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Résumé

Cet essai a pour but d’étudier le risque de longevité dans la population Canadi-

enne et de proposer des solutions de couverture adaptées à un fond de pension.

Il se joint à une série de travaux dans le but de créer une ouverture vers un

marché liquide et transparant de produits de longevité et/ou de mortalité.

Le risque de longevité d’un fond de pension peut être défini comme le risque

que ses rentiers vivent plus longtemps que prévu. C’est un réel enjeu pour ces

institutions, qui représentent une grande partie du marché financier Canadien.

Un marché de produits derivés financiers qui permettent de se couvrir pour ce

risque sera de mise étant donné la réalité démographique future du pays.

Cet essai a pour but de contribuer à la littérature scientifique en validant

la portée possible des modèles de type functional data approach (FDA). Nous

allons calibrer les instruments de couverture grâce aux résultats générés par

ce modèle et nous allons en tester l’efficacité.

Afin d’évaluer la pertinence des moyens de couvertures, nous présenterons

des forwards et des options, sur des sous-jacents comme les taux de mortalité

et les taux de survie. Nous faisons une étude sur des portefeuilles unico-

hortes, multicohortes et sur un portefeuille de rentiers mixte. Nos résultats

démontrent tous une amélioration par rapport à nos mesures de risque, soit

une diminution de l’écart-type, de la valeur à risque et de la perte espérée.

Il faut noter que la majorité de cette étude a été travaillée avant la pandémie

de la COVID-19 de 2020-2021. L’excès de mortalité durant la pandémie pour

des âges pertinents à des fonds de pensions sera un facteur important à con-

sidérer lors de travaux futurs.
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2 Introduction

2.1 Overview

Alarming news was presented by the Institut de la Statistique du Québec

(ISQ) in their last demographic report [17]. By 2022, the number of seniors

aged 65 and over will surpass the number of people in the group of 0-19 years

old. By 2066 the Quebec population will grow by 1.7 million people, of which

1.3 million will be elders, raising the total population of people above 65 to

2.7 million. According to the ISQ, Québec’s total population in 2066 is pro-

jected to be 9.9 million, bringing the elderly close to 30% of the population.

These projections, primarily lead by the overall improvement of longevity, are

the essence of the longevity risk defined by Barrieu and al.[1] as the “the risk

that the trend of longevity improvements significantly changes in the future”.

Although this risk can be applied to various fields of our society (i.e., political,

medical, sociological), some of the most affected institutions remain pension

funds and life insurance companies. To understand where their risk arises, let

us analyze a pension plan’s liabilities. The plan’s subscribers are entitled to

a certain amount each year until they die. Thus, if the survival rate increases

beyond expectations, the pension plan is exposed to higher liabilities, poten-

tially leading to its bankruptcy.

To control this exposition to unexpected changes in the longevity rate, pen-

sion plans can use hedging products, such as forward contracts. For example, a

longevity contract pays an amount that increases as its realization of a survival

rate increases to offset the unexpected increase in liabilities. This position’s

counterpart could be a hedge fund that diversifies its portfolio; longevity is,

after all, uncorrelated with the capital markets, unlike interest rates or stock

prices (Li and Luo, 2011) [21].

There has been a significant advancement in products offered, but most of

the work still lies ahead. One of the important aspects of the financial prod-

ucts available for hedging is their reliance on the accuracy of the forecast of
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mortality rates.

Mortality rate forecasting has been a field of interest for quite some time.

One of the first models appeared in 1825 and is due to Benjamin Gompertz.

In his paper, he expressed that over the majority of the human life span,

age-specific mortality rates increase exponentially, using a parametric model

(Gompertz, 1825)[9]:

log[μx] = log[R0](αx)

where μx is the force of mortality at age x, Ro and α are level parameters of

the log equation slope. This soon became the Gompertz law or the Gompertz

mortality force law. Even though the first model was created more than 200

years ago, it has been only in the past 15 years that more sophisticated models

have been conceived (Booth and Tickle, 2008)[2]. The modern models shift

from a deterministic point forecast to a stochastic one; hence we no longer

predict a single mortality rate but rather a probability distribution (Booth

and Tickle, 2008)[2].

Mortality tables give an example of a deterministic mortality forecasting

model. A mortality table is a non-dynamic model that takes the mortality

rate at a given year and reduces it the following year by an amount that is

considered to be the general improvement in the population’s longevity. This

model, however, heavily relies on a subjective estimation of the improvement

in longevity.

On the other hand, an example of a model that focuses on a probability dis-

tribution is the Lee-Carter model (Lee and Carter, 1992) [19]. The Lee-Carter

(LC) model has since its publication become the gold standard of actuarial

science [19]. It is a parsimonious model based strictly on the persistent long-

term historical patterns found in the historical mortality dataset. The use

of this model can be justified because there is an underlying and consistent

pattern in mortality rates (Kalben, 2002)[18]. An example of a pattern is the

lower mortality rate for women than men in more advanced ages. One of LC’s
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most attractive features is its complete transparency and the fact that it does

not need to analyze medical advancements or the trends in causes of death.

The model in itself is easily accessible and provides better estimates than the

previously discussed tables of mortality.

However, it remains a limited model that forecasts age-specific mortality

rates in straight projections (Lee and Carter, 1992)[19]. The model focuses

on the single most important principal component, explaining the maximum

variance of the data. The model can then be expressed as :

log[mx(t)] = ax + bxkt + εx,t

where,

mx(t) is the central mortality rate at age x on year t,computed as

mx,t =
Number of deaths of age x at year t

Total population of age x on June 30th of t

ax is the age specific component, it can also be interpreted as the mean

of the log[mx(t)] over the years t considered

kt represents an index of the level of mortality

bx is the age specific sensitivity for age x to the level of mortality kt

εx,t are the residuals influences, not captured by the model

Like Gomptez’s model, we see that the LC model also takes the log of mor-

tality rates. This transformation is generally employed in modeling to ensure

that the rates remain positive. One of LC model’s disadvantages is that the

parameter bx is fixed over time, negatively impacting long-term accuracy.

Functional data model (FDM), can be seen as a generalization of the Lee-

Carter model. Functional data analysis (FDA) models look over a series of
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factors that best explain the variance of the data. We compute these fac-

tors using principal component analysis. The functional data paradigm is a

newer approach used in mortality, fertility, and migration data. Through this

approach, FDA models are used to predict future structures of a given pop-

ulation (Hyndman, 2006)[15]. During a discussion with Patrice Dion from

Statistique Canda, we learned that functional data models have spiked inter-

est in the demographic field because they can get around the shortcomings of

the LC model, such as the fixed parameter βx. An extensive overview of the

functional data model used in this thesis can be found in Section 3.3.

Mortality frameworks model the female and male mortality curves sep-

arately. The idea behind splitting the two curves is that male and female

mortality attributes vary a lot. There is a well-known, general acceptance

that mortality rates of men are higher than women’s, and that appears to be

true for almost any group age. For example, in the Canadian population, there

is approximately a 4-year gap between the life expectancy at birth between

men (79.8 years) and women (83.9 years)(Statistics Canada, 2018) [23]. Fur-

thermore, the general population is generally slightly over 50% women. In the

last 20 years, the percentage of women in the Canadian population has been

slightly higher than men (between 0.5% and 0.92%). When we break it by age,

we see that in more advanced ages, particularly ages pertinent to a pension

plan, women are more predominant in the population pool (Statistics Canada,

2020)[24]. From Figure 1 below, we can also note the general improvement in

the male mortality curve over time.
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Figure 1: Distribution of men and women in the canadian poopulation, for ages 65 to 100,
for the last 20 years

These differences present an additional challenge for a pension plan because

the percentage of men and women in the portfolio may change their liabili-

ties. Therefore, in this essay, we will begin to model and apply the hedging

scheme to the historical data ”Total Mortality Rates,” which considers men

and women’s historical weight in the Canadian population. In a later section,

we will do a cross-gender study by applying various hedges to see which ones

best fit a portfolio composed of 65% women and 35% men.
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2.2 Essay Motivation

This essay is meant to provide an analysis of the effectiveness of different types

of hedging instruments. Functional data models are relatively new to the field,

so we want to contribute to the literature by calibrating our longevity and mor-

tality instruments using the FDA paradigm.

We will begin by modeling the Canadian mortality rates using the FDA

paradigm, and then we will apply the hedging scheme to a pension plan’s port-

folio. We will apply our analysis to the total population to test the robustness

of the results before moving to a cross-gender hedging scheme to divide the

population into men and women.

The Canadian population poses different challenges because it is a rela-

tively small sample size. The Canadian market is also well known to be an

illiquid market for financial products. To prove that our results are robust,

we will also apply our model and hedging scheme to the American population.

The American population seems like a logical choice because of the countries’

proximity and similar socio-political climate. The American population is a

bigger sampling pool than Canada, with a population roughly ten times the

Canadian one. The results for the American population will be available in

Annex 6: Results from hedging the American Population (Section 8.6).

The importance of looking at cross-gender hedging comes from the fact

that most models are only calibrated to fit one of the two genders. Male

and female mortality curves do not exhibit the same patterns, and a pension

plan’s portfolio has inherently specific distribution for men and women. We

will explore different types of cross-gender hedging schemes using longevity

and mortality instruments.
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3 Methodology

3.1 Data

Let us begin by looking at how mortality data is calculated. The most com-

mon approach put forward by Cairns et al [3], is to look at the central crude

mortality rates. These rates are calculated by taking the number of deaths at

a given age x divided by the population’s mean in any given year t. By taking

the population on June 30th, we are assuming that deaths constantly occur

during the year; therefore, the population mean should approximately be the

population at the half-year mark. The mortality rate mx,t is therefore given

by

mx,t =
Number of deaths of age x at year t

Total population of age x on June 30th of t
(1)

This calculation occurs before any smoothing, averaging, or adjustments

(LLMA, 2012)[20]. Most mortality data presented in this thesis, unless stated

otherwise, is in its crude form. The data is easily accessible through the Hu-

man Mortality Database (HMD), created jointly by the Max Planck Institute

and the University of California, Berkeley [12]. HMD provides different data

sets necessary to compute Equation 1, such as total deaths and total popula-

tion. The information provided by HMD is split into men, women, and total

population. Therefore, Equation (1) can be computed for men and women in-

dividually and the total population. As described in the introduction, we will

first treat the total population curves, meaning we will consider the historical

weights of men and women in the Canadian population. Further along in the

thesis, we will use the data provided for men and women as separate curves

for the cross-gender analysis.

From a fitting point of view, most mortality models use age-specific charac-

teristics to predict mortality rates. Therefore, mortality rates are presented in
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an age-specific form, meaning that each row represents a given age throughout

the entire period at study. In matrix form, we have:

mx,t =

⎡⎢⎢⎣
m20,1951 m20,1952 . . . m20,2016

... m50,1952
. . .

...

m100,1951 m100,1952 . . . m100,2016

⎤⎥⎥⎦

From a hedging point of view, we want to portray the reality of a pension

plan. We will transform the matrix into a presentation that follows different

cohorts through time. This presentation is also called a Lexis diagram. The

matrix of mortality rates will therefore look like,

mx,t =

⎡⎢⎢⎢⎢⎣
m20,1951 m21,1952 . . . m85,2016

m21,1951 m22,1952 . . . m86,2016

...
. . .

...

m35,1951 m36,1952 . . . m100,2016

⎤⎥⎥⎥⎥⎦

The model is calibrated using the Canadian and American total popu-

lations, from 20 to 100 years old. We disregard the first 20 years, as they

introduce unwanted volatility in the mortality curve due to infant mortality.

Furthermore, the ages above 100 introduce a different type of volatility due to

a smaller pool of people available. From a pension plan’s perspective, the few

remaining people pose a more negligible risk and no longer need hedging. We

concur that ages above 65 and below 100 are pertinent to our analysis.

The period that has been chosen begins in 1951 and expands to 2016, the

most recent available data from HMD. We hope that by trimming the data

frame, we reduce severe outliers caused by historical events, such as WWII,

while still keeping a fair sample to work with. Other significant wars have

particularly touched the United States, such as the Vietnam War. We can
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keep this in mind if further along in the thesis if we need to explain differences

between the Canadian and the American mortality curves.

3.2 Fitting the mortality rates

The approach we will be considering is a generalization of the base model of

LC[19], which will take into account more than just the first principal compo-

nent. We will use a functional data model (FDM) to extend the analysis to as

many common factors as explain the data set’s maximum variance. As first

proposed by Hyndman and Ullah (2006)[15], the functional data model for

forecasting fertility and mortality rates is based on the work of Ramsay and

Silverman (2005)[25]. Functional data analysis (FDA) is increasingly used in

modeling time series data, especially in terms of biomedical applications (Ullah

and Finch, 2013)[27] . The idea behind switching from traditional methods of

forecasting multi-variate time series to more complex models (such as FDM)

is that the paradigm of the functional data analysis permits a more in-depth

decomposition of the data. In addition, one of the well-known problems of us-

ing age-specific forecasting is the high dimensionality of the data. Techniques,

such as principal component analysis, are a way to avoid the problem by reduc-

ing the dimensionality of the data and providing a more parsimonious model.

The key concepts behind FDM are the choice of a smoothing technique, data

reduction, and forecasting methods (Ullah and Finch, 2013)[27].

If we denote by yt the log of the observed mortality rates, then we can

express the data as

yt(xi) = ft(xi) + σt(xi)εt,i (2)

We assume that there is an underlying smoothing function ft(x) that we

observe with error at discrete ages x. The error term, εt,i is normally dis-

tributed with mean zero and variance of 1. The importance of using smooth
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data arises from the fact that age-specific mortality rates tend to have much

statistical noise. It is not uncommon that the mortality rate at a given age x

is higher than that of age x+1, due to the changing size of the available pop-

ulation. Let us take, for example, the mortality rates of the total Canadian

population.

Figure 2: Two different years showing age-specific mortality rates for the Canadian total
population. We can see the statistical discrepancies happening across the ages

From Figure 2, we can see that the curve in 1970 (close to modern age)

is smoother than the one in 1930. That is due to the general improvement of

longevity in the population. However, the curve never truly becomes smooth,

and statistical discrepancies remain present in ages between 20 and 40 and

further ages, between 65 and 100. Figure 3 shows the statistical noise present

in ages pertinent to pension plans.

There are several reasons why these discrepancies occur. Recall that the

numerator in the crude mortality rates formula is the total population in a

given year. The population may change for various reason, one of which

is population migration. The methodology applied in this essay calls for a

smoothing of the mortality curves to avoid this noise when forecasting the

mortality curves. Furthermore, some of the hedging instruments discussed in

later sections heavily rely on the correlation between neighbouring ages in the

mortality curve, so we do not want the correlation to be underestimated.

12



Figure 3: Log of crude mortality rates in the year 2000 for ages 65 to 100.

3.3 HU Methodology; Forecasting of Mortality Rates

The single population model of Hyndman and Ullah (HU), follows these steps:

1. Smooth the data for each age x using a nonparametric smoothing method

to estimate ft(x) for x ∈ [x1, xp] from {xi, yt(xi)}, i = 1, 2, ..., p

2. Decompose the fitted curves via a basis function expansion using the

following model:

ft(x) = μx +
K∑
k=1

βt,kφk(x) + εt(x) (3)

where μx is
∑T

t=1
ln(mt(x))

T
, φk(x) is an orthonormal basis and the error

term εt(x) ∼ N(0, v(x))

3. Fit univariate time series models to each of the coefficients {βt,k}, k =

1, ..., K
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4. Forecast the coefficients {βt,k}, k = 1, ..., K, fort = n+1, ..., n+h using

the fitted time series model.

5. Use these forecasted coefficients with (2) to obtain the forecasts of ft(x), t =

n+ 1, ..., n+ h

3.3.1 Non parametrical smoothing

Smoothing techniques are used to reduce statistical noise by capturing addi-

tional information present between adjacent data. Mortality rates for adjacent

ages are highly correlated in neighbouring areas (LLMA,2012)[20].

Throughout the literature (Duchon, 1997[4]; Wahba,1990[28]; Gu, 2002[10]),

many different models are available for smoothing data. The use of splines is

an effective way of estimating models such as the one we have in Equation 2.

One way of using splines is through weighted regression B-splines (He and

Ng, 1999)[11]. This technique involves constraints based on spline parameters,

which may give us a certain degree of monotonicity (Wood,1994)[29] but not

enough to ensure a mortality curve’s logical shape.

In this thesis, we will use the smoothing technique put forward by Hyndman

and Ullah. In Figure 3, we can see the statistical discrepancies in advanced

ages. Using a smoothing technique, we can make sure that we remove these

discrepancies while still keeping the most important aspects of the mortality

curve. Penalized regression splines, as put forward by He and Hg (1999)[11]

permit the addition of a monotonic smoothing constraint. This means that

after a given age, the mortality curve will only be upward sloping. Because

this thesis focuses on pension plan’s, the smoothing restraint will begin at age

50.

To smooth the data, we define Nt(x) as the total population of age x

mid-year t. We can assume that the mortality rates mx,t are approximately
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binomially distributed1 because of our main assumption that deaths are evenly

distributed throughout the year. Therefore we have

mx,t ∼ B(Nt,mx(t))

The estimated variance is Nt(x)mt(x)[1 − mt(x)].Via the Taylor approxima-

tion, we can obtain the variance of yt(x) = log[mt(x)]:

σ̂2
t (x) ≈ [1−mt(x)]N

−1
t (x)m−1

t (x) (4)

We will define the inverse of the variances as the regression weights, and

we use a weighted penalized regression splines to estimate the curve for each

year (Wood,2003)[30].

We can illustrate the smoothing’s overall effect with these 2 different age-

specific curves.

1Recall that by definition mx,t are the central crude mortality rates
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Figure 4: We can see that the smoothing has suppressed most of the statistical noise and
that all the curves are monotonically increasing with age

3.3.2 Decomposition of the basis functions

Recall Equation 3,

ft(x) = μx +
K∑
k=1

βt,kφk(x) + εt(x)

This section will model the smoothed age-specific mortality curves obtained

in the previous section via a basis function expansion. We will compute the φk

using principal components, to help reduce the dimensionality of the data set.

However, as per Equation 3, we need to first subtract the L1-median of the

data, before adding it back once the principal components are fitted. When

we are done with the principal component analysis, we will add the mean to

obtain our model from the equation above. The L1-median is defined to be

any point that minimizes the sum of Euclidean distances to all points in the

data set (Fetter,1930)[5].

μ̂(x) = argmin
θ(x)

n∑
t=1

∥∥∥f̂(x)− θ(x)
∥∥∥
1
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where ‖g(x)‖1 = (
∫ +∞
−∞ ‖g(x)‖dx) . The norm of a function from the vector

space of integrable functions to the nonnegative real numbers. We write the

mean-adjusted-smoothed data as,

f̂ ∗
t (x) = f̂t(x)− μ̂(x)

We suppose that each function has a basis expansion[25],

f̂ ∗
t (x) =

m∑
j=1

at,jξj(x)

where A = (at,j) is an n × m matrix of coefficients that arises from the

computation of the penalized regression splines and ξ(x) = [ξ1(x), ..., ξm(x)]
′

is a vector of splines.

Let J denote m×m matrix, with the (i,k)th element Jik =
∫
ξi(x)ξk(x)dx

from which we can find the Cholesky decomposition J = U ′U

The basis function φk is,

φk(x) = (U−1gk)′ξ(x)

If W is the diagonal matrix with diagonal values being weights wj =

1/σ̂2
t (x) computed from Equation 4 and gk as the kth normalized eigenvec-

tor of (U−1)′JSJ ′U−1, where S = (n− 1)−1A′W 2A.

The next step is for us to find the coefficients β associated to the basis. The

matrix of coefficients arises when we take the matrix Φp×(n−1) which contains

the elements from φk(x) and Fn×p which contains the elements from f ∗
t (x).

Thus we can find the matrix B = FΦ, which contains the elements β̂t,k. Notice

that the coefficients β are time dependant. Step 3 from the HU methodology

calls for fitting the historical β using a univariate times series model ARIMA.

The next section (Section 3.3.3) covers step 4 of the HU methodology, using

the ARIMA process to forecast the mortality curve.
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To assess how much variance the basis functions can explain, we recall that

an eigenvalue of a given matrix A, λi,is such that :

Ax = λix

The equation can be simplified to

(A− λi)x = 0

Thus, Λ is the diagonal matrix containing all the eigenvalues,λi, of matrix

A. We denote x the eigenvector containing the eigenvalues. By taking the sum

of the diagonal of the matrix Λ,

Λ =

⎡⎢⎢⎣
λ1,i . . . 0
...

. . .

0 λn,n

⎤⎥⎥⎦
we can compute the trace of the matrix.

K∑
n=1

λi,i = tr(Λ)

With this equation, we can compute the marginal contribution of each

factor to the variance of the data by taking λi

tr(Λ)
for each of the factors. We

usually take into account only the first factors, as the marginal contributions

get insignificant quite rapidly.

3.3.3 Forecasting

Once we have established the orthonormal basis, the forecast expansion be-

comes:

f̂t(x) = μ̂x,+
K∑
k=1

β̂t,kφk(x) + ε̂t(x)
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We can then proceed to forecast the βt,k for k = 1, ..., K and t = n+1, ..., n+h.

For K ≥ 1, this becomes a multivariate time series, however since the set of

basis is orthonormal, we can assume that the coefficients are uncorrelated and

therefore can forecast them with a univariate ARIMA model.

When we combine Equations (2) and (3), we obtain,

yt(xi) = μx +
K∑
k=1

βt,kφk(x) + εt(x) + σt(xi)εt,j (5)

We can see that there are two terms of error in Equation 5. The first εt(x)

is the difference between the splined curves and the fitted curves, while the

σt(xi)εt,j is the observational error, the difference between the observed death

rates and the splined curves.

By conditioning on our set of observable data 
 = {yt(xi); t = 1, ..., n; i =

1, ..., p} and on φ, we obtain the one step ahead forecast

ŷn,1(x) = E[yn+1(x)|
,Φ] = μ̂(xi) +
K∑
k=1

βn,k,1φ̂k(x)

We use the ARIMA models to forecast the one-step ahead for the following

year and we apply to the basis function associated with the age and its mean.
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4 Model calibration

To calibrate our FDA model, we used the R package demography provided

by Professor Hyndman[16]. We analyze the principal components selected for

each of the models and populations. Following our decision mentioned in Data

(Section 3.1), we will fit the models for ages 20 to 100 and from 1951 to 2016.

Note that the model calibration when the whole available data is taken into

account is available in Appendix 1: Results from fitting all available data.

The results presented below should be read like this: the basis interactions

are age-specific, whereas their coefficients are time-specific. In line with the

methodology, we forecast the coefficients for future years; hence the age-specific

patterns in the data set remain the same.

4.1 Model results

Canadian Population

The Canadian population exhibits the following interactions between the co-

efficients and the basis.

Figure 5: The four main interactions for the Canadian population explain individually
97.4%, 1.0%, 0.8% and 0.4%
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We decided to keep on the four first components as they cumulatively ex-

plain 99.6% of the variance. We might be tempted to conclude the movements.

However, the only pattern that seems to be recognizable is the first compo-

nent explaining the general improvement of longevity. We see an important

drop within the last 20 ages, which echoes that the average mortality rate has

significantly dropped in the last 50 years. The first movement is generally

applicable across similar nations2. However, some of the interactions are not

as easily interpretable, and it is preferable to leave the other possible interpre-

tations to demographic experts.

As for the ARIMA models for the coefficients, we have

Coefficient Process
βt,1 ARIMA(0,1,0)
βt,2 ARIMA(0,1,3)
βt,3 ARIMA(1,0,0)
βt,4 ARIMA(1,0,0)

Table 1: Models for each basis coefficient for the Canadian Population Model

2We looked over this hypothesis in countries with slower development. While the same
trend is found in the data, the drop is significantly slower. In Annex 2 FDA Modelling for
Slovenia and Estonia
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American Population

The American population exhibits the following interactions between the co-

efficients and the basis.

Figure 6: The four main interactions for the American population explain individually
95.2%, 2.2%, 1.0% and 0.9%

As for the ARIMA models for the coefficients, we have

Coefficient Process
βt,1 ARIMA(0,1,0)
βt,2 ARIMA(0,2,2)
βt,3 ARIMA(1,0,3)
βt,4 ARIMA(1,0,0)

Table 2: Models for each basis coefficient for the American Population Model

What is interesting from these curves is that the first component that

explains the maximum variance is a random walk with drift. The same model

is used in Li-Luo[21], and Giannini 2020 [8]. Although the models are very

different, we see the strong characteristics of mortality rates that the models

pick up.
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4.2 Survival Curves

Using the Monte-Carlo (MC) technique, we simulate 10 000 occurrences for

each of the coefficients mentioned above per their ARIMA model for a period

of 35 years. From this point on, we are done using mortality rates in their

age-specific form for fitting. Therefore, we can now express mortality rates for

age x+t at time t

mx(t) = mx+t(t)

We then take the cumulative sum for each period to obtain the cumulative

survival rates. Figure 7 below shows the obtained mortality curves for the

Canadian total population, computed using Equation 6.

St = exp(−
t∑

n=1

mx(n)) (6)

Figure 7: 10 000 simulations of cumulative survival rates for the Canadian population
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The survival curves in Figure 7 were obtained by aggregating the mortality

rates forecasted using the MC technique. The variance in further ages can be

explained by the fact that a change in the first years will have a water-fall

effect on all subsequent years. On the other hand, when multiplying mortality

rates together, we perform an averaging (or smoothing). Therefore the curve

will dampen near the end, and the most volatility is found in the mid-years of

the cohort.

Now that we have successfully calibrated our data using a functional data

model, we will apply different hedging instruments to a pension plan’s portfo-

lio.

5 Hedging scheme

Once the model is calibrated, we can apply hedging instruments and analyze

their effectiveness from a pension plan’s perspective. We separate them into

two categories: longevity (Section 5.2) and mortality instruments (Section 5.3).

We will analyze the effectiveness through comparative tables that will include

the following metrics: mean, standard deviation, skewness, kurtosis, VaR99%

and the ES99% of the unhedged and hedged distributions of final profits and

losses.

5.1 Basic portfolio

We begin with a basic portfolio, which we will, at first, keep unhedged for

35 years and then hedge with survival instruments for 20 and 25 years. This

closed portfolio consists of 4 000 annuitants, all aged 65 years old at the be-

ginning of the period, and no other annuitants will be added throughout time.

Because we have calibrated our models to the Canadian total population, the

4 000 annuitants will reflect men and women’s natural, historical weights. We

restrict the maximum age of the population to 100. We make this assumption

in line with LLMA, that more often than not the mortality rates after 100
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years old are not reliable considering the small pool of population. All the

cash flows will be discounted at a fixed 4% risk-free rate. This last assumption

allows for a simpler model, with which we can keep the focus on longevity

risk. We first review the different hedging methods before applying them to

our population.

5.1.1 Longevity bond

Unfortunately, because a liquid longevity/mortality market is far from sight,

we have only one instrument to price longevity risk. We base our calcula-

tions on the 2004 longevity bond announced by BNP Paribas and European

Investment Bank (EIB). The original bond has a maturity of 25 years and was

based on the male population of England and Wales. Although we will not be

using this exact bond, the calculations provided in the 2006 paper by Cairns

et al. help us price an equivalent bond for a period of 35 years[3] based on the

Canadian population. We define V(0) as the price of the longevity bond,

V (0) =
35∑
t=1

B(0, t)eδtEBE
0 [e−

∫ t
0 mx(v)dv]

Where,

1. δ is a spread, or an average risk premium per annum

2. B(0, t) are the discounted factors for each period

3. EBE
0 [e−

∫ t
0 mx(v)dv] is the historical best estimate (BE) of the survival rate

for the ith period

We will use δ = 0.002, as priced by the BNP/EIB bond that is 20pbs below

the standard EIB rates. Although this pricing gives us a head start, it should

be noted that this particular longevity bond never found a buyer ready to take

on the risk transfer. However the calculations remian useful. We can take the

initial bond and adjust the mortality rates to incorporate risk. We write the

value of the longevity bond using risk adjusted rates (RA) as,
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V (0) =
35∑
t=1

B(0, t)ERA
0 [e−

∫ t
0 mx(v)dv] (7)

5.1.2 Risk adjusted probabilities

So far, using the MC simulations, we find the best estimate (BE) mortality

rates by applying a probability equal to 1/N, where N is the number of MC

simulations. As first put forward by Stutzer(1996)[26], canonical valuation is a

method that consists of adjusting the probability distribution of each simula-

tion. It is nonparametric and has been proven to work well in pricing options

on equity indexes and different derivative securities. The 2011 paper by Li

and Ng extends the canonical valuation model on pricing mortality-linked se-

curities [22].

We begin by generating the trajectories of mortality rates using the func-

tional data framework. Under the basic assumption, when we generate N

scenarios of mortality data, they carry each an equal probability, so the prob-

ability mass function is

Pr(ω = ωj) = πj =
1

N
, j = 1, 2, ..N

From each of the N scenarios, we can calculate the value of a longevity index

I(t) at t = 1, 2, ..., 35, based on the trajectory of simulated mortality rates. Let

I(t, wj) denote the value of the longevity index at time t in the jth scenario

(Li,Ng 2011)[22]. We can then derive, from the above-mentioned PNB/EIB

formula,

v(wj) =
35∑
t=1

B(0, t)I(t, wj)

The principle of canonical valuation is based on the Kullback-Leibler in-

formation criterion (Kullback and Leibler,1951),
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D(Q,P ) = EP

[
dQ

dP
ln
dQ

dP

]

The Kullback-Liebler information criterion D(Q, p) is defined as the infor-

mation obtained by moving from measure P to measure Q. We can think of

P as the real-world probability measure. Due to a lack of market prices for

specific longevity products, this real-world distribution of P is the only tool

we can use. Therefore, to have a fairly priced longevity product, we need to

solve for the real-world probabilities and use them to obtain the risk-adjusted

mortality distribution. To obtain these probabilities, we solve the Lagrange

function defined by,

L =
N∑
j=1

π∗
j lnπ

∗
j − λ0

(
N∑
j=1

π∗
j − 1

)
− λ1

N∑
j=1

(
v(wi)π

∗
j − V (0)

)
with constraints,

N∑
j=1

v(wi)π
∗
j = V (0) and

N∑
j=1

π∗
j = 1

Q, the canonical measure has to satisfy the following first-oder conditions:

lnπ∗
j + 1− λo − λ1v(wj) = 0 forj = 1, 2, ...N

equivalent to ,

π∗
j = exp(λ0 + λ1v(wj)− 1) forj = 1, 2, ...N

Following from our second constraint that
∑N

j=1 π
∗
j = 1 , means that π∗

j is

proportional to exp(λ1v(wj)). Therefore, we can write ,
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π∗
j =

exp(λ1v(wj)∑N
j=1exp(λ1v(wj)

What remains is the parameter λ1 , which can be written as the following

expression

λ1 = argmin
γ

N∑
j=1

exp (γ(v(wj))− V (0))

Once we have solved for λ1, we can easily find the risk-adjusted probabili-

ties that reflect the real-world distribution into a risk-neutral measure(Li, NG

2011)[22], so that

V (0) =
35∑
t=1

B(0, T )eStEBE[St] =
35∑
t=1

B(0, T )ERA[St]

Figure 8 presents graphically the real world probabilities π∗
j computed using

the canonical valuation. These will be the probabilities used from now on to

obtain the risk-adjusted (RA) mortality distribution.

Figure 8: Canonical probabilities π∗
j
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5.1.3 Assets and liabilities

To analyze the effectiveness of our hedge, we create a synthetic portfolio com-

posed of 4 000 annuitants. Let us take, for example, a pension fund that offers

a life annuity for which the annuitants pay an initial amount. Using Equation

7, we compute the risk-adjusted value of the longevity bond to be 13.2050�.

We will use this measure to compute the assets of the pension plan’s portfolio.

That amount becomes an asset for the pension fund.

A = 4 000×
35∑
t=1

B(0, t)ERA
0 [e−

∫ t
0 mx(v)dv]

Contrary to the assets, the pension plan’s liabilities are time dependant.

The liability is the annual fixed amount, 1� for example, that the fund has to

pay the annuitant up until the year before his or her death. As the contract

progresses in time, the liabilities tend to go down as fewer people are in the

population. It is important to note that the portfolio’s deaths are random

and need to be estimated. Our basis condition is that the payments stop the

year preceding the death of a subscriber. Therefore the discounted value of

the k − th person is given by

lk =

�τk�∑
t=1

B(0, t)

where τk is the stochastic time of death for annuitant k, with k = [1, 2, ..., 4000].

We obtain this variable using Monte-Carlo simulations and following the pro-

cedure suggested by Fung and al. (2015)[7]. To simulate death times, we use

the Cox process that becomes an inhomogeneous Poisson, once the intensity

of the mortality is obtained. Each process and the first jump time can be

interpreted as death times (Fung and al., 2015)[7].

As presented in the Section 2.1, when applying the hedging scheme, we

define the mortality rates as mx(t) = mx+t(t).

1. We simulate 10 000 trajectories of mortality rates mx(t) for each of the
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35 years of interest;

2. We calculate I(t) =
∑t

i=1mx(i), the intensity at which deaths occur for

each year, for t = 1, 2, 3...T and for each simulation;

3. We generate random variables following an exponential distribution, such

as ε ∼ exp(1). We generate one per annuitant, for a total of 4 000.

4. For each of the previously generated random variable, ε, we determine

τk, as the last t such that I(t) < ε, obtaining the year of death of the

k-th annuitant and

lk =

τk=t∑
n=1

B(0, n)

5. We can then compute the total liabilities for all the periods

L =
N∑
k=1

lk

We can also compute the unhedged gains or losses for each of the periods

Dunhedged = A− L

and the average gain or loss

Dμ =
(A− L)

N

6. Step 1 through 5 are computed for the j = 1 : 10000 number of simula-

tions

From Figure 9 below, we can see that the distribution of surpluses without

the risk premium is centered at 0, whereas adding the risk premium puts

the mean of the distribution to the right (around 0.25). The positive mean

represents the discounted value of the risk premiums.
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Figure 9: Compairaison of unhedged surpluses with and without the risk premium delta =
0.002

5.2 Longevity instruments

A pension plan has a short position on longevity; when the longevity of their

portfolio increases, so do their liabilities. Therefore, it will want to hedge its

position by being long on a longevity contract. This section will explore two

longevity instruments, the S-Swap (a series of S-Forwards with different ma-

turities) and the S-Cap (a call option). We will use the canonical probabilities

calculated above in order to obtain proper pricing for our contracts.

Single cohort

5.2.1 S-Forward/S-Swap

A forward contract on the survival rate seems like the most intuitive hedging

option for a pension plan. Survivor-forwards, or S-Forwards, developed by

LLMA(2010), help the pension plan transfer part of its risk to an investor, and
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while it may reduce their potential losses, it can also reduce their potential

gains. Typically, a forward is put in place at zero cost.

Figure 10: Settlement for a S-Forward contract between an investor and a pension plan

According to the above diagram, the pension plan enters the forward con-

tract to receive an amount that is equal to the survival rate for a national

cohort, and in exchange, it will pay a fixed rate. The swap rates are com-

puted based on the national cohort, which leaves basis risk to the pension

plan. This basis risk increases if we use a different national cohort than the

pension plan (e.g., use the national American population to hedge a Canadian

pension plan). If the survival rate for a given year T is higher than expected,

the S-Forward will have a positive cash flow for the pension plan, reducing the

loss on their portfolio. We can define S-Swaps as a series of S-Forwards with

different maturities and fixed rates. The payoff of this longevity contract is

PS−swap = (e−
∫ T
0 mx(v)dv −KSwap(T ))

where KSwap(T ) is the fixed rate decided upon contract initiation (Fung and

al., 2015)[7].

These contracts present many advantages, such as requiring no initial pay-

ment, and the settlement occurs at the end of each period. To respect the

above mentioned constraint, we have the value of the portfolio such as,

B(0, T )ERA
0 (e−

∫ T
0 mx(v)dv −KSwap(T )) = 0
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Therefore we obtain the following equality,

KSwap(T ) = ERA
0 (e−

∫ T
0 mx(v)dv)

Because we want the risk-adjusted mean of the mortality rates, we must

apply the real-life probabilities obtained by the canonical valuation (Bélanger,

2020).

KSwap =
10000∑
j=1

π∗
jSx(T, j)

Where, Sx(T ) = e−
∫ T
0 mx(v)dv the survival rate for the population at a given

period t. Therefore, the hedging of the portfolio becomes,

D = A− L+ PS−Swap

We will present the distribution of the final surpluses by dividing the total

surplus by the number of participants in the portfolio,

D̄ =
D

4000

5.2.2 S-Caplets

As mentioned, the S-Swap is a good way for a pension fund to transfer part

of its risk, but it will wipe out its potential gains if longevity is lower than

anticipated. An option type instrument, the S-Cap, gives the investors the

right but not the obligation of exercising the option. Because no rational

investor would choose to lose money, we assume that the Cap payoffs cannot

be negative. Investors are ready to pay for this right. Therefore the Cap trades

at a premium. (Fung and al., 2015)[7].

PS−Cap = max{(e−
∫ T
0 mx(v)dv −KCap), 0}
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In this instance, we take KCap = EBE[Sx(t)]. The risk adjustments is taken

into consideration, when calculating the premium paid for the derivative (Bélanger,2020)

V (0)S−Cap =
T∑
t=1

B(0, t)
J∑

j=1

π∗
j{S0x(j, t)− EBE

0 (Sx(t))}+

The derivative option’s price depends on the distance between the realiza-

tion of the mortality rates and its mean. As we go along in more advanced

ages, where the variance is higher, we expect that gap to be positive on a

higher number of realizations. Therefore, we expect the price of the derivative

to positively correlate with its maturity.

Because the use of option derivatives is to diminish the potential losses

when the realized survival rate is higher than the fixed survival rate, we expect

to see a lower realization of losses than the S-Swaps. We also expect to see a

difference between the distributions. The surpluses for this product will be,

D = A− L+ (PS−Cap − V (0)S−Cap)

Multi cohort

So far, we have looked at portfolios of annuitants turning all 65 in the same

year. However, a plan is more likely to have simultaneously many other co-

horts that begin at 66, 67, etc. To capture this more realistic presentation

of a portfolio, we will look into hedging multiple cohorts using a synthetic

multi-cohort portfolio. Our primary assumption that it is composed of 4 000

annuitants will remain. However, we will spread them through different age

groups.

There are several methods of splitting the portfolio’s participants into dif-

ferent groups. One way for example, would be to split evenly the participants

throughout the cohorts at study. (Giannini 2020[8], Fontaine 2016[6]). To com-

pute the surpluses using this specific distrubtion, we would take the weighted

average of the surpluses for each of the cohorts. Let us take the portfolio of
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a pension plan and we hedge it is first 5 cohorts (65, 66, 67, 68 and 69). The

hedged surpluses can be expressed such as,

D =
N

5

69∑
x=65

ax −
4000∑
k=1

lk +
N

5
(

69∑
x=65

T∑
t=1

B0(t)(e
− ∫ t

0 mx(v)dv −K))

However, in this thesis, we decided to consider more cohorts in our syn-

thetic multi-cohort portfolio composition. We follow the stair-like distribution

as put forward Li-Luo [21]. We will compute the distribution of our surpluses

using the weighted average from each cohort’s surpluses (as in the equation

above). However, the participants will no longer be equally distributed. Fig-

ure 11 is a visual representation of this new synthetic portfolio.

Figure 11: Pension Plan subscribers in a multi cohort hedging scheme

The stair-like composition means that we have a decreasing number of par-

ticipants split into 20 cohorts. In Figure 11, in the age 65-69, the plan has

275 participants; from the ages 70-74, the plan has 200 participants. Further-

more, because these participants are not the same age at the time of contract

initiation, they will pay a different amount which will change the value of the

assets. The choice behind the method was to have a comparable basis for
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the results between the longevity and mortality instruments in a multi-cohort

scheme. Therefore we will use this same method of portfolio composition in

Section 5.3.3.

The remaining steps from Sections 5.2.1 and 5.2.2 on longevity instruments

and their application do not change in the multi-cohort hedging. Each of the

cohorts has its own specific KSwap, KCap, and the 20 cohorts will have their

individual option premium. The premiums paid for the caplet throughout dif-

ferent cohorts are available in Annex 5: Premiums for caps on the multi-cohort

products (Section 8.5).

5.2.3 Results from hedging with longevity products

Results from hedging a single cohort

In the interest of computing the effectiveness of the hedging scheme, we com-

pute the following:

Dhedged = A− L+H

Where,

1. DHedged is the distribution of the portfolio’s surpluses after we apply the

hedging scheme

2. A and L are the assets of the portfolio

3. H is the net payoff provided by each hedge.

The payoffs H for each of the hedging schemes depend on the maturity of their

instrument, while the assets and liabilities are calculated for 35 years. We ap-

ply the hedge for 20 and 25 years, meaning that we cover the ages of 65 to 85

and 90, respectively. We see no need to extend the hedging age above 90 since

the average life expectancy at birth for the Canadian population is 82 years old.
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The hedging results using longevity instruments for a 20-year maturity are

summarized in Table 3 and those for a 25-year in Table 4. These results are

in concordance with those found by Fung and al (2005) [7].

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2688 0.4652 -0.0084 2.9219 -0.8016 -0.9640

Swap Hedged 0.1571 0.2829 -0.2241 2.9342 -0.5797 -0.6862
Cap Hedged 0.2106 0.3771 0.3527 3.1483 -0.5416 -0.6423

Table 3: Results from hedging a single cohort of age 65 with longevity instruments for a 20
year maturity

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2688 0.4652 -0.0084 2.9219 -0.8016 -0.9640

Swap hedged 0.1002 0.1700 -0.4509 3.0928 -0.4150 -0.4872
Cap Hedged 0.1698 0.3244 0.7815 3.6095 -0.3495 -0.4238

Table 4: Results from hedging a single cohort of age 65 with longevity instruments for a 25
year maturity

We can see in Tables 3 and 4 that adding hedging contracts improves the

pension plan’s risk profile. These results are in line with Fung and al. (2015)[7].

It is important to note that in order to be able to gain from these contracts,

the institution has no other choice than to give up on the mean. For the 25

year hedge, for example, the unhedged mean is at 0.2688, whereas the swap

is at 0.1002 and the cap at 0.1698. This mean reduction is compensated by

reducing the standard deviation, reducing the VaR99 and the ES99.

We can see that the contracts will require more funds for a longer matu-

rity; therefore, the distribution mean is higher for the 20-year maturity hedge

than the 25. Nonetheless, the risk metrics for the instruments on the shorter

maturity do not perform as well, since we stop the hedge at 85. The standard

deviation for the swap contract is at 0.2829 for the 20-year maturity, whereas

the 25-year maturity reduces it to 0.1700. We see similar results with the

cap. Therefore, using 20-year maturity hedges leaves too much risk compared

to the 25-year hedge. During those five years, our subscribers go from 80 to
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85 years, meaning that most deaths occur within this period. Furthermore,

there is no economic sense to hedge with a 30-year maturity, seeing that the

number of participants remaining past 25 years is too low. From here on now,

we will only compare and analyze the 25-year hedge. The remaining results

for the 20-year maturity hedge are available in Annex : 3 Hedging results for

a 20-year maturity hedge (Section 8.3).

The standard deviation reduction is more significant for the swap (0.1700)

than the cap (0.3244), because the pension plan gives up profits and losses

alike in this hedging scheme. On the other hand, the cap has a positive skew-

ness (0.7815), meaning a longer or fatter tail on the right. This is a direct

result of keeping only the positive payoffs. The premium paid for the caps is

0.2470� for the 25-year hedge. In Table 4, we see that for the 25-year matu-

rity hedge, both hedging instruments’ risk metrics (VaR99 and ES99) perform

better than the unhedged portfolio. Figures 12 and 13 below provide a visual

representation of the various distributions.

Figure 12: Distribution of hedging a single cohort of age 65 with longevity instruments for
a 25 year maturity. This distribution refers to the results summarized in Table 4
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Figure 13: Individual distributions of hedging a single cohort of age 65 with longevity
instruments for a 25-year maturity. This distribution refers to the results summarized in
Table 4

Results from hedging multiple cohorts

We expect to see some differences in the multi-cohort hedge vs the single co-

hort. First, the unhedged multi-cohort portfolio should have a smaller mean

because the assets are spread throughout time. The cohort beginning at age

65 will pay a higher price than the one beginning at 75. The asset pricing

for multiple cohorts is available in Annex 4: Prices for longevity bonds on

multi-cohort productions (Section 8.4).

We look into the hedge of every other cohort, beginning at age 65. Because

our cohorts are spread out through time, we can apply a more parsimonious

hedging scheme by hedging some key cohorts. We use S-Forwards with a 25-

year maturity on specific cohorts. We read the following table: if we take the

following contract S25
65,67,69, we hedge ages 65, 67 and 69 for a maturity of 25

years.
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Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1636 0.4021 -0.0554 3.0516 -0.7772 -0.9349

S25
65 0.1515 0.3823 -0.0707 3.0451 -0.7474 -0.8981

S25
65,67 0.1406 0.3624 -0.0882 3.0429 -0.7128 -0.8600

S25
65,67,69 0.1313 0.3433 -0.1093 3.0407 -0.6854 -0.8205

S25
65,67,69,71 0.1257 0.3298 -0.1226 3.0381 -0.6628 -0.7919

S25
65,67,69,71,73 0.1210 0.3177 -0.1366 3.0364 -0.6447 -0.7668

Table 5: Various results from hedging a multiple cohorts beginning at age 65 with S-Swaps
for a 25 year maturity.

Figure 14: The distribution for various swap hedges, referring to the results presented in
Table 5

Here are some interesting salient takeaways from Table 5 and Figure 14.

We see that as we hedge more cohorts, the mean reduces, but so does the

standard deviation of results. The mean reduction is not as apparent as for

the previously discussed single cohort hedging scheme. This is because the

assets are now spread throughout time, and the last participants pay a lower

price since they are entering the pension’s plan portfolio for a shorter period.
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Like hedging a single cohort, we notice that the swap has a negative skew, and

as expected, the risk metrics VaR99 and ES99 perform better as we add on

more contracts to hedge the portfolio.

Table 6 below shows the results for the cap hedge.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1636 0.4021 -0.0554 3.0516 -0.7772 -0.9349

C25
65 0.1602 0.3925 -0.0213 3.0496 -0.7502 -0.9016

C25
65,67 0.1578 0.3830 0.0154 3.0542 -0.7158 -0.8670

C25
65,67,69 0.1561 0.3737 0.0522 3.0630 -0.6950 -0.8313

C25
65,67,69,71 0.1562 0.3672 0.0796 3.0694 -0.6725 -0.8054

C25
65,67,69,71,73 0.1567 0.3614 0.1038 3.0768 -0.6575 -0.7826

Table 6: Various results from hedging a multiple cohorts beginning at age 65 with S-Caps
for a 25 year maturity.

Figure 15: The distribution for various cap hedges, referring to the results presented in
Table 6
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Generally, the results resemble those of the single cohort. As we hedge

using more contracts, the skewness becomes positive. When compared to the

swaps, the mean is slightly higher and the standard deviation higher. On the

other hand, we notice that the VaR99 and the ES99 do not perform as well as

the single cohort paradigm. This is due to the premium paid for the cap for

each cohort. Because we do not have the same level of positive skewness, the

premium eats away from the potential upsides.

5.3 Mortality instruments

The longevity instruments presented in the previous section are known as

cash-flow matching instruments, meaning we hedge the changes in cash in-

flow (or outflow) from liabilities. Cash-flow hedging instruments are easily

implemented but can only fit the specific characteristic of the portfolio they

hedge. Switching to a more general approach would mean looking at instru-

ments that hedge fair value; we hedge the difference in value in liabilities. In

our framework, assets are fixed at time 0; therefore, we hedge only the changes

in liabilities.

In our framework, the instruments presented as fair value hedging are mor-

tality instruments. Mortality instruments, put forward by Li-Luo [21], consider

price sensitivity to the mortality curve. The methodology proposed by Li and

Luo in their 2011 [21] paper is based on Ho’s 1992 methodology for key rate

durations [13], which is commonly used in hedging interest rate risk (Li, Luo

2011) [21].

It is fair to assume that mortality rates, much like interest rates, are cor-

related. If a mortality rate for a given year is subject to a spike, the years

before and after will be affected too. Figure 16 illustrates this correlation.
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Figure 16: Values of ρ(x, y) for ages 65,75,80

ρ(x, y) from Figure 16 is computed by calculating the sample correlation

between any given age x at year t, by taking the differential of the mortality

rates between two periods.

Due to the correlation, evaluating the impact on liabilities from a change in

the mortality curve has to be done through a vector of numbers rather than an

isolated single spike. Because we are considering a vector rather than a single

spike, we do not need to compute the sensitivity at every age; instead, we will

choose key ages. This way, we can keep the hedging scheme parsimonious and

use only a handful of contracts to hedge the changes in value in the liabilities.

Following the methodology put forward by Li-Luo, we will demonstrate

how to construct an effective hedge using mortality derivatives. The contracts

that we will use are called Q-Forwards. The weight we will put in each of the

contracts depends on our portfolio’s sensitivity towards that specific age.
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5.3.1 Key q-durations

The key q-duration is defined as a portfolio’s sensitivity to a change in the

mortality rate. Suppose we have a spike of δ(j) on the jth mortality rate. We

consider a spike of δ(j) = 0.10%. For example, let us take a key age of 70,

because of the relationship between neighbouring ages, we define the spike as,

Figure 17: Exemple of shifts applied to the j = 70 key age and the impact on adjacent ages

The shift in the curve is meant to enhance the natural correlations found

between neighbouring ages. As the age gap becomes widens, the correlations

tend to diminish. We denote the shift s(x, j, δ(j)) as the shift for a given age

x, associated with the change of δ(j) for the jth key age. The shifts applied

in Figure 17 can be expressed mathematically as,

s(x, j, δ(j)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ xj−1

δ(j)(x−xj−1)

xj−xj−1
if xj−1 < x ≤ xj

δ(j)(xj+1−x)

xj+1−xj
if xj < x < xj+1

0 if x ≥ xj−1

For each age x between xj and xj+1, the impact on the mortality rate of

age x is the weighted mean of δ(j) and δ(j+1), with the weights being
(xj+1−x)

xj+1−xj

and
(x−xj−1)

xj−xj−1
.
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We apply the above shift to our original mortality curve, denoted q, to

obtain q̃(j). To properly evaluate the jth q-duration of the portfolio, we take

the portfolio’s value denoted P (q̃(j)) with the shift and P (q) without the shift

in the mortality curve.

KQD(P (q), j) =
P (q̃(j))− P (q)

δj
(8)

5.3.2 Q-Forward contracts

Let us take as an example a pension plan that would want to hedge its longevity

risk by entering in a portfolio of mortality forwards. The pension plan will

receive the fixed mortality rate, assumed at contract initiation, in exchange

for the realized mortality rate of the underlying, which in this case will be

a specific cohort. When mortality goes down, then the fixed leg payment is

less than the variable one; therefore, it hedges the pension plan’s position. In

order to obtain a successful hedge, meaning that we reduce variance, we must

first adjust the weight invested in each mortality forward (Li, Luo,2011)[21].

Figure 18 illustrates the position in the Q-Forwards.

Figure 18: Settlement for a Q-Forward contract between an investor and a pension plan

To have an effective hedge, the forward contract and the underlying assets

must have the same price sensitivity. We can measure this sensitivity using

q-durations for key j ages. Let us take the value of the mortality forward,
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from a fixed receiver’s perspective.

Fj(q) = 1(1 + r)−Tj(qf (xj, tj)− q(xj, tj)) (9)

Equation 9 reflects the differential between the fixed mortality rate and the

realized mortality rate is discounted to the interest rate r. From Equation 9,

we can compute the key q-duration of the mortality contract, such as,

Therefore, the key q-duration of the payoff of the mortality contract is

KQD(Fj(q), j) = −1(1 + r)Tj

To construct the hedge with the mortality instruments, we need to define

a specific weight put in the n number of contracts we are using. To obtain the

weight, we take the sensitivity of the key q-durations of the portfolio and the

key q-durations for the key age j.

w(j) =
KQD(P (q), j)

KQD(Fj(q), j)
(10)

To consider the importance of the correlation between adjacent ages, we

will calculate the value at time zero by considering both the shifted and the

non-shifted mortality curves. The following sections will subsequently explore

how the single and multi-cohort shifts and the hedging schemes are applied.

For this methodology, it is important to always keep the same random numbers
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used in both the shifted and non-shifted mortality curves. We want to take

this additional step in order to reduce any statistical discrepancies.

Single cohort

We begin with a single cohort aged 65 in 2017. The key ages that will be

considered in the single cohort hedging scheme are 70 in 2022, 75 in 2027, 80

in 2032, and 85 in 2037. Following the same hypothesis as for the longevity

forwards, there is no economic need to hedge out further than 85, considering

the small pool of population beyond that age.

Using Equation 8, we compute the key q-durations of the portfolio, whereas

using Equation 10, we obtain the appropriate weights to invest in each of the

forward contracts. Table 7 below shows the results of the computations.

j=1 j=2 j=3 j=4
xj 70 75 80 85

(KQD(P (q), j) -47.7478 -30.37 -17.2215 -8.5927
(KQD(Fj(q), j) -0.8219 -0.6756 -0.5553 -0.4564

wj 58.0926 44.9551 31.0150 18.4027

Table 7: Key q-durations and weights for each of the Q-Forwards computed from the Cana-
dian Total Population

These negative and descending key q-durations are in line with the results

found in Li-Luo[21]. Recall that the key q-durations are computed by sub-

tracting the P (q) value from the P (q̃(j)). The value of the portfolio computed

with the q̃(j) curve will be higher than the one computed with the q curve

because higher mortality rates lead to lower survival rates and therefore lower

levels of liabilities.

The wj are positive and descending, and they can be interpreted as the

dollar amount to invest into each q-forward to replicate the sensitivity of the

liabilities. The assets and liabilities are computed the same way as they were

for the longevity instruments (from Section 5.1.3) , except the hedged payoffs
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are

H(q) =
N∑
j=1

wjFj(q)

where Fj(q) as presented in Equation 9 is the individual payoff of the

forward contract.

Multi cohort

Recall the synthetic portfolio introduced in Section 5.2 (Longevity instru-

ments). The portfolio goes across 20 cohorts, the first one aged 65 in 2017

and the last one aged 85 in 2017. The key ages that will be at study for the

multi-cohort setting are presented in Table 8.

k nk Key ages
1 4 Ages 70, 75, 80 and 85
2 3 Ages 75, 80 and 85
3 2 Ages 80 and 85
4 1 Ages 85

Table 8: Key ages considered for the multi cohort mortality hedging

Not only do we want to enhance the natural correlation found between

neighbouring ages, we also want to represent this relationship in between

neighbouring cohorts. Therefore, the shift will no longer be a singular vec-

tor, bur rather a surface. We denote the shift function s(x, c, (j, k)δ(j, k)) as

the impact of a δ(j, k) change at the (j, k)th key rate for a given age x and a

given birth year c. The birth years at study range from 1937 (portfolio par-

ticipants of age 80 in 2017) to 1952 (portfolio participants of age 65 in 2017).

The shift function is give by,

s(x, c, (j, k)δ(j, k)) = δ(j, k))α(x, j, k)β(c, k)

The following relationship is derived from the year of birth, meaning that
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the shift declines with birth years that are further from the jth key age of the

kth cohort. In the above equation, α and β are calculated as such,

α(x, j, k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ xj−1,k

x−xj−1,k

xj−xj−1
if xj−1,k < x ≤ xj,k

xj+1,k−x

xj+1,k−xj,k
if xj,k < x < xj+1,k

0 if x ≥ xj−1,k

and,

β(c, k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if c ≤ cj−1,k

c−cj−1,k

cj−cj−1
if cj−1,k < c ≤ cj,k

cj+1,k−c

cj+1,k−cj,k
if cj,k < c < cj+1,k

0 if c ≥ cj−1,k

With these shifts we can apply the same methodology as for a single cohort,

except now we will have a notional amount wj,k. Visually, we obtain the

following distribution of shifts and weights :

K cohort 2017 age nk Age in time wj,k

1 65 1 (70,2022) 9.4233
2 (75,2027) 7.5644
3 (80,2032) 5.1849
4 (85,2037) 3.0460

2 70 1 (75,2022) 9.9646
2 (80,2027) 6.9993
3 (85,2032) 4.7069

3 75 1 (75,2022) 5.2513
2 (80,2027) 7.7613

4 80 1 (85,2022) 3.3964

Table 9: Weights applied to each contract throughout different cohorts
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5.3.3 Results from hedging with mortality products

Results from hedging a single cohort

The key q-durations used to compute the weights to invest in forward contracts

rely on the natural correlations found between mortality rates for neighbouring

ages. Because our first step when applying the FDA model is to smooth the

data, we expect to see the mortality hedging instruments perform better. This

could lead to the desired results of giving up less of the mean for a better

improvement of the risk metrics. Table 10 below summarizes our findings.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2688 0.4652 -0.0084 2.9219 -0.8016 -0.9640

Q-Forward Hedged 0.1015 0.2090 -0.1421 3.1000 -0.4127 -0.4953

Table 10: Results for hedging a single cohort at age 65 using 4 Q-Forwards.

The pension plan has to give up mean in order to obtain a better perfor-

mance in the risks metrics: standard deviation (from 0.4652 to 0.2090), the

VaR99 ( from -0.8016 to -0.4127) and the ES99 (from -0.9640 to -0.4953).

Basing our analysis on these metrics, we find mixed but comprable results.

The Q-Forwards performs better than the S-Swap for a single cohort begin-

ning at age 65 for a 25-year maturity. Recall that the S-Swap is a series of

S-Forwards across different maturities. The S-Swap hedge mean is at 0.1002,

its standard deviation is at 0.1700 and the VaR99 and ES99 are at -0.4150 and

-0.4872, respectively. The standard deviation of the distribution is higher for

the mortality instrument and the VaR99 and ES99 are slightly higher. This

could be explained by the distribution’s skewness which is closer to zero for

the Q-Forwards (-0.1421) than the S-Swap (-0.2241).

Results from hedging multiple cohorts

Hedging multiple cohorts with Q-Forwards shows a bigger mean reduction

compared to hedging with S-Swaps. However, the mean reduction is justified

by a decrease in the standard deviation of results ( from 0.4021 to 0.3098) and
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an improvement on the risk metrics VaR99 (from -0.7772 to -0.6312) and the

ES99 (from -0.9349 to -0.7485).

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1636 0.4021 -0.0554 3.0516 -0.7772 -0.9349

Q-Forward Hedged 0.1193 0.3098 -0.1798 2.9832 -0.6312 -0.7485

Table 11: Results from hedging multiple cohorts using various Q-Forwards

Figure 19: Distribution of hedging multiple cohorts using Q-Forwards. This distribution
refers to the results summarized in Table 11.

We reach a similar conclusion when comparing results for the Q-Forwards

and the S-Swap for hedging multiple cohorts. For example, our Q-Forwards

reduce the mean to 0.1193 (compared to 0.1636 for the unhedged distribution),

whereas the S25
65,67,69,71,73 reduces it to 0.1210. The standard deviation for

results is almost identical across both instruments (0.3177 for the S-Swap and

0.3098 for the Q-Forwards). The risk measure VaR99 and the ES99 perform

better with the Q-Forwards. The VaR99 is at -0.6312 for the Q-Forwards and

at -0.7485 for the S-Swap, whereas the ES99 is at -0.6312 for the Q-Forwards

and at -0.7668 for the S-Swap.
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Overview

We have now covered how the hedging instruments perform when we set up

our pension plan’s portfolio to mimic the historical composition of men and

women in the Canadian population. We can see that mortality instruments

are more efficient when analyzing the profits and loss after hedging.

In the following section, we will look at a portfolio with a specific compo-

sition of men and women. Every single pension plan portfolio of subscribers

has its distribution of men and women, and shifting to a cross-gender study

will give us a more realistic scenario. We will apply the same instruments but

in different hedging, schemes to provide an exhaustive cross-gender study.

6 Cross gender hedging

So far, we have only considered the total population curve, which models the

pension plan’s portfolio according to the historical weights of men and women

in the Canadian population. When we shift to a cross-gender study, we want

to model the pension plan portfolio according to a specific composition. We

choose a portfolio that is 65% women and 35% men; we will show that we need

to apply the FDA paradigm to individual female and male mortality curves.

The models for each of the coefficients show something interesting. When

we split the data into males and females, the first principal component, the β1

model, is an MA model. Recall that under the total population curve, the first

component was a random walk with drift. This finding reinforces our initial

analysis that male and female individual mortality curves exhibit some degree

of structure. Table 12 shows the models’ detailed results from Figures 20 and

21.
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Figure 20: The first four interactions for the Canadian Female population

Figure 21: The first four interactions for the Canadian Male population

Model/Population Female Male
β1 ARIMA(0,2,2) ARIMA(0,2,1)
β2 ARIMA(1,1,0) ARIMA(0,2,1)
β3 ARIMA(0,0,3) ARIMA(2,0,2)
β4 ARIMA(2,0,2) ARIMA(1,0,0)

Table 12: Models of the beta coefficients for each segment of the population
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Using these new coefficients and their basis, we can compute the same pa-

rameters for the hedging instruments as we did in previous sections.

To best evaluate our hedge’s effectiveness, we apply three different types of

hedging schemes. We begin with longevity and mortality hedging instruments

based on the total population curve. We compare those results with instru-

ments based on the male mortality curves and the female mortality curves. We

finish our study by looking into a mixed hedging scheme, which is in the same

proportion of men and women as the pension plan’s underlying portfolio. We

do this to provide benchmark-like results for comparison purposes. This means

that we will compare hedging with instruments that are based on the female

(or male mortality curve) to those in a mixed population instruments portfolio.

When working on this thesis, we realized that the total population method

yielded unsatisfactory results. This method consists of taking the total popula-

tion mortality curve to compute the parameters for the longevity and mortality

instruments. This method’s main disadvantage is that in the historical data,

the proportion of men and women change throughout time, whereas in our

paradigm, we keep the proportion constant. Furthermore, If the underlying

portfolio diverges from the historical, therefore, the parameters of the hedging

instruments are not specific enough and cannot hedge the population. These

results confirm our initial analysis that the fundamental differences between

male and female mortality curves are important. Because the results were

unsatisfactory, we decided not to retain this method and, therefore, will not

present the results in the essay. However, we provide these results for the single

cohort longevity and mortality instruments in Annex 7 Cross gender hedging

results using instruments based on the total Canadian mortality curve (Sec-

tion 8.7). :
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6.1 Unhedged portfolio and longevity hedging instru-

ments

We build the pension plan portfolio using the methodology in Section 5.1. We

use the same 4 000 annuitants, but we split them into 2 600 women (65%)

and 1 400 men (35%). Each of the τk is generated based on the underlying

mortality curve for each of the genders. We can compute the assets and liabil-

ities individually for each gender. The longevity bond is 13.4028� for a single

woman at age 65 and 12.0492� for a single man at age 65. The higher price for

the longevity bond for women than men is consistent with the general findings

that women tend to live longer and will therefore have higher survival rates in

further ages.

Recall the hedging scheme we have applied so far,

H = A− L+ PMethod

We define PMethod as the instrument-specific payoff.

Starting with the longevity swap, we have

P
S−swap,G = (e−

∫ T
0 mx,G(v)dv −KG(T ))

where

G is the gender of the instrument: men or women

KG is the fixed rate of contract, computed upon the mortality curve of

the given gender, computed as ERA[ST ] for G = men or women.

We can compute the PMethod as,

P =
Women

Total
PS−swap,Women +

Men

Total
PS−swap,Men

We can set the Female/Total (Male/Total) ratio to 0 and the other ratio to

1 if we want to compute the hedging only from the male (female) S-Swap. To
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compute the mixed hedge, we input those ratios from the underlying portfolio

of 65% women and 35% men.

When computing the Cap hedge, we proceed the same way:

PCap,G = max{(e−
∫ T
0 mx,W (v)dv − kG), 0}

where the strike for the caplet is kG = EBE
0 [ST ] , for G = men or women.

The total pay off is,

P =
Women

Total
PCap,Women +

Men

Total
PCap,Men

Using the same methodology as above, we can force one of the two argu-

ments to equal zero, while the other one is equal to 1, to evaluate the hedge

using a single mortality curve, let it be men or women.

P =
Women

Total

N∑
j=1

wj,womenFj,women(q) +
Men

Total

N∑
j=1

wj,menFj,men(q)

From these formulas, we apply the index for males and females by sepa-

rately setting one of the equation’s terms to 0. When we look at the gender-

specific mixed index, we keep the weights as those of the pension’s plan port-

folio.

6.2 Longevity hedging

6.2.1 Results from hedging a single cohort

We begin this section by presenting the results for the unhedged portfolio.

Notice the difference between an unhedged mixed portfolio (Unhedged MP)

that is 65% women and 35% men and the unhedged portfolio based on the

56



historical weights in the data set (Unhedged HW) discussed in Section 5.2.3.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged MP 0.2513 0.3064 0.0318 3.0137 -0.4563 -0.5515
Unhedged HW 0.2688 0.4652 -0.0084 2.9219 -0.8016 -0.9640

Table 13: Comparaison of two unhedged portfolios, one that is computed with the male
and female mortality curve independently and the other that is computed form the total
population curve

Table 13 shows that both means are about the same, but the standard de-

viation of results, the VaR99, and the ES99 of the mixed portfolio are lower.

The use of gender-specific mortality curves to compute the assets and liabili-

ties generates this difference. This difference arises from the different inputs

used, such as the bases φk and the coefficients βt,k.

When applying the hedging scheme, we began by looking over the effec-

tiveness of hedging only with instruments based on the male mortality curve.

Our initial hypothesis is that these instruments will not provide a sufficient

hedge for the underlying portfolio of 65% women. In Table 14, we see that the

risk-reducing metrics (standard deviation, the VAR99, and the ES99) do not

improve. This trend is maintained across all longevity and mortality instru-

ments. So, we have decided not to present further results from hedging with

male hedging instruments.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2513 0.3064 0.0318 3.0137 -0.4563 -0.5515

Swap Hedged 0.0612 0.3376 0.0305 3.0133 -0.5329 -0.6209
Cap Hedged 0.1433 0.2982 0.0837 3.0335 -0.7201 -0.8242

Table 14: Results from hedging a single cohort of age 65 for a 25-year maturity, with
longevity instruments based on the male mortality curve

We obtain the following results when applying the female mortality instru-

ments as a hedge to our mixed portfolio.
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Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2513 0.3064 0.0318 3.0137 -0.4563 -0.5515

Swap Hedged 0.0789 0.1520 0.0156 2.9303 -0.2590 -0.3032
Cap Hedged 0.1566 0.2117 0.6422 3.7756 -0.2713 -0.3227

Table 15: Results from hedging a single cohort at age 65 for a 25-year maturity, with
longevity instruments based on the female mortality curve

Because of our portfolio’s composition, the results from hedging with fe-

male longevity instruments are remarkably better than if we hedged them with

male longevity instruments. We see that the risk metrics are performing bet-

ter, and we see that the cap surpluses have a positive skewness, meaning that

the distribution will have a fat tail to the right.

However, the best results are those from a mixed hedging scheme that mim-

ics the weights from the underlying portfolio. Table 16 below shows that for

a mean reduction close to that of hedging with female longevity instruments,

we cut the VaR from -0.4563 to -0.2562 for the S-Swap and -0.2832 for the

Caplet. All other results presented in Table 16 are in line with those presented

in previous sections of this thesis. The Swap’s standard deviation is 0.1247

while the Cap’s is 0.2194, whereas the Cap presents with positive skewness

(0.6972 for the Cap and -0.1772 for the Swap).

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2513 0.3064 0.0318 3.0137 -0.4563 -0.5515

Swap Hedged 0.0727 0.1247 -0.1772 3.0526 -0.2562 -0.3061
Cap Hedged 0.1520 0.2194 0.6972 3.6221 -0.2313 -0.2832

Table 16: Results from hedging a single cohort at age 65, with longevity products, for a
25-year maturity, with longevity instruments that are based on a mix of 65% women and
35% men
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Figure 22: Distribution of single cohort, longevity hedge for a 25 year maturity , with Swaps
and Caps. These distrubtions summarize the results found in Table 16.

6.2.2 Results from hedging multiple cohorts

As per the findings in Section 6.2.3, the unhedged multiple cohort portfolio’s

means are lower than the unhedged single cohort portfolio. A more detailed

overview of the asset and instruments pricing for multiple cohorts is available

in Annex 3. We present the results from the 25-year hedge.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1537 0.2061 -0.0525 2.9893 -0.3263 -0.4039

S25
65 0.1479 0.1931 -0.0618 2.9968 -0.2994 -0.3768

S25
65,67 0.1422 0.1816 -0.0732 3.0095 -0.2845 -0.3546

S25
65,67,69 0.1373 0.1719 -0.0802 3.0160 -0.2687 -0.3346

S25
65,67,69,71 0.1341 0.1659 -0.0861 3.0218 -0.2544 -0.3222

C25
65 0.1508 0.1997 -0.0130 2.9924 -0.3058 -0.3829

C25
65,67 0.1488 0.1940 0.0220 3.0037 -0.2904 -0.3642

C25
65,67,69 0.1478 0.1891 0.0538 3.0101 -0.2780 -0.3474

C25
65,67,69,71 0.1485 0.1861 0.0706 3.0169 -0.2683 -0.3358

Table 17: Various S-Forward and Caple hedges on different cohorts, with 25-year longevity
instruments based on the female mortality curve.
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Table 17 presents various results for multiple cohorts hedged with female

instruments. We see that there is almost no change in the mean or the risk

statistics when hedging only the first two cohorts. This is in line with our

finding that women tend to live longer, and therefore the hedging needs are

in further ages. When we look at the S-Swaps S25
65,67,69,71, we see that we have

an interesting reduction for the standard deviation, the VaR, and ES. As dis-

cussed in previous sections, because the skewness for the Caplet is near zero

(while remaining positive for two or more Caplet contracts), the premium paid

for the option eats away from the possible upside.

In Table 18 below, we apply mixed longevity instruments. We notice that

the instruments perform marginally better than when using the female-only

curve. However, we see similar characteristics between the Swap and Cap, and

the risk metrics of the Swap perform better than those of the Cap.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1537 0.2061 -0.0525 2.9893 -0.3263 -0.4039

S25
65 0.1482 0.1898 -0.0657 3.0017 -0.2972 -0.3693

S25
65,67 0.1429 0.1760 -0.0789 3.0228 -0.2742 -0.3403

S25
65,67,69 0.1382 0.1646 -0.0831 3.0289 -0.2491 -0.3163

S25
65,67,69,71 0.1352 0.1578 -0.0905 3.0401 -0.2331 -0.3022

C25
65 0.1510 0.1980 0.0025 2.9978 -0.3019 -0.3765

C25
65,67 0.1491 0.1910 0.0501 3.0199 -0.2831 -0.3525

C25
65,67,69 0.1483 0.1850 0.0920 3.0345 -0.2640 -0.3321

C25
65,67,69,71 0.1491 0.1813 0.1115 3.0503 -0.2517 -0.3197

Table 18: Various S-Forward and Caple hedges on different cohorts, with a 25 year longevity
instruments based on a mix of 65% women and 35% men
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6.3 Mortality hedging

For comparison purposes, we will keep on using 4 Q-Forward contracts, spread

throughout the ages of 70 and 85, just as we did in Section 5.3.

Following the methodology proposed in Section 5.3, we compute the weights

for each of the forward contracts. We obtain two sets of results for both gen-

ders to apply to the curves. In Table 19, we can see that the hedging weights

on the Q-Forwards based on the female mortality curve are higher than those

based on the male mortality curve. As before, we calculate the sensitivity

using a shift of δ = 0.10%. Recall how we computed the key q-durations

sensitivities in Section 5.3.2,

KQD(P (q), j) =
P (q̃(j))− P (q)

δj

Because the female mortality rate is on average lower than men’s, the

women’s KQDs tend to be higher than men’s, resulting in higher weights for

their Q-Forwards. In notional terms, the mortality instruments based on the

mortality curve will be higher in the pension plan’s hedged portfolio.

Weights Women Men
w1 60.0625 51.0217
w2 47.0699 37.1240
w3 33.6594 23.8684
w4 20.8291 12.6309

Table 19: Gender specific Q-Forward weights

6.3.1 Results from hedging a single cohort

When we compute the results of hedging the mixed portfolio, using only in-

struments based on the female mortality curve, we notice that they do not

improve the pension plan’s portfolio’s risk profile. The VaR and the ES are

61



higher than the unhedged portfolio. This can be explained by the highly neg-

ative skewness, meaning that we have extreme negative occurrences, resulting

in more significant losses. This phenomenon can be explained by the con-

tract weights computed in Table 19. Because of a potential mismatch between

the composition of the hedging instrument and the portfolio, we expose our-

selves to basis risk. When multiplying that basis risk by 60, we create greater

discrepancies. The detailed results are in Table 20.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2513 0.3064 0.0318 3.0137 -0.4563 -0.5515

Q-Forward Hedge 0.0901 0.2058 -0.1958 3.4463 -0.4036 -0.5282

Table 20: Results from hedging a single cohort at age 65 with 4 Q-Forward contracts, based
on the female mortality curve

Figure 23: Distribution of single cohort at age 65, hedged with 4 female Q-Forwards. This
distribution refers to the results summarized in Table 20

Although hedging with Q-Forwards with one gender only does not yield

satisfactory results, using mixed instruments seems to provide a much better

hedge. The mean reduction is compensated by a significant reduction in the

standard deviation (from 0.3064 to 0.1343), the VaR99 ( from -0.4563 to -
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0.2314) and the ES99 (from -0.5515 to -0.2793). When comparing these results

with the S-Swaps, we find that the portfolio hedged with Q-Forwards performs

better. Recall that this was also the case when hedging with the total mortality

curve. We believe that the Q-Forwards perform better due to the smoothing

technique applied to the data. The results are summarized in Table 21.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2513 0.3064 0.0318 3.0137 -0.4563 -0.5515

Q-Forward Hedge 0.0944 0.1343 -0.1222 3.0092 -0.2314 -0.2793

Table 21: Results from single cohort mortality hedging with four forward contracts, using
a portfolio that is a mix of 65% women and 35% men

6.3.2 Results from hedging multiple cohorts

For the final hedging results, we will look at the mortality multi-cohort hedging

scheme, following the methodology in Section 5.3. We summarize the gender-

specific weights we will apply to the forward contracts in Table 22.

K cohort 2017 age nk Age in time wj,k,Women wj,k,Men

1 65 1 (70,2022) 9.8342 9.4233
2 (75,2027) 8.0280 7.5644
3 (80,2032) 5.5963 5.1849
4 (85,2037) 3.3306 3.0460

2 70 1 (75,2022) 10.5600 9.9646
2 (80,2027) 7.6144 6.9993
3 (85,2032) 4.5140 4.7069

3 75 1 (75,2022) 5.7313 5.2513
2 (80,2027) 7.7512 7.7613

4 80 1 (85,2022) 3.6552 3.1964

Table 22: Weights applied to each contract throughout different cohorts

Our findings for the multiple cohort hedging scheme using mortality prod-

ucts resemble the one for a single cohort. First, hedging using mortality in-

struments based on the female curve only does not yield satisfactory results.
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For a mean reduction from 0.1537 to 0.1101, the VaR99 is higher for the Q-

Forward hedge, whereas the ES99 remains practically the same. This can be

explained by the weights applied to female contracts.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1537 0.2061 -0.0525 2.9893 -0.3263 -0.4039

Q-Forward Hedged 0.1101 0.1905 -0.0264 2.9484 -0.3345 -0.3999

Table 23: Results from hedging multiple cohorts beginning at age 65 with Q-Forwards based
on the female mortality curve

Figure 24: Distribution of surpluses from hedging multiple cohorts beginning at age 65 with
Q-Forwards based on the female mortality curve. These distributions are linked to results
in Table 23

When we use a mixed portfolio hedges, we get that the distribution of the

portfolio profit and loss is better than when we use longevity instruments in

multiple cohorts. The mean reduction (from 0.1537 to 0.1142) is compensated

by an improvement of the risk metrics VaR99 (from -0.3263 to -0.2626) and

the ES99 (from -0.4039 to -0.3159).
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Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1537 0.2061 -0.0525 2.9893 -0.3263 -0.4039

Q-Forward Hedged 0.1142 0.1584 -0.0894 2.9562 -0.2626 -0.3159

Table 24: Results from hedging multiple cohorts beginning at age 65 with Q-Forwards, using
a portfolio that is a mix of 65% women and 35% men

Figure 25: Distribution of surpluses from hedging multiple cohorts beginning at age 65 with
Q-Forwards, using a portfolio that is a mix of 65% women and 35% men. These distributions
are linked to results in Table 24
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7 General conclusions, further discussions

In this thesis, we looked at a newer model to forecast mortality rates and apply

hedging schemes. These models, although used in demographic studies, are

new to hedging applications. Using the FDA model instead of the LC model

allows us to capture most of the structure in the data set, which can augment

the model’s predictive power. Furthermore, this model has an extension : co-

herent FDA [14]. With this method, we can simultaneously forecast mortality

rates of two or more populations (eg: Canadian and American) while letting

each of the underlying mortality curves maintain their long-term patterns.

This is interesting if we want to model and analyze the hedging scheme using

a cross-population model.

However, one of the most significant disadvantages of the FDA paradigm

is that it is sensitive to arbitrary decisions. For example, if we change the data

set +/- 5 years, the ARIMA models can drastically change. Demographs will

always prefer the ARIMA model that maximizes the AIC/BIC criteria because

they want to ensure the best fit for the data. However, the model that fits

best the criteria can be non-parsimonious (i.e. an ARIMA(3,1,4)). This is an

important problem, especially if we want to have a financial product that is

robust. Other models, such as CBD M5, have the property of being invariant

to a change in the data frame. An extensive application of that model has been

worked on by Giannini 2020 [8]. Furthermore, because the forecasting of the

β coefficients is done through ARIMA models, we add to the uncertainty of

the results. ARIMA processes are known to give better results for short-term

predictions rather than long-term ones. These findings were discussed with

Patrice Dion, from Statistique Canada, who convened that the FDA model

does have some serious limitations.

We can conclude that mortality instruments perform better than longevity

instruments in hedging a pension plan’s portfolio regardless of the hedging

scheme we applied. We believe that the quality of those results is due to
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the smoothing technique used in our paradigm. However, this point is not di-

rectly verified in our research, as we have not presented results without using a

smoothing technique. The comparison could be an avenue for future research.

Other hedging products using mortality curves exist, such a Q-puts; a Q-put

gives the pension plan the right, but not the obligation, to exercise the option;

this instrument (just like the S-Caps) trades at a premium.

From a cross-gender point of view, we can conclude that for longevity prod-

ucts (recall these are cash-flow matching instruments), the pension plan could

rely on instruments based only on the female mortality curve if its composi-

tion of female annuitants is higher. On the other hand, when using mortality

instruments, hedging using only the female mortality curve does not yield

satisfactory results. Therefore, the best way for a pension plan to hedge its

portfolio is to use a mix of mortality instruments based on the composition of

men and women in its underlying portfolio.
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https://statistique.quebec.ca/statistiques/

population-demographie/bilan2018.pdf

[18] Kalben, B. B. (2002). Why men die younger: Causes of mortality dif-

ferences by sex, (SOA Monograph MLI01-1). Schaumburg, IL: Society of

Actuaries.

69



[19] Lee,R.D.,Carter L.R., 1992, Modeling and Forecasting U.S. Mortality,

Journal of American Statistical Association, vol. 87, pp.659-671.

[20] Life & longevity markets association, 2011 A framework for pricing

longevity exposure, www.llma.org.

[21] Li, J.S-H., Luo, A., 2012, Key Q-Duration : a Framework for Hedging

Longevity Risk, Astin Bulletin, vol.42, n�2, pp. 413-452.

[22] Li,J.S-H., Ng, A.C-Y.,2011, Canonical Valuation of Mortality-Linked Se-

curities, The Journal of Risk and Insurance, vol 78, pp.853-884.

[23] Statistics Canada (2018). Health-adjusted life expectancy in Canada,

[En ligne], Ottawa, https://www150.statcan.gc.ca/n1/pub/82-003-x/

2018004/article/54950-eng.htm

[24] Statistics Canada (2020). Population estimates on July 1st, by age and

sex, [En ligne], Ottawa, https://www150.statcan.gc.ca/t1/tbl1/en/

cv.action?pid=1710000501

[25] Ramsay, J. O., and Silverman,B.W. Functional Data Analysis. Springer

Science Business Media, ch. 5,8, 2010.

[26] Stutzer, M., 1996, A Simple Nonparametric Approach to Derivative Se-

curity Valuation, Journal of Finance, vol 51, pp. 1633-1652.

[27] Ullah, S., Finch, C. (2013). Applications of functional data analy-

sis: A systematic review. BMC medical research methodology. 13. 43.

10.1186/1471-2288-13-43.

[28] Whaba,G., 1975, Smoothing noisy data with spline functions, Nu-

mer.Math.,24,ppé383-393.
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8 Appendixes

8.1 Results from fitting all available data

Figure 26: The first four interactions for the Canadian Population, when taking into account
all available ages

Figure 27: The first four interactions for the American Population, when taking into account
all available ages
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8.2 FDA Modelling for Slovenia and Estonia

Figure 28: The first four interactions and the basis for Slovenia

Figure 29: The first four interactions and the basis for Estonia
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8.3 Hedging results for a 20 year maturity hedge

The following table shows the results for hedging multiple cohorts with longevity

instruments for a 20 year hedge.

Cohort μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1643 0.3985 -0.0277 2.9214 -0.7446 -0.8883

S20
65 0.1566 0.3859 -0.0409 2.9151 -0.7253 -0.8678

S20
65,67 0.1502 0.3743 -0.0551 2.9143 -0.7060 -0.8510

S20
65,67,69 0.1452 0.3635 -0.0668 2.9133 -0.6912 -0.8317

S20
65,67,69,71 0.1424 0.3567 -0.0739 2.9087 -0.6778 -0.8165

S20
65,67,69,71,73 0.1401 0.3508 -0.0805 2.9098 -0.6669 -0.8052

C20
65 0.1633 0.3925 -0.0119 2.9240 -0.7248 -0.8696

C20
65,67 0.1629 0.3870 0.0025 2.9328 -0.7105 -0.8544

C20
65,67,69 0.1633 0.3818 0.0171 2.9393 -0.6981 -0.8369

C20
65,67,69,71 0.1644 0.3785 0.0261 2.9414 -0.6861 -0.8231

C20
65,67,69,71,73 0.1656 0.3756 0.0330 2.9451 -0.6728 -0.8128
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8.4 Prices for longevity bonds on multi cohort products

8.4.1 Canadian Population

Cohort Total Population Female Population Male Population
1 12.32 12.87 11.81
2 11.96 12.50 11.44
3 11.59 12.12 11.07
4 11.22 11.74 10.70
5 10.84 11.36 10.32
6 10.47 10.97 9.94
7 10.09 10.58 9.56
8 9.71 10.19 9.18
9 9.34 9.80 8.80
10 8.96 9.40 8.42
11 8.58 9.01 8.04
12 8.20 8.61 7.67
13 7.83 8.21 7.30
14 7.46 7.81 6.93
15 7.10 7.42 6.57
16 6.74 7.03 6.21
17 6.38 6.64 5.85
18 6.03 6.26 5.50
19 5.68 5.89 5.16
20 5.34 5.53 4.82
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8.4.2 American Population

Cohort Total Population Female Population Male Population
1 12.32 12.87 11.81
2 11.96 12.50 11.44
3 11.59 12.12 11.07
4 11.22 11.74 10.70
5 10.84 11.36 10.32
6 10.47 10.97 9.94
7 10.09 10.58 9.56
8 9.71 10.19 9.18
9 9.34 9.80 8.80
10 8.96 9.40 8.42
11 8.58 9.01 8.04
12 8.20 8.61 7.67
13 7.83 8.21 7.30
14 7.46 7.81 6.93
15 7.10 7.42 6.57
16 6.74 7.03 6.21
17 6.38 6.64 5.85
18 6.03 6.26 5.50
19 5.68 5.89 5.16
20 5.34 5.53 4.82
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8.5 Premiums for caps on multi cohort products

8.5.1 Canadian Population

Cohort Total Population Female Population Male Population
1 0.2478 0.2220 0.2333
2 0.2381 0.2081 0.2193
3 0.2282 0.1943 0.2053
4 0.2181 0.1807 0.1914
5 0.2078 0.1673 0.1778
6 0.1973 0.1542 0.1643
7 0.1867 0.1414 0.1511
8 0.1758 0.1289 0.1383
9 0.1646 0.1169 0.1258
10 0.1532 0.1052 0.1137
11 0.1416 0.0940 0.1019
12 0.1297 0.0832 0.0907
13 0.1177 0.0730 0.0799
14 0.1055 0.0634 0.0696
15 0.0933 0.0543 0.0599
16 0.0812 0.0458 0.0508
17 0.0695 0.0379 0.0424
18 0.0582 0.0306 0.0347
19 0.0475 0.0241 0.0278
20 0.0376 0.0183 0.0216
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8.5.2 American Population

Cohort Total Population Female Population Male Population
1 0.2590 0.3347 0.2481
2 0.2466 0.3228 0.2374
3 0.2341 0.3102 0.2268
4 0.2214 0.2968 0.2161
5 0.2086 0.2829 0.2055
6 0.1958 0.2683 0.1947
7 0.1831 0.2534 0.1839
8 0.1705 0.2383 0.1730
9 0.1580 0.2232 0.1620
10 0.1458 0.2082 0.1509
11 0.1338 0.1932 0.1396
12 0.1221 0.1782 0.1282
13 0.1107 0.1630 0.1169
14 0.0996 0.1476 0.1056
15 0.0887 0.1320 0.0944
16 0.0781 0.1161 0.0833
17 0.0678 0.1002 0.0725
18 0.0578 0.0846 0.0619
19 0.0481 0.0693 0.0516
20 0.0389 0.0546 0.0416
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8.6 Hedging Results for the American population

8.6.1 American Total population

In the following annex, we summarize the results when we apply the longevity

and mortality hedging scheme to the American Total Population, for a single

and multiple cohorts. These results are in line with the found in this thesis, in

Cairns and al [3] for the longevity instruments and in Lu-Luo for the mortality

instruments [21].

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2352 0.4327 0.0811 2.9969 -0.7353 -0.8902

Swap Hedged 20 years 0.1019 0.1907 -0.1247 2.9861 -0.4019 -0.4738
Cap Hedged 20 years 0.1640 0.3215 0.8217 3.6704 -0.3555 -0.4270
Swap Hedge 25 years 0.0455 0.0869 -0.2813 3.0624 -0.2415 -0.2771
Cap Hedged 25 years 0.1312 0.2793 1.3337 4.6780 -0.1766 -0.2119

Table 25: Summary for the longevity hedge for the Amercain Total Population applying
longevity instruments for different maturities

Figure 30: Distribution for the 25 year maturity hedge
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Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2359 0.42925 0.10317 2.9757 -0.71881 -0.85235

Q-Forward Hedged 0.082696 0.1844 -0.016134 3.054 -0.35307 -0.4100

Table 26: Results from hedging a single cohort at age 65 with 4 Q-Forwards

Figure 31: Distribution for mortality hedge on the American total population

Here are the results when applying the hedging scheme for the longevity

and mortality instruments, on the total American population, for multiple

cohorts.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1428 0.3165 0.0398 2.9811 -0.5783 -0.6837

S25
65 0.1288 0.2932 0.0283 2.9849 -0.5432 -0.6367

S25
65,67 0.1175 0.2714 0.0180 2.9862 -0.4771 -0.5965

S25
65,67,69 0.1023 0.2507 0.0110 2.9717 -0.4284 -0.5511

C25
65 0.1390 0.2997 0.0071 2.9717 -0.4283 -0.5616

C25
65,67 0.1364 0.2892 0.1325 2.9669 -0.4205 -0.5374

C25
65,67,69 0.1349 0.2674 0.1908 3.0159 -0.4101 -0.5130

Table 27: Various S-Forward hedges on different cohorts for 25 year maturity hedge
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Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1418 0.3165 0.0398 2.9811 -0.5783 -0.6837

Q-Forward Hedged 0.0914 0.2127 -0.1105 3.05 -0.4228 -0.4900

Table 28: Various S-Forward hedges on different cohorts for 20 year maturity hedge

Figure 32: Distribution for mortality hedge on the American total population
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8.6.2 Cross gender hedging of American population

This annex contains the results for a cross gender hedging scheme on the

American population. We have decided to present only the results when using

male and female hedging instruments that mimic a portfolio that is 65% women

and 35% men.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2453 0.3681 0.0858 3.0310 -0.5937 -0.7041

Swap Hedged 0.1494 0.1258 -0.1398 2.9351 -0.3078 -0.3590
Cap Hedged 0.1442 0.2533 0.7315 3.6932 -0.1542 -0.1970

Table 29: Results from hedging a single cohort at age 65, with longevity products, for a 25
year maturity, with longevity instruments that are based on a mix of 65% women and 35%
men

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2453 0.3681 0.0858 3.0310 -0.5937 -0.7041

Q-Forward Hedged 0.0851 0.1493 -0.0764 3.0704 -0.2740 -0.3247

Table 30: Results from single cohort mortality hedging with 4 forward contracts, using a
portfolio that is 65% women and 35% men

When we apply the multiple cohort hedging scheme, we find the following

results.

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1537 0.2061 -0.0525 2.9893 -0.3263 -0.4039

S25
65 0.1482 0.1898 -0.0657 3.0017 -0.2972 -0.3693

S25
65,67 0.1429 0.1760 -0.0789 3.0228 -0.2742 -0.3403

S25
65,67,69 0.1382 0.1646 -0.0831 3.0289 -0.2491 -0.3163

S25
65,67,69,71 0.1352 0.1578 -0.0905 3.0401 -0.2331 -0.3022

C25
65 0.1510 0.1980 0.0025 2.9978 -0.3019 -0.3765

C25
65,67 0.1491 0.1910 0.0501 3.0199 -0.2831 -0.3525

C25
65,67,69 0.1483 0.1850 0.0920 3.0345 -0.2640 -0.3321

C25
65,67,69,71 0.1491 0.1813 0.1115 3.0503 -0.2517 -0.3197

Table 31: Various S-Forward and Caplet hedges on different cohorts for 20 year maturity
hedge, using instruments based on the female mortality curve.
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Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.1481 0.2953 0.0406 2.9661 -0.5249 -0.6233

Q-Forward Hedged 0.1002 0.2133 -0.0642 2.9494 -0.4037 -0.4794

Table 32: Results from multiple cohorts mortality hedging with Q-forward contracts based
on a mix of 65% women and 35% men
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8.7 Cross gender hedging results using instruments based

on the Canadian total population

In this annex, we provide the results for cross gender hedging using instruments

that are based on the total population mortality curve.

Cohort μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2513 0.3064 0.0318 3.0137 -0.4563 -0.5515

Swap Hedged -0.3318 0.2914 -0.1690 2.9752 -0.2404 -0.2404
Cap Hedged -0.1599 0.1045 2.3356 9.2207 -1.0381 -1.1516

Table 33: Results from hedging a single cohort at age 65, with 25 year maturity longevity
products that are based on the total population mortality curve

Portfolio μ std Skewness Kurtosis VaR99 ES99
Unhedged 0.2513 0.3064 0.0318 3.0137 -0.4563 -0.5515

Q-Forward Hedged 0.0700 0.4961 -0.2527 3.2568 -1.1888 -1.4205

Table 34: Results from hedging a single cohort ate age 65, with 4 Q-Forwards based on the
total population curve

84


