamics of different environments, so the

performance of the policy on the real robots gets better.

Also following this idea, OpenAI et al. [38] transfers the agent that can manipulate

Rubik’s cube in simulation to the real robot hand. They train agents that can handle

robot bodies with different parametric differences, e.g. the size of each finger. The

purpose is to train agents to handle the whole distribution of the environments, and

hopefully the reality can be treated approximately as one of the environment from

the distribution.

Zhang et al. [52] showed the possibility to learn the correspondence between two

domains using DL techniques prior to RL training. Once the correspondence can

be represented as several neural networks, the RL agent trained in one domain can

utilize them to directly get the corresponding actions in the other domain.

Shared Modular Policy

Very recently, Huang et al. [53] challenged the MRCC problem at a higher level. Not

only the topology of the robots are different, but also the number of different robots

involved in training is significantly larger than in previous work.

They proposed a method called Shared Modular Policy (SMP). This method as-

sumed each body part of the robot has one joint, one sensory input, and one motor.

This assumption is identical to ours (defined in Section 1.1). The architecture of SMP

contains a collection of identical modules. The core component of the whole network

is the unique module. The core module has one unit of input and one unit of output,

which is exactly the number assumed in each body part. Whenever the policy needs

20

to handle a body, it needs to be rewired so that each body part corresponds to one

module. The connections between these identical modules are determined by the con-

nections between different body parts. In other words, the architecture is arranged

to have the same topological structure as the body.

Apart from those approaches that solely focused on the parametrical difference,

but here, the parametrical differences were ignored by this algorithm. The algorithm

suggests that any topologically identical bodies would be treated as if they are the

same body.

21

1.3 Learnability, the Measurement

In the works mentioned in the previous section, the performances of the RL algorithms

were measured to determine which algorithm learns faster. The performance of an

agent is the total reward it can accumulate during a test episode.

In this thesis, The focus is on how different arrangements affect this performance

during and after training. For example, suppose there is a set of robots, and two

different arrangements are applied resulting in two different tasks. One agent with a

given RL algorithm and hyperparameters is trained from scratch for each task. The

Learnability of a task describes how easy the task is for an RL agent to learn.

In addition, two aspects of the learnability will be reported: (1) the Learning

Curve and (2) the Final Distribution.

The Learning Curve shows the improvement during training. In the example

above, during training, the agent is tested, and the performance is obtained at certain

time steps. The learning curve of the task is the plot of performance over time.

The Final Distribution shows the variations in the final performance. At the

end of the training, the agent will be tested and a final performance will be recorded.

Due to the stochasticity of the RL learning process, only reporting common summary

statistics is considered to be not enough [54]. Thus the estimated distribution of the

final performance will also be reported, in the form of the probability density plot.

Because with only the mean and the variance, one might assuming the distribution

to be a Normal distribution, but the distribution is not always unimodal Normal, it

could be bimodal.

22

1.4 Overview of Three Experiments

With the definition of Arrangement in Section 1.1 and the definition of Learnability

in Section 1.3, the main research question of this thesis is:

Given a set of different robot bodies and an RL algorithm, will different arrange-

ments result in different learnabilities?

To investigate the research question, three experiments will be conducted.

The first experiment which explores the Parametrically Different Bodies (PDB)

problem will be presented in Chapter 2.

In the first experiment, four sets of bodies are procedurally constructed. Each set

contains multiple parametrically different bodies. However, the topology structures

of the bodies in each set are identical. The PDB problem is investigated first because

most of the previous related works are dealing with this case. In the PDB problem,

the topology structure is identical, thus the most intuitive arrangement is to align

each body part across different robots. Two groups are compared, one is a set of

robots with an aligned arrangement and the other group is the same set of robots

with randomized arrangements. It is observed that the number of bodies in a set is

important.

The second experiment which explores the Topologically Different Bodies (TDB)

problem will be presented in Chapter 3.

In the second experiment, one set of four topologically different bodies are used.

These four different bodies are from four popular locomotion tasks. Because there

is no obvious correspondence among those bodies, Two arbitrary arrangements are

compared. It is observed that the difference between two groups is statistically sig-

23

nificant.

The third experiment which explores the Topologically Different Bodies with Ob-

vious Correspondence (TDBOC) problem will be presented in Chapter 4.

In the third experiment, one set of eight topologically different bodies were con-

structed based on a common body plan. Two limbs are added to the prototypical

body plan in different ways to obtain those topologically different bodies. Because

there is an obvious correspondence, there is one possible optimal arrangement M0 :

two newly added limbs are treated arbitrarily, but other body parts follows the order

from the prototypical body. Then other arrangements are created by randomly per-

muting M0 multiple times, and the learnability of these arrangements are compared.

It is observed that there are gradients around the M0, which indicates that it might

be possible to follow the gradients and find the optimal M0 in other cases where the

M0 is unknown. It is also observed that the differences in learnability exist between

two arrangements of the same permutation distance.

24

Chapter 2

Parametrically Different Bodies

2.1 Overview

Several solutions mentioned in the previous chapter only consider the case of para-

metrically different bodies [55,56], because this is the simplest case of different bodies.

In this case, the robot bodies are topologically identical. Each robot has the same

number of body parts, and they are connected in the same way.

In this chapter, four body types will be introduced, and four sets of experiments

will be done: one experiment for each body type. For example, in one set of experi-

ments, multiple parametrically different Walker2Ds are generated, each with slightly

different length, thickness, etc, and one shared agent is trained to control those mul-

tiple bodies.

Two groups are compared: (1) the Aligned group and (2) the Randomized group.

For parametrically different bodies, there is a natural choice to align the sensors and

motors across bodies, which is according to their original topological positions. This

arrangement is called Aligned. The Aligned group contains only one such arrangement.

25

Shared

Policy

in

out

Robot
I

sensor

motor

Robot
II

sensor

motor

Robot
VIII

sensor

motor

Figure 2.1: An illustration of the MRCC problem on Parametrically Different Bodies. Here
are eight Walker2Ds, and they are controlled by one shared policy. There will be experiments
on different numbers and different body types.

On the contrary, random arrangements that have no particular meaning are generated

each time before training, and they form the Randomized group.

The hypothesis here is whether the learnability is different between the Aligned

group and the Randomized group. The difference in learnability between the Aligned

group and the Randomized group is compared for each body type.

The main results are: (1) two groups do not differ much in learnability when

there are only two bodies in each group, but when the number of bodies increases in

each group, the difference becomes pronounce; (2) as expected, the learnability of the

Aligned group is higher than the Randomized group.

26

2.2 Methods

2.2.1 Rigid-body Physics Simulation

In DRL robotics research, the proprietary software MuJoCo [57] is the most widely

used rigid-body robot physics simulator. But recently the open-source alternative

PyBullet [58] became more and more popular. In this thesis, PyBullet is used to

conduct all the experiments.

The PyBullet environment is a three-dimensional virtual world, but by adding

additional constraints to the robots, it can be viewed as a two-dimensional space.

There can be a floor in the virtual world. The default flat floor is used in the exper-

iments. One can also specify the direction and magnitude of gravity of the virtual

world. For locomotion tasks, a low gravity world usually means an easier task. The

default gravity (g = 9.8m/s−2) is used in the experiments.

A robot in PyBullet consists of a tree of body parts (a body part is sometimes

referred to as a link). The root part is called the Torso. The torso has no sensor or

motor. Start from the torso, a child part can attach to the parent part at an arbitrary

position with a Joint. The joint is a sensor, and it is also a motor. At each time step,

each joint will produce two real numbers: one is the position of the joint, the other

is the velocity of the joint. Note that, the position of the joint does not mean the

euclidean position of the joint in the virtual world, but it is the current angle value of

the joint (only hinge joints are used). And the velocity of the joint means the change

of the angle value.

Each body part has a geometric shape. The body parts can collide with the

27

floor according to their shapes. But different parts do not collide with each other by

default. This is because it is simple to construct body shapes without considering

self-collision. It is possible to construct more complex body shapes with physically

plausible joints so that self-collision can be enabled [59], but the default locomotion

tasks without self-collision are used in the experiments.

2.2.2 Gym interface

OpenAI Gym [60] is a toolkit for DRL that contains benchmark problems. The in-

terface is well-designed and easy to use. Due to its popularity, the OpenAI Gym

interface became the de facto standard in DRL research, and its formulation is re-

shaping people’s consensus on Reinforcement Learning.

Gym follows the Partially Observed MDP assumption mentioned in Section 1.2.2.

So, it refers to the input to the agent as the Observation, not the State.

Usually, Gym has finite-length episodes (usually less than 1,000 time steps), which

means the simulation will be reset after a finite amount of time steps. This is to avoid

the learning to fail because the agent would enter some bad situation and never be

able to recover to a situation that learning can continue. Also, there will be some

random noises at the beginning of each episode to help the agent explore.

The key interface between the environment and the agent is the function step. The

step function takes in an action and returns an observation, a reward, and additional

information (such as does the current episode end). An action is an array of real

numbers, and an observation is also an array of real numbers. These two concepts

was discussed in detail in Section 1.1. Because Gym mainly serves DRL research, the

designer assumed that the order in each action array and the order in each observation

28

array are arbitrary but fixed over time. It is a reasonable assumption when the agent

always interacts with an identical environment, because the orders of the input/output

layer of a neural network as long as they are connected to a fully-connected hidden

layer and the orders do not change over time. However, when an agent interacts with

a different environment, this might become an issue. For example, an agent learned

to control a wheel, and then it is used to control a hinge joint, although a wheel

and a hinge joint both take one real number as their commands, the meanings of

the real number are different in two commands. In MRCC, there are more than one

environment, so this assumption might not hold.

2.2.3 Locomotion Tasks

Figure 2.2: Robot body plans in four popular locomotion tasks: (1) Walker2D, (2) HalfChee-
tah, (3) Ant, and (4) Hopper.

Controlling different robot bodies to walk on a flat floor is formulated as different

locomotion tasks. One task is an RL environment that defines a world, a robot

body, and a reward function. There are four popular locomotion tasks (Figure 2.2) in

PyBullet that are originally constructed by MuJoCo. Due to their popularity, people

29

reconstructed these four tasks in PyBullet. However, despite the similar appearance

of the robots, the dynamics are quite different. So, the learnability of these tasks is

different from their counterparts in MuJoCo, and the resulting reward and distance

are not comparable with experiments done in MuJoCo. The tasks in PyBullet are

considered harder problems.

The original observation of each task consists of three major parts: (1) Torso:

the information about the torso, (2) Joints: the information from all joints, and (3)

Floor : the information about whether certain body parts are in contact with the

floor.

Table 2.1: Meaning of each number in the observation space of the locomotion tasks.

Parts Number meanings

1. Height relative to initial state.
2. Sine of the yaw angle.
3. Cosine of the yaw angle.

(1) Torso 4. Velocity in the x direction.
5. Velocity in the y direction.
6. Velocity in the z direction.
7. Roll angle.
8. Pitch angle.
9. Position of Joint 1.
10. Velocity of Joint 1.

(2) Joints 11. Position of Joint 2.
12. Velocity of Joint 2.
...

(3) Floor Whether certrain Parts are contacting with the floor.
(Removed from experiments)

The meaning of the numbers in the observation space is listed in Table 2.1. The

format of the Torso part of the observation is identical across different tasks, so it is

30

left untouched. The focus is on the Joints part, which depends on the order of the

joints. Each joint produces two numbers: the position and the velocity. As mentioned

in Section 2.2.1, the meaning of the position is the angle of the joint, and the velocity

is the first derivative of the angle of the joint. The arrangement of a set of robots is

specifed as the orders of joints for all robots. The Floor part is also different across

tasks, but for simplicity, this part is removed, so the agent will not have the input of

whether any part is in contact with the floor.

The reward functions for these four locomotion tasks are also in a similar structure.

The reward function consists of four parts: (1) Progress: the major part of the reward

is the progress the robot made at the current time step, the progress is the speed

moving in the desired direction (if only this part of the reward is considered, then

maximizing the episodic reward is equivalent to maximizing the total distance it

traveled in the desired direction); (2) Alive bones: to encourage the robot to stand

and walk rather than crawl, the robot can receive a bonus for keeping the position of

the torso in a good range; (3) Electricity cost: to avoid the robot “waste” electricity,

it will receive a small punishment proportional to the torque produced by the motors;

(4) Joint-at-limit cost: to discourage the robot keep the joints at their limits, it will

receive a small punishment when every there is joint its limit.

It is well-known that learnability is highly sensitive to the design of the reward

function, so the default reward functions are used.

There is an additional constraint for these robots except the Ant: the robot bodies

were constrained in their sagittal planes, so the robots can only move forward or

backward but can not move aside, and the virtual world can be viewed as a two-

dimensional space.

31

Now, let us examine these four locomotion tasks individually:

Walker2D

The name of the task is Walker2DPyBulletEnv-v0, or Walker2D for short.

There are one torso and six other body parts (thus six joints). The default order

of the six joints are: thigh, leg, foot, thigh-left, leg-left, foot-left.

At each time step, if the robot keeps the height and pitch angle of its torso in

certain ranges, it receives an alive bonus.

HalfCheetah

The name of the task is HalfCheetahPyBulletEnv-v0, or HalfCheetah for short.

There are one torso and six other body parts (thus six joints). The default order of

the six joints are: back-thigh, back-shin, back-foot, front-thigh, front-shin, front-foot.

At each time step, if the robot keeps the pitch angle of its torso in certain ranges,

it receives an alive bonus.

Ant

The name of the task is AntPyBulletEnv-v0, or Ant for short.

There are one torso and eight other body parts (thus eight joints). The default

order of the eight joints are: front-left-hip, front-left-ankle, front-right-hip, front-

right-ankle, back-left-hip, back-left-ankle, back-right-hip, back-right-ankle.

At each time step, if the robot keeps its torso above the floor, it receives an alive

bonus.

32

Hopper

The name of the task is HopperPyBulletEnv-v0, or Hopper for short.

There are one torso and three other body parts (thus three joints). The default

order of the three joints are: thigh, leg, foot.

At each time step, if the robot keeps the height and pitch angle of its torso in

certain ranges, it receives an alive bonus.

2.2.4 Procedurally Generated Bodies

In this experiment, one policy is used to control multiple parametrically different

bodies. Before start, those different bodies need to be generated first. 1

Four sets of bodies are generated based on four prototypical bodies from the

locomotion tasks mentioned in Section 2.2.3. The newly generated bodies are para-

metrically different from the prototypical body, but the topology is identical.

As illustrated in Figure 2.3, two types of body parts are used in these bodies:

(1) Capsule-shaped parts, (2) Spherical parts. There are two parameters for each

capsule-shaped part: the length of the cylinder l and the radius of the hemisphere

r. Them stands for the length and thickness of the part. There is one parameter for

each spherical part: the radius r. The capsule-shaped body parts are widely used in

the bodies, e.g., the foot of a Walker2D. The spherical body part is only used as the

torso of Ant.

The third type of parameters that can be varied is the default angle of two con-

nected body parts. The customized default angles only exist in the HalfCheetah body
1Link to the source code file on GitHub

33

https://github.com/liusida/thesis-bodies/blob/main/project/experiments/exp_800_mile_stone/src/801.1.generate_3_4_5_600s.py

plan. The default angles in other body plans are either 90° or 180°.

l

r

r α

Figure 2.3: (1) A capsule-shaped body part with two parameters: l and r, (2) A spherical
body part with one parameter: r, (3) An angle between two parts: α.

When generating new bodies, noises are added to all parameters. First, a random

variable r that follows a Gaussian distribution with zero mean and standard deviation

of 1
3 is created, this standard deviation results that most of the time (99.7%), the

random variable will be in the range of (-1,1). Then, all parameters are multiplied by

1.4r. The number 1.4 is an arbitrary choice, and most of the time(99.7%), 1.4r will

be in the range of (1
1.4 , 1.4). Four sets of parametrically different bodies are obtained

by this method, with 50 variations in each set.

However, there will be small changes that a generated body does not work, and

experimenting on these broken bodies will be a waste of computational resource. To

avoid this, and to make the experiments more efficient, only 16 variations from the

generated 50 are selected based on the learnability of each variation while training a

policy on it individually. The detailed training process will be discussed in Section

2.2.6, and the training results of this selection will be discussed in Section 2.3.1.

2.2.5 Specifying Arrangements

In total, 16 variations are obtained for each body type, and there are four body types.

Recall our goal of this experiment is to see whether the learnability is different

34

between the Aligned group and the Randomized group. Since there is no topological

difference within each body type, the default orders of newly generated bodies are

Aligned (Figure 2.4). On the other hand, the Randomized group needs to be generated

before each training process (Figure 2.5).

Input

obs_1

obs_2

obs_3

obs_4

Observation

obs_1

obs_2

obs_3

obs_4

Observation

obs_1

obs_2

obs_3

obs_4

1

2

3

4

1

2

3

4

Robot I

Robot II

I II

Figure 2.4: An illustration of the Aligned arrangement.

Input

obs_1

obs_2

obs_3

obs_4

Observation

obs_1

obs_2

obs_3

obs_4

Observation

obs_1

obs_2

obs_3

obs_4

1

2

3

4

3

1

2

4

Robot I

Robot II

I II

Figure 2.5: One example of the Randomized arrangements.

A wrapper was implemented to specify the orders for different arrangement2. A

wrapper in the Gym framework is a general extension of existing environments. One
2Link to the source code file on GitHub

35

https://github.com/liusida/thesis-bodies/blob/main/project/experiments/exp_800_mile_stone/src/common/wrapper_custom_align.py

can modify the observation and action spaces of environments using a wrapper. Recall

that different bodies exist as different Gym environments. By using a wrapper, before

passing the observation to the policy, the orders of the observation can be specified,

and before passing the action to the motors in simulation, the orders of the action

can also be specified. By specifying orders for all Gym environments that are used

for training, the arrangement used in the experiment is specified.

For example, as illustrated in Figure 2.5, the second unit of Robot II’s observation

is mapped to the first unit of input. This indicates that, on the output side, the first

unit of output would be mapped to the second unit of Robot II’s action.

ENV WRAPPER

PPO
Agent

x N

Figure 2.6: An illustration the wrapper and training schema.

Figure 2.6 shows an illustration of the wrapper. The PPO agent will be introduced

in the next section.

36

2.2.6 Training

Our implementation of the joint training is based on the Actor-Critic style Proxi-

mal Policy Optimization (PPO) [14] algorithm from Stable Baselines3 [61]. Stable

Baselines3 is a set of high-quality implementations of popular DRL algorithms in

PyTorch [62].

PPO algorithm is used because its on-policy nature. On-policy methods update

the policy that is currently used for decision making, while off-policy methods up-

date the policy that is different from the one that is used to generate the data. In

Stable Baselines3, the training process of the online-policy algorithm can be easily

parallelized, so the total training wall-time is much shorter than off-policy ones. In

addition, the parallelism also allow me to easily stack different environments (i.e., dif-

ferent robot bodies) and train them simultaneously. Although on-policy algorithms

are in general less data efficient, since a fast physics simulation is used and the struc-

ture of the robots are relatively simple, choosing PPO can significantly reduce the

wall-time for the experiments.

The PPO algorithm assumes an discrete, discounted, finite state MDP, defined by

the tuple (S,A, P, r, ρ0, γ), where S is a finite set of states, A is a finite set of actions,

P : S×A×S → R is the transition probability distribution, R : S → R is the reward

function, ρ0 : S → R is the distribution of the initial state s0, and γ ∈ (0, 1) is the

discount factor.

The initial state s0 follows the distribution of the initial state: s0 ∼ ρ0(s0). The

next state st+1 follows the transition probability distribution: st+1 ∼ P (st+1|st, at).

Let π be a stochastic policy, so that π : S ×A → [0, 1]. The action at follows the

37

distribution produced by the stochastic policy: at ∼ π(at|st).

The state− action− value function under policy π is Qπ, so that:

Qπ(st, at) = Est+1,at+1,···

[∞∑
l=0

γlR(st+l)
]

The state− value function under policy π is Vπ, so that:

Vπ(st) = Eat,st+1,at+1,···

[∞∑
l=0

γlR(st+l)
]

Note Vπ(st) is averaging all possible at according to π(at|st), while Qπ(st, at) only

consider the action at.

Then, the advantage function under policy π is Aπ, so that:

Aπ(st, at) = Qπ(st, at)− Vπ(st)

Let πθ be the policy that is parametrized by vector θ, and and let Ât be the

estimation of Aπ at time t.

The main objective function proposed by the PPO algorithm is:

L(θ) = Êt
[

min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)
]

where rt(θ) = πθ(at|st)
πθold (at|st) be the probability ratio.

According to the results in the PPO paper [14], the hyperparameter Clipping ε

is changed back to 0.2 instead of using a linearly decreasing clipping from 0.4 to

0.0 as implemented in Stable Baselines3. The reason Stable Baselines3 uses a linear

decreasing clipping is to encourage exploration by allowing more aggressive parameter

38

updates at the beginning of training and allow less and less updates towards the end

of training. A constant clipping ε makes the algorithm simpler and thus will not

introduce additional artifacts to our experiments.

Generalized Advantage Estimation [63] is used to facilitate learning.

State Dependent Exploration [64] is used to significantly reduce the training time.

All trainings were done using the same PPO algorithm.

All trainings were done on the servers of Vermont Advanced Computing Core

(VACC). Each training process was treated as one Slurm task, so multiple tasks can

be executed parallelly as long as there are free nodes in the cluster. One typical

training process of 2 million time steps will take 0.5 - 3 hours.

2.3 Results

2.3.1 Selection of Bodies

The bodies generated in Section 2.2.4 differ in learnability. After those bodies were

generated, the learnability of each is measured.

Bodies are generated based on four locomotion tasks. There are 50 bodies for

each body type. Each body was trained individually three times (this is the standard

DRL approach: one agent learns to control one body). Figure 2.7 shows the estimated

probability density of final episodic reward distribution.

This is a plot of the episodic reward, not the distance traveled. The reward

function contains more than just distance traveled. Details of the reward function

were discussed in Section 2.2.3.

39

0.000 0.001
Density

0

2000

Ep
iso

di
c

Re
wa

rd
robot = Walker2d

0.000 0.001
Density

robot = Halfcheetah

0.000 0.001
Density

robot = Ant

0.000 0.001
Density

robot = Hopper

Figure 2.7: Learnability of all randomly generated bodies. The episodic reward was mea-
sured at the end of 2M-step training. The red dashed line is the original bodies from
PyBullet. The blue dashed line is the average value of generated bodies.

It is observed that the distribution for Walker2D has two peaks, one is around

1,000, the other is around 2,000. The lower peak can be understood as that the robot

learned how to keep balance and does not fall during the test episode, and the higher

peak can be understood as the robot walks forward.

It is also observed that the distribution for HalfCheetah has a high variance. And

the generated bodies are much better than the original body.

The distributions for Ant and Hopper have smaller variance.

In order to reduce the impact of the worst bodies in Walker2D and HalfCheetah,

for each body type, 16 bodies are selected from the generated 50 bodies. Figure 2.8

shows the probability density of selected bodies. It is observed that less Walker2D

idling and less HalfCheetah with low learnability.

Here, one blue dashed line stands for the average value of the 16 selected bodies.

And these blue dashed lines will be used as a baseline in the following results.

All selected variations are visualized in Figure 2.9.

40

0.000 0.001
Density

0

2000

Ep
iso

di
c

Re
wa

rd
robot = Walker2d

0.000 0.001
Density

robot = Halfcheetah

0.000 0.001
Density

robot = Ant

0.000 0.001
Density

robot = Hopper

Figure 2.8: To have less idling in Walker2D and less HalfCheetah with low learnability, 16
bodies were selected from the generated 50 bodies for each body type.

2.3.2 Training On A Set Of Bodies

In this section, the learnability of a set of bodies will be examed.

The first choice to make is to decide how many bodies a controller should handle

in one experiment. A natural choice is to ask a controller to learn to control two bod-

ies with either Aligned or Randomized arrangement, repeat the experiment multiple

times, and compare the difference between those two arrangements. However, this is

a bad choice.

Figure 2.10 shows the learning curves of different experiments.

From top to bottom, the experiments vary in the size of the set. The results are

measured with a set size of 2, 4, 8, and 16. (A set of 16 robot bodies means the agent

learns to control 16 different robot bodies in one training process.)

From left to right, the experiments vary in body type. The results are measured in

four body types: Walker2D, HalfCheetah, Ant, and Hopper. (One agent only learns

to control robot bodies of one type in one training process.)

The x-axis is the time step in the simulation. There are in total 2 million time

steps in each experiment. According to Section 2.2.2, one episode is less than 1,000

time steps, which indicates that the agent learned to walk after many episodes.

41

Figure 2.9: All selected parametrical variations: 16 Walker2Ds, 16 HalfCheetahs, 16 Ants,
and 16 Hoppers.

The y-axis is the episodic reward. During training, the agent is periodically asked

to control all the bodies in independent test episodes. The total reward the agent

accumulated is recorded as the episodic reward. When time is close to time step 0,

the episodic reward is close to 0, which indicates the agent performs badly before

42

learning (equivalent to a random policy). And the agent performs better after 2M

time steps of training.

There are two curves in each experiment. The blue one is the Aligned group, in

which all the observation (input) and the action (output) are in the correct order.

The orange one is the Randomized group, in which all the observation and the action

orders are randomized for each run. The shaded areas are the 95% confidence interval.

The blue dashed lines are from the previous section, which are the baselines of

training on one body (the standard DRL approach). As expected, training on a set

of bodies is harder than training on one body in general. (Two curves are lower than

the dashed baselines.)

Figure 2.11 shows the same data from the experiments using the estimated prob-

ability density. The layout, axes, colors, and the baselines are the same with Figure

2.10. In addition to the previous figure, more details of the final performance after

training are shown.

According to these two figures, the difference between the Aligned group and the

Randomized group is pronounce, which can support our hypothesis–different arrange-

ments result in different learnability.

In addition to this finding, it is also observed that the difference is not that obvious

in the case that there are only two bodies in the set. As mentioned earlier, if one

only look at the result of an agent controlling two Walker2Ds or two HalfCheetahs,

the difference between the Aligned group and the Randomized group is not obvious.

This was surprising to me at first. It is a Randomized group, in which an agent is

controlling two robots, but the orders of the observation and action are randomized

in each run. One real number in the action could mean two different commands for

43

0

2000

Ep
iso

di
c

Re
wa

rd
num_bodies = 2 | robot = Walker2d num_bodies = 2 | robot = Halfcheetah num_bodies = 2 | robot = Ant num_bodies = 2 | robot = Hopper

0

2000

Ep
iso

di
c

Re
wa

rd

num_bodies = 4 | robot = Walker2d num_bodies = 4 | robot = Halfcheetah num_bodies = 4 | robot = Ant num_bodies = 4 | robot = Hopper

0

2000

Ep
iso

di
c

Re
wa

rd

num_bodies = 8 | robot = Walker2d num_bodies = 8 | robot = Halfcheetah num_bodies = 8 | robot = Ant num_bodies = 8 | robot = Hopper

1 2
step 1e6

0

2000

Ep
iso

di
c

Re
wa

rd

num_bodies = 16 | robot = Walker2d

1 2
step 1e6

num_bodies = 16 | robot = Halfcheetah

1 2
step 1e6

num_bodies = 16 | robot = Ant

1 2
step 1e6

num_bodies = 16 | robot = Hopper

label
aligned
randomized

Figure 2.10: One controller learns to control a set of bodies. Sizes of the set are 2, 4, 8,
and 16 (from top to bottom). Different body types are investigated in the experiments:
Walker2D, HalfCheetah, Ant, and Hopper (from left to right). The blue dashed line is the
average value of training on individual bodies.

two different motors. However, the agent has learned to control these two bodies.

My interpretation of this phenomenon is that this is a feature of the deep neural

network. The network inside the agent is performing both classification and control.

The classification can tell the difference between two bodies based on the observation,

and the action outputted by the agent is conditioned on the knowledge of the current

44

0

2000

Ep
iso

di
c

Re
wa

rd
num_bodies = 2 | robot = Walker2d num_bodies = 2 | robot = Halfcheetah num_bodies = 2 | robot = Ant num_bodies = 2 | robot = Hopper

0

2000

Ep
iso

di
c

Re
wa

rd

num_bodies = 4 | robot = Walker2d num_bodies = 4 | robot = Halfcheetah num_bodies = 4 | robot = Ant num_bodies = 4 | robot = Hopper

0

2000

Ep
iso

di
c

Re
wa

rd

num_bodies = 8 | robot = Walker2d num_bodies = 8 | robot = Halfcheetah num_bodies = 8 | robot = Ant num_bodies = 8 | robot = Hopper

0.0000 0.0025 0.0050
Density

0

2000

Ep
iso

di
c

Re
wa

rd

num_bodies = 16 | robot = Walker2d

0.0000 0.0025 0.0050
Density

num_bodies = 16 | robot = Halfcheetah

0.0000 0.0025 0.0050
Density

num_bodies = 16 | robot = Ant

0.0000 0.0025 0.0050
Density

num_bodies = 16 | robot = Hopper

label
aligned
randomized

Figure 2.11: The probability density of the final distribution of the same data with Figure
2.10.

body it is controlling.

Researchers in the field sometimes ignore this effect, and might compare results

of RL agents that controlling a different number of bodies. Thus, it is important to

address how many robots in a set matter in the MRCC problem.

The Aligned group (blue) shows that learning to control a set of (less or equal

to 16) bodies with parametrical differences is not a very hard problem. But, if the

45

arrangements were Randomized, the difficulty increases rapidly.

46

Chapter 3

Topologically Different Bodies

3.1 Overview

As shown in the previous chapter, controlling parametrically different robot bodies is

not particularly hard, as long as the aligned arrangements are used. In this chapter,

the problem of one agent controlling a set of topologically different bodies (TDB) will

be examinated. The TDB problem is considered to be a harder problem than the

PDB problem.

The agent needs to learn to control a set of four robot bodies from the original

PyBullet locomotion tasks. In Figure 3.1, there is no obvious correspondence between

different robots. So, the optimal arrangement is unknown.

In order to see whether different arrangements result in different learnability, Two

arrangements are chosen. Then the learnabilities of the set of four bodies with these

two arrangements are measured. The difference between these two groups is statisti-

cally significant.

47

Shared

Policy

in

out

Robot
I

sensor

motor

Robot
II

sensor

motor

Robot
IV

sensor

motor

Robot
IV

sensor

motor

Figure 3.1: An illustration of the MRCC problem on Topologically Different Bodies.

3.2 Methods

In this chapter, the same simulation and training methods are used as the previous

chapter.

Details of the four robot bodies were discussed in Section 2.2.3.

In order to see whether different arrangements result in different learnability, two

arrangements need to be compared.

The Random Search methods are used to obtain a good arrangement in early

attempts. In the random search, multiple different arrangements were generated.

Then training was performed using each arrangement once, and the best arrangement

was reported. However, it is observed that most of the arrangements constructed in

the search process have a high variance in learnability, and the difference in mean is

small, which means the resulting best arrangement might very likely due to random

48

Table 3.1: Two arbitrary arrangements

Arrangement Waler2D HalfCheetah Ant Hopper

#1 4,3,2,5,0,6,1,7 4,5,6,2,3,1,7,0 0,5,1,3,2,7,6,4 4,0,2,1,7,5,3,6
#2 6,2,3,0,4,5,7,1 2,1,3,5,6,7,4,0 7,4,0,3,1,2,6,5 6,4,2,5,7,3,0,1

Eight joints are ordered from 0 to 7, to be consistent with the source-code file.

chance. This caused the random search process to unable to find solutions with very

different performances. If the search process only run training on the arrangement

once, most of the variance is due to random chance. To estimate which arrangement

is better, one need to run training on the arrangement many times. Thus the time

used for random search is intractable. Instead, two arbitrary arrangements are chosen

to compare. (Arrangement #1 was the best arrangement indicated by the random

search, however, as explained, the random search is not reliable in this case, so it is

referred to as an “arbitrary” choice.)

These two arrangements are showed in Table 3.1. There are at most eight units

(joints) in each robot body. The i-th number j means the i-th unit of sensory data

should be put into j-th unit for the agent to read. If a robot bodies does not have so

many joints, null joints will be padding into the end of the sensory data.

The two arrangements can be visualized in Figure 3.2. The first row is arrangement

#1, and the second row is the arrangement #2. The black parts are the torsos,

which have no sensor and motor and the order do not change. Colors represent the

correspondence across different bodies. For example, as illustrated in Figure 3.3, in

arrangement #1, the red thigh of the Walker2D corresponds to the red shin of the

HalfCheetah, and it corresponds to the red thigh of the Ant, and nothing of the

Hopper (a null body part) are red. The color means that the agent treats the sensory

49

Figure 3.2: Two sets of four bodies. Each row shows an arbitrary arrangement.

data produced by the joints of those body parts the same, and the number the agent

produced outputs to those parts as commands.

Figure 3.3: For example, the red body parts on all four robots in arrangement #1.

So the two treatment groups to compare are the arrangement #1 and the ar-

rangement #2. Due to the high variance and the small difference in mean, Agents

are trained with each arrangement 100 times using different random seeds.

50

3.3 Results

The resulting learning curves and probability densities are showed in Figure 3.4.

Please refer to Figure 2.10 and 2.11 for the detailed explanations for these two types

of plots.

1 2
step 1e6

0

2000

Ep
iso

di
c

Re
wa

rd

robot = Walker2d

1 2
step 1e6

robot = Halfcheetah

1 2
step 1e6

robot = Ant

1 2
step 1e6

robot = Hopper

label
#1
#2

0.000 0.002 0.004
Density

0

2000

Ep
iso

di
c

Re
wa

rd

robot = Walker2d

0.000 0.002 0.004
Density

robot = Halfcheetah

0.000 0.002 0.004
Density

robot = Ant

0.000 0.002 0.004
Density

robot = Hopper

label
#1
#2

Figure 3.4: Learning curves and probability densities.

Here, the blue lines are the treatment group that uses arrangement #1, and the

orange lines are the treatment group that uses arrangement #2.

Tthe performance of both groups are very similar.

However, it is observed that a small difference exists in the HalfCheetah. This

means when a trained agent was tested on four bodies using different arrangements,

they only perform slight differently in the HalfCheetah.

The question is whether different arrangements result in different learnability in

HalfCheetah. The t-test is used to analyze such a small difference. The two-sided

p-value is 0.01375. 1

1Link to the source code file on GitHub

51

https://github.com/liusida/thesis-bodies/blob/main/project/experiments/exp_800_mile_stone/src/802.1.2.v4_random_alignments.results.py

So this experiment still supports the hypothesis: different arrangements result in

different learnability.

The main obstacle in this chapter is to find a good arrangement that can show the

difference in an obvious way. However, the arrangement optimization is a hard prob-

lem (discussed in Section 5.2). In the next chapter, a special case will be constructed,

in which an optimal arrangement is known.

52

Chapter 4

Topologically Different Bodies with

Obvious Correspondence

4.1 Overview

In the previous chapter, the general TDB case is investigated. However, there exists

no arrangement optimization method that can produce the optimal arrangement, so

two arbitrary arrangements are tested.

In this chapter, a special case is constructed, so that one optimal arrangement

is known. As illustrated in Figure 4.1, two small limbs were added to two arbitrary

existing limbs of a Walker2D to obtain a variant. An RL agent need to learn to

control eight such Walker2D variants. This problem can be called the Topologically

Different Bodies with Obvious Correspondence (TDBOC). Because the resulting robot

bodies are all similar to Walker2D, and the optimal arrangement might be the one

that aligns the body parts with apparent same functional meanings.

The optimal arrangement is called the M0. Once M0 is known, a slightly different

53

Shared

Policy

in

out

Robot
I

sensor

motor

Robot
II

sensor

motor

Robot
VIII

sensor

motor

Figure 4.1: An illustration of the MRCC problem on Topologically Different Bodies with
Correspondence. Here are eight topologically modified Walker2Ds.

arrangement can be obtained by randomly permuteM0. All arrangements that can be

obtained by permutingM0 twice are calledM2. and it is calledM4 if the permutation

is done four times, and so on.

Then the M0 and those generated arrangements (M2, M4, etc.) are used in the

experiments. It is observed that the less it is permuted, the better the learnability will

be. And the learnabilities of the arrangements are different within the same amount

of permutation.

4.2 Methods

In this chapter, the same simulation and training methods are used from the previ-

ous chapter. The only differences are (1) the robot bodies and (2) the way all the

arrangements are obtained.

54

4.2.1 Manually Generated Bodies

The original Walker2D from PyBullet is used as a prototype. For each newly gener-

ated robot body, two small limbs were added sequentially. The resulting eight robot

bodies are visualized in Figure 4.2.

Figure 4.2: Eight manually constructed bodies.

One agent needs to learn to control a set of eight robot bodies simultaneously in

one task.

4.2.2 Permutation Distance

After a set of robot bodies has been generated, the arrangement for those bodies

needs to be specified.

There is a default arrangement. However, the orders of body parts in those robot

bodies were disrupted because those small limbs were added to the body part list.

So, there can be a better arrangement than the default one.

As shown in the visualization, there is a correspondence across robot bodies.

For example, as illustrated in Figure 4.3, the left feet of all robots have the same

functional meaning. And by examining the functional meanings for all parts, one

optimal arrangement is constructed, and it is called the M0. Table 4.1 shows the M0

used in the experiment. Note that the M0 is not the unique optimal arrangement,

55

Table 4.1: M0: a possible optimal arrangement

Robot ID Order of joints

I 0,1,2,3,4,5,6,7
II 1,2,0,3,4,5,6,7
III 1,2,3,0,4,5,6,7
IV 1,2,3,4,5,0,6,7
V 1,2,3,4,5,6,0,7
VI 1,0,2,3,4,5,6,7
VII 2,0,1,3,4,5,6,7
VII 2,3,0,1,4,5,6,7

because there is currently no way to prove whether there exists another arrangement

that is equivalent or better than this arrangement.

Figure 4.3: Robots are colored based on the M0 arrangement.

Once the M0 is obtained, other arrangements are constructed by permuting M0

randomly. The Permutation Distance is defined to be the times of permutation needed

to obtained a particular arrangement. And by definition, the permutation distance

of M0 is 0.

The procedure of one permutation is defined to be (1) randomly select one robot,

(2) randomly select two positions, (3) and swap the number in those two positions. 1

This procedure is equivalent to a random mutation in the Evolutionary Algorithm.

And one M2 arrangement can be obtained by randomly permute from M0 twice,
1Link to the source code file on GitHub

56

https://github.com/liusida/thesis-bodies/blob/main/project/experiments/exp_800_mile_stone/src/803.1.1.generate_walkerwitharms.py

one M4 arrangement can be obtained by randomly permute from M0 four times, one

M8 arrangement can be obtained by randomly permute from M0 eight times, one

M16 arrangement can be obtained by randomly permute from M0 16 times, and one

M32 arrangement can be obtained by randomly permute from M0 32 times.

In total, 21 M2 arrangements, 21 M4 arrangements, 21 M8 arrangements, 21 M16

arrangements, and 21 M32 arrangements are generated. 2

4.3 Results

4.3.1 Gradient Around M0

First, agents are trained to control a set of robot bodies using the M0 arrangement.

Figure 4.4 shows the results for M0.

1 2
step 1e6

0

2000

Ep
iso

di
c

Re
wa

rd

Robot = 1

1 2
step 1e6

Robot = 2

1 2
step 1e6

Robot = 3

1 2
step 1e6

Robot = 4

1 2
step 1e6

Robot = 5

1 2
step 1e6

Robot = 6

1 2
step 1e6

Robot = 7

1 2
step 1e6

Robot = 8

0.000 0.001 0.002
Density

0

2000

Ep
iso

di
c

Re
wa

rd

Robot = 1

0.000 0.001 0.002
Density

Robot = 2

0.000 0.001 0.002
Density

Robot = 3

0.000 0.001 0.002
Density

Robot = 4

0.000 0.001 0.002
Density

Robot = 5

0.000 0.001 0.002
Density

Robot = 6

0.000 0.001 0.002
Density

Robot = 7

0.000 0.001 0.002
Density

Robot = 8

Figure 4.4: Learning curves and probability densities for M0.

In total there are 5 runs with different random seeds. From left to right, there

are eight robot bodies. The blue dashed lines are the baselines from the original

Walker2D in Section 2.3.1.

To my surprise, the learnability is much higher than the original Walker2D, which
2The number 21 is an arbitrary choice.

57

means the agents trained on this set of eight robots using M0 perform much better on

a set of robot bodies than the agents trained on the original Walker2D. My guess to

this is the added arms provide additional means to balance the body during training.

After the learnability of the robots with M0 is measured, the learnabilities of the

robots with other arrangements (M2, M4, M8, M16, and M32) are also measured.

Figure 4.5 shows the results for those arrangements.

0

2000

Ep
iso

di
c

Re
wa

rd

M = 2 | Robot = 1 M = 2 | Robot = 2 M = 2 | Robot = 3 M = 2 | Robot = 4 M = 2 | Robot = 5 M = 2 | Robot = 6 M = 2 | Robot = 7 M = 2 | Robot = 8

0

2000

Ep
iso

di
c

Re
wa

rd

M = 4 | Robot = 1 M = 4 | Robot = 2 M = 4 | Robot = 3 M = 4 | Robot = 4 M = 4 | Robot = 5 M = 4 | Robot = 6 M = 4 | Robot = 7 M = 4 | Robot = 8

0

2000

Ep
iso

di
c

Re
wa

rd

M = 8 | Robot = 1 M = 8 | Robot = 2 M = 8 | Robot = 3 M = 8 | Robot = 4 M = 8 | Robot = 5 M = 8 | Robot = 6 M = 8 | Robot = 7 M = 8 | Robot = 8

0

2000

Ep
iso

di
c

Re
wa

rd

M = 16 | Robot = 1 M = 16 | Robot = 2 M = 16 | Robot = 3 M = 16 | Robot = 4 M = 16 | Robot = 5 M = 16 | Robot = 6 M = 16 | Robot = 7 M = 16 | Robot = 8

1 2
step 1e6

0

2000

Ep
iso

di
c

Re
wa

rd

M = 32 | Robot = 1

1 2
step 1e6

M = 32 | Robot = 2

1 2
step 1e6

M = 32 | Robot = 3

1 2
step 1e6

M = 32 | Robot = 4

1 2
step 1e6

M = 32 | Robot = 5

1 2
step 1e6

M = 32 | Robot = 6

1 2
step 1e6

M = 32 | Robot = 7

1 2
step 1e6

M = 32 | Robot = 8

label
best in 21
worst in 21

Figure 4.5: Learning curves and probability densities for M2, M4, M8, M16, and M32. The
green dashed line is the mean values while using M0.

From left to right, there are eight robot bodies.

From top to bottom, the permutation distance increases: the first row is M2, and

the second row is M4, and so on.

The green dashed lines stand for the average final episodic reward while using M0.

The blue lines are the arrangements that result in the best performance in each

58

permutation distance. They are the best in the 21 arrangements. The orange lines

are the worst in the 21 arrangements.

The agents perform worse while using arrangements with larger permutation dis-

tances to M0. In other words, on average, M2 is worse than M0, and M4 is worse than

M2, and so on. This indicates that there are gradients around M0, and in theory,

an optimization program could find M0 or any other optimal arrangement from an

arbitrary arrangement. The possibility of optimization and the difficulties later in

Section 5.2.

It is observed, in the learning curve for M2 and Robot 5, the performance of the

best M2 arrangement is better than M0. This indicates that there might exist other

arrangements that are better than the current M0. It reminds us M0 was constructed

by me looking at the visualization. In a more complicated case, the visualization

cannot reveal the correspondence, and optimization algorithms are needed to find a

better arrangement.

4.3.2 Difference in same distance

In the previous section, the learnabilities of arrangements with different permutation

distances were compared. One might ask, will there be a difference in the arrange-

ments even when they are in the same permutation distance? For example, is an M2

arrangement differ from another M2 arrangement?

As suggested in Figure 4.5, there might be a difference, so the best and the

worst arrangements are selected in each permutation distance, and agents are trained

independently using these arrangements with 10 different random seeds, and the

comparison of the learnabilities is shown in Figure 4.6.

59

1 2
step 1e6

0

2000

Le
ar

na
bi

lit
y

M = 2

1 2
step 1e6

M = 4

1 2
step 1e6

M = 8

1 2
step 1e6

M = 16

1 2
step 1e6

M = 32

label
1
2

Figure 4.6: Independently compare the best arrangement (#1) and the worst arrangement
(#2) in a certain permutation distance.

Here the layout is slightly different, from left to right, they are M2, M4, M8, M16,

and M32.

The green dashed lines are the performance on M0, and they are also averaged

across eight robots.

The blue lines labeled #1 are the best arrangements, and the orange lines labeled

#2 are the worst arrangements.

An obvious difference is observed between two M2 arrangements, and between

two M4 arrangements, and so on.

These 10 additional runs for each M are done independently, so these results show

even in the same permutation distance, the difference in learnabilities exists.

60

Chapter 5

Discussion

5.1 Compare to the State-of-the-art

In all three experiments, some arrangements can make the MRCC problem easier

than others.

But one would ask, as shown in Table 5.1, since Huang et al. 2020 [53] has

provided a possible solution for the MRCC problem, why should one consider the

arrangement problem in the first place?

To address this question, let us take the TDBOC experiment in Chapter 4 as an

example to show why the optimal arrangement is important.

Recall that the problem is to learn to control eight robot bodies with different

topology, but the problem is designed in a way that the optimal arrangement M0 is

known.

First, as Huang et al. 2020 suggests, the baseline uses an arbitrary arrangement,

and the agent using standard RL would fail to learn to control all eight different

bodies.

61

Table 5.1: A comparison with previous MRCC work with topologically different bodies

Paper Maximum number of Typical
different bodies training time

Devin et al. 2016 [42] 2 -
Nagbandi et al. 2019 [50] 2 -
Huang et al. 2020 [53] 23 1 week
TDBOC 8 3 hours

Then, the state-of-the-art approach introduced by Huang et al. 2020 is to use

one shared network module and rewire the architecture each time before controlling

a body. If the approach could eventually learn to control all eight bodies, a typical

learning process would take a week.

However, if the known optimal arrangement M0 is used along with the standard

RL, the agent can learn to control all eight different bodies in less than three hours.

The optimal arrangement makes the learning problem much easier.

But how to obtain the optimal arrangement for a given set of robot bodies?

5.2 Search for Optimal Arrangements

It was shown that the arrangement matters, the next step would naturally be devel-

oping optimization methods that can find optimal arrangements.

The simplest search method is the Random Search (RS). One might want to

calculate how many possible arrangements are there. Suppose there are r robots, and

each robot has j joints. Assuming A1 does not matter because of the symmetry of

the neural network. For each of the robots 2 to r, there are j! possible orders. In

62

total, the number of possible arrangements n is:

n = (j!)r−1 (5.1)

If r = 16, j = 8, then n ≈ 1093. It will not realistic for RS to find the optimal

arrangement in such a vast search space.

Now consider the Evolutionary Algorithm (EA). Is it possible for an EA to find

the direction towards the optimal arrangement? For example, is it possible to find an

M3 arrangement from an given M4 arrangement? Suppose, again, there are r robots,

and each robot has j joints. In total, the number of possible permutations n is:

n = r · j!
2!(j − 2)! (5.2)

n = 1
2rj(j − 1) (5.3)

If r = 16, j = 8, then n = 448. Among those possible permutations, at least one

permutation can turn an M4 into an M3. This is much better than RS. However,

in practice, it might still take a long time. The reason is that it needs a complete

run of training (0.5 - 3 hours in our case) to get one evaluation for an arrangement.

In addition, since this outcome is stochastic, and the variance of it is high, multiple

runs are needed to obtain one accurate evaluation of an arrangement. Suppose three

independent runs are performed for each evaluation, there will be 3 × 448 = 1344

runs for an arrangement to move one step towards M0. So EA might be possible for

simple problems, but it will be very expensive to scale.

Now consider the Gradient-based Methods (GM). Since DRL used by the agent

is a gradient-based method, it might be possible to compute the gradients for the

63

elements in A′r at each time step. There will be much more signals than EA. But GM

can only operate regular matrices with real number values, and it can not update a

permutation matrix directly. In the next section, the idea of Soft Arrangement will

be introduced, which can relax the assumption for GM.

5.3 Soft Arrangement

In Section 1.1, A is defined to be the arrangement of a set of robot, and A =

[A1,A2, · · ·], where Ar the permutation matrix for the r-th robot. each Ar is de-

fined to be a permutation matrix. The input to the agent can be obtained using

Equation (1.1):

Cinr = ArOr

However, a permutation matrix needs to be square and there is only one non-zero

number 1 in each row and each column. But since it is a matrix multiplication, and

there is no constraint on Cinr , the constraints on Ar can be relaxed to make it a regular

matrix.

For example, if A′r =


0.1 0.3 0.5

−0.2 0.1 0.2

1.2 0.1 0.2

, it will still result in a valid Cinr .

An arrangement that contains such regular matrices A′rs can be called the Soft

Arrangement. There might be several potential benefits from this relaxation:

First, it might be able to solve the scale problem. For example, if there are

two similar robots, the only difference between them is they interpret the motor

64

commands differently. If one motor receives the real number 1.0, it might exert 1.0 N

force, while the other might exert 10.0 N force. While the neural network could handle

this difference, but it will be convenient to re-scale the commands through A′r.

Second, it might be able to handle duplicate similar joints. For example, imagine

there are two robots with many parallel limbs. One has 10 limbs, and the other has

20. When using a permutation matrix, one command can only be sent to one joint,

no more. But if it is a regular matrix A′r, one command can be duplicated to many

joints.

Third, it can facilitate GM because the technique for optimizing a regular matrix

was well developed.

5.4 Arrangements in Soft Robots

While a rigid-body robot usually have very limited body parts, a soft robot might

need a large number of body parts to exhibit the softness of the body.

(a) A soft robot with 13,900 voxels (b) A soft robot with 928 voxels

Figure 5.1: Two soft robot examples.

For example, Figure 5.1 shows two soft robots from the Voxcraft [65] simulation.

65

The pink soft robot on the left consists of 13,900 voxels, and thus 13,900 body parts,

and 13,900 actuators. The grey soft robot on the right consists of 928 voxels, and thus

928 body parts, and 928 actuators. They are all quadrupeds, so there is a potential

correspondence in morphology that can be exploited. However, the resolutions of

these two bodies are different. When a DRL agent is used to control these two

bodies, although it would be great to have an optimal arrangement that can map

the legs of two robots to the same input unit of the agent, it is hard to find such an

optimal arrangement.

To my best knowledge, there is no research discussing the MRCC problem in soft

robotics. The problem of MRCC and optimize the arrangements will be much harder

in soft robotics.

66

Chapter 6

Conclusion

This thesis investigated the arrangement of the inputs and outputs in the Multi-Robot

Continuous Control (MRCC) problem in the domain of Deep Reinforcement Learning

(DRL). The MRCC problem in DRL is a newly emerging field, and the arrangement

becomes non-trivial when one learned agent is trying to control different robot bodies.

In practice, no previous work has noticed the effect of the arrangement.

In this thesis, it is hypothesized that for a given set of different robot bodies,

different arrangements will result in different learnability. In total three experiments

are conducted to test this hypothesis in three different scenarios.

In the first experiment, Multiple parametrically different bodies are procedurally

generated. The difference between the Aligned arrangement and the Randomized ar-

rangements are compared. The results shows the control problem with the Aligned

arrangement is easier (more learnable) than the one with the Randomized arrange-

ments. It also shows that the number of robots in a set matter, and comparing MRCC

problems with a different number of robots could be misleading.

In the second experiment, A set of four existing topologically different robot bodies

67

are used. There is no obvious correspondence in the body parts across different robot

bodies. Two different, arbitrary arrangements #1 and #2 are compared. The results

shows that the control problem with the #1 arrangement is slightly easier than the

one with the #2 arrangement. The difference is statistically significant.

In the third experiment, Multiple topologically different robot bodies with obvious

correspondence are manually constructed. One optimal arrangement M0 is known

according to the correspondence. Other arrangements are obtained by permuting

M0. The Permutation Distance to M0 is defined to be the times of permutations

needed to obtain an arrangement from M0. The results shows that, on average,

smaller permutation distance will result in better final performance. The different

arrangements with the same amount of permutation are also compared. The results

shows that different arrangements with the same permutation distance still result in

different learnability.

All three experiments provided positive evidence that supports my hypothesis:

different arrangements result in different learnability.

In addition, the possibility and obstacles of searching for the optimal arrangement

for an arbitrary set of robots are discussed. And how the MRCC problem would evolve

in soft robotics.

68

Bibliography

[1] Angus C. Graham. The Book of Lieh-Tzu. Columbia University Press, 1960.

[2] K. Čapek and C. Novack. R.U.R. (Rossum’s Universal Robots). Penguin classics.
Penguin Books, 2004.

[3] G. Devol. Programmed article transfer, U.S. Patent US2988237A, 1954.

[4] A. Gasparetto and L. Scalera. A Brief History of Industrial Robotics in the 20th
Century. Advances in Historical Studies, 08(01):24–35, 2019.

[5] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual confer-
ence on Computer graphics and interactive techniques - SIGGRAPH ’94, pages
15–22, Not Known, 1994. ACM Press.

[6] Sam Kriegman. Why virtual creatures matter. Nature Machine Intelligence,
1(10):492–492, 2019.

[7] Hod Lipson and Jordan B Pollack. Automatic design and manufacture of robotic
lifeforms. Nature, 406(6799):974, 2000.

[8] Jonathan Hiller and Hod Lipson. Automatic design and manufacture of soft
robots. IEEE Transactions on Robotics, 28(2):457–466, 2012.

[9] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evo-
lution: evolving soft robots with multiple materials and a powerful generative
encoding. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO), 2013.

[10] Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. A scal-
able pipeline for designing reconfigurable organisms. Proceedings of the National
Academy of Sciences, 117(4):1853–1859, 2020.

69

[11] Josh C Bongard. Morphological change in machines accelerates the evolution of
robust behavior. Proceedings of the National Academy of Sciences, 108(4):1234–
1239, 2011.

[12] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv:1509.02971 [cs, stat], July 2019. arXiv:
1509.02971.

[13] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust Region Policy Optimization. arXiv:1502.05477 [cs], April 2017.
arXiv: 1502.05477.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs], August 2017.
arXiv: 1707.06347.

[15] Josh Bongard, Victor Zykov, and Hod Lipson. Resilient machines through con-
tinuous self-modeling. Science, 314(5802):1118–1121, 2006.

[16] Robert Kwiatkowski and Hod Lipson. Task-agnostic self-modeling machines.
Science Robotics, 4(26):eaau9354, January 2019.

[17] Nick Cheney, Josh Bongard, Vytas SunSpiral, and Hod Lipson. Scalable co-
optimization of morphology and control in embodied machines. Journal of The
Royal Society Interface, 15(143):20170937, 2018.

[18] David Ha. Reinforcement Learning for Improving Agent Design. Artificial Life,
25(4):352–365, November 2019. arXiv: 1810.03779.

[19] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an intro-
duction. Adaptive computation and machine learning series. The MIT Press,
Cambridge, Massachusetts, second edition edition, 2018.

[20] Richard S. Sutton. Introduction: The Challenge of Reinforcement Learning. In
Richard S. Sutton, editor, Reinforcement Learning, The Springer International
Series in Engineering and Computer Science, pages 1–3. Springer US, Boston,
MA, 1992.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In Parallel distributed processing: explorations in
the microstructure of cognition, vol. 1: foundations, pages 318–362. MIT Press,
Cambridge, MA, USA, January 1986.

70

[22] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, October
1986. Number: 6088 Publisher: Nature Publishing Group.

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, May 2015.

[24] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition,
March 2008. Publication Title: http://dx.doi.org/10.1162/neco.1989.1.4.541
Publisher: MIT Press 238 Main St., Suite 500, Cambridge, MA 02142-1046 USA
journals-info@mit.edu.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, November 1997. Publisher: MIT Press.

[26] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Rep-
resentations using RNN Encoder-Decoder for Statistical Machine Translation.
arXiv:1406.1078 [cs, stat], September 2014. arXiv: 1406.1078.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. arXiv:1706.03762 [cs], December 2017. arXiv: 1706.03762.

[28] Mark A. Kramer. Nonlinear principal component analysis using autoasso-
ciative neural networks. AIChE Journal, 37(2):233–243, 1991. _eprint:
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209.

[29] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-
sarial Networks. arXiv:1406.2661 [cs, stat], June 2014. arXiv: 1406.2661.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Re-
inforcement Learning. arXiv:1312.5602 [cs], December 2013. arXiv: 1312.5602.

[31] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489, January
2016. Number: 7587 Publisher: Nature Publishing Group.

71

[32] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hass-
abis, Thore Graepel, Timothy Lillicrap, and David Silver. Mastering Atari, Go,
chess and shogi by planning with a learned model. Nature, 588(7839):604–609,
December 2020. Number: 7839 Publisher: Nature Publishing Group.

[33] Nicolas Heess, Greg Wayne, David Silver, Timothy Lillicrap, Yuval Tassa, and
Tom Erez. Learning Continuous Control Policies by Stochastic Value Gradients.
arXiv:1510.09142 [cs], October 2015. arXiv: 1510.09142.

[34] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. arXiv:1801.01290 [cs, stat], August 2018. arXiv: 1801.01290.

[35] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Ap-
proximation Error in Actor-Critic Methods. February 2018.

[36] Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to
Walk in the Real World with Minimal Human Effort. arXiv:2002.08550 [cs],
November 2020. arXiv: 2002.08550.

[37] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks from
simulation to the real world. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 23–30, Vancouver, BC, September
2017. IEEE.

[38] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell,
Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder,
Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving Rubik’s
Cube with a Robot Hand. October 2019.

[39] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks.
arXiv:1706.05098 [cs, stat], June 2017. arXiv: 1706.05098.

[40] Nicholas C. Landolfi, Garrett Thomas, and Tengyu Ma. A Model-
based Approach for Sample-efficient Multi-task Reinforcement Learning.
arXiv:1907.04964 [cs, stat], November 2019. arXiv: 1907.04964.

[41] Peter Henderson, Wei-Di Chang, Florian Shkurti, Johanna Hansen, David Meger,
and Gregory Dudek. Benchmark Environments for Multitask Learning in Con-
tinuous Domains. arXiv:1708.04352 [cs], August 2017. arXiv: 1708.04352.

72

[42] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 2169–2176,
May 2017.

[43] Chuanyu Yang, Kai Yuan, Qiuguo Zhu, Wanming Yu, and Zhibin Li. Multi-
expert learning of adaptive legged locomotion. Science Robotics, 5(49), December
2020. Publisher: Science Robotics Section: Research Article.

[44] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks. arXiv:1703.03400 [cs], July 2017. arXiv:
1703.03400.

[45] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel.
ProMP: Proximal Meta-Policy Search. arXiv:1810.06784 [cs, stat], December
2018. arXiv: 1810.06784.

[46] Chrisantha Thomas Fernando, Jakub Sygnowski, Simon Osindero, Jane Wang,
Tom Schaul, Denis Teplyashin, Pablo Sprechmann, Alexander Pritzel, and An-
drei A. Rusu. Meta-Learning by the Baldwin Effect. Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, pages 109–110,
July 2018. arXiv: 1806.07917.

[47] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine.
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Vari-
ables. arXiv:1903.08254 [cs, stat], March 2019. arXiv: 1903.08254.

[48] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea
Finn, and Sergey Levine. Meta-World: A Benchmark and Evaluation for Multi-
Task and Meta Reinforcement Learning. arXiv:1910.10897 [cs, stat], October
2019. arXiv: 1910.10897 version: 1.

[49] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-Task Reinforce-
ment Learning with Soft Modularization. arXiv:2003.13661 [cs, stat], December
2020. arXiv: 2003.13661.

[50] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel,
Sergey Levine, and Chelsea Finn. Learning to Adapt in Dynamic, Real-World
Environments Through Meta-Reinforcement Learning. arXiv:1803.11347 [cs,
stat], February 2019. arXiv: 1803.11347.

[51] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Sim-to-Real Transfer of Robotic Control with Dynamics Randomization. 2018

73

IEEE International Conference on Robotics and Automation (ICRA), pages
3803–3810, May 2018. arXiv: 1710.06537.

[52] Qiang Zhang, Tete Xiao, Alexei A. Efros, Lerrel Pinto, and Xiaolong Wang.
Learning Cross-Domain Correspondence for Control with Dynamics Cycle-
Consistency. arXiv:2012.09811 [cs], December 2020. arXiv: 2012.09811.

[53] Wenlong Huang, Igor Mordatch, and Deepak Pathak. One Policy to
Control Them All: Shared Modular Policies for Agent-Agnostic Control.
arXiv:2007.04976 [cs, stat], July 2020. arXiv: 2007.04976.

[54] Kaleigh Clary, Emma Tosch, John Foley, and David Jensen. Let’s Play Again:
Variability of Deep Reinforcement Learning Agents in Atari Environments.
arXiv:1904.06312 [cs, stat], April 2019. arXiv: 1904.06312.

[55] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefow-
icz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn
Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder,
Lilian Weng, and Wojciech Zaremba. Learning Dexterous In-Hand Manipulation.
August 2018.

[56] Wenhao Yu, C. Karen Liu, and Greg Turk. Multi-task Learning with Gradi-
ent Guided Policy Specialization. arXiv:1709.07979 [cs], March 2018. arXiv:
1709.07979.

[57] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5026–5033, 2012.

[58] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simula-
tion for games, robotics and machine learning. http://pybullet.org, 2016–2019.

[59] Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spiel-
berg, Daniela Rus, and Wojciech Matusik. Robogrammar: graph grammar for
terrain-optimized robot design. ACM Transactions on Graphics (TOG), 39(6):1–
16, 2020.

[60] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540 [cs],
June 2016. arXiv: 1606.01540.

[61] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, and Noah Dormann. Stable baselines3. https://github.com/DLR-RM/
stable-baselines3, 2019.

74

http://pybullet.org
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[63] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-Dimensional Continuous Control Using Generalized Advantage
Estimation. arXiv:1506.02438 [cs], October 2018. arXiv: 1506.02438.

[64] Antonin Raffin and Freek Stulp. Generalized State-Dependent Exploration for
Deep Reinforcement Learning in Robotics. arXiv:2005.05719 [cs, stat], May
2020. arXiv: 2005.05719 version: 1.

[65] Sida Liu, Sam Kriegman, David Matthews, and Josh Bongard. Voxcraft-sim,
a highly parallelized physics engine that can simulate the voxel-based soft robots,
May 2020.

75

	Arrangements of the Inputs and Outputs in the Multi-Robot Continuous Control Problem
	Recommended Citation

	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	The Problem
	Background
	Robotics
	Reinforcement Learning
	Deep Learning
	Deep Reinforcement Learning
	Previous Work on MRCC

	Learnability, the Measurement
	Overview of Three Experiments

	Parametrically Different Bodies
	Overview
	Methods
	Rigid-body Physics Simulation
	Gym interface
	Locomotion Tasks
	Procedurally Generated Bodies
	Specifying Arrangements
	Training

	Results
	Selection of Bodies
	Training On A Set Of Bodies

	Topologically Different Bodies
	Overview
	Methods
	Results

	Topologically Different Bodies with Obvious Correspondence
	Overview
	Methods
	Manually Generated Bodies
	Permutation Distance

	Results
	Gradient Around M0
	Difference in same distance

	Discussion
	Compare to the State-of-the-art
	Search for Optimal Arrangements
	Soft Arrangement
	Arrangements in Soft Robots

	Conclusion

